A DATA PARALLEL COMPILER HOSTED ON THE GPU

Aaron Wen-yao Hsu

Submitted to the faculty of the University Graduate School
in partial fulfillment of the requirements
for the degree
Doctor of Philosophy
in the School of Informatics, Computing, and Engineering,
Indiana University
November 2019

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the

Doctoral Committee

October 10", 2019

requirements for the degree of Doctor of Philosophy.

Andrew Lumsdaine, Ph.D.

Ryan Newton, Ph.D.

Amr Sabry, Ph.D.

Arun Chauhan, Ph.D.

ii

Joshua Danish, Ph.D.

Copyright © 2019

Aaron Wen-yao Hsu

iii

To my wife Johanna and my daughters Mikaela and Saraqael, who have known no other life than

that of aid and support to a seemingly lifelong student, but nonetheless endure faithfully and

patiently, and to the family they help me to remain a part of. May God bless you and keep you, and

may He grant you many years.

iv

Acknowledgements
I must highlight the patience and endurance of my doctoral committee who, perhaps despite their
better judgment, gave me the space and time necessary to pursue an idea that bore none of the
traditional markers of good thesis work. Only their willingness to permit my exploration and discovery
enabled me to engage with these ideas within my formal education in a way that would never have
been possible without. I strongly suspect that they may not have known whether the rope they were
giving me would ultimately serve to aid my academic climb or strangle me where I stood.

Likewise, the pursuit of this topic would not have been possible without the generous, tireless,
and optimistic aid provided by Dyalog, Ltd. Their passion for the future of APL, for the cultivation of
computing that empowers the individual mind, and their investment in young and oftentimes brash
lone wolves like myself not only supported this work, but also gave spark to its shape and color, in a
way that would not be possible without the exposure they enabled to great minds such as Morten
Kromberg, Gitte Christensen, Roger Hui, Stephen Taylor, John Scholes, Robert Bernecky, and the
whole of the extended Dyalog APL programming community.

Finally, inordinate recognition must go to Kent Dybvig, without whom this journey would

have ended long before it even began.

Aaron Wen-yao Hsu

A DATA PARALLEL COMPILER HOSTED ON THE GPU

This work describes a general, scalable method for building data-parallel by construction tree

transformations that exhibit simplicity, directness of expression, and high-performance on both CPU

and GPU architectures when executed on either interpreted or compiled platforms across a wide range

of data sizes, as exemplified and expounded by the exposition of a complete compiler for a lexically

scoped, functionally oriented programming commercial language. The entire source code to the

compiler written in this method requires only 17 lines of simple code compared to roughly 1000 lines

of equivalent code in the domain-specific compiler construction framework, Nanopass, and requires

no domain specific techniques, libraries, or infrastructure support. It requires no sophisticated

abstraction barriers to retain its concision and simplicity of form. The execution performance of the

compiler scales along multiple dimensions: it consistently outperforms the equivalent traditional

compiler by orders of magnitude in memory usage and run time at all data sizes and achieves this

performance on both interpreted and compiled platforms across CPU and GPU hardware using a

single source code for both architectures and no hardware-specific annotations or code. It does not

use any novel domain-specific inventions of technique or process, nor does it use any sophisticated

language or platform support. Indeed, the source does not utilize branching, conditionals, if

statements, pattern matching, ADTs, recursions, explicit looping, or other non-trivial control or

dispatch, nor any specialized data models.

Andrew Lumsdaine, Ph.D.

Ryan Newton, Ph.D.

Amr Sabry, Ph.D.

Arun Chauhan, Ph.D.

vii

Joshua Danish, Ph.D.

1.
2.

Table of Contents

TNETOAUCLION ..ttt ettt et b et e s et e b e st et e ebe et e se e e st et e sat et e besateeenseesesaeeneen 1
BACKZIOUINA ...ttt et ettt st et e e bt et e se e e st et e s et et e be st eeeeseesesaeenean 9
2.1. APL vis a vis Iverson-style Array Programming.........ccecceeerieresersieniiseesieneecesieseesee e seens 9
2110 ATTAY MOGEL ..ttt ettt ettt ettt st b et e e aee 11
2.1.2. APL EXPIeSSION SYNEAX ..ccevieeeiiereiieriiiieiieeeieteneeresieeeeteseeresrteessresearesesesesasessmeesesenesane 14
2.1.3. APL PIIIMITIVES .ottt siet et e s er e sbee st esesaneseses e saseesmeesesanesane 16
2,14, TAIOMAIC APL ..ottt ettt st b e ettt et st ettt et be e e et e aeenee 23
00 R TN) o 0] o 1021 ol SR 36
2.2. The Co-dfNS LANZUAZEeeieeieiieieieeieeie e et et e te et e st e e et et e st et et e e e eseeese et esneeneeesesneeneen 42
2.3. NanoPass FTAMEWOTKccoeiiieiieeeee ettt ettt et et e e ee e e e neen 44
165701111)1 () SR 47
3.1. OVEIVIEW .oiiiiiviiiiiniiiiiieitiiiiit ettt ettt sb st s b e st sb bbb e a bt sabesatosssobesabesasobesssesanonses 47
3.2. The AST and ItS RePresentation.......cccciievieereinieinieenieenineniensereeesisesssessseesseerseessaessaesssessses 50
3.2.1. Record-type Representation.......coccveeveeereenieernienieeeierteteereseeneeeseeteseeeeessesseeneeoneene 51
3.2.2. Linearizing Relational Representations as Tables..........cocceveeerveenenerneneeneneneeneeenenne 59
3.2.3. Depth Vector REPreSENtationccccerceeiiieriierniereieeiiesrieerseereereesssesssesisesssesssasssassssssaenss 60
3.2.4. Optimizing with Inverted Tables and Symbolsccccccerveevenirreniniensenieeceneeeeenene 65
3.2.5. Path Matrices and Decoupling Table Ordering and Node Edges......c.ccoceeveeererruenernnne. 72
3.2.6. Parent Vector Representation......ccccoviiriieiireernneenniirinirersseessiseenireesseesssseessressssessssessssens 77
3.3. Converting from Depth Vector to Parent VEeCtOr........cocceveeerrienieieenieneeseseneeieeeeeeneeenees 81
3.4. Computing the Nearest Lexical CONOUTcocuerierieiierierieeieneenireeeste et seeeeereeee s 89
3.5. Lifting FUNCLIONS «..coviririeriieietertestete sttt ettt et st tee e sttt e st st et e besaeeeessesnsesanenees 96
3.6. WIAPPING EXPIESSIONS. ...eieiieiieiieitertentententcnteereee e ee et eresetesstesseesaeesasesanessresnesenesane 106
3.7. Lifting Guard Test EXPreSSions.......ccetirieterieriertenieneenteeeeteneee e eteseeetessesaeestesbesaeeseesseene 116
3.8. Counting Rank of Index OPperationscccceveeveeeiereenienennienieeeieneeseesieseeseesie st eseeeseene 119
3.9. Flattening EXPIrESSIONS ...c.cceeriereruierertereteieereiesereeesentesetestesesstesessessessessentensesesssesessessenses 122
3.10. Associating Frame Slots and Variables.........ccoceieeereirrreeeceeeceereecee e 127
3.11. Placing Frames into a LexXical Stack......ccccooevoieieeiioieeeeeeee e 130
3.12. Recording EXPOrted NAITIESccccieieieriieieierteteeieeeeceete et et e e saesmesseesse s e eseeeseenes 132

3.13. LEXICAl RESOIULION .uvvveviieiiiieiietieeeeettee e eeeteeeseieteeessseteeeseatesesssssessssssesssosssesssssasesssssssessssnns 133

4. PEITOTINANCE ..c.ueeureiieiiiieieietet sttt et ettt et e sat et e et e st e ste s bt st e s et ese e besatenea et esseeneaneeatessteneesesseens 144
4.1. AST Memory Usage for Co-dfnns COMPIler.....c..coceeerienecennienineeieneeeeeeneeeeeie e 148
4.2. GPU Data Transfer Overheadsccccovieeevenieneieneeeecneereeeceeree st 150
4.3. CPU vS. GPU Performarnce.........ccceeeeveerieeesienieeeeieneeeeee sttt eteseteeessesaeeeessesseenesssesnee 151
4.4, Performance vs. Racket Nanopass Implementationcccccvcvevvveviereerneenneeenneoneeeneenns 157
4.5. Performance vs. Chez SCheme.......c.cocueiiririirieeneeeenteee ettt s 168

5. DISCUSSION...ccuutiiiieeieetet ettt e ettt et e et et e st e st e st e sasesor e s be s be s sesenesenetensnennesnnesanesanens 175
5.1. Distribution of Array Primitive USAZEcceceroierieeerieceeeeieree et 175
5.2. Tree Transformation TAIOIMISceie ettt 175

07 B I -) - Y TSRS 176
I ='a [0\ L1 121 5o) o RO SRR 180
FSI07C TN \\ (o Ta VLY 51 18 o) o SRS 182
5.3. Benefits of This Style of Tree Transformationcceceeveeeerieieesenseereeee e 185
5.4, Limitations of the APPrOaChcociiiiiiee ettt 190
5.5. The Readability and Usability Of APLccococieierieieeeeeee et 191

T o 611 S0 < S 195

2 =) Y CeTa B Y) SRS 199

ST 70 s Tod 11 L[) o PSSR 202

Appendix A. APL Language REfEIENCE .. .c.evoieiieieeeieieie et te ettt e e saeeeeae 208

AppendiXx B. CO-AfNS SOUICE .. .emieeieieieieeie ettt ettt e et e et e ee s e e e e sme et e s e ensebesaasnaens 210

Appendix C. Racket NANOPASS SOUICE «...coeuerieireiereieiieiesiereetesie s e stee e et esee e e et esmeeeessesnseeessesnnens 211

AppendixD. Chez Scheme NAnopass SOUICEc.ceeierieeerierieiesiereeeeseeeeeseeseeseesseseessesseseessesnens 233

Appendix E. Benchmark TNPUL SOUTCE ..ecvviviiiiiiiiieereenresresriesereeetessessessseesssessesseessnessnesnessnens 257

Appendix F. RAW SPEEAUPS .veiveitieetiieiieiieitere et ereesresresre s te s ba s basesaessaeessaesssessserssessnessnesssesssens 259

Appendix G. Raw Timings (SECOMAS)....crirreruerieririeririererinienietenteteesitereseessessessessessesesseesessessessense 261

Appendix H. DiSPlayiNg TIEES .eeeeeevierieieeiereertiteetertte e eterttetesteseeestesbessteseesseesteses et esesaeesessesaeens 263

RETBTEIICES ...ttt ettt ettt et st et et e sat et e b et e seeeatebesat et e besatensenseene 264

Curriculum Vitae

ix

List of Figures

Figure 1. CPU vs. GPU Performance for Co-dfns Compiler..........cccceeviiiiininininiinnniininnininincnennens 154
Figure 2. CPU vs. GPU Performance for Co-dfns Compiler, continued...........ccceevvveiiiniiinincnncnnns 155
Figure 3. Average Speedup vs. Racket Nanopass for CPU (Left) and GPU (Right) platforms........... 158

Figure 4. Speedups vs. Racket Nanopass for CPU (Left) and GPU (Right) platforms, continued. 159
Figure 5. Speedups vs. Racket Nanopass for CPU (Left) and GPU (Right) platforms, continued..... 160
Figure 6. Speedups vs. Racket Nanopass for CPU (Left) and GPU (Right) platforms, continued..... 161
Figure 7. Average Speedup vs. Chez Nanopass for CPU (Left) and GPU (Right) platforms.............. 171
Figure 8. Speedups vs. Chez Nanopass for CPU (Left) and GPU (Right) platforms, continued........ 172
Figure 9. Speedups vs. Chez Nanopass for CPU (Left) and GPU (Right) platforms, continued........ 173

Figure 10. Speedups vs. Chez Nanopass for CPU (Left) and GPU (Right) platforms, continued...... 174

List of Tables
Table 1. Mixed Primitive Functions and Their Critical PathS........ccoccievieienciereiieeeeeeeece e 37
Table 2. Primitive Operators and their Critical Paths.......cccccovvirviiniennennininiieeeeneeseesrneennes 38
Table 3. Benchmarking Test Machine SpecifiCationsccceeeeieeerierieieee et 144
Table 4. Memory Usage in megabytes of Dyalog, Racket, and Chez Scheme input ASTs 149
Table 5. Comparison of the Nanopass Reference Compiler source code metrics vs. Co-dfns........... 156

https://d.docs.live.net/0cffdb1c3a2f95f6/Documents/PhD-Dissertation/Thesis.docx#_Toc23883436
https://d.docs.live.net/0cffdb1c3a2f95f6/Documents/PhD-Dissertation/Thesis.docx#_Toc23883437
https://d.docs.live.net/0cffdb1c3a2f95f6/Documents/PhD-Dissertation/Thesis.docx#_Toc23883438
https://d.docs.live.net/0cffdb1c3a2f95f6/Documents/PhD-Dissertation/Thesis.docx#_Toc23883439
https://d.docs.live.net/0cffdb1c3a2f95f6/Documents/PhD-Dissertation/Thesis.docx#_Toc23883440
https://d.docs.live.net/0cffdb1c3a2f95f6/Documents/PhD-Dissertation/Thesis.docx#_Toc23883441
https://d.docs.live.net/0cffdb1c3a2f95f6/Documents/PhD-Dissertation/Thesis.docx#_Toc23883442
https://d.docs.live.net/0cffdb1c3a2f95f6/Documents/PhD-Dissertation/Thesis.docx#_Toc23883443
https://d.docs.live.net/0cffdb1c3a2f95f6/Documents/PhD-Dissertation/Thesis.docx#_Toc23883444
https://d.docs.live.net/0cffdb1c3a2f95f6/Documents/PhD-Dissertation/Thesis.docx#_Toc23883445
https://d.docs.live.net/0cffdb1c3a2f95f6/Documents/PhD-Dissertation/Thesis.docx#_Toc23883431
https://d.docs.live.net/0cffdb1c3a2f95f6/Documents/PhD-Dissertation/Thesis.docx#_Toc23883432
https://d.docs.live.net/0cffdb1c3a2f95f6/Documents/PhD-Dissertation/Thesis.docx#_Toc23883433
https://d.docs.live.net/0cffdb1c3a2f95f6/Documents/PhD-Dissertation/Thesis.docx#_Toc23883434
https://d.docs.live.net/0cffdb1c3a2f95f6/Documents/PhD-Dissertation/Thesis.docx#_Toc23883435

1. INTRODUCTION

Parallel hardware and memory bandwidth constraints dominate current computing architectures.

They exhibit high degrees of parallelism with CPU and GPGPU designs that utilize ever greater vector

processing units to increase computing power. This increases computational performance on

compute-bound problems that can be parallelized. Often, on modern computing hardware, data

throughput constrains the potential performance of systems more than sheer processing power.

This presents an interesting challenge for tree transformations. Programmers often use tree or

hierarchical data structures, such as ADTs and linked structures to model a wide variety of problems

and information. Working with these structures usually involves traversing over the structure and

sometimes transforming it. Traversal algorithms visit the nodes of the tree without changing them or

modifying their inter-node structure, though they may annotate them with additional information.

Many traditional graph problems in high-performance computing are traversals, such as the Graph

500 benchmark (Murphy et al. 2010). Transformations usually involve some sort of traversal, but they

primarily modify the structure of the tree. They abound in modern computing, in domains such as

DOM processing for web applications (Hors et al. 2004), document processing and print publishing

(Saxonica 2017), query optimization (Chaudhuri 1998), and compilers (Keep and Dybvig 2013).

Often theoretically parallelizable, tree transformations subvert casual parallel implementation

(Goldfarb, Jo, and Kulkarni 2013) for several reasons. Often the trees exhibit irregular structure, so

that despite the apparent parallelism available, extracting and utilizing that parallelism within the tree

structure to any great effect proves difficult. Functional programming provides a conceptually parallel

1

framework for transformations, but in practice, the actual traversal and transformation algorithms

used contain more stateful operations than may at first appear (Marlow and Jones 2012), resulting in

difficult ordering dependencies that hamper parallel execution. Additionally, programmers almost

universally express tree transformations as some form of structural recursion over the tree, with the

tree’s branching, and therefore, potential available parallelism, increasing as the operation continues,

necessitating some sort of dynamic thread spawning in order to take advantage of additional

parallelism as it arrives in the recursive algorithm. Finally, the near ubiquitous reliance on recursive

algorithms as the foundational algorithmic technique within the field of tree transformations presents

challenges for execution on SIMD parallel vector machines (Goldfarb, Jo, and Kulkarni 2013),

available on most modern CPUs and GPUs, whose use facilitates peak performance on these

architectures.

Other domains have techniques for addressing irregular data patterns, dynamic parallelism,

and recursive structures, but the usability of these approaches generally evokes the traditional view

that parallel programming is particularly hard, and that parallel programs in general are inherently

more complicated than single threaded models. Thus, programmers commonly question not only the

theoretical feasibility of parallelization, but also whether the performance gained warrants the

presumed increase in complexity, overhead, and programming challenges that will presumably arise

because of parallelization (McKenney 2017).

Programming language compilers present a tidy suite of specific tree transformation

algorithms and offer an interesting, self-contained domain by virtue of their long history, relatively

uniform approach to representation and description, and strong reliance on transformations as the

foundational operation. The trees over which they compute generally exhibit high degrees of

irregularity and traditional approaches nearly all describe the tree transformations (called passes) over

the AST (abstract syntax tree) or IR (intermediate representation) using some form of structural

recursion over the tree, even in cases where some of this is abstracted or hidden away. Functional

programming has proven highly successful for working with compilers (Keep 2013), but even within

functional programming communities, the challenges to parallelizing the compilation process has

proven difficult enough that even if theoretically possible, no one has deployed a scalable method

practice (Marlow and Jones 2012). Indeed, when it comes to successful parallelization of compiler

transformations on fine-grained, data parallel hardware (such as SIMD CPU operations or GPUs),

failure is not just the rule, but nearly the axiom. Some teams have developed ad hoc, specialized

implementations of good performance on some specific compiler analyses targeting GPU execution

and fine-grained parallelism (Mendez-Lojo, Burtscher, and Pingali 2012; Prabhu et al. 2011), but these

passes not only required significant human effort and technical engineering, they are also primarily

traversals and not transformations.

In general, the core compiler transformations contain a relative dearth of computation and a

high degree of permutation or manipulation of data in irregular patterns, making traditional

algorithms exceptionally difficult to parallelize for non-obvious performance gains. Such

transformations not only exhibit the classical issues of irregularity and recursion, thus implying some

form of dynamic parallelism is required, but also fail to meet the “return on investment” criteria

discussed above. Namely, because the transformations are so often memory-bound rather than

compute-bound, dynamically scheduled parallelism techniques (Cong et al. 2008) can exhibit high

overheads and significant increases in programming complexity that must be carefully managed to

achieve performance, and the cost of learning and using such systems can discourage their use as de

facto standards for implementing such algorithms; they are used, instead, only when the problem size

or performance penalties of more standard approaches suggests that the use of such additional layers

is worth it. The increased programmer and computing overheads, higher risk for error, and increased

source code burden compels such techniques into use only when performance considerations warrant

the potential increased costs, limiting the general application of these techniques to a few, select cases,

if used at all. They certainly fail to demonstrate sufficient usability to recommend them as standard

techniques to subsume or replace the traditional approaches in constructing compilers. In other

words, coarse-grained parallel solutions centering around task-parallelism do not appear to have the

necessary scalability of parallelism to see significant benefits for their increased complexity of use

when applied within a compiler even if they could be made to work, of which there is scant evidence

for their successful widespread application across the range of compiler transformations.

While the author has been unable to source a single successful attempt at general

parallelization of the compiler transformations themselves, parallel build systems have proven highly

successful and have represented the usual “unit of granularity” by which compilers have been

parallelized. Much of the work within parallelizing the build process has been in decoupling

individual units of source code (often called modules) so that each unit may be compiled by a separate

4

compilation process. This allows for a parallelizing build system to execute multiple compilation

operations in parallel on distributed or SMP computing environments. While this works well, it leaves

the available computational power available through SIMD architectures untapped and inaccessible

to a wide range of algorithms.

Work on accelerating particularly expensive elements of compiler design, such as the

EigenCFA algorithms (Prabhu et al. 2011), is limited by the need to transfer data back and forth from

the GPU. This work addresses the missing “glue” components that take the form of tree

transformations, enabling both high-performance standalone tree transformations, but also reducing

the need to transfer data back and forth from GPU to CPU, reducing the critical paths for the total

application architectures and improving the potential performance scaling of existing GPU

algorithms.

This work proposes a novel approach to compiler construction that addresses not only the

parallel execution of compiler transformations on GPUs and vector machines but also the related

issues of generality and complexity of the programming model. It provides methodology of compiler

construction for fine-grained, data parallel hardware that is suitably general, performant, and simple

that it may be applied en masse, without requiring the maintenance of a separate, single-threaded

version of the source code. To accomplish this, the method alters the foundational assumptions of how

to represent both the data and the computation around tree transformations. Specifically, it avoids

recursion, branching, and any other operation that is not inherently or readily parallelized. It also

avoids the use of records (ADTs) as the primary method of data abstraction. Instead, it builds compiler

transformations entirely through the composition of data parallel operators over n-dimensional,

rectilinear arrays using APL as the programming model and notation. It additionally avoids the use of

specialized data abstractions for trees and avoids abstractions that might obscure the source code’s

directness of expression. Instead, it uses traditional array programming idioms directly as tree

transformation idioms.

This work demonstrates the method by constructing a compiler over a lexically scoped,

dynamically typed APL syntax known as Co-dfns, which contains all the traditional constructs of

recursive, functional-style programming, such as Scheme, including IF-statements (branching) and

recursion, in a simplified form. The input language to the compiler includes higher-order

programming but does not include first-class procedures. The syntax itself is a production language

widely used and found in the Dyalog APL interpreter. The compiler itself exhibits high performance

on both CPU and GPU architectures, executing on both compiled and interpreted implementations,

and outperforms equivalent compilers implemented using more traditional methods of structural

recursion written in Nanopass. The performance scales both to large source sizes as well as small

source sizes and is completely agnostic of the unit of granularity. That is, it can compile a single small

piece of source in parallel as well as compile any number of independent source modules in parallel

without the requirement for a separate build system to manage parallel dispatch of separate instances

of the compiler; the same interface for compilation works for single modules and multiple modules,

all of which are parallel by default without loss of performance at small data sizes.

Furthermore, when compared against equivalent compilers implemented in the Nanopass

framework, which is a framework specifically designed for efficient and convenient compiler pass

design in a functional style on Scheme-like platforms, the compiler is significantly shorter, smaller,

and simpler in design and semantics, requiring no additional tooling, runtime support, or specialized

libraries or syntaxes, and yet it retains significant advantages in size and complexity versus the

domain-specific Nanopass framework.

This thesis makes the following contributions:

e The compiler demonstrates the sufficient power, expressivity, and usability of traditional array

programming models for arbitrary tree manipulation computations traditionally viewed as

difficult or intractable to parallelize efficiently and productively onto vector architectures.

e The compiler exhibits runtime and memory performance improvements over existing methods

on both CPU and GPU vector architectures.

e The techniques fill a gap in compiler design, enabling more expensive analysis algorithms to run

on the GPU without needing to shuffle data back and forth from the GPU to the CPU in-between

more expensive analyses, because the tree transformation elements can now be executed

efficiently on the GPU as well.

o The compiler scales to a wide range of data sizes across both CPU and GPU architectures.

¢ The source code of the compiler is significantly shorter and simpler in structure and semantics

than existing methods.

e The asymptotic complexity of the compiler is entirely within the computational capabilities of

normal mechanical proof systems, requiring little to no human proof expertise to calculate; this

includes near byte-level accuracy in calculating memory requirements for AST storage and use

as well as memory access patterns.

e The compiler requires no new domain specific techniques, language features, or programming

abstractions, and does not require sophisticated compiler or toolchain support to achieve high

performance.

o All programming techniques and primitives used are general purpose and transfer from or to

both other tree manipulation algorithms as well as other programming domains; thus, the

methods used require no invention either in structure, method, or approach over traditional

array programming concepts that are in widespread use.

2. BACKGROUND

2.1. APL vis a vis Iverson-style Array Programming

Kenneth Iverson invented and refined the APL notation from the 1950’s through the 1960’s (Falkoft
1978). Originally called “Iverson Notation,” it eventually became “A Programming Language” after
Iverson’s seminal work of the same name (1962). As envisioned, Iverson and the community that
grew up and built the APL language always insisted that the language itself was, at its essence, a
notation designed to replace mathematics and to enhance the user’s ability to work with complex ideas
(Iverson 2007; McIntyre 1991). Knuth emphasized this idea when he called APL a language for people
who “want a nice elegant way to state the solution to their problem...” (1993).

