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ABSTRACT 
Salticids, the largest family of spiders, have unique eyes, acute vision, and 
elaborate vision-mediated predatory behavior, which is more pronounced than 
in any other spider group. Diverse predatory strategies have evolved, including 
araneophagy, aggressive mimicry, myrmicophagy , and prey-specific preycatch- 
ing behavior. Salticids are also distinctive for development of behavioral flexi- 
bility, including conditional predatory strategies, the use of trial-and-error to 
solve predatory problems, and the undertaking of detours to reach prey. Predatory 
behavior of araneophagic salticids has undergone local adaptation to local prey, 
and there is evidence of predator-prey coevolution. Trade-offs between mating 
and predatory strategies appear to be important in ant-mimicking and araneo- 
phagic species. 

INTRODUCTION 

With over 4000 described species (1 l), jumping spiders (Salticidae) compose 
the largest family of spiders. They are characterized as cursorial, diurnal 
predators with excellent eyesight. Although spider eyes usually lack the struc- 
tural complexity required for acute vision, salticids have unique, complex eyes 
with resolution abilities without known parallels in animals of comparable size 
(98). Salticids are the end-product of an evolutionary process in which a small 
silk-producing animal with a simple nervous system acquires acute vision, 
resulting in a diverse array of complex predatory strategies. 

Here, we begin by discussing how salticid eyes work and then review the 
predatory strategy of Portia-a tropical genus whose members are jacks of all 
spider trades. In many ways, this spider is the ultimate salticid. Using the 
exceptionally complex predatory behavior of Portia spp. as a baseline, we 
provide in the second half of the review a survey of the various predatory 
behaviors of salticid spiders. 
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288 JACKSON & POLLARD 

THE SALTICID EYE 

Salticids have four pairs of eyes, but it is the pair of very large anterior median 
eyes (known as the principal eyes) that stare back when you look at the spider's 
face. Located on either side of the principal eyes are three pairs of smaller 
secondary eyes, which are highly proficient motion detectors (19,41,93,94). 
Immediately to either side of the principal eyes are the anterior lateral eyes, 
which face forward in most species and have binocular overlap in front of the 
spider. They probably share a role with the principal eyes in range finding and 
in controlling the pursuit of prey (32,33,42). The next pair of secondary eyes, 
the posterior medians, are very small and apparently degenerate in most sal- 
ticids, although they are large, well-developed motion detectors in some of the 
primitive spartaeines and lyssomanines (97, 122, 123). The most rearward-di- 
rected secondary eyes, the posterior laterals, have the widest fields of view. 
With its combination of four, or sometimes six, functional secondary eyes, the 
salticid's vision covers virtually the entire 360" ambit around the spider (96). 

The principal eyes are the most interesting because they provide for acute 
vision (32, 48, 91, 92), allowing the salticid to identify mates, rivals, and 
predators from distances of 30 body lengths or more away (71). In typical 
predatory stalk and leap sequences (16, 18, 30, 33, 34), the salticid turns so 
its principal eyes face the prey. Next, it stalks the prey until it is a few body 
lengths away, lowers its body, and slowly crawls forward. Now, worthy of its 
name, the jumping spider attaches a dragline, raises its forelegs and makes an 
accurate, visually mediated leap onto the prey. Vision also plays an important 
role in other aspects of salticid behavior: They display to their image in a 
mirror (33,42,71); discriminate between the images of prey and conspecifics 
shown on a television screen (10); and respond appropriately to visual cues 
from motionless mates, rivals, and prey (18, 42, 80). 

Salticid eyes, especially the principal eyes, are constructed very differently 
from the more familiar vertebrate and insect eyes (97). The retinas of the 
principal eyes have a four-layer, tiered arrangement. Light entering through 
the corneal lens passes successively through layers 4,3, and 2 before reaching 
layer 1, which in cross section has a distinctive boomerang shape. Layer 2 is 
roughly the same in shape, whereas layers 3 and 4 more closely approximate 
a circle (91). 

Layer 1 forms only an approximate layer, because this set of photoreceptors 
is not entirely in one plane. Instead, the receptors are arranged in a staircase 
so that receptors closer to the periphery of layer 1 are closer to the corneal 
lens; those in the central region are farthest from the lens (la, 6). A primary 
function of the tiered arrangement of the retina as a whole, and the staircase 
arrangement of layer 1 in particular, is apparently to compensate for chromatic 
aberration and an inability to focus by changing eye tube length (8). 
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PREDATORY BEHAVIOR OF JUMPING SPIDERS 289 

In the central area of layer 1 (the fovea) (1 a), receptors are packed especially 
close together (about 1 pm apart). They appear to be primarily responsible for 
shape recognition, because this is the only region that can process a sharply 
focused image (8). 

The part of the salticid eye seen from outside is the corneal lens, behind 
which lies the eye tube. While the tubes of the secondary eyes are shallow and 
fixed in place, each principal eye has a long eye tube and, because of a set of 
six attached muscles, is capable of precise, complex rotary and side-to-side 
movements (92). However, the principal eyes cannot focus images by elon- 
gating and shortening the tube. Because of the tiered arrangement of the retina, 
the salticid principal eye receives a sharp image in the fovea of layer 1 at 
distances ranging from little more than a body length away to infinity (8). 
Because the retina of the principal eye is at the end of a long eye tube, the eye 
has a large focal length, which gives the spider a telephoto lens system. A 
second lens, just in front of the retina, increases the magnifying power of the 
eye and turns these eyes into miniature Galilean telescopes (129). 

