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Abstract. The competitive MNIST handwritten digit recognition bench-
mark has a long history of broken records since 1998. The most recent
advancement by others dates back 8 years (error rate 0.4%). Good old
on-line back-propagation for plain multi-layer perceptrons yields a very
low 0.35% error rate on the MNIST handwritten digits benchmark with
a single MLP and 0.31% with a committee of seven MLP. All we need to
achieve this until 2011 best result are many hidden layers, many neurons
per layer, numerous deformed training images to avoid overfitting, and
graphics cards to greatly speed up learning.
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Note: This work combines three previously published papers [1-3].

1 Introduction

Automatic handwriting recognition is of academic and commercial interest. Cur-
rent algorithms are already pretty good at learning to recognize handwritten dig-
its. Post offices use them to sort letters; banks use them to read personal checks.
MNIST [4] is the most widely used benchmark for isolated handwritten digit
recognition. More than a decade ago, artificial neural networks called Multilayer
Perceptrons or MLPs [5-7] were among the first classifiers tested on MNIST.
Most had few layers or few artificial neurons (units) per layer [4], but apparently
back then they were the biggest feasible MLPs, trained when CPU cores were at
least 20 times slower than today. A more recent MLP with a single hidden layer
of 800 units achieved 0.70% error [8]. However, more complex methods listed on
the MNIST web page always seemed to outperform MLPs, and the general trend
went towards more and more complex variants of Support Vector Machines or
SVMs [9] and combinations of NNs and SVMs [10] etc. Convolutional neural
networks (CNNs) achieved a record-breaking 0.40% error rate [8], using novel

3 http://yann.lecun.com/exdb/mnist/



elastic training image deformations. Recent methods pre-train each hidden CNN
layer one by one in an unsupervised fashion (this seems promising especially for
small training sets), then use supervised learning to achieve 0.39% error rate
[11,12]. The biggest MLP so far [13] also was pre-trained without supervision,
then piped its output into another classifier to achieve an error of 1% without
domain-specific knowledge. Deep MLPs initialized by unsupervised pretraining
were also successfully applied to speech recognition [14].

Are all these complexifications of plain MLPs really necessary? Can’t one
simply train really big plain MLPs on MNIST? One reason is that at first glance
deep MLPs do not seem to work better than shallow networks [15]. Training
them is hard as back-propagated gradients quickly vanish exponentially in the
number of layers [16-18], just like in the first recurrent neural networks [19]. In-
deed, previous deep networks successfully trained with back-propagation (BP)
either had few free parameters due to weight-sharing [4, 8] or used unsupervised,
layer-wise pre-training [20, 15, 11]. But is it really true that deep BP-MLPs do
not work at all, or do they just need more training time? How to test this? Un-
fortunately, on-line BP for hundreds/thousands of epochs on large MLPs may
take weeks or months on standard serial computers. But can’t one parallelize it?
Well, on computer clusters this is hard due to communication latencies between
individual computers. Parallelization across training cases and weight updates
for mini-batches [21] might alleviate this problem, but still leaves the task of
parallelizing fully online-BP. Only GPUs are capable of such fine grained par-
allelism. Multi-threading on a multi-core processor is not easy either. We may
speed up BP using SSE (Streaming Single Instruction, Multiple Data Exten-
sions), either manually, or by setting appropriate compiler flags. The maximum
theoretical speedup under single precision floating-point, however, is four, which
is not enough. And MNIST is large - its 60,000 images take almost 50MB, too
much to fit in the L2/L3 cache of any current processor. This requires to con-
tinually access data in considerably slower RAM. To summarize, currently it is
next to impossible to train big MLPs on CPUs.

We showed how to overcome all these problems by training large, deep MLPs
on graphics cards [1] and obtained an error rate of 0.35% with a deep MLP. Defor-
mations proved essential to prevent MLPs with up to 12 million free parameters
from overfitting. To let the deformation process keep up with network training
speed we had to port it onto the GPU as well.

At some stage in the classifier design process one usually has collected a set
of possible classifiers. Often one of them yields best performance. Intriguingly,
however, the sets of patterns misclassified by the different classifiers do not nec-
essarily overlap. This information could be harnessed in a committee. In the
context of handwritten recognition it was already shown [22] how a combination
of various classifiers can be trained more quickly than a single classifier yield-
ing the same error rate. Here we focus on improving recognition rate using a
committee of MLP. Our goal is to produce a group of classifiers whose errors on
various parts of the training set differ (are uncorrelated) as much as possible [23].



