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Over the years, the field of pattern recognition has attracted
workers from a variety of areas such as engineering, system the-
ory, statistics, linguistics, psychology, etc., resulting in a vast
literature containing abstract mathematical approaches as well
as highly pragmatic techniques. This literature is scattered in
a large number of journals in several fields. At least three IEEE
journals regularly publish pattern recognition papers. While
several textbooks are available for a beginner in the field, a
need often arises to go to the source, which, due to the nature
of the literature in this field, is not always a straightforward
task. This collection of selected readings is not limited to
early or ‘“classic’’ papers. Rather it is designed to be a com-
panion volume to many of the textbooks in pattern recognition
and to be a source of useful references for engineers interested
in developing the many potential applications of pattern recog-
nition methodology.

The first paper in this volume, ‘’Patterns in Pattern Recogni-
tion”” by L. N. Kanal, serves not only as an excellent overview
of machine pattern recognition, but also as a suitable introduc-
tion to this volume. In addition to discussing the status of var-
ious aspects of the field as of 1974 and putting different ap-
proaches, techniques, and trends in perspective, this paper
provides a very useful bibliography.

In the current literature on pattern recognition, one discerns
two dominant models: the feature extraction-classification
model and the linguistic or syntactic model. As can be seen
from the discussion of syntactic methods by Kanal, while ad
hoc structural methods have been around from the very begin-
ning of machine pattern recognition, the syntactic formalisms
currently receiving much academic attention have not as yet
had any significant impact on practical pattern recognition.
The current flurry of research activity suggests that in a few
years it will probably be desirable to put together a volume of
papers devoted to this aspect of pattern recognition methodol-
ogy. Meanwhile, the discussion by Kanal provides an excellent
introduction and references to the literature for those readers
who want to explore this aspect further.

In every field of scientific endeavor, some of the landmark
work has a tendency of going out of print or becoming very
difficult to find. A highlight of this volume is the inclusion of
a few papers that fall in this category. The work by Fix and
Hodges on discriminatory analysis done in 1951 and 1952 was
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published as USAF School of Aviation Medicine Technical
Reports. This work opened up a whole new area of research
in nearest neighbor classification techniques. The original
technical reports went out of print some time ago; their inclu-
sion here should prove helpful. The classic paper by R. A.
Fisher, although having had a significant impact on the field,
is not easily accessible, having been published in the Annals of
Eugenics in 1936. The inclusion of this paper here may allow
the reader to go to the original source.

Pattern recognition is an applied field which tends to discover
techniques to solve practical problems. Over the years, how-
ever, a lot of theory has been developed with little application
of the theory being attempted to the extent that, for a prac-
tical problem, the approach to be taken is rarely clear. Within
the last few years, there has been a tendency to use interactive
systems which allow the user to apply a variety of techniques
to the problem at hand. The problems of dimensionality, sam-
ple size, and the error rate often tend to limit the design goals.
A highlight of this volume is the selections on these topics.
Nine papers covering all the major issues involved in these areas
are included.

Although pattern recognition techniques can be applied to a
variety of problems in a number of fields, only optical charac-
ter recognition (OCR), blood cell recognition, and isolated
speech recognition have reached a stage of commercial use.
However, except in the already mature area of OCR, no fully
documented case histories are available in the literature. Al-
though the work on OCR is nearly two decades old, the early
approaches did not exploit the theoretical advances and relied
only on ad hoc techniques. Due to proprietary reasons, most
of the more recent commercial applications (e.g., blood cells)
described in the literature give general discussions, often leaving
out crucial details. The application papers included here are
intended to give an indication of potential rather than specific
case histories. One hopes that well-developed case histories
will appear in the not too distant future.

In closing, | would like to express my gratitude to Professor
Laveen Kanal who, in addition to writing the paper which
serves as the introduction to this volume, has been a source of
many helpful suggestions.

AsHok K. AGrRAawALA
Editor
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Patterns in Pattern Recognition:

19681974

Invited Paper

LAVEEN KANAL, FELLOW, IEEE

Abstract—This paper selectively surveys contributions to major topics
in pattern recognition since 1968. Representative books and surveys on
pattern recognition published during this period are listed. Theoretical
models for automatic pattern recognition are contrasted with practical
design methodology. Research contributions to statistical and structural
pattern recognition are selectively discussed, including contributions to
error estimation and the experimental design of pattern classifiers. The
survey concludes with a representative set of applications of pattern
recognition technology.

I. INTRODUCTION

HAT IS a pattern that a machine may know it, and

U V a machire that it may know a pattern? That is the
fundamentai mystery challenging research in automatic
pattern recogni:ion. This survey reviews the main paths
followed since 1968 and examines some of the research
performed in tk 2 quest for answers.

This paper complements two 1972 articles. The paper by
Kanal and Chandrasekaran (1972) probed theoretical ap-
proaches based on alternate models for pattern recognition
and assessed contributions to the problem of inferring
grammars from samples. To make the present survey some-
what self-contained and accessible to readers not working
in pattern reccgnition, a brief discussion of models is
presented in Siction III. However, work on interactive
pattern analysis and classification systems is mentioned only
in passing becanse the 1972 article in the PROCEEDINGS OF
THE IEEE [Kanal (1972)] considered that topic at length.

The topics ccvered here are grouped under the following
section heading: :

II.

III.
IV.

Journals, Books, and Surveys

Models for Automatic Pattern Recognition

Design Methodology For Automatic Pattern Rec-
ognition Systems

Statistizal Feature Extraction, Evaluation, and
Selection

Dimen:ionality, Sample Size, and Error Estimation
Statistical Classification

Structu -al Methods

Applicitions

Prospe:ts.

V.

VL
VIIL
VIII.
1X.
X.

Section II gives a representative list of journals, books,
and surveys for the period 1968-1974. Section III contrasts

Manuscript rece: ved July 5, 1974. This work was supported in part
by the Air Force Dffice of Scientific Research under Grant AFOSR
71-1982, in part by the National Science Foundation under Grants
GK39905 and GK 41602, and in part by L.N.K. Corporation.

The author is w. :h the Department of Computer Science, University
of Maryland, College Park, Md. 20742, and with the L.N.K. Cor-
poration, Silver Spring, Md. 20904.

two models, the feature extraction statistical-classification
model and the linguistic structural model, which have
served as the basis for pattern recognition theory; it also
briefly introduces a hybrid model. In Section IV, I describe
how these theoretical models differ from the practical
design methodology which has evolved during the last few
years.

Prior to 1968 classification algorithms seemed to be the
main output of theoretical research in statistical pattern
recognition. Section V reflects the effort devoted since 1968
to theoretical approaches to problems of feature extraction,
evaluation, and selection. In Section V, I examine recent
approaches to defining pattern representation spaces and
to deriving features that enhance class separability; the-
oretical and experimental investigations of distance mea-
sures and error bounds and their use in feature evaluation;
and feature subset selection procedures.

Problems in the design and analysis of pattern classifica-
tion experiments represent another area receiving increased
attention since 1968. Section VI summarizes recent in-
vestigations and the resulting rules of thumb on the ratio
that should be maintained between the number of design
samples per class and the number of features. Insights gained
from work on how best to use a fixed size sample in design-
ing and testing a classifier are also summarized. In addition,
Section VI presents results on the nonparametric estimation
of the Bayes error and on the use of unlabeled samples in
estimating the error rate.

Section VII is primarily concerned with nonparametric
classification. It also briefly describes attempts to compare
classification procedures.

Using examples in waveform segmentation and speech
recognition in Section VIII, I comment on certain key
concepts and differences that distinguish some recent prob-
lem-oriented contributions to segmentation, feature extrac-
tion, and structural analysis from other general numerical
analysis and grammar based approaches. In addition,
research on generalizing pattern grammars to overcome the
limitations of string grammars is described.

Section IX considers the present status of applications,
and Section X comments on how work in pattern recogni-
tion is likely to proceed in the near future. References follow
Section X.

It is not feasible to cover the waterfront of pattern
recognition in a journal article. The aim of the selective
discussion of topics and contributions which I present here
is to provide a perspective on how pattern recognition
theories, techniques, and applications have evolved during
the last few years.

Reprinted from /EEE Trans. Inform. Theory, vol. | T-20, pp. 697-722. Nov. 1974.
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II. JOURNALS, BOOKS, AND SURVEYS

Since 1968 more than five hundred journal articles on
pattern recognition have appeared in the English language
engineering literature alone. Within the family of IEEE
journals, articles on pattern recognition have been regularly
published in the TRANSACTIONS ON COMPUTERS, TRANS-
ACTIONS ON INFORMATION THEORY, TRANSACTIONS ON Sys-
TEMS, MAN, AND CYBERNETICS, and occasionally in the
TRANSACTIONS ON AUTOMATIC CONTROL, TRANSACTIONS ON
BioMEDICAL ENGINEERING, and the PROCEEDINGS OF THE
IEEE. Other journals regularly publishing papers in this
area include Pattern Recognition, Information Sciences, and
Information and Control. Statistical journals that frequently
publish papers relevant to pattern classification include the
Journal of the American Statistical Association, Biometrics,
Biometrika, Technometrics, and the Journal of the Royal
Statistical Society.

For years the closest item to a textbook in pattern recog-
nition was a monograph entitled Learning Machines
[Nilsson (1965)]. In 1974, one could choose from more than
half a dozen textbooks of varying merit on statistical pattern
recognition, e.g. [Andrews (1972), Young and Calvert
(1974), Chen (1973), Duda and Hart (1973), Fukunaga
(1972), Mendel and Fu (1970), Meisel (1972), and Patrick
(1972)]; for a book review see [Cover (1973)]. In addition,
one could turn to monographs devoted to, or including
some discussion of, various aspects of pattern recognition
[Anderberg (1973), Bongard (1970), Fu (1968), (1974),
Lindsay and Norman (1972), Rosenfeld (1969), Tsypkin
(1971), (1973), Uhr (1973), Ullmann (1973), and Watanabe
(1969)] and numerous hardcover collections of papers and
conference proceedings [e.g., Cacoullous (1973), Cheng et
al. (1968), Fu (1970), Grasselli (1969), Kanal (1968),
Kohlers and Eden (1968), Krishnaiah (1969), Tou (1970),
(1971), and Watanabe (1969), (1972)].

The books by Duda and Hart, Meisel, and Ullmann
provide broad coverage of the literature up to early 1972.
Duda and ‘Hart’s bibliographic and historical remarks at
the end of each chapter set a high standard of scholarship
and give a “who did what, when, and where” picture of the
pattern classification and scene analysis literature. Meisel’s
bibliography is also thorough. Ullmann starts with a descrip-
tion of a 1929 patent for a reading machine and gives the
reader a guided tour of 451 references including several
patents. Anderberg summarizes literature on clustering tech-
niques, while Fukunaga examines the problems of error
estimation in greater depth than the other textbooks.
Young and Calvert include a chapter each on two specific
applications, viz., electrocardiograms and optical character
recognition (OCR).

In addition to these books, many survey articles, reviews,
and bibliographies were also published in this period. The
ProceeDINGs OF THE IEEE devoted its October 1972 issue
to papers extensively surveying applications of digital pat-
tern recognition [Harmon (1972)]. Earlier survey papers
that appeared in the PROCEEDINGS include [Ho and Agrawala
(1968), Levine (1969), and Nagy (1968)]. A series of papers
[Rosenfeld (1972), (1973), (1974)] covers developments in
picture processing by computer during the period 1969

IEEE TRANSACTIONS ON INFORMATION THEORY, NOVEMBER 1974

through 1973 and provides an extensive bibliography. For
speech recognition, a survey [Hill (1971)], a study committee
report [ Newell et al. (1973)], a recent conference proceeding
[Erman (1974)], and a forthcoming book [Reddy (1974)]
provide adequate coverage. Additional survey articles on
specific topics are cited in subsequent sections of this paper.

III. MODELS FOR AUTOMATIC PATTERN RECOGNITION

An early motivation for work on automatic pattern
recognition was to model pattern recognition and intel-
ligence as found in living systems; the Perceptron [Rosen-
blatt (1960)] and other 1960 vintage “learning” or “self-
organizing” networks are examples of models that, at least
initially, were biologically motivated. Although the excite-
ment about them had been greatly dampened by 1968, such
“bionic” models continued to attract a few circles interested
in pattern recognition [Amari (1972)], adaptive control
[ Business Week (1974), Mucciardi (1972)], the implicit
storage of a fixed set of patterns [Moore (1971)], modeling
the cerebellum [Albus (1971), (1972)], and modeling the
input-output relationships of other complex systems
[Ivakhnenko (1971), Mucciardi (1974)]. The Proceedings
of a 1974 Conference [Conf. on Biologically Motivated
Automata (1974)] indicates a revival of interest in bio-
logically motivated automata, neural models, and adaptive
networks.

How well the “bionic” networks model the biological
systems that served as their motivation is open to question.
The point is moot if one accepts the view that recognition
is an attainment or a goal rather than a process, method, or
technique [Sayre (1965)]. Then machines can “recognize”
certain patterns without necessarily having anything in
common with the methods used by biological systems to
recognize those same patterns [Kanal and Chandrasekaran
(1968)]. Most of the theoretical work on machine recogni-
tion of patterns has not been biologically motivated but has
adopted one or the other of two models, the feature extrac-
tion statistical-classification model or the linguistic model.

The period 1960-1968 witnessed extensive activity on
decision-theoretic multivariate statistical procedures for the
design of classifiers. However, the statistical decision theory
approach was justly criticized for focusing entirely on
statistical relationships among scalar features and ignoring
other structural properties that seemed to characterize pat-
terns. The general feature-extraction classification model,
shown in Fig. 1, was also criticized for performing too
severe data compression, since it provided only the class
designation of a pattern rather than a description that would
allow one to generate patterns belonging to a class.

These criticisms led to proposals for a linguistic model
for pattern description whereby patterns are viewed as
sentences in a language defined by a formal grammar. By
1968 these proposals together with the success of syntax-
directed compilers had attracted many to research in pattern
grammars. The linguistic or syntactic model for pattern
recognition uses a “primitive extractor,” which transforms
the input data into a string of symbols or some general
relational structure. The primitive extractor may itself be
a feature extractor classifier. Then a structural pattern
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Pattern [
IMeasurement] Feature
Environ- Process Measurements Extractior Features Classification| Classes
ment | |
| Pattern Recognition System |
b —_ - - 1
@
Characters
on a Optical Scanned | Stroke Stroke .
Page Scanner Image Extractor Information Classifier| Character
(b)
Fig. 1. (a) Operational system. (b) An example.

analyzer uses a formal grammar to parse the string and thus
constructs a description of the pattern.

In the past, imuch has been made of the apparent dif-
ference betweer: the two models. The stress on the distinc-
tion between tl'e two models hides many similarities: in
practice, in the syntactic model, the extraction of *“prim-
itives” can involve statistical classification procedures, and
the association of patterns with generative grammars is
equivalent to tt:z classification of patterns into categories.

The definiticn of the formal linguistic model can be
enlarged to include other familiar generative mechanisms,
such as differential equations, functional equations, and
finite-state Markov chains. Stochastic-syntactic models in-
troduce probabilistic aspects into the linguistic model by

specifying a discrete probability distribution over produc- -

tions of a base yrammar. For an N class problem, one could
develop N stochastic grammars. Each parse provides a
structure along with a probability that the structure repre-
sents the input pattern; the input is associated with the
grammar giving the most probable parse [see, e.g., Fu and
Swain (1971), Fu (1972)].

When a formal model is not explicitly present, the terms
“ad-hoc” or “heuristic” are used. The phrase “structural
pattern recognition” refers to all pattern recognition ap-
proaches based on defining primitives and identifying
allowable struc-ures in terms of relationships among prim-
itives and substructures that combine primitives. This term
represents less i specific set of procedures than an attitude,
i.c., that pattern recognition algorithms should be based on
the mechanisms that generate and deform patterns.

The structural pattern recognition model is reminiscent
of the “analysis by synthesis” model proposed for speech
recognition in this TRANSACTIONs [Halle and Stevens
(1962)]. In the latter model, a synthetic pattern was gen-
erated and ma-ched with the input pattern. The emphasis
was on using a generative model that embodied the physical
processes thought to govern speech pattern generation in
humans, and driving this synthesizer with parameter values
obtained from 'he input pattern. The set of parameter values
that provided i1 match were then used to characterize and
recognize the input pattern. The general flavor of the
“analysis by svnthesis” model and of the structural pattern
recognition wcrk now being done is similar, but the em-

phasis is no longer on identically matching the input pattern
nor on matching the physical processes closely. More
flexibility is obtained through ‘‘black-box” generative
models that generate patterns “like” the input pattern with-
out necessarily being closely related to the physical processes
about which we may not have much information.

An outline of a formalism that attempts to combine the
linguistic and statistical aspects of patterns has been pre-
sented in some thought-provoking papers by Grenander
(1969), (1970). The major outlines of the proposal are fairly
easy to follow but the details of the model are quite am-
biguous and much interpretation must be provided by the
reader. This model assumes we are given a set of primitive
structural objects called signs, which together with known
grammars or other known generative mechanisms, produce
a set £ of “pure images.” Subsets of J satisfying certain
similarity properties (which we do not define here) are called
“pure patterns.” The pure images are subjected to prob-
abilistic deformations to give a set #° of deformed images.
Recognition algorithms would then have to define the
inverse mappings from the set of deformed images to the
pure patterns.

The formalism requires that there exist a method of
analysis leading to a unique history of formation for any
given image. In practice, in most interesting problems it is
only the deformed patterns, further corrupted by noise, that
are available, and the deformations and generative mech-
anism must be discovered from a limited set of samples.
Because there will rarely be a unique definition of primitives
and generative mechanisms, there will rarely be a unique
analysis as required by the model.

In the period being considered, the fuzzy set model
proposed by Zadeh (1965) has been applied to classification
in a number of theoretical papers. Unlike classical sets,
fuzzy sets are defined to have a membership function that
can take on any real value between zero and one. This
produces a nonexclusive assignment of a pattern to a class.
It should be emphasized that this concept is different from
a probabilistic assignment of patterns to classes even though
a probability also takes on values between zero and one. In
the latter case, for a two-class problem, for example, an
individual pattern may be probabilistically assigned to one
class or the other, but is not thought of as inherently belong-
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ing to both classes simultaneously, as is true in the fuzzy
set model. An extensive bibliography on fuzzy sets is given
in Kauffman (1973). Zadeh’s papers remain the best source
for understanding the idea and stimulating thinking about
potential applications [Zadeh (1973)].

IV. DESIGN METHODOLOGY FOR AUTOMATIC PATTERN
RECOGNITION SYSTEMS

The term “pattern analysis” was not noticeably men-
tioned prior to 1968 and does not appear in the surveys on
pattern recognition published that year in the PROCEEDINGS
of THE IEEE [Nagy (1968) and Ho and Agrawala (1968)]. Its
widespread use in the literature seems to have followed the
publication of Sammon’s reports on the “On-Line Pattern
Analysis and Recognition System” (OLPARS) [Sammon
(1968)].

As it is understood today, pattern analysis consists of
using whatever is known about the problem at hand to
guide the gathering of data about the patterns and pattern
classes which may exist in the environment being examined,
and then subjecting the data to a variety of procedures for
inferring deterministic and probabilistic structures that are
present in the data. Statisticians call this exploratory data
analysis. Histogram plots, scatter plots, cluster analysis
routines, linear discriminant analysis, nonlinear mappings,
analysis of variance, and regression analysis are examples of
procedures used to detect and identify structures and sub-
structures in the data. The purpose is to understand the
regularities and peculiarities of a data base to enable better
feature definition leading to simpler and better classification
or description.

Pattern analysis is now considered an intrinsic and im-
portant part of the design process. In contrast, in the

literature prior to 1968, automatic pattern recognition sys-
tem design consisted primarily of designing the classifier.
The available features and samples were not explored much
but used directly, perhaps in a ““learning machine” approach
wherein parameters of a fixed structure are sequentially
adjusted until correct classification is obtained for all
“training” samples or until an error criterion is minimized;
or the features were used in a fixed discriminant function
the coefficients of which were statistically estimated from
the available samples; or assuming parametric forms for
the joint densities of feature vectors from each class,
sequential and nonsequential statistical estimation pro-
cedures were proposed to estimate parameters of the den-
sities for each class and derive classifier designs based on
statistical decision theory.

Prior to 1968, it was acknowledged that the boundaries
between feature definition, extraction, and classification
were not sharp and that feedback between them was needed.
However, this was not reflected in the work presented in the
literature. At least all the theory-based papers assumed neat
partitions between feature extraction and classification. The
theoretical research published during the past few years on
the syntactic approach to pattern recognition has, for the
most part, continued on this path. For example, in the
papers on the stochastic syntactic approach to pattern
recognition [Fu (1972) and Lee and Fu (1972)], the extrac-
tor and analyzer functions are treated independently, which
prevents the structural information available to the analyzer
from influencing the primitive extraction. Without this feed-
back the representation provided by the extractor may not
be well suited to the patterns being examined. Noting this
limitation, models that incorporate feedback between the
analyzer/classifier and the extractor have recently been
proposed. These are described in Section VIII
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A major evolution that has occurred during the last few
years is to view the design of a pattern recognition system
as a highly iterative process. Fig. 2 illustrates the complex
nature of this design process. The theoretical models, in
which the flow of data and decisions is in only one direction,
from the input pattern environment to the categorizer/
structural analyzer, are indicative of the operational pattern
recognition system ne seeks as an end result.

The advantages >f human interaction and intervention
in all phases of tt: iterative design process and the im-
portant role of interiactive computing and display technology
in making this feasinle have been elaborated upon in Kanal
(1972), which also summarized the data analysis techniques
based on clustering;, statistical discriminant analysis non-
linear mapping, e c. New graphical representations to
enable human understanding of multivariate data continue
to be explored, e.g., see Chernoft (1973). While no radically
new statistical approaches to data analysis have appeared
since 1968, effort has been devoted to improving and
comparing algorittms and interpreting their relevance to
feature extraction, evaluation, and selection. The next
section presents sorie of the results.

V. FEATURE EXTRACTION, EVALUATION, AND SELECTION—
“CTATISTICAL METHODS”

Feature extracticn and selection can have a variety of
goals. We may be interested in: finding key features that
permit the generalion or reconstruction of the original
patterns, selecting {2atures that parsimoniously characterize
patterns, finding fe:tures that are effective in discriminating
between pattern classes, or some combination of these goals.

In this section, tle word “feature” denotes an entity that
is derived from son e initial measurements; this implies that
somehow we know what initial measurements should be
made. Reducing (he initial measurements can lead to
economies in sensor hardware and data processing. A
simple approach to discarding measurements might be to
examine how closely a linear combination of.the selected
measurements reprzsents a discarded measurement [Beale,
Kendall and Manu (1967), and Allen (1971)]. Clearly, no
reduction in measurement effort is achieved if the selection
is from features t1at are combinations of all the initial
measurements: this is true of many of the feature extraction
selection procedur:s that have been proposed. However, in
the resulting lower-dimensional space, the search for a
classifier may be greatly simplified.

Much of the mathematical-statistical work on feature
extraction and selection during the past few years has been
on:

1) linear and nonlinear transformations to map patterns
to lower-dime: nsional spaces for pattern representation
or to enhanc: class separability;

2) feature evaluition criteria that bound the Bayes error
probability and transformations that are optimum
with respect (o such criteria;

3) search procec ures for suboptimal selection of a subset
from a given set of measured or derived features.

Pattern Representation Spaces

Many transform techniques, such as Fourier, Walsh-
Hadamard, and Haar, have been proposed for deriving
feature domains [Andrews (1972)]. The method of prin-
cipal components, which rank orders the eigenvalues of the
pooled covariance matrix of all the classes according to the
magnitude of their associated eigenvalues, has a long history
in classical multivariate analysis. Some papers in this period
have considered nonlinear principal component analysis
where, given a class of possible nonlinear coordinates, one
finds the coordinate along which the data variance is max-
imum, and then obtains another coordinate uncorrelated
with the first, along which the variance is next largest, etc.
[Gnanadesikan and Wilk (1969)].

Among linear transformations, the Karhunen-Loéve
(K-L) expansion in terms of the eigenvectors of the co-
variance matrix is in one sense the minimax or “most
reliable” feature extractor [Young (1971)]. Watanabe and
others have proposed feature domains based on eigen-
vectors of the pooled autocorrelation matrix and on the
eigenvectors of the autocorrelation matrix of a given class
[Watanabe (1969)]. A novel K-L type modification of the
Fourier transform has been suggested recently for pictures
[Fukunaga and Sherman (1973)].

Their “optimality” properties notwithstanding, for a
given data set the preceding procedures may or may not
provide effective representations. Other candidates to be
tried include nonlinear mappings based on multidimen-
sional scaling and intrinsic dimensionality algorithms.
Multidimensional scaling and parametric mapping are tech-
niques for finding a configuration of data points in the
smallest dimensional space that, according to some defined
error criterion, preserves the local structure of the points
in the original n-dimensional space. It is possible that the
data may tend to lie on a curve in the n-dimensional space;
estimation of the parametric form of this curve would
indicate the intrinsic dimensionality of the collection of
data points.

These nonlinear mappings have been the subject of some
investigation during the past few years [Bennett (1969),
Calvert and Young (1969), Sammon (1969), Fukunaga and
Olsen (1971), Trunk (1972), and Olsen and Fukunaga
(1973)]. The basic ideas and references on these mappings
were briefly summarized in Kanal (1972). Some recent
contributions aimed at simplifying or improving nonlinear
mapping algorithms are mentioned next.

Sammon’s nonlinear mapping algorithm [Sammon
(1969)] involves computing all the K(K — 1)/2 interpoint
distances in the lower-dimensional space. In Chang and
Lee (1973) simultaneous adjustment of all the K points to
minimize the error function is replaced by a heuristic
relaxation procedure in which a pair of points is adjusted
at a time.