The distance between the receptors in the layer 1 fovea (-1 pm) appears to 
be optimal for resolution, given the details of the rest of the optical system. If 
the receptors were any closer together, then the image obtained would be 
degraded by quantum effects (8, 97). 

The principal eyes appear to be capable of color vision (5, 12, 15, 89, 106, 
131), which is most likely dichromatic. 

One of the great challenges for future research will be to understand how 
the salticid’s unique eyes enable these spiders to distinguish between different 
types of prey, webs, and other parts of the environment. The fovea of layer 1 
contains at most only a few hundred receptors (8), and an eye with so few 
components cannot be operating on the same principles as the much larger eye 
of vertebrates (97). 

The principal eye is an active eye, and this is probably the key to under- 
standing shape perception. Yet the only detailed information we have on 
precisely how the salticid eye tube moves is from Land’s (92) work on Metu- 
phidippus spp., which described four modes of movement: spontaneous activ- 
ity, saccades, tracking, and scanning. Scanning, which takes place only after 
the salticid is oriented so that an image is projected onto the fovea of layer 1, 
is the most complex movement and should be the target for future studies of 
shape perception. 

THE COMPLEX PREDATORY STRATEGY OF PORTIA 

Predatory Versatility 
A versatile predator has a conditional strategy consisting of a repertoire of 
predatory tactics, each specific to different circumstances or different types of 
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290 JACKSON & POLLARD 

prey (13). The predatory versatility of Portia spp. may represent the most 
pronounced example from arthropods, if not from all nonhuman animals. Five 
species of Portia have been studied (72-74, 76): P. africana and P. schultzi 
from Kenya; P. albimana from Sri Lanka; P. labiata from Malaysia and Sri 
Lanka; and P. jimbriata from Australia, Malaysia, and Sri Lanka. In these 
species, each spider is a cursorial predator and a web-builder, as well as a 
predator that invades alien webs, where it uses aggressive mimicry to trick, 
then catch, the resident spider. In addition, Portia spp. prey on the resident 
spider’s eggs and eat insects ensnared in the alien web. The three chapters of 
the Portia predatory strategy-hunting in the open, using its own prey-catching 
web, and making predatory forays into the webs of other spiders--each features 
intricate stories of predatory versatility. 

In the discussion below, unless otherwise noted, we use the generic name 
Portia to refer to any and all Portia species. 

Web Invasion and Aggressive Mimicry 
The types of webs built by spiders are highly diverse, ranging from sparsely 
woven three-dimensional webs, to highly organized two-dimensional orb 
webs, to densely woven sheet webs (1 15). Some spiders enhance the stickiness 
of their web by secreting special substances (i.e. glue) onto the structural lines. 
Cribellate spiders are species that lay a very fine wool of sticky threads across 
the structural threads of the web. In contrast, some ecribellate spiders string 
droplets of fluid glue along the structural threads of the web at regular intervals. 
Generally, cursorial spiders and spiders that build nonsticky webs adhere to 
sticky webs, and spiders that build ecribellate sticky webs tend to adhere to 
cribellate webs, and vice versa (RR Jackson, unpublished data). Portia is an 
exception. It spins nonsticky webs, yet it can walk across and capture prey on 
virtually any type of web, including both cribellate and ecribellate sticky webs 

When Portia walks onto another spider’s web, it enters the other spider’s 
perceptual world, as the web is an extension and critical component of the 
web-building spider’s sensory system (29, 130). On the web, intimate contact 
with the other spider’s sensory system is often dangerous for Portia. When 
the resident spider detects something wrong, instead of fleeing, it may actively 
defend itself. Then the tables may be turned, and the intended prey becomes 
the predator. 

After entering another spider’s web, Portia usually does not simply stalk or 
chase down its victim but instead sends vibratory signals across the silk. The 
resident spider may respond to these signals in the same way it responds to 
the vibrations caused by a small insect becoming ensnared in the web. When 
the duped spider gets close, Portia lunges and catches it. A system of this sort, 

(65). 
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in which a predator (in the present example, Portia) deceives its victim (eg. 
a web-building spider) by mimicking prey (e.g. a small insect ensnared in a 
web) is called aggressive mimicry (28). 

For Portia, aggressive mimicry involves pronounced behavioral complexity 
because Portia has an exceptionally diverse repertoire of vibratory signals. 
The spider can make the signals by manipulating, plucking, and slapping the 
silk with one or any combination of its eight legs and two palps, all of which 
can be moved in different ways. Portia also signals by flicking its abdomen 
up and down and can combine abdominal movements with virtually any of 
the appendage movements (72, 73, 86). Many of these signaling behaviors 
appear to be evolutionary modifications of grooming behaviors (76). The 
web-building spider has acute abilities to detect and discriminate between 
vibratory signals transmitted over the silk in its web. How the prey spider 
interprets these web-borne vibrations varies considerably among species and 
also with the sex, age, previous experience, and feeding state of the spider (53, 
101, 130). Yet Portia uses aggressive mimicry to catch just about every kind 
of web-building spider imaginable, as long as it is about one tenth to twice 
Portia’s size (72,73; RR Jackson, unpublished data). 