In the author’s opinion, it remains one of the most consistent and generally scalable notations
for describing complex algorithms in a concise, efficient manner, without excessive detail that might
obscure the core computation. In this work, it is used as the programming language, mathematical
notation, and general working notation for all precise discussion of the computations involved. It is
uniquely well-suited for this task as the most mature, commercially widespread, and well-studied
notations for such work, having been deployed in the millions of lines of code across many decades of
mission critical work (Hallenberg 2016). Its behavior under multiple parallel systems has been studied,
its performance model is well established (Bernecky 1997; Bernecky and Scholz 2015; Budd 1984;

Ching 1990; Hsu 2014, 2015; Ching and Katz 1994; Ju and Ching 1991; Ju, Ching, and Wu 1991;

Schwarz 1991), and significant work has been done on its semantic foundation (Mullin 1988; Slepak

2014).

Perhaps more importantly, however, this work emphasizes the use of well-established,

historically anchored computational ideas. APL is among the oldest and longest established

continuously deployed commercial programming languages, most particularly in the domain of

parallel vector machines (Falkoff 1978). This work emphasizes the construction of high-performance

tree manipulation on data parallel hardware without the introduction of any fundamentally new

foundational programming models, syntax, or semantics. The use of APL in its traditional forms serves

to reinforce this idea, and its models are easily transferrable to any number of other programming

languages, as well as representing an easy translation into other mathematical notations.

However, data parallel programming of the APL sort is not well understood by many

programmers. In particular, Compiler requires a careful understanding of the nature of APL, its data

model, syntax, semantics, and performance model, as this section presumes an understanding of APL

notation and its relation to the performance model to avoid an explosive growth in that section’s

content. To address this, this section details the APL notation as it is used in future sections. A quick

reference to the APL primitives is also included as an appendix to facilitate reading Section 3.

To properly understand APL, the syntax, its data model, the classification of its primitives, its

idiomatic use, and its fundamental performance model are all important, and will be dealt with in this

section individually.

10

2.1.1. Array Model

APL’s model of arrays is specific and somewhat more general than often found in other programming

languages. APL (absent any extensions for OOP or other forms of data modeling) models all data as

an array of some sort. All arrays have a uniform structure consisting of two parts, the shape and the

values. An array is an object whose set of values are ordered and arranged according to its shape. In

APL, all shapes are rectilinear and all values are discreet objects (also arrays). This means that all

shapes may be represented by an ordered set of non-negative integers.

A shape describes a (possibly empty) rectilinear space in which discreet values may be

arranged. A shape with no dimensions is a dot, with a single value. A shape with one dimension is a

line; with two, a rectangle; with three, a cube; and with four or more, a higher-dimensioned rectilinear

space. Shapes of 0, 1, 2, 3, and more dimensions are called, respectively, scalars, vectors, matrices,

cubes, and noble arrays. A shape is itself considered a value (array) in APL, an array of 1 dimension

whose values are the dimensions of the shape. Conceptually, a shape describes a set of discreet points

in a multidimensional space that serve to arrange values in row-major order, with the first dimension

of the shape the most significant. The rank of an array is the length of its shape, that is, the number of

dimensions in the shape.

Values in an array are just arrays. As an ordered set of values, a combination of the values

listed sequentially as a vector, combined with a shape, suffices to completely describe any given array.

The APL model of arrays is known as the “floating” model, because the most atomic units of data, the

character and the number, are also considered to be arrays. Characters and numbers in APL are scalar

11

arrays (that is, arrays of rank 0, having no dimensions) whose value is itself. There are as many such

arrays in APL as there are characters and numbers representable in the APL implementation.

Each point within a space described by a shape has a specific index that uniquely refers to that

point, allowing any value within an array to be referenced specifically. An index that refers to a single

value in an array is a vector of the same length as the array’s shape, whose values are integers in the

range of [0,n), where n is the value of the dimension in the corresponding position of the array’s

shape. Sub-arrays may be indexed or referred to as well, by leaving some elements or values of an

index blank. This blank then refers to the entire range of possible values for that dimension. This

allows for an array to be “cut” into various sub-arrays of varying shapes. If these cuts occur only to the

most significant elements of the shape (for example, selecting only the first row of a matrix, or the first

row of the third matrix of a cube), then the sub-arrays are considered cells of the array, with the major

cells of an array consisting of all the trailing dimensions of a shape treated as blank except for the first,

or major, one. Thus, a matrix consists of a set of vector major-cells, one for each row of the matrix.

The above definition leads to another interesting concept, depth. The shape of an array

describes how values are arranged within a given space described by that shape, but each of those

values may themselves have their own shape and values, and so forth down recursively. The concept

of depth captures this “other dimensionality.” It is also worth noting that a scalar value may be a single

numeric or character value, but it may also contain any arbitrary complex array as its single value.

We say that a primitive scalar number or character, such as 5 or ' a', has a depth of zero, since

it has itself as its own value. For all other values, we say that the depth of an array has a magnitude

12

(absolute value) equal to one more than the greatest depth of any of its values. If all the values have

the same depth, then the depth is said to be positive. If the values have different depths, then the depth

is considered negative.

Thus, it is important to understand the difference between depth, shape, and rank. Rank

describes the number of dimensions in the shape. The shape is a vector that describes the arrangement

of an array’s values in space. However, when arrays are other than simple numeric scalars or

characters, then the depth of the array captures how deeply nested the array is, that is, how many

different complex spaces exist and would need to be traversed to examine all of the simple numeric or

character values contained in the array. In the case of a depth 0 array, there is no space to traverse,

since the value is itself and already found. In the case of a depth 1 array, that is, an array consisting of

primitive simple scalars, then there is only the single shape describing a single space to traverse to find

all the values contained in the array. Depth 2 indicates that each array value contained by the depth 2

array itself has a depth of 1, and therefore, requires its own traversal to find the primitive values, for

each value in the depth 2 array.

For novices, it is common to confuse the concept of shape and depth, so it is worthwhile to

reiterate these concepts in various ways. A given array is always made up entirely of shape and values,

and these two things are totally sufficient and necessary to describe the array. Depth is an emergent

property that describes the nature of the values of the array, and is defined recursively over the values

independent of the shapes, by the following recursive definition: if the array’s single value is itself, then

13

return a depth of 0; else, compuite x, one more than the maximum absolute value of the depths of all values

in the array; return x if all values had the same depth, and -x otherwise.

2.1.2. APL Expression Syntax

This work uses the APL expression syntax combined with the Co-dfns syntax for anonymous function
declarations and namespaces, described in a future section. Traditional APL function definition syntax
is not used, and the dfns syntax developed by the late John Scholes is favored instead (Dyalog 2019a).

The basic expression syntax obeys the following model, absent the dfns model for function

specification:
Atom = literal | Index | (Expression)
Index = Atom [Expression ; ..]
Expr = Atom | App | Binding
App = Func Expression | Atom Func Expression
Func = FnAtom | Func oper | Func oper FnAtom | Func [Expr]
Binding := Name <« Expression | Name Func <« Expression
Name = var+ | var [Expression ; ..]
FnAtom := primitive | var | (Func) | (FnBind)
FnBind = var <« Func

The most important element to notice from the above is the nature of application precedence. There
are two types of applications in APL, function application and operator application. In both cases,
applications may be monadic or dyadic, that is, they may apply to one or two arguments. When
composing expressions from values and functions, the application precedence is right to left, that is,
they are right associative. In the case where functions are being composed together using operators
(which are higher-order operations), the association is to the left, that is, operations bind from the left

to the right. Additionally, note that in the above model, operators only take functions as arguments,

14

but in APL, some operators may also take normal values as arguments (called operands). This

omission simplifies the above model without removing its essential elements.

APL’s literal notation for arrays allows for writing inline vectors and scalars. The following

examples demonstrate the APL literal style sufficiently in depth for this treatise:

1 A A scalar 1

123 A A vector containing 1 2 3

"abc’ A A vector containing a, b, c

‘b A A scalar containing b

(1 2 3) 'abc' A A vector pair containing 1 2 3 and a b ¢

The indexing and picking function primitives support indexing, but there is also a syntax for indexing
called bracket notation. An array A is indexed by another array I by writing A[I]. If one wishes to
index a matrix M by row and column indices I and J, then one may write M[I;J]. Selecting just
specific rows, but all the columns, may be written M[I ;], and thus, an entire matrix may be returned
as M[;]. Higher dimensions follow the same pattern.

Binding names and assigning specific values to specific positions in an array are all
accomplished through the same « primitive, read as “gets.” Of special importance here, we note that

multiple positions and multiple names may be written as a single conceptual operation, as follows:

X<110

X
0123456789

X[0 2 4 6]«75

X

51 753 755 75789
X Y«<(110)(110)
X
0123456789
Y
0123456789

15

This begins to illustrate a general point about APL notation and operation. Generally, operations tend

to operate over groups or multiple elements at the same time, including, as above, the indexing

operations. There is very little to no formal ordering requirements on these operations, meaning that

they semantically permit, but do not require, parallel execution.

Finally, the majority of what gives APL its “special flavor” is its set of primitive functions (first

order operations) and operators (second-order operations). These are significant enough that they

deserve their own section, as follows.

2.1.3. APL Primitives

APL primitives each receive a one-character symbolic representation. They form the functional

building blocks of the language and represent the “runtime library” for most users. Each primitive

symbol represents up to two operations, usually conceptually related to each other, distinguished by

whether the primitive is applied monadically (that is, with one argument) or dyadically (applied with

two arguments). Most primitives receive their canonical definition either by their dyadic or monadic

use, with the other use case a special case of the canonical one. As an example, the division operation

+ is defined over two arguments Y +X, but the monadic application +X means the reciprocal of X, or

1+X.

Primitives fall into two categories, based on whether they are first or second order operations.

First order primitives (called functions) receive only values (arrays) as their arguments and return

only values as their results. In APL, the second order operations, called operators, may take either

16

values or functions (first order operations) as their arguments (called operands to distinguish them

from function arguments) and always return function values.

Among primitive functions (that is, first order operations), there are generally two types, scalar

and mixed. Scalar primitive functions define a core operation over a scalar value and have a uniform

behavior for all values of more complex shapes, while mixed primitives can have varied types of return

values and traversal patterns.

Scalar primitives have a primary operation defined by a single computation on a scalar

character or number, such as addition, multiplication, division, absolute value, equality, and so forth.

APL defines a uniform lifting for all scalar primitives applied over arrays of more complex shapes.

Monadic scalar primitives serve as the simplest base from which to understand the lifting, followed by

the behavior of dyadic primitives receiving arguments of equal shape, and finally dyadic primitives

with arguments that utilize scalar extension.

On a scalar primitive applied monadically, the shape of the returned value is the same as the

shape of the argument. The returned array’s values are the arrays returned by applying the scalar

primitive to each value in the argument, maintaining ordering. A scalar primitive’s base case is its

definition over a simple scalar array (numeric or character), as each scalar primitive is defined to

return a specific computation for simple scalar arrays. For example, the Reciprocal monadic primitive

+ applied to a number, such as +5 will, by definition, return the reciprocal of 5 and will return a

domain error on non-numeric simple scalar values. On more complex shapes and depths, the

17

Reciprocal function will apply pointwise to each simple scalar value while the shape and depth of the

input array will be retained.

When applying a scalar primitive function dyadically, it receives a left and a right argument.

When these arguments are of the same shape, then the function will return a value whose shape is the

same shape as that of its arguments, with values that are the result of applying the scalar primitive

recursively with values from the corresponding positions of the left and right arguments. Just as in the

monadic case, the base case of such primitives is defined over simple scalars.

It is an error to apply a scalar primitive function dyadically with arguments that do not have

the same shape, with one exception, known as scalar extension. If one of the shapes of the arguments

is scalar while the other is not, then the scalar argument is used repeatedly as an argument for each

value in the other argument during the recursive application. Another way of thinking of this is to

imagine that the scalar argument is resized to be the same shape as the other argument, where the

scalar value is replicated for each position in the newly shaped array’s values.

Here are some examples of scalar primitive function application using basic arithmetic

operations, beginning with the definition of a simple matrix:

4 5p120 A 4 by 5 matrix of integers
0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19

X<4 5p120

X
0 1 2 3 4
5 6 7 8 9
10 11 12 13 1y
15 16 17 18 19

18

+X

DOMAIN ERROR: Divide by zero

1 2
6 7
11 12
16 17

OO0OO0OOF

.0625

+X
A

1+X

3 4
8 9 10
13 14 15
18 19 20

+1+X

X-10

1666666667
.09090909091 0.08333333333 0.07692307692 0.07142857143
.06666666667

5

0.5 0.3333333333 0.25

0.2
0.1428571429 0.125 0.1111111111 0.1

0.05882352941 0.05555555556 0.05263157895 0.05

10 79 78 77 76
372 71

5 Th
0 1
5 6

171
171

10 12
20 22
30 32

[eNeNeNe]
[eNeNelNe]
[eNeNeNe)]

The use of p in the above code demonstrates a Mixed primitive operation. Mixed primitives are
anything other than scalar primitives, and they do not follow the general rules of scalar primitives.
They may return arrays of varying shapes, or may always return values of the same shape, and may
likewise return values that have nothing to do with the simple values in the input array or may return

the values of the input array unchanged, and so on. As an example, consider the p shape primitive.

2
7

3
8

L
9

xX-10 A Sign of X-10

171
171
1 1
1 1
X+X

L 6
14 16
24 26
34 36

O O OO X
O O OO X

1
-1
1
1

8
18
28
38

19

When used monadically, it returns the shape of its argument, while if used dyadically, it reshapes the

right argument to have the left argument as its shape.

4 5p140
0o 1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19

4 5p120
0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19

4 5p110
01234
567 89
01234
567 89

110
01234567829

pt10
10

5 4p110
0123
4L 567
8 901
2345
6 789

Another example is the Grade up function 4 that computes a sorting permutation vector over its right

argument. Here is an example of its use:

+X«<?5 5p10 A Random 5 5 matrix
3

FNNF AP~
NOOoOww
O N WO O
Wk WwWww

o

w

N
WNOOOVUFP,rXFBPBINOOWER
wWwWwweEr wp —

~NFFEFEDN-
W~NOOoOw
0O wWwWnMNOO»

20

Notice that the Grade Up function always returns a vector, regardless of the shape of its input, and its

values define a permutation vector, that is, a set of indices based on the number of major cells in the

input.

The appendix contains a listing of APL primitives in quick reference form. Examples are given

and used extensively throughout this document, and the use of the primitives within the scope of their

application to the domain should be clearly inferred with the help of the quick reference in the

appendix.

The available traversal and manipulation capabilities of the mixed and scalar primitive

functions in APL is surprisingly diverse, but they would lack expressive power in themselves. APL also

defines a set of second-order operators, in both monadic and dyadic form. While the primitive

functions often have two definitions based on whether the function is applied monadically or

dyadically, the primitive operators are not ambivalent, meaning that they cannot be applied both

dyadically and monadically. Each operator must be applied either monadically, or dyadically, but not

both. However, in some limited cases, the operator’s behavior may change slightly based on whether

it has received an array or a function as its operand. When an operator is applied to its operands, it

returns what is called a derived function, and then function can then, in turn, be applied to suitable

arguments to receive an array result.

Operators generally describe the way in which to apply a given operand function or set of

operand functions over the input arguments applied to its derived function. For example, the

21

reduction operator takes a single function and applies it as the reduction operation over a given

dimension of an array, as in the following example:

120

0123456789 10 11 12 13 14 15 16 17 18 19
+#120

190
bk 5p120

0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19

+#4 5p120
30 34 38 42 46

p+#4 5p120
5

p+/4% 5p120
Y

+/4 5p120
10 35 60 85

Notice that there are two primitive symbols used for reduction, / and #, which operate on the trailing
and leading axis (dimension) of the array, respectively. In this case, the reduction eliminates one of
the dimensions from the input array in its results, replacing the values with the appropriate reduction
along that axis. Additionally, notice that, unlike in function application, a monadically applied
operator receives its single operand on the left of the operator primitive, rather than on the right, as
would happen with function application, in this case, with the addition function.

As with primitive functions, the appendix includes a quick reference for the APL primitive
operators, and it is recommended to make frequent reference to it in the following sections.

For the purposes of our use, it is important to note that APL primitives by design emphasize
operating over many elements at a time. Each of them, with very few exceptions, tends to be defined

in a data parallel fashion. This means that their order of operations is defined in such a way that it is

22

often trivially easy to execute them in parallel, especially when composed in a spiritually functional

style. For example, when used idiomatically with primitive associative scalar operations, the reduction

operation can be implemented using widely implemented reduction techniques on vector machines.

The same goes for Scan (Harris 2007), Inner and Outer Product (Silberstein 2008), Key (Sengupta 2007;

Satish 2009), and other operators. Additionally, all scalar primitive functions are data parallel by

definition and most mixed primitive functions in APL have corresponding data-parallel

implementations that have been studied and implemented for GPU and CPU systems, as discussed in

a latter section on the overall performance characteristics of APL. However, in order to understand

the performance of APL in practice, it is first necessary to spend some time understanding the concept

of idiomatic APL.

2.1.4. Idiomatic APL

Technically, APL can be used to write source code that looks very much like the source code seen in

any other programming language. Doing so subjects APL interpreters and compilers to the same

difficulties as traditional languages in terms of performance and readability. Instead, the APL

community developed around the concept of “idiomatic APL” (Eisenberg 1987) that encompass

various stylistic ideals about how to construct APL expressions and how to build APL software (Perlis

1977). Of course, ideals are just that, and in practice the degree to which any given APL program

expresses these idiomatic principles varies along a wide continuum.

Idiomatic APL tends to be easier to machine analyze and produces code that is shorter and

usually easier to read for experienced APL programmers. Because the code is easier to parse and

23

recognize, especially certain complex design patterns, the interpreters and compilers available for APL

can more easily perform certain optimizations that allow for more performance than might seem

apparent if the same code were written in a more traditional style in a different programming language

(Lochbaum 2018a, 2018b).

Idiomatic APL has arisen from a variety of sources, for a variety of reasons, but the main

reasons for writing APL code in an idiomatic fashion are readability (for experienced APL

programmers), concision, execution speed, platform independence, data size agnosticism, reliability,

and domain scalability.

The original push towards this style comes from Iverson’s Turing Award lecture (Iverson

2007), in which he details the following principles for language’s designed to foster notational

thinking:

o Ease of expressing constructs arising in problems

Suggestivity

Ability to subordinate detail

Economy

Amenability to formal proofs

These are abstract notions, but as they tend to apply in practice, they manifest as a set of design

principles that establish a tension between two ideals and a tendency to prefer the one ideal over the

other in most cases of design consideration. These are called the 8 design patterns and anti-patterns

of APL (Hsu 2017):

24

e Brevity over Verbosity

e Macro Perspectives over Micro Perspectives

e Transparency over Abstraction

e Idioms over Libraries

e Data Encoding over Control Flow Embedding

e Structural Information over Nominal Information

o Implicit Semantics over Explicit Semantics

Syntax Design/Appearance over Semantics

These are not strict rules and do not represent a set of stylistic guidelines that should be enforced, but

they do represent a general tendency to be seen within the APL community as to what constitutes

“good APL.”

Brevity over Verbosity. In many programming language communities, there is a tendency to prefer

more verbosity as an avenue towards more explicitness ostensibly to improve the ease with which

newcomers to the language may be able to read the code. In APL, there is a strong tendency towards

distinguishing code designed for “new users” and code written for general daily use. The one is usually

written with a very different, pedagogically focused style, while the other is often explicitly designed

without consideration for the new user, in favor of great facility with users of experience (Iverson

2007). This often takes the form of finding shorter, more memorable, and more concise ways of

expressing ideas, even if this might come at the cost of hiding certain assumptions (often especially if

25

it can hide some assumptions that are deemed subordinate) or utilizing the full range and expressive

power of a given syntax or primitive. In APL, there is a very real sense in which shorter code is greatly

favored over longer code (Whitney 2009).

Macro Perspectives over Micro Perspectives. In APL, there is usually a tendency to want to see

the “big picture” of the code and subordinate the syntactic visibility of certain details. This comes in

the form of making the global traversals, patterns, or other aspects of the system more syntactically

explicit and direct, while hiding some of the lower level details behind implicit behaviors or by making

the lower level code shorter (Iverson 2007; Whitney 2009).

Transparency over Abstraction. APL has a very strong tendency towards reduced dependence on

library use compared to other languages. While not always seen as a net gain, it is true that the majority

of traditional APL code is written with very little emphasis on library abstractions. Much code is

expected to be self-contained and complete, without reference to additional dependencies. This has

the tendency to elevate the core APL primitives as much more critical in day to day operations, as they

are the primary building blocks used by nearly all APL programmers, with only very shallow

coverings. This is particularly true the more “sophisticated” the code becomes. Unlike in some

languages, the more sophisticated and well known a piece of code becomes, often, the more

transparent and less abstracted it becomes, utilizing fewer libraries and exposing more core use of

APL.

26

The result of this is the tendency to prefer direct, transparent representations of solutions to

computational problems as opposed to writing additional abstractions over the top of the core APL.

Rather than seeing the APL primitives as the core building blocks for new computational concepts,

experienced APL programmers tend to use the core primitives as the primary vocabulary for solution

exposition, rather than hiding them behind libraries or named functions (Metzger 1981).

Idioms over Libraries. The APL community has long struggled to establish a well-known or de facto

library infrastructure, and there is currently no de facto standard source of library code nor any global

system for the automatic importation of libraries into APL projects. However, very early on, and

continuing forward, the APL community has had awide and nearly universal practice of sharing code

snippets in the forms of idioms. These idioms represent the one-line solutions to certain problems that

might arise in various domains. Historically, rather than publishing libraries and documentation for

these libraries, the community published books of APL idioms (Pesch 1982). A few the most famous

idiom catalogues still exist in digital form (Dyalog 2019b).

When discussing solutions to problems, APL programmers commonly reference idiomatic

solutions (that is, transparent solutions that are one line or less long) expressed as simple, direct APL

that utilizes no additional libraries or external materials. Such idioms commonly feature a minimum

of variables and definitions needed to express the solution.

27

Data Encoding over Control Flow Embedding. Related to the above, APL programmers tend to

prefer code with minimal control flow, where much of the work usually dedicated to control flow is

accomplished instead through careful construction of the shapes and types of the APL arrays over

which the code computes. Most APL longstanding idioms contain little to no jumping, looping, or

even heavy nesting of expressions. Instead, control ideally flows through a single line of APL code

without any nesting and minimal name binding or back referencing. A common phrase of Morten

Kromberg’s, though not original to him, is that “APL is read left to right and executed right to left”

(2018). Perlis remarked that this aesthetic possesses similar stylistic principles to natural language

(1977). The intent is to have the “most significant, last operation be the first thing you read on the line”

(Kromberg 2018).

All this minimization of complex or multi-branching control flow in favor of single directional

data flow modeling requires that the logic that would otherwise exist within the control flow of the

program lives somewhere else. In APL, it tends to live in the data and shape of the arrays (Bernecky

1999; Eisenberg 1987; Dyalog 2019b; Metzger 1981; Perlis 1977; Pesch 1982; Whitney 2009).

Structural Information over Nominal Information. APL’s emphasis on data flow modeling, one-

line solutions, and transparency means that naming is generally reserved for highly global and

important concepts. This can be seen in the early design of the APL systems, which contained a single

top-level namespace together with only flat functions containing a single local namespace, and the

continuance of that model long after the same model had fallen out of favor with other programming

28

language paradigms, with a lexically scoped model of function specification arriving prominently only

in the latter 1990’s (Dyalog 2019a). Unlike in other systems, APL programmers tend to avoid highly

nested structural designs, wherein the various scoping rules have come to play a large role, such as

C++, Scheme, and Lisp. In APL, despite having higher-order functions for a very long time, there was

never enough consensus or push within the community to deploy first-class procedures at scale,

despite many different proposals for adding them into the language.

The idiomatic nature of APL contributes to this tendency, where phrases are more common

than abstractive towers. These idioms are globally or relatively scoped and usually avoid any specific

naming requirements. They certainly do not require any sort of lexical scoping. In this way, they reveal

a bit of their mathematically oriented history (Falkoff 1978; Iverson 2007). In such a space, names are

premium real estate and valuable enough not to encourage casual proliferation. Instead, good APL

relies more on the structure of the phrase or line of APL to reveal information about the nature of the

code, rather than the use of explicit, descriptive names. Some users have advocated for a concept that

maximizes the use of variable names as being ideally for the domain or “user” of the software as much

as possible, while the structure delivered by the APL code itself reveals the necessary information to

the APL programmer (Taylor 2005).