Iterative algorithms for nonlinear mapping must be
repeated for new data points. A noniterative nonlinear
mapping is proposed in Koontz and Fukunaga (1972).
Noniterative procedures, using K-L expansions for local
regions, have also been proposed for estimating the in-



trinsic dimensionality of the nonlinear surface on which
the data may lie [Fukunaga and Olsen (1971) and Olsen
and Fukunaga (1973)]. The local dimensionality estimation
could be affected by noisy data samples being distributed
about their intrinsic dimensional surface, rather than falling
exactly on it. In Fukunaga and Hostetler (1973), a method
for density gradient estimation is presented, and it is
suggested that the samples be moved according to the
density gradient so as to condense them onto an intrinsic
dimensional skeleton.

Iterative nonlinear mapping algorithms have often been
useful for representing pattern data in a lower-dimensional
space. Whether or not the noniterative procedures men-
tioned here truly improve existing implementations of non-
linear mapping and intrinsic dimensionality estimation
remains to be seen.

Representations Enhancing Separability

Instead of the information preserving aspects of K-L
representations, Fukunaga and Koontz (1970) emphasized
the extraction of eigenvectors that enhance class separ-
ability. This was done by finding the linear transformation
that when applied to the autocorrelation matrix of the
mixture of the two classes gives an identity matrix. Then
after rank ordering the eigenvalues for class 1, one has
1> 4% >2,0>--->2M >0 and for class 2,
AP =1 — 2. The recommendation that |1, — 0.5 be
the criterion to select the eigenvectors to be used as features
has been disputed in Foley (1973) where a three-dimensional
two-class counterexample is presented. In this example,
there is complete overlap between the two classes along
two of the dimensions with very little overlap in the remain-
ing dimension, and it is shown that the Fukunaga-Koontz
ranking procedure leads to the two features with zero
discriminating power being given the same weight as the
one feature that provides high discrimination. As an al-
ternative, a generalization of an optimal discriminant plane
[Sammon (1970)] is recommended.

Let

dt(Xf(l) . X’(Z))Z

R(d) =
@ d'Ad

where d is the (column) vector (of direction cosines) repre-
senting the direction on which the data is to be projected,
(XD — X@) s the difference between sample mean vectors
for the two classes, and 4 = cW, + (1 — ¢)W,, where
0 <c<1isa weight constant and W,, i = 1,2, is the
within-class scatter matrix for class i. Orthogonal dis-
criminant directions are obtained by maximizing this “gen-
eralized Fisher ratio” and successively constraining each
discriminant direction to be orthogonal to the previous set
of discriminant directions. Foley (1973) presents examples
in which this “discrim-vector™ approach is superior to the
Fukunaga-Koontz method.

For the multiclass case most of the work has either cast
the M-class problem as M (M — 1)/2 two-class problems or
employed multidimensional scatter ratios popular in clas-
sical statistical multiple discriminant analysis [Duda and
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Hart (1973)]. While based on linear operator theory, the
attempt in Watanabe and Pakvasa (1973) to systemize the
generation of orthonormal feature spaces for the multiclass
problem, such that separability of the classes is emphasized,
is different. Additional investigation is needed before its
usefulness can be assessed.

Distance Measures and Error Bounds

If classification rather than description of patterns is the
goal, the ultimate test of a set of features is their contribu-
tion to the Bayes error probability. The aim of feature
selection is to reduce the number of features without ad-
versely affecting error performance. Unfortunately, in most
situations, even if the class conditional densities are known,
a straightforward analytical relationship between the Bayes
error probability and the features used is not available.
Hence, various measures of information and distance have
been proposed to measure the effectiveness of a given set
of features. The major results relating such measures to the
Bayes error probability are summarized in Table 1.

The primary utility of the distance measures and corre-
sponding bounds in Table I is for theoretical investigations.
For example, the Bayesian distance and related bounds led
Devijver (1973) to a theoretical justification for the least
mean-squared error (LMSE) as a feature selection and
ordering criterion [Wee (1968)] and to the relationship of
the LMSE criterion to the nearest-neighbor rule. Of course,
like the nearest-neighbor (NN) rules, the relationships
derived from these bounds represent asymptotic results.

Despite the many papers published in this area, the net
result of the extensive investigations on distance measure
bounds for P, seems to be that one should try to estimate
the error probability itself in some direct manner.

Subset Selection and Heuristic Search

The feature selection problem can be viewed as a (com-
binatorial) optimization problem requiring a criterion func-
tion and a search procedure. All the literature on feature
subset selection can be described in these terms. Some of the
procedures were suggested years ago. I will cite here a few
recent papers that illustrate the procedures.

In diFigueredo (1974) the probability of misclassification
is the criterion functional to be minimized. Within a class
of transformations that could include nonlinear transforma-
tions, the optimal transformation from the initial space to
a feature space of prescribed lower dimension is determined,
such that the increased misclassification error in the lower-
dimensional space is minimized. The iterative algorithms
presented are computationally much more complex than
corresponding iterative algorithms for the Bhattacharyya
bound [Decell and Quiren (1973)]. The k-NN bound was
suggested as an evaluation criterion in Cover (1969) and
used in Whitney (1971). Average information content
I(QX) = HQ) — HQ|X) was suggested for feature
evaluation at least a decade ago. Experiments with this
measure in different contexts continue to be reported [e.g.,
Simon et al. (1972) and Michael and Lin (1973)]. The
divergence is another measure with a long history [Kailath
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TABLE I
DISTANCE MEASURES AND ERROR BOUNDS

Name Expression

Relationships

Bayes error probability

1) Equivocation or $hannon
entropy

2) Average conditional quad-
ratic entropy [Vajda (1970)]

3) Bayesian distance [Devijver

B(Q|X)=E S A 2
(1974)] (@1X) {FZI [P(w:lx)]}

m
4) Minkowski measures of non- M,(Q|X) = E{ 3 'P, wilx) — #
i=1

uniformity [Touss.iint (1973)]

5) Bhattacharyya bound [see
Kailath (1967)]

6) Chernoff bound [:see Kailath C(Q|X;s) = E{[P.(w1[x)' % - P(wz|x)}

(1967)]

7) Kolmogorov vari:tional
distance [see Kailiith (1967)]

8) Generalized Koln:ogorov
distance [Devijver (1974),
Lissack and Fu (1973)]

0.(QlX) = % — HE{[P:(w1|x)

9) A family of approximating
functions [Ito (1972)]

10) The Matusita dist.ince [see
Kailath (1967)]

H@IX) = (= 3 Pnl) log P,0wi0)

hQIX) = E{i Ponfl1 — Piowi )

JAQ|X) = E{|P(w:|x) — P(w2|x)|"},

r= [ [, tpiw) = periwary? a]”

Pe=1- | max[Pp(X|w)] dx
x i

m Class Bounds

-

1 - BQ|X)]

-1

JROT < mB(Q|X) — 1
<n JB(Q]X)]s—m ——]

m—1

< P. < [1 — B(Q|X)]
= KQIX) = Rw = 2= - My@Ix);

2(k+l)/2k+1} P, <.+ < Rgnn < ++- < Ronn < Ran

[see Cover and Hart (1967) and Devijver (1974)]

Two Class Bounds

b(Q|X) = E{[P(w:]x) - P(w2|x)]'/}

m m
multicategory error: P. < Y. > Pu(wi,w);
iS1j=i+1

H1 — [JQI X))V} < P. < 31 — JQ]X)},
fora > 1;

upper bound equals [1 — B(Q|X)], when o = 2;
Qn+1 =< Qn; Qo =1- B(QIX),

K(Q[X) = E{|P(w1|x) — P(w2|x)]}

0< a<o0

0 [P+ D/2ne 1)

y gives the same bound as b(Q|X);

two-class bound relations:

P. < 0,(Q]X) < Qo(Q[X) < H(Q|X) < bQ[X)
[see Ito (1972) and Hellman and Raviv (1970)]

Notation: Q = (w;, i:=1,2---m;2 < m < o0)—a set of pattern classes; P; is an a priori probability of class w;; X is a n dimensional vector
random va-iable; S, is a sample space of X; p(X|w,) is a conditional probability density function; P,(w;|X) is a posterior probability
of class w; zonditioned on X; f(X) = ¥, P:p(x|w,)—the mixture distribution; E is an expectation over Sx with respect to fX);
Ruy is an 7 class infinite sample nearest-neighbor risk; Rxnn is @ k nearest-neighbor risk.

(1967)] on which experiments continue to be reported. Only
for a few distributions is it possible to obtain analytical
expressions for the distance measures of Table I and use
them in feature sclection. It is also generally necessary to
estimate the distrivutions.

It is an annoying fact that the set of K individually best
discriminating fealures is not necessarily the best discrim-
inating feature ser of size K, even for the case of (condi-
tionally) indepen:ent features [Elashoff et al. (1967),
Toussaint (1971), and Cover (1974)]. Unfortunately, the
only way to ensure that the best subset of K features from
a set of N is chosen is to explore all (§) possible combina-
tions. Since this :5 usually infeasible, various suboptimal
search procedures are used.

A search procedure which has been used much in the
past is the “forward sequential” selection procedure in

which the best individual features are chosen on the first
round, and then the best pair including the best individual
feature are chosen, etc. An example of the use of this
selection procedure is the experimental comparison of seven
evaluation techniques in Mucciardi and Gose (1971). A
much used counterpart to forward selection is the sequential
rejection procedure in which one finds the best set of
(n — 1) features by discarding the worst one, then the best
set of (n — 2) among the preceding (n — 1) selected features
is chosen, etc. The dynamic programming formulations for
feature selection presented in Fu (1968), Nelson and Levy
(1968), and Chang (1973) translate problems of feature
selection into the notation of dynamic programming.
Other systematic approaches to feature subset selection,
which are likely to receive attention in the near future, are
suggested by the possibility of posing many problems in



pattern classification as graph searching problems. Branch
and bound algorithms [Lawler and Wood (1966)] and
heuristic search algorithms [Hart, Nilsson and Raphael
(1968) and Nilsson (1972)] can be applied not only to clus-
tering [ Koontz et al. (1974)] but also to reducing the search
involved in feature subset selection. Simple heuristic search
procedures have been used with automatic feature genera-
tion procedures in Becker (1968) and Simon et al. (1972).
The usefulness of the result, whether in feature generation
or feature reduction, is, of course, dependent on the
appropriateness of the evaluation function used in the
search procedure.

Further Comments on Statistical Feature Extraction

The preceding approaches to feature extraction and
evaluation start with the patterns as points in a multi-
dimensional measurement space that has somehow been
defined. The statistical procedures then act as if relation-
ships such as joint probability distributions, interpoint
distances, and scatter matrices were the only relationships
that mattered in defining patterns and their class member-
ships. All the optimization, with respect to various criteria,
glosses over the fact that the initial representation space
(and the “semantic coordinate space”) has nothing optimal
about it but was arrived at arbitrarily by some accepted
convention, or by a combination of intuition, problem
knowledge, etc. There is no guarantee that with the repre-
sentations chosen in a given situation the minimum achiev-
able error will be acceptably low.

The initial representation space and the features selected
must be iteratively refined in terms of one another and the
classifier as described in Section IV; the proper role of the
feature extraction, evaluation, and selection procedures de-
scribed in this section is that of intermediate tools or sub-
routines in such a recursive interactive design procedure.

VI. DIMENSIONALITY, SAMPLE SIZE, AND ERROR ESTIMATION

For feature selection and classifier assessment, estimates
of the Bayes error probability are of interest, as are estimates
of the probability of misclassification of any “suboptimal”
classifier that is used. Very often, little is known about the
underlying probability distributions, and performance must
be estimated using whatever samples are available. In this
context various questions arise concerning the relationships
between the number of features, the limited size of the
sample, the design of the classifier, and the estimation of its
performance.

The questions and the answers available to them in 1968
were discussed in Kanal and Chandrasekaran (1968); see
also Duda and Hart (1973). Here we summarize some
recent results concerning:

1) quantitative estimation of the bias in the error estimate
based on the design sample set;

2) whether statistical independence of measurements
allows performance to be improved by using addi-
tional measurements;

3) how to best use a fixed size sample in designing and
testing a classifier;
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4) comparison of error estimation procedures based on
counting misclassified samples with nonparametric
estimation of the Bayes error probability using density
estimation techniques;

5) use of unclassified test samples in error estimation.

“Testing on the training set’” and “resubstitution” are
names for the approach in which the entire set of available
samples is first used to design the classifier, and future
performance is predicted to be that obtained on the design
set. The well-known optimistic bias of this approach was
confirmed by various theoretical and experimental demon-
strations [ Hills (1966) and Lachenbrach and Mickey (1968)].
A classical alternative is the sample-partitioning or “hold-
out” method, whereby some samples are used to design the
classifier and the remaining to test it. Usually half the
samples are held out. An attempt [Highleyman (1962)] at
analytically determining the optimal partitioning in order
to minimize the variance of the estimated error rate has been
shown [Kanal and Chandrasekaran (1968)] to rest on shaky
assumptions. Based on experimental comparisons reported
in Lachenbruch and Mickey (1968) and elsewhere, the con-
clusion at the end of 1968 seemed to be that one should use
the “leave-one-out” method. In this method, given N
samples, a classifier is designed on N — 1 samples, tested
on the remaining sample, and then the results of all such
partitions of size N — 1 for the design set and one for the
test set are averaged. Except in some special cases, this
method takes N times the computation of the hold-out
method.

In Glick (1972) it is shown that the resubstitution method
is consistent for general nonparametric density estimation
schemes, and Wagner (1973) proved that the leave-one-out
method is consistent in the nonparametric case under
certain mild conditions. As pointed out in Foley (1972),
even if a sample partitioning scheme is used during the
experimental phase of designing a classifier, the entire set
of samples is likely to be used for the final design. Thus one
would like to know the conditions under which the estimate
using resubstitution is a good predictor of future per-
formance, and the relationship between that and the optimal
probability of error achievable by a Bayes classifier.

For two multivariate normal distributions with equal
known covariance matrices and estimated mean vectors,
Foley (1972) derived the amount of bias of the resubstitution
estimate as a function of N/L, the ratio of the number of
samples per class to the number of features. The practical
qualitative recommendation that emerges from the analysis
and simulations is that if N/L is greater than three, then
(for the case considered) the expected error rate, using the
resubstitution method, is reasonably close to one with an
independent test set. An approximate upper bound of 1/8N
for the variance of the design set error rate suggests that
even if just a few features are used, there must be enough
samples per class to get a good low-variance estimate of
the error rate. Thus, for N = 50, regardless of the value of
the expectation of the design set error rate, the variance is
bounded above by 0.0025. In addition to this, the analysis
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in Foley (1972) reinforces a well-known result, viz., that by
adding more ard more features one can keep on decreasing
the error rate on the design set and yet have the additional
features provide no additional discrimination ability on
independent test samples.

As mentioned in Kanal and Chandrasekaran (1968), the
less that is known about the underlying probability struc-
ture, the larger is the ratio of sample size to dimensionality
that is needed. This is borne out by the analyses and results
in Mehrotra (1673), which extended the investigation of the
N/L ratio in Foley (1972) to the case where the common
covariance matrix of two multivariate normal distributions
is no longer assumed known but has to be estimated from
samples. The nature of the results is similar to those in
Foley (1972) but now, even for a N/L ratio as large as five,
the expected probability of error on the design set is shown
to be considerably optimistically biased. The results of
Foley and Mehrotra are based on certain expansions, ap-
proximations, and simulations and are meant to provide
insight and rulcs of thumb for practice. They lead to the
conclusion that the larger the ratio of training sample size
to feature set dimensionality, the better is the error estimate
obtained from the training set. Furthermore, a sufficiently
large number o’ samples per class is required in order to
have a low-vari:.nce error estimate.

What about tae number of features? That is, for a given
finite design san:ple size N, is there an optimal measurement
complexity? Experimentally it has often been observed,
given finite training sets, that as the number of measure-
ments is increased, the performance of the classifier first
improves, later reaches a peak, and finally falls off. The
analyses in Hugaes (1965) and Chandrasekaran and Harley
(1969) convincingly demonstrate that, in general, there does
exist an optim:l measurement complexity at which the
mean classificat on accuracy peaks and that the value of the
optimal measuriment complexity increases with increasing
sample size. Laler, the effect of constraining the measure-
ments to be siatistically independent was examined in
Chandrasekaran (1971) and Chandrasekaran and Jain
(1973). In the first paper, Chandrasekaran studied the
optimal Bayesian decision function for the case of inde-
pendent binary variables, with class conditional probabilities
{p,(1 — py} and {g;,(1 — g¢;)} under class one and class
two, unknown and to be estimated from finite samples
from the two classes, using uniform a priori distributions
for p; and g;. His conclusion was that in this case the mean
probability of ccrrect classification monotonically increases
with N, the nurmber of measurements, giving perfect clas-
sification as N — oco. The resulting conjecture that in-
dependence of :neasurements guarantees an optimal mea-
surement comp. exity of infinity was proved invalid in
Chandrasekarar. and Jain (1973). This second paper
presents necessay and sufficient conditions to test whether
or not the nurnber of measurements in the statistically
independent cas: should be arbitrarily increased. From this
work and from rhe feature selection example in Elashoff et
al. (1967), one learns that statistically independent variables
can behave mor: strangely than one might suspect.

The qualitative practical conclusions to be drawn from
the aforementioned investigations on dimensionality, sample
size, and expected performance seem to be the following.
Depending on the probability structure, our degree of
knowledge about it, and the estimation procedure used:
a) there exists a lower limit on the number N of design
samples per class needed to achieve a low enough variance
for the error estimate; b) the ratio of N to the dimen-
sionality L must be “large enough” if we are to get a good
estimate of the average probability of misclassification;
c) for the given sample size there is an optimal value for L,
Le., an optimal measurement complexity consistent with
N/L that satisfies b). These conclusions do not, of course,
hold for the case of completely known statistics but the
latter would be a fortunate situation enabling the use of
simple statistical methods. It is apparent that only the
surface has been scratched thus far, and the phenomena of
dimensionality, sample size, and optimal measurement
complexity need to be quantitatively investigated in a
variety of contexts not hitherto examined.

Next consider how best to use a given fixed sample of
size N in designing and testing a classifier. Toussaint (1974)
gives an extensive bibliography on this and related topics
in the estimation of misclassification. With the “rotation” or
IT method recommended there is a compromise between
the hold-out (H) method and the leave-one-out (U) method.
It consists of partitioning the total set of N class tagged
samples into a test set {X},”> = {X,,---,X,}, where
1 < k < NJ2, Njk an integer, and a training set {X},7" =
{Xi+1, " ", Xy}; and then training the classifier on {X},T"
and testing it on {X},”* to get an error estimate denoted by
P,[IT],. The procedure is repeated with additional disjoint
test sets {X},", i = 2, --,N/k and corresponding training
sets, and the average over the various disjoint test sets
results used for the expected error, ie., E[P,(I)] =
k/N ¥N*% P[IT]; With k = 1 this is the leave-one-out
method, and with & = N/2 this gives a version of the
hold-out method well known in statistics as cross valida-
tion in both directions [Mosteller and Tukey (1968)]. The
rotation method is also related to the “jackknifing” pro-
cedures described in Mosteller (1971).

The average resubstitution error rate F{P_(R)} provides
a lower bound on the true error probability while the other
approaches yield upper bounds. In the graphs in Foley
(1972) one finds that an average of the design set and test
set results gives a good estimate of the true error prob-
ability. This leads Toussaint (1974) to recommend the
estimate

P* = «E{P(I)} + (1 — ®)P(R)

where 0 < o < 1 is a constant depending on the sample
size N, the feature size L, and the test set size k. In
Toussaint and Sharpe (1973) it is reported that experimental
work with a = 1/2, k/N = 1/10, and N = 300, led to f’e*
essentially equal to P,(U). To compute the leave-one-out
estimate P,(U) would take 300 training sessions, while to
compute P.* takes only 11 training sessions, one for P,(R)
and ten for E{P(IT)}.



Estimation of the Bayes error probability using classified,
i.e., class-tagged design samples but unlabeled test samples
has been investigated in a number of papers. These in-
vestigations use a result of Chow (1970) that, for optimal
classification involving a reject option, a surprisingly simple
fundamental relation exists between the error and reject
rates. In a Bayes strategy, the conditional probability of
error is

r(X)y=1- mangi—(zl/2
i f(X)

where f(x) is the mixture density 3; P;p;(x). With rejection
allowed, the optimum strategy is to reject whenever
r(X) > t, where ¢ is the rejection threshold, and decide as
before, otherwise. The reject rate R(¢) = Pr[r(X) > t] =
1 — G(t), where G(¢) is the cumulative distribution func-
tion (cdf) of r(X). The error rate is then given by

t t
£0) = [ yd60) = = [y aRO).
0 0
A plot of this relationship gives an error-reject tradeoff
curve the slope of which at a given point is the rejection
threshold. Chow (1970) noted that this simple integral rela-
tion allows the error rate and tradeoff curve to be determined
from the empirically observed reject rate function R(¢) on
unlabeled samples; it can also be used for model validation
by comparing the empirical error-reject tradeoff curve with
the theoretical one derived from the assumed P; and p(X).
This latter idea was applied in Fukunaga and Kessel
(1972), which pointed out that the suggestion was equivalent
to a goodness-of-fit test for the distributions G(¢) or R(t).
One of the methods examined is a test based on the expecta-
tion of the conditional probability of error r(X); E{r(X)}
is just the Bayes error probability P,, without the reject
option. For the M-class case, the estimate

E=L%rx
N, i;1 rXy)

based on N, independent unlabeled samples from the mix-
ture density f(X), has a variance at least P,/M less than the
variance P,(1 — P,) of the estimate based on counting
misclassified labeled test samples. This paradoxical be-
havior, whereby one gets a better estimate by ignoring the
class tags on test samples, is attributed to the fact that the
error count estimate gives a binary quantization of the
error on a test sample, while r(X;) assigns a real value.

The application in Fukunaga and Kessel (1972) of
optimum error-reject rules to two-class multivariate normal
problems, for equal and also unequal covariance matrices,
provides some interesting comparisons with the work of
Foley (1972) and Mehrotra (1973) described earlier, and
the remarks made in Kanal and Chandrasekaran (1968)
concerning the role of structure.

For the equal covariance case with sample means and
sample covariance estimated from a total of Ny + N, = N,
design samples, the analysis in Fukunaga and Kessel (1972)
suggests that N,/L should be ten or greater in order for
mean performance to reasonably approximate the optimum.
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In terms of number of samples per class, this suggestion is
consistent with Mehrotra (1973), although the latter’s result
was obtained by a different approach not involving the
reject option.

For the unequal covariance case with unequal as well as
equal mean vectors, simulation experiments in Fukunaga
and Kessel (1972) showed that the results still depended on
the ratio of the number of samples per class to the feature
dimensionality but that an even larger number of design
samples is needed. Also, with estimated parameters the
true error rate is greatly underestimated by the error rate
calculated from the empirical reject function. The article
concluded that “using the empirical reject rate to predict
error rates can produce very inaccurate results if the model
used in the classifier design is inaccurate.”

As noted earlier, the asymptotic error rate of the nearest-
neighbor classification rule provides a bound that is as
close or closer to the Bayes error probability than any of
the other bounds. Cover (1969) proposed that the number of
misclassified samples when using a nearest-neighbor clas-
sifier be considered as an estimated bound for the Bayes
error probability. As the total number of samples asymp-
totically increases, for increasing k, the £-NN rules do
provide increasingly better asymptotic bounds on the Bayes
error probability. Cover’s suggestion was followed up in
Fralick and Scott (1971) and Fukunaga and Kessel (1973),
where nonparametric estimation of the Bayes error prob-
ability was investigated via a) error rates resulting when
k nearest-neighbor classification was used, and b) error
rates of approximate Bayes decision rules based on es-
timated density functions obtained by using multivariate
extensions [Murthy (1965)] of Parzen estimators [Parzen
(1962)].

Fukunaga and Kessel (1973) used labeled design samples
and unlabeled test samples. For a test sample X; from
the test set of N, unlabeled samples, consider its k nearest
neighbors among the design set N, Of these k neigh-
bors, let k, be from class w, and k, from class w,, and let
r(X) = min {k,/k, k,/k}. Then the sample mean E, =
1/N, > | r(X,) has an expectation that is a lower bound
on the Bayes error. An upper bound is obtained from an
unbiased estimate of the conditional k£ nearest-neighbor
error. For N, very large, the average of the lower bound
r/(X) and the upper bound, over the unlabeled samples,
gives a good experimental estimate for the Bayes error.
The use of unlabeled test samples results in a lower variance
for this estimate than an error estimate based on labeled
test samples.

The results in Fukunaga and Kessel (1973) and previous
results in Fralick and Scott (1971) suggest that for a small
number of design samples the approach using Parzen
estimates performs better than the k nearest-neighbor
procedures. Further comments are made in Section VII.

When designing a pattern classification device, it is
expected that a large labeled design set will have to be
gathered. These results suggest a way of estimating the
minimum probability of error that is achievable with a
given set of features, without having to also label a large
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set of test samples. The labeling of test samples is not only
expensive but can often be an additional source of error,
as has been found in some medical applications.

The investigations into dimensionality, sample size, and
error estimation described in this section represent perhaps
the most user'al research in statistical pattern recognition
during the period 1968-1974. Although incomplete, they do
provide rules of thumb and guidance for designing pattern
classification systems and analyzing their experimental
performance.

VII. STATISTICAL CLASSIFICATION

The basic a:sumption underlying statistical classification
is that there exists a multivariate probability distribution
for each class. Members of a pattern class are then treated as
samples from a population, which are distributed in a
n-dimensional feature space according to the distribution
associated with that population. For two classes an observa-
tion x on the vector random variable X representing the
features is treated as coming from one of two distributions
F, or F,.