We show that for handwritten digit recognition this can be achieved by training
identical classifiers on data normalized in different ways prior to training.

2 Data

MNIST consists of two datasets, one for training (60,000 images) and one for
testing (10,000 images). Many studies divide the training set into two sets con-
sisting of 50,000 images for training and 10,000 for validation. Our network is
trained on slightly deformed images, continually generated in on-line fashion;
hence we may use the whole un-deformed training set for validation, without
wasting training images. Pixel intensities of the original gray scale images range
from 0 (background) to 255 (max foreground intensity). 28 x 28 = 784 pixels per
image get mapped to real values M‘w — 1.0 in [-1.0,1.0], and are fed
into the NN input layer.

3 Architectures

We train 5 MLPs with 2 to 9 hidden layers and varying numbers of hidden units.
Mostly but not always the number of hidden units per layer decreases towards
the output layer (Table 3). There are 1.34 to 12.11 million free parameters (or
weights, or synapses).

We use standard on-line BP [24] , without momentum, but with a variable
learning rate that shrinks by a multiplicative constant after each epoch, from
1073 down to 1075, Weights are initialized with a uniform random distribution
in [—0.05, 0.05]. Each neuron’s activation function is a scaled hyperbolic tangent:
y(a) = Atanh Ba, where A = 1.7159 and B = 0.6666 [4], and a softmax output
layer is used. Weight initializaiton and annealing rate are not overly important
as long as sensible choices are made.

4 Deforming images to get more training instances

So far, the best results on MNIST were obtained by deforming training im-
ages [8], thus greatly increasing their number. This allows for training networks
with many weights without overfitting. We combine affine (rotation, scaling and
horizontal shearing) and elastic deformations (Figure 1), characterized by the
following real-valued parameters:

— o and a: for elastic distortions emulating uncontrolled oscillations of hand
muscles [8];

— B: a random angle from [—j,40] describes either rotation or horizontal
shearing. In case of shearing, tan 5 defines the ratio between horizontal dis-
placement and image height;

— Yz, 7Yy: for horizontal and vertical scaling, randomly selected from [1 —
~/100,1 + ~/100].
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Fig. 1. Original digit (top) and distorted digits (bottom). The digit was distorted with
four different displacement fields shown in the middle.
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Each affine deformation is fully defined by the corresponding real-valued pa-
rameter that is randomly drawn from a uniform interval. Building the elastic
deformation field on the other hand consists of three parts: 1) create an initial
random distortion vector field, 2) smooth the random distortion field by con-
volving it with a Gaussian kernel defined by a standard deviation o, and 3) scale
the smoothed deformation field with «, the elastic scaling parameter.

At the beginning of every epoch the entire original MNIST training set gets
deformed. Initial experiments with small networks suggested the following de-
formation parameters: ¢ = 5.0 — 6.0, & = 36.0 — 38.0, v = 15 — 20. Since digits
1 and 7 are similar they get rotated/sheared less (8 = 7.5°) than other digits
(8 =15.0°).

It takes 83 CPU seconds to deform the 60,000 MNIST training images, most
of them (75 seconds) for elastic distortions. Only the most time-consuming part
of the latter—convolution with a Gaussian kernel—is ported to the GPU. The
MNIST training set is split into 600 sequentially processed minibatches of 100
samples each. MNIST digits are scaled from the original 28 x 28 pixels to 29 x 29
pixels, to get a proper center, which simplifies convolution. Each batch grid
(10 x 10 images) has 290 x 290 cells, zero-padded to 310 x 310, thus avoiding
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Fig. 2. Mapping the thread grid of convolution onto the distortion field.

margin effects when applying a Gaussian convolution kernel of size 21 x 21. The
GPU program groups many threads into a block, where they share the same
Gaussian kernel and parts of the random field. All 29 x 290 blocks contain 21
(the kernel size) x10 threads, each computing a vertical strip of the convolution
(Figure 2). Generating the elastic displacement field takes only 1.5 seconds.
Deforming the whole training set is more than 10 times faster, taking 6.5 instead
of the original 83 seconds. Further optimizations would be possible by porting all
deformations onto GPU, and by using the hardware’s interpolation capabilities
to perform the final bilinear interpolation. We omitted these since deformations
are already pretty fast (deforming all images of one epoch takes only 3-10 % of
total computation time, depending on MLP size).