Implicit Semantics over Explicit Semantics. In order to accomplish much of the above, and

especially in order to do it in a “whiteboard friendly” way, so that pen and paper could be readily

applied to the language as in the original design principles (Iverson 2007), the language and its use

29

has always favored keeping as many things as possible implicitly expressed in the language, rather

than explicitly. The shape of arrays and the reduction operator exemplify this tendency. In other

languages, such as statically typed languages, programmers explicitly define and restrict the shape of

values, first as ADTs, and then as types to functions, and so forth. Attempts to merge data parallel

array-like concepts that mirror APL into statically typed languages have taken this approach as a basic

tenet (Slepak 2014; Gibbons 2017). However, APL, as much as possible, encourages syntactically

hiding the type and shape of values. A common anecdote about APL expressions tells of the

serendipitous application of a given expression outside of the intended use case, where a program was

written, for example, to work over some certain type of data, but because the expression was written

idiomatically to avoid over-specifying type, shape, or value requirements, it worked on a number of

other values and shapes, thus improving the scalability of the expression, which is an aspect of the

design principles Iverson coined “suggestivity” (Iverson 2007). Likewise, the design of the reduction

operator specifies an implicit, rather than explicit, seed value, called the identity element. In most

languages that have something like a reduction function, such as the fold functions in Scheme, there

is an explicit seed value. In APL, seed values are implicit, and specific logic in the reduction function

ensures the return of an appropriate seed value when applying a reduction over an empty dimension.

This implicit behavior has the overall tendency of improving the brevity of code, but such

implicit behavior does not equate to creating abstractive barriers, distinguishing the APL concept of

implicit behavior from the library black box concept of abstracted behavior. APL programmers

strongly tend towards the subordination of detail but not the literal hiding of it. Implicitness in APL

30

serves to reduce the use of syntactic space, but programmers still expect the implicit behavior to be
well-defined and predictable, in a sense, not visible, but still known. This behavior manifests so
strongly in some cases, that some companies utilizing APL in great anger, establish large QA suites
designed to catch any case in which the order of floating point operations within any given implicit
operation (such as within the runtime of the interpreter) results in an observational change in results
at the bit level for their code.' Thus, while they take advantage of the implicit behavior to avoid needing
to have the core source calculations handle order of operations, they still expect the order of operations
to be highly predictable. This emphasis on implicit but predictable behavior is somewhat rare within

the programming world.

Syntax Design/Appearance over Semantics. Finally, from early on, the APL cultural emphasized
the syntactic clarity and beauty of APL code, rather than its semantic beauty. Many times, Iverson and
early implementors chose a more complex semantic model to improve the overall clarity and beauty
of the notational expression of solutions, particularly in terms of total economy, rather than a more
cohesive semantics at the expense of a more verbose syntax. As a result, typing the APL semantics and
syntax in full continues to challenge researchers with the results mostly still unusable for APL
programmers on a day to day basis (Slepak 2014; Gibbons 2017), with particular exception to the very
APL-like approach taken by Lenore Mullin in defining an axiomatic style semantics for a core subset

of APL (1988).

' Personal communication with APL companies and Dyalog, Ltd.

31

“Good” APL expressions emphasize a syntactically memorable, clarifying, and direct solution

that highlights the core idea and eliminates as much syntactic “fluff” as possible. This can be seen in

the various APL idiom libraries, their emphasis on the single line of code, as well as in the other

available libraries, and Roger Hui’s famous expression, “monument quality code.” Not uncommonly,

APL code sometimes lacks the typical semantically constrained rigor of a statically typed functional

program, but retains enough correctness, and sufficient syntactic beauty to warrant widespread

adoption. Such code may have surprising corner cases or otherwise fail to meet the prevailing

standards of “correctness” in some way, but it is valued (sometimes in production) because of its

syntactic clarity.

Of course, the very best of APL code possesses syntactic clarity while also defying semantic

criticism. As a classic example, code that contains an explicit base case is often thought somewhat

“warty” or “ugly.” A more desirable solution contains no explicit base-case statement, instead using

something of an “inline” base case, but even better is code that utilizes fully implicit behavior to

obviate the need for a base case, sometimes at the cost of surprising results on inputs that will not be

considered useful. Thus, a classic APL exemplar is an expression that reformulates a problem to

eliminate the need for an explicit base case where typically a base case is considered fundamental.

This is often done as one of the requirements to refining certain APL expressions (Scholes 2014).

Fundamental Stylistic Rules. The above design principles and patterns helps to create a context for

understanding idiomatic APL code, but what of the specific stylistic artifacts that emerge?

32

Unfortunately, no strict style guide exists that indicates a universal agreement on what constitutes

“idiomatic” APL because of the subjectivity of human judgment and style. However, there are enough

overlaps in common features that appear across a range of common styles to highlight some common

patterns.

Among the first is a strong tendency towards “spiritually functional” code. This is code that,

at the low-level and at its heart, expresses most of the computational requirements in terms of

functional expressions without “micro side-effects.” That is, effects that appear at the leaves of the

source tree. Instead, good APL tends to use large, bulk side-effect operations at the top of the

computational tree, rather than within the “inner loops” (Dyalog 2019b; Pesch 1982; Eisenberg 1987;

Metzger 1981).

The concept of semantic density also appears frequently. Good APL often prefers names that

possess semantic meaning within the specification domain of the problem, rather than names

referring to abstractive intermediate steps between the core APL vocabulary and the problem domain.

This work follows this practice by expressing various tree transformations as native APL expressions

without many additional variables or namespaces. Those variables that are used are as globally

relevant as possible and generally refer to explicit concepts at the level of the tree. This contrasts with

other treatments on the same subject that abstract over the underlying implementation language and

create at least one intermediate layer between the core programming language and the domain of tree

manipulation (Taylor 2005; Ren et al. 2012; Goldfarb, Ju, and Kulkarni 2013). In APL, good style

generally correlates with preventing intermediate levels of abstraction.

33

As a result of semantic density considerations (Taylor 2005), programmers will sometimes

avoid excessive variable names if they can. That is not to say that they are not used, but the more the

code can be made readable without additional names, the better. If a programmer can replace a

variable name or function binding with a short, idiomatic expression of the same concept, many would

prefer the idiomatic expression except in the most pedagogic circumstances or in companies with large

turn overs that require almost constant pedagogical treatment.

Likewise, loops, iteration, and other sorts of logical “jumps” in the control flow are usually

avoided as much as possible. A single iteration on a single line that serves as an important semantic

point at the level of the domain of the problem is okay but is generally to be avoided. Any looping

within a treatment that doesn’t have a direct correlation to the expression of the problem in domain

terms is generally avoided or to be rewritten to avoid explicit looping (Scholes 2014).

Good APL tends to avoid the “individual element” as much as possible (Kromberg 2018). That

is, the emphasis is on using the APL primitives (which are almost all defined over bulk elements and

bulk operations) to operate on either whole arrays at a time, or on large sub-sections or regions of a

given array at a time, not on individual elements at a time. Thus, if one can avoid indexing, it is usually

best to do so, but if indexing must be used, it is usually best to index multiple elements at a time, as

many as makes sense.

Likewise, avoid indirection: instead, find the smallest, most direct solution to the problem that

avoids indirections such as function abstraction (Iverson 2007). In APL, the term “code smell” often

applies to code that uses too many “dfns” or functions, as well as code that is heavily nested, relies on

34

lexical scope very much, or that has any other structural elements that increases the depth of the tree

outside of straight-line data flow expressions, and even in those, the goal is to avoid too many

parentheses. This usually means that good variables should have very short lifespans or be global in

nature, and that the data should ideally flow through a program statement from right to left without

stop.

This text makes some concessions towards readability for those not fluent in APL; some source

code uses overly verbose and unnecessarily tedious syntax. However, the structural repetition in these

cases has been deemed worth the extra cost in order to highlight a specific point and thus its use. While

some minor and theoretical performance penalties arise because of this, potentially inhibiting certain

parallelization efforts on low-analysis platforms such as interpreters, the nature of the code is such

that these benefits are not worth the pedagogical cost, though they may cause issues in commercial

application of these algorithms at scale.

In general, however, the code here has as classically canonical a style as the author is capable

of, in order to demonstrate and highlight the use of such code. This “idiomatic style” is an important

aspect to the design of the compiler itself, because this style significantly enables the cross-platform

performance and relatively low analysis burden necessary to achieve high performance across

multiple platforms. That is, idiomatic APL style benefits not just human consumption but also

contributes to the high-performance results in traditional APL code on interpreters and other

historically challenging systems. The following sub-section will explore this idea in more detail.

35

2.1.5. Performance

Even in Iverson’s original work (2007), data parallelism represented a significant design element of

APL. Early vector machines sometimes leveraged APL as the high-level language of choice due to the

natural fit between APL and vector architectures (Schwarz 1991; Budd 1984; Ching and Katz 1994). It

is the design and practical use of the APL primitives that primarily enables this synergy, since, as

previously noted, APL primitives are almost entirely data parallel. If one considers certain primitives

that provide meta-information as still “array at a time” operations, such as the depth or shape

functions, then the entirety of APL as a primitive vocabulary is data parallel friendly. Since the

primitives operate over large bulk regions of array data, they readily admit implementations on fine-

grained SIMD parallel hardware.

All APL scalar primitives are defined in a SIMD fashion. The translation of such primitives

into data parallel counterparts is trivial, at worst. They have constant time critical paths. However, the

parallel implementations of the mixed primitives do not so easily reveal themselves, and they deserve

further examination. Consider the summary analysis in Table 1 and Table 2, which highlights the

critical path complexity of each APL primitive. The parallel implementations of these primitives exist

widely in existing literature, so much so that highlighting any specific implementation as canonical is

somewhat difficult, because the primitives often represent areas of research around a specific

computation. Thus, the tables above highlight their computational research class, rather than a

specific implementation, since several implementations exist.

36

Mixed Function Critical Path Computational Class
Reshape Constant Data Movement
Ravel Constant Shape Change
Catenate Constant Data Movement
Table Constant Shape Change
Reverse Constant Data Movement
Transpose Constant Data Movement
Mix Constant Data Movement
Split Constant Data Movement
Enclose Constant Shape Change
Partitioned Enclose/Partition Logarithmic Data Movement
Enlist Constant Data Movement
Pick Constant Data Movement
Take Constant Data Movement
Drop Constant Data Movement
Replicate Logarithmic Scan

Expand Logarithmic Scan

Without Logarithmic Set Operations
Intersection Logarithmic Set Operations
Unique Logarithmic Set Operations
Union Logarithmic Set Operations
Same/Left/Right Constant Identity

Index Generator Constant Data Generation
Index Of Logarithmic Search

Where Logarithmic Scan

Interval Index Logarithmic Search
Membership Logarithmic Search

Grade Up/Grade Down Logarithmic Sorting

Deal Logarithmic Random Number Generation
Find Logarithmic Search

Shape Constant Shape Change
Depth Constant Data Movement
Match Constant Data Movement
Tally Constant Shape Information
Decode/Encode Constant By Definition
Matrix Inverse/Divide Logarithmic Linear Algebra
Indexing Constant Data Movement

Table 1. Mixed Primitive Functions and Their Critical Paths

In addition to general research into parallel implementations of the above computational

classes, APL vendors have analyzed and discussed the performance of APL code and their optimized

implementations of key primitives and idioms. One note of worthy discovery was the relatively small

data sizes used on many variables in traditional production APL. This discovery is one reason that

APL on the GPU has not received the attention from APL vendors that it might have in the past. In

traditional APL code, without structured programming statements or dfns syntax (both invented in

the 1980’s and 1990’s), much of the APL code in existence contained too much iteration and looping

to be able to achieve high parallel performance. In code written in this style, the analysis requirements

prohibit good parallelism, as is the case in other programming languages. As a counterpoint, APL code

written in a more idiomatic style with better use of bulk operations and larger array data sizes enables

a much greater degree of parallelism at much less cost of analysis (Hsu 2014, 2015).

A unique feature of APL’s performance results has been the high performance that APL has

been able to achieve relative to traditionally high-performance programs. This result has been noted

in a variety of fields, including finance (Whitney 2009; Lochbaum 2018a). Ironically, these gains

Operator Critical Path Computational Class

At Constant Data Movement
Commute/Compose 0 Pre-execution

Each Constant Data Parallel Map

Inner Product Logarithmic Matrix Multiplication

Key Logarithmic Sorting

Outer Product Constant Data Parallel Map

Rank Constant Data Parallel Map
Reduce/Scan Logarithmic Tree Reduction/Parallel Scan
Stencil Constant Data Parallel Map

Table 2. Primitive Operators and their Critical Paths

38

appeared using fully interpreted implementations compared to fully optimized and compiled code

written in languages such as C. In these benchmarks, both at a micro level and at the application level,

the results have consistently demonstrated interpreted APL’s very high speeds on applications

requiring such throughput. In some cases, the performance achieved is truly astounding, even

discounting the interpreted code base (Lochbaum 2018b). Idiomatic APL code utilizing high-

performance primitive implementations enables such code to incur minimal interpretive overhead

relative to the amount of time spent “crunching” within the interpreter runtime, greatly improving

the overall performance compared to typical expectations (Whitney 2009).

Other areas of related work that demonstrate the performance of such techniques is the

application of linear algebra to graph processing (Kepner and Gilbert 2011) and the use of vectors

within column store, in-memory databases, many of which use APL or array-based languages

(Whitney 2009; Hallenberg 2016). In these cases, as in previous ones, the use of idiomatic APL style

helps to eliminate complexities of code analysis and execution overheads, while maximizing the time

spent in highly tuned runtime libraries.

Idiomatic style only goes so far with an interpreter though, and modern data sizes and memory

behaviors have resulted in significant bottlenecks that can appear on truly high-memory bandwidth

applications. The research into fusion strategies has greatly improved the quality of code that can be

generated by APL compilers. APL specific research has demonstrated that idiomatic APL code already

contains enough type-level information implicitly to detect many of the classical type errors around

rank and shape that are the purview of various type systems written around arrays (Bernecky 1997).

39

Additionally, traditional APL compilers have demonstrated the relative ease of compiling APL

expressions into fused operations (Bernecky 1997, 1999; Bernecky and Scholz 2015; Budd 1984, 2012;

Ju, Ching, and Wu 1991) that prevent certain memory bottlenecks that are the bane of interpreter

performance. This includes the remapping of memory allocations in order to facilitate better internal

loop generation of the compiled code. In addition, there are now runtime solutions to help assist with

the fusion problem (Malcom 2012), these runtimes make it possible to implement APL primitives and

leverage fusion both at runtime and at compile time. They rely, however, on the expression of the

computations in a shape and form that mimics idiomatic APL code.

Thus, without the use of idiomatic style, more traditional code styles require much more

analysis and prove difficult to execute efficiently in parallel. However, idiomatic APL code

significantly reduces the analysis burden so that the majority of the performance bottlenecks are

removed outright, and those that remain can be readily eliminated at compile time (Budd 1984;

Bernecky 1997; Hsu 2014, 2015) or runtime (Malcom 2012; Schwarz 1991) to enable high-

performance, data parallel execution of APL code.

The use of idiomatic APL code also affects the ease of asymptotic performance analysis, but

this is best discussed after a thorough discussion of the compiler construction itself. Section 5.3

addresses these considerations in more detail.

A final aspect of the synergy between idiomatic APL and performance comes in the data

model. When implementing APL, most systems (the author has been unable to source a single

exception to this) store the value data as a single large, contiguous region of memory in row-major

40

order. Some systems will store the shape data contiguous to this and others store it separately.

However, for the purposes of data parallel performance, this contiguous allocation of memory is

critical. When executing idiomatic APL, most computation operates over whole arrays at a time, which

means that the access patterns of most operations follow a perfectly sequential access pattern, the

pattern that is fastest on most modern CPUs and GPUs.

In cases where this is not the case, even bulk indexing provides an advantage on CPUs and

GPUs where that memory appears in strided format, and on GPUs, the random access indexing is still

done in bulk, which can be done more quickly on GPUs than CPUs, and can potentially be done in an

ordered form that improves performance. This prevalence of strongly contiguous reads and writes

within idiomatic APL contributes to real world throughput. This enables the use of SIMD vector

operations with minimal overheads due to random access memory patterns that are otherwise very

common on GC-heavy, tree-oriented ADT object models. In the case of tree manipulations, which are

often memory, not CPU bound, this plays an even greater part than more computationally intense

problems.

Idiomatic APL’s use of contiguous, large memory regions also significantly reduces garbage

collection overheads. In fact, garbage collection is not necessary for such a model and a stack-based

liveness model suffices. Thus, idiomatic APL incurs zero garbage collection overhead. In allocation

heavy operations, such as functionally defined tree transformations, this represents a significant

source of performance improvement, as discussed in future sections.

41

2.2. The Co-dfns Language

The late John Scholes introduced the dfns syntax for user-defined function specification in the 1990’s,
with incremental refinements to the semantics and implementation correctness throughout the
following decades (Dyalog 2019a). It extends the basic APL expression syntax with a function
specification syntax that allows users to write anonymous functions with error and conditional guards.
These functions may be monadic or dyadic first order functions or second order.

The syntax is extremely simple. A function is simply a matched pair of curly braces
surrounding zero or more statements to be executed in order from left to right, top to bottom. Each
statement is either an Expr, FnBind, Guard, or Error Guard. For the definition of an Expr or
FnB1ind, see the previous section 2.1. Each statement is separated by either a newline or a statement
separator ¢. A guard and error guard both consist of two expressions separated by, respectively, a colon
: or double colon : :. A guard is a one armed if statement where the first expression on the left of the
colon should evaluate to a Boolean scalar value. When executing a guard statement, the left expression
is executed first. If the value is 1, then the dfns returns the result of executing the expression on the
right of the colon. If the value is 0, then the expression to the right of the colon is not executed, and
execution proceeds to the next statement in the dfns. An error guard works the same way, but it serves
as a barrier for errors in execution. The expression on the left evaluates to a vector of integer values
indicating error codes to be trapped, where a zero represents any error. As execution proceeds through
the dfns after the error guard occurs, if one of those expressions signals an error code matching the

error guard and no error guard after it, then the dfns will return the result of executing the error

42

guard’s right expression. When executing statements, if a statement has as its last operation a binding

operation, then execution proceeds to the next statement in the dfns, otherwise, the result of executing

that statement is returned as the value of applying the dfns.

Each dfns implicitly binds the values o and w to its left and right arguments. If the operands

oo or ww are used as free references within the body of a dfns, then the dfns is an operator, and the

left and right operands are bound to oo and ww, respectively. Additionally, the function v is bound to

the dfns’ function value and vV is bound to the dfns operator value if it is an operator. In the cases

where one desires to apply a dfns with an optional left argument (ambivalently), then the variable o

may be bound in the body of the dfns. In this case, if o already has a binding at application time, then

that binding will be used, but if not then the binding given in the body will be executed when it is

reached during execution of the dfns. Here are some example dfns:

:Namespace

factorial<«{ A Tail recursive factorial.
o<l
w=0:0
(oxw)V w-1

}

fibonacci<«{ A Tail-recursive Fibonacci.
o<0 1
w=0:8pa
(1da,+/a)V w-1

}

A Quick Sort
A https://www.dyalog.com/blog/2014/12/quicksort-in-apl/
Qe{12#w:w ¢ S«{of=a oo w} ¢ w((v<S);=S5(v>S))wl=?Zw}

:EndNamespace

43

The only other addition in the source input to the compiler is an explicit top-level namespace utilizing
the Dyalog “Namespace” syntax, as the above example demonstrates.

The dfns syntax itself is lexically scoped and functions may be nested. Free variables in the
body of the dfns resolve according to lexical scoping rules. None of the compiler code that requires a
thorough understanding of these rules, as it does not leverage lexical scoping to any significant degree.
However, the compiler does need to address lexical scoping appropriately for input programs, and the

section on lexical resolution in Section 3 details more information on the semantics of lexical scoping.

2.3. Nanopass Framework

The Nanopass compiler framework (Keep 2013) is a syntactic and library framework for designing
compilers around a specific model of small compiler passes strung together in a data flow manner,
each making small transformations to the structure of a tree to eventually complete the compilation
process. Even though the compiler described here bears no syntactic resemblance to the Nanopass
compiler design, the framework itself has significantly influenced the design of the compiler and it
serves as a benchmark to compare against the compiler.

In particular, the compiler itself relies on an architecture of small conceptual operations that
work one after the other on the AST until the result is suitable for assembly. The small transformations
exhibit data flow design in a similar style to Nanopass compilers, but without the inherent procedural
boundaries used by Nanopass compilers.

However, the Nanopass compiler takes a significantly different general approach to specifying

and expressing compiler design compared to the compiler described in this work. Specifically, the

44

framework itself provides for two major syntactic abstractions over the underlying Scheme/Racket

language. It provides for a convenient syntax for specifying intermediate representations in the

compiler. This is a convenient wrapper around the record type system of the underlying

implementation and provides the additional benefit of allowing for intermediate representations to be

specified as the difference between the new representation and an already defined representation.

The core of the syntax is a pattern matching abstraction that defines a transformation over the

structure of one intermediate representation (called a language) to another intermediate

representation. This transformation is defined through various pattern matching clauses, and the

syntax provides significant additional assistance, including the ability to automatically dispatch trivial

pattern matching cases (such as identity transformations) as well as enabling automatic recursive

decent (depth first traversal) through the use of cata-morphism forms and other such syntactic

niceties.

Added to the above syntactic benefits, the implementation provides for relatively sophisticated

data integrity checks that ensure the transformations are reasonably well typed, and it does much of

this analysis at compile time. This gives the compiler writer some of the benefits of a statically typed

programming language from within an otherwise “untyped” language such as Scheme or Racket.

Andy Keep demonstrated that the performance of the Nanopass framework was sufficiently

good that it did not seriously impact the performance of the Chez Scheme compiler (Keep 2013), which

was known for its very fast compile times. This was an important result in the exploration of compiler

design, as it demonstrated both that the use of many small passes in the compiler as well as the use of

45

additional syntactic support did not necessitate a proportional degradation in the performance of the

compiler design over more traditional mono-pass or heavyweight pass designs that had less syntactic

abstraction.

The benefits of the Nanopass framework over other, more traditional approaches is the relative

ease of working with the passes and the overall design of the compiler. Because the passes are so small,

they are easier to understand and debug. Because the passes are decoupled from one another, it is

easier to design the compiler around how the passes themselves interact, rather than having their

effects intermingled in larger passes. This allowed for some of the benefits of functional programming

to be applied to the design of the compiler architecture. This had the effect of making the compiler

simpler and easier to check, without significantly increasing the cost of execution.

46

3. COMPILER

3.1. Overview

The Co-dfns compiler follows the same spirit as a Nanopass compiler design. That is, it emphasizes a

single linear data flow where the input AST undergoes a series of transformations from IR to IR, each

IR differing slightly from the previous one. Each pass is meant to be small and easy to digest. From

there, the underlying implementation techniques used to implement each compiler pass and the

implementation of the Nanopass design eschews most of the features utilized in the formal Nanopass

framework. In particular, the Co-dfns compiler consists of a single function composed of a series of

APL expressions logically grouped into individual compiler passes. The design dedicates no code to

the definition of ADTs or record-type abstractions, and it uses no abstractions on top of the core APL

language. Instead, an inverted table directly encodes the IR, and each compiler pass idiomatically

transforms the inverted table’s data. Without creating an abstractive layer to represent tree operations

on top of core APL, the Co-dfns compiler directly maps raw APL idioms into the tree transformation

domain. These two design decisions contrast sharply with the explicit DSL model used by the

Nanopass framework that introduces explicit def ine-language and def ine-pass forms on top

of the core Racket/Scheme language for the specification of intermediate ASTs and compiler

transformations.

Architecturally, the Co-dfns compiler consists of the following passes applied in order over an

AST:

47

1. Convert the AST to utilize a parent vector representation

2. Compute the nearest lexical contour for each node

3. Lift functions

4. Wrap expressions

5. Lift guard test expressions

6. Count the rank of indexing operations

7. Lift/flatten expressions

8. Assign a specific frame slot to each variable in each function body

9. Arrange the function body frames according to their depth in the lexical stack

10. Record the exported names for each module/namespace

11. Resolve variable references lexically to a specific frame and slot

The following section will explore each compiler pass in detail, but it is important first to understand

generally the AST involved as well as the way in which the Co-dfns compiler encodes and works with

the AST in source.

Each compiler pass in the Co-dfns compiler demonstrates a set of general tree transformations,

and together they form a template for building other transformations. This section explores these

operations in detail, but the summary of these operations is as follows:

Computing Parent Vector Shows the relationship between depth and parent and
the use of B to operate over different levels of the tree.