This theoretical framework leads to subcategories ranging
from complete statistical knowledge of the distributions to
no knowledge except that which can be inferred from
samples. The s 1bcategories are

a) known distributions;

b) parametric families of distributions for which the
functiona! forms are known, but some finite set of
parameters need to be estimated;

c) the nonparametric case in which the distributions are
not known.

Under b) and ¢) there are the possibilities that either some
sample patterns of known classification are available, or
unlabeled samples are available.

The subcategories a), b), and c¢) were discussed in Fix and
Hodges (1951) and by various other authors in statistics.
In Ho and Agrawala (1968) the basic categorization scheme
was enlarged to include the additional aspect of unlabeled
samples. The paper surveyed work on statistical classifica-
tion algorithms presented in the engineering literature on
pattern recognition through early 1968. Some topics under
categories a) and b) that were considered in some detail are
sequential and nonsequential statistical decision theoretic
algorithms, recursive Bayesian procedures for ‘“learning
with a teacher” when labeled samples are available, and
the Bayesian formulation of “learning without a teacher”
when unlabeleil samples are available. Under category c)
the paper described: algorithms for learning the coefficients
of linear decision functions based on iterative deterministic
optimization procedures for solving linear inequalities
under some criterion function; extensions of these pro-
cedures to desl with nonlinear inequalities or piecewise
linear inequali-ies; algorithms based on stochastic approx-
imation methods to find the coefficients of orthonormal
series represen-ations for the difference between the un-
known a postes iori probability distributions for each class;
and some clustcring algorithms for unlabeled samples. Also
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mentioned was the result in Cover and Hart (1967) that for
an infinite sample size, using the nearest-neighbor rule for
classifying a sample leads to an error rate that is never
worse than twice the Bayes error probability.

In the period since 1968, papers on classification under
subcategories b) and c) for labeled and unlabeled samples
have continued to appear; a survey of statistical classifica-
tion similar to that in Ho and Agrawala (1968) could now
easily be the sole topic of a very long journal article.
However, the majority of recently published books in pat-
tern recognition devote almost all their attention to statis-
tical classification, estimation, and clustering procedures,
and some of them, Duda and Hart (1973) in particular,
provide very good surveys of the literature on these topics
through early 1972. Thus I have limited the scope of this
section to 1) some recent references and surveys for statis-
tical classification procedures that derive from approaches
covered in earlier surveys, and 2) brief descriptions and
comments on some recent contributions. Under 2) I focus
on topics in nonparametric classification. In recent years,
this is the category of classification procedures that has
been of greatest interest for work in pattern recognition.

Some Recent References

Prior to 1968 algorithms for the optimal solution of linear
inequalities were often proposed in the pattern recognition
literature. Papers on this topic continue to appear regularly.
A recent example is Warmack and Gonzalez (1973) that
claims to have the first direct algorithm, not based on
gradient optimization techniques or linear programming,
for the optimal solution of consistent and inconsistent strict
linear inequalities. An accelerated relaxation-based pro-
cedure for finding piecewise linear discriminant functions is
described in Chang (1973).

Many papers on decision-directed learning and on
various other unsupervised learning schemes such as learn-
ing with a “probabilistic teacher” and learning with an
“imperfect teacher” have appeared since 1968. In Agrawala
(1973) schemes for learning with various types of teachers
are reviewed, and simple block diagrams are presented to
reveal their interrelationships.

For learning with various types of teachers and for many
other problems in statistical pattern classification, e.g.,
automatic threshold adjustment, taking context into ac-
count, intersymbol interference, and distribution-free learn-
ing, at least conceptually, compound decision theory
provides an integrated theoretical framework. A brief
tutorial exposition of compound decision theory procedures
appears in Kanal and Chandrasekaran (1969); see also the
comments in Cover (1969) and the extended presentation in
Abend (1968). In pattern recognition, examples of recent
papers based on compound decision theory approaches are
Welch and Salter (1971) and Hussain (1974). The optimal
processing algorithms based on these approaches are
generally unwieldy, and many approximations must be
invoked.

Complementing the surveys of clustering presented in the
pattern recognition literature is an excellent survey [Har-
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TABLE 11
NONPARAMETRIC PROBABILITY DENSITY FUNCTION ESTIMATORS [SEE CovERr (1972)]

Formulation

f(X) density function; Xy -+ X, -+ (independently

Estimator

identically distributed random variable)

Comments

1 Histogram ]
indicator function for S;, then

k 1 2
i = 2o [ X o)
i j=1

partition real line into sets Sy,S2, - -, let gi(x) be

. 1 .
variance — 0 as 7 unbiased

1) selection of S;’s and their number is arbitrary
2) results in piecewise constant f,(x)

k
2 Orth 1 functi W(x) = C ™y (x 1) reduces to histogram approach if ¥; = g:
rihogonal function f) i; 2 2) possibility of negative values for fx(x) exists
where 3) scale of ¥; must be selected before the data is observed
A 1 & [see also Crain (1973)]
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2 h* ., 1
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o _ (1, x=20
IO =1 x<o0
4 Parzen estimator fix) = 1 zn: K (x — x‘) unbiased,
h(n) ;&4 h(n) s 1 1 x — x1\\?
var (£(x) < = E (h— K (——))
K is bounded, absolutely integrable Kernel n (n) hn
function 1 .
IxK()] > 0 as |x| - o0 rate of convergence X ;(depends on continuity of f)
[xay =1
5 Loftsgaarden and fix) = kn/n if k, > o0, ka >0
Quesenberry 2d(n) n

where k, is an integer n, d(n) is the distance to
the k,th closest sample point from x

=> consistent estimate

tigan (1974)], which provides many interesting recent
references not cited in pattern recognition books and
articles. The author aptly describes the present status of
clustering theory as chaotic and says

the probabilistic and statistical aspects of clustering are
still immature, the principal body of knowledge being
clustering algorithms which generate standard clustering
structures such as trees or partitions from standard forms
of input data such as a distance matrix or data matrix.

Dissatisfaction with heuristic approaches has led to some
theoretical analyses of clustering. A recent reference is
Wright (1973), who attempts an axiomatic formalization
of clustering.

Some recent papers have considered the comparative
evaluation of alternative discrimination procedures, a topic
that is of direct interest to pattern recognition practice.
In Moore (1973), five discriminant functions for binary
variables are evaluated. These are the first- and second-
order Bahadur approximations, linear and quadratic dis-
criminant functions, and a full multinomial procedure

based on estimating the class conditional probability dis-
tributions. Among the conclusions drawn is that for binary
variables, the quadratic discriminant function rarely per-
forms as well as the linear discriminant function. This
confirms the experience reported by many persons working
in pattern recognition [Kanal (1972)]. A comparative study
of linear and quadratic discriminant functions for inde-
pendent variables from three nonnormal continuous dis-
tributions is reported in Lachenbruck et al. (1973). Other
comparative studies of some classification procedures are
Gessaman and Gessaman (1972) and Odell and Duran
(1974).

Many of the comparisons in these studies leave one less
than satisfied as to the generality or objectivity of the
conclusion. An objective approach suggested by decision
theory is to develop admissibility criteria that would
eliminate obviously bad algorithms. Admissibility of k-NN
algorithms for classification is discussed in Cover and Hart
(1967). In a recent study [Fisher and Van Ness (1973)],
seven seemingly reasonable admissibility conditions were
used in an attempt to compare eight classification procedures
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including k-NN rules, linear discriminant analysis, quadratic
discriminant analy:is, and Bayes procedures. Unfortunately,
the approach did not provide much comparative information
about the alternate algorithms.

Nonparametric Cla:sification Procedures

Nonparametric approaches to classification include:

1) linear, nonlinear, and piecewise linear discriminant
functions;

2) stochastic approximation and potential function
methods for approximating the decision boundary;

3) clustering prcedures;

4) density estimation methods for use in an optimal
decision rule;

5) nearest-neighbor classification rules;

6) statistically equivalent blocks;

7) discrete variable methods when there is no inherent
metric.

The basic concepts underlying the first five approaches
are clearly presente:l in Duda and Hart (1973) and Fukunaga
(1972). These book: also briefly deal with discrete variables
and present some series approximations for the joint
probability functio: of binary variables. Extensive develop-
ment and discussion of research contributions to the first
five topics, up to 1972, are presented in Patrick (1972),
which is the only pattern recognition book with any
material on the topic of statistically equivalent blocks. In
the following, I briefly describe some recent contributions
to topics 4) to 6) that have not been previously surveyed
and appear to mer;t comment.

Five commonly uised nonparametric probability density
function estimators are examined and compared in Cover
(1972), which gives 87 references on nonparametric density
estimation. Table (I presents a summary of the five es-
timators. The appl cation of B-splines to multivariate pdf
estimation using Parzen estimators is the subject of a recent
dissertation [Bennett (1974)]. B-splines are local rather
than global approximating functions, so that each point in
a set of data points being approximated with the B-spline
basis functions has influence on a fixed fraction of the
density estimate. For estimating a L dimensional pdf from
n random L-vectors of data, Bennett presents an algorithm
that uses a L dimensional density kernel estimator with a
L-fold tensor product of B-splines as basis functions.

The & nearest-nei shbor class of estimators of Loftsgaarden
and Quesenberry derive from a method of nonparametric
density estimation suggested by Fix and Hodges (1951). In
this approach the volume of the region containing the &
nearest neighbors «f a point is used to estimate the density
at that point. Thus the number of observations is fixed and
the volume is rardom. This contrasts with the Parzen
estimator approacl. in which the volume is fixed and the
number of data points is random. This symmetry is sug-
gestive and Fralick and Scott (1971) pointed out that the
need to choose the kernel K and window (weighting) func-
tions /4 in the Parien estimator has its counterpart in the
need to choose thi: number of nearest neighbors and the
metric in the & near:st-neighbor approach. Using techniques

similar to earlier work on the derivation of the optimum
kernel function for Parzen estimators, Fukunaga and
Hostetler (1973) obtained a functional form for the optimum
k in terms of sample size, dimensionality, and the underlying
probability distribution. The optimality is in the sense of
minimizing an approximated mean-square error or inte-
grated mean-square error criterion.

A number of papers, many of them published in this
TRANSACTIONS, have been concerned with the asymptotic
convergence of k-NN rules and certain variations thereof,
[Cover (1968), Peterson (1970), Wilson (1972), Wagner
(1971), (1973), and Wolverton (1973)]. Of course, the small
sample behavior of any nonparametric decision rule is
problematical. Cover (1969) has conjectured that

The failure of the NN rule score to be near its limit is a
good indication that every other decision rule based on
the n samples will also be doomed to poor behavior. A
small sample with respect to the NN rule is probably a
smaller sample with respect to more complicated data
processing rules.

The experiments of Fralick and Scott (1971) and Fukunaga
and Hostetler (1973) would not seem to support that con-
jecture, as they appear to favor Parzen estimates. However,
as Cover has pointed out, Parzen estimates involve a
smoothing parameter that the experimenter can adjust after
looking at the data. My own experimental comparisons,
done in 1964, of nearest-neighbor rules with other competing
classification procedures for a specific problem did not favor
nearest-neighbor rules. However, these are isolated ex-
periments, and theoretical analysis and systematic ex-
perimentation are needed to answer questions about the
small sample performance of NN rules and, indeed, all
competing classification procedures.

Other than the early work of Fix and Hodges (1952) for
univariate and bivariate Gaussian distributions, the only
published studies of the small sample performance of the
NN rule seem to be Cover and Hart (1967) and the recent
paper by Levine, Lustick, and Saltzberg (1973), for the case
of samples from two uniform univariate distributions. Not
surprisingly, for this case it is shown that the probability of
misclassification is close to its asymptotic value even for
extremely small samples. An unpublished result by W.
Rogers and T. Wagner has been communicated to me by
one of the reviewers of an early draft of this paper. For
nearest-neighbor classifiers they find that with the leave-one-
out method the variance in the risk estimate is less than
5/4n + 3/n3'% independent of the underlying distribution. A
similar result is claimed for any local classifier. This result is
a nonparametric finite sample size result that should allow
competing classification procedures to be compared using
confidence intervals on the risk estimates.

During the period under consideration, a few papers on
nonparametric classification using distribution-free toler-
ance regions have appeared. Unlike most of the pattern
recognition literature, these papers take a non-Bayesian
Neyman-Pearson approach to error performance and are
thus of some interest.
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In 1947, J. W. Tukey used the term “statistically equiv-
alent block” for the multivariate analog of the interval
between two adjacent order statistics; to extend the concept
of order statistics to the multivariate case, it is necessary to
introduce ordering functions. Given n observations from a
continuous distribution, the sample space is divided by
these observations into n + 1 blocks. For any block B; the
proportion of the population covered, referred to as the
“coverage,” is treated as the value of a random variable U;.
Subject to mild restrictions on the procedure used to divide
the sample space, the random variables U, - - - U, have a
joint distribution that is independent of the distribution
giving rise to the sample observations. The distribution is
the Dirichlet distribution—a uniform distribution over a
set prescribed by simple inequalities. This property of the
coverages of the (n + 1) blocks leads to the term statistically
equivalent blocks.

Since the sum of any group of the U, has a beta distribu-
tion, the rharginal distribution of the proportion of the
population that lies in a group of the blocks has the beta
distribution. Enough blocks can be chosen to make a
probability statement such as “in repeated sampling the
probability is p that the region R contains at least « of the
population.” Thus a distribution-free tolerance region
whose coverage has the beta distribution can be constructed
in the multivariate case by defining ordering functions to
generate statistically equivalent sample blocks.

In Quesenberry and Gessaman (1968), an optimal pro-
cedure, in the two-class case, is defined to be one that
minimizes the probability of reserve judgment, i.e., rejec-
tion, while controlling the conditional error probabilities
for each class within prescribed upper bounds. The paper
presents a nonparametric classification procedure based on
forming regions of reserve judgment from intersections of
distribution-free tolerance regions. The choice of the order-
ing functions determines the usefulness of the procedures;
for some families of distributions it is possible to select
ordering functions that will make the nonparametric
procedure consistent with the optimal procedure for the
given family.

In the same context as the preceding paper, Anderson
and Benning (1970) present a suboptimum nonparametric
classification procedure for the two-class problem. In this
paper, the set of ordering functions used to form tolerance
regions for the first distribution are based on clusters of the
sample drawn from the second distribution, and vice versa.
Hyperspherical (Euclidean distance) and hyperelliptical
ordering functions are suggested to order observations with
respect to cluster means. Note that the general theory of
distribution-free tolerance regions does not consider the
case where the regions corresponding to a distribution
depend on randomness from a source different than the
observations on that distribution. Anderson and Benning
(1970) prove that the theory does hold for this case.

An earlier paper in this area is Henrichon and Fu (1969).
A recent paper is Beakley and Tuteur (1972), which presents
three ordering procedures to develop nonparametric toler-
ance regions and uses them in automatic speaker verification.
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In Gessaman and Gessaman (1972) reserve judgment pro-
cedures based on nonparametric tolerance regions are
compared with other standard procedures.

For discrete variables satisfying only a nominal scale
(i.e., when there is no inherent metric), a switching theory-
based approach is presented in Michalski (1972), (1973)
and Stoffel (1972), (1974). In the past, various similarity
and clustering metrics have been tried for nominal variables
[Anderberg (1973), Goodall (1966), and Hills (1967)].
Sammon (1971) suggested procedures for transforming such
discrete variables, termed Discrete Type II variables, into
continuous features; the OLPARS Discrete Variable Sub-
system commented upon in Kanal (1972) provides a number
of such transformations. The contribution of Michalski
(1972) and Stoffel (1972) is a feature generation and clas-
sification procedure that generates a small set of n-tuples for
discrete nominal variables. These n-tuples, called *“prime
events” in Stoffel (1972), are claimed both to fit a specific
class and to discriminate it from other classes.

The independent developments by Michalski and by
Stoffel of essentially the same concepts and procedures
are based on the idea of the “cover” of two events, and they
are related to work on the synthesis of switching functions
from incompletely specified input—output relations.

Michalski’s work on a ‘‘covering theory” approach to
switching and classification problems predates Stoffel’s 1972
report, but his formulation, development, and exposition
are imbedded in complex notation. Here I follow Stoffel’s
terminology.

An event is an n-tuple (x,X,," " *,X,) in which a subset
of the elements have specified values, and the unspecified
elements are “‘don’t care” variables. Event e; “‘covers”
event e,, if and only if every element of e; which has a
specified value equals the value of the corresponding
element in e,. Thus event e; = (2,-,-), where - denotes an
unspecified element, covers event e, = (2,1,0) and event
e; = (2,2,-), but e, does not cover e, or e;, and e; does not
cover e; or e,. A prime event is an event that covers only
those measurement vectors assigned to one class by a
Bayes classifier. Also a prime event is not covered by
another prime event. An algorithm to generate a sufficient
set of prime events that will cover the class is given; the
resulting set may not be the smallest possible.

To account for vagaries in the sample, Hamming distance
is used as a measure of similarity between events or between
a measurement vector and an event. Classification is done
by assigning a sample to that class the set of prime events
of which covers the sample vector. If the distance from all
prime events exceeds a threshold, then the sample is
rejected.

The procedure is certainly a systematic approach to the
generating of a small set of good templates. However, it
generates prime events for each class versus the rest of the
classes. It is easy to give examples where by grouping classes
together and using a tree classification structure one can do
as well with fewer prime events.

The last comment brings up the question as to whether
the complexity of patterns and pattern representation
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schemes can be considered independently of the classifica-
tion structure adopted.

In an essay on the complexity of patterns and pattern
recognition systems [Kanal and Harley ( 1969)], it is argued
that complexity of patterns is in the eye of the beholder and
that one can consider evaluating the complexity of different
patterns with respect to specific beholders, i.e., specific
pattern recognition systems or recognition logics. This is
the approach taken by Minsky and Papert (1968), who
compute the complexity, or what they call the “order” with
respect to single layer threshold logic of a number of
interesting geometrical properties. Various aspects of the
complexity of patterns and pattern recognition systems are
also described heu-istically in Kanal and Harley (1969).
Cover (1973) represents the beginning of an attempt to
obtain a measure of the intrinsic complexity of a pattern
so that different bel olders, i.e., computational systems, will
arrive at the same complexity measure up to an additive
constant. Until such time as this effort succeeds, it is likely
that problem complexity and system complexity will be
matched heuristical y in the manner described in Harley et
al. (1968).

Commentary on Stetistical Classification

There has been s>me tendency to question, in the name
of practicality and simplicity, the need for further theoretical
studies in the area of statistical classification. No engineer
will quarrel with th:: emphasis on practicality and simplicity
but as demonstrate( by the attempts to compare classifica-
tion procedures, not having theoretical guidelines makes it
difficult to select hetween competing techniques without
extensive experimentation. A suitable criterion and analysis
can be used to analytically decide on the best technique
among a set of ad hoc methods. What recent attempts at
comparing classificition procedures show is that, if any-
thing, more analy:ical studies are needed so that ex-
perimental compar.sons can be more meaningfully con-
ducted under theor:tical guidelines. The study of classifica-
tion procedures necds to be extended to cover the com-
bination of hierarchical classification structures and dis-
criminant procedures commonly employed in practice.
Finally, the proper role of nonparametric procedures is in
the early exploratory stage of a pattern recognition problem.
There is no substiti. te for discovering the underlying struc-
ture and taking ad»antage of it. As an example, the use of
a nonparametric tdlerance region procedure in speaker
verification is warranted in the early phase of an investiga-
tion but for such aroblems considerably more structural
knowledge can be used, and approaches such as those
considered in the next section seem more appropriate.

VIII. STRUCTURAL METHODS

The linguistic approach views patterns as complexes of
primitive structural elements, called words or morphs, and
relationships amon;; the words are defined using syntactic
or morphological rules. The primitive structural parts are
perceptually and conceptually higher level objects than
scalar measuremen's. For instance, the gray levels of in-

dividual points of a digitized picture would be too low-level
to be meaningful units of that picture, nor would the
individual amplitude levels of a digitized waveform be
meaningful units for structural analysis.

In practice, the structural approach involves a set of
interdependent processes: 1) identification and extraction
of morphs—this is the segmentation problem; 2) identifica-
tion of the relationships to be defined among the morphs;
3) recognition of allowable structures in terms of the morphs
and the relationships among them. Two-dimensional line
drawings, fingerprints, X-ray images, speech utterances, and
other such patterns that exhibit strong deterministic struc-
ture and for which a priori information in the form of some
model can be easily used, are natural candidates for the
structural approach.

Ad hoc structural processing has a much longer history
in pattern recognition practice than statistical methods,
which are based on abstract relationships involving joint
probability distributions and distances in multidimensional
space among sets of scalar measurements. Commercial
print readers involve ad hoc structural processing, and
biomedical programs are usually of this kind.

Much of the literature on structural pattern recognition
has been devoted to formal methods. Fu and Swain (1971)
surveyed the literature prior to 1970 and the November
1971 and January 1972 issues of Pattern Recognition to-
gether constituted a special issue on syntactic pattern
recognition. Much of the published work on structural
methods for pattern recognition and scene analysis from
1969 to 1973 is mentioned in Rosenfeld (1972), (1973), (1974).
A brief survey also appears in Klinger (1973). A book on
Syntactic Methods in Pattern Recognition has recently been
announced [Fu (1974)].

These general surveys allow us, in this section, to focus
on a few key concepts and differences in approach that
underlie current work on segmentation and structural
analysis.

Segmentation and Structural Analysis

Pattern description has been viewed either as two distinct
processes—segmentation followed by structural description,
or as an integrated process—segmentation-structural de-
scription. The first approach often delegates segmentation
to preprocessing and concentrates on formal models for
structural description which assume that the patterns are
already represented as a segmented structure [ Evans (1968),
Fu and Swain (1971), and Lee and Fu (1972)].

Piecewise functional approximation is one method for
preprocessing waveform data [Pavlidis (1973) and Horowitz
(1973)]. The data are fit according to an error criterion with
line (or polynomial) segments. The output from the pre-
processor is a string of triples {(x;,y,),4;,B;}, i = 1,---,S,
where S is the number of segments, y = 4,x + B, is the
linear approximation to the ith data segment, and (x;, ;) is
the right endpoint of the line segment. This string is trans-
lated into the terminal symbols (tokens) of a grammar under
the control of parameters appropriate to the application.
The structural analysis is accomplished by a left-to-right
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Fig. 3. (a) Original generative description of carotid pulsewaves
through B.N.F. (b) Smooth extrema morphs used in pilot pulsewave
analysis and rough extraction procedure. (c) One cycle of raw carotid
pulsewave data juxtaposed with fitted representation obtained via
parsing.

parser for a grammar that defines more complex relations
among the terminal symbols, for example, several appro-
priate line segments could form a peak.

The advantages of this approach are preprocessing speed,
generality, and the mathematical tractibility that approx-
imation theory provides. However, the approach has more
the flavor of numerical analysis than pattern analysis. This
comment also applies to proposals to use truncated
K-L series expansions in pattern analysis [McClure (1974)
and Lavin (1972)]. Also such preprocessing usually results
in arbitrary segmentations and requires excessive time for
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scanning and matching of all the data. Furthermore, the
segments extracted may not be meaningful in the context of
a specific application. In separating the analysis of structure
from the extraction of morphs, each process is excluded
from information available to the other. That is, the extrac-
tion of individual morphs must proceed in ignorance of the
a priori combinatorial restrictions known by the structural
component, and the structural component cannot profit
from the intermediate work of extraction.

The alternative approach, integrated segmentation-struc-
tural description, is exemplified by the work of Stockman
et al. (1973), (1974) for carotid artery pulse waveforms and
Miller (1973) and Reddy et al. (1973) for speech recognition.
The salient points of this approach are the following.

a) Knowledge-based segmentation. There is a priori knowl-
edge of the possible segments in the data. For example, in
a carotid pulse wave, it is known that an upslope, a trailing
edge, a peak in between, and a dicrotic notch are likely to be
found; see Fig. 3. Morphs can be defined that are believed
to be of functional importance to the particular problem at
hand and can vary in complexity from local extrema to
exponential segments.

For scene analysis, Tennenbaum (1973), (1974), discusses
the desirability of knowledge-based search for distinguishing
features in preference to scanning the entire scene with
low-level operators. The term “knowledge-based,” currently
popular in the artificial intelligence (AI) literature, generally
refers to “‘nonstatistical” a priori information, although
statistical information and Bayes’ theorem are now also
acceptable in Al [Yakimovsky and Feldman (1973)].

b) A priori knowledge is represented by means of decision
trees [Narasimhan and Reddy (1971)], graph models and
decision graphs [Harlow and Eisenbeis (1973)], and grammars
[Stockman (1973)].

¢) Several levels of structural information are utilized. For
example, for speech recognition the following types of
information have been used.

1) Acoustic-phonetic constraints that limit occurrences
of given phonemes in segments of speech in the
language under study and specify the phonemic con-
tent of vocabulary items.

2) Syntactic constraints in the form of a grammatical
model that define what word sequences are allowable
utterances of the language.

3) Semantic constraints that allow a hypothesized word
sequence to be referred to a particular problem domain
so that some measure of its reasonableness can be
obtained.

d) Parsing is bottom-up and top-down and non-left-to-
right. In other words, the more prominent morphs are
sought first regardless of their location, and then the gram-
mar is used to predict where other morphs are to be found.
In the case of pulse waves, the most prominent morph might
be the upslope. Having extracted the upslope, a grammar
could be used to predict that the next morph to be scanned
is the trailing edge. Having extracted the trailing edge, the
next morphs to be scanned might be peaks and a dicrotic
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notch between the upslope and the trailing edge. In this
fashion, the extracted morphs clue the system to the rest
of the structures 10 be searched and also allow future search
to be performed over restricted intervals.