5 Forming a Committee

The training procedure of a single network of the committee is summarized in
Figure 3. Each network is trained separately on normalized or original data.
The normalization is done for all digits in the training set prior to training
(normalization stage). For the network trained on original MNIST data the nor-
malization step is omitted. Normalization of the original MNIST data is mainly
motivated by practical experience. MNIST digits are already normalized such
that the width or height of the bounding box equals 20 pixels. The variation of
the aspect ratio for various digits is quite large, and we normalize the width of
the bounding box to range from 10 to 20 pixels with a step-size of 2 pixels prior
to training for all digits except ones. Normalizing the original MNIST training
data results in 6 normalized training sets. In total we perform experiments with
seven different data sets (6 normalized and the original MNIST).
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Fig. 3. Training a committee member. Original MNIST training data (left digit) is
normalized (W10) prior to training (middle digit). The normalized data is distorted
(D) for each training epoch and used as input (right digit) to the network (NN). Each
depicted digit represents the whole training set.

We perform six experiments to analyze performance improvements due to
committees. Each committee consists of seven randomly initialized one-hidden-
layer MLPs with 800 hidden units, trained with the same algorithm on randomly
selected batches. The six committees differ only in how the data are normalized
(or not) prior to training and on how the data are deformed during training.
The committees are formed by simply averaging the corresponding outputs as
shown in Figure 4.
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Fig. 4. Testing with a committee. If required, the input digits are width-normalized
(W blocks) and then processed by the corresponding MLP. The committee is formed
by averaging the outputs of all MLPs.

The first two experiments are performed on undeformed original MNIST
images. We train a committee of seven MLPs on original MNIST and we also
form a committee of MLPs trained on normalized data. In Table 1 the error
rates are listed for each of the individual nets and the committees. The improve-
ment of the committee with respect to the individual nets is marginal for the



first experiment. Adding normalization, the individual experts as well as the
corresponding committee of the second experiment achieve substantially better
recognition rates.

Table 1. Error rates of individual nets and of the two resulting committees. For ex-
periment 1 seven randomly initialized nets are trained on the original MNIST, whereas
for experiment 2 seven randomly initialized nets are trained on width-normalized data:
WN z - Width Normalization of the bounding box to be x pizels wide; ORIG - original
MNIST.

Error rate [%]
Exp. 1 Exp. 2

Net 1: init 1: 1.79|WN 10: 1.62
Net 2: init 2: 1.80/WN 12: 1.37
Net 3: init 3: 1.77|WN 14: 1.48
Net 4: init 4: 1.72|WN 16: 1.53
Net 5: init 5: 1.91|WN 18: 1.56
Net 6: init 6: 1.86|WN 20: 1.49
Net 7:  ||init 7: 1.75|ORIG: 1.79
Average: 1.70 1.31

To study the combined effect of normalization and deformation, we perform
four additional experiments on deformed MNIST (Tab. 2). Unless stated other-
wise, default elastic deformation parameters ¢ = 6 and a = 36 are used. All ex-
periments with deformed images use independent horizontal and vertical scaling
of maximum 12.5% and a maximum rotation of +12.5°. Experiment 3 is similar
to Experiment 1, except that the data are continually deformed. Error rates of
the individual experts are much lower than without deformation (Tab. 1). In
experiment 4 we randomly reselect training and validation sets for each of the
individual experts, simulating in this way the bootstrap aggregation technique
[25]. The resulting committee performs slightly better than that of experiment
3. In experiment 5 we vary deformations for each individual network. Error rates
of some of the nets are bigger than in experiments 3 and 4, but the resulting
committee has a lower error rate. In the last experiment we train seven MLPs
on width-normalized images that are also continually deformed during training.
The error rate of the committee (0.43 %) is the best result ever reported for
such a simple architecture. We conclude that width-normalization is essential
for good committee performance, i.e. it is not enough to form a committee from
trained nets with different initializations (experiment 3) or trained on subsets of
the original dataset (experiment 4).