Compute Nearest Lexical Contour Basic traversal pattern; how to use inverted tables for

efficient record extension and lookup efficiency

48

Function Lifting

Wrap Expressions

Lifting Test Expressions

Count Rank of Indexing

Expression Flattening

Computing Slots

Computing Frames

Computing Exports

Lexical Resolution

Basic manipulation requiring nodes to be relocated to
other parts of the tree; efficiently adding new nodes to
the tree; managing tree hierarchy without the use of a
call stack/recursion

Node splicing; inserting nodes as new parents into the
middle of a tree; more advanced selection of nodes
with specific properties, that is, “sub-tree” selection

Splicing nodes as new siblings; managing record field
deletion; leveraging ordering of an inverted table; node
exchange

Working with children as a group; working with
collections of nodes using B over parent-child

relationships

Managing complex node permutations; manipulating
sub-trees independently; connecting order and tree
edges

Utilizing more complicated auxiliary structures;
analysis over parts of the tree; working with variables
and symbols

Working with multiple edge structures over the same
nodes; working with depth via pointer vectors

Preserving data that might be lost through
externalization; basic tree selection, querying,
traversal, and accumulation

Complex traversal patterns; environments; lookup;
managing memory bandwidth, parallelism, and
apparent serial blockages; working with different
views of the AST

Together, these passes demonstrate all the necessary elements of working with and manipulating trees

to perform arbitrary analysis and modification of the structure of the tree.

49

3.2. The AST and Its Representation

At the heart of any compiler is its IR or AST representation. Many modern compilers utilize small IRs
that differ only slightly from one another to simplify pass construction. For the most part, compilers
and other tree operations in a similar class strongly favor the use of ADTs or some other recursively
defined record structure. The underlying language usually dictates the specific form that such
structures take, but the canonical approaches use the type system in typed functional programming
languages, class hierarchies mirroring the same in OOP languages, and either structs or record types
in C-like or untyped languages such as Scheme or Python. While the supporting syntax for creating
these structures differs from language to language, the underlying in-memory representation remains
markedly similar across implementations.

This record-type representation of trees generally shares a specific set of common traits no
matter what language is used to create them. They generally allocate on the heap, use atomic or unit
level records or objects to represent nodes in the AST that contain the appropriate fields for that node,
and use pointers or reference semantics to represent edges between nodes. Usually the system will
allocate/destroy each node independently, modulo some adjustment of any shared linkages to
maintain the integrity of the tree. Furthermore, a single root node serves as the point of entry and
primary reference for the tree when passed as an argument to functions. While an algorithm may at
times hold a reference to a sub-tree of the whole tree, this is usually a short lived operation, and most
compiler passes ensure that they accept a whole AST as the input and return a whole AST as the

output, referred to by its root node. Common in such algorithms link the parents to the children as

50

opposed to children linking to their parents. Some scientific or graph applications prefer to link

children to the parents, but in transformation algorithms that rearrange the tree each non-leaf node

usually has some list of its child nodes, rather than a child having a pointer back to its parent node.

In order to compare this representation to other possible representations, the desirable

qualities of any given representation should be enumerated. For the purposes of a compiler or tree

manipulation heavy program, the following qualities are all desirable:

1. Easy to traverse

2. Easy to manipulate: add, delete, update

3. Easy to alter the definition

4. Easy to type-check

5. Efficient in memory and computation time

3.2.1. Record-type Representation

The traditional record-type representation exhibits several favorable qualities for popular languages

and programming paradigms that make certain assumptions about the execution model of the

machine.

Ease of Traversal. The record-type presentation of an AST fits perfectly onto the well-studied and

well-used paradigm of structural recursion. In languages with good support for heap-allocated objects

and reference types, this representation allows for a recursive description of a traversal that naturally

mirrors the top-down bias exhibited by the structures usually used in compilers. Furthermore,

51

sophisticated pattern matching libraries and syntaxes specifically target these traversal patterns. They

ease the matching and extracting of information from these record-type representations and simplify

many of the most common traversal patterns albeit at the cost of a special syntax for handling such

objects.

The use of ADTs and record-type representations so pervades functional programming and

OOP that it represents the predominant method for working with most domains. In such languages,

representing trees in the same way allows the use of the many syntactic and mechanical aids provided

by languages to work with such structures.

Ease of Manipulation. Adding, deleting, and updating nodes in a record-type representation is

usually quite simple. In garbage collected languages, constructors permit trivial allocation of new

nodes, while libraries for other languages provide ready-made abstractions for the same. Likewise, in

a garbage-collected language, deleting a record is trivial as well, since the code simply removes any

references to the node from the tree and lets the garbage collector handle the rest.

When updating the tree, some methods that emphasize a monolithic approach utilize

mutation over the structure to change the tree, while the functional approach, commonly favored even

in imperative and OOP languages, constructs a new tree derived from the old tree with the appropriate

changes made to the new tree, after which the code deletes the old tree. While this incurs some

memory overheads, often, the language runtimes optimize the allocation of many small objects,

greatly reducing any cost for allocating a new tree. Together with the garbage-collector, this generally

52

allows the easier to program functional approach to compete with the mutation-based approach, so

much so, that programmers using otherwise imperative or OOP language often greatly favor the

functional approach.

Thus, while update is not as easy in some languages for the record-type representation as it

might be, real world use of the record-type representation often ignores update in favor of whole tree

copy.

Ease of Typing and Definition. Many languages provide built-in support in the type system and the

core language for building and defining ADTs or recursively defined objects. This can make it easy to

create different styles of ASTs, or IRs, such as provided by the Nanopass framework, which enables

the programmer to derive a new IR from a previously defined IR. The programmer then benefits from

improved type checking and error handling when constructing ASTs and should the programmer

attempt to create a structurally incorrect AST, the system provides a suitable, hopefully easy to read,

error either at run time or compile time.

Languages such as Haskell provide for significant amounts of static guarantees around ADTSs

through heavy use of type-level features.

Efficient memory and computation. The record-type representation relies primarily on pointers as

its core building block, since all nodes are constructed and linked together primarily by pointers to

more primitive types or to other node types. This is not the most efficient use of memory, and so there

53

is usually a bit of excessive overhead in terms of memory consumption per edge and per node in a tree,

but traditional wisdom considers this overhead relatively minor. Regarding computation, compiler

passes operating over a record-type representation primarily chase pointers. Traversing the AST

requires following a chain of pointers to disparate and usually segmented or fragmented regions of

memory. The costs associated with these passes center around traversing the tree, creating new nodes

and edges to form the next tree, and in comparing values to find the right parts of the tree on which to

work. CPUs with branch prediction, pre-fetching, and other logic try to optimize this sort of operation

and programmers often consider the resulting performance good enough. This is particularly true of

systems with good garbage collection and heap allocation runtimes. In fact, these runtimes provide

such a performance improvement over other approaches that runtime and language implementations

that take advantage of this for tree processing sometimes consider these optimization features, not just

programmer conveniences.

Notwithstanding the excellent and desirable properties that the record-type representation

exhibits when examined through the lens of traditional programming languages on a CPU

architecture, the execution of tree manipulation algorithms on a vector-oriented machine (including

some modern CPUs that focus heavily on vector parallelism) presents serious limitations along these

five desirables due to the change in underlying architecture.

In order to better examine these issues, consider the following small tree:

54

]

o —
o

T
T

]
]
]
o

Note a few of the important features here often found in the ASTs used by compilers. The tree is
unbalanced, of variable branching factor and depth, and for a given node, one may or may not know
the number of children. To represent this tree in a record-type system, it would be common to have a
type/sub-type header, some additional metadata for each node, and then a list of the children of the
node. This list of children is very often stored as a linked list, though a vector is sometimes used as

well. This gives the following structure for an individual record:

I——O

cl|le+—...—cn|&

Ht|n g(Htn °—T°—°9—tn...°-—T°—°9
I]
Ht|n g(Ht[n...|® Ht|n g(Htn *]

55

The above depiction illustrates starkly some of the challenges in using the record-type representation

on vector machines. Note that each block of allocated memory is not guaranteed to be contiguous with

any other block, and that most values are pointer values, which requires the use of whatever size

pointer is native to the machine. On most current machines, this is 64-bits for each pointer value.

Observe the need to construct a pointer pair for each edge in the tree, and, assuming aligned memory

accesses and only a single 64-bit value as the data for each node, that each node requires 3 64-bit

values, or 192 bits. This leads to a total memory requirement for a given tree as (Nx192) +Ex 128 bits,

where E and N are the number of edges and nodes, respectively.

Using arrays to store the children instead of linked lists reduces the cost to 128 bits per node

and 64 bits per edge for children. Inlining the child list as the tail of the node record using arrays, then

the representation further compresses to require only 64-bits per edge plus the cost of the node

including the count of the number of children. Using this compressed array representation, the APL

expression for the above tree looks something like this without the ‘n’ fields:

t‘-lol

Fast«t(t t)(E(t B)E)(E(t t B)(t t t)t)

o|joo | o 0|Jlooo|jooo0 | O

Note that this array-based compression loses some of the original flexibility of the record-type

representation, since it requires more effort to change the number of children for a given node.

On architectures that amortize the costs of random access to memory, have high clock speeds,

and can handle branching code paths effectively, the record-type costs are not particularly high,

56

especially considering the additional benefits gained from being able to use a garbage collected

language with sophisticated support for ADT constructions.

The requirements differ significantly for vector machines. All GPUs, and many CPU

architectures, require effective utilization of the wvector instructions and the provided SIMD

programming models in order to achieve peak performance. The SIMD or vector computation model

is characterized by a single operation across multiple lanes or threads of computation, known as

single-instruction, multiple data. Since the threads are designed to operate in lockstep across multiple

pieces of data, branching code that results in divergent code execution paths for different data points

usually results in severe performance penalties or not being able to apply vectorization at all.

Furthermore, many vector machines do not dedicate significant hardware to pre-fetching, pipelining,

or the like, thus penalizing random-access memory reads and writes. Even on CPUs, despite the pre-

fetching algorithms, a severe memory penalty exists for accessing memory in a random pattern rather

than accessing memory using a sequential pattern. Additionally, many vector operations work best

over small element sizes, meaning that the number and size of contiguously allocated elements limits

the amount of available parallelism. For instance, many of the vector instructions on Intel CPUs rely

on fitting multiple small values into a single 128-bit or 256-bit memory region. On GPUs, it is

exceptionally difficult to encode recursive, branching algorithms in a manner that fully leverages the

hardware capacity. On CPUs, while they adequately support recursive, branching computations, the

presence of recursion and branching interferes with efficient vectorization of such algorithms.

57

Efficient garbage collection, particularly fast allocation and deallocation with fragmented

memory spaces, remains an open and difficult problem for GPUs and other vector-heavy architectures.

This makes the use of garbage collected languages on GPUs essentially intractable at the current time.

This leads to the following list of desirable features for vector programs:

1. No recursion

2. No branching

3. Small integer/floating point values

4. Contiguous data allocation

5. Sequential read patterns over memory

6. Minimal memory requirements

7. Minimal data-dependencies in program control flow

8. Use of SIMD/Data-parallel operations

The record-type representation seems much less desirable when examined in this light. The features

that enabled ease of manipulation, traversal, type checking, and definition are all things that make it

unsuitable for use on vector machines, namely, garbage collection, recursive control flow patterns

with pattern matching, and reference semantics utilizing heap-allocated pointer heavy objects.

In terms of time and space usage, the record-type representation also begins to struggle when

applied to vector machines. The need for space savings increases on GPUs. To execute efficiently on

vector machines, the need for small data types to maximize parallelism coupled with memory access

and alignment restrictions means that the relatively heavy use of pointers in the record-type

58

representation precludes the effective use of vector instructions. The non-contiguous memory access

patterns in tree traversals hampers effective vector-parallel execution without significant restructuring

and rewriting, a difficult and challenging problem.

3.2.2. Linearizing Relational Representations as Tables

What other representations might solve this problem? Alternative representations must first address

contiguous memory allocation. Linearizing or serializing a tree into a format with a specific, concrete

in-memory representation that preserves data locality removes the issue entirely.

The record-type representation above is a simplified method for representing relational data,

and the term "record” signals the related nature of relationally stored data and a tree represented as

records. A record-type representation can be modeled as a set of tables with foreign-key references to

various nodes in each table with each node given a globally unique reference id by which to refer to

the node.

The relational model does not specify a specific on-disk representation, but a matrix of 3

columns trivially represents such a relational model. The first column encodes the edges in the node

somehow, the second column indicates the type, and the third column contains the field data for each

record. In this case, because a matrix is an ordered structure, the row associated with each node can

be used as the reference id for that node.

The question then becomes one of choosing the right representation for the first column of the

matrix, which indicates how each node is connected to another in the tree. This column, which might

be a vector or a higher-ranked array, represents a linearization or serialization of the node-edge

59

information stored in the tree. It provides a specific order to the edge information that was otherwise

stored in disparate regions of memory in the record-type representation.

Linearization of trees and their representation has a long history, with Kenneth Iverson

exploring such topics in this 1960's era APL book (1962). There he explored several different

representations for linearizing a tree, but through the years two common linearizations have

appeared.

One, treated here briefly, stores the type code of each node in the vector and orders the nodes

in the matrix in their depth-first, pre-order traversal. The root node is the first node and the left-most

child of the root node is the second element in the matrix and so forth down the tree. If each node has

a static record field count, this sufficiently encodes all the information about the tree’s structure.

Traversing the AST by reading along the vector and recursively applying the appropriate constructor

for each type reconstructs a record-type representation of the tree. This representation requires that

all the records have static size including the listing of children.

3.2.3. Depth Vector Representation

Another possibility is to order the nodes in depth-first, pre-order traversal as above, but to use the

depth of the node instead of the type of the node in the vector. This depth vector encodes the

information about the edges in the tree, but also allows for variable length record types.

As an example, recall the previous sample tree, with the depths listed on the right:

60

T

To represent this tree as a depth vector requires no knowledge of the node types, as follows. This

representation stores the type of each node separately:

d«0 1 2123212332332

The structure of depth vectors depends on ordering the elements according to a specific traversal

pattern, in this case, depth-first pre-order traversal. The id of a given node in the tree is the position of

that node in the associated depth vector or other linearization. Thus, the ids of each of the nodes in

the above tree are given in the following; note the traversal pattern:

0 0
| | : |
1 3 7 1
B e
2 4 6 8 11 14 2
o e
5 9 10 12 13 3

Observe, then, the node ids with the depths of each node with depth first ordering:

d
789 10 11 12 13 14
123 3 2 3 3 2

Within the Dyalog APL community this depth vector represents a canonical encoding used to
represent tree data such as that found in JSON objects and XML data. It has several favorable

properties over the record-type representation when compared for vector machine friendliness.

61

A depth vector requires very few bits per node to represent the AST, since it encodes the depth

of the node, rather than the id of the node. Thus, each element requires only the number of bits

required to encode the maximum depth of the tree. Since the depth of a tree tends to be much smaller

than the number of nodes in a tree, this tends to be significantly smaller than the 128 bits per edge

plus 64 bits per node used by the record-type representation.

Furthermore, a depth vector ensures contiguous memory access and groups sub-trees

contiguously as well, so that functions over sub-trees also operate with a contiguous memory region.

If a traversal over the AST matches the depth-first pattern, which it often does in compiler traversals,

good vectorized, non-recursive, non-branching solutions to many traversals exist. This makes certain

read patterns very fast over depth vectors because of the low memory overheads and the fast vectorized

algorithms.

However, not all is well with depth vectors. Two major issues arise when working with depth

vectors for compiler design. First, constructing a new AST or modifying an old to add new nodes may

require significant copying of the tree in order to make space in the vector for a new node in the middle

of the vector. Moreover, many algorithms are difficult to express without the use of nested vectors,

which are another form of tree data that is difficult to traverse efficiently on the GPU. Finally, the

depth vector efficiently encodes the edges of the tree using an explicit ordering between elements in

the vector, which introduces a data dependency that may require searching the entire vector in order

to find a node’s parent or a node’s children.

62

In short, while the depth vector representation exhibits favorable space usage and traversal

ease, it does not permit easy manipulation or modification because of excessive copying or traversal

requirements to enforce or derive parent-child information. Recursive or iterative algorithms may

address these concerns on CPUs, but this hampers vectorization and introduces the same issues as the

record-type representation when used on vector machines.

Nonetheless, depth vectors are simple to understand, very space efficient, and relatively easy

to construct using recursion. The Co-dfns parser uses parsing combinators to construct the AST from

text to a richer structure and so the depth vector works well in the parser. The parser produces the

AST using a depth vector to represent the tree structure, and this AST is passed to the compiler. The

following expression converts a record-type representation to a depth vector representation:

€0{(+, (a+1)V+)/da,1dw}ast
012123212332332

Note that the above recursive expression does not utilize a base case and suggests a natural parallel

execution use a tree-reduction strategy. The following sections explore optimizations and

representations that reduce the vectorization issues with depth vectors.

Linearizing the tree structure has an additional benefit. The record-type representation groups

its memory allocations and layouts based around individual nodes. In other words, the record-type

representation stores a node's type, any additional fields, and the child/parent information together in

a single record, usually allocated as a unit. The pointers from one node to another node serve to link

these records together. This makes it relatively memory efficient to load a single node in its entirety

63

into fast memory easily, but the allocator usually positions these nodes throughout the heap, making
bulk or repeated loads of many nodes follow a random-access pattern.

Linearizing the node-edge information using a depth vector, all node structure sits in a single
column in a matrix/table that contains the other node information in it as well. For simplicity, assume
that every node has a single "extra” field and then a type field, giving the following tree using a single

character for the type of the node and a string for the extra field value:

[O,Tin...]

[1,Tin...] [1,T;n...] [1,T;n...]

[2.Ton...1 [2.Tun...1 [2.T.n...] [2,T;n...] [2,T;n...] [2.Ton...]

| | | |
[3,T,n...] [3,T,n...] [3,T,n...] [3,T,n...] [3,T,n...]
The matrix representation below is the same tree using a depth vector, which advantageously allocates

the entire tree in a single contiguous region of memory, also contiguously allocating all sub-trees:

Depth Type Extra
0 T n
1 T n
2 T n
1 T n
2 T n
3 T n
2 T n
1 T n
2 T n
3 T n
3 T n
2 T n
3 T n
3 T n
2 T n

64

This contiguous allocation enables accessing whole chunks of the AST as large memory reads, but it

may not permit bulk reads in the most efficient manner, as discussed in the following section.

3.2.4. Optimizing with Inverted Tables and Symbols

The matrix representation still does not quite satisfy the requirements for vectorization. It has a few

serious faults when examined in the context of current array programming systems, particularly

general-purpose systems that are not specialized. In a matrix representation of tables, each column

has a different type. If the elements are simple, this results in a mixed array, but if the elements are

nested, each element requires an internal array header. This leads to a great deal of inefficiency in the

representation because each element must store type and/or shape information.

Also note that in many algorithms, processing the tree does not require the entire contents of

the tree, only certain important aspects of it. A transformation may only require type and structural

information while ignoring the rest of a tree's data. These are the first and second columns of a matrix

representation. Often, a computation will only require a subset of the total available fields for the

nodes over which it works. In this case, the matrix layout provides a better access pattern than the

record-type representation, which is random access, because it enables a strided access pattern,

assuming a row-major in memory representation, but this is still less efficient than the ideal sequential

access pattern.

Some database applications and high-frequency/high-throughput time-series or financial

applications address both the issue of mixed element types and column-wise access patterns using a

technique known in the APL community as the inverted table, which optimizes the table/matrix

65

representation for cases where columns of the table are of the same type, but where each column is

expected to be different. It replaces a matrix with a vector containing column vectors. This

representation costs only a single array header for the table vector plus an array header per column,

rather than array headers or type information on a per element basis. It provides a means for

implementing column-major storage of row-major allocated and indexed tables of mixed field type in

an efficient manner.

The inverted table representation enables independent computation over a single column with

good control over the memory access and allocation. Patterns that would be random-access or strided-

access in the previous representations are sequential access with an inverted table. Furthermore, it

enables small element sizes for columns that do not require large numerical ranges. To further this

advantage, the Co-dfns compiler assigns a named variable for each column vector in the table, rather

than using a nested vector of vectors representation. The previous tree can be represented as an

inverted table, depth vector representation as follows:

d(15p'T") (#15pc'n...")

0121232123323 32TTTTTTTTTTTTTITT

333 3003000000020 33 33

66

Instead of a 3-column matrix, a vector contains each column. Table ('7") improves the visualization:

5 d(15p'T")(t15pc'n...")

N WWNWWNENWNEDNEO
A4 A A A4 A A A~ — -
33 330033003535 3 3 3 3 S5

Examining the bytes required to represent the tree using each of the above techniques demonstrates

the difference in efficiency using the Dyalog APL interpreter runtime:

it«d(15p'T"')(t15pc'n...") A Inverted Table

mt«<((5d),'T"'),c'Data’ A Matrix Representation
OSIZE"'mt' 'it'
1960 256

Using depth vectors with an inverted table representation removes many of the inherent limitations

of the record-type representation. However, the representation above still uses character vectors to

represent the field data and types. Compiler implementations often rely heavily on atomic symbol as

a core data element together with the language’s record facilities for defining complex structures.

Symbols represent atomic units of data with a string-like serialization compared primarily based on

equality. These usually represent variable names and syntactic units within a compiler.

Implementations often treat symbols like pointers, avoiding the need for string comparisons when

67

testing for equality. Furthermore, ASTs are usually constructed of a fixed set of specific record types.

Record type systems tag the data representations to efficiently record the type of a given record,

improving efficiency. Due to memory alignment restrictions, these tagging systems balance memory

access performance and data compression, but the result is usually a reasonably efficient tagging

system for objects. Combined with a symbol table, this avoids unnecessary duplication of string data

such as is present in the above matrix or inverted table representation.

The type and extra field of the inverted table or matrix representation above are examples of

object tagging and symbol data. The use of character vectors as above does not take advantage of the

normal efficiency found with runtime tagged objects or symbol tables. The character vector

representation can require up to 32-bits per character, depending on the size of character data in the

system being used. Furthermore, the use of character arrays to represent symbolic/variable sorts of

information in the tree will result in significant amounts of duplication for variable names.

Some APL implementations support general symbols but using them here may cost up to 64-

bits per symbol or tag and limit computational flexibility over those columns. In the context of vector

machines, care must be taken regarding this sort of limitation and space usage. Classical functional

programming languages usually restrict the range of available computations to either an expensive

string conversion or equality checking. Furthermore, the use of general symbols removes the freedom

to control the data sizes in use.

In the Co-dfns compiler, the parser uses a manually controlled enumeration of types, dividing

all nodes into a general type and sub-type called a kind using two columns of small range integers.

68

Because the number of types and kinds is very small, the system requires very few bits per element to

represent these columns. Similarly, the parser generates an explicit symbol table in the form of a vector

of unique character vectors and replaces all symbolic elements in the AST with negated indices to the

appropriate symbol in the symbol table. Thus, all symbolic data in the AST changes to small range

integer data. The compiler takes advantage of this representation to store multiple fields into a single

column of the AST when they are mutually exclusive, and it also represents the symbolic data in the

AST with as few bits as necessary. This saves considerable space in the representation. For this

encoding, given a symbol table ST, a given symbol N is a negative integer whose string representation

is (|N)>ST.

The above symbol internment optimizations result in an inverted table representation whose

columns are likely to be very small range integers. This representation is very space efficient and better

tuned to the access patterns most anticipated in the compiler.

To summarize, the parser produces an AST using the following techniques that it then passes

to the compiler:

1. Linearizing the node-edge information of the tree into a depth vector

2. Storing node data as a table rather than separate node objects

3. Storing the table data as an inverted table instead of a row-major matrix

4. Interning string data using a separate symbol table

5. Storing node types as small integer enumerations

6. Storing each column as a bound variable

69

The AST as it comes from the parser consists of four columns:

Column Name Description

0 d Depth vector of the AST

1 t Primary class or Type of the nodes

2 k Sub-class or Kind of the nodes

3 n "Name" or "Reference” data for each node

Columns 1 and 2 use small integer enumerations, while column 3 has its own, separate symbol table

dedicated to its use. For example, consider the following namespace script:

:Namespace
global<«5
gex<+xglobal

func<{X«w+global ¢ Y«XxX ¢ Y}

:EndNamespace

This structure mirrors the previous example tree relatively closely. The parser works as follows:

src<c':Namespace'
src,«c' global<«5"'

src,«c' gex«xglobal'
src,«c' func«{X<«w+global ¢ Y«XxX ¢ Y}'
src,«c':EndNamespace’

ast«codfns.ps src
tree exports symbols<«ast

The parser returns a tree that looks like this:

1

:|—O—0

O—O0—0

o

oO—20O
}'O—O——O—O

o—0O

70

Annotating each node with its type and sub-kind gives the following:

F1
l_l—l
||30 TO ||31
AO EL F1
| = | !
NO PO A1 BO BO Al
| | | |
VO E2 E2 VO
I | 1 I | 1
AL PO A1 AL PO Al
| | | |
VO VO VO VO

The sub-kinds are numeric, while the types are symbols interned with the following symbol vector:

NA
ABEFGLMNOPVZ

Notice that the parser returns the tree, a table of the exported names, and the symbol table for the n
field. Visualizing these results gives the following, using the Table primitive to beautify the results:

(77tree) (5 exports) (ssymbols)

0] 31 0 1 0

1 1{0] 75 func 0

2] 0|0 0 0 w
3| 710 76 gex

11 1]0| ~7 ol
21 2|1 0 global

3| 9(of 78 oo
3| Of1 0

L]110(0| 75 ww
11 111 -9

2] 3|1 0 global
3| 1{of"10

bl 2|2 0 5
5| 0f1 0

6/10(0] "1 gex
5 9(o|~11

5| 0f1 0 x
6/10]|0| 75

71

12 func

[EEN

10
-3 .