In Miller (1973}, parse trees are “seeded” by first scanning
the entire input 1.tterance for prominent vocabulary items
(usually long wotds). Words in the local context of those
found are then sought and partial parse trees (PPT) are
assembled anywt :re in the input. The PPT represents the
grammatical structure of this part of the utterance, while
the terminals of the tree are words in the vocabulary
believed to exist in the input. PPT’s are enlarged by using
the grammar to giide the search for hypothesized words in
the neighborhood of PPT’s and to connect several PPT s into
one. Analysis car terminate any time the complete utter-
ance is “covered” by some PPT. The bottom-up non-left-
right approach is attractive because of the ability to search
first for reliable n:orphs regardless of location and to guide
future analysis accordingly.

There is an analogous technique to this type of parsing,
when decision trees rather than grammars are used to repre-
sent the possible s ructures. In the X-ray analysis in Harlow
and Eisenbeis (1973), one searches for each lung lobe with
respect to those lobes already found before it in the image. If
processing leads ‘0 an impossible structural outcome, the
analysis is backed up and extraction of morphs is taken up
again. In Narisimhan and Reddy (1971), isolation of a
given morph narrows the structural possibilities, while the
present state of structural possibilities dictates the next
morph extraction to be attempted.

The parsing approach can also be top-down and left-to-
right [Walker (1974), Erman (1974)]. By going top-down
only syntactically and semantically acceptable configura-
tions are considercd, and very expensive preprocessing can
be minimized. By going left-to-right, classical parsing
methods can be ‘1sed and the state of analysis is easily
recorded.

One can define a probability (or fit error) that a given
morph matches a given segment of raw data. This prob-
ability can also b: backed up a PPT to yield a figure of
merit for a partial parse. The probability of a PPT can be
changed by ‘“‘semantic conditioning” [Erman (1974)]. By
maintaining this figure of merit for all partial analyses only
the most promisir g ones need to be extended, or in the case
of complete analyses only the most likely cases need to be
accepted.

Pattern Grammars

Much of the lirerature on structural pattern recognition
deals with forma. string grammars and their multidimen-
sional generalizations. Recall that one of the reasons for
introducing linguistic methods was the limited relationships
handled in statistical pattern classification. However,
phrase-structure s:ring grammars are also severely limited
in the relationships they model. Basically, they deal only
with concatenation of primitives and immediate con-
stituent structure.

According to a 1971 article [Uhr (1971)], past work on
formal linguistic rethods for pattern recognition has been

either purely theoretical, or merely an incidental portion of
some pattern recognition system, or incomplete in the sense
of never actually resulting in a running program. As far as
applications of purely formal syntactic methods are con-
cerned, the situation remains essentially the same in 1974 as
it was in 1971.

An incomplete effort of some interest (because it deals
with a real problem) is Moayer and Fu (1973), which
describes how a syntactic approach to fingerprint classifica-
tion might be based on a context-free grammar model. This
is one of the few formal grammar-based efforts aimed at
obtaining a complete analysis from primitive extraction to
classification. It contains: a) a careful study of the data
environment yielding the choice of primitive syntactic
elements; b) the hierarchical syntactic analysis that permits
the one-dimensional concept of concatenation to readily
apply to the two-dimensional representations used; and
c) the “sequential recognition algorithm” that amalgamates
syntactic recognition, primitive feature extraction, and se-
quential decision-making for computational and logical
efficiency. However, no conclusive results have been
reported yet on the performance of the technique.

Theoretical research in syntactic pattern recognition has
been extensive during the past few years. Various gen-
eralizations and new formalisms have been proposed to
overcome some of the limitations of string grammars. For
example, stochastic finite state and context-free grammars
obtained through the specification of a discrete probability
distribution over each set of alternative productions have
been used as a means of accounting for ambiguities of
structure or generation [Fu and Swain (1971)].

We noted earlier the cleavage between the extractor and
analyzer that occurs in formal models. In the work based on
stochastic formal grammars [Fu and Swain (1971) and Lee
and Fu (1972)], while the analyzer is designed to handle
ambiguities of structure there seems to be no provision for
ambiguities of representations handed over by the extractor.
It seems clear that some data objects could be represented by
alternative strings of primitives. Also, because the scheme is
based on string grammars, it is forced to overemphasize the
concatenation relation between primitives.

There have been several proposals for multidimensional
generalizations of phrase structure string grammars. For
example, in array grammars, instead of replacing one sub-
string by another, rewrite rules are defined to replace a
two-dimensional subarray by another subarray. Properties
of array grammars and the relationship between array
grammars and array automata have been investigated in
Milgram and Rosenfeld (1971). In Siromoney et al. (1973),
rectangular array models are generalized to »n dimensions,
and three-dimensional array models are used to describe
the growth of crystals.

Plex grammars [Feder (1969), (1971)] involve primitive
entities called napes. Each nape has a finite number of
attaching points, each of which has an associated identifier.
Napes are combined by bringing attaching points into
coincidence. A picture description language [Shaw (1969,
1970)] can be used to describe pictorial patterns, the prim-
itive elements of which have arbitrary shapes and dis-
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tinguished heads and tails. The hierarchic structure of a
picture is defined by using a “picture description grammar”
to combine expressions in the picture description language.
In coordinate grammars [Rosenfeld (1973) and Anderson
(1968)], morphs have coordinates associated with them, and
functions that compute the coordinates of the new morphs
from the old morphs are associated with the rewriting rules.
Coordinate grammars have been proposed for the descrip-
tion of mathematical notation, shapes, signs, textures, etc.
[see, e.g., Chang (1970), (1971), Narasimhan and Reddy
(1971), Carlucci (1972), Muchnik (1972), Nake (1971), and
Simon and Checroun (1971)]. Graph grammars model
various arbitrary relational structures among morphs. These
include grammars that generate trees [Brainerd (1969) and
Rounds (1969)] and labeled graphs, called webs [Pfaltz and
Rosenfeld (1969)]. The notion of graph embedding has been
generalized in Ehrig ef al. (1973).

Bhargava and Fu (1973) present a scheme for representing
line drawings in terms of trees. A tree grammar that gen-
erates trees is thus a formal description of the corresponding
set of patterns. Among the examples given are tree gram-
mars for the chemical structure of a natural rubber molecule
and for two electrical circuit diagrams.

There are some problems in using trees and tree grammars
in the manner of Bhargava and Fu (1973). First, since trees
are acyclic graphs, a single tree cannot completely describe
the connectivity of a closed figure. Second, trees introduce
ambiguity into a pattern that may not itself be ambiguous.
This ambiguity arises because the description of a figure by
means of a tree requires a segmentation of the figure
described, and an ordering of the segments. A different
choice of segments and ordering would result in a different
description of the pattern. Graphs and graph grammars are
probably more appropriate structures for describing line
drawings because cyclic graphs can completely describe the
connectivity of closed figures, and a graph description need
not order the parts of a figure.

It has often been suggested that transformational rules
might be just as useful in pattern analysis as they have been
in providing insights into the structure of natural languages.
A transformational grammar is defined as G, = (G,9),
where G is a reasonably simple “base” grammar such as a
context-free grammar, and ¢ is a mapping that maps a
structure in G, i.e., a tree, into a related tree. Joshi (1973)
presents a detailed example of a transformational grammar
derivation for a class of polygonal patterns. The example
shows how a context-free base grammar and transforma-
tional rules for deletion of the interior lines of the generated
patterns lead to much simpler derivation than a more direct
approach involving a context-sensitive grammar.

Bhargava and Fu (1973) also discuss the application of
transformational rules to trees generated by tree grammars.
The paper considers transformations: 1) to duplicate pat-
terns, i.e., to represent complex patterns as a periodic
repetition of some simple pattern and 2) to relate two
occurrences of the same pattern, one of which has under-
gone a shape-preserving transformation, e.g., rotation, linear
translation, or reflection.
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In Tauber and Rankin (1972), it is suggested that the
syntactic structure of chemical structure diagrams be de-
scribed by context-free web grammars or array grammars.
However, there are some relations between chemical struc-
ture diagrams that cannot be described by context-free web
grammars, for example, the relation between equivalent
structural formulas of the same compound. Transforma-
tional rules can be used to transform equivalent diagrams
into a canonical form, as well as to combine diagrams and
to decompose diagrams into “kernel” diagrams. These are
the ideas motivating the work of Underwood and Kanal
(1973), which introduces the concept of a transformational
web grammar. Because of the potential of graphs for de-
scribing patterns of practical interest, graph and trans-
formational graph grammars are likely to receive increasing
attention in syntactic pattern recognition.

IX. APPLICATIONS

It is not difficult to formulate problems from a variety
of fields in the terminology of pattern recognition. While
that need not imply much about how amenable they are to
solution, the terminology and methodology do provide a
common framework for investigators in various fields as
they become acquainted with work in pattern recognition.
Some interesting recent examples are Pang er al. (1974),
in which each set of measurements describing a state of a
power system is treated as a pattern and classifiers, i.e.,
“security functions” are derived to indicate whether the
system is in a secure or alert state; a dissertation in
economics that shows how certain models proposed by
economists for problems in voting theory and consumer
demand can be interpreted and extended via the terminology
and methodology of syntactic and decision-theoretic pattern
recognition [Piccoli (1974)]; a classification of members of
defined categories of stochastic nonlinear systems from
input-output data vectors [Saridis and Hofstadter (1973)];
and a use of clustering and discriminant functions to
classify characteristics of jobs received by a large digital
computer in order to develop dynamic scheduling algo-
rithms [Northouse and Fu (1973)].

Over the years certain investigators in chemistry have
been quick to try whatever pattern classification algorithms
happened to be popular, from Perceptron algorithms to k
nearest-neighbor classifiers, on infrared spectrometric data,
NMR spectra, and other chemical data [Kowalski ez al.
(1969, (1972) and Kowalski and Bender (1972), (1973)].

Most of these “applications™ of pattern recognition in
various fields have been academic demonstrations that sug-
gest the relevance of the methodology. Similarly, many of
the “applications” reported in the literature by persons
developing pattern recognition techniques are merely in-
cidental to the purpose of demonstrating that a new al-
gorithm “works well,” with the demonstration usually being
performed on a limited data set. During the past two
decades alphanumeric characters have been the favorite
data for such ‘“‘show and tell” experiments with new
algorithms.
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The focus of most of the published research in pattern
recognition has be:n on techniques. This is very much in
evidence in the books that have appeared in the last two
years. They are almost entirely technique-oriented, giving a
host of techniques with little insight into their comparative
utility in different applications. This point is made rather
colorfully in a review [Bremermann (1974) of Andrews
(1972)1: "

While he should not be blamed for the unsatisfactory state
of the art, he can be blamed for not making any attempt
to convey to the reader a sense of the effectiveness and
ineffectiveness of his methods. There are almost no ap-
plications (of 242 pages, only 6 are concerned with actual
pattern recognition experiments). Thus a new sacred cow
of mathematical rnachinery is created—its priesthood will
probably make a good academic living regardless of
whether the cow gives any milk.

Similar comments were also made until recently about
information theory but one hears them less often now.

The blame for the state of affairs decried by Bremermann
lies in part with the fact that the development of theoretical
and heuristic insights, which are relevant to practical applica-
tions, requires the t/pe of interaction between theoreticians
and experimentalists that is very evident in physics. In
pattern recognition, from time to time, such interaction has
been fostered in ind istrial and government research labora-
tories by organizations interested in applications, such as
optical character recognition, target recognition, electro-
cardiograms, and t ood cells. For the most part, however,
technique developrient has occurred without much feed-
back from experim:nts, since meaningful experimentation
in pattern recognition often requires that significant re-
sources be spent on collection, verification, and handling
of large data bases Some effort at sharing standard data
bases is now present [IEEE Computer Society]; this should
help. In many application areas, effective use of the data
requires close interz.ction with persons knowledgeable about
the processes that generate the data. Also required is a
sustained effort devoted to the particular application.

Negative examples abound, wherein inadequate data
bases were used and arbitrary operations were performed
on data without kiowledge of the field, thus leading to
unconvincing results. A positive example is the work on the
differential diagnosis of white blood cells. Much of the
credit for the explcration of this application area goes to
the pioneering anc. sustained work of Prewitt and her
colleagues who, witn adequate access to data gathering and
experimental facilit:es, established many of the basic ideas
for the development of this application [Prewitt and
Mendelsohn (1966), Prewitt (1972)]. These ideas and other
contributions [e.g., Bacus and Gose (1972), Ingram and
Preston (1970), and Young (1969)] have led to the develop-
ment of commercial products in this area. Whether or not
these products of pattern recognition research become either
a technical or a ma “ket success remains to be seen.

An annual review of progress in cell recognition and
related areas occurs at the Engineering Foundation Con-
ference on Automatic Cytology [Engineering Foundation,
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N.Y.C.]. Other examples of sustained efforts include various
projects in electrocardiogram pattern recognition [see
Caceres and Driefus (1970) and Zyweitz and Schneider
(1973)]. One reason why this applications area is of con-
siderable interest to theoreticians and experimentalists in
pattern recognition is the extensive data base gathered by
Pipberger [Pipberger et al. (1972)]. Although a few pro-
grams are supposed to work well, available pattern recog-
nition products in electrocardiography are still undergoing
evaluation [Cox et al. (1972) and Bailey (1974)]. Other
areas of interest in medical pattern recognition include
chromosomes [Castleman and Wall (1973)], X-rays [Chien
and Fu (1974), Pratt (1973), Harlow and Eisenbeis (1973),
and Ballard and Sklansky (1973), (1974)], and the process
of diagnosis [Kulikowski (1970), Jacquez (1972), and
Patrick et al. (1974)]. Only a few recent references have
been cited here for these and other applications areas.
Through these references, the interested reader can trace
the literature in the area. A bibliography of articles on
automatic quantitative microscopy is provided in Imanco
(1973).

Much data are being gathered by remote sensing using
the Earth Resources Technology Satellite (ERTS) and
various other elevated platforms for pointing sensors back
at the earth. It appears that this particular application grew
more out of a need to justify continuation of the space
program than out of experimental evidence that the data
to be gathered would provide adequate information for
discrimination of various phenomena. An excellent survey
[Nagy (1972)] and subsequent symposia proceedings [ERTS
Summaries, Remote Sensing Symposia] describe the ex-
tensive work being done in remote sensing. So far, only a
small part of the work in this area is concerned with
automatic classification but this is likely to change. Nagy
has discussed, rather well, the prospects and pitfalls that
await pattern classification studies on data gathered from
satellites and aircraft. A study of the application of pattern
recognition techniques to weather radar data is reported
in Duda and Blackmer (1972) and Blackmer et al. (1973).

Table III presents a representative list of pattern recog-
nition problems that have been attempted. It is interesting
to note the recent activity in fingerprint and palmprint
recognition and also in signature verification, which has
been generated by the interest of law enforcement and
military base security groups [Eleccion (1973), Nagel and
Rosenfeld (1973), Proc. of the Electronic Crime Counter-
measures Conf., and Sprouse et al. (1974)]. Pattern recog-
nition methodology has also served as the basis for a study
of the decision mechanisms used in palmistry [Oda et al.
(1971)]. A more modern interpretation, viz., the genetic
basis of dermatoglyphic patterns, underlies the preliminary
pattern classification studies of palm and fingerprint pat-
terns for their potential in diagnosing Down’s syndrome,
leukemia, and schizophrenia [Stowens and Sammon (1970),
and Stowens, Sammon, and Proctor (1970)]; see also
Penrose and Loesch (1971).

Applications of pattern recognition in industrial process
control are being explored [see, e.g., Business Week (1974)].
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TABLE III

SOME APPLICATIONS OF PATTERN RECOGNITION

Problem

Input to Pattern Recognition System

Output of Pattern Recognition System

Medical Applications
Identification and counting of cells

Detection and diagnosis of disease

Prosthetic control devices
X-ray diagnosis

Military Applications
Interpretation of aerial reconnaissance imagery

Detection of enemy navy vessels

Detection of underground nuclear explosions

Commercial and Government Applications

Automatic detection of flaws— )
impurities in sheet glass, bottles, paper, textiles,
printed circuit boards, integrated circuit masks

Classification and identification of fingerprints

Traffic pattern study

Natural resource identification

Identification of crop diseases

Economic prediction

Speech recognition—
remote manipulation of processes, parcel post sort-
ing, management information systems, voice input
to computers

Weather forecasting

Object recognition—
parts handling, inspection of parts, assembly

Character Recognition
Bank checks

Automatic processing of documents—
utility bills, credit card charges, sale and inventory
documents

Journal tape reading

Page readers—
automatic type setting, input to computers, reading
for the blind

Label readers

Address readers

Other readers—

licence plate readers, telephone traffic counter
readers

slides of blood samples, micro-

sections of tissue
electrocardiogram waveforms
electroencephalogram waveforms
slides of blood samples

mypotentials
X-ray photograph

visual, infra-red, radar, multi-
spectral imagery

passive and active sonar wave-
forms

seismic waveforms

scanned image (visible on infra-
red, etc.)

scanned image

aerial photographs of highways,
intersections, bridges, road sen-
sors

multispectral imagery

multispectral imagery
time series of economic indicators
speech waveform

weather data from various land-
based, airborne, ocean, and
satellite sensors

scanned image

magnetic response waveform,
optical scanned image
optical scanned image

optical scanned image
optical scanned image

optical scanned image
optical scanned image

optical scanned image

types of cells

types of cardiac conditions

classes of brain conditions

various types and proportions of normal and ab-
normal cells

categories of movements of limbs

presence or absence of specific conditions

tanks, personnel carriers, weapons, missile launchers,
airfields, campsites
surface vessels, submarines, whales, fish

nuclear explosions, conventional explosions, earth-
quakes

acceptable vs. unacceptable, markings, bubbles, flaws,
radiation patterns, etc.

fingerprint descriptions based on Henry system of
classification

automobiles, trucks, motorcycles, etc., to determine
the characteristics of the traffic flow

terrain forms, agricultural land, bodies of water,
forests

normal and diseased crops

economic conditions

spoken words, phonemes

categories of weather

object types

numeric characters, special symbols

alphanumeric characters, special symbols

numeric characters, special symbols
alphanumeric characters, special symbols

alphanumeric characters, special symbols

letters and numerals combined into zip codes, city
and state names, and street addresses

alphanumeric characters, special symbols

In some areas of automatic assembly, flaw detection using
simple pattern classification techniques is feasible [Jensen
(1973)], but the requirements on precision and low error
rate may be quite severe. In other applications, e.g., stock
market patterns, the problems are quite difficult but any-
thing better than a 50-percent error rate may justify the
effort. Another example is that of postal address readers, a
number of which have been operating for several years.
Even if they reject a substantial percentage of the letters
they process, the sheer volume of mail they correctly sort can
still make the installation worthwhile.

Character recognition is the only pattern recognition
application area that has led to some commercially viable
products. However, as a data entry device for converting
written material into computer code, OCR equipment has
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so far not quite come up to earlier expectations in terms of
revenues, customer acceptance, and technical achievement.
Now there are new serious competitors to the data entry
function performed by OCR; e.g., key-to-tape equipment,
typewriter terminals using software editors, or on the near
horizon, limited vocabulary isolated-word speech input to
computers (also a pattern recognition technology). Also, the
past few years have shown that the effectiveness of OCR
installations depends upon complex interactions between
computer systems, programming, forms design, imprinters,
inks, systems and procedures, training, and so forth.

In summary, systems considerations have played a
dominant role in the success of an installation, and this is
likely to be true of many future pattern recognition
products.
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A survey of techniques for automatic recognition of
print and script appears in Harmon (1972); for an ele-
mentary introduction to scanning techniques for OCR see
Freedman (1974). Activity in this field continues, as ev-
idenced by patents and papers [see, e.g., Sammon et al.
(1973), Ullmann (1974)], and by the attendance at annual
seminars of th: Data Processing Supplies Association
[DPSA (1971)] and other meetings. However, it is sobering
to note that altiough many companies entered the OCR
market over the last decade, not many have prospered in
OCR activity. (Possible reasons why rosy predictions of
rich markets did not quite materialize are offered in Kanal
(1971).) Fortunately, the OCR experience has not stifled
the entry of new companies into other pattern recognition
product areas. In addition to blood cell and electro-
cardiogram recognition devices, isolated-word limited-
vocabulary speech recognition devices are now available
for trial in varicus applications. Perhaps these new areas
will benefit from the lessons learned in OCR.

X. PROSPECTS

In pattern recognition there have been repeated expres--
sions of concerr: (similar to those familiar to information
theorists) that tleoretical research bears little relationship
to practical applications. The research described in Sections
VI and VIII sugests that this situation is changing. In the
coming years, pattern recognition research is likely to
intensify efforts :0 combine heuristic and formal methods
and statistical a:ad structural methods. Also likely to in-
crease is the irterplay between pattern recognition and
various problem-solving techniques in artificial intelligence.
The next few years should witness an increasing infiltration
of pattern recognition techniques into various disciplines
and an increase in serious collaborative investigations in-
volving large daita bases, especially in biomedical and
remote sensing e pplications. ‘

The interest in experimenting with real data bases should
stimulate further theoretical and experimental studies on
the design and aualysis of pattern classification experiments.
Because of theiir importance to practice, comparisons of
various approaches to multiclass classification will no doubt
be further inves:igated. In syntactic methods, the current
interest in sceries, line figures, chemical structure, and
electronic circuit diagrams is likely to stimulate further
work on graphs and graph grammars.

Challenged bv the question, “What is a pattern that a
machine may kaiow it?” perhaps someone will come up
with a suitable definition of ‘“pattern” in the way that
Shannon gave precision to the colloquial word “informa-
tion.” If the resulting theory for such precisely defined
patterns were r:levant to a larger class of problems than
existing theoriei—that would be a “Kendo” stroke of
genius! However, the lack of such a theory does not prevent
applied researcl: from producing now results that would
justify the promise held out by pattern recognition for the
last fifteen year:. Applications of pattern recognition tech-
nology to indus:rial automation, health care delivery, and
other societal p-oblems are being pursued and are likely to
play a significant role in the near future.
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An Optimum Character Recognition System

Using Decision Functions®

C. K. CHOW{

Summary—The character recognition problem, usually resulting
from characters being corrupted by printing deterioration and/or
inherent noise of the devices, is considered from the viewpoint of
statistical decision theory. The optimization consists of minimizing
the expected risk for a weight function which is preassigned to meas-
ure the consequences of system decisions. As an alternative, mini-
mization of the error rate for a given rejection rate is used as the cri-
terion. The optimu:n recognition is thus obtained.

The optimum system consists of a conditional-probability densi-
sities computer; character channels, one for each character; a re-
jection channel; and a comparison network. Its precise structure and
and ultimate performance depend essentially upon the signals and
noise structure.

Explicit examples for an additive Gaussian noise and a ‘‘cosine”
noise are presented Finally, an error-free recognition system and a
possible criterion t: measure the character style and deterioration
are presented.

* Manuscript received by the PGEC, June 3, 1957.
1 Burroughs, Caorp., Paoli, Pa.

INTRODUCTION

HARACTER recognition has been receiving con-
(g siderable attention as the result of the phenomenal

growth of office automation and the need for
translating human language into machine language.!:?
Broadly speaking, the character printed in conventional
form and size on the document (checks, etc.) is first con-
verted to electrical signals, and sufficient information is
then extracted from the latter. The purpose of the
recognition system is based on the observed data and
on a priori knowledge of the signal and noise structure

! K. R. Eldredge, F. J. Kamphoefner, and P H. Wendt, “Auto-
matic input for business data processing system,” Proc. Eastern Joint
Computer Conf., pp. 69-73; December 11, 1956.

E. C. Greanias and Y. M. Hill, “Considerations in the design of
character recognition devices,” 1957 IRE NaTtioNaL CONVENTION
RECORD, pt 4, vol. 5 pp. 119- 126.

Reprinted from /RE Trans. Electron. Comput., vol. EC-6, pp. 247-254, Dec. 1957.
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to identify which of the possible characters is present,
or to reject if the data are ambiguous.

The over-all performance of the recognition system
depends not only upon itself, but also upon the number
of characters to be recognized, the character style, and
noise statistics. In this paper the character style and
noise statistics are assumed given and adequate, and
the purpose of the paper is to obtain an optimum recog-
nition system. For convenience, the recognition prob-
lem is considered one of statistical inference, so that use-
ful results in decision theory can be applied.*=® To ac-
complish this, the notion of risk is employed and proper
weights are assigned to various types of error, rejection,
and correct recognition to measure the consequences of
decisions. This results in an optimum system which
minimizes the expected (average) risk function and in-
cludes a possible alternate system with a minimum
error rate. The results reveal the explicit structure of an
optimum system which is determined by the a prior:
noise statistics, the signal structure, and the preassigned
weights.

SYSTEM APPROACH TO THE PROBLEM

One practical application of a character recognition
system for business documents is to read arabic numer-
als and selected symbols printed in magnetic ink. A
method! for achieving this is shown in Fig. 1. The char-

READ

AMPLIFIER
HEAD

DELAY LINE

..A.TAP
POINTS

RECOGNITION
SYSTEM

[

Fig. 1—A recognition system.

l OUTPUTS

acter is first passed through the field of a permanent
magnet where it is magnetized in a given direction be-
fore being scanned by the read head. From the read
head, the printed character is converted into an elec-
trical signal corresponding to the differentiation of the
plane area of the character. The function of the recogni-
tion system is to examine the amplitude-time signal

3 A. Wald, “Statistical Decision Functions,” John Wiley & Sons,
Inc., New York, N. Y., 1950.

4D. Van Meter and D. Middleton, “Modern statistical ap-
proaches to reception in communication theory,” IRE TRraNs.,
vol. PGIT-4, pp. 119-145; September, 1954.