6 Using the GPU to train deep MLPs

Using simple tricks, such as creating a virtually infinite amount of training data
through random distortions at the beginning of every epoch and forming a com-



Table 2. Error rates of the individual nets and of the resulting committees. In ex-
periments 8 and 4 seven randomly initialized mets are trained on deformed (o = 6,
a = 36) MNIST, whereas in experiment 4 training and validation sets are reselected.
In experiment 5 seven randomly initialized nets are trained on deformed (different o,
a) MNIST, and in experiment 6 seven randomly initialized nets are trained on width-
normalized, deformed (0 = 6, o = 36) MNIST. WN z - Width Normalization of the
bounding box to be x pizels wide; ORIG - original MNIST.

Error rate [%]
Exp. 3 Exp. 4 Exp. 5 Exp. 6

Net 1: init 1:| 0.72 | 0.68 [|c = 4.5 a = 36: 0.69|WN 10: 0.64
Net 2: init 2:| 0.71 | 0.82 ||c = 4.5 a = 42: 0.94|WN 12: 0.78
Net 3: ||init 3:| 0.72 | 0.73 ||c = 6.0 a = 30: 0.55|WN 14: 0.70
Net 4: init 4:| 0.71 | 0.69 [|c = 6.0 o = 36: 0.72|WN 16: 0.60
Net 5: ||init 5:| 0.62 | 0.71 ||c = 6.0 a = 42: 0.60|WN 18: 0.59
Net 6: ||init 6:| 0.65 | 0.70 |[c = 7.5 a = 30: 0.86|WN 20: 0.70
Net 7: ||init 7:| 0.69 | 0.75 |jc = 7.5 a = 36: 0.79|ORIG: 0.71
Average: 0.56 | 0.53 0.49 0.43

mittee of experts trained on differently preprocessed data, state-of-the art results
are obtained on MNIST with a relatively small (800 hidden units) single hidden
layer MLP. Here we report results using deep MLPs, with as many as 5 hidden
layers and up to 12 millions of free parameters, that are prohibitive to train on
current CPUs but can successfully be trained on GPUs in a few days. All sim-
ulations were performed on a computer with a Core i7 920 2.66GHz processor,
12GB of RAM, and a GTX 480 graphics card. The GPU accelerates the defor-
mation routine by a factor of 10 (only elastic deformations are GPU-optimized);
the forward propagation (FP) and BP routines are sped up by a factor of 50.
We pick the trained MLP with the lowest validation error, and evaluate it on
the MNIST test set.

6.1 Single MLP

We train various MLP and summarize the results in Table 3. Training starts
with a learning rate of 102 multiplied with 0.997 after every epoch until it
reaches 1079, thus resulting in more than 2000 epochs, which can be computed
in a few days even for the biggest net. The best network has an error rate of
only 0.35% (35 out of 10,000 digits). This is better than the best previously
published results, namely, 0.39% [11] and 0.40% [8], both obtained by more
complex methods. The 35 misclassified digits are shown in Figure 5a. Many of
them are ambiguous and/or uncharacteristic, with obviously missing parts or
strange strokes etc. Interestingly, the second guess of the network is correct for
30 out of the 35 misclassified digits. The best test error of this MLP is even
lower (0.32%) and may be viewed as the maximum capacity of the network, i.e.
what it can learn if we do not get the result for the lowest error on validation



set. Performance clearly profits from adding hidden layers and more units per
layer. For example, network 5 has more but smaller hidden layers than network
4 (Table 3).

Networks with up to 12 million weights can successfully be trained by plain
gradient descent to achieve test errors below 1% after 20-30 epochs in less than
2 hours of training. How can networks with so many parameters generalize well
on the unseen test set? Answer: the continual deformations of the training set
generate a virtually infinite supply of training examples, and the network rarely
sees any training image twice. Without any distortions, the error for all networks
is around 1.7-1.8% (last column in Table 3).

Table 3. Error rates on MNIST test set. Architecture: 841 input neurons, hidden layers
containing 2500, 2000, 1500, 1000 and 500 neurons, and 10 outputs. TEfBV - test error
for best validation, BTE - best test error.