[EEN

10 Y

Fwooomoio ol F W
OO O0OO0OWVWOONKE
OFrOFr OO NO

[N

12

The following discussion of encoding ASTs assumes an interned symbol n field and similarly encoded

type t and kind k fields. It also assumes that the AST is represented as an inverted table, as above.

The depth vector representation is space efficient and can be constructed easily while parsing.

However, as discussed previously, it is not ideal for manipulating the tree, because manipulation may

incur heavy costs to reorder nodes in the AST, to add nodes, and to determine the critical parent-child

relationships when working with the AST. The following section removes the ordering dependencies

from the depth vector using a path matrix, and the section after that discusses how to compress this

concept as a parent vector.

3.2.5. Path Matrices and Decoupling Table Ordering and Node Edges

Decoupling of the ordering dependency of the depth vector representation means enabling local

reasoning about the specific edges of nodes in, ideally, a constant time manner. The strongest

requirement for such independence states that any two arbitrary nodes in the tree may be compared

efficiently and their relative locations in the tree totally understood. One way to do this is a path

matrix.

72

A path is a vector of node ids listing the ancestors of a given node up to and including the root
node. A path matrix is a matrix where one dimension is the size of the elements in the tree, and the
other is the size of the maximum depth in the tree, that is, the longest path in the tree from the root

node to one of the leaf nodes. Recall the simple tree given above along with its depths and node ids:

0 0
| | : |
1 3 7 1
e
2 46 8 11 14 2
e
5 9 10 12 13 3

The corresponding path matrix to this tree is a matrix of shape 4 15, represented as follows:

0o 0o 0o o 0o 00O 0OO 0 0 0 0 0o
1 1+ 3 3 3 3 7 7 71T 71 7T 71T 71
2 L 4 6 8 8 8 11 11 11 14

5 9 10 12 13

The above matrix omits the "null” spaces to facilitate a better visualization of the path matrix. Notice
that each column of the matrix is a path from a given node id to the root node and thus the first row
of all 0’s since the tree has only a single root node.

Consider the construction of the path matrix for the example namespace script parsed above.

The node count of the tree is 27. Recall the depth vector of the tree:

d
012312334123 456556345655263H*n4

The depth vector gives positions for each node in accordance with their depths in a matrix of shape 7
27 (that is, the depth and the node count of the tree). Starting with a matrix of empty spaces gives the

following visualization:

73

1#d
0123456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
®td, "1#d
31233441 2 3 4 5 6 5 5 6 3 4+ 5 6 5 5 6 3 4
34567 89 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
(t#d)@(d, "t#d)-7 27p" '

[eNe]
- -
NN

1 4 9
2 5 10
3 6 7 11 18 25
8 12 19 26
13 15 16 20 22 23
14 17 21 24

This provides a transposed tree-view layout of the node ids, much like certain file management

applications use to display a tree. Indeed, transposing the above layout provides a familiar nested

representation:

R(1#d)@(d, "1#d)r7 27p' '

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

74

The above matrix utilizes a combination of character and numeric data that is not suitable for

computation. Using a zero-filled array instead gives this:

(1#d)@(d, 1#d)-7 27p0
0o0o00O0O0O0OOOOO0O O O O O O O O OOWOUOWOUOO0O O O0 o0
co100400009 0 O OOO OO O O O O O OO0 O0 0 o0
002005000010 0 0O O OO OO OO0 OO0 0 0 0w0
0003006700 011 0 0O O O O 0118 0 0 0 O0 0 025 o
0000000080 O 012 0 0 0 0 0 019 0 0 0 0 0 o0 26
0O0OO0OO0OO0OO0OOO0OO0OO0O O O 013 01516 0 0 020 02223 0 0 O
0coooo0oo0000O0OO0O O O O OI!IY O 017 0 0 021 0 024 0 o

This is the same structure as above, but with the spaces filled in with zeroes. Using the node id as the

"fill element” for all rows in a column greater than the length of the path allows a combination of max

scans to generate the following path matrix:

FPM<[\[X(1#d)@(d, "t#d)+7 27p0

oooo0oo000000 O O O0 0 OO OO O OO O 0 O 0 0o
0111444449 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
0122455559 1010 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
012345677910 11 11 11 11 11 11 11 18 18 18 18 18 18 18 25 25
012345678910 1112 12 12 12 12 12 18 19 19 19 19 19 19 25 26
0123456789 1011 12 13 13 15 16 16 18 19 20 20 22 23 23 25 26
012345678910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Note how the node id for each column extends down the column to fill all the remaining space in the

column beyond the depth of the node.

The path matrix representation, which harkens back to Iverson's APL book, has the advantage

that each column can now serve as a fully qualified, unique identifier for a given node. Additionally,

these qualifiers are comparable, meaning that each of them encodes enough information in them to

compare any two arbitrary columns without reference to the rest of the matrix. Assuming row-major

allocation, the transposition of this matrix enables contiguous access to each column (now row), giving

good data locality.
75

As an example of working with path matrices, consider the problem of computing the distance

of each node from every other node in the tree. The distance of a node from another node is the

minimal number of nodes visited along the tree in order to traverse from one node to another. One

way to think of this is that the maximum potential distance is the sum of the corresponding depths

plus 2 (to account for the zero-indexing of the depth vector). The actual distance, therefore, is the

maximum potential distance subtracted by twice the depth plus 1 of the nearest common ancestors of

the nodes. Because the node id is a unique fill element for each column in the path matrix, the APL

idiom +. = computes the length of the common prefix shared between two paths, which is the depth

plus 1 of the nearest common ancestors. The following expression computes a distance matrix for the

tree described by d and PM above:

-

o.+~1+d)-2x(&+.=+)PM
2

[N

-
OOF WDNWDNMNWNPFPORPRPRDNMNNOCOOOFOOTLF W

ONOUITOONNOONOOTF WNPFPPORP,OOFWN
WONOOWOVWOOOWOONOODOF WNOFRLRDNOOFW
VOOV OWONODONFEPLPONENO O FW
OWVWOONOWVWOWOWOONOOOITOFF, WDNWNONOF
NF WODNOAOF FOAOFWONPFPOOOFFWNFWNRE
FWONPFE, FWWFWNPFPOFRP,LPOOJOIOLF WO FwW

O FWNPFPPEPNPOFRPDNWONNOUOGINONOF
NO OO FWNNEFPORPRPNWFOOWMOONOO0ONOO
ONOUOFWWOFRLRrNWFOIOOVOUOONOVWOOLONO
NOOUOTF WNOWNEFEFDNWFOUOOMOONOoON00NdONO
NO OO FFRPLPONWNEFEPENWFOOOMOONOoO00NONO
ONOUOIOFRP, WFWNWFOUIOOVWOOONOVWOOONO
WNPFPOUFFOAOFWNELPNNOOOOOFOOUFW
NPFPOFRPOOIUIOCUITF WNWOONYNOOTINOoNOF
P OFPNNOOOONOOUOILF WFOOWMOONON00 OO
OFRPLNWONYNOONODOUTFOUOIOWVWOUOONVOVWOONO
WNEFEPNNANdNOOOONOOTIF WFOOOOONON00NONO
WNEFEPNNANdNOOOONOOTF WFOOOOONON00NONO
FWNWONNOONOOTFOTOOVOOONOVWOOONO
OFWNOOAOFFOAOFWUNEPEPNYNOOOOOFOOFW
DO F WOOIUUOIOUITF WNWOONNOO0TI N0 F

(
1
2
3
L
0
1
2
2
3
2
3
L
5
6
7
6
6
7
L
5
6
7

CUTF WOOONUIOOOITF WNEFE, FWWNREL, WNRO
NOO U FNOOONOOUUOFWNOAOFFWNNEOR
CONOOUOIOONNOONOOCGTIFWOOOIOTFWEPLORPEDN
VOOV OWONOOINFNOOOAFOLNWO

[N

76

56786788 943456 766 7212 302 345
56786788 943456 766 7212 320 145
6 7897899105456 7 877 8323 431 06586
34564566 721234 544 5234 544 501
L5675677 832345 655 6345 655 610

The path matrix representation of a tree does solve the dependency issue of the depth vector,

but at the cost of NxD memory, where N is the cardinality of the tree and D the depth of the tree. This

results in excessive memory usage as tree size begins to grow. Two major benefits of the path matrix

representation are the true independence that the representation gives in assessing the relationship

between arbitrary nodes in the tree, and the data locality benefits of storing each node’s full path in a

localized manner per node. Parent vectors provide an alternative that avoids the memory costs.

3.2.6. Parent Vector Representation

Most tree manipulations do not require the full comparative power provided by a path matrix. Instead,

common manipulations tend to focus on walking up and down the tree, or left and right along the

tree, rather than arbitrary walks throughout the whole tree. Thus, for any given node, its ancestors or

immediate siblings, rather than, say, cousins matter more. A parent vector avoids duplication of data

and requires only linear memory. It optimizes for ancestor or sibling traversals rather than arbitrary

node-node comparisons. This optimization saves on memory usage while providing good asymptotic

performance for the most important tree traversals in compiler passes.

The parent vector representation uses a pointer vector encoding the parent relationships in

the tree. (It is also possible to use a pointer vector to represent siblings in the same way, but this work

does not utilize this technique.) A pointer vector is an index vector whose elements index into itself.

77

That is, for a given pointer vector V the assertion A/Ve 1 #V holds true. In a parent vector each element
p[i] points to the parent id of node i in p. When node 1 is a root node, then p[i J=1. That is, root
nodes point to themselves in the parent vector.

The parent vector partially orders the tree, so that the order of siblings matters in the vector,
but nodes may otherwise appear in any order within the vector. The introduction of a sibling vector
applies a total ordering to the tree, enabling full decoupling at the cost of maintaining two pointer
vectors. Having a partially ordered, rather than fully ordered vector enables higher performance
operations when adding or deleting nodes than might otherwise be possible.

Repeatedly indexing into the parent vector visits the ancestors of a node in order up the tree.
Thus, the parents of all nodes are p, the grandparents of all nodes are p[p], and so on. The root node
of all elements in the tree is given by the fixpoint I¥=~p where I«{(cw)[a}. Note that the parent
vector, path matrix, and depth vector representations all permit multiple disconnected trees within a
single AST structure.

The guarantee that A/pe1£p, that is, that all elements of p fall within the index range of p,
combined with the fact that the AST does not have cycles, allows root nodes to point to themselves
unambiguously, rather than using a null value as often found in HPC applications that use similar
structures. The use of a null value often necessitates branching to check ranges before doing the main
work, potentially introducing divergence and reducing performance. Self-reference ensures all
elements are valid indices of p.

Recall the previous depth vector example:

78

d
012312334%12345655634560505%63"N4

Here is the same tree with the parents visualized graphically:

00 0
||
{4 9
| = | !
2 5 T TO TO TO
7 11 18 25
I | | I | |
Tz 12 Tz 19 19 19
13 16 20 23

This gives the following parent vector:

001204557091011 12 13 12 12 16 10 18 19 20 19 19 23 10 25
Note that the depth-first, pre-order traversal given above matches the order of the depth vector, but
this is not required, and any other permutation that preserved sibling order would work provided that
the values pointed to the appropriate elements. Many tree algorithms do not require ordered siblings,
in which case the parent vector has no ordering requirements at all.

The parent vector is relatively space efficient, less so than the depth vector representation and
significantly more so than the path matrix representation. It is also very efficient to compute over in
general and relatively easy to optimize for specific access patterns. While it does not enable
independent comparisons between distantly related nodes as does the path matrix representation, it

allows for critical paths significantly better than the ordered depth vector representation in common

79

cases. It strikes a balance between space efficiency and computational performance, and indeed, as
shall be seen in the following sections, space efficiency is not independent from run time performance.

In addition to computational benefits, the parent vector provides the easiest means by which
to add new nodes. Often, new nodes may be added by appending them to the vector without additional
reordering. In cases where appending is not possible, the partial ordering enables more flexibility
when inserting nodes that improves overall performance. Compiler algorithms involve significant
node addition so this advantage should not be under-estimated. Deleting nodes in the parent vector
might appear more difficult compared to a depth vector, but it scarcely requires more code in practice,
as discussed below.

Finally, changing edges in the tree using parent vectors exhibits good memory behavior and
essentially no copying overhead. Many key algorithms admit efficient access patterns with low
constant factors, low over computation, and no excessive memory requirements, which allows for
competitive implementations even at small data sizes.

Using the above p vector, together with the previous t, k, and n vectors, gives the following
AST in parent vector, inverted table format:

s ptkn

0
)
0
)
-7
0
-8
0
)

NOoOO o FON—OO
OO OVUNEFPNOF, W
OFrOFRr 0000

[N

80

0] 11710
9] 3|1 0
10(1]0|711
11] 2|2 0
12] 0f1 0
13(10]0] "1
12| 910|712
12] 0f1 0
16110(0] 75
10 1]0]714
18] 2|2 0
19] 0f1 0
20|10(0f"11
19 9|0| 78
19] 0f1 0
23(10|0("11
10| Of1 0
25(10|0(714

3.3. Converting from Depth Vector to Parent Vector

The parser encodes the structure of the AST in a depth vector, but the compiler works over a parent
vector representation, first converting from the depth vector d to a parent vector p. Recall that d[1]
for node i in depth vector d gives the depth of that node in the tree, while p[i] gives an index into p
that corresponds to the parent of node i. Note here the convention of referring to a node as an index
into one of these “structure” vectors, such as a depth vector or a parent vector. Thus, the expression
p[i] is said to give the parent node of node 1, it being an index is an implicit part of the definition.
The depth vector encodes the parent-child information. More formally, the parent node of
node i in depth vector d is a node j where d[j]=d[i]-1 and j<i such that i-j is the smallest
possible value among candidates for j. Another way of phrasing this is to say that the parent node of
a given node is the nearest node to the left whose value is one less in depth. Assuming a single tree
with one root, the expression 2¢1d[1i]=d[i]-1 calculates the parent node. To see this working,

81

recall the previous example depth vector and its associated tree giving the id of each node in the tree

and the associated depth:

d
01212321233233?2
0 0

||I 1

1 3 7 1
| —
246 8 11 14 2
5 9 10 12 13 3

To find the parent of node 14, which is 7, the above expression decomposes into the following pieces:

d«0 1 2123212332332

ielly
dfi]-1
1
11
0123456789 1011 12 13
dlvi]

01212321233233
dltil=d[i]-1

01 0100010O0OO0OO0OO0C0O0
1d[1i]=d[i]-1

1 37
drd[ril=d[i]-1

731
a¢rd[1il=d[i]-1

This expression is simple and intuitively matches the formal idea of finding a parent of a single node,
but it does not scale elegantly over all nodes in d to convert the entire vector d into a parent vector.
An improvement removes the use of the final 2¢1 idiom for something that readily scales to multiple
nodes at a time. The expression ~1++/v\¢d[1i]=d[i]-1 computes the same thing but using the
common APL pattern of summing an OR-scan to compute the index of the first non-zero element in

a vector. The breakdown is as follows:

82

dlvil=d[i]-1
01 010001000000
v\pd[ril=d[i]-1
0oooo0o0011111111
+/v\d[1i]=d[i]-1

“1++/v\dd[ri]=d[i]-1

Critically, the OR-scan technique does not just work on vectors, but also works to compute the column
index of the first non-zero element for each row in a matrix. This permits a new, more general
expression in place of the expression d[1i]=d[i]-1 that produces a matrix of such Boolean rows,
each corresponding to one element in d to which applies the OR-scan idiom to compute the
appropriate parent for each element. To do this, first note that the expression ° . >~d gives a Boolean
matrix where index (i, j) is a one if node i appears deeper in the tree (that is, has a greater depth)

than node j. Thus, each row of the matrix is a potential candidate parent.

o.>~d
000000OO0OO0OOO0OOO0OO0OO
10000000O0O0O0O0OO0O00O0
11010001 0000O0O00O0
10000000O0OO00O0OO0OO0O0
11010001 00000O00O0
111110111 001001
11010001 0000O0O00O0
10000000O0O00O0OO0O00O0
1101 000100000O00O0
111110111 001001
111110111 001001
11010001 00000O00O0
111110111 001001
111110111 001001
1101 00010000O0O00O0

83

d[i]-1 except the upper right triangle

This gives the same Boolean vector for each row as d[11]

portion. The OR-scan idiom requires a zeroed upper right triangle in the matrix. The expression

o .>~1#d produces a lower left triangular mask:

o, ,>~1#d
00000O0O0OOO0OO0OOOOCOO

10000000000OO0OO0CO00O
110000000000000O0
111000000000000
111100000000000
111110000000000
111111000000000
111111100000000
111111110000000
111111111000000
111111111 100000
1111111111 10000
1111111111 11000
111111111111100
1111111111111 10

Applying AND over the two matrices produces an appropriate replacement for the original

d[i]-1 expression that represents the same data for all nodes in d:

dlti]

(o.>=d)Ao . >=1%d
0O000000O0OO0OO0OOOOOO0OO0OO
10000000O0OO00O0OO0OO0O0
11000000000O0O0O00O0
10000000O0O00O0OO0O00O0
1101 0000000O0O0O00O0
11111000000000O00O0
1101 00000000O0O00O0
10000000O0OO00O0OO0OO0O0
11010001 00000O00O0
111110111 000000
111110111 000000
11010001 0000000O0
111110111 001000
111110111001 000
11010001 0000000O0

84

The above final expression relatively directly expressions the intuition of finding the parent for a given
node by finding the nearest leftwards node whose depth is less than the given node’s depth.
Unfortunately, the runtime complexity of this expression is quadratic in both space and time,

This expression can then be composed with the OR-scan sum idiom to compute the appropriate parent

W
Vo)
M)
£
wn
< ~
] [ee] O~
5 oW
&) O O A~ N T A~
o ~ HR IR S|
@ OO A O A A1 O A OO0 A O A A1 O A P~ A
-~ T NIl o
% OO0 00010001 —HOHHO O OO0 A A0 A« W A [
O -~ e~ <
.m OO0 00O A A1 OO A1 A1 1A "1 HOOOO A AAd OO AdAA A ~—A -] 00O O —~ I~
e o ~ A < 00 T
) MO OO OO A1 OO0 A 1O A 10!l OO0 0O HTOOAAAAAAA +« O~ 1 ©
o= ~ A o T 0 A
LW 1 OO0 0000000000000 " O00D0D0DO0ODO0O0 A AAAA—A—A <O « 0
A o ~ A T]
o c OO0 0000000 AT —HO A1 O<KOOOOOO0OO0OO A AA—A A~ T OO - ~ ~
o o —~ 1 o O 6
k31 A000000001_1_1.1.1_1_1..0000000001.1_1_1.1.1_1.>1..(®\. ~ O
O —~ bR . o >
> .%0000000001.1.01_1_0>00000000011_O1.1_0OI...\|+/3
: . — > +
um.. [eNeNeoNeNoNeNeNoNoNoNeNoNeoNeoNolN NeoNeNoNeoNoNoNoNoNeNoNoNoll I Il > HTo BN + &
. ~ ~ + M -
@ eNeNeoNoNoNeoNoNeoNoNeoNoNoNeoNoNek - NoNoNoNeNoNeNoNoNoNoNolNol I o RN JN J I ™
~ ~ ~ ~ O —
© Lo leoNeoNeoNeoNoNeoNeoNeoNeoNoNoNoR IR _Neoll e NeoNeoNeoNeoNeoNeoNoNoNoNoNoR B _No X LN o o
~
m [eNeNeoleNoNeoNoNeNoNeNoNoNe NeNe] [eNeNeolNeoNoNeNeoNoNeNoeNoNeoNoNelNe] o~N ~
far o
pH [eNeNeoleNoNeoNeNeNoNeNoNoNe NeNe] eNeoNeoNeloNe oo lNolNellololNollolNe ~i o
~
m [eNeNeoloeNoNeoNoNeNoNeNoNoNe NoNe] [eNeNeolNeNoNeNeoNoNeNoeNoNeoNoNelNe] o | o
(]
>

dominated by the outer product calculations. The critical path for the computation is linear. This
presents an unfortunate choice to either trade space usage for time or vice versa. Moreover, the linear
critical path begs for improvement. Fortunately, better solutions exist, while still utilizing the same
basic intuition, but reducing the size of the data requirements and improving the asymptotic behavior.

To make these improvements, observe a few properties. Firstly, the depth of a node's parent is
exactly 1 less than its depth. It then follows that at least one element of each member of the set 1d[i]
must appear in d before node i, that is, in the vector d[11]. The expression fHv groups common
elements of vector v and applies function f once for each unique element in v where the left argument
to f is the unique element (the key) and the right argument is a vector of the indices into v whose
values are all equal to the key. The result is an array with as many major cells as unique elements in
v. Thus, the expression +ocHd gives a vector (nested) of vectors of node IDs, where the ith element
is a vector of all nodes of depth i, in depth-first pre-order traversal ordering. In short, it groups all
nodes by their depth, sorted in ascending order by depth. This expression restructures the view into
the depth vector in a critical way to enable a more efficient search for parent nodes.

The quadratic computation of p suffers from over-work, since it compares every node against
every other node twice. Really, for a node of depth d, the parent must have depth d-1. With nodes
grouped by depth as above, the parents of the nodes in group i>0 must be in group i-1. In the case
of group 0, they have no parents but themselves. This suggests an improved implementation. Begin by
assuming all nodes are root nodes by letting p«1#d, then use the above grouping to fix up p. First

examine the result of o cHd:

86

+ocHd

0|1 3 7{2 46 8 11 14|5 9 10 12 13

Now consider groups 2 and 3, corresponding to the nodes whose depths are 2 and 3, respectively. All

of group 3’s parents appear in group 2. Note that for each element in group 3, there is an interval where

that element can “squeeze” between two adjacent elements in group 2 while maintaining the ordering.

Intuitively, every node in a depth vector appears in the depth vector between its parent and either the

end of the vector or a parent’s sibling or ancestor. That is, a node and its right sibling or nearest right

ancestor form an interval of space in which all the node’s descendants appear. The grouping above

makes these intervals explicit. It does not matter if the intervals are slightly larger in width than strictly

necessary, because it does not change the left element of the interval. The existence of these intervals

changes the process of finding the parent node into a problem of identifying the corresponding interval

into which a given node belongs. This computation exactly corresponds to the Interval Index operation

1, which returns an index into its left argument for each element in its right that points to the interval

described in the left argument to which that element belongs. Taking groups 2 and 3 from above, 1

gives the following result with group 2 as the left argument and group 3 as the right:

2 4 68 11 1415 9 10 12 13
13344

Using this result to index into group 2 gives the appropriate parents for group 3:

a«2 4+ 6 8 11 14
w<b 9 10 12 13
alaww]

4 8 8 11 11

87

To compute the parents, then, one need only to apply the above computation to each pair of adjacent
groups that appear in the grouping given by +° cHd. Using the 2-wise reduction operator to apply this
function gives the following expression for computing the corresponding parent vector from a depth

vector d:

p-2{plwl«aloiw]}#+ocHd-p<i1#d
001034307887 11117

Note that the computational overhead of this code is much reduced from the previous computation.
The reduction causes #d writes to p, and because o and w are guaranteed to be sorted, the e[a1 w] is
a linear operation. This makes the reduction itself linear. The + o <[is fundamentally a sort over small
range integers, and thus linear as well. This gives O(#d) space and time complexity on a serial
machine. For parallel machines, note that the writes to p are independent, allowing the reduction to
occur in parallel. A binary search based log-linear implementation of 1 using standard techniques
results in an O (®#a.) critical path. The critical path of o cH is O (®#d). The total critical path is thus
O((em)+e#d) where m is the maximum branch size of the AST. In the case of space, a fused
implementation of 1 will use linear space.

This improved implementation is significantly more efficient than the reference
implementation in time and space on both sequential and parallel machines, while also being

simpler/shorter, if slightly less obvious.

88

3.4. Computing the Nearest Lexical Contour

After converting the depth vector into a parent vector, the compiler records the lexically nearest
function node that encloses each node in the AST. That is, it annotates each node in the AST with a
new field r that records the function node (recall that a node is just a pointer/index to its field data in
the inverted table representation of the AST) that is the most immediate ancestor of function
class/type. In the dfns syntax, there is a one to one mapping between lexical contours/scopes and user-
defined functions and namespaces. This pass groups or colors nodes by their lexical contour/scope to
use in future passes. The compiler stores this information in a new field/column vector r whose length
is equal to p and whose values are all pointers/indexes into p. The computation itself amounts to a
relatively straightforward walk through the tree to connect each node with its appropriate lexical
reference node. As such, it is the simplest demonstration of the fundamental concept of traversing an
AST in the compiler.