§ D. Middleton and D. Van Meter, “On optimum multiple-al-
ternative detection of signals in noise,” IRE TraNs., vol. IT-1, pp.
1-9; September, 1955.

28

December

obtained by the read head and to decide which of the
possible characters is being recognized.

It is convenient, at times, to deal with the sampled
data rather than the continuous time waveforms. By the
sampling theory, if the number of samples is sufficiently
large, little information carried by the continuous signal
is lost. As shown in Fig. 1, the signal from the read
head is first amplified and then fed into a tapped delay
line. This serves as a means for sampling and acts as a
temporary storage device to convert the series informa-
tion into parallel information. Although not essential,
sampled data are used in the following discussion.

Let the vector v=(v1, v3, - - - v;) (subscript s being the
number of samples) denote voltages on the taps of the
delay line at the instant of sampling. (See Appendix I
for the meaning of the Symbols.) The vector a;=
(@a, @, * * -, asis) denotes the true sampled signal asso-
ciated with the ¢th character where 7=1, 2,---,¢, ¢
being the number of possible characters to be recog-
nized. The vector v constitutes the input to the recog-
nition system. It is assumed that the characters are dis-
tinct, 4.e., all a;'s are different.

In a simple form, the recognition system may consist
of ¢ separate channels, one for each character. Each
channel obtains a weighted sum of v.'s, with properly
chosen weights, b;;. The output of the ith channel is

X,-('D) = E b,-,-v,-.

=1

(M

This operation may be realized by a summing amplifier
and possibly with some inverters to provide negative
weights, if required. One possible set of weightsis:

aij

8 1/2 ’
[ 2 01‘:‘2]
i=1

The recognition system is known as a correlation net-
work when the weights are defined by (2).

If the printing is perfect, and the reading devices are
noiseless, the observed data v will be identical to one of
the a;'s and therefore, it can easily be shown that the
right channel of the correlation network has the largest
(algebraic) output. Consequently, the recognition sys-
tem identifies the character with absolute accuracy by
the channel having the highest output. However, in
practice, there are always, to some degree, deteriora-
tions in printing and inherent noise in the devices.
Therefore, the observed data v generally will not be
identical to any of the ai's. In view of this, ambiguities
arise which may result in possible misrecognition. To
safeguard against the occurrence of error, the recogni-
tion system should have provisions for examining the
degree of ambiguity and making rejects when required.
This function can be achieved in various ways; e.g.,
whenever the next highest output of the correlation
network exceeds some preassigned fraction of the high-
est output, the system will reject, otherwise the system

bij = (2



1957

identifies the character by the channel having the high-
est output.

The system described above merely represents one of
many possible recognition systems and is not necessar-
ily optimum. A basic problem in the design of recogni-
tion systems is to evaluate the system performance in
the presence of printing deterioration and inherent
noise and to obtain an optimum system. Optimum per-
formance depencls primarily upon the character style
and permissible deterioration. Greanias and Hill in a
recent paper? describe the effects of character style and
printing deterio-ation on the character recognition
problem from the viewpoint of matching the character
with an ideal character and further propose definitions
for character quality and style factors. In this paper,
the discussion is confined to the problem of obtaining
an optimum recognition system for a given set of ade-
quately styled cl aracters and known statistics of char-
acter deterioraticon. The recognition problem is consid-
ered to be that of testing multiple hypotheses in the
statistical inference. Consequently, the design and
evaluation of a recognition system is comparable to a
statistical test. Results of decision theory can be ap-
plied.3-3,

In order to judge the relative merit of recognition
systems, some criterion of evaluating system perform-
ance must be established. The error rate of the system
for a given rejection rate is used as the performance
criterion for cases where no distinction is made among
misrecognitions. Cases may arise where different mis-
recognitions have different consequences; e.g., the regis-
tering of a four as an asterisk may not be as serious an
error as registering it as a nine. The criterion of mini-
mum error rate "5 then no longer appropriate. Instead,
the criterion of minimum risk® is employed. Proper
weights are assiined to measure the consequences of
errors, rejectiors, and correct recognitions. These
weights indicate the loss incurred by the system for
every possible decision. The loss, which should be re-
garded as negative utility, may actually represent loss
in dollars or unit of utility in measuring the conse-
quence of the system decision. The over-all performance
of the system is j-1dged by its expected (or average) risk.

In the following discussion, an optimum system
which minimizes the expected risk is derived, and a sys-
tem having minimum error rate is obtained. Examples
are presented fcr illustration purposes. An error-free
system and a possible criterion for judging character
stvle and deterio-ation are also presented.

THE EXPECTED RiIsK

The vector a;=: (as, ag, + - -, aq) in the s-dimensional
space denotes the true sampled signal associated with
the 7th characte- (=1, 2, - - -, ¢), where ¢ and s are
respectively, the number of possible characters to be
recognized and the number of samples. Let p=(p1, pa,

«++, p.) be the a priori distribution of characters (p:
is the a priori probability that the ith character occurs).

Chow: An Optimum Character Recognition System Using Decision Functions

Then, evidently,

lei=1, p:i > 0. 3)
The received data are denoted by a s-components vector
v=(v1, 3, * -+, 0,). It is the signal corrupted by factors
such as the deterioration of printing and inherent noise
of the devices. 4 priori noise statistics and the manner
in which various signals and noise are combined deter-
mine precisely the conditional probability density
F(v’ai) of the observed data » when «; is the incoming
signal.
The space of decisions available to the recognition
system consists of ¢+1 possible decisions do, di, ds,
-+ +, d.. The quantity d.(2520) is the decision that the
tth character is present while d, is the decision for re-
ject. A basic problem in statistical decision theory is the
selection of a proper decision rule 8. The rule is expressed
as a vector function of the data v, namely, 8(v) = (8(do| ),
B(dllv), 8(dolv) - - - 5(dclv)) with ¢+1 components, and
satisfies the restriction that:

> 8(dilv) =1 forally, 4)
=0
and
8(d;|v) >0 for all 7 and ». (5)

The quantity 6(d,~] v) is the probability that, for a given
observed data v, the decision d; will be made.

In order to judge the relative merits of the decision
rules it is necessary to assign the weight function
W(as, d;). This is a function of a; and d;, which is the
loss incurred by the system if the decision d; is made
when a; is the true signal. This measure of consequence
for various d; under various a;is a datum of the problem
and is given in advance. Let the weight function be:

1,2---¢
j=0,1,2---¢

17 =
W(ai, d;) = wi; (6)
where w;;(27#0) is the weight of correct recognition of
the sth character; w;;(¢77#0) is the weight of misread-
ing the 7th character as the jth one, and w4 (7520) is the
weight of rejecting the 7th characters. Therefore, it is
required that

(17 # 0). O

Usually, w;; is much larger than w;, since the most seri-
ous consideration in design of a character recognition
system is the occurrence of undetected errors.

In general, w;;'s may all differ, so that various mis-
recognitions, rejections, and correct recognitions can be
properly weighted. The expected risk for any decision
rule § is

Wi > Wio > Wi

R(p,8) = 22 2. | 8(d;| v)pawiiF(v| ai)dv,

=1 j=0YV

(8)

with integration over the entire observation space V.
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THE MINIMUM Risk SYSTEM

The problem is then to choose a decision rule to
minimize the average risk. By using (4), and since
[vF(v|a))dv=1for all 4, (8) may be written as:]

R(p, 8) = Ro(p) + Ru(p, 9), 9)
where

Ro = Zc: PiWio, (10)

i=l
m = [ X e 9z, (11)
vV j=0
and
0 for j = 0.

The symbol R, will express the expected risk when re-
jection is made for all recognition amd R; is that part of
R which may be adjusted through the choice of é. Evi-
dently

Ri(p, 9 2 [ minlz,@)]as (13)

v J

and the equality sign holds if, and only if, the decision
rule is chosen as:

&*(di| v) = 1,
8*(dj|v) =0  forallj =& (14)
whenever
min [Z;(v)] = Z(v). (15)

This is the optimum decision rule §* (the Bayes strat-
egy) which minimizes the expected risk and is non-
randomized since its components are either zero or one.
Therefore, R, for this decision rule is always nonposi-
tive, and its expected risk (the Bayes risk) is no greater
than R,. The expected risk for the optimum decision
rule, 6%, is

R(p, %) = D, piwio +

i=1

min [Z;(v)]do. (16)
v i

Egs. (14) and (15) reveal that the optimum system
for character recognition consists of a computer which
evaluates F(vla,-)’s; (¢=1, 2, - - -, ¢) for an observed
data v; computes the various Z;(v) (j=1, 2, - - -, ¢);
examines and compares these Z;(v) (j=0,1,2, - - -, ¢);
selects the smallest (algebraically) one, say Zi(v); and
finally makes the decision di [having the same subscript
as Zi(v)]. Of course, this method of setting up the com-
puting procedures is not unique; e.g., any ordering-pre-
serving transformation may be used. In any event, the
system must be equivalent to the above.
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Fig. 2—Functional diagram of an optimum system.

The functional diagram of the optimum system is
shown in Fig. 2. Station No. 1 consists of ¢ similar com-
ponent networks. Each network receives the observed
datav=(vy,9s - - -, %) and computes the corresponding
conditional probability density F(vla;) as its output.
This operation depends only upon the a priori knowl-
edge of signal and noise structure and on the observed
data v; it does not depend upon the weight function
W(as, d;) or on a priori probability distribution of sig-
nals, p.

The outputs of station No. 1 are fed to station No. 2,
which consists of ¢ character channels Nj;(j#0), and
one rejection channel, N, They perform the linear
operation of weighting each input and then the sum-
ming of all weighted inputs. The weights are paw;;'s
and p;wio’s. The output of the rejection channel is

Xo(v) = i ‘wion'F('U] a:),

=1

an

while the outputs of character channels are

X;(v) = Zl wipF(w|a) (G=1,2---¢0. @18
The comparison station receives X’'s from station
No. 2, examines all its inputs, and makes decision by
selecting the algebraically smallest of the c+1 X’s. If
the rejection channel has the smallest one, the system
rejects. If one of the character channels has the smallest
output (say Xx(v), (£0)) then the system recognizes
the signal as the kth character.
Since X;(v) (=0,1, - - -, ¢) is equal to Z;(v) +X(v),
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this system makes decisions in accordance with & as
defined by (14) and (15), and thus minimizing the ex-
pected risk.

PROBABII ITIES OF ERROR AND REJECTION

The expected risk provides a means for evaluating
the performance of a recognition system. At times, it
may be desirable to compute the probabilities of error,
rejection, and ccrrect recognition as an auxiliary set of
merit figures. They are obtained for any decision rule §
as follows:

The probability of correct recognition is:

<

JXORE 8(d;| v)piF(v] ai)dv; (19)
V =1
the probability of rejection, or rejection rate, is:
Po) = [ @] ) X Gl adas;  @0)
14 1=1

and the probability of misrecognition, or error rate, is:
P,3) =1— P, — P, (21)

Egs. (19)-(21) result directly from the fact that
Jv8(do|2) F(v|as)c'v and [y8(d:|v) F(v|a:)dv are, respec-
tively, the conditional probabilities of rejection of the
ith character ancl correct recognition of the ¢th character.

CRITERION OF MINIMUM ERROR RATE

Cases may arise in which the criterion of judging the
system performance is the magnitude of its error rate
for a given rejection rate. In using this criterion, the
optimum recogrition system is the one which, for a
given rejection rate, @, has a minimum error rate. The
optimum decisio1 rule is obtained as: (See Appendix 11
for proof.)

F*(de]v) =1 (k#0) (22)
whenever
peF(v] a) > piF(v] aj) forallj = k, and
pF@| @) > 82 pF(v] 0, (23)
=1
and
d**(do| ) = 1, (24)
whenever

B ipiF(ﬂ a;) > j),-F(v] aj) forallj(j7=1,2---¢), (25

i=1

where 8(0<B<1) is a nonnegative constant determined
by the condition that P,(6**) =«; namely,

fva’**(do| v) 2 pF(v] addv = a. (26)

The constant (8 i1creases with increasing «, and P,(6**)
and P.(6**) are monotonic decreasing functions of a.
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Fig. 3—Functional diagram of the system having the minimum
error rate.

The change in the constant 8 provides a control over
the error-reject ratio.

The optimum rule provides the basis for the func-
tional diagram of the system of minimum error rate as
shown in Fig. 3. The first station is identical to that of
the minimum risk system (see Fig. 2) which computes
the conditional probability densities F(v[ a;)’s.

The second station for this system is somewhat simi-
lar to that shown in the functional diagram for the
minimum risk system (see Fig. 2). The c¢-character
channels perform the weighting operation and have
piF(v‘at-) as outputs. The rejection channel, N, per-
forms the operation of weighting and summing and has
BZ§=1 p.-F(v! a;) as its output. All of these c+1 outputs
are nonnegative. The comparison station then examines
these outputs and selects the largest. If the output of
the rejection channel is the largest, the system rejects;
otherwise the system will identify the character by the
channel having the largest output.

It can be shown that the system depicted in Fig. 2 re-
duces to the system shown in Fig. 3 when  is replaced
by (wWm—w,)/(wn—w,.), and the following weight func-
tion is used.

6**

w, fort=7#0

W(a,, d;j) = 4w, foris=0,7=0.
. (27)
Wy fori ;7 # 0.
ExAMPLES

1) As an illustration, consider a condition where the
signals and noise are additive, and the noise has inde-
pendent normal distribution To be explicit, the prob-
ability density function of the noise of the jth compo-
nent of the ¢th character is taken as:
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1 v — ay)?
—— exp {— (—J————i—} ) (28)
\/270'«;1‘ 20’1‘]'2
where v; —a;; is the noise and ¢;;* is the given variance.
The conditional probability density F(vl a;), under
the assumption that noise is statistically independent, is

8 v; — di‘,Z\
exp {_Z(J J }

j=1 20’1‘;‘2

F(v|a) = (29)

2n) 2 11 s
j=1

Therefore, the last expression dictates the precise struc-
ture of station No. 1 for the optimum system. Each com-
ponent circuit performs the operations of taking differ-
ences, squaring, weighting, summing, and taking ex-
ponential. This station is common for a minimum risk
or minimum error rate system. The structures of the sec-
ond station and comparison station are indicated in
Figs. 2 and 3.

2) In this example, the signal and noise structure are
such that the conditional probability density for a
given length, |2/, of v is directly proportional to the co-
sine of the angle § between vectors » and a; for || <w/2
and is zero elsewhere, and that the distributions of |o|
for given a; are identical for all 7. [It is denoted as
f([ v} ).] In other words, F(vl a;) can be written as

F('u[ a;)

of(| o)) | o for a;-v > 0

a:| [ o]

=0 elsewhere, (30)

where p is a constant independent of 7 and is determined
by the fact that [yF(v|a;)dv=1, and a; v denotes the
scalar product of vectors a; and ».

An inspection of the optimum decision rule (6* or
0**) reveals that the system remains optimum if the
first station is to compute T[F(v]a,-)] instead of F(v] as),
where T is defined as

o]

—ﬁF a;
ey Fel e

a;

={|¢:l

where b;;’s are constants [see (2)]. This operation can be
easily realized. Each component of the first station is
simply a correlation network followed by a half-wave
rectifying circuit. The circuit passes the positive output
of the correlation network unaltered and converts its
negative output into zero.

The above results also indicate that the recognition
system described in the second section of this paper is
not optimum for the particular signal and noise struc-
ture as given in examples 1 or 2.

T('IJ] d,')

v = biv; fora;-v>0
g V5 (31)

for a;;2 <0,

¢ This particular signal and noise structure was suggested by the
author’s colleague, I. M. Sheaffer, Jr., Burroughs Corp., Paoli, Pa.
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ERROR-FREE SYSTEM

For convenience, let V; denote the set (or region) of
all possible observation » when the ith character is pres-
ent, and let 7, be the largest subset of V;so that Vi's
are nonoverlapping. If noise distributions are so trun-
cated and the signal vectors a;'s are so placed that all
Vs are nonempty, then an error-free system for char-
acter recognition does exist. Evidently for any observed
data v belonging to V&, only F(v|a)) is nonzero while all
others are zero; the character can then be identified
with certainty. On the other hand, if the data v do not
belong to any one of the V.'s, then more than one of the
F(v]a:)’s will be nonzero. This results in the data being
ambiguous for recognition purpose, and an error-free
system will reject. Symbolically, the error-free decision
rule is:

8(di|v) =1 if F(v|a) >0
and

F(la) =0 foralli sk, (32)
and

B(do] v) = 1, otherwise,

the rejection rate is determined by the probability
measures of V,'s, namely fﬁ‘,F(ﬂ a;)dv. The latter is de-
termined by the character style and allowable deteriora-
tion. The character style may be considered ideal and
the control over the printing perfect, if the resultant
J7.F(v|a:)dv is unity for all 4, and all characters with al-
lowable deterioration can then be recognized with
neither an error nor reject. In this sense, the probability
measures of V,'s may be used to evaluate the combined
quality of the character style and printing.

CONCLUSION

The decision theory has been successfully applied
to the problem of character recognition. By employ-
ing the concept of risk, differences in consequences
for various decisions have been taken into considera-
tion. A rejection channel has been introduced to exam-
ine the degree of ambiguity of input signal and make
rejections when necessary.

As developed, the structure and performance of an
optimum system depend upon the signal and noise sta-
tistics; therefore, a priori knowledge of these statistics is
required. Usually, a realistic estimate of noise statistics
is not easy to obtain. However, it is sincerely felt that
the requirement for high grade performance in character
recognition warrants the expenditures in this direction.

Quite often an optimum system may prove to be too
expensive for mechanization. Nevertheless, the results
presented in this paper are considered useful in that they
provide insight into the recognition problem and furnish
an ideal system, which actual recognition circuitry may
be patterned after.

Although it is recognized as being beyond the scope
of this paper, it is worth mentioning that one practical
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approach to the over-all problem would be to design
adequately the character style and to control properly
the printing process so that a reliable system would not
be too far fetched or difficult to ultimately realize.

APPENDIX I.
ListT oF SYyMBOLS

ai=(aa, i, - * +, as), s-dimensional vector as-
sociated with the sth character, (1=1, 2,
ceL0).
a;;=jth sample of the signal of the 7th character.
las] = (225, 1 ai?) V2, the length of vector a;.
¢=number of characters.
do=decis on that rejection be made.
dj=decis on that the signal is the jth character
(G=1,2,---,0).
j([ v|) =probuability density of the length of v.
F(v|a;) = conditional probability density for the ob-
served data v when a; is the incoming signal.
1, 7, k=indexes.
Ni;=a network of station No. 1,7=1,2, - - -, ¢
Ni;=a network of station No. 2,7=1,2, - - -, ¢c.
No=the retwork of rejection channel.
P, =probability of correct recognition.
P, =probubility of rejection (rejection rate).
P,=probubility of misrecognition (error rate).
p:=a priori probability that the ¢th character
occurs, (1=1,2, + - -, ¢).
p’:(Pl: Foy sty PC)
R(p, 8) =expected risk of the system; R=R,+Ri.
Ro(p) =expe:ted risk of the system when rejection
is made for all recognition.
Ry(p, 8) = part >f R which is dependent upon 0.
s=number of samples.
T =functional transformation.
V =s-din ension observation space.
V:=set ol all v when the ith character is present.
7;=largest subset of V; such that V,N\V;=0
for all j #1. '
v=(v1,v;, * * +,%),a vectorin V.
[v] = (>3, 0212, the length of vector .
vi =4th component of the observed data v.
W(a;:, d;) =weig:t function.
Wi; = W(dg, d,)
W,, W,y Wm =weiglits.
x:(v) =output of the sth channel.
a =permissible rejection rate.
B =constant,.
§(v) =decisionrule,d =[6(d,|v),8(d:|v) - - - 8(d|v)].
6*(v) =optirium decision rule which minimizes the
expected risk.
6**(v) =optirium decision rule which minimizes the
error rate.
0 =angl:.
p =a no:malizing constant.
g2 =statistical variauce of noise.

Chow: An Optimum Character Recognition System Using Decision Functions

AprpENDIX II.

To ProvE TuAT §** Has A MiniMuMm ERROR
RATE FOR A GIVEN REJECTION RATE

Without loss of generality, it is assumed that the ab-
solute probability density of the occurrence of v, namely,
>, p,-F(v[ai) is nonzero over the entire observation
space V. Otherwise, the set over which > ¢_, pfF(v] a;)
is zero is first deleted.

Let m(v) be the subscript such that

max [p:F(v] a)] = puF (2| an) (33)

and let §!(v) be any arbitrary decision rule having the
same rejection rate as 6**. It is to be proved that
P.(8Y) > P(6**).

For every 6'(v), a decision rule 62(v) can be con-
structed as follows:

For every v,

52(do| v) = 8'(do] v)
82(dn| v) = 1 — 81(do| v) = D §'(di| v) (34)
=1
82(di|v) =0 foralli = 05 m.
Evidently,
P.(6%) = P.(8)) = «a, (35)
and
1)0(51) = zc: 61((ii ‘Z))ﬁ,’F('U[ a;)dv
V i=1
< f Z 81(d;| ) puF (v| am)do
V =1
= fa?(dml v)me(vI am)dv
v
= P,(8%). (36)
It follows from (35) and (36) that
P (5%) < P.(8"). 37

That is, 82 is better than 8! (or at least as good) in the
sense that for the same rejection rate 62 has an error
rate smaller than, or equal to, that of 1.

The next step is to show that P.(6%*) <P,(8%). As
shown in (22) ad (23), the decision rule §** partitions
the observation space V into two nonintersecting re-
gions, Vo** and V— V**, so that for every veV**

me(vI an) < B Zc: p;F(v| a;) (38a)

=1

**(do|v) = 1, (38b)
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and for every ve V — V**

(0] am) 2 8D piF (o] a) (39)

**(dm | v) =

Let Vo2 be the largest subspace of V such that 52(do! v)
is nonzero for all v belonging to V2 V,? is not properly
contained in V¢**. This follows readily from the condi-
tion that P,(6**) = P,(8%). The latter may be written as:

*I‘I’O“—-Vo”nl’f

+

(39b)

Zc: p,F(vl a,')d'l)

i=1

[1 — 82(do| v)] Z piF (0| a)dv

Vortnvy! i=1

ﬁ,OQ_VonnVOZ

Substitution of (38) and (39) in (40) gives:

f puF (2| am)do
Vo”—VonnVoz

—+

Bz(do! ‘Z)) i P,F(‘Z)i ai)dv. (40)

[1 — 62%(do]| v)]|pmF (2] am)dv

V,,“ﬁVoz

<

f 82(do | v) pmF (v am)do. (41)
ViV Ny, 2

The equality sign prevails if, and only if, me(v]am)
sequalto 8D ¢, p: F('z)[ a;) throughout the region V**U
Vo2

The probabilities of correct recognition of 8** and &2
may be written respectively as:

December

P (5%%) = f pmF (0| am)do
V—Vo“

f P (v | am)dv
Ve (Vu"UVoz)

+ PmF(vl am)dv) (4’23')
Vo2_V0nnV02
P37 = | X 82(di| v)piF(v] as)do
V i=1
=f pmF (0] am)do
V—Wo*UV )
+ puF (v] am)dov
Vo"—Vo"nVo?
+ 82(dm | ) pmF (v | am)do
V(,”nVoz
+ 52(dm | 9) pmF (v | am)do. (42D)
ViV o*nv

In accordance with (42), (41) is equivalent to P,(6*¥)
<P.(6?%. Proof that P.(6**) <6P.(6!) is thus completed.
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Perceptron Simulation Experiments®
FRANK ROSENBLATTY}

Summary—An ¢xperimental simulation program, which has been
in progress at the Cornell Aeronautical Laboratory since 1957, is
described. This program uses the IBM 704 computer to simulate per-
ceptual learning, re:ognition, and spontaneous classification of visual
stimuli in the perceptron, a theoretical brain model which has been
described elsewhere. The paper includes a brief review of the or-
ganization of simple perceptrons, and theoretically predicted per-
formance curves ar: compared with those obtained from the simula-
tion programs, in several types of experiments, designed to study
“forced” and “spon-aneous” learning of pattern discriminations.

INTRODUCTION

NUMBER of papers and reports have been pub-
lished describing the theory of a new brain

model called the perceptron. The perceptron is a
minimally constrained “nerve net” consisting of logi-
cally simplified neural elements, which has been shown
to be capable of learning to discriminate and to recog-
nize perceptual patterns [5]-[8]. This paper is con-
cerned with a report of digital simulation experiments
which have bee1 carried out on the perceptron, using
the IBM 704 co:nputer at the Cornell Aeronautical Lab-
oratory. These experiments are intended to demonstrate
the performance of particular systems in typical en-
vironmental sitinations, free from any approximations
which have be:n used in the previously published
mathematical analyses. In the simulation programs, the
action of every cell and every connection in the network
is represented i1 detail, and visual stimuli are repre-
sented by dot patterns corresponding to illuminated
points in a retinal mosaic.