ID architecture TEfBV BTE simulation weights test error [%)]
(number of neurons in each layer)| [%] [%] time [h] [millions] no distortion

1 1000, 500, 10 0.49 0.44 23.4 1.34 1.78

2 1500, 1000, 500, 10 0.46 0.40 442 3.26 1.85

3 2000, 1500, 1000, 500, 10 0.41 0.39 66.7 6.69 1.73

4 | 2500, 2000, 1500, 1000, 500, 10 | 0.35 0.32 114.5 12.11 1.71

5 9 x 1000, 10 0.44 0.43 107.7 8.86 1.81
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Fig. 5. The misclassified digits, together with the two most likely predictions (bottom,
from left to right) and the correct label according to MNIST (top, right): (a) the best
network from Table 3. (b) the committee from Table 4.



6.2 Committee of MLP

Here we list results of a committee of MLP with the architecture that obtained
0.35% error rate on MNIST (841 neurons in the input layer, five hidden layers
containing 2500, 2000, 1500, 1000 and 500 neurons, and 10 outputs). We train
six additional nets with the same architecture on normalized data (the width of
the digits is normalized prior to training) and form a committee by averaging the
predictions of the individual nets (Table 4). The width-normalization is essential
for good committee performance as shown in Section 5. All committee members
distort their width-normalized training dataset before each epoch.

Table 4. Error rates of the individual nets and of the resulting committee. Archi-
tecture: 841 input neurons, hidden layers containing 2500, 2000, 1500, 1000 and 500
neurons, and 10 outputs. WN x—Width Normalization of the bounding box to be x
pixels wide.

WN 10 | 12 | 14 | 16 | 18 | 20 |[ORIGINAL MNIST
test error [%]  [0.52|0.45|0.44|0.49/0.36|0.38 0.35
committee error [%] 0.31

Interestingly, the error of the extremely simple committee (0.31%) is lower
than those of the individual nets. This is the best result ever reported on MNIST
using MLP. Many of the 31 misclassified digits (Figure 5b) are ambiguous and/or
uncharacteristic, with obviously missing parts or strange strokes etc. Remark-
ably, the committee’s second guess is correct for 29 of the 31.

Discussion

In recent decades the amount of raw computing power per Euro has grown by
a factor of 100-1000 per decade. Our results show that this ongoing hardware
progress may be more important than advances in algorithms and software (al-
though the future will belong to methods combining the best of both worlds).
Current graphics cards (GPUs) are already more than 50 times faster than stan-
dard microprocessors when it comes to training big and deep neural networks
by the ancient algorithm, on-line back-propagation (weight update rate up to
7.5x10%/s, and more than 10'® per trained network). On the competitive MNIST
handwriting benchmark, single precision floating-point GPU-based neural nets
surpass all previously reported results, including those obtained by much more
complex methods involving specialized architectures, unsupervised pre-training,
combinations of machine learning classifiers etc. Training sets of sufficient size
to avoid overfitting are obtained by appropriately deforming images. Of course,
the approach is not limited to handwriting, and obviously holds great promise
for many visual and other pattern recognition problems.



Although big deep MLP are very powerful general classifiers when combined
with an appropriate distortion algorithm to enhance the training set, they cannot
compete with dedicated architectures such as max-pooling convolutional neural
networks on complex image classification problems. For tasks more difficult than
handwritten digit recognition MLP are not competitive anymore, both in clas-
sification performance and required training time. We have recently shown [26]
that large convolutional neural networks combined with max-pooling [27] im-
prove the state-of-the-art by 30-80% for a plethora of benchmarks like Latin
letters [28], Chinese characters [26], traffic signs [29, 30], stereo projection of 3D
models [31,26] and even small natural images [26].

Acknowledgments

Part of this work got started when Dan Ciresan was a PhD student at Univer-
sity ”Politehnica” of Timigoara. He would like to thank his PhD advisor, Stefan
Holban, for his guidance, and Razvan Mosincat for providing a CPU frame-
work for MNIST. This work was partially supported by the Swiss Commission
for Technology and Innovation (CTI), Project n. 9688.1 IFF: Intelligent Fill in
Form., and by a FP7-ICT-2009-6 EU Grant, Project Code 270247: A Neuro-
dynamic Framework for Cognitive Robotics: Scene Representations, Behavioral
Sequences, and Learning.