In a traditional representation, such a tree walk begins at the root of the tree and recursively
descends deeper into the tree. In this case, a state variable usually maintains the nearest function node,
and the pass annotates each node while traversing down the tree; each time the pass encounters a
function node it updates the state variable while traversing through that function’s descendants. The
following recursive function illustrates this pattern. The left argument o. maintains the current nearest
lexical node (function node) while the right argument w is the current tree to annotate. It assumes an
accessor for a node’s id and for its kids, two predicates for testing leaf-ness and whether a node is a

lexical node, as well as constructors for leaf nodes and branches.

89

NearestScope<«{a<«id w
isAleaf w : makeAleaf o
isAF w : o makeAtree (id w) V kids w
oo makeAtree o V kids w}

This approach benefits from using the call stack and explicit variables to track information through
the tree in a single-threaded manner. In the above example, only a single variable suffices to recall the
nearest lexical node since it relies on the call stack maintain the proper value while moving along the
tree. Because the computation is single threaded and the use of pointers in the language allows for
information to be readily distributed and replicated to different parts of the call stack without
consuming additional memory, the results on single-threaded machines tend to perform reasonably
well, and have good computational and space complexity if designed correctly.

In the context of parallel machines, this top-down approach suffers some challenges. The
parallel updating of complex information structures, such as lookup tables or the like, may suffer from
either duplication or synchronization overheads as more information needs to be propagated further
through the tree. And perhaps more fundamentally, traversing a tree dynamically from the top down
requires the ability to dynamically adjust parallelism to either increase or reduce parallelism as the
tree-walk proceeds. This leads to irregular parallelism patterns that are difficult or impossible to
predict before the beginning of the execution absent a specific tree against which to optimize.

Choosing layouts that optimize for one type of traversal or another in top-down fashion
mitigates this issue for certain use cases, but lack generality because they bias traversals towards

patterns that may not suit a specific problem. While they can improve parallelism, they don't

90

necessarily eliminate all the issues with a top-down traversal. The following diagram illustrates how

the top down approach exposes increasing parallelism as one traverses deeper down the tree:

P
o 1
—

o o 2
| |

| 1 | 1

o) o) o) o) L
slelels

O 0O0OO0OOOOO {8

At each level of the traversal, branching exposes further opportunities for parallelism, and it is not

possible to know in advance the degree of parallelism to choose without examining the tree. With

course-grained parallelism on SMP machines, work-stealing schedulers have proven effective in

handling dynamic parallelism of this sort. However, they are somewhat complicated to implement,

and can introduce significant engineering costs into the code to make them work well. On fine-grained

parallel systems, it becomes much more important to know the amount of parallelism in advance,

since, for instance, systems like CUDA perform best when they can fully utilize the provided SIMD

features.

In contrast, the parent vector representation inverts the standard record-type representation

of parents and children. Rather than each parent node pointing to a list of its children, each child

maintains a single pointer to its parent. This representation sees significant use in some computing

domains, but it does not see common use when designing tree manipulation algorithms, which all

tend to emphasize top-down, recursive descent traversals. The parent vector biases traversal from a

91

top-down direction to a bottom-up one. For each node in the tree, it is relatively easy to walk up the

parent vector to the root node, but less obvious how to traverse down the tree.

Fine-grained SIMD parallelism greatly favors this opposite traversal direction, and the Co-dfns

compiler traverses up the tree when doing such tree-walks. The compiler computes in parallel over

every node in the AST, starting with maximum parallelism using the parent vector to walk upwards

along the tree to find the desired information. The following diagram describes the traversal:

-
- —
- —
- —
- —
- =
- —
P
P
P
P
P
(0]

0 «—
-
0 «—
-
0 «—
-
0 «—
-
(0]

The arrows indicate parent information propagated to various vector lanes or threads. Note the

constant number of parallel threads working in lockstep. This makes the computation of the next step

significantly simpler as each thread individually traverses up the tree to the root and never requires

synchronization with any of the other threads.

The above diagram explains the theoretical model. In practice, both approaches pose

engineering challenges, but overcoming with these challenges is simpler and less involved with the

bottom up approach than the top-down one.

Computing the nearest lexical contour demonstrates a simple bottom up traversal. Recall the

sample AST from previous sections:

92

:

:l—rn—cu

Im—w——'ﬂ—w

zZ—>—w
O
<—>
<—>
-
<—>
<—>»-T—m—om-
-l
<—>
<—>>-

In the above tree, the p and t vectors are as follows:

P
0012045570910 1112 13 12 12 16 10 18 19 20 19 19 23 10 25

t
3107129010131 201090101 20109010 0 10

Rendering the above tree using the type vector directly instead of the symbolic representation of each

type yields the following:
3
l_l—l
11 1
|
02 3
| = . !
790 1 1 0
| | | |
10 2 2 10
Fr—
RN
10 10 10 10

In this encoding the nodes of type 3 are lexical nodes. Like the previous recursive snippet, the pass
retains only the node idea of the nearest lexical node. More complex passes could require a more
sophisticated auxiliary structure than just the id. This pass extracts the node id of the nearest enclosing

node of type 3, as demonstrated in the following exposition:

93

P

0012045570910 11 12 13 12 12 16 10 18 19 20 19 19 23 10 25

t

310712901013 1201090101 20109010 0 10

tlpl

331031220313120220312022030

tlpl#3

oo1101111010111111011111101

(tlpl=3)/p

1245579 1112 13 12 12 16 18 19 20 19 19 23 25

p I (t[pl#3)/p

0104% 450 10 11 12 11 11 12 10 18 19 18 18 19 10
p Ie{t[w]#3} p

00010044500 10 10 11 12 11 11 12 10 10 18 19 18
p I@{t[w]#3} p Ie{t[w]l#3} p

00000000 0OM10 10 10 11 10 10 11 10 10 10 18 10
p I€{t[w]#3} p Ie{t[w]#3} p IE{t[w]=3} p

0O00000O0O0OOOO0OO10 10 10 10 10 10 10 10 10 10 10 10
p Ie{t[w]#3}*= p

0000000000010 10 10 10 10 10 10 10 10 10 10 10
Ie{t[w]#3}¥==p

0O00000O0O0OOOO0OO10 10 10 10 10 10 10 10 10 10 10 10

Given a suitable parent vector p and type vector t, this expression returns the node id for the nearest
enclosing scope for each node in the AST. Recall that p[w] gives a vector containing the parents of
nodes w. For nodes p[w] of function type (type 3), nothing need be done, having found the nearest
enclosing function. However, for nodes not of function type, the traversal must examine the parent of

p[w], and so forth until finding a function node. The pass continuously indexes on p until finding the

function nodes for all the initial nodes, determined by finding the fixed point.

In short, it traverses the parent vector p for each node until finding a node that is of type 3.
This idiom I@B*= is the traversal idiom. More formally, for a pointer vector left argument o and a set
of node ids w as the right argument, the above idiom will replace element i in w with a[w[i]] so

long as (B w)[i] gives 1, repeating this to a fixed point. It enables traversing and extracting

94

19 10 10

18 10 10

10 10 10

10 10 10

10 10 10

information about the tree that is relevant for each compiler pass on a per node basis, in a data-parallel

fashion. It is the primary “traversal” idiom used when a pass must traverse the structure of the tree.

The critical path of each iteration is constant, since it uses only fully SIMD parallel operations.

The iteration itself is bound by the depth of the deepest function in the AST, giving a critical path equal

to the deepest function. In common cases where the depth of the AST is often fixed to a specific depth

(source code often has a relatively small depth limit to the AST, despite very large code sizes), then the

critical path might be considered constant in these cases. The worst-case scenarios for such algorithms

are cases where there is a very deep tree with very small branching factors, leading to very little

available parallelism.

This traversal idiom demonstrates a typical approach for working with the AST. Rather than

leveraging structural recursion and a set of design patterns on top of that, a set of small idioms that

represent specific actions apply over the AST and compose together. Developers may tweak the idioms

to suit the needs of the specific compiler pass. The traversal idiom is the primary “walking” idiom.

Other idioms focus on manipulation of the tree itself and identifying parts of the tree on which to do

work.

An important “subterranean” technique that all these idioms leverage is the fact that node ids

are the same values as the pointers to the nodes themselves. That is, a node id is a valid index into any

of the columns of our AST. Additionally, the encoding permits arbitrary computation over node ids.

The reification of node ids into an explicitly computable object, rather than an opaque pointer, is

critical to the application and effective use of these idioms.

95

The final code for computing the nearest lexical contour r for each node in the AST is as

follows:
rel@{t[w]#3}%==p

3.5. Lifting Functions
The r column created above represents a specialized traversal through the AST from any node to each
of the enclosing function nodes that denote each lexical contour visible to the node. This relieves the
burden of maintaining that structural information in the parent vector, so the compiler architecture
can decouple lambda lifting from lexical resolution and simplify the structure of the AST much earlier.
To simplify future passes, it is often beneficial to flatten the AST at the earliest opportunities. The Lift
Functions pass flattens the tree so that function nodes appear as unique root nodes in the AST and not
nested inside one another. Where a function sub-tree previously existed in the tree, a new variable
node pointing to the lifted function root takes its place. This simplification of the tree reduces the
depth of the tree to the maximum depth of any function. Since many following passes’ critical paths
depend on the depth of the AST, performing such flattening passes early produces a compounding
benefit on future pass performance.

At its heart, function lifting demonstrates a simple lifting of subtrees and adding new nodes to
replace the subtrees’ original locations. This pass demonstrates lifting without the associated concerns
of managing sibling relationships at the same time, since the lifted subtrees all move to the root level

and have no ordering requirements. The previous pass demonstrated basic tree traversal but did not

96

modify the structure of the tree. Function lifting utilizes a simpler traversal but modifies the tree in

significant ways.

Finally, namespaces in this treatment are treated just like functions of a different kind. This

greatly simplifies the AST since the compiler does not need to explicitly handle a separate namespace

node above and beyond the typical function nodes.

Function lifting adds a new variable node into the tree for each nested function (i.e., all

functions that are not namespace functions) to replace the function sub-tree in its original location,

serving as a reference to the newly lifted location. Adding nodes to a tree represented using the parent

vector representation differs significantly from the traditional record representation. A record

representation typically provides a node constructor for each type of node that independently allocates

a new node and returns a reference/pointer to this newly created node. To link such new nodes into

the tree, pointers serve to thread the nodes in the tree together, and many languages automatically

handle the memory management for such objects through a garbage collector. In contrast, the parent

vector representation maintains all nodes as a contiguously allocated region of memory (at least

conceptually) and adding a new node into the tree is not obviously efficient: inserting a new element

at the ends or in the middle of an array, thus changing the size of the array, could potentially result in

copying the entire array to make space for the new element. This has obvious performance

ramifications.

The nature of the function lifting pass permits the use of an idiomatic array catenation

techniques to address this issue, because the parent vector need only preserve the relative ordering in

97

the vector of siblings and not of descendants, cousins, or ancestors. This partial ordering means that

new elements/nodes may be added anywhere if they preserve sibling ordering. Lifting all functions to

their own root level effectively eliminates any requirement to order siblings, since the semantics of the

code treats all root nodes as independent in this regard. Both these properties combined allow new

root-level function nodes to appear anywhere in the vector, giving the freedom to choose the most

efficient means to extend the tree vectors with new elements/nodes.

Given a contiguously allocated vector, the most convenient means of inserting new elements

is by adding them to the end. Well established methods exist to improve the amortized costs of this

“tail catenation.” In modern APL implementations, the idiomatic expression to extend an array A with

elements B is A, <B. Importantly, APL implementations recognize this idiom and optimize it avoid

the copying overheads of a naive version. This enables efficient insertion of new nodes to the end of a

parent vector efficiently without changing, abstracting, or complicating the array-based model of trees.

If nodes must be added into the middle of a parent vector, other idioms must be used, but other

sections will treat that subject explicitly while this section focuses on the simpler variant where tail-

catenation suffices.

The only other significant consideration is updating field or edge data for elements already in

the tree. In such cases, the code uses direct array mutation of the appropriate elements.

Thus, function lifting serves as a relatively simple example of the typical phases of a tree

manipulation: 1) selecting nodes over which to operate; 2) adding new nodes to an AST; 3) modifying

existing nodes, including type, edges, and other field data. In all these phases it is worth noting that

98

the fully raw and exposed encoding of trees as an integer parent vector enables the full and direct use

of all the primitives of APL and the expressive power therein. When using APL primitives in this way,

it may be useful to mentally map their names and definitions into the domain of trees, such that, for

example, the primitive 1P is read as “the nodes where property P holds” instead of reading “the non-

zero indices of P.”

Consider the following source program:

:Namespace
Fne{a {a+w} o {a+w} o {o+w} w}
:EndNamespace

Parsing the above gives the following tree structure:

<—> MmM—m"—w—n
<—>Im—'ﬂ
<—>
<—>> m
<—>Im—‘ﬂ
<—>
<—> m
<—>Im—'ﬂ
<—>
<—>

The parsed AST gives the following values for d, p, t, k, and n, indexed by node id i.

99

io 1234 5678 91011 12 13 14 15 16 17 18 19
do 1234 5456 7 6 6 7 4 5 6 5 6 7 8
poO0O 0123 44367 8 7 711 3 13 14 13 16 17 18
t3 13201032010 9 010 2 010 3 2 0 10
k1 2121 0121 0 0 ¢t 0 2 1 0 1t 2 1 O
n05000720007276 01 0 072 0 0 072

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
7 7 8 5 6 7 6 7 8 9 8 8 9 6 7
17 17 21 13 23 24 23 26 27 28 27 27 31 23 33
10 3 2 010 9 010 O 10

2 1 01 2 1 0 O 1 0 1 O
6 071 0 072 0O O 07276 071 071

3 X +T a =
o}
o
—-
o
N
o

After lifting the function, the AST looks like this:

F F F F F
| | | | |
E E E E B
T ' | | |
1T 1 [1T I 1T 1
AV E APA APA APA V
| [I I I
\" ?VT_I_IV vV VvV vV VvV \"
\" AV A
|
\" \"
i 0 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21
pO0O O 13 3 4 336 7 8 7 711 3 13 14 13 37 17 18 17 17
t3 110 2 01010 2 010 9 010 2 01010 2 010 9 0O
k1 2 1 2 1 0 1 2 1 o1 0 2 1 0 1 2 1 0 0 1
noO-535 0 0-23 0 0-27"6 0~1 0 07237 0 07276 0
r O O 0 35 35 35 35 36 36 36 36 36 36 35 35 35 35 37 37 37 37 37
i 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
p 21 13 23 24 23 38 27 28 27 27 31 23 33 35 36 37 38
t 10 2 01010 2 010 9 010 010 3 3 3 3
k 0 2 1 0 1 2 1 0 0 1 0 1 0 1 1 1 1
n~1 0 0-23 0 0726 01 01 0 0 0 O
r 37 35 35 35 35 38 38 38 38 38 38 35 35 0 35 35 35

Notice that after lifting, each function now resides in its own separate tree with the associated F node

serving as the root node. Each tree is unconnected from the others in the main tree structure described

by the p vector, but the n field connects the trees together through secondary references. Prior to

100

lifting, n contained only negative values corresponding to symbolic names appearing in the symbol
table. During lifting, the lifted function is linked to its original location by replacing the original
location of the function in the tree with a variable reference whose n field points to the function by
node id instead of by name. The use of negative values for symbols and non-negative values for
pointers into the parent vector, that is, for node ids, splits the n field into two mutually exclusive spaces
where each node must occupy a point in only one of these spaces. This provides compression in the
space requirements of the tree, but it also serves as a useful measure to simplify code and improve
robustness at the same time, since it prevents a node from ever being both a name and id reference at
the same time.

The first phase of function lifting identifies the nodes to lift, namely, all function (type 3) nodes
not already at the top-level, named 1i. This selection process is simpler than traversing the parent
vector as when computing r and requires only a test of function type and a test for being a non-root
node:

i«1(t=3)apzi#p
At this point, a subtle design consideration presents itself. This pass must manage two sets of nodes,
the function nodes to lift and the variable nodes that take their place in the tree. The function nodes,
as previously noted, do not depend on an ordering once lifted, but the variable nodes must appear in
the same position in the AST as the original location of the corresponding function node. This means
that the variable nodes do require a careful ordering. This presents two options when creating the new

nodes. Typically, in traditional representations, the traversal accumulates function nodes into some

101

type of set to lift and insert higher up into the tree, while it generates new variable nodes during the

traversal and links them to the parent of the corresponding function. In contrast, this pass generates

a copy of each function node and catenates them to the end of the column vectors, such as the parent

vector. It then modifies the original function node to a variable type and set its fields appropriately.

Finally, the code links the function nodes’ children to the new duplicate function node at the end of

the tree columns. Putting the function nodes at the end of the parent vector and modifying the original

locations to be variable nodes guarantees the ordering requirements for the variable nodes—which

are identical to the original function node positions—without any additional computational costs, but

also avoids any rearrangement of nodes, while adding the function nodes—which have essentially no

ordering requirements—in the most efficient manner possible.

With the above strategy clarified and having already collected the ids of nodes that to lift, the

following code adds the new nodes to the tree and, in preparation for them becoming variable nodes,

links each original function node to its corresponding replacement node:

p,<nlil«(#p)+1#i

The code says much more here than it may at first appear to say. This expression produces a tree

associating each function node given in i with a newly allocated node linked to it via the n field as

shown graphically in the following tree, where the newly allocated node is indicated as o because it

has no type yet:

102

A Fso E

| | F—m

VE A Fro E
F— || F—
APAVE AFso A
1 =] |
VooV PAVE v

The expression divides into 3 major pieces: p,<«, n[i]+, and (#p)+1#1i. The two assignments both
receive as their inputs the result of the 3" piece (#p)+1#i. The piece p , « is a tail catenation to p and
is the part that “allocates” the new nodes. The piece n[i]« assigns the links to the new nodes from
the old function nodes i. Finally, the expression (#p)+t1#i is the set of new node ids, that is,
id (#p).--id(#p)+(#1)-1 Where (#p) and (#1) are the lengths of vectors p and 1, respectively. There are
some subtle features of the representation used to good effect here.

Note that one may interchange the positions of p, «+ and n[i]« without altering the meaning.
The expression snippet n[i J«p,« works in the same manner as p,<n[i]«. This means that the
links to the nodes can be created before any allocations for the nodes need take place. Furthermore,
the expression (#p)+1#i gives the ids and pointers to the new nodes also before any allocation. In a
traditional encoding, this is not possible because the pointers are usually meant to be treated opaquely

and not computed directly. Working directly with the pointers enables the above bulk allocation. The

103

tail catenation requires only a single allocation. The above expression is idiomatic and easily

optimized. The writes to p and n may both be written in bulk, parallel fashion. In the case of p, not

only are the writes parallel, they are also contiguous, allowing for more performance. It is also worth

noting that this expression works when there are no functions to lift and i=8. The nodes’ ids are the

parent vector values because the newly lifted function nodes are root nodes and therefore their own

parents.

The code also allocates and sets the t, k, n, and r fields of the new function nodes. Since these

are inner function nodes, their type is 3, kind 1, with an empty n field and the same r field as the

original function nodes. The code preserves the r field lest it lose the lexical contour information

necessary for future passes. A simple way to allocate these fields might look like this:

t,«(#i)p3
k,«(#i)p1l
n,«<(#i)p0
ro«<rlil]

Instead of using four separate statements to accomplish these allocations, however, a single statement

can allocate them as a group:

t knr,«310(r[i])p="#i

As for the nodes 1, after the above transformations they still have a type and kind of 3 1, indicating

function nodes, but they must change to variable nodes of type 10 1. One way to do this would be the

following two expressions:

t[il«to0
k[i]«t

104

But a single expression can also work using the idiom +@1, where n-@1i +A gives an array identical to
A but with elements A[i] replaced with n:
t k(-@i~)«10 1

There is now but one final need to address. At this point the variable nodes are in their correct position
and new function nodes appearing at the root are in place and allocated, but none of the children of
these functions point to these newly allocated function nodes as their parents, and the r field similarly
points to the wrong nodes. At this point, nodes that should point to these new function nodes instead
point to the original nodes, which are now variable nodes. The code must correct this before the tree
will have the correct structure.

The code creates a redirect vector V such that V[p] and V[r] produce corrected p and r
vectors. In the case where no modifications of the p or r vectors is required, then the index vector 1 #p
is a suitable redirect vector. If node i is now to be found at node j, then the element V[i] should be
j. For all nodes 1, the new nodes are given by n[i], so starting with 1#p and replacing elements at
indices i by elements n[i] gives a suitable redirect, for which the expression n[i]J@i+1#p suffices
nicely. Thus, the code to correct the pointer vectors after moving the function nodes is the following:

p r I=«cn[il@iri1#p
This completes the pass. The entire complexity of this pass is linear in time and space but nearly all
the operations are constant time critical path with the sole exception of the 1 (Where) in the node

selection phase. Here is the pass in its entirety:

105

A Lift Functions
p,«nl[ile(#p)+1#i«1(t=3)ap=1Zp o t k n r,«3 1 0(r[i])p="#i
p r I«cn[il@iri#p o t k (-4@i~)«10 1

3.6. Wrapping Expressions
A dfn consists of a series of statements, either guarded, bound, or unbound. A guarded statement
consists of a test expression and a consequent expression. A bound expression is an expression whose
final operation, in terms of execution order, is an assignment of some kind. An unbound expression is
an expression that is neither a guarded nor a bound expression. Execution of a dfns consists of
evaluating each statement in turn until a return condition is met. When a return condition is met, the
value of the expression satisfying the return condition is returned as the value of the dfn's evaluation.
The return conditions are any of the following that may occur during evaluation of the dfn:

1. A guard's test expression evaluates to 1, or true

2. An unbound expression is executed

3. The last expression is evaluated
This means that a dfn returns on the first true guard or the first unbound expression. When such a
condition is met, no further statements are executed, meaning that functions such as {5 ¢ 3} always
evaluate to 5, and the expression 3 never executes. The same holds for guards, so a guard such as in
{1:5 o 3} that always tests true always returns 5 and the expression 3 never executes. Finally, in
cases where neither a true guard nor an unbound expression executes before the last expression
executes, the dfn returns the (shy) value of the last expression. If the last expression is a guard whose

test is not true, the dfn returns no value.

106

In all cases, the dfns syntax has no explicit return syntax. All returns are implicit in the syntax.

After function lifting, the Wrap Expressions pass introduces explicit return nodes for all statements

indicating the nature of the statement, either a return or a continue statement. Return nodes are

expressions of kind 0 or ~1 that contain a single statement child. Wrapping statements pushes nodes

down the tree and represents an opposite operation to lifting passes that move sub-trees up the tree

instead of down.

Comparing the primary manipulation tasks between this and Function Lifting, the main

elements of selecting nodes, adding nodes to the tree, and modifying edge data remain, but they

involve more. The pass must select all potential return statements, which is not a simple selection on

type and parent but also on sibling in the case of guard consequents. Moreover, and perhaps more

critically, the pass inserts the return nodes into the middle of the tree in arbitrary position in order to

wrap a statement.

Function Lifting takes all function nodes to the top-level and therefore lacks sibling ordering

requirements, allow the pass to catenate them to the end of the parent vector and other column vectors

without issue. This pass could use the same techniques, but keeping in mind that a future pass needs

to flatten all the complex nested expressions into simpler statements that preserve execution order,

preserving the ordering in this pass simplifies that future pass by enforcing the same depth first pre-

ordering within statement sub-trees. This requires a slightly more involved approach but improves

future passes significantly.

107

Adding this ordering requirement means that the code must splice the new nodes into the
middle of the column vectors. To do this efficiently, it must minimize the number of times it reorders
nodes in any way that changes their pointers (node ids). In a very literal sense this requirement is
equivalent to a requirement in a traditional approach to minimize garbage collections, and for much
the same reasons. In this case, having explicit control over this process enables tight constraints on
the number of reorderings.

The pass itself consists of four major phases: firstly, selecting the appropriate statement nodes;
secondly, extending the vectors to create space for the new return nodes; thirdly, recomputing the
pointer vectors after the reordering that must occur during extension; and finally, setting the
appropriate type and kind of the newly created nodes and ensuring that the parent edges are

appropriately handled. The following example illustrates the process:

:Namespace
fe{w:x«3 ¢ 5 0 2+w}
:EndNamespace

And here is what the AST looks like before and after the transformation:

Before After
F F F F
— | — I
G A E B G E E E
== =l I
ABNAPA V A E AE B
1 || ==
V? N v VTN?P?V
N A N \'
|
N

Here are the column vectors before and after the transformation:

108

before

io 1t 2 3 4 5 6 7 8 910 11 12 13 14 15
p0O O 115 3 3 5 6 15 8 15 10 11 10 10 15
t3 110 410 1 0 7 0 7 2 o0 7 9 10 3
ko 1 1 0 0 0 0 OO 0 2 000 1 0 1
nO™515 0 ™1 76 0~7 08 0 079 710 "1 O
r 0O O 0 15 15 15 15 15 15 15 15 15 156 15 15 O
after
io 1t 2 3 & 5 6 7 8 910 11 12 13 14 15 16 17 18 19
p0O 0 1 219 4 4 6 7 8 19 10 11 19 13 14 15 14 14 19
t3 2 110 10 2 ¢ 0 7 2 0 7 2 2 0 17 9 10 3
ko~ 1 1 0 0 0 0 0O OO 0 0O 0 2 0 o0 1 0 1
nO™ 519 0~1 76 6 07 0 078 0 0 079 71071 O
r0 0 O 019 19 19 19 19 19 19 19 19 19 19 19 19 19 19 O

Note that the pass preserves the relative ordering of the various statement sub-trees, but at the cost of

recomputing the parent vector and other pointer vectors. In Function Lifting, the vectors remained

largely the same, with some additional data added to the end and some of the elements within

changed. This pass recomputes the parent vector, referent, and name vectors.