Several related experiments have been conducted
previously, usirg a digital computer for the simula-
tion of a nerve ret in learning experiments [1], [2], [4].
Rochester and associates, at IBM, have reported on sev-
eral attempts lo simulate the formation of “cell as-
semblies,” in a model based on the work of Hebb [3]
Hebb proposes that a set of neurons which is repeatedly
activated by a particular sensory stimulus becomes
organized into a functional unit, which can be triggered
as a whole by sensory patterns sufficiently similar to the
original one. Hebb's book, however, does not attempt
to specify in a rigorous manner the exact organization
or parameters t:nder which the predicted effects would
be obtained, so that the IBM group found it necessary
to improvise several models and variations of their own,
having various degrees of biological plausibility, in an
attempt to construct a definite system. The results of
these experiments seem ambiguous, not only because

* Original mani. script received by the IRE, July 16, 1959; re-
vised manuscript r:ceived, December 14, 1959. This paper was pre-
sented at the 1959 IRE National Convention. The work was sup-
ported by the Inforination Systems Branch, Office of Naval Research,
under Contract no. Nonr-2831(00), since July, 1957.

t Cornell Aeronautical Lab., Inc., Buffalo, N. Y.

of the uncertain relationship of the final model to the
nerve net originally suggested, but also because the
phenomenon which was sought after has never been de-
fined in a fashion precise enough so that one might
say whether or not it has actually occurred. These ex-
periments illustrate the importance of selecting a suit-
able measure of performance in work of this type; it is
essential that a clearly defined test should be specified
for the “learning” which has presumably taken place, or
else it is impossible to say either how well a particular
system has performed or to compare its performance
with any other system, or class of systems, in a system-
atic fashion.

From this standpoint, the experiments reported by
Farley and Clark [1], [2] seem to have been better con-
ceived. In this model, a network of eight randomly con-
nected neurons was simulated. Inputs consisted of stim-
uli applied to one of two disjunct pairs of “input cells,”
and outputs were measured as the activity of two pairs
of “output cells.” In later experiments, the size of the
network was increased to sixteen cells. It was demon-
strated that this system can learn to favor the output
from one set of output cells following the presentation
of one of the two stimuli, and the alternative output set
following presentation of the other stimulus. The prob-
lem of generalization was considered only in terms of
relatively slight displacements or alterations of the
stimulus patterns, and it wassuggested that, under these
conditions, the response would be most likely to occur
which was previously associated to the stimulus having
the greatest overlap with the altered stimulus. The prob-
lem of generalization to similar but completely disjunct
stimuli was @ot specifically considered. Nonetheless,
the process of generalization advocated as a result of
these experiments has much in common with our early
work on the perceptron. A more thorough consideration
of this problem will be published elsewhere [8].

The design of a simulation program for studies of pat-
tern recognition and perceptual generalization in nerve
nets should fulfill at least three basic conditions, each
of which has been ignored too frequently in previous
work along these lines.

1) Simulation should not, in general, be attempted
without a theoretical analysis of the nerve net in ques-
tion, sufficient to indicate suitable parameters and rules
of organization, and to indicate questions of theoretical
interest. The examination of arbitrary networks in the
hope that they will yield something interesting, or the
simulation of networks which have been specially de-
signed to compute a particular function by a definite
algorithmic procedure seem to be about equally lacking
in value.

Reprinted from Proc. IRE, vol. 48, pp. 3U1-309, Mar. 1960.
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2) Suitable measures of performance must be de-
fined. This means that some task must be set for the
system, the outcome of which can be clearly recognized,
and, preferably, counted or quantified in some manner.
Signal strengths, waiting times for achievement of a
criterion, or percentage of correct decisions are ex-
amples of suitable measures.

3) Experiments should be designed with suitable
controls against trivial or ambiguous results. If we are
interested in teaching a device to generalize a response
to visual forms, for example, it is essential that a dis-
crimination test should be made involving at least two
different responses, to make sure that the system has
not simply generalized the desired response universally
to all stimuli, regardless of their similarity to one an-
other. Moreover, it is often important to make sure that
the cue for the response is the actual form of the stim-
utus, rather than its location on the retina, or some
other unintentional source of information. This last
condition is often quite tricky to satisfy, and in most of
our current work we make use of Born-von Kéirmén
boundary conditions (in which patterns shifted off of
one edge of a retinal field re-enter on the opposite side,
as in a toroidally connected space) in order to guarantee
the logical equivalence of all points in the retinal space.
Given such a retinal field, it is sufficient to place each
stimulus pattern with equal probability or frequency at
all possible locations in the retinal space, in order to
guarantee that the illumination of a particular retinal
point does not convey any information about which
stimulus is present. It should be noted that this condi-
tion is not always observed in the experiments reported
in this paper, stimuli often being confined to some sub-
field of the retina in order to increase the rate of learn-
ing. In at least one case (the experiment with the “con-
tinuous transducer perceptron” shown in Fig. 8) a dis-
crimination has thus been obtained which would not
hold up if the field were uniformly covered with the
stimulus patterns.

ORGANIZATION OF A PERCEPTRON

Any perceptron, or nerve net, consists of a network
of “cells,” or signal generating units, and connections
between them. The perceptron is defined by two sets of
rules: 1) a set of rules specifying the topological con-
straints upon the network organization, such as the
number of connections to a given unit, or the direction
in which connections are made, and 2) a set of rules
specifying the dynamic properties of the system, such as
thresholds, signal strengths, and memory functions. A
“fully random network” would be one in which only
the number of cells and the number of connections is
specified, each connection being equally likely to orig-
inate or terminate on any cell of the system. The topo-
logical rules for the organization of a perceptron take
the form of constraints applied to such a random net-
work, and it is assumed that all connection properties
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other than those specified remain “random,” in the sense
just indicated.

A simplified version of the known features of a mam-
malian visual system is shown in Fig. 1, for a compari-
son with the organization of a perceptron, which will be
described presently. At the extreme left we see a mosaic
of light-sensitive points, or retina, from which signals
are transmitted to the visual projection area, in the
cerebral cortex. Several intermediate relay stations
exist in a typical biological system, which are not shown
here. These connections preserve topological charac-
teristics of the stimulus in a reasonably intact form.
Beyond the projection area, however, connections ap-
pear to be largely random. Impulses are delivered
through a large number of paths to the association areas
of the cortex, where local feedback loops are activated,
so that activity may persist for some time past the termi-
nation of the original visual stimulus. From the associa-
tion area, signals are transmitted to the motor cortex,
which again has a clear topological organization cor-
responding to the location of muscle groups to be con-
trolled.

Associotion
Area (Outer
Layer)

Retina Projection Area

Topographic
c !

—

Fig. 1—.Or.ganizatic_m of a biological brain. (Heavy black
areas indicate active cells, responding to the letter X.)

This general plan of organization has been consider-
ably simplified in the perceptron. First of all, we will
eliminate the projection area, and assume that the
retinal points are directly coupled to association cells,
or “A units.” The number of input connections to each
A unit is specified, but the locations of the origin points
for the connections are selected at random from the set
of sensory points. Each A unit receives some number, x,
of excitatory connections, and some number, y, of
inhibitory connections. The connection system from the
sensory to association system is a many-to-many sys-
tem. An excitatory connection from an illuminated
sensory point is assumed to transmit a unit positive sig-
nal, while an inhibitory connection carries a unit nega-
tive signal. Each A unit has a fixed threshold, 6, and is
triggered to deliver an output pulse if the algebraic sum
(@) of the signals received from the x+y input con-
nections is equal to or greater than 6. A further sim-
plification is introduced at the output side of the associa-
tion system. Instead of delivering its output signals at
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random to a la-ge number of “motor area” cells, the
cells of the association system are connected to one or
more binary response units, which are turned to their
“1” state if they receive a positive signal from the asso-
ciation system, or to their “0” state if they receive a
negative signal. The magnitude of the output signal
generated by ar active A unit is called the “value” of
that unit, and is represented by the symbol ». The
values of the units are stochastic variables, which
change as a function of the history of the system. The
organization of : simple perceptron with a single binary
response is shown in Fig. 2. The total signal delivered
by the set of A units is equal to Za;*v; where a;* is equal
to 1 if unit a; is active, and 0 if @, is inactive, and v, is
the current valne of unit a;. Note that there are two
feedback lines from the response unit (or R unit) to the
set of A units. These feedbacks control the “reinforce-
ment,” or changes in value, of the A units. In general,
if the response R=1 occurs, active A units will gain in
value, while if rthe response R=0 occurs, active units
will lose in valu2. The value of the A unit thus acts as
the memory variable for the system. It has been shown
to be desirable to further modify the values of the A
units by the rule that if some subset of units gains or
loses in value, then the remainder of the units must
change in the opposite direction just sufficiently to
balance out the net change to zero. Thus, one unit can
only gain paras tically, at the expense of the other units,
and the total value of all of the A units is kept equal to
zero at all times. A perceptron with this property is
called a “gamma system.” The theory of such systems
has been consic 2red in detail elsewhere [5], [6].

SENSORY
SYSTEM F-
(RETINA)

ASSOCIATION
SYSTEM

Fig. 2---Organization of a simple perceptron.

DESCRIPTION OF SIMULATION PROGRAMS

Fig. 3 shows the organization of a typical simulation
program, for the study of perceptron performance in an
environment ol visual forms. Actually, four basically
different programs have so far been written with a num-
ber of variations of each, but the two programs which
were used for most of the experiments reported here
are both organized in the manner illustrated. The third
program involves more direct methods of computation
rather than trie simulation, while the fourth program
(designed to study “cross-coupled systems,” in which
A units may be connected to one another as well as to
S points and k. units) has proven too slow to be used
successfully.!

Stmulation Experiments

The simulation programs have four main tasks, each
of which is actually performed by a separate, self-suf-
ficient program, which is stored on tape, and called into
the computer by a supervisory routine. The supervisory
routine reads instruction cards provided by the experi-
menter, which provide information on parameters, and
control the sequence of subprograms performed in the
course of the experiment. When each subprogram has
been completed, control is passed back to the super-
visory routine, which reads the next card for further
instructions. In a typical experiment, the sequence is as
follows:

SUPERVISORY ROUTINE
READ INSTRUCTION CARD
AND SET UP NEXT PROGRAM

7 NS

CONSTRUCT s“ﬁ’ﬁ’utﬂs TRAINING TESTING
PERCEPTRON PROTOTYPES PROGRAM PROGRAM

TRAINING PROGRAM TESTING PROGRAM

COMPOSE COMPOSE
STIMULUS STIMULUS
TRANSFORM TRANSFORM
i [}
COMPUTE COMPUTE
INPUT SIGNALS INPUT SIGNALS
TO A-UNITS TO A-UNITS
i 1
MARK MARK
ACTIVE ACTIVE
A-UNITS A-UNITS
' 1
COMPUTE COMPUTE
SIGNALS TO SIGNALS TO
R-UNITS R-UNITS
i i
REINFORCE 30 TO NEXT JALLY 0 TO NEXT
A-SYSTEM CORRECT
STIMULUS RESPONSES STIMULUS

Fig. 3—Flow diagram for simulation program.

1) The perceptron construction routine is called into
the core memory, and reads in a set of parameters de-
scribing the perceptron to be constructed. These param-
eters include the number of A units, the number of ex-
citatory and inhibitory connections to each unit, the
thresholds of the units, the number of R units, the num-
ber of R units connected to each A unit, the decay rate
for A unit values (which decay with time in some
models) and a random number to be used for priming
the pseudo-random-number generator used to control
the choice of connections. The program then selects for
each A unit a set of x+y sensory points to be assigned
as origins for the input connections. This is done by gen-
erating a random number number modulo N, (the num-
ber of sensory points) for each connection. This number
is used to locate one of the N, storage locations in which

! The cross-coupled system was successfully simulated, and pre-
dicted effects obtained in December, 1959, using an improved pro-
gram. Results will be reported in later publications.
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the state of each sensory point is indicated when a “vis-
ual” pattern is presented.? The perceptron construction
routine prepares a table listing all of these connections.
In the first simulation program this table was stored on
tape; but in the second program, by cutting down the
admissible number of A units and connections, it was
possible to store the entire table in the core memory,
saving a factor of about five in running time of the pro-
gram. The R units to which each A unit is connected are
similarly assigned at random in each of the first two
programs, which permit multiple output connections
from each A unit. Since, in practice, all experiments
have been concerned only with simple binary discrim-
ination problems, more recent programs have been de-
signed with only one R unit, to which all A units are
connected. In the second program, it is also possible to
assign an initial random distribution of values to the A
units, although in most experiments it is assumed that
the values start out uniformly from zero.

2) The second stage in the experiment calls for read-
ing a set of “prototype stimulus patterns” into the
memory of the computer. These patterns consist of ac-
tual dot images of the stimuli to be used, punched as
patterns of holes in IBM cards. Thus, if it is planned to
teach the perceptron the first four letters of the alpha-
bet, we would read in the images of the letters A, B, C,
and D, which are stored for future reference by later
routines. These prototypes are never altered, but are
used by the stimulus transformation routines which are
included in the remaining two programs, to construct
variously displaced, rotated, or contracted patterns
which are the stimuli actually “shown” to the percep-
tron.

3) Having constructed the connection tables and read
in the prototype stimuli, the computer is ready to begin
the actual learning experiment. This consists of an
alternation between the two remaining programs, one
of which attempts to “teach” the perceptron to recog-
nize the stimulus patterns, while the other evaluates
the performance of the perceptron at intervals specified
by the control cards. For example, in a typical experi-
ment, the discrimination of the letters “E” and “X,” the
procedure is as follows. First, a control card calls for the
training program to show ten different transformations
of the letter “E” (the first stimulus). Each of these is
generated by applying a vertical and lateral shift of
random magnitudes between zero units of retinal dis-
tance and a maximum shift specified by the control card,

2 In each of the first two simulation programs, multiple connec-
tions from the same A unit to the same S point are prohibited. In the
second program, an inverse constraint was originally employed, fixing
the number of connections originating from each sensory point, and
assigning termini at random in the association system. This was
later modified by the addition of a scheme to obtain, as nearly as pos-
sible, uniform numbers of inputs to each A unit as well as fixed num-
bers of outputs from the sensory units. These variations have not
seriously affected the performance of the program, but it appears
that somewhat better performance is obtained with the numbers of
inputs to the A units is kept uniform,
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a rotation between zero degrees and a specified maxi-
mum, and a size somewhere between a specified lower
and upper bound. Random numbers generated by the
routine determine the exact transformation to be ap-
plied to each stimulus, and a new image is composed.
The control card then specifies that the response “1”
is to be reinforced as the appropriate response for the
letter “E.” The program accordingly calculates the sig-
nals received by each A unit from the transformed stim-
ulus, determines which A units are active, and rein-
forces the units according to the rules for reinforcement
of the R=1 condition, for the gamma system, <.e., each
active A unit gains an increment in value, while the in-
active units lose a compensating amount. In the second
of the simulation programs, it is also possible for the
stimulus to persist for a designated number of cycles,
undergoing a random walk during this time, consisting
of unit displacements, rotations, or size changes from
the position in which it first appeared. This procedure is
characteristic of the “forced learning mode” of experi-
ment, which is the only mode possible for the first simu-
lation program. In this mode, the desired response is
turned on, or forced, by the training program at the
same time that a stimulus is presented. The second pro-
gram is also designed to permit a “spontaneous learning
mode,” in which stimuli occur in a random sequence,
and the response spontaneously occurring upon presen-
tation of the stimulus is reinforced, regardless of whether
or not it is the response ultimately desired. Most of the
experiments to be described in this paper were per-
formed in the forced learning mode. After having pre-
sented the ten transformations of the letter “E” which
were called for, and reinforced the response R=1 for
each transformation, control is returned to the super-
visory routine, which reads the next control card. In
this typical experiment, we next call for ten transforma-
tions of the letter “X,” to be associated to the response
R =0. This procedure is carried out in the same manner
as before.

We now switch to the testing program, which com-
poses a series of stimulus transformations in the same
manner as the training program, and goes through an
identical set of calculations to determine the active A
units in each case. Instead of reinforcing the association
units, however, this program merely records the re-
sponse, and checks it against the desired response for
correctness. If the response is correct, it increments a
tally of correct responses. Typically, we may look at
twenty transformations of the “E” and twenty trans-
formations of the “X,” determining in each case the
percentage of correct responses (R=1 or R=0, respec-
tively). During this procedure, a running description
of the responses of the system, numbers of active units,
and other analytic data, are printed out by the com-
puter. We may now present another ten E’s and another
ten X’s, reinforcing the system as before, then test the
performance once more, to find out whether this addi-
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tional training has improved the performance, and thus
continue alternating between training and testing pro-
grams indefinilely. It is also possible to reverse the as-
signed responses in the middle of the experiment, thus
reversing previous learning. In order to obtain unam-
biguous comparisons of performance in different parts
of the training series, the testing series are generally
“primed” with the same random number to guarantee
that the same stimulus transformations will be used on
each repetitior: of the program. The training programs,
on the other hand, continue to select stimuli at random,
independently of what has gone before. A comparison
of the organization of the training and testing programs
is presented in the flow diagrams in Fig. 3.

The two man simulation programs total about 5000
words each. The first program was designed to handle
up to 1000 A units, and a 72 by 72 sensory mosaic. It
was found th:t this large sensory system presented
stimuli with a fineness of grain considerably better than
the limits of discrimination of a thousand-unit percep-
tron, and at the same time, required an excessive
amount of time for stimulus transformations, since each
illuminated point in the stimulus must be transformed
individually in-o its image point. The second program
reduced the retina to a 20 by 20 mosaic, and limited the
number of A units to 500. For the first system, the com-
puting time averaged about 15 seconds per stimulus
cycle, while in the second system the time was cut to
about 3 seconds; per cycle. Subsequent improvements in
programming tzchniques-indicate that it should be pos-
sible to reduce the computing time still further—say to
about one secod per cycle—for perceptrons of the size
allowed by the second program. At the same time, how-
ever, analytic developments have suggested a way of
actually calculating the exact performance of a given
perceptron of the type discussed above, provided all
possible stimui are known, and a matrix of g co-
efficients, describing the interactions of each pair of
stimuli, is computed for the particular network in ques-
tion. This technique is discussed in the appendix to [7],
and is the method employed in the third of our simula-
tion programs for the analysis of spontaneous learning
in infinite perceptrons. In that program, the response of
the system is obtained analytically, rather than simu-
lated, but the s2quence of stimuli is governed by a series
of random nun bers generated by the program. We will
consider some of the results of this program later in this

paper.

THEORE11CAL PREDICTIONS AND PROBLEMS

Before considering the results of the simulation ex-
periments, let us review the main predictions coming
from the theory of the perceptron (see [5]-[7]). The
simulation experiments were designed in part to verify
these predictions, and in part to study problems which
were suggested by the theoretical investigations.

Rosenblatt: Perceptron Simulation Experiments

Fig. 4 shows a set of theoretical performance curves
for perceptrons of three different sizes, in the problem
of discriminating a square from a circle. The broken
curves (for P,) show the probability of giving the correct
response to a stimulus which is identical in position,
size, etc., to one which was shown previously, during the
training period. The horizontal axis indicates the
number of stimuli of each class (squares and circles)
which were presented during the training period. The
solid curves indicate the probability of correct response
to any square or circle, regardless of whether it was used
as a training stimulus or not. Note that both sets of
curves approach the same asymptotes as the number of
training stimuli becomes large. The first task of the
simulation program was to check the general character
of these learning curves for typical stimulus material,
such as letters of the alphabet or geometric patterns.
In particular, it was essential to determine whether the
rates of learning agreed with the predicted rates, at least
to a reasonable approximation.

ves (Pr) = probability of correct response fo training stimulus
Solid curves (Pg) = probability of correct gensralization.
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Fig. 4—Learning curves for three typical perceptrons.

A second problem concerned the effect of particuiar
types of transformations, such as shifting of stimuli,
rotations, or size changes, upon the learning curves. The
original theory did not distinguish among these types of
transformations, and it was important to find out
whether the system would work equally well for all of
them. While sufficient demonstrations have now been
made of performance under shifting and rotation condi-
tions, the problem of size changes remains a serious one,
with a number of special cases. One such special case
involves the assignment of different responses to two
stimuli, one of which could be considered a “part” of the
other, such as a small circle which could be completely
imbedded in a larger one, or the letter “F,” which can
be considered as an “E” with the lower bar missing. It
was predicted that such discriminations would be possi-
ble only with a mixture of excitatory and inhibitory in-
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put connections, excitatory connections alone being
insufficient.?

Related to the problem of size variation in the stimuli
is the problem of frequency variation, i.e., some kinds
of stimuli being more frequent than others. The response
assigned to the more frequent stimulus type will gen-
erally tend to dominate the response assigned to the less
frequent type, unless the system is designed in such a
way as to minimize interaction between different classes
of stimuli. The extent of this frequency bias was one of
the problems originally set for the simulation programs,
but a systematic investigation has not yet been com-
pleted.

A different problem area concerns the performance of
linear systems. At one stage of the perceptron program,
we were particularly interested in systems in which no
threshold at all was employed in the A units, the output
simply being equal to av (the algebraic product of the
input signal and the stored value) rather than a*v, as in
the model described above. The values were to be aug-
mented by a quantity equal to « if R=1, and diminished
by « if R=0. It can easily be shown that in such a sys-
tem, if a stimulus pattern can occur with equal proba-
bility anywhere in the retinal space (and eliminating
special boundary conditions, as in the toroidally con-
nected model), the expected value of every A unit after
a long series of stimulus exposures will be exactly zero.
Such a system clearly would not learn at all, if stimuli
were distributed uniformly in space. If the stimuli were
not uniformly distributed, however, the values would
tend to correlate with any bias existing in the input
signals, and it was predicted that such a system should
learn to discriminate. The second simulation program
was originally set up to study linear systems of this tvpe,
both in forced learning and spontaneous learning experi-
ments. The theorv of such systems in spontaneous
learning is considered elsewhere [7]. While linear sys-
tems have now been abandoned, a typical experiment
will be considered presently, as it illustrates several
points of interest.

The problem of spontaneous learning—the ability of
a perceptron to form meaningful classifications of stimu-
lus patterns without any assignment of “correct” re-
sponses by a human experimenter—has prompted an
extensive series of experiments. The effect was originally
demonstrated with the second simulation program,
where two disjunct classes of stimuli were properly
separated, in a number of experiments. More interesting
results were obtained with the third program, which
eventually pointed the way to the development of the
“cross-coupled association system,” which promises to
yield substantially improved performance in a large
variety of problems [8]. In studying these spontaneous

3 F. Rosenblatt, “The Perceptron: A Theory of Statistical Separa-
bility in Cognitive Systems,” Cornell Aero. Lab., Buffalo, N. Y.,
Rept. no. VG-1196-G-1; January, 1958. See p. 53.
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learning effects, the first question was whether they
could actually be obtained at all, and the second was
how much experience would be required, a question for
which no satisfactory theoretical answer had been found
at the time the simulation experiments were under-
taken. In this area, there has been particularly close
feedback between simulation work and development of
the theory, the simulation program frequently demon-
strating the existence of special cases, involving particu-
lar parameters or particular stimulus forms, which had
not been anticipated. More recent theoretical models
owe a great deal to this period of empirical exploration.

RESULTS OF SIMULATION EXPERIMENTS

The first experiments which we shall consider are
concerned with the discrimination of the letters “E” and
“X” in a forced learning situation, and are illustrated
in Fig. 5. The stimuli were constrained to a central por-
tion of the field (as shown by the insert) partly to facili-
tate learning, and partly to prevent truncation at the
boundaries, since the toroidal stimulus space was not
used in this program. Fig. 5(a) shows the probability of
correct generalization (P,) as measured on a sample of
20 X’s and 20 E’s. The stimulus sequence consisted of
ten X's followed by ten E’s, followed by a test of per-
formance; then ten more X’s, ten more E'’s, and a second
test, for a total of 100 training stimuli. The data points
shown in the figure are means obtained from ten 100 A
unit perceptrons, each of them having a different con-
nection network, but exposed to the same sequence of
stimuli. The curves in Fig. 5(b) show the performance
of a larger (1000 A unit) perceptron, on a more difficult
variation of the same problem. In the solid curve, we sce
the performance of the system for stimuli rotated by
some integral number of degrees selected at random be-
tween 0 and 30 degrees. This rotation is combined with
vertical and horizontal translations selected within the
same limits as in the preceding case. For rotations up
to 30 degrees, note that the system attains perfect per-
formance after only ten stimuli of each type. The broken
curve shows the performance of the same system for
rotations up to 359 degrees, combined with translations
as above. In this case, there is a definite decline in the
perceptron’s performance, although it has attained a
P, of better than 0.90 after 30 stimuli of each type.

The next experiment (Fig. 6) was designed to check
the hypothesis that performance on outline figures
should be better than on solid figures, since unlike fig-
ures represented by their contours would have a mini-
mum intersection on the retina, while solid areas might
still have a large intersection even though their shape
was different. The figures used were squares (illustrated
in the inset) and diamonds, which covered the same
areas as the squares, rotated 45 degrees. As shown by
the two curves, the outline figures did indeed yield a
better performance than the solid figures, giving a per-
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Fig. 6—Experiments 16, 17. Square-diamond discrimination. N4 =1000,
x=10, y=0, . nd §=4. Centers placed in 13 by 13 field.

fect response record after 60 training stimuli (30 of each
class). In this experiment, of course, rotation was
eliminated to avoid confusion of squares and diamonds,
and the figures vrere merely displaced in the same man-
ner as the E’s and X's in the preceding experiment.

Fig. 7 shows two experiments concerned with part-
whole discrimination, which was discussed in the pre-
ceding section. I'1 Experiment 18, illustrated in Fig. 7(a)
a system with orly excitatory connections to the A units
was simulated. T'he stimulus is shifted at random in the
central portion of the field, as before. In this case, the
letter “E” was :orrectly learned, but the system was
unable to learn t > give the opposite response to the letter
“F.” In Experinent 22, shown in Fig. 7(b), we see that
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Fig. 7—(a) Experiment 18. “E” vs “F.” N4=100, x=10, 6=4, and
¥=0. Centers placed in 13 by 13 field. (b) Experiment 22. “E"
vs “F.” N4=1000, x=35, =3, and y=5.
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Fig. 8—Linear system experiments (“‘E” vs “X”). (a) Experiment
4-14, 15. N4=500, x=4, y=4. Centers placed in 13 by 13 field.
(b) Experiment 4-16. N4 =500, x =4, and y=4. Centers placed in
S by 5 field.

a system, in which half of the connections to the A units
are inhibitory, is able to learn the correct response to
both classes of stimuli, although the F response is con-
siderably less consistent then the E response. Experi-
ments 18 and 22 are, unfortunately, not fully compara-
ble, as the perceptron in the second case was a thousand-
unit system, while in Experiment 18 only a hundred A
units were used. The character of the curves in these
experiments, however, is definitely not a function of the
size of the systems, but rather of the stimulus relation-
ships, as shown by supporting evidence from many other
cases. These results are in closer agreement with the
theoretical predictions referred to earlier.