Appendix - GPU implementation

Graphics Processing Unit

Until 2007 the only way to program a GPU was to translate the problem-solving
algorithm into a set of graphical operations. Despite being hard to code and
difficult to debug, several GPU-based NN implementations were developed when
GPUs became faster than CPUs. Two layer MLPs [32] and CNNs [33] have been
previously implemented on GPUs. Although speedups were relatively modest,
these studies showed how GPUs can be used for machine learning. More recent
GPU-based CNNs trained in batch mode are two orders of magnitude faster
than CPU-based CNNs [27].

The GPU code is written using CUDA (Compute Unified Device Architec-
ture), a C-like general programming language. GPU speed and memory band-
width are vastly superior to those of CPUs, and crucial for fast MLP implemen-
tations. To fully understand our algorithm in terms of GPU / CUDA, please
visit the NVIDIA website [34]. According to CUDA terminology, the CPU is
called host and the graphics card device or GPU.

Deformations

Only the most time-consuming part of the latter — convolution with a gaussian
kernel [8] — is ported to the GPU. The MNIST training set is split into 600



sequentially processed batches. MNIST digits are scaled from the original 28 x 28
pixels to 29 x 29 pixels, to get a proper center, which simplifies convolution. An
image grid has 290 x 290 cells, zero-padded to 300 x 300, thus avoiding margin
effects when applying a Gaussian convolution kernel of size 21 x 21.

Our GPU program groups many threads into a block, where they share the
same gaussian kernel and parts of the random field. The blocks contain 21 (the
kernel size) x10 threads, each computing a vertical strip of the convolution
operation (Listing 1.1).

Training algorithm

We closely follow the standard BP algorithm [24], except that BP of deltas and
weight updates are disentangled and performed sequentially. This allows for more
parallelism within each routine.

Forward propagation

The algorithm is divided into two kernels. The weight matrix W is partitioned
as illustrated in Figure 6.
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Fig. 6. Forward propagation: a) mapping of kernel 1 grid onto the padded weight
matrix; b) mapping the kernel 2 grid onto the partial dot products matrix; ¢) output
of forward propagation.

Kernel 1

Each block has 256 threads (Figure 6a), each computing a partial dot product
of 32 component vectors. The dot products are stored in a temporary matrix
(Figure 6b). This kernel has a very high throughput: average memory bandwidth
is 115GB/s. This is possible because many relatively small blocks keep the GPU



busy. Each block uses shared memory for storing the previous layer activations,
which are simultaneously read by the first 32 threads of each block and then
used by all 256 threads. After thread synchronization, the partial dot products
are computed in parallel (Listing 1.2). The number of instructions is kept to a
minimum by pre-computing all common index parts.

Kernel 2

The thread grid (Figure 6b) has only one row of blocks consisting of warp
threads, since each thread has to compute a complete dot product (Figure 6¢)
and then pipe it into the activation function. This kernel (Listing 1.2) is ineffi-
cient for layers with fewer than 1024 incoming connections per neuron, especially
for the last layer which has only ten neurons, one for each digit. That is, its grid
will have only one block, occupying only 6% of the GTX 480 GPU.

Backward propagation

This is similar to FP, but we need W7 for coalesced access. Instead of transpos-
ing the matrix, the computations are performed on patches of data read from
device memory into shared memory, similar to the optimized matrix transposi-
tion algorithm of [35]. Shared memory access is much faster, without coalesc-
ing restrictions. Because we have to cope with layers of thousands of neurons,
back-propagating deltas uses a reduction method implemented in two kernels
communicating partial results via global memory (Listing 1.3).

Kernel 1 The bi-dimensional grid is divided into blocks of warp (32) threads.
The kernel starts by reading a patch of 32 x 32 values from W. The stride of
the shared memory block is 33 (warp + 1), thus avoiding all bank conflicts
and significantly improving speed. Next, 32 input delta values are read and all
memory locations that do not correspond to real neurons (because of vertical
striding) are zero-padded to avoid branching in subsequent computations. The
number of elements is fixed to warp size, and the computing loop is unrolled for
further speedups. Before finishing, each thread writes its own partial dot product
to global memory.

Kernel 2

This kernel completes BP of deltas by summing up partial deltas computed
by the previous kernel. It multiplies the final result by the derivative of the
activation function applied to the current neuron’s state, and writes the new
delta to global memory.