The question of how Portia chooses, from its large repertoire of signals, the 
appropriate signals for hunting a particular prey spider has driven a research 
program at the University of Canterbury, Christchurch, New Zealand, camed 
out in collaboration with Stimson Wilcox from the State University of New 
York in the United States. A computer-based system was developed for re- 
cording and playing back signals on webs, much as if we could listen and talk 
to spiders in their own language. This work, which is still in progress, has 
indicated that the key to the success of Portia at victimizing so many different 
types of spiders is an interplay of two basic ploys (83, 86): (a)  the use of 
specific preprogrammed signals when cues from some of the more common 
prey species are detected; and (b) the flexible adjustment of signals for different 
prey species according to feedback from the victims. 

Trial-and-Error Behavior 
The first ploy, using preprogrammed tactics, is consistent with the popular 
image of spiders as animals that are hard-wired and governed by instinct, but 
the second ploy is based on the use of trial and error to derive signals, an 
unexpectedly flexible behavior for a spider (see 105). To illustrate how trial 
and error works, let us look at what happens when Portia goes into the web 
of a species of web-building spider for which it does not have a preprogrammed 
tactic. Portia first presents the resident spider with a range of different vibratory 
signals. When one of these signals eventually elicits an appropriate response 
from the victim (e.g. it behaves as though Portia were a small insect caught 
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in the web), Portia ceases to vary its signals and concentrates on producing 
the signal that elicits the response (86). However, communication between 
predator and prey is often more subtle. 

Aggressive mimicry for Portia is a dangerous way to make a living, espe- 
cially when facing a large and powerful spider in a web, and simply to pretend 
to be prey and provoke a full-scale predatory attack would probably not be a 
successful tactic. Instead, Portia’s strategy appears geared toward finely con- 
trolling the victim’s behavior (59,6549). Portia may make signals that draw 
the victim in slowly. In contrast, the signals may keep the victim calm while 
Portia moves in slowly for the kill. Calming effects appear to be achieved 
through monotonous repetition of a habituating signal (RR Jackson & RS 
Wilcox, unpublished data), as though Portia were putting its victim to sleep 
with a vibratory lullaby derived from trial and error. 

When using trial and error, Portia associates success with a particular signal 
and remembers to keep using it. This is at least a simple kind of learning (see 
105). Learning is not unique to Portia. Some typical insectivorous salticids 
learn to avoid ants, and some appear to improve with practice their performance 
of the stalk-and-leap routine against their normal insect prey (1 8, 26, 3 1,42, 
100). Salticids will also acquire aversion to models paired with electric shock 

However, Portia’s trial-and-error behavior is not only an example of learn- 
ing: The wide range of signals generated and the ability to identify and 
remember successful ones in a variety of contexts gives these salticids prob- 
lem-solving capabilities (39). 

(18). 

Smoke -Screen Behavior 
Another example of flexibility in Portia’s predatory strategy is the smoke- 
screen tactic. In the field, investigators have noticed that whenever the wind 
blows, movement of the web masks nearly all other signals going across the 
silk. Interestingly, when the wind blows, Portia is most likely to walk rapidly 
toward the spider in the web. Laboratory experiments using fans to generate 
artificial wind demonstrated that Portia deliberately chooses to approach its 
victim when a breeze provides a vibratory “smoke screen” to hide behind 
(128a). Also, if the wind does not blow, Portia can make its own vibratory 
camouflage. While walking across the web, Portia masks the faint vibrations 
caused by its steps by adding large-scale vibrations that simulate a breeze 
(128a; RS Wilcox & RR Jackson, unpublished data). Portia is selective; it 
uses opportunistic and self-generated smoke screens when hunting spiders, but 
not, for instance, when stalking insects caught in the webs or preying upon 
the eggsacs of other spiders when masking would be irrelevant (RS Wilcox & 
RR Jackson, unpublished data). 
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Detouring 
In the field, sometimes P. fimbriata stops, looks at a web, then turns and walks 
away, only to approach the web later from another direction. This behavior is 
especially distinct on webs of the Queensland spider Argiope appensa, which 
builds orb webs on tree trunks. Walking straight from the tree into the web 
would seem easy for P. jimbriata, but A. appensa has a dramatic defense. This 
spider is exceedingly sensitive to anything foreign touching its web, and hence 
it rarely gives P. jimbriata time to enter the web and start signaling. If A. 
appensa is sure the intruder is an insect prey, it attacks; otherwise, it pumps 
the web fibers (79) by rapidly, repeatedly flexing its legs. It thus sets the web 
in motion, which either drives or throws P. fimbriata off (67). 

In its natural environment, the rain forest, P. jimbriata often walks up the 
tree trunk toward A. appensa, stops, looks around, then goes off in a different 
direction, later reappearing above the web. Vines and other vegetation, which 
usually grow near the tree, often extend out above the web. After looking at 
the web, the vine, and the neighboring vegetation, P. fimbriuta sometimes 
moves away, perhaps to where the web is completely out of view, crosses the 
vegetation, and comes out on the vine above the web. From above the web, 
P. fimbriata drops on its own silk line alongside, but without touching, the 
web of the A. appensa. Then, when parallel with the spider in the web, Portia 
swings in to make a kill (67, 84). 

In the laboratory, experimental evidence shows that P. fimbriata makes 
deliberate, planned detours (1 16,117). For example, if presented with a choice 
of two routes on artificial vegetation, only one of which leads to a prey spider, 
P. jimbriata consistently walks past the inappropriate path to take the appro- 
priate one, even when that path initially leads away from the prey to where 
the prey is temporarily out of view (117; MS Tarsitano & RR Jackson, un- 
published data). 