The next experiment (Fig. 8) was performed with the
second simulation program, and represents the learning
which is possible with a purely linear model, if the stim-
uli are constrained to one region of the retinal field. In
this experiment, instead of testing the perceptron after
every twenty stimuli, as in previous experiments, it was
tested after every ten stimuli, which yields the charac-
teristic pattern of converging oscillations shown in the
figure. The first ten stimuli were all E’s, and after these
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ten exposures, we find that the system has learned the
‘E” perfectly, but always gives the wrong response to
stimuli of the opposite class (the letter “X”). The per-
ceptron was then shown ten X's, to which the opposite
response was forced, and we find at time 20 that it has
now learned to give the desired response to the X, but
has almost completely forgotten the proper response to
the letter E. The amplitudes of such oscillations are apt
to be increased by a large decay rate for the values of
the A units (which makes more recent reinforcement
more effective than earlier experience), but in the ex-
periment illustrated here the decay rate was zero. Note
that in Experiment 4-16 [illustrated Fig. 8(b)] the
mean learning curve, shown by the broken line, climbs
towards a high probability level as experience with both
stimuli increases. At the same time, the swings in per-
formance become considerably less pronounced, as each
series of ten stimuli represents a progressively diminish-
ing portion of the total experience of the system. The
important conclusion from this experiment is that dis-
crimination learning is possible for a linear system, pro-
vided the stimuli are sufficiently constrained in location.
The retinal field in this case was 20 by 20 units, and the
centers of the stimuli were constrained to a 5 by 5 region
in the center of the retina. In Experiment 4-14 [shown
in Fig. 8(a)], where the stimuli were distributed more
freely over the retina (with the centers in a 13 by 13
field), no learning was demonstrated even after 200
stimuli. As a methodological experiment, these results
indicate the importance of making sure that the stimu-
lus distribution employed does not include “location
cues” which are sufficient to indicate which stimulus is
present, if we wish to test the ability of the perceptron
to discriminate pattern characteristics exclusive of loca-
tion. This can be fully guaranteed, in general, only by
a uniform stimulus distribution over the entire field,
with the elimination of special boundary effects by as-
suming a closed space, or an infinite space, as with the
Born-von Kérmdn boundary conditions referred to in
the Introduction.

Experiment 4-36, shown in Fig. 9, was again carried
out with the second simulation program, this time with
a more conventional perceptron. The threshold of zero,
employed here, is sufficient to make the system funda-
mentally nonlinear, by eliminating the output of A units
in the presence of negative input signals. The experi-
ment was designed to show the performance of the sys-
tem in the presence of a high degree of randomness, or
noise, in the initial values of the A units. The stimuli
for this experiment were vertical and horizontal bars, 4
units in width and 20 units long. A 5 per cent decay rate
was introduced for the values of the A units. Note that
in spite of the high decay rate and high initial noise
level, the system achieved perfect performance on both
classes of stimuli after a total of only 50 stimuli. This
should be compared with the performance of very large
(or infinite) perceptrons, in a spontaneous learning ex-
periment with the same types of stimuli, which is illus-
trated in Fig. 10.
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Fig. 9—Experiment 4-36. Forced learning experiment with vertical
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Fig. 10—Experiment 5-4. (a) Spontaneous organization of infinite
perceptron in environment of 4 by 20 vertical and horizontal
bars. (b) Expected waiting time to perfect performance, as a
function of decay rate (means of 10 runs).

In the experiment shown in Fig. 10, stimuli were
placed with equal probability at any position in a 20 by
20 retinal field, with Born-von Kirman boundary con-
ditions. The stimuli were 4 by 20 horizontal and vertical
bars, as in the previous case. The perceptron used in
this experiment is one in which the A units are reinforced
for the response R=1, but are left unaltered if the re-
sponse R=0 occurs. Unlike all of the previously illus-
trated experiments, this is a spontaneous learning ex-
periment, in which no attempt is made to control the
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response during the learning procedure, reinforcement
being applied for whichever response is elicited by a
given stimulus. The perceptron here was assumed to
have an infinite number of A units, and the calculations
were done with the third program, which was specif-
ically designed "o handle these conditions. The family
of curves in Fig. 10(a) shows the performance as a func-
tion of the decay rate, §. We find that for a zero decay
rate, the system eventually learns to dichotomize the
bars correctly 100 per cent of the time, i.e., it learns to
assign one respcase to all horizontal bars, and the op-
posite response to all vertical bars. However, this takes
upwards of 3000 stimuli in most cases.* As the decay
rate increases, performance improves progressively,
until a decay rate is reached (0.05 in this case) for which
the system is urstable, and never attains perfect per-
formance. The effect of the decay short of the instability
level appears to he to keep previous reinforcements from
accumulating to such a degree that they are difficult or
impossible to undo, as the system settles into a more
satisfactory terrinal state; in other words, the decay
keeps the system flexible, by making it possible to re-
verse the effects of previous learning more readily. At
the instability 'evel, previous reinforcements are re-
versed so readily that they are unable to maintain their
effect at all, and associations are likely to be lost and
reformed continially. The curve in Fig. 10(b) which
shows expected vraiting time to perfect performance, for
the same series o runs, indicates the same phenomenon.
We find that there is a clear optimum in performance
as a function of the decay rate, for 6 =approximately
0.01. Beyond this point, instability begins to occur, as
indicated by the broken curve in the figure.

This experime 1t is the best demonstration to date of
the “self-organiz ng” capability of a perceptron. None-
theless, it can be demonstrated that minor changes in
the stimulus environment will make it impossible for the
same perceptror. to achieve a satisfactory dichotomy.
For example, if the 4 by 20 horizontal bars are replaced
by double bars, omposed of two 2 by 20 vertical bars
separated by a space of 3 units, the perceptron will never
spontaneously learn to distinguish the double bars from
the single bars. Dther classes of stimuli can be set up
which are equallv difficult, or impossible, for the system
to learn spontan:ously, although in each of these cases
the problem would present no difficulty in a forced
learning situatio1. Moreover, the curves in Fig. 10 are
convex, indicating increasing difficulty in correctly as-
sociating the last few stimuli after most of the class has
been learned. In a human subject faced with this task
we would expect concave curves instead. These con-
siderations indicute that the spontaneous learning capa-
bility of this perceptron, while interesting, is not suf-
ficient to provid: a basis for a biological theory of per-
ceptual organizition. This problem is considered in
further detail =ls2where [8].

¢4 Individual runs differ from one another due to differences in
stimulus sequence, :ven though the perceptrons are infinite; the
curves shown are meins of ten different runs.
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CONCLUSIONS

The simulation experiments described above have
gone a long way toward demonstrating the feasibility of
a perceptron as a pattern-recognizing device. Both
forced lea. ning and spontaneous learning performances
have been investigated, and some insight has been
gained into conditions under which different systems
break down, or deviate from typical biological learning
phenomena. Although digital simulation is apt to be
time-consuming and expensive, particularly for large
networks, improved programming methods have cut
down the running time considerably, so that for early
investigations of all systems proposed up to this time,
digital simulation is still competitive with the construc-
tion of actual hardware models. As the number of con-
nections in the network increases, however, the burden
on a conventional digital computer soon becomes ex-
cessive, and it is anticipated that some of the models
now under consideration [8] may require actual con-
struction before their capabilities can be fully explored.

Digital programs undertaken to date have been con-
cerned exclusively with the logical properties of the net-
work, rather than with any particular hardware em-
bodiment; that is, there has been no attempt to intro-
duce simulation of electronic noise, component varia-
tion, or other factors which might affect the performance
of an actual system. The results of these programs,
therefore, should be interpreted as indicating perform-
ances which might be expected from an “ideal,” or per-
fectly functioning system, and not necessarily as repre-
sentative of any particular engineering design. A Mark
I perceptron, recently completed at the Cornell Aero-
nautical Laboratory, is expected to provide data on
the performance of an actual physical system, which
should be useful for comparative study.

A new program is currently heing employed to simu-
late the “cross-coupled perceptron” described else-
where [8]. The results of this study will be reported
separately when they are available.
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Speech Recognition: A Model and a Program

*
for Research
M. HALLE} anp K. STEVENS], MEMBER, IRE

Summary—A speech recognition model is proposed in which the
transformation from an input speech signal into a sequence of
phonemes is carried out largely through an active or feedback
process. In this process, patterns are gemerated internally in the
analyzer according to an adaptable sequence of instructions until
a best match with the input signal is obtained. Details of the process
are given, and the areas where further research is needed are
indicated.

HE FUNDAMENTAL problem in pattern recogni-
Ttion is the search for a recognition function that

will appropriately pair signals and messages. The
input to the recognizer generally consists of measured
physical quantities characterizing each signal to be recog-
nized, while at the output of the recognizer each input
signal is assigned to one of a number of categories which
constitute the messages. Thus, for instance, in machine
translation, the signals are sentences in one language and
the messages are sentences in another language. In the
automatic recognition of handwriting, the signal is a two-
dimensional curve and the message a sequence of letters
in a standard alphabet. Similarly, research on automatic
speech recognition aims at discovering a recognition func-
tion that relates acoustic signals produced by the human
vocal tract in speaking to messages consisting of strings
of symbols, the phonemes. Such a recognition function is
the inverse of a function that describes the production
of speech, i.e., the transformation of a discrete phoneme
sequence into an acoustic signal.

This paper proposes a recognition model in which
mapping from signal to message space is accomplished
largely through an active or feedback process. Patterns
are generated internally in the analyzer according to a
flexible or adaptable sequence of instructions until a
best match with the input signal is obtained. Since the
analysis is achieved through active internal synthesis of
of comparison signals, the procedure has been called
“analysis by synthesis.”””

* Received by the PGIT, September 25, 1961; revised manu-
script received, October 12, 1961. This work was supported in part
by the U. S. Army Signal Corps, the Air Force Office of Scientific
Research, and the Office of Naval Research; in part by the National
Science Foundation; and in part by the Air Force (Electronic
Systems Division) under Contract AF 19(604)-6102.

t Research Lahoratory of Electronics and Department of Modern
%?nguages, Massachusetts Institute of Technology, Cambridge,

ass.

1 Research Laboratory of Electronics and Department of Elec-
trical Engineering, Massachusetts Institute of Technology, Cam-
bridge, Mass.

THE PROCESS OF SPEECH PRODUCTION

In line with the traditional account of speech production,
we shall assume that the speaker has stored in his memory
a table of all the phonemes and their actualizations. This
table lists the different vocal-tract configurations or
gestures that are associated with each phoneme and the
conditions under which each is to be used. In producing
an utterance the speaker looks up, as it were, in the table
the individual phonemes and then instructs his vocal
tract to assume in succession the configurations or gestures
corresponding to the phonemes.

The shape of man’s vocal tract is not controlled as a
single unit; rather, separate control is exercised over
various gross structures in the tract, e.g., the lip opening,
position of velum, tongue position, and vocal-cord vib-
ration. The changing configurations of the vocal tract
must, therefore, be specified in terms of parameters
describing the behavior of these quasi-independent struc-
tures.” These parameters will be called phonetic param-
eters.

Since the vocal tract does not utilize the same amount
of time for actualizing each phoneme (e.g., the vowel in
bit is considerably shorter than that in beat), it must be
assumed that stored in the speaker’s memory there is
also a schedule that determines the time at which the

1 The relevance of such analysis procedures to more general
percep{;ual processes has heen suggested by several writers. See, for
example:

D. M. MacKay, “Mindlike behavior in artefacts,” Brit. J. for
Philosophy of Science, vol. 2, pp. 105-121; 1951.

G. A. Miller, E. Galanter, and K. H. Pribram, “Plans and the
%gucture of Behavior,”” Henry Holt and Co., New York, N. Y.;

0.

M. Halle and K. N. Stevens, ‘“‘Analysis by synthesis,”” Proc. of
Seminar on Speech Compression and Processing, W. Wathen-Dunn
and L. E. Woods, Eds., vol. 2, Paper D7: December, 1959.

2 This view was well understood by the founder of modern pho-
netics, A. M. Bell, who described utterances by means of symbols
(“Visible Speech and The  Science of Universal Alphabetics,”
Simpkin, Marshall and Co., London, Eng.; 1867) from which the
behavior of the quasi-independent structures could be read off
directly. The subsequent replacement, for reasons of typographical
economy, of Bell’s special symbols by the Romic of the Internatl.
Phonetic Assoc. has served to obscure the above facts and to sug-
gest that phonemes are implemented by controlling the vocal tract
as a single unit.

3 We cannot discuss in detail at this point the nature of the
phonetic parameters, and we do not take sides here in the present
discussion between proponents of the Jakobsonian distinctive
features (R. Jakobson and M. Halle, “Fundamentals of Language,”
Mouton and Co., The Hague, The Netherlands; 1956) and those of
more traditional views (“The Principles of the International Phonetic
Association,” University College, London, England; 1949). We
insist however, that the control of the vocal-tract behavior must
be described by specifying a set of quasi-independent phoentic
parameters.

Reprinted from /RE Trans. Inform. Theory, vol. IT-8, pp. 155-159, Feb. 1962.
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vocal tract moves from one configuration to the next,
t.e., the time at which one or more phonetic parameters
change in value. The timing will evidently differ depending
on the speed of utterance—it will be slower for slower
speech and faster for faster speech.

Because of the inertia of the structures that form the
vocal tract and the limitations in the speed of neural
and muscular control, a given phonetic parameter cannot
change instantaneously from one value to another; the
transitions from one target configuration to the next must
be gradual, or smooth. Furthermore, when utterances are
produced at any but the slowest rates, a given articulatory
configuration may not be reached before motion toward
the next must e initiated. Thus the configuration at
any given time may be the result of instructions from
more than one phoneme. In other words, at this stage in
the speech prodiction process, discrete quantities found
in the input have -been replaced by continuous parameters.
A given sequence: of phonemes, moreover, may produce a
variety of voca -tract behaviors depending upon such
factors as the past linguistic experience of the talker, his
emotional state, and the rate of talking.

The continuous phonetic parameters that result from
a given phoneme sequence give rise in turn to changes in
the geometry aad acoustic excitation of the cavities
forming the vocal tract. The tract can be visualized as a
time-varying linear acoustic system, excited by one or more
sound sources, ‘vhich radiates sound from the mouth
opening (and/or :rom the nose). The acoustic performance
of this linear syst2m at a given time and for a given source
of excitation can be characterized by the poles and zeros
of the transfer function from the source to the output,
together with a constant factor.* For voiced sounds the
vocal tract is excited at the glottis by a quasi-periodic
source with high acoustic impedance. Its fundamental
frequency varies ‘with time, but the waveform or spectrum
of each glottal pulse does not change markedly from one
speech sound to another. In addition, the vocal tract
may be excited n the vicinity of a constriction or ob-
struction by a oroad-band noise source or by sound.

In the process of generating an acoustic output in
response to a sequence of phonemes, a talker strives to
produce the appropriate vocal-tract configurations to-
gether with the proper type of source, but he does not
exert precise coutrol over such factors as the detailed
characteristics of the source or the damping of the vocal
tract. Consequer.tly, for a given vocal-tract configuration
the shape of the source spectrum, the fundamental fre-
quency of the glrttal source, and the bandwidths of the
poles and zeros can be expected to exhibit some variation
for a given talker Even greater variation is to be expected
among different t alkers, since the dimensions of the speech-
production apparitus are different for different individuals.
This variance is superimposed on the already-mentioned
variance in artie! latory gestures.

4 G. Fant, “Accastic Theory of Speech Production,” Mouton
and Co., The Hagu:, Neth.; 1960.

REpUCTION OF THE CONTINUOUS SIGNAL TO A MESSAGE
CONSISTING OF DISCRETE SYMBOLS;
THE SEGMENTATION PROBLEM

The analysis procedure that has enjoyed the widest
acceptance postulates that the listener first segments the
utterance and then identifies the individual segments with
particular phonemes. No analysis scheme based on this
principle has ever been successfully implemented. This
failure is understandable in the light of the preceding
account of speech production, where it was observed that
segments of an utterance do not in general stand in a
one-to-one relation with the phonemes. The problem,
therefore, is to devise a procedure which will transform
the continuously-changing speech signal into a discrete
output without depending crucially on segmentation.

A simple procedure of this type restricts the input
to stretches of sound separated from adjacent stretches by
silence. The input signals could, for example, correspond
to isolated words, or they could be longer utterances.
Perhaps the crudest device capable of transforming such
an input into phoneme sequences would be a “dictionary”
in which the inputs are entered as intensity-frequency-time
patterns® and each entry is provided with its phonemic
representation. The segment under analysis is compared
with each entry in the dictionary, the one most closely
resembling the input determined, and its phonemic trans-
cription printed out.®

The size of the dictionary in such an analyzer increases
very rapidly with the number of admissible outputs, since
a given phoneme sequence can give rise to a large number
of distinet acoustic outputs. In a device whose capabilities
would even remotely approach those of a normal human
listener, the size of the dictionary would, therefore, be
so large as to rule out this approach.”

The need for a large dictionary can be overcome if the
principles of construction of the dictionary entries are

5 The initial step in processing a speech signal for automatic
analysis usually consists of deriving from the time-varying pressure
changes a sequence of short-time amplitude spectra. This trans-
formation, which is commonly performed by sampling the rectified
and smoothed outputs of a set of band-pass filters or by computing
the Fourier transform of segments of the signal, is known to preserve
intact the essential information in the signal, provided that suitable
filter bandwidths and averaging times have been chosen.

6 A model of this type was considered by F. S. Cooper, et al.,
“Some experiments on the perception of synthetic speech sounds,”
J. Acoust. Soc. Am., vol. 24, p. 605; November, 1952.

“The problem of speech perception is then to describe the
decoding process either in terms of the decoding mechanism or—
as we are trying to do—by compiling the code book, one in which
there is one column for acoustic entries and another column for
message units, whether these be phonemes, syllables, words, or
whatever.”

7 This approach need not be ruled out, however, in specialized
applications in which a greatly restricted vocabulary of short utter-
ances, such as digits, is to be recognized. See, for example:

H. Dudley and S. Balashek, “Automatic recognition of phonetic
patterns in speech,” J. Acoust. Soc. Am., vol. 30, pp. 721-732;
August, 1958.

P. Denes and M. V. Mathews, “Spoken digit recognition using
time-frequency pattern matching,” J. Acoust. Soc. Am., vol. 32,
pp- 1450-1455; November, 1960.

G. S. Sebestyen, ‘“Recognition of membership in classes,” IRE
TraNs. oN INXForMATION THEORY, vol. IT-6, pp. 44-50; January,
1961.
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known. It is then possible to store in the “permanent
memory”’ of the analyzer only the rules for speech produc-
tion discussed in the previous section. In this model the
dictionary is replaced by generative rules which can syn-
thesize signals in response to instructions consisting of
sequences of phonemes. Analysis is now accomplished by
supplying the generative rules with all possible phoneme
sequences, systematically running through all one-
phoneme sequences, two-phoneme sequences, etc. The
internally generated signal which provides the best match
with the input signal then identifies the required phoneme
sequence. While this model does not place excessive de-
mands on the size of the memory, a very long time is
required to achieve positive identification.

The necessity of synthesizing a large number of com-
parison signals can be eliminated by a preliminary anal ysis
which excludes from consideration all but a very small
subset of the items which can be produced by the gene-
rative rules. The preliminary analysis would no doubt
include various transformations which have been found
useful in speech analysis, such as segmentation within
the utterance according to the type of vocal-tract excita-
tion and tentative identification of segments by special
attributes of the signal. Once a list of possible phoneme
sequences is established from the preliminary analysis,
then the internal signal synthesizer proceeds to generate
signals corresponding to each of these sequences.

The analysis procedure can be refined still further by
including a control component to dictate the order in
which comparison signals are to be generated. This con-
trol is guided not only by the results of the preliminary
analysis but also by quantitative measures of the goodness
of fit achieved for comparison signals that have already
been synthesized, statistical information concerning the
admissible phoneme sequences, and other data that may
have been obtained from preceding analyses. This infor-
mation is utilized by the control component to formulate
strategies that would achieve convergence to the required
result with as small a number of trials as possible.

It seems to us that an automatic speech recognition
scheme capable of processing any but the most trivial
classes of utterances must incorporate all of the features
discussed above—the input signal must be matched against
a comparison signal; a set of generative rules must be
stored within the machine; preliminary analysis must be
performed; and a strategy must be included to control
the order in which internal comparison signals are to be
generated. The arrangement of these operations in the
proposed recognition model is epitomized in I'ig. 1.

PROCESSING OF THE SPEECH SIGNAL PRIOR TO
PHONEME IDENTIFICATION

In the analysis-by-synthesis procedure just described,
it is implied that the comparison between the input and
the internally generated signal is made at the level of
the time-varying acoustic spectrum. It is clear, however,
that the input signal of Fig. 1 could equally well be the
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Fig. 1—Block diagram of analysis-by-synthesis procedure for ex-
tracting a phoneme sequence from a time-varying input spectrum.
The input spectrum, which may be placed in temporary storage
pending completion of the analysis, is compared in the comparator
with signals synthesized by the generative rules. Instructions as
to the phoneme sequences to be tried are communicated to the
generative rules by the control component, which bases its deci-
sions on the results of a preliminary analysis of the input signal
and on the output of the comparator for previous trials, as well
as on other information as noted in the text. When a best match
is obtained in the comparator, the control component reads out
the phoneme sequence which, through the generative rules, pro-
duced that match. This figure also serves to show the arrange-
ment of components in the proposed model for the reduction of
speech spectra to continuous phonetic parameters.

result of some transformation of the acoustic spectrum
carried out at a previous stage of analysis. Indeed, in
any practical speech recognizer, it is essential to subject
the spectral pattern to a certain amount of preliminary
processing before entering the phonemic analysis stage.
The necessity for initial transformations or simplifications
stems from the fact that many acoustic signals may cor-
respond to a given sequence of phonemes. To account
for all the sources of variance or redundancy in one stage
of analysis is much too difficult an undertaking. Through
a stepwise reduction procedure, on the other hand,
variance due to irrelevant factors can be eliminated a
small amount at a time.

The proposed procedure for speech processing contains
two major steps. In the first stage the spectral representa-
tion is reduced to a set of parameters which describe the
pertinent motions and excitations of the vocal tract, 7.e.,
the phonetic parameters. In the second stage, transforma-
tion to a sequence of phonemes is achieved. These steps
provide a natural division of the analysis procedure into
one part concerned primarily with the physical and
physiological processes of speech, and the other concerned
with those aspects of speech primarily dependent on
linguistic and social factors. In the first stage, variance in
the signal due to differences in the speech mechanism
of different talkers (or of a given talker in different
situations) would be largely eliminated. The second stage
would account for influences such as rate of talking,
linguistic background or dialect of the talker, and con-
textual variants of phonemes.

Many of the problems involved in the first analysis
stage are not unlike those encountered in reducing an
utterance to a phoneme sequence. It is not feasible to
store all possible spectra together with the corresponding
articulatory descriptions. Since, however, rules for gene-
rating the spectrum from the articulatory description are
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known, it is possible to use an analysis-by-synthesis pro-
cedure® of the type shown in Fig. 1.

The output o this stage is a set of phonetic param-
eters (rather than the phoneme sequence shown in Fig. 1).
The heart of this first-stage analyzer is a signal synthesizer
that has the ability to compute comparison spectra when
given the phonet.c parameters, 4.e., an internal synthesizer
in which are stored the generative rules for the con-
struction of speech spectra from phonetic parameters.
A strategy is required to reduce the time needed to match
the input spectrum and the comparison spectrum. The
strategy may agzin depend on the results of a preliminary
approximate analysis of the input signal, and on the error
that has been computed at the comparator on previous
trials. It may also depend on the results that have been
obtained for the analysis of signals in the vicinity of the
one under direc!. study. Some of the instructions that
are communicated by the control component to the
generative rules :‘emain relatively fixed for the matching
of spectra generaed by a given talker in a given situation.
When signals generated by a different talker are pre-
sented, the stratsgy must be able to modify this group
of instructions ai tomatically after sufficient data on that
talker’s speech hive been accumulated. The analysis-by-
synthesis procedure has the property, therefore, that its
strategy is potenrially able to adapt to the characteristics
of different talkers.

SUMMARY 01" MODEL FOR SPEECH RECOGNITION

The complete model for speech recognition discussed
here takes the form shown in Fig. 2. The input signal is
first processed b a peripheral unit such as a spectrum
analyzer. It then undergoes reduction in two analysis-by-
synthesis loops, and the phoneme sequence appears at
the right. In order to simplify the diagram, the group of
components performing the functions of storage, pre-
liminary analysis, comparison, and control have been
combined in a sir gle block labeled strategy.

The procedure depicted here is suitable only for the
recognition of sequences of uncorrelated symbols, such
as those that control the generation of nonsense syllables.
If the speech maerial to be recognized consists of words,
phrases, or continuous text, then the output of the present
analysis scheme would have to be processed further to

8 Partial implem:ntation (or models for implementation) of the
analysis-by-sfynthesiu procedure applied at this level, together with
discussions of the ad-7antages of the method, have been presented in:

K. N. Stevens, '‘Toward a model for speech recognition,”” J.
Acoust. Soc. Am., vol. 32, pp. 47-51; January, 1960.

L. A. Chistovich, “Classification of rapidly repeated speech
sounds,”” Sov. Phys. Acoustics, vol. 6, pp. 393-398; January-March,
1961 (Akust. Zhur., “r0l. 6, pp. 392-398; July, 1960).