Weight updating

The algorithm (Listing 1.4) starts by reading the appropriate delta, and pre-
computes all repetitive expressions. Then the first 16 threads read the states from
global memory into shared memory. The “bias neuron” with constant activation
1.0 is dealt with by conditional statements, which could be avoided through
expressions containing the conditions. Once threads are synchronized, each single
thread updates 16 weights in a fixed unrolled loop.



Listing 1.1. Convolution Kernel for elastic distortion.

__global__ void ConvolveField(float *randomfield, int width, int height, float x
kernel, float xoutputfield, float elasticScale){

float sum=0;

const int stride k=GET_STRIDE(GAUSSIAN_FIELD_SIZE,pitch_x>>2);
//stride for gaussian kernel

_shared__ float K[GAUSSIAN_FIELD_SIZE][stride k]; //kernel (21 z 32
values)

_shared__ float R[GAUSSIAN_FIELD_SIZE+9][GAUSSIAN_FIELD_SIZE]|;
//random field (30 x 21 values)

_shared__ float s[10][GAUSSIAN_FIELD_SIZE];  //partial sums (10 z 21
values)

int stride_in=GET_STRIDE(width,pitch_x>>2); //random field stride
as a multiple of 32

int stride_.out=GET_STRIDE(width—GAUSSIAN_FIELD_SIZE+1,pitch_x
>>2); //output stride as a multiple of 32

//loading gaussian kernel into K (21 z 21 values)

K[ O+threadIdx.y][threadldx.x] = kernel[( O+threadldx.y)s*stride k +
threadldx.x]; //rows 0..9

K[10+threadIdx.y][threadIdx.x] = kernel[(10+threadIdx.y)*stride_k +
threadldx.x];//rows 10..19

if(threadIdx.y==0)

K[20+threadIdx.y|[threadldx.x] = kernel[(20+threadldx.y)*stride_k
+ threadldx.x];//row 20

//loading randomfield into R

//0..9 z 21 values

R[ 0+threadldx.y][threadldx.x] = randomfield[(10xblockldx.y+ 0+threadldx.
y)*stride_in + blockldx.x + threadIdx.x];

//10..19 z 21 values

R[10+threadldx.y][threadldx.x] = randomfield[(10«blockIdx.y+10+
threadIdx.y)=stride_in + blockIdx.x + threadldx.x];

//20..29 z 21 values

R[20+threadldx.y][threadldx.x] = randomfield[(10«blockIdx.y+20+
threadldx.y)=stride_in + blockldx.x + threadldx.x];

__syncthreads(); //wait until everything is read into shared memory

//computing partial sums
#pragma unroll 21 //GAUSSIAN_FIELD_SIZE
for(int i=0;i<GAUSSIAN_FIELD_SIZE;i++)
sum += R[threadldx.y + i][threadldx.x] * K[i][threadIdx.x];
s[threadIdx.y][threadldx.x]=sum;
__syncthreads();

if(threadIdx.x==0){ //the first column of threads computes the final values
of the convolutions
#pragma unroll 20//GAUSSIAN_FIELD_SIZE— 1
for(int i=1;i< GAUSSIAN_FIELD_SIZE;i++) sum+=s[threadldx.y]
i;
outputfield[(blockIdx.y+10+threadldx.y)=stride_out + blockldx.x] =
sum * elasticScale;



Listing 1.2. Forward propagation kernels.

__global__ void MLP_FP _reduction_Kernell(float *prevLN, float «W, float x
partialsum, unsigned int neurons, unsigned int prevneurons){
const int threads=256;
const int stride=GET_STRIDE(neurons,pitch_x>>2); //horizontal stride of
W matriz
int X=blockldx.xxthreads + threadldx.x; //precomputing expressions
int Y=X+stridesblockldx.y;
int Z=blockldx.yxpitch_yx*stride + X;
float sum=0.0f;
_shared__ float output|pitch_y];
if(blockIdx.y==0)
if(threadIdx.x==0) output[0]=1.0f;
else if(threadldx.x<pitch_y) //there are only 32 values to read and
128 threads
output[threadldx.x] = threadldx.x—1<prevneurons ?
prevLN[threadldx.x—1] : 0.0f;

else;
else if(threadldx.x<pitch_y) //there are only 32 values to read and 128
threads
output|threadIdx.x] = blockldx.y*pitch_y+threadldx.x—1<
prevneurons 7
prevLN[blockldx.y*pitch_y
+threadldx.x—1] : 0.0f
else;
__syncthreads();

if(X<neurons){ //compute partial sums
//#pragma unroll 32
int size=0;
if((blockldx.y+1)*pitch_y>=prevneurons+1)
size = prevneurons + 1 — blockldx.y*pitch_y;
else size=pitch_y;
for (int ic=0; ic<size; ic++){
sum += outputlic] x W[Z];
Z+=stride;

partialsum|[Y]=sum;