Predation by Queensland’s P. jimbriata on Cursorial Salticids 
The habitat of P. jimbriata in Queensland, Australia, is unique in that it has a 
superabundance of cursorial salticids (73). The predatory behavior of this 
Portia species appears to be specially adapted to this locally abundant prey. 

Although strictly cursorial salticids do not spin prey-catching webs, they do 
spin shelters out of silk (nests) that are usually densely woven, tubular, and 
not much larger than the resident spider. A salticid that finds a conspecific 
inside a nest may court or threaten the resident spider by making vibratory 
signals on the silk (66, 1 12). P .  jimbriata responds to nests of nonconspecific 
salticid spiders with vibratory signals (nest probing), to which the resident 
reacts by poking its front out of the nest, only to be grabbed and eaten (73). 

P. fimbriata also catches salticids out in the open, away from their nests, 
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by using a special type of trickery, known as cryptic stalking (72), which 
capitalizes on the unusual appearance of Portia spp. Markings, tufts of hairs, 
and long, spindly legs give Portia the appearance of detritus in a web (120), 
which presumably protects it from visually hunting predators. Normally, Portia 
locomotion consists of a slow, choppy gait that renders the genus difficult to 
recognize even when moving. When inactive in a web, Portia adopts a special 
posture, the cryptic rest posture, with palps retracted beside the chelicerae and 
legs retracted beside and under the body. This positioning blurs the outlines 
of these appendages into the contours of the body (72). 

When cryptically stalking a salticid away from webs, P. jimbriata moves 
even more slowly than usual, often remaining undetected until too late for the 
victim to escape. However, as salticid secondary eyes are excellent movement 
detectors, sometimes the victim suddenly swivels around to see what is coming 
up on it. The Queensland P. jimbriata compensates: It freezes in its tracks and 
stays motionless until the salticid turns away again. When the salticid takes a 
look, it apparently perceives a piece of detritus. Another consistent component 
of cryptic stalking by P. fimbriata is that it retracts its palps, as in the cryptic 
rest posture. Experiments have confirmed that hiding the outlines of palps is 
important because these outlines are cues by which the salticid can recognize 
P. fimbriata as a predator (SD Pollard & RR Jackson, unpublished data). 

Interactions between P. fimbriata and Euryattus (species undetermined) 
illustrate the evolution of a prey-specific predatory behavior for use against a 
single species. Euryattus sp. is sympatric with P. fimbriata in Queensland but 
is not known to be sympatric with other populations of Portia. Euryattus 
females are unusual salticids because, instead of making a tubular silk nest, 
they suspend a rolled-up dead leaf by heavy silk guylines from a rock ledge, 
tree trunk, or the vegetation in the rain forest and use this as a nest (51). 
Euryattus males go down guylines onto leaves and court by suddenly flexing 
their legs and making the leaf rock back and forth. Euryattus females then 
come out of their leaves to mate with or drive away conspecific males. Unlike 
any other Portia studied, P. jimbriata from Queensland also goes down guyli- 
nes onto the leaves and makes the leaf rock by suddenly flexing legs, apparently 
simulating the courtship behavior of Euryattus males (83). Euryattus females 
that come out of their leaves when "courted" by P. fimbriutu are attacked and 
eaten. 

Coevolution of P. jimbriata and Euryattus sp. 
The Queensland P. jimbriata is not always successful at deceiving and catching 
Euryattus sp. Sometimes the strategy fails because the Euryattus female detects 
an approaching P. jimbriata and drives i t  away, either before or after it reaches 
the leaf. To drive P. jimbriata away, the Euryattus spider comes out of the 
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rolled-up leaf, then suddenly and violently strikes, leaps at, or charges toward 
the Portia individual. Sometimes Euryattus sp. leaps and bangs into P. fim- 
briata (usually head-on) and knocks it away, after which Euryattus sp. swings 
down on its dragline, then climbs back to the leaf. Once attacked, the Portia 
spider flees and the Euryattus survives (83). 

Observations of thousands of interactions between P .  fimbriata and many 
different species of salticids (72, 73; RR Jackson, unpublished data) have 
shown that Euryattus sp. is more effective than other salticids at recognizing 
and defending itself against a stalking Portia. Frequent predation by P. fim- 
briata on Euryattus sp. has apparently resulted in Euryattus sp. evolving special 
abilities to recognize and defend itself against P. fimbriata, which suggests 
coevolution between these two species. 

Interpopulation variation in Euryattus behavior supports the coevolution 
hypothesis. P. fimbriata is absent from a second Euryattus habitat sampled 
about 15 km away from the location where Euryattus sp. and P. fimbriata are 
sympatric. In tests using laboratory-reared spiders, allopatric Euryattus sp. only 
rarely evaded or attacked stalking P. fimbriata, and P .  fimbriata hunted al- 
lopatric more efficiently than sympatric Euryattus sp. (85). 

SPARTAEINE SALTICIDS, A PRIMITIVE GROUP 

Behaviorally, the Spartaeinae, the subfamily to which Portia belongs, is a 
collection of unusual salticids. This subfamily of primarily tropical African, 
Asian, and Australasian species is of special interest because of morphological 
characters (i.e. presence of female palpal claws and unreduced posterior medial 
eyes) that are regarded as plesiomorphic for salticids (1 14, 123, 128). Most 
strikingly, retinal ultrastructure of the principal and especially the secondary 
eyes of spartaeines tends to be less organized than that of typical salticids. 
Findings from extensive comparative and ontogenetic studies consistently 
indicate that the eyes of the Spartaeinae (and Lyssomaninae: see below) rep- 
resent a remarkable series of plesiomorphic states leading up to the condition 
prevailing in advanced salticids (la-4, 7, 8). 