The first phase of wrapping expressions selects the nodes to wrap. This includes all expressions

that appear as immediate children of a function node and the consequent statements of any guard

nodes. This includes the “namespace” function node(s) but does not include the test statement of the

guard node. Thus, in the example, this corresponds to nodes 1, 5, 8, and 10, which are the binding

nodes for variables f and x, as well as the two unbound expressions in the body of function f. The

code breaks into two sub-tasks to select these nodes: selecting the function statements and selecting

the consequent of any guard statements.

Selecting function statements uses the same basic techniques demonstrated in Function

Lifting, as shown in the following progression:

109

P
001153356 158 15 10 11 10 10 15

t

31104101 07072079103
tlpl

3313441 030320223
tlpl=3

11010000101 00001
te3 4

10010000000O0O0O00O01
~te3 4

011011111111 1110
(~te3 4)at[pl=3

01 00000OO0O101O0OOCGOOCO
1(~te3 4)at[p]=3

1 8 10

Recall that types 3 and 4 correspond to the type of function nodes and guard nodes, respectively.
Selecting the guard consequents involves a different technique. At this point the guard nodes

retain their relative ordering given to them at parse time. This means that every guard has, in order, a

test statement, followed by a single consequent statement. Selecting every second node whose parent

is a guard therefore amounts to selecting the consequent expressions, as shown in the following

progression:

tlpl=4
00001100000O0CO0OO0O0O

1tlpl=4
4L 5

Zit[pl=4
2

tZit[pl=t
01

2| 1#1t[pl=b
01

0 1£1t[pl=t
5

{wF=2|1Zw}rt[pl=k

110

Thus, the following composition computes the set of nodes i that contains the set of all nodes that

need to be wrapped in return nodes:

Fie—(1(~te3 W)Aat[pl=3),{wt=2|1#w}rt[pl=Y4
1 8 10 5

The second phase of wrapping expressions makes room for the return nodes to be inserted
into the tree. Recall the need to preserve pre-order depth-first ordering that currently retained in each
statement sub-tree. Each node in vector i needs precisely one return node. To preserve ordering, this
node must appear directly atop, that is, just before, the statement node that it wraps. The code
leverages the Replicate (#) function to achieve this. This function receives as its left argument a vector
wherein each element indicates the number of times to repeat the corresponding element of the right
argument within the result vector. When used with a Boolean left argument, the replicate function
filters its right argument to return only elements corresponding to non-zero elements in the left
argument. However, the code uses replicate with a left argument containing values of either 1 or 2.
For nodes that are not in 1, it replicates the node only a single time (using a value of 1 in the left
argument), but for the nodes to be wrapped, it duplicates each node contiguously, so that two
occurrences of the node appear adjacent in the result. This creates space in the right position for return
nodes. However, it also pushes nodes down through the vector, giving them different node ids, and
potentially invalidating the pointer vectors. Thus, phase three rectifies this once the code has expanded

the columns.

111

The replication vector above is vector of 1’s with the exception that elements i are 2’s. The use

of @ serves well in this capacity:

;
1 8 10 5
1p~#p
1111111111111 111
2@ir1p=#p
1211121121211 111

This replication vector works for all columns, but it also indicates the relative offsets between nodes

and is needed in the 3" phase to recompute the pointer vectors, so it is saved m. Applying m to replicate

on each column leads to the following:

m<2@i+1p=#p
m#p
00011533356 15 15 8 15 15 10 11 10 10 15
m#t
3111041011 0700722079103
m#k
01110000000002200101
m#n
057515071 76 60 700 8000 79 710 1
m#r
0 00O 15 15 15 15 15 15 15 15 15 15 15 15 15 15
p t k n récecme2@ir1p~#p

tp t knr
0O 0 0 115 3 3 3 5 61515 8 15 15 10 11
3 ¢+ 110 410 ¢ ¢ O 7 O O 7 2 2 0 7
o1+ 1t 1t 0 0 0 0 0 O OO O 2 2 0 O
057515 07176 °6 077 0 078 0 0O 079
0 0 O O 15 15 15 15 15 15 15 15 15 15 15 15 15

15

10
9

1
“10
15

10
10

0
-1
15

OO waou

The 3" phase recomputes the now invalid pointer vectors. These are the p, r, i, and n variables. It

uses the same basic technique as in the previous section: it computes a redirect vector j such that

j[v] for pointer vector v is the revalidated v. The replication vector m stores this information in

relative form. One way to see m is as an offset vector indicating for each element its index in the post-

112

replication vector relative to the index of the element before it. Thus, for element k, its index is

(m[k]+j[k-1])-1. Thisis just a description of a prefix sum, so the following readily computes j:

(+xm)-1
02345789 11 12 14 15 16 17 18 19

The pointer vectors p, r, and i recompute directly as:

j«(+Xxm)-1
ilp]

0002194 4 4 7 8 19 19 11 19 19 14 15 14 14 19
jlr]

0000 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 0
jlil

2 11 14 7
p r i ISecje(+km)-1
sp r i

0002194 447 819 19 11 19 19 14 15 14 14 19

000019 19 19 19 19 19 19 19 19 19 19 19 19 19 19 0

2 11 14 7

However, the n column does not admit a direct recomputation because it contains negative values,

and only the positive elements should be recomputed. This can be done by using @ like so:

n

07575150 71 76 60700800079 710 "10
]

0234578911 12 14 15 16 17 18 19
O<n

100110001011 01110001
(0<+)n

100110001011 01110001
j I@(0z+)n

0757519071 76 7607007800079 710710
n«<j I@Q(0s+)n

This results in valid pointer vectors at the end of phase 3.

113

The final 4" phase fixes up the nodes and edges yet to be fixed. Namely, nodes i must now
point to the newly allocated i-1 return nodes, and nodes i-1 must have the correct type and kind.

Pointing nodes i to nodes i-1 wraps nodes i under nodes i-1, as follows:

1'

2 11 14 7
i-1

1 10 13 6
P

0002194447 819 19 11 19 19 14 15 14 14 19
pLilejwi-t

0012194467819101119131415141419
Saving nodes i-1 as j preserves them for upcoming expressions. The node kinds k[j] should be
either 0 or ~1 depending on whether the return node indicates a return or not, respectively. Nodes
that are non-final binding nodes or nodes that are top-level are all non-return and indicated by a kind
of ~1, while all others are returns indicated by 0.

The referent kind helps to determine top levelness:

j
1 10 13 6
r
0000 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 0
k
01110000000002200101
rlil
0 19 19 19
k[r[jl]
0111
k[r[jl]=0
1000

The expression t[j]1=1 gives nodes of binding type (type 1). To exclude the final, that is, rightmost

nodes, in the case of final nodes that are also binding nodes, note that the last element of a group of

114

stably grouped sibling nodes is the final node of the group and it is the first node if reversed. This

suggests the use of the group-by, or Key, operator (B) as follows:

plil
0 19 19 4

o221 2 3
1

o255 3 7
5

{aw}Bpl[j]
0 |0
1911 2
b (3

{>¢w}Bx
02 3

This gives the final nodes from nodes j. Using this to mask out the final nodes from t[j]=1:

j
1 10 13 6
t
311104101 107007220789 103
tlil
1021
tlil=1
1001
0@({>¢w}Bp[jl)rt[jl=1
0000

The new values for k [j] are just the negation of the logical OR-ing of the mask of top-level nodes and

that of non-final binding nodes:

k[r[jll=0
1000
0@({>¢w}Bpl[jl)rt[jl=1
00O00O
-(k[rljll=0)vo@({=¢w}BHpljl)rt[jl=1
1000
k[jle-(k[r[jl]=0)vo@({=¢w}Bpljl)+t[jl=1

115

And finally, return nodes all have expression type:

tljle2
t
321104102 10720722079103

The complexity of this pass is linear in both time and space, and nearly all operations are constant
time critical paths. The 1, %, and # operations are logarithmic critical path. In the selection phase this
logarithmic path is in the size of the tree, but in all other statements the input size is the number of
statements appearing in functions, including guard statements.

Here is the complete pass:

A Wrap Expressions

iv(1(~te3 4)at[pl=3),{wr~2|1Zw}rt[pl=4 ¢ p t k n rf=«cm«2@ir1p=~#p
p r i IS«cj«(+Xm)-1 0 n«j I@(0s+)n o p[il«j«i-1
k[jle-(k[r[jl]=0)vo@({>¢w}Bp[jl)+t[jl=1 o t[j]«2

3.7. Lifting Guard Test Expressions
The parser represents one-armed conditional statements using Guard nodes (type 4). After parsing,
each guard has two children and no n field data. The first (leftmost) child is the test expression and
the second (rightmost) is the consequent expression to execute if the test expression returns true (1).
The Lift Guard Tests pass simplifies the structure of the guard nodes by lifting test expressions

out of guards and making them immediate left siblings of the guard nodes. This prepares the way to
lift and flatten nested expressions in a future pass. The pass consists of the following conceptual steps;

1. Selecting test expressions and their guards

2. Updating parents

3. Positioning siblings

116

4. Recomputing the parent vector

As an example, consider the following program containing two guard statements:

:Namespace
fe{w:0 ¢ a+tw:1 o 2}
:EndNamespace

With its AST before and after lifting guard tests:

Before After
F F F F
| ||| |
[T] 171 1
G G E B AGE G EB
e T o N A Y O IO B o o T O
A EE E AV VEAPAEAYV
| | == | | T
VAAPAAN AV V AN
| [] | |
NV V N N N

And the tree columns before and after lifting:

before
io 1 2 3 & 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20
poO0O O 1 220 4 4 6 7 20 9 10 10 10 9 14 15 20 17 18 20
t3 2 110 410 2 0 7 4 210 910 2 0 7 2 0 7 3
ko™t ¢+ 1 0 0 0 0 0O O2 01 0 0O O0OO0OO0OTUO0OUO0O 1
n0O™™ 520 01 0 O O O 0727671 O O°7 O O0°78 O
r 0O O O 0 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 O

after
io 1 2 3 & 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20
pO0O 0O 1 22020 5 6 72020 9 9 9 10 14 15 20 17 18 20
t3 2 11010 & 2 0 7 2 410 910 2 0 7 2 0 7 3
ko™t ¢+ 1 0 0 0 0 0 2 0 01 0O O O0OO0OUO0OUO O 1
n0O™ 520™1 "1 0 O O O 0727671 O O°7 O O0°78 O
r 0O O O 0 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 O

The test nodes are selected using the same technique as in the previous Wrap Return Expressions pass

selecting the leftmost node instead of the rightmost. This node set is bound to i. The corresponding

guard nodes are just the parents of i, which called x:

117

P
0012204 4 6 7 20 9 10 10 10 9 14 15 20 17 18 20

t
32110410207 4% 2109102072073

tlpl

33213442034 22242032203
tlpl=4

00000110001 00OO01O0OO0OO0ODO0CO0O
1tlpl=4

56 10 14
~2|1#1t[p]l=k

1010
{wA=~2|1Zw}rt[pl=k

5 10
Fx«plic{wt=~2|1Zw}1t[p]l=4]

4 9

Next, nodes i must have new parents, specifically, the same parents as their containing guards:
plileplx]

At this point, the relative order in the columns means that the test expression is now the immediate

right sibling of its associated guard, instead of the intended left sibling. Swapping the guard and test

nodes ensures the correct ordering, conveniently without need to manipulate of any other nodes. Note

that p[i]J=p[x] andthat r[i]J=r[x], so these columns require no modification. Moreover, because

the n field of a guard node contains no meaningful data, only the n field of the test expressions needs

to be swapped. The following statements swap other guard and test fields in the tree:
tli,x]«t[x,i] o k[i,x])«k[x,i] ¢ n[xJen[i]

With test and guard nodes where they should be, the parent vector must point the children of these

nodes to the new locations. This recomputation uses the same technique as in previous passes:

pe«((x,i)e(i,x)1#p)[p]

118

The complexity of this pass is trivially linear in time and space with constant time critical path in all
cases but in selecting the test nodes, which is logarithmic critical path in the size of the tree.

The complete pass is as follows:

A Lift Guard Test Expressions
plileplxe 1+ie{wi=~~2|1#w}rt[pl=4] o t[i,x]«t[x,i] ¢ k[i,xJek[x,i]
nlxJen[i] ¢ p«((x,i)@(i,x)r1#p)[p]

3.8. Counting Rank of Index Operations

Most expressions in the AST fix the number of their children. However, indexing expressions may
have any number of children. When a future pass flattens all the expressions, the parent vector will
no longer provide enough information to determine which expressions appeared within an indexing
expression. To preserve this information, the Count Index Expression Rank pass records the number
of children an index expression has in its n field. This is a pure analysis pass that demonstrates a simple
analysis over a node’s children. While simple, it clarifies a sometimes non-obvious task of working on
the children of a node when the parent vector appears to only facilitate walking up the tree as opposed
to walking down it. The complete pass is as follows:

nlp/=(tlpl=2)rk[pl=3]+«1

It takes advantage of the semantics of APL’s modified assignment operator. When evaluating an
assignment like n[i J+<«1, if i contains duplicate indices, then the corresponding element in n will
increment multiple times in a stable manner; there are no race conditions permitted in the statement’s

execution. This has the effect of computing a histogram or count of the elements in i and storing them

119

in a histogram vector. Alternatively, to storing the histogram data in n, the function , o#H applied

monadically to i returns a histogram table instead of storing it into a vector.
,o#HpA=(tlpl=2)aklp]=3

The following example demonstrates the results:

:Namespace
Ri<{w[]}
R2<{w[;]}
R3<{wl;;1}
Rib<{wlss51}

:EndNamespace

This example has four expressions that each have a different number of indexing places, separated by
the semi-colons. When rendered in tree form, the four indexing nodes become apparent, along with

their indexing spans. These are the nodes that will be annotated with the count of their children.

F

I | | 1

B B B B

| | | |

F F F F

| | | |

E E E E

IIIIII III |_|_|

VPEVPE VPE VPE
A A A A A A AAAA
| | | | || | || |
P PP PPP PPPP

Right before the CI pass executes, the tree and data look like this, with the indexing nodes highlighted

as bold in the column data:

120

F F F F F
mmmil | | |
LTI |0 T
BB B B|E E E E
1 || [1
VVVV[vPp % VP %_1 VPE VPE
(R
p PP PPP PPPP
i0 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19
p0O 0 1 253 4 5 5 5 8 9 0 11 12 54 14 15 15 15 18
t3 2 110 2 210 9 2 0 9 2 110 2 210 9 2 0
ko™t 1 1 0 2 0 1 3 3 071 1 1 0 2 0 1 3 3
n0™57 553 0 0°1 6 0 077787854 0 07176 0 0
r0O O O 0535353536535353 0 0 0 54 54 54 54 54 54
i 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
p 19 18 21 0 23 24 55 26 27 27 27 30 31 30 33 30 35 0 37 38
t 9 0 9 2 110 2 210 9 2 0 9 0 9 0 9 2 110
k 0 3 071 1 1 0 2 0 1 3 3 03 03 0 "1 1 1
n~"7 077797955 0 07176 0 0~7 077 07 ~10 ~10 56
r 54 54 54 0 0 0 55 55 55 55 55 55 55 55 55 55 55 0 0 0

i 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
p 56 40 41 41 41 4y 45 4 47 L4 49 u4 51 53 54 55 56
t 2 210 9 2 0 9 0 9 0 9 0 9 3 3 3 3
k 0 2 0 &t 3 3 0 3 0 3 0 3 0 1 1 1 1
n 0 0176 0 077 077 077 077 0 0 0 O
r 56 56 56 56 56 56 56 56 56 56 56 56 56 0 O 0 O

And here is a breakdown of the pass operations:

P
0012534555890 1112 54 14 15 15 15 18 19 18 21 O

23 24 55 26 27 27 27 30 31 30 33 30 35 0 37 38 56 40 41

b1 41 44 45 44 47 44 49 44 51 53 54 55 56

t
321102210920921102210920909211022

109209090921 10221092090909093
[pl=2

001 11

_ O+ W
OOT W
Ll N | B %)

1111001001111 1010010011
010010011111 01010100000

121

k

0 1110201330711 10201330307111020
133030307111 0201330303030111
1
k[pl=3

00000000011 00000O00O0111100000000O0
111111 0000000011111 11100O00O0
(t[pl1=2)ak[pl=3

0000000001 000O00O0OOO0O0O1O0O1O0OO0OO0OOO0OOOO0DO
10101000000000101010100O0OO0C0O

1(tlpl=2)aklpl=3

9 19 21 31 33 35 45 47 49 51
pA~(tlpl=2)ak[pl=3]

8 18 18 30 30 30 44 L 44 L
n[8 18 30 4L4]

0000
nlpA=(tlpl=2)ak[pl=3]+<«1
n[8 18 30 4L4]

1234

The computational complexity is trivially linear in time and space. The critical path is bounded by the
filter and histogram operation, which are both logarithmic in the size of the tree and number of

indexing node children, respectively.

3.9. Flattening Expressions

While not the most complicated or largest pass in the compiler, the process of flattening nested
expressions is perhaps the most subtle in its simplicity. The goal of expression flattening is much the
same as function lifting or guard lifting discussed in previous sections. The same phases of selection,
permutations, and correction apply, but the permutation phase requires a seemingly involved
manipulation. Previously, Function Lifting imposed no order requirement on the lifted nodes and
used tail catenation to insert new nodes into the tree freely. Lifting guards only requires
swapping/flipping two nodes relative to each other. Both these cases exhibit minimal order

dependency. Nested expressions imply a specific order of execution as do any set of statements in a

122

function, and they must all be properly ordered relative to each other. In other words, Expression
Flattening requires enforcing a total ordering on the lifted nodes within a function.

After lifting all expressions to the top level of their containing function node, all expression,
atomic, and binding nodes appear in linear execution order, rather than relying on nesting to encode
execution order. Unlike function lifting, where variable nodes that refer to the lifted nodes replace
lifted nodes in their original positions, lifted expressions assume a stack semantics, and so require no
new variable nodes as with function lifting. The precise requirements of expression ordering in APL

will be discussed later, but for now, consider the following example of the entire pass:

:Namespace
dist«{xy<o-w ¢ (+#xy*2)x.5}
:EndNamespace

With the following before and after trees:

before
F F
|
E E E
|| |
B B E
| | —
V E E P A
Fr— |
VPVO E N
e
PPVPA
|
N
after
F F
I 1 I I L I
VBE VPVEEBE ? P ? PVEPPOETETE
N N

123

And here are the before and after data:

before
io 1t 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19
poO0O O 1 224 4 5 6 6 6 24 10 11 12 13 13 12 16 16 16
t3 2 110 2 1 210 910 2 2 2 8 9 9 210 9 0
ko™t ¢ 171 0 2 01 0 0 2 1 2 2 1 2 0 1 0
nO™ 524 7676 0727771 0 0 0 0787 076 710 O
ro0 O 0 0 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24

20 21 22 23 24
19 11 11 22 24
7 9 0 7 3

0 1 0 0 1
11 710 0 712 O
24 24 24 24 O

after
io 1 2 3 & 5 6 7 8 910 11 12 13 14 15 16 17 18
pO0O O O O 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24
t310 1+ 210 910 2 1 2 O 9 0 910 2 9 9 8
ko t 171 0 1 0 2 071 O 1 0 1 0 2 1 2 2
nO0O24 57571 77 72 076 "6 0710 0 "10 "6 0 9 "8 0
r0 O O 0 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24

19 20 21 22 23 24
24 12 24 24% 10 24
2 7 2 2 7 3
1 0 2 O 0 1
0711 0 0712 O
24 24 24 24 24 O

The selection phase comes first. Note that in APL, expressions are said to execute “right to left” while
statements execute left to right. Thus, each statement must be lifted as a group and nodes from one
statement must not appear mixed into or prior in the code to the nodes of another statement. Each
statement serves as a sort of partitioning for the nodes it contains, so when selecting nodes to lift, the
code must identify the root-level statement node that encloses the expressions. This is the node whose
parent is either a guard or function node. Because of the total ordering requirement, the code must

also select nodes already at the top level of a function. The node types to lift are guards, atomic,

124

binding, expression, operator, primitive, and variable nodes. This gives the following set of nodes i to
lift:

4,(13),8+13

L 01289 10 A Guard, Atomic, Bind, Expr, Oper, Prim, Var
t

3 2110212109102 22899210907 907 3
tet,(13),8+13

co111111111111111111101100
1te4,(13),8+13

1234567 89 10 11 12 13 14 15 16 17 18 19 21 22
j<itel,(13),8+13

A variation of the traversal idiom used to compute r previously computes the root statement node for

each node to lift, which called x:

pli]
01224456 6 6 24 10 11 12 13 13 12 16 16 16 11 11
tlplill
3 213212223222882222272
tlplille3 4
1001000001 0000O0O0OO0OO0OO0OO0O0DO0
~t[p[ille3 4
co11011111011111111111
p Ie{~t[p[ille3 4}x=i
100 4% 24 24 24 24 24 10 24 24 24 24 24 24 24 24 24 24 24
x<p I@{~t[p[ille3 L}x*=i

The next phase is manipulation. The simple part is to lift all the nodes to the function root level, which
is trivially accomplished using x as follows:

plileplx]
After the appropriate lifting, the order of the nodes is not correct, and herein lies the subtlety of this
pass. The ordering requirements of APL are that statements within a function execute in order from
left toright and that each statement executes right to left. To see this impact on node ordering, consider

the following example statement:

125

At this point, after updating the p column, these nodes remain in their depth-first pre-order traversal
ordering:
EEEEAAAEAEA

But the ordering according to the execution order of the tree is thus:

AEAEAAAEETETE

Notice that this is precisely the reverse of the previous ordering. The primary ordering requirement

for the lifted expressions reduces to reversing the nodes relative to one another within a statement

while preserving the original order between statements.

The general strategy leverages a permutation vector j that reorders nodes i. To do this, first

note that the nodes of x, that is, the statements, are properly ordered when arranged in ascending

order by node id. Second, note that the ascending sort permutation given by 4 is a stable sort. This

means that by reversing the nodes i and then sorting them in ascending order by statement id, the

order of the nodes will match the desired execution order. This gives the following expression for j:

X

100 4% 24 24 24 24 24 10 24 24 24 24 24 24 24 24 24 24 24
dx

24 24 24 24 24 24 24 24 24 24 24 10 24 24 24 24 24 4+ O O 1
Adx

18 19 20 17 11 01 2 3 4+ 5 6 7 8 9 10 12 13 14 15 16

126

1'
123456789 10 11 12 13 14 15 16 17 18 19 21 22

di

22 21 19 18 17 16 15 14 13 12 11 10 98 7 6 5 4 3 2 1
(¢1)[Adx]

32141022 21 19 18 17 16 15 14 13 12 11 9 8 7 6 5
j« (i) [4¢x]

Using this to reorder the column vectors:
plileplj] o tlil«t[j] o k[il«k[j] o nlilenl[j] o rliler[j]
This completes the manipulation phase, but the parent vector still requires fixing up to maintain valid
pointers. In this case, every node in j was moved to position i, so recomputation is as follows:
p<(i@jr1#p)[p]
In complexity, most of the operations in this pass are linear time and space with constant critical path.
The single sort is logarithmic critical path in the number of expression nodes. The traversal pattern
during the selection phase is limited by the maximum depth of the functions, but when dealing with
typical source code this is bound in practice.

The complete pass is as follows:

plileplx<p I@{~t[pl[w]]le3 4}*=i«crted,(13),8+13] ¢ j«(di)[Adx]
ptknr{alw]@ira}ccj o pe(i@jr1Zp)[p]

3.10. Associating Frame Slots and Variables

With expressions and functions flattened and simplified, the major remaining task is to resolve the
free and local variable names. To facilitate this, the compiler computes some auxiliary information,
primarily in the form of an f and s vector. This section covers the s vector and the next section covers

the f vector.

127

Both the f and s vectors are defined relative to an e table that contains a listing of variable
bindings and the functions in which they are bound. The s vector maps these bindings to slot indices.
Thus, each function receives a frame containing slots addressed by index, and all bindings map to
these slots.