}

__global__ void MLP_FP _reduction_Kernel2(float xcurrLN, float *partialsum,
unsigned int neurons, unsigned int size){
float sum=0.0f;
int idx = blockIdx.x*(pitch_x>>2) + threadldx.x; //precomputed index
unsigned int stride = GET_STRIDE(neurons,pitch x>>2); //stride for
partialsum matric

if(idx>=neurons)return; //is this thread computing a true neuron?

for (int i=0; i<size; i++) sum += partialsum[ixstride+idx]; //computing
the final dot product

currLN[idx] = SIGMOIDF(sum);  //applying activation



Listing 1.3. Backpropagating deltas kernels.

__global__ void backPropagateDeltasFC_A (float xindelta, float xweights, unsigned
int ncon, unsigned int nrneur, float *partial){
const int px = pitch_x>>2;
unsigned int stride x = GET_STRIDE(nrneur,px);
unsigned int stride.y = GET_STRIDE(ncon,pitch_y);
float outd = 0.0;
int idx = blockldx.x*px+threadldx.x;
int X = blockldx.y*pitch_y+stride_x + idx;
int Y = threadldx.x;
_shared__ float w[32%33]; //pitch_y and pz should be equal ! +1 to avoid
bank conflict!
_shared__ float id[px]; //input delta
#pragma unroll 32 //read the weight patch in shared memory
for(int i=0;i<pitch_y;i++){w[Y]=weights[X]; X+=stride_x; Y+=33;}
//read the input delta patch in shared memory
if(idx>=nrneur) id[threadldx.x]=0; //a fake input delta for inexistent
indelta
else id[threadldx.x]=indelta[idx];
__syncthreads(); //not needed for block with warp number of threads: implicit
synchronization
#pragma unroll 32 //compute partial results
for(int i=0;i<px;i++) outd+=w[threadIdx.x*33+i]*id[i];
//write out the partial results
partial[blockIdx.x*stride_y + blockIdx.y+*pitch_y + threadldx.x] = outd;

__global__ void backPropagateDeltasFC_B(float xoutdelta,float *xinstates, unsigned
int ncon, unsigned int nrneur, float spartial){
int px=pitch_x>>2;
unsigned int stride x = GET_STRIDE(urneur,px);
unsigned int stride.y = GET_STRIDE(ncon,pitch_y);
float outd = 0.0;
int size=stride_x/px;
int idx=blockldx.x*pitch_y+threadldx.x;
if(idx==0); //true only for block and thread 0
else{
for(int i=0;i<size;i++)
outd+=partial[ixstride_y + idx];
outdeltalidx—1] = outd * DSIGMOIDF (instates[idx—1]); //—1
BIAS ...



Listing 1.4. Weights adjustment kernel.

__global__ void adjustWeightsFC(float xstates,float xdeltas, float xweights, float
eta, unsigned int ncon, unsigned int nrneur){
const int pitch_y=16;
const int threads=256;
unsigned int px = pitch.x >> 2;
unsigned int stride x = GET_STRIDE(nrneur,px);
float etadeltak = etaxdeltas[blockldx.xxthreads+threadldx.x],t;
int b=Dblockldx.yx*stride_x*pitch_y + threadsxblockldx.x + threadldx.x;
_shared__ float st[pitch_y]; //for states
int condl = blockIdx.y || threadldx.x;
int cond2 = (blockIdx.y+1)#pitch_y<=ncon;
int size = cond2 * pitch_y + !cond2 * (ncon%pitch_y);
if(threadldx.x<pitch_y) st[threadldx.x] = condl * states[blockldx.y*pitch_y
+ threadldx.x — 1] + !condl;
__syncthreads();

if (blockIdx.x*threads + threadldx.x < nrneur){
#pragma unroll 16
for (int j=0; j<16; j++){
t=weights[b];
t—= etadeltak * st[j];
weights[b]=t;
b+=stridex;}}
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