Among salticids, only ten species (in four genera) are known to use vibratory 
aggressive mimicry in conjunction with araneophagic web invasion, and all of 
these are spartaeines. Besides the five studied species of Portia, this group 
includes Brettus adonis, Brettus cingulatus (73,  and Gelotia lanka (60) from 
Sri Lanka; Cyrba algerina (61,75) from southern Europe; and Cyrba ocellata 
(61) from Australia, Kenya, Sri Lanka, and Thailand. 

Brettus spp., Cyrba spp., and G. lanka have not been studied as thoroughly 
as Portia spp., but all these genera exhibit some aspects of aggressive mimicry 
in common. None of these spiders are exclusively web invaders; each also 
catches prey away from webs. G. lanka, like Portia, not only invades webs, 
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but also builds them. Like Portia, the other spiders are armed with large 
repertoires of vibratory signals, and preliminary evidence (60,61,75) indicates 
that each uses a trial-and-error tactic similar to that of Portia. 

Behavioral studies have been carried out on another three spartaeine genera. 
Cocalus gibbosus, from Queensland, invades webs and eats spiders in addition 
to catching prey away from webs, but does not practice aggressive mimicry 
(62). Phaeacius malayensis and Phaeacius wanlessi, from Singapore and Sri 
Lanka, respectively, are specialized ambush predators that neither build nor 
invade webs (75,63). Spartaeus spinnimanus and Spartaeus thailandica, from 
Singapore and Thailand, respectively, are web-building, but not web-invading, 
salticids (78). 

Although Brettus, Cocalus, Cyrba, and Phaeacius spp. do not build webs, 
they do build aberrant, web-like silk edifices in which to molt and oviposit 
(60-63, 75). These structures contrast with the tightly woven tube-like nests 
typically built by salticids (53). Also, the way that all spartaeine species attack 
their prey is atypical for salticids. All spartaeines studied do not perform the 
typical stalk-and-leap sequence and usually lunge at rather than leap upon their 
prey. G. lanka and Portia, Brettus, Cocalus, and Cyrba spp., the web invaders, 
all have cuticles that do not adhere to sticky webs; they differ from the 
nonspartaeine web-invading salticids in this respect. All of the web-invading 
spartaeines prey not only on the resident spider, but on its eggs as well, and 
also take insects from the other spider’s web (65). 

These odd salticids appear to be evolutionary experiments that branched off 
in the early history of the family, before the majority of salticids got locked 
into a path toward becoming insect hunters. However, the spartaeines are not 
the only unusual salticids. Another salticid subfamily, Lyssomaninae, also 
exhibits a predominance of plesiomorphic morphological characters. This sub- 
family contains seven genera and about 85 species of primarily tropical salti- 
cids (36, 122). Chinoscopus and Lyssomanes are New World genera, whereas 
Asemonea, Goleba, Macopaeus, Onomastus, and Pandisus are Old World 
genera. Details concerning predatory behavior are available for species from 
four of the genera: Lyssomanes, Asemonea, Goleba, and Onomastus. 

Compared with the spartaeines, the lyssomanines do not appear to have 
diversified very much in their predatory behavior. For instance, no evidence 
supports web invasion. Yet like the spartaeines, these spiders are quite unusual. 
They do not adopt typical stalk-and-leap sequences, and they usually make 
contact with the prey by lunging instead of leaping. Although the lyssomanines 
do not build large prey-catching webs comparable to the webs of G. l a n k ,  
Spartaeus, and Portia spp., neither do they build tightly woven silk nests 
comparable to those of the majority of salticids. Instead, they spin flimsy sheets 
under leaves, which they use for rudimentary webs. When an insect contacts 
the silk, the lyssomanine rushes out and grabs it (40, 52,64). 
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PREDATORY VERSATILITY IN NONSPARTAEINE 
WEB -BUILDING S ALTICIDS 

Simaetha paetulu and Simaetha thoracica, from tropical Queensland, resemble 
Portia spp. in that they are versatile predators, but they have some interesting 
idiosyncrasies. Simaetha spp. build a large prey-catching web. However, spi- 
ders of this genus, unlike Portia spiders, often also build a typically salticid 
tube-like nest. Nests and webs may be built alone or the nest may be incor- 
porated into the web (52). 

Besides building their own prey-catching webs, Simaetha spp. often live 
within the colonies of a social webbuilding cribellate spider, Phryganoporus 
(formerly Badumna) candidus (17). Simaetha spp. glean insects from the edges 
of the alien webs and incorporate their own nest, web, or web-nest combination 
within the alien communal web. Although cribellate silk adheres to their 
cuticles, Simaetha spp. avoid becoming prey of the social spiders by moving 
carefully along vegetation and old, no-longer-sticky silk mixed in among the 
fresh, sticky silk of the web. 

Female Euryattus sp., the leaf-hanging salticids preyed on by P. jimbriata 
in Queensland (see above), are not the only unusual members of this species. 
The juveniles are also unusual because they build prey-catching webs (51). 
The webs of Euryattus and Simaetha spp. are nonsticky, three-dimensional 
space webs that lack the funnel shape of webs of Portia spp. and are not as 
densely spun as the sheet web of Spartaeus spp. However, another salticid 
builds a dense sheet web. Pelknes arciger, from southern France, builds a 
large silk sheet in the vegetation (99). The predatory behavior of this species 
has not been studied, but the large web it spins is probably used as a prey- 
capture device. 