Here is an example program:

:Namespace
fe{ge{aex+w ¢ a+a} o xca+w 0 y«xx2 o g y}
:EndNamespace

At this point in the compiler the tree looks like this:

<-T
<-Tm
o -
< -
m -
o
m -
< -
< -
m -
m -
<—Tm
o -
< -
m -
o -
m -
< -
o
< -
m -
m -

o —
m -
o —
m —
<_
0 -
<_
m —
o —
m —

=2—> -

And the desired values for e and s:

e s
0 75 0012071
35 710
35 78
35 76
36 717

To begin, first compute rn, which is a table of bindings b and the function in which it appears:

t
310121012109 102121091022 10910212009

10 2127 10 102 2 3 3
t=1
001001000001 0000000O00O00O0O0O1O0OO0OOOO0O1O00O
0000O00O0
1t=1
2 5 11 22 28
be1t=1
n(b]

5 76 77 78 710

128

r(b]
0 35 36 35 35

r(bl,sn[b]

0 75
35 76
36 7
35 78
35 710

rn<r[b]l,sn[b]

The e table is simply the unique rows of rn in sorted order:

Arn

O 312
IoA=rn

0 75

35 710

35 78

35 76

36 17
uloA=rn

0 75

35 710

35 78

35 76

36 77
e«ulop=rn

Next, annotate the function nodes with the size of their frames and generate s based on a histogram

of the first column (the r column) of e:

0[®e
0 35 35 35 36
x<0[l§e
I-oiﬁx
1 31
1 o ZAx
0O 012 O
€1 FoZHx
00120
T1,%e1 " +o#Hx
0012071
ux
0 35 36
s« 1,~e1 ' n[ux]«ro#Bx

129

Notice the ~1 catenated to the tail of s. This represents the “default” slot: when searching for an
appropriate slot fails the result should be ~1. The use of this can be seen in the Anchor Variables
(Lexical Resolution) pass described in a following section.

This pass is linear in space and time but contains 1 t =1 which is logarithmic time critical path
in the size of the tree. Computing e uses a unique over a sort, so it is logarithmic time critical path in
the size of rn, which is the number of bindings in the tree. The computation of s uses the €1 idiom
as well as v and o #B, all of which are logarithmic critical path in the number of unique bindings in
the tree.

Here is the full pass:

s« 1,~%e1 ' n[ux]«eroZBx«08e«uvIop~rn«r[b],sn[b«rt=1]
3.11. Placing Frames into a Lexical Stack
In addition to mapping unique bindings to frame slots, the code must determine the relative lexical
position for each function. This is necessary to ensure that the variable reference to a binding can find
its appropriate match within the lexical environments on the call stack. The f vector stores this
mapping.

Taking the same example from last section, the f vector would look like this:

f
0111271

The code computes the f vector from the r column. To do this, use d as a temporary cache to compute

function depth. This is just the walking distance from a given function to its root containing function

130

along r. Since functions correspond one to one to lexical contours in the dfns syntax, this makes

function depth equivalent to frame or lexical depth.

To begin with, we resize and zero d:

d
012345677 756663455534555634400000
00O00O0

t
31012101 21091021 2109102 21091021209 1021

N

710 10 2 2 3 3

t=3
100000000O0O00O00O0OO0OOOOOOOOOOOOOOOOOOOOO
0011

1t=3
0 35 36

j«1t=3

d[i]«0

Next, walk up the r vector for each function i and increment d[i] for each non-root node:

rlil

0 0 35
izr[il]

011
_<—{z—|d[i]+<—w¢z<—r[w]}'*'5"|

756663 4555345556344 000

o

-

N
o wa

L 56717
00012

Finally, extract the appropriate depth for each unique binding in e. Using ~1 as a default value:

0ll&e
0 35 35 35 36
d{ofl¥e]
01112
d[o&e],"1

011121
f—d[0[®e], "1

The complexity of this pass is linear in space and time, and the critical path is dominated by the 1 and

the longest function chain in r. Thus, this pass is logarithmic critical path in the size of the tree.

131

Here is the complete pass:
d«(#p)td ¢ d[i«1t=3]«0 ¢ _<«{z4d[i]+«wzz«r[w]}*=i ¢ f«d[0[Re],"1

3.12. Recording Exported Names
As a final preparatory pass before lexical resolution, the compiler records the names of bindings that
appear at the top level of the source. This information would be lost during lexical resolution, so this
pass preserves it before resolution occurs. This is the simplest pass in the entire compiler and
demonstrates how much simpler constructs may be used in cases where the information or traversal
requirements are simple, as they often are.

This pass requires just the n field of the binding nodes (type 1) whose nearest containing
function is a namespace function (kind 0). Using the same example as the previous two sections, which

has a single top-level binding:

t
31012101 210910212109 102 210910212009
0212710102 2 3 3

0010000000O0OO0OO0O100OO0OO0CO11O0O

0 00O 35 35 35 36 36 36 36 36 36 36 36 36 36 36 35 35 35 35
35 35 35 35 35 35 35 35 35 35 35 35 35 0 35
k

0111117101020 7101020010207101020
10011011

k[r]
coo000111111111111111111111111111
111101
k[r]=0
11110000000000000000000O000O0O0O0CO00O0
000010
(t=1)ak[r]=0
001 0000000000O0O0D0ODOO0OODOOODOOOOOOBOOO0OO
000O0O00O

132

nt~(t=1)ak[r]=0

xn<nt=(t=1)ak[r]=0

This pass is trivially linear in time and space as well as logarithmic critical path.

3.13. Lexical Resolution

The dfns syntax is lexically scoped and obeys a stack discipline for binding visibility. Each function

definition using brace notation introduces a new lexical scope/contour. Bindings introduced within a

dfn are visible to all subsequent dfn bodies within it, but the binding does not exit the enclosing dfn.

Arguments to functions are passed by value and not by reference in all cases. Consider the following

examples:

{X<«5
5

{X<5
16

{X<«5
128

{X<5
12

{X<5
30

{X<«5
20

X}e

Y<X+X ¢ X«b6 ¢ Y+X}®

fe20x¥X o X«4t o f X}8

fe{a{a+X+w}w} ¢ g«Xof ¢ X«4 o g 3}6
fe{Y<X+X 0 X«3 ¢ YxX} o f8}®

o<{ao+Y+ww w} ¢ f«X o {Y«3 o X o{5+w}lw} ¢ f T-4X<Y«1}8

Here are some things to note specifically from the above examples:

1. Functions may include forward references to bindings.

2. Expressions may refer to bindings both to the left and to the right in the source text.

3. Names may be bound multiple times.

133

4. Operators resolve their operands at the position of the operator's call site, but free references

inside of an operand resolve at the call sites of the derived functions, as are free references

inside of the operators.

5. Free references resolve at the call sites of functions, not their definition sites.

6. An operator's operands may resolve to values inside of scopes that are below the visibility of

an operator’s free references. This implies that the semantics of operands are different than

the semantics of free references.

7. Free references may have different values for every call to a given function.

The dfns syntax has a single binding form x<«e that binds the name x to the value of executing e. In

the full syntax, strand assignment permits more sophisticated structural binding that mirrors pattern

matching in a small way, but to maintain simplicity this pass deals only with the simple name binding

form. This binding form is also the name mutation form. Thus, if x<e appears in a function body after

a prior binding to x, it does not introduce a new binding to x in a new lexical scope, but instead, it

updates the existing binding to x in the same scope to point to e instead of its prior value.

Bindings are removed and deleted upon the return of their enclosing dfn. This works even in

the presence of free references to a binding because a dfn may not return a function value, and thus,

no binding will have a reference to it when its enclosing dfn returns, since any function that may have

captured a reference to it will also be deleted by this time as well.

Therefore, the binding and name visibility rules for dfns are like Python without first class

procedures, but with both higher order functions and free references.

134

The dfns binding rules also differ in another way from some Python implementations. In some

Python implementations, all references to a name in each scope must refer to the nearest scope that

contains a binding to that name. Thus, if a function binds x somewhere in its body, it will be an error

to refer to x before the first binding to x appears in the body of the function, even if another binding

to x appears in an enclosing scope. A binding to x in the body of a function shadows x for all the body

of that function, and not just for statements appearing after it in the body.

In contrast to the above, within the dfns syntax, a reference to x before the first binding to x

within the body of a function is considered a free reference. This admits the following program:

{x«5 o {x<x+x ¢ xxx}8}6
100

Finally, the value of a free reference to a binding for a given dfn is the value of the binding at the time

the function is applied, as illustrated by the following program:

{x«5 ¢ f«{x} o x«3 ¢ f@}6

This is a consequence of the x«3 statement affecting the same lexical scope as x+5 and thus altering

the binding to x instead of introducing a new lexical scope.

The purpose of name resolution is to associate each reference with a specific frame, which

indicates which enclosing scope contains the binding to which the variable refers, and a specific slot,

which indicates a specific numeric offset into the frame that stores the value. Each unique name bound

within a dfn maps to a numeric slot in some frame. The nested structure of dfns forms the set of frames.

The Oth frame is always the top-level, with the 1st frame being the bindings of one of the top-level

135

function definitions, and so on down the nested dfns definitions. Because dfns are not first-class
procedures, there is no need to create closures; resolution need only ensure each function has access
to its own stack frame and all its enclosing frames.

Resolution must handle the case described above where a reference to a name appears before
the first binding to the same name within the same dfn body. To address this issue, treat each function
body as containing an initialization statement at the beginning of the function for each binding that
shadows a previous binding. These initialization statements take the form x<«x for each binding x and
ensure that each name referenced in a function will always resolve to the same frame throughout the
entire body of the function. While other approaches are possible, using this method simplifies name

look-up a fair bit. Visually, the following example and diagram illustrate the idea.

{x«5 0 {y«3 ¢ {z«y+x o y«z+1 0 x«y+y 0 x+x}0}8}8
36

This example has 3 frames, with the final innermost function containing two free references, one to x

and one to y. The following visualizes the name resolutions:

Slot: I
Frames: (I) }

References: z+1 y+y y+x x+X
Notice that all the references resolve to frame 3, including the free references, since it is considered

the nearest frame binding these names. The free references are accounted for by the implicit references

136

to the previous frames linking the bindings in frame 3 to bindings of the same name in frames 1 and

Here is the above example in tree and column forms, including the newly generated f and s

columns:

F
VBE
F
IIIIIII
ABEAVEE
N
F
|
T T 1T 1T T"1
ABEAVEE
N
F
IIIIIIIIIIIIIIIIIIIIIII
VPVEBEAPVEBEVPVEBEVPVEE
N
i0 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19
PO O 0 O 44 L4 L4 L LL L4 LL L4 45 45 12 45 45 45 L5 L5
t310 1+ 2 0 1 2 7 010 2 2 0 1 7 2 010 2 2
ko 1t 171 0 071 0 0 1 1 0 0 0 071 0 1 1 O
hib44 55 07676 "7 045 0 0 0 89 "8 04 0 O
FO O 0 O Wi 44 44 Li LL L4 44 4y L5 L5 45 45 45 L5 45 45

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
b6 46 46 46 46 46 46 L6 46 46 26 46 46 L6 46 46
10 9 10 2 1 2 0 9 10 2 7 1 210 9 10
0 1 0 2 0 "1 0 1 0 2 0 071 O 1 0
"6 11 "8 0 710 "10 0 "11 710 O 12 "8 "8 "8 "11 8
k6 46 46 46 46 46 46 46 46 L6 L6 46 46 46 L6 46

137

36 37 38 39 40 41 42 43 Lk 45 L6
46 46 46 46 46 46 46 46 4k 45 46
2 1 210 910 2 2 3 3 3

2 071 O 1 0 2 0 1 1 1
076 676 1176 0 0 1 1 3
L6 46 46 46 46 46 46 46 O 44 45
e
0 75
b4 76
45 78
L6 ~10
L6 78
k6 76
f
01233371
s

0000121
Entering this pass a few structures are already set up. The e table contains a listing of all unique
bindings, where the first column is the frame in which the binding appears and the second contains
the name of the binding. The b vector contains all the binding node ids. The rn table contains all the
binding locations including duplicates, with the same structure as e. The f and s vectors tally the
same as e and map entries in e to frames and slots.

There are two major results of lexical resolution: firstly, all bindings associate with the
appropriate slot that they mutate in their frame; secondly, each binding and name reference receives
a slot and frame that they reference. In the case of bindings, the slot and frame point to the implicit
binding used for references to the binding before it is bound in a frame. For name references, the frame
and slot point to the location of the binding to which the name refers within the lexical stack. The
bindings easily resolve to their slots in a single logical step but resolving references (binding and

variable) requires searching up the lexical stack to locate the correct binding.

138

To begin this process requires a few more important values. The previous example continues

to demonstrate the process. First compute the name references v and the combination of name and

binding ids y. Name references are variable nodes that have symbolic names other than a, w, aa, or

Ww.
n< 4
oo01101110000011100001110110110111
111011111 00000
t=10
0100000001 000O000O10010O0O1O00OCOO0OO11OODO0OO
101 00010100O0O0O0
1(t=10)An<74
20 22 28 33 35 39 41
vel(t=10)Aan<74
b
25 13 24 31 37
v,b
20 22 28 33 35 39 41 2 5 13 24 31 37
y<v,b

Next, save the names of bindings in x and give each binding a slot in its n field by looking up the

binding in e and using the associated slot:

y

20 22 28 33 35 39 41 2 5 13 24 31 37
nly]

"6 8 T10 "8 8 "6 "6 5 "6 ~8 10 "8 ~6
x<n[y]
e

0 5

44 6

45 8

46 ~10

46 8

46 6
rn

0 ~5

44 6

45 ~8

46 ~10

46 8

46 6

139

2 513 24 31 37
n[bl«s[eirn]

This sets up the bindings to mutate the right slot. The next step resolves the references. Start with a
buffer i to update with the index of the binding that matches the corresponding reference. This means

i must be the same size as x and begins assuming each element is not yet found:

(#£x)pc+#e
6 6 6 6 6666666 66
i«(#x)pc+te

The search iterates over a transposed table of frame (row 0) and index into x. To begin with, the

starting point for names is the id of the name itself and for bindings it is the enclosing frame:

X
6 "8 10 "8 "8 "6 "6 5 76 8 10 "8 76
1EX
0123456789 10 11 12
v
20 22 28 33 35 39 41
ribl
0 44 45 46 46 46
v,r[b]
20 22 28 33 35 39 41 O 44 45 46 46 46
(v,rlbl) ;&85 1#x
20 2 28 33 35 39 41 O 44 45 46 L6 46
o1 2 3 4 5 67 8 9 10 11 12

Why use the id v for names and r[b] for bindings? At each stage of search, the code uses these ids to
look up the containing frame in r. Then it uses this frame to search for matching bindings. For names,
searching begins in its local frame, but for bindings, if searching the local scope immediately matches

the binding. Instead, the search for bindings must begin one frame up from local.

140

Within each iteration, first update the table with new frames. This updated table serves as the

basis for the next iteration and is named z. In the iteration, w is the current iteration table.

w

20 22 28 33 35 39 41 O 44 45 46 46 46

0 1 2 3 4 5 67 8 910 11 12
r IQOrw

46 46 46 46 46 46 46 0 O 44 45 45 45

0 1 2 3 4 5 678 910 11 12
z<r I@Orw

Search by replacing the ids in row 1 with the appropriate names from x and then look up the references

in e. Store the results in i:

z
b6 46 46 46 46 46 46 0 O 44 45 45 45
0 1 2 3 4+ 5 678 910 11 12
X
"6 "8 10 "8 "8 "6 "6 5 "6 8 710 "8 76
x I@eirz
b6 46 46 46 46 46 46 O O 44 45 45 45
"6 "8 10 8 "8 "6 "6 "5 "6 8 710 "8 76

ox I@1rz
b6 ~6
46 8
46 ~10
46 ~8
46 8
b6 ~6
b6 ~6
0 75
0 76
4Ly ~8
45 710
45 78
45 76
e
0 75
by ~6
45 78
46 ~10
46 8
b6 ~6
e1dx I@1rz

543 44550666 26
i[10z])«e189x I@1+z

141

With the search at the current frame complete, proceed to the next iteration. However, unlike in some
iterations used in prior passes, this one is computationally heavyweight. Thus, to avoid wasting search
resources on references that we have found already, the code filters the iteration table to only those
that have not been found yet. This gives the following iteration, the result of which is the next iteration

table:

w
20 22 28 33 35 39 41 O 44 45 46 46 46
0O 1 2 3 4 5 67 8 9 10 11 12

e1dx I@1+z

54344550666 26
z/=c=i[10z]«e18x I@1irz<«r I@Orw

0 44 45 45

8 9 10 12

Assembled with the initial table gives the following:

_«{z/=c=i[10z]«e1®x I@1rz«r I@O+w}*=(v,r[b]);851#x
;
543 44550666 21

At the completion of the above fixpoint the i buffer contains the search results and is a valid index
vector into f and s. To complete the pass, recompute/transform the f and s vectors to be columns in

the tree. Set the reference positions y to f[1] and r[i] and set everything else to 1.

T1p=#r

1717171717171 7171717171717171 7171 71 T e
1717171717171 717171717171 717171 1 1
17171717171 71 71 T
Yy

20 22 28 33 35 39 41 2 5 13 24 31 37
'o'@yrT1p=#r

B O s O A A s s R A A A A A T |
o 71 o 71 71 71 o 71 71 o 71 o 71 o 71 o 71 o 71 o 71
171 71 71
flil

3333333071 717121
s[il

210112207171 7100

142

flileyr"1p=#r
171071717171 7171717171717 71717 71 7L T3

1371717171713 71712713713711713713

17171 717

s[i]eyr"1p=#r

17107171 71717171717 71T T T T T T T T 2

1171 7171717107171 0711711710712712

17171 717

fe«f[i]@yr"1p=#r

s«s[i]ey+"1p~%#r
The uses of 1 and 1 dominate the computational complexity of the pass. The initial definition of v is
linear space and time with a logarithmic time critical path. The computation of x is linear time and
space with a constant critical path. Setting n[b] is dominated by the search eirn. The time
complexity is O((#rn) xe#e) and linear space. The critical path is logarithmic in the size of e. The
number of search steps in the main fixpoint is limited by the longest distance between a name’s
reference and its binding in terms of lexical frames. In cases where source may be expected to be
strictly limited in lexical depth, these iterations may be thought of as bounded. Within each iteration
of the fixpoint, the two limiting factors are the filters and search over e. On each iteration the critical
path is always limited by the sum of the log of the size of e and the log of the size of the iteration table.
The space is linear and the time is O((Zw) x®#e) where w is the iteration table.

Here is the complete pass:

ve1(t=10)an<"4 o x<n[y«v,b] ¢ n[bl«s[eirn] ¢ i«(#x)pc<#e
_«~{z/~c=i[1llz]«e1®x I@irz«r IRO+w}*=(v,r[b]l);®;1#x
f s«(f s I7ci)a@y 'c " 1p=#r

143

Main CPU

Memory Type

L3 Cache

Boost Clock Speed

Main Memory

Max CPU Memory Bandwidth
GPU

Graphics Memory

GPU Base Clock Speed
GPU Booz Clock Speed
GPU Memory Bandwidth
CUDA Cores

Operation System

Dyalog APL

Racket Version

Haskell Version

Intel Xeon E5-2623v3 Haswell-EP 3.0 GHz Four Core 22nm CPU
DDR4-1866

10MB

3.5Ghz

32GB @ 1866Mhz (4x8GB DDR4 2133 MHz ECC)
59 GB/s

GeForce GTX 980 PCI-¢ 3.0

4GB GDDR5

1126 Mhz

1216 Mhz

224.3 GB/sec

2048

Microsoft Windows 10 1809 64-bit

APL/W-64 Version 17.0.36301

7.2

TBD

Table 3. Benchmarking Test Machine Specifications

4. PERFORMANCE

The compiler described in section 3 was benchmarked against two implementations of the same

compiler written using the Nanopass compiler framework, executed using the JIT compiled Racket

and offline compiled Chez Scheme implementations. The Nanopass compiler framework represents

a state-of-the-art approach to compiler construction in Lisp-like languages or other untyped,

functionally oriented languages, with Racket representing one of the most popular of such

implementations and the Chez Scheme compiler representing a system with a popular reputation of

good performance on compiler and tree-manipulation benchmarks. The Co-dfns compiler was tested

144

with two computational devices (the main CPU and GPU of the benchmarking machine) on a

constructed AST consisting of between 1019 nodes to 1019x2x14 nodes. Table 3 lists the test

machine hardware specifications.

The two Co-dfns compiler implementations utilize the same code (described in Section 3) but

execute on different architectures and with different runtimes. The Dyalog APL interpreter was used

to run on the CPU, while a C++/ArrayFire compiled version with CUDA backend was used to execute

on the GPU. The benchmarks below compare the Co-dfns compiler against timings taken for the

equivalent data sizes on the CPU for the two Nanopass implementations. Timings consist of the

average of 5 runs of the compiler recording total running time and all running times for the individual

passes. For the Racket and Chez implementations, the benchmark initiates a garbage collection

between each compiler pass to control for collection effects. These collections do not contribute to the

timings, but collections that occurred during an executing compiler pass do contribute.

The AST for each data size was constructed by parsing and then replicating a typical APL

program consisting of a variety of Black Scholes code snippets and various other small utility

functions. The resulting unreplicated AST contains 1019 nodes, with a lexical depth of 3 and a tree

depth of 15. Source code typically exhibits relatively shallow depth compared to the number of nodes,

with relatively small lexical depth, and the benchmark APL program represents typical source code

structures of this nature. To obtain larger data sizes, the 1019-node AST was replicated to create

multiple namespaces and top-level values. The AST was duplicated in powers of 2, resulting in 15

derived ASTs consisting of 1019x2xN nodes for each Nin [0, 15). The Co-dfns compiler is agnostic

145

to the number of modules and thus, invocation on the entire set of modules in the AST was possible

without modification. The Nanopass and Haskell implementations were both designed so that they

received a set of modules to compile rather than a single module, thus allowing them to operate over

multiple modules in the same way that the Co-dfns compiler was designed.

Understanding the relationship between nodes in an AST and the relative size of a given piece

of source code depends on the density of that code. For example, for the data size 4 in the following

benchmarks, this corresponds to approximately 16,000 nodes. In source code with the same relative

node density as the APL program, this leads to a program of roughly 650 non-whitespace lines of code.

However, when comparing this against the node density found in the Nanopass reference compiler,

for example, this leads to approximately 1000 lines of code. This happens to correspond nearly to the

size of the Nanopass reference compilers used in the benchmarks. Both the APL benchmark input

source and the Nanopass Reference Compiler are included in the appendices, so comparing node

densities of the reference compilers to the data sizes given in node counts leads to an intuition for the

speedups in the following benchmarks relative to specific input sizes. Using the Nanopass reference

compiler as an example, which is 1012 lines of code with a node per line density of roughly 14.5, this

corresponds to a data size of roughly 3.8 in the benchmark graphs. Since most programmers tend to

initially think in terms of lines of code, this relationship can assist in predicting the relative

performance improvements of the compiler on specific input sizes in a more natural way than what

the raw node count may provide.

146

The timing data in the following series of graphs uses a base-2 log scale in both dimensions.

Each axis label represents a power of 2. Each graph indicates the relative speedup, calculated as the

timing for the reference compiler divided by the timing for the Co-dfns compiler.

The reference compilers were designed to represent reasonable best efforts at canonical

compiler design techniques. However, the overarching design of the compiler, in terms of the compiler

passes, the intermediate representations (IRs), and the input language were all fixed. This allows for

a direct comparison between the various tree processing techniques over the same manipulation and

avoids these benchmarks becoming tests of differences in compiler architecture designs versus tree

manipulation algorithms. That is, each compiler performs the same set of manipulations, over the

same tree data types, in the same order, over the same input data. The only variation is the method of

expressing the tree manipulations involved.

Attempts were explicitly made to represent the idiomatic tree manipulation methods that

would be used in each reference framework. No attempts at “cleverness” were made with regards to

optimizing any of the compilers, including the Co-dfns compiler. That is, the code avoids specialized

implementations of primitives or non-idiomatic tricks leveraging knowledge about the domain in

favor of generic techniques and runtimes. The coding standard does permit typical optimization

procedures that do not negatively impact the idiomaticity of the source code, particularly with the

traditional methods when they required some optimizations that deviated from norms to encourage

better performance, including violating some data safety and type-assurances in order to make certain

copying optimizations. The traditional compiler code also leverages additional data structures known

147

to have better behavior for our data sets because initial benchmarks indicated that some common or
canonical techniques had astronomically poor performance. The graphs show only the optimized
reference compiler timings; unoptimized versions were too slow for practical timing numbers. The
respective sections below detail specific optimizations used for each compiler.

In addition to running time, memory usage was also generally observed. None of the systems
used had an accessible method for obtain