The spinning of Plexippus paykulli illustrates the blurry distinction between 
a nest and a web. The nest of this species is a tube surrounded by a dense 
tangled array of silk that forms a sticky layer over the tube. Insects, such as 
grasshoppers, coming into contact with nests of P. paykulli tend to become 
stuck for several seconds, or even minutes. P. paykulli responds to ensnared 
insects by coming out of the nest and leaping onto the prey or by walking 
across the nest and over to the insect to attack it (77). 

All of the web-building salticids studied are versatile predators that not only 
use webs for predation, but also catch prey cursorially. 

PREY-SPECIFIC PREDATORY BEHAVIOR OF 
ANT-EATING SALTICIDS 

Most salticids avoid ants, which generally bite, sting, and taste bad, but an 
interesting minority routinely eat these heavily defended prey. The most thor- 
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oughly studied are three euophrynes, Corythalia canosa, Habrocestum Pulex, 
and Zendora (formerly Pystiru) orbiculata (14,24, 81), and six heliophanines, 
Chrysilla lauta, Siler semiglaucous, Natta rufopicta, and another three unde- 
scribed species of Natta (82). 

Predatory behavior used against ants varies among the species. The six 
heliophanines are remarkably similar to each other but differ from each of the 
three euophrynes. Among the euophrynes, Z. orbiculata differs considerably 
in behavior from C. canosu and H. Pulex. C. canom and H. Pulex usually 
maneuver to attack ants head on. Heliophanines also often attack head on, but 
they attack from directly behind as well. Z. orbiculata attacks ants from just 
about any orientation. However, this species, unlike the other anteating salti- 
cids, also frequently positions itself facing down on ant-infested tree trunks 
and ambushes ants by lunging down on them instead of actively pursuing them. 
C. canosa usually holds its cephalothorax elevated while pursuing, attacking, 
and starting to feed upon ants. The heliophanines, in contrast, tend to hold the 
first pair of legs, but not their cephalothoraxes, elevated. When the euophrynes 
attack, they usually hold on, but the heliophanines often stab ants then back 
away (81, 82). 

Although the ant-eating heliophanines and euophrynes are behaviorally 
specialized on ants, their diet is not restricted to ants. They attack other prey 
in typical salticid stalk-and-leap sequences (8 1, 82). 

SUBTLE PREDATORY VERSATILITY IN PHZDZPPUS 

Phidippus is a genus of common, sometimes large (e.g. Phidippus regius can 
reach 22 mm in body length) salticids in North America. At least one species, 
Phidippus audax, is an important insect predator in agroecosystems (132). In 
studies of predatory behavior, Phidippus spp. have generally been described 
as typical insectivorous salticids, but there is more to these spiders than the 
usual stalk-and-leap routine. 

In nature, the studied species of Phidippus appear to prey opportunistically 
on a diverse assortment of arthropods, but these spiders’ diets seem to be biased 
especially toward caterpillars and flies (49, 124, 126). Although not so striking 
as the predatory versatility of Portia spp., the predatory behavior of Phidippus 
spp. apparently consists of two different prey-specific strategies (25, 26, 35). 
Each appears to be especially efficient for catching particular prey. 

Phidippus spp. approach the two types of prey differently and leap on them 
from different distances, stalking closer to caterpillars than to flies before 
attacking. Typically, upon seeing a moving caterpillar, a Phidippus spider 
approaches rapidly to within 10-12 mm, then pauses and watches it. If the 
caterpillar continues to move, the spider circles until i t  is directly in front, 
stalks forward a few millimeters, then leaps and pins the caterpillar’s head 
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down. In interactions with flies, Phidippus spp. approach by walking rapidly, 
pause when 25-30 mm away, then leap. Attacks on flies are initiated from just 
about any direction, but regardless of the direction of attack, the spiders almost 
always capture the flies by biting their thoraxes near the wing bases (25, 26). 
Also in Phidippus spp. and some other salticids, the spider’s approach and 
method of attack are influenced by the size and speed of the prey (16, 18,32, 
35, 37,47). These salticids move around and attack large prey from the rear, 
but attack small prey from any orientation. Prey that is stationary or moving 
only slowly is stalked slowly, but rapidly moving prey is chased. 

Observations of the predatory behavior of Phidippus spp. suggest that prey- 
specific predatory behavior may be more common than previously supposed. 
Perhaps when we compare salticids interspecifically, the question to ask is not 
whether the species exhibits predatory versatility, but instead how pronounced 
that versatility is. The same lesson may apply to the individual behavioral 
flexibility demonstrated by the detours taken by Portia spp. to reach prey. 
Phidippus spp. have not been seen to undertake detours as long as those of 
Portia spp. However, the length of Portia’s detours makes sense as a hunting 
strategy against web-building spiders, because these are sedentary victims. An 
active insect is unlikely to stay put long enough to allow for a long detour, 
but Phidippus spp. do undertake short detours to reach insect prey (45). A 
common European insectivorous salticid, Evarcha blancardi, also takes short 
detours to reach prey (42), which suggests that detouring may be a widespread 
ability in the salticids. 

Whether Phidippus spp. undertake longer detours when the prey are web- 
building spiders has not been tested. This question is appropriate because 
Phidippus spp. are, in fact, web-invading araneophagic spiders (90, 119). 
However, rather than practice aggressive mimicry like Portia spp., Phidippus 
spp. leap into the web to catch the spider. Similar leaping attacks on web- 
building spiders may be widespread among salticids (9, 27, 51, 56-58, 113). 

Givens (38) demonstrated that P. audax males feed less often and take 
smaller prey than do females. Portia spp. appear to exhibit a similar male-fe- 
male trend (73), which may be widespread in the Salticidae. 

PREDATORY STRATEGY OF MYRMARACHNE 

Mymrachne is a large genus of predominantly tropical ant-like species (121). 
Generally these species do not eat ants, but instead, like the majority of 
salticids, feed on a wide range of arthropod prey. However, their prey-catching 
methods are unusual (54, 87). 

In a typical predatory sequence, a Mymarachne spider runs up to the prey, 
taps it with the first pair of legs, then attacks it by lunging rather than leaping 
(54, 87). These sequences are unique among salticids that have been studied 
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(1 12) and appear especially appropriate for an ant-mimicking species because, 
by adopting this style of predation, the spider can usually capture prey with 
only a minor disruption in its ant-like walking gait. Ants often tap each other 
and other animals with their antennae, and Myrmuruchne spp. may tap their 
prey to maintain Batesian mimicry (21) during predatory sequences: If Myr- 
maruchne spp. did not tap their prey, the spiders’ predators might more readily 
recognize them. However, is there a cost? Does tapping alert potential prey or 
give them an opportunity to flee before being attacked? 

How serious the disadvantage of warning the prey might be to Myrmuruchne 
spp. probably varies considerably with the type of prey, and this variation may 
have influenced the natural diet of Mymruchne spp. These spiders apparently 
feed on a wide range of arthropod prey, including other salticids, but they seem 
to prefer insects that are slow to take flight, such as moths (87). Interestingly, 
whether tapping alarms the prey is not clear. It may even have a calming effect. 
Moths, and even salticids, sometimes stay more or less stationary when tapped 
by Myrmuruchne spp. 

Mymruchne spp. also feed on a prey item that cannot flee-the eggs of 
other spiders. G. l a n k  and Portia, Breffus, and Cyrbu spp. also eat spider 
eggs. Myrmuruchne adults get at eggs by using their fangs to tear open nests 
of cursorial spiders, especially those of other salticids, including other Myr- 
muruchne spp. Small juveniles of Myrmuruchne spp. enter nests of other 
spiders and feed on eggs one at a time (54, 87). This tactic is also used by 
adults of Phyuces comosus ( 5 3 ,  a minute, highly cryptic salticid from Sri 
Lanka. Other salticid species feed on insect eggs (43, 44, 88, 103, 104, 125, 
127). Nectar is another stationary, but energy-rich, salticid food source (22, 
108, 1 1  1; SD Pollard & RR Jackson, unpublished data). 

SEXUAL DIMORPHISM AND TRADE-OFFS BETWEEN 
MATING AND PREDATORY STRATEGIES IN 
MYRMARACHNE AND PORTIA 

In salticids, as in insects (1 18), intrasexual competition for access to potential 
mates has probably been the primary selection pressure responsible for the 
evolution of secondary sexual characteristics in males. In males of Myrma- 
ruchne spp., we find some of the most dramatic examples of these often bizarre 
and, from the perspective of survival, incongruous features, which are usually 
exaggerated forms of structures found on conspecific females. 

In Myrmuruchne plufuleoides, one of the most sexually dimorphic species 
in this genus, the differences in male and female predatory behavior can be 
attributed to enlarged chelicerae in males (109, 110). In this species, the 
female’s chelicerae hang down at right angles to the horizontal plane, as in 
most salticids. The male’s chelicerae are about five times longer than the 
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female’s and project forward, parallel with the body’s horizontal plane. 
During intrasexual conflict, males first spread apart the elongated basal 
segments of their chelicerae to expose their extra-long fangs, then approach, 
make contact, and push against each other in contests of strength, as described 
in detail in another sexually dimorphic Myrmurachne species, M .  lupata (50). 
The male and female M. plataleoides are both convincing mimics of weaver 
ants (Oecophylla smaragdina). Juvenile M .  plataleoides males have short 
chelicerae like those of females. During the final molt, the male emerges 
sexually mature, equipped with fully elongated chelicerae (102). Mature 
females and juveniles of both sexes are armed with venom-injecting glands, 
but the male’s fangs have no openings (109, 110). The venom glands are at 
the base of each chelicera, close to the spider’s eyes, and in males, a 
continuous duct from there to the tips of the fangs would have to be about 
five times longer than the ducts in females. Even if the male could organize 
an intact duct of this length in its final molt, it is unlikely that it could 
generate, by squeezing the venom glands, sufficient pressure to eject venom 
from the distant fang tips. 

M. plataleoides males have apparently made evolutionary adjustments in 
prey capture to compensate for the inability to envenomate. Unlike females, 
males hold prey down while making repeated stabs with the long fangs. This 
method is less effective than the female’s venom-based style of prey capture, 
and many prey manage to escape before males can stab them to death (54, 
87). In addition, the modified male chelicerae reduce the effectiveness of 
feeding on captured prey. M. plataleoides females puncture prey with their 
fangs, then suck nutrients out from the holes. However, the male’s long fangs 
push through both sides of the prey’s body so that the tips point back into the 
spider’s mouth. The male then sucks from the large holes in its skewered prey. 
Potential nutrients can leak out of the prey’s body, and the viscera that remain 
in place increase in viscosity through evaporative fluid loss (see 107). Conse- 
quently, males take longer to feed compared with females and extract less food 
(SD Pollard, unpublished data). 

Although M .  plataleoides males are less efficient than females at catching 
active prey, they appear as efficient at oophagy (87). In fact, the male’s large 
chelicerae might be an asset when it removes silk from egg sacs and reaches 
into the nest for the eggs. 

The elongated chelicerae of males of Mymarachne spp. have apparently 
not jeopardized their ability to mimic ants. M. plataleoides is especially 
interesting. Weaver ant colonies have major workers that forage and minor 
workers that care for the eggs and larvae inside the nest. Major workers 
commonly carry minors from one subnest to another by holding the smaller 
ants’ abdomens in their mandibles. The minor worker being carried holds its 
legs against the side of its body (46). Remarkably, the M. plataleoides male, 
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with chelicerae that simulate the minor worker, closely resembles this duo. 
The ability of M .  plataleoides males to maintain the illusion of being ant-like, 
by mimicking ants carrying nest mates, may have facilitated evolution of 
large chelicerae. In fact, M .  plataleoides may be only an extreme example 
of how Myrmarachne males generally resemble ants carrying nest mates, 
food, or other objects. 

The behavior of ant-eating salticids (see above) supports this hypothesis. 
These salticids prefer to attack ants that are carrying something in their 
mandibles (RR Jackson & SD Pollard, unpublished data), presumably be- 
cause such ants cannot readily use their mandibles for defense. Also, the 
ant-eating salticids more readily stalk Myrmarachne males than females, 
which suggests that the ant-hunters initially mistake Mymzarachne males for 
ants with occupied mandibles. Stalked Myrmarachne spp. of both sexes, 
however, usually escape unharmed because, by briefly displaying to the 
ant-hunter, they communicate that they are really salticids and risky prey to 
attack. 

Perhaps not only secondary, but also primary sexual characters have had 
evolutionary effects on the foraging behavior of salticid males. In spiders, 
the males’ palps, being gonopods (Le. primary sexual structures, or genitalia), 
are considerably enlarged compared with the females’ palps (29). Palps of 
salticid males may also have secondary characters-onspicuous hairs and 
markings that are absent from the females’. In Queensland P. fimbriata, the 
males’ palps appear to have a foraging cost in relation to cryptic stalking, 
the tactic by which this population of Portia catches cursorial salticids (72). 
Cryptic stalking depends primarily on concealment, and one of its consistent 
components is for P. fimbriata to pull back its palps so that their outlines 
blur into the contours of the body. However, the male of the Queensland P. 
fimbriata is less effective at catching salticids, apparently because his en- 
larged palps reveal him as a predator to his visually competent prey. 
Moreover, in experiments where the males’ palps were removed, their capture 
efficiency became indistinguishable from that of females (SD Pollard & RR 
Jackson, unpublished data). Evidently, in this population of Portia, primary 
sexual characters compromise a predatory tactic. We know the secondary 
characters (i.e. markings) are not responsible for the males’ failures because 
juvenile males, which have enlarged palps but not the markings, are also 
less effective than females (adult and juvenile) at catching salticids. Also, 
primary sexual characters are usually not exaggerated sufficiently to have 
costs comparable to those of secondary sexual characters (20). However, a 
combination of the spider’s method of sperm transfer, the relation of in- 
tersexual selection in salticids to visual displays, and the acute vision of both 
the cryptically stalking predator and its prey appears to have resulted in a 
unique adaptive trade-off in males of Queensland P. $mbriata. 
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CUES FOR PREDATORY DECISIONS 

The cues typical salticids use for distinguishing between their insect prey and 
other objects such as mates, rivals, enemies, and irrelevant stimulation have 
been investigated extensively. Shape, symmetry, presence of legs and wings, 
size, and style of motion (short, jerky movements) are some of the more 
important features by which these salticids appear to recognize their prey (12, 
18, 23, 32, 34,42). Appreciating predatory versatility forces us to go beyond 
the question of how the salticid recognizes prey, but for salticids with complex 
predatory strategies, we have little information about the cues that influence 
the different components of the strategy. Most of what we know concerns the 
cues that govern Portia’s decisions about whether to enter a web, whether to 
make signals once in a web, and whether to persist at signaling (70). 

In eliciting web entry, visual cues are effective, but volatile chemicals from 
the web are not. Seeing a spider in a web increases Portia’s inclination to enter 
the web. After web entry, cues from webs of prey spiders are sufficient to 
elicit signaling behavior, even in the absence of other cues coming directly 
from the prey. In contrast, volatile chemical cues from prey spiders are not 
important. Once Portia is on a web and signaling, seeing a moving spider and 
detecting vibrations on the web encourage it to persist in signaling. On the 
basis of visual cues alone, Portia can distinguish between quiescent spiders, 
insects, and eggsacs (70). 

These studies of cues highlight how far we remain from fully understanding 
the functioning of the salticid visual system. Although salticid eyes are large 
and complex for a spider, this animal is no primate (95). The principal eye 
lens is only a few millimeters in diameter. The numbers of receptors in the 
salticid eye and neurons in the salticid brain are limited. How so small a visual 
system, with so few components, can perform these perceptual feats is cur- 
rently a mystery. 
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