S. Inomata, ‘“Ccmputational method for speech recognition,”
Bull. Electro-Tech. Lab. (Tokyo), vol. 24, pp. 597-611; June, 1960.

M. V. Mathews, J. E. Miller, and E. E. David, Jr., “Pitch syn-
chronous analysis of voiced sounds,” J. Acoust. Soc. Am., vol. 33,
pp. 179-186; Februs.ry, 1961.

C. G. Bell, H. Fujisaki, J. M. Heinz, K. N. Stevens, and A. S.
House, “Reduction of speech spectra by analysis-by-synthesis tech-
niques,” J. Acoust. Yoc. Am., vol. 33; December, 1961.

Halle and Stevens: Speech Recognition

INPUT 1
SPEECH SPECTRUM : OUTPUT
SIGNAL ANALY ZER T PHONE ME
| SEQUENCE
I
|
GENERATIVE | ! INPUT
RULES ! PHONEME
h SEQUENCE
I

STRUCTURES
FOR SPEECH
GENERATION

OUTPUT
SPEECH
SIGNAL

Fig. 2—Block diagram of two-stage scheme for speech processing.
Following processing by a spectrum analyzer, the input speech
signal is reduced in Stage I to a set of quasi-continuous phonetic
parameters, which are processed in Stage II to yield an output
phoneme.sequence. An analysis-by-synthesis procedure is used for
processing the signal at each stage. The heavy lines indicate the
operations that are involved in generating a speech signal from
a phoneme sequence.

take account of the constraints imposed by the morpho-
logical and syntactic structure of the language.

The final analysis stage of Fig. 2 includes, of course,
the generative rules for transforming phoneme sequences
into phonetic parameters. These are precisely the rules
that must be invoked in the production of speech. During
speech production the output from these stored rules can
be connected directly to the speech mechanism, while the
input to the rules is the phoneme sequence to be generated.
Addition of peripheral speech-generating structures to
Fig. 2 then creates a model that is capable of both speech
recognition and speech production. The same calculations
are made in the second set of generative rules (and in the
generative rules at possible higher levels of analysis)
whether speech is being received or generated. It is
worthwhile observing that during the recognition process
phonetic parameters are merely calculated by the ‘“‘gene-
rative rules II” and direct activation of the speech
structures is nowhere required.’

For the recognition of continuous speech it may not
always be necessary to have recourse to analysis-by-syn-
thesis procedures. A rough preliminary analysis at each of
the stages in Fig. 2 may often be all that is required—
ambiguities as a result of imprecise analysis at these early
stages can be resolved in later stages on the basis of
knowledge of the constraints at the morphological, syn-
tactic, and semantic levels."

® This point was discussed by A. M. Liberman (‘“Results of
research on speech perception,” J. Acoust. Soc.- Am., vol. 29, pp.
117-123; January, 1957) who suggested that speech is perceived with
reference to articulation, but that ‘“the reference to articulatory
movements and their sensory consequences must somehow occur
in the brain without getting out into the periphery.”

10 Knowledge of constraints imposed on phoneme sequences by
the structure of the language has been incorporated in the design
of an automatic speech recognizer described by Fry and Denes
(D. B. Fry, “Theoretical aspects of mechanical speech recognition,”’
and P. Denes, “The design and operation of the mechanical speech
recognizer at University College, London,” J. Brit. IRE, vol. 19,
pp. 211-234; April, 1959.
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IMPLEMENTATION OF THE MODEL: PROBLEMS FOR
RESEARCH

While certain components in both major stages of
analysis can be designed from present knowledge, further
research is necessary before the remaining components
can be realized and before the system can be designed to
function as a whole.

In the first stage of analysis, one of the major problems
is to devise a procedure for specifying in quantitative
terms the “phonetic parameters.” These must describe
the behavior of structures that control the vocal-tract
configuration as well as activities of the lungs and vocal
cords. A great deal is known about some parameters,
e.g., parameters that relate to voicing, nasalization, inter-
ruptedness, and labialization. For others, such as tenseness
or the so-called point of articulation, our knowledge is
still far from adequate.

A second task is to establish the generative rules de-
scribing the conversion of phonetic parameters to time-
varying speech spectra. These rules involve a series of
relations, namely, those between 1) the phonetic param-
eters and the vocal-tract geometry and excitation charac-
teristics, 2) the transformation from vocal-tract geometry
to the transfer function in terms of poles and zeros, and
3) the conversion from the pole-zero configurations and
pertinent excitation characteristics to the speech spectra.
The last two of these, which involve application of
the theory of linear distributed systems, have been studied
in some detail,®''''* whereas the first is less well under-
stood.

The generative rules of the second stage are made up
of several distinet parts. First, they embody the relation
between what linguists have called a “narrow phonetic
transcription of an utterance” and its ‘“‘phonemic or
morphophonemic transcription.” The nature of this rela-
tion has received a fair amount of attention in the last
30 years and a great deal of valuable information has
been gathered. Of especial importance for the present
problems are recent phonological studies in which this
relation has been characterized by means of a set of
ordered rules.’® Secondly, the generative rules II must

1T, Chiba and M. Kajiyama, ‘“The Vowel, Its Nature and
Structure,” Tokyo-Kaiseikan, Tokyo, Jap.; 1941.

12 H, K. Dunn, ‘“The calculation of vowel resonances, and an
electrical vocal tract,” J. Acoust Soc. Am., vol. 22, pp. 740-753;
November, 1950.

13 M. Halle, “The Sound Pattern of Russian,” Mouton and Co.,
The Hague, The Netherlands; 1959. N. Chomsky and M. Halle,
“The Sound Pattern of English,” to be published.
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describe the utilization of those phonetic parameters that
are not governed by the language in question, but are
left to the discretion of the speaker. Thus, for instance,
it is well known that in English speech, voiceless stops
in word final position may or may not be aspirated. The
precise way in which individual speakers utilize this
freedom is, however, all but unknown. Thirdly, the
generative rules IT must specify the transformation from
discrete to continuous signals that results from the inertia
of the neural and muscular structures involved in speech
production. There are wide variations in the delay with
which different muscular movements can be executed,
but the details of the movements are not understood.
The study of these problems, which essentially are those
of producing continuous speech from phonetic trans-
scriptions, has just begun in earnest. We owe important
information to the work of Haskins Laboratory on simpli-
fied rules for speech synthesis.’* This work must now be
extended to take physiological factors into consideration
more directly, through the use of cineradiography,'
electromyography, and other techniques. Contributions
can also be expected from studies with dynamic analogs
of the vocal tract.’

Finally, for both stages of analysis, the design of the
strategy component is almost completely unknown ter-
ritory. To get a clearer picture of the nature of the strategy
component, it is useful to regard the generative rules as a
set of axioms, and the outputs of the generative rules as
the theorems that are consequences of these axioms.
Viewed in this light the discovery of the phonemic repre-
sentation of an utterance is equivalent to the discovery
of the succession of axioms that was used in proving a
particular theorem. The task of developing suitable
strategies is related, therefore, to a general problem in
mathematics—that of discovering the shortest proof of
a theorem when a set of axioms is given. It should be
clear, however, that the powerful tools of mathematics
will be at our disposal only when we succeed in describing
precisely and exhaustively the generative rules of speech.
Until such time we can hope only for partially successful
analyzers with strategies that can never be shown to be
optimal.

14 A, M. Liberman, F. Ingemann, L. Lisker, P. Delattre, and F. S.
Cooper, “Minimum rules for synthesizing speech,” J. Acoust. Soc.
Ame., vol. 31, pp. 1490-1499; November, 1959.

1t H. M. Truby, “Acoustico-cineradiographic analysis consider-
ations,” Acta Radiologica, (Stockholm), Suppl. 182; 1959.

16 G. Rosen, “Dynamic Analog Speech Synthesizer,”” Res. Lab.
of Electronics, Mass. Inst. Tech., Cambridge, Tech. Rept. No. 353;
February 10, 1960.
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Abstraction and Pattern Classification
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1. INTRODUCTION

This note deals in a preliminary way with several concepts and ideas
which have a bearing on the problem of pattern classification—a problem
which plays an important role in communication and control theories.

There are two basic operations: abstraction and generalization, which
appear under various guises is most of the schemes employed for classifying
patterns into a finite number of categories. Although abstraction and
generalization can be defined in terms of operations on sets of patterns, a more
natural as well as more general framework for dealing with these concepts
can be constructed around the notion of a “‘fuzzy” set—a notion which
extends the concept of membership in a set to situations in which there are
many, possibly a continuum of, grades of membership.

To be more specific, a fuzzy set A in a space Q = {x} is represented by a
characteristic function f which is defined on 2 and takes values in the interval
[0, 1], with the value of f at «, f(x), representing the “‘grade of membership”
of x in A. Thus, if A is a set in the usual sense, ;(x) is 1 or 0 according as
x belongs or does not belong to .4. When .4 is a fuzzy set, then the nearer
the value of f(x) to 0, the more tenuous is the membership of x in .4, with
the “degree of belonging” increasing with increase in f(x). In some cases it
may be convenient to concretize the belonging of a point to a fuzzy set 4
by selecting two levels ¢; and ¢, (¢, , €, € [0, 1]) and agreeing that (a) a point
x “belongs” to A if f(x) == 1 — ¢, ; (b) does not belong to A if f(x) < ¢, ; and
(c) x is indeterminate relative to A if e, << f(x) << 1 — ¢, . In effect, this
amounts to using a three-valued characteristic function, with f(x) = 1 if
x€d; f(x) = 1,2, say, if x is indeterminate relative to 4; and f(x) = 0 if
x¢ A

Let A and B be two fuzzy sets in the sense defined above, with £, and f,
denoting their respective characteristic functions. The union of 4 and B will
be denoted in the usual way as

C =4A4uU B, (1
1

Reprinted with permission from J. Math. Anal. Appl., vol. 13, pp. 1-7, 1966.
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with the characteristic function of C defined by
fe(x) = Max(f(x), f5(*))- ()
For brevity, the relation expressed by (2) will be written as

fe=faVvfs. 3)

’

Note that when 4 and B are sets, (2) reduces to the definition of “‘or.’
In a similar fashion, the intersection of two fuzzy sets .4 and B will be

denoted by
C=A4AnNnB (4)

with the characteristic function of C defined by
fe(x) = Min(f4(x), f5(%)), )
which for brevity will be written as
fe=Ffarfp- (6)

In the case of the intersection, when A and B are sets (5) reduces to the
definition of ““and.”” When the characteristic functions are three-valued, (2)
and (5) lead to the three-valued logic of Kleene [1].

2. ABSTRACTION AND GENERALIZATICN

Let x!, ..., x™ be given members of a set 4 in Q. In informal terms, by
abstraction on x%, ..., " is meant the identification of those properties of
x!, ..., x® which they have in common and which, in aggregate, define the
set 4.

T he notion of a fuzzy set provides a natural as well as convenient way of
giving a more concrete meaning to the notion of abstraction. Specifically,
let f* denote the value of the characteristic function, f, of a fuzzy set . ata
point x% in §2. A collection of pairs {(x1, f1), ..., (x", f7)} or, for short {(x?, f¥)}",
will be called a collection of samples or observations from A. By an abstraction
on the collection {(x%, f?)}", we mean the estimation of the characteristic
function of 4 from the samples (¥, 1), ..., (", f*). Once an estimate of f
has been constructed, we perform a generalization on the collection {(x%, f¥)}
when we use the estimate in question to compute the values of f at points
other than x1, ..., x".

An estimate of f employing the given samples (x1, f1), ..., (x*, f*) will be
denoted by f or, more explicitly, by f (x; {+%, f{)}"),and will be referred to as
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an abstracting function. Clearly, the problem of determining an abstracting
function is essentially one of reconstructing a function from the knowledge
of its values over a finite set of points. To make this problem meaningful, one
must have some a priori information about the class of functions to which f
belongs, such that this information in combination with the samples from 4
would be sufficient to enable one to construct a “good” estimate of f. As in
interpolation theory, this approach involves choosing—usually on purely
heuristic grounds—a class of estimates of f: F = {f(x;1)|Ae RY} and
finding that member of this family which fits, or fits ““best”’ (in some specified
sense of “best”), the given samples (x1, f1), ..., (x, 7). A special case of this
procedure which applies to ordinary rather than fuzzy sets is the widely
used technique for distinguishing between two sets of patterns via a separating
hyperplane. Stated in terms of a single set of patterns, the problem in question
is essentially that of finding, if it exists, a hyperplane L passing through the
origin of RY(£2 = R!, by assumption) such that the given points x!, ..., x"
belonging to a set .4 are all on the same side of the hyperplane. (Note that,
since 4 is a set, f1 = f2? = -+ = f* = |.)In efect, in this case f(x; A) is of
the form
flx;d) =1 for x,A> =0,

N / (7)
f(x;2) =0 for (x,A> <0,
where (x, A> denotes the scalar product of x and A, and the problem is to
find a A in R! such that

LA =0 for i =1,.., n

Any f(x; A) whose A satisfies (8) will qualify as an abstracting function, and
the corresponding generalization on (x1, 1), ..., (x*, 1) will take the form of
the statement “Any «x satisfying (x,A> > 0 belongs to the same set as the
samples &7, ..., x.”” If one is not content with just satisfying (8) but wishes,
in addition, to maximize the distance between L and the set of points x!, ..., x"
(in the sense of maximizing Min{x?, A>), ||A|| = 1, then the determination
of the corresponding abstracting function requires the solution of a quadratic
program, as was shown by Rosen [2] in connection with a related problem in
pattern recognition,

In most practical situations, the a priori information about the characteristic
function of a fuzzy set is not sufficient to construct an estimate of f(x) which is
“optimal” in a meaningful sense. Thus, in most instances one is forced to
resort to a heuristic rule for estimating f(x), with the only means of judging
the “goodness’’ of the estimate yielded by such a rule lying in experimentation.
In the sequel, we shall describe one such rule for pattern classification and
show that a special case of it is equivalent to the ‘“‘minimum-distance”
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principle which is frequently employed in signal discrimination and pattern
recognition.

3. PATTERN CLASSIFICATION

For purposes of our discussion, a pattern is merely another name for a
point in £, and a category of patterns is a (possibly fuzzy) set in 2. When we
speak of pattern classification, we have in mind a class of problems which can
be subsumed under the following formulation and its variants.

Let A and B denote two! disjoint sets in 2 representing two categories
of patterns. Suppose that we are given n points (patterns) ol, ..., «” which are
known to belong to 4, and m points £, ..., B™ which are known to belong
to B. The problem is to construct estimates of the characteristic functions of
A and B based on the knowledge of the samples o, ..., o™ from .4 and B, ..., B
from B.

Clearly, one can attempt to estimate f, without making any use of the g/,
j = 1, ..., m. However, in general, such an estimate would not be as good as
one employing both o’s and B’s. This is a consequence of an implied or
explicit dependence between 4 and B (e.g., the disjointness of A and B),
through which the knowledge of B’s contributes some information about f, .
The same applies to the estimation of fp .

The heuristic rule suggested in the sequel is merely a way of constructing
estimates of f, and fj , given of, ..., a®, and 8, ..., B™, in terms of estimates of
f.and fg, given a single pair of samples o’ and £’. Specifically, suppose that
with every a € 4 and every 8 € B are associated two sets A(x; B) and B(B; @)
representing the estimates of 4 and B, given o and B. (In effect, A(a; B)
defines the set of points in £2 over which the estimate fa(x; B) of £, is unity,
and likewise for f5(8; o) and B(B; «). Points in £ which are neither in A(x; B)
nor in B(B; «) have indeterminate status relative to these sets.)

In terms of the sets in question, the estimates of A and B (or, equivalently,
£ and fp), given o, ..., o™ and I, ..., B™, are constructed as follows

3
B

A=NU A p), ©)

[

T

B =

.

() B a. (10)

i=1

n

Thus, under the rule expressed by (9) and (10), we generalize on o, ..., «

1 The restriction to two sets serves merely to simplify the analysis and does not
entail any essential loss in generality.
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and B, ..., B™ by identifying A with 4 and B with B. Note that this rule is
consistent in the sense that if « is known to belong to A then « e 4, and
likewise for a point belonging to B. However, the consistency of this rule
does not extend to fuzzy sets. Thus, if (9) and (10) were applied to the
estimation of f, and fp when 4 and B are fuzzy sets, it would not necessarily
be true that f (a) = f () for all given « in 4.

In essence, the rule expressed by (9) and (10) implies that a point x is
classified as a member of A if and only if for all 87 there exists an o such that
x lies in A(o?, B7). For this reason, the rule in question will be referred to as
the “rule of complete dominance.”

To illustrate the rule of complete dominance and indicate its connection
with the “minimum-distance” principle which is frequently employed in
signal discrimination, consider the simple case where 2 is R' and A(; f)
and B(B; «) are defined as follows:

A ) = x| (- 52 o) > 0], iy

B = x| (x— 5B 2 gy <of. (12)

In effect, A(«; B) is the set of all points which are nearer to « than to 8 or
are equidistant from « and B, while B(8; «) is the complement of this set with
respect to R

Now consider the following ‘‘minimum-distance’ decision rule. Let
A* and B* denote the sets of samples ol, ..., o® and B, ..., B™, respectively.
Define the distance of a point x in £ from 4 * to be Min, || x — o¢ ||, where || ||
denotes the Euclidean norm and 7 = 1, ..., #; do likewise for B*, Then, given
a point x in £, decide that x € 4 if and only if the distance of x from 4* is
less than or equal to the distance of x from B*.

It is easy to show that this decision rule is a special case of (9) and (10).
Specifically, with 4(«; B) and B(B; «) defined by (11) and (12), respectively,

the decision rule in question can be expressed as follows:

xedeVpId|lx—o < x =B, i=1,.,n

j=1 ) (13)
Now
A By = {x||x — | <2 — B[} (14
and consequently (13) defines the set
A = {x| VB I i(x € A(oF; B))}. (15)
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Clearly, (15) is equivalent to

A=

L 3

n

U 48 (16)
j=1i=1
and similarly for B. Q.E.D.

In the foregoing discussion of the minimum-distance decision rule, we
identified £ with R! and used the Euclidean metric in R! to measure the
distance between two patterns in 2. However, in many cases of practical
interest, 2 is a set of line patterns in R? such as letters, numerals, etc., to
which the Euclidean metric is not applicable. In this case, the distance
between two line patterns in R?, say L, and L, , can be defined by

<

d(Ly,L,) = Max Min |y, — 3, (17)

YoeLo v1€L,

where || | is the Euclidean norm in R?, and y, and ¥, are points in R* belonging
to L, and L, , respectively.

Now suppose that we agree to regard two patterns L, and L, as equivalent
if one can be obtained from the other through translation, rotation, contraction
(or dilation) or any combination of these operations. Thus, let 7, denote the
translation y — y + 8, where y, 8 € R?; let T, denote the rotation through
an angle 6 around the origin of R?; and let T denote the contraction (or
dilation) x — px where p € R'. Then, we define the reduced distance of L,
from Lg by the relation

d* (Ly ; Ly) = Min Min Min d(L, , T,T,T,L,), (18)
T6 T

Ty p

where T,T,T L, denotes the image of L, under the operation 7,7,7,, and
d(L,, T,T,T,L,) is the distance between L, and T,T,7,L, in the sense of (17).
Clearly, it is the reduced distance in the sense of (18) rather than the distance
in the sense of (17) that should be used in applying the minimum-distance
decision rule to the case where {2 is a set of line patterns in R2

To conclude our discussion of pattern classification, we shall indicate
how the formulation given in the beginning of this section can be extended
to fuzzy sets. Thus, let 4 and B denote two such sets in 2, with f, and fp
denoting their respective characteristic functions. Suppose that we are given
n sample triplets (x!, £}, fg!), ..., (x™, £, f5"), with (¥%, f 7, f3') representing
a sample consisting of x¢ and the values of f, and fj at x*. The problem of
pattern classification in this context is essentially that of estimating the
characteristic functions f, and fg from the given collection of samples.
Clearly, this formulation of the problem includes as a special case the pattern-
classification problem stated earlier for the case where A and B are sets in 2
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A Note on Learning Signal Detection™

M. KACt

Summary—This paper considers a threshold detector operating
on noisy binary pulses. It is shown that an adaptive error-correction
procedure can bring the threshold to the point of equal false alarm
and missed detection probabilities.

degree of learning has received considerable

attention in recent years. In particular, it has
been demonstrated that circuits can be designed which
can be “taught” to classify objects by a suitably designed
error correcting training procedure.’

This paper discusses the applicability of error correcting
procedures to the problem of signal detection. The author
has chosen the simplest version of the problem to make
a rigorous analysis possible and to gain clarity. The reader
will notice that the procedure described below is closely
related to stochastic approximation methods first intro-
duced by Robbins and Monroe.

2) Let us first review briefly the detection problem from
the point of view of the theory of the ‘“‘ideal observer”
(or equivalently, the Neyman-Pearson theory).” An ob-
server looking at the radar screen is told that with an
a priori probability of, say, 50 per cent a signal may be
sent and if it is sent it will appear at a specified point
(the so called off-on experiment). The observer is then
asked to tell each time whether the signal is present or not.

Let fo(z) be the probability density of the deflection
at the specified point on the screen if the signal is absent
(i.e., we have noise alone) and f,(z) if the signal is present.
The optimal detectability criterion is the one which
minimizes the probability of making an error.

Any detectability criterion is of the following general
type. Let Q be a set of real numbers (deflections); if the
observation falls within Q we say that the signal is present
and if it falls outside Q (i.e., within the complementary
set ) we say that the signal is absent.

For a given choice of Q the probability of making
an error is

1) THE SUBJECT of devices capable of some

1 1 1 1
5 [1o@ de+5 [ 1@ de =5+ [ 0@ ~ @] da
and, clearly, this is minimum if @ is the set on which

fo(@) < fi(@). (1)

* Received by the PGIT, August 11, 1961.

t The Rockefeller Institute, New York, N. Y. Also Consultant,
Aeronutronic, Division of Ford Motor Co., Newport Beach, Calif.

1 For an excellent review of certain phases of this work, see H. D.
Block, “The perception: A model for brain functioning,” to appear
in Rev. Mod. Phys.

2 J. L. Lawson and G. E. Uhlenbeck, “Threshold Signals,” Rad.
Lab. Ser., McGraw-Hill Book Co., New York, N. Y., vol. 24; 1950.

We assume (as is often the case in practice) that fo(x) =
f.(z) has a unique root 6 and that (1) is equivalent to

x> 0. 2

Tor example, in case of unrectified signals

1 s 1
—= """ fi@) =

oV 2r oV 2r

we have

fo(x) — e —(r-u)’/Zu: (3)

é M

4 @

3) In experiments performed during the war at the
Radiation Laboratory® the observers were presented with
m(30) observations at each time and the optimal detecta-
bility criterion in this case is easily seen to be

f()(xl) co fO(xn) < fl(-%) ce fl(xn>' (5)

In the case (3) this criterion is equivalent to

Ty + To +m' - + Lm Z g. (6)
In a more realistic case
T _z2/242 X —pu?/20% —x2/20% x
fo@) = e, fia) = ze e Io<—§> (7)
g g g

the detectability criterion is no longer of the simple
threshold type (6). However for large m, it is easily seen,
a threshold type criterion gives essentially the same
(minimal) probability of error. It has been found that
human observers, after a period of training performed
almost as well as the ‘““ideal observer” and that they were
unable to explain clearly the psychological basis for their
decisions, which led to a nearly perfect statistical per-
formance.

I shall now show that, under certain conditions, a
self-adaptive device can be conceived which too will ap-
proach the performance of the “ideal observer’.

4) I shall restrict myself to the case m = 1. The
device operates as follows. It starts with an arbitrarily
chosen threshold 6, and if the first deflection z, is greater
than 6, it claims that signal is present. If z, < 6, the
device claims that signal is absent. If the answer is correct
the threshold is kept for the next observation. If the
answer is wrong, the threshold is increased or decreased
according to the type of error committed.

The rule for changing the threshold (which falls under
the general classification of erro-correcting procedures)
can be written as follows:

9n+1 = on + A(¢(xn+1 - on) (8)

- en+l))

Reprinted from /RE Trans. Inform. Theory, vol. IT-8, pp. 126~128, Feb. 1962.
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where
1|if >0
$(z) = {1 * 9)
) if rxr<O0
and
€, = {1 if signal is present 10
0 if signal is absent.

To simplify the analysis we assume that A is small and
that the length of the training sequence n is such that

(11)

In the limit A — ) we have then a continuous (in time)
adjustment proces:.

5) Let U,, V., e be independent random variables
such that U, has probability density f,(z), V, has proba-
bility density f,(z) and e, assumes values 0 and 1 with
equal probabilities (i.e., 50 per cent). Let

nA = .

X, =6U,+ (1 —¢€)V, (12)

and
0n+l = 6'; + A(¢(Xn+1 - 0”) - 6n+1)' (13)

Let us now calculae E{G(0,.,)}, where the function G(6)
will be chosen a lit:le later.
We have

G, + AB(Xoi1 = 60,) — €s)]

~ G(6,) + G'(6,) A@(X,1 — 6.) (14)

- 5n+1)

and consequently

E{G(6,.)} ~ E{G6,)}

+ AE{G '(on)[% [e fo(@) dz — % f: f,(@) d:c:|}.

Let us now chocse G(6) in such a way that
NG(6) = —3G'(6)
U: fola) dz — f_: () dx], A>0  (15)
It is easily seen that log G(6) appears as shown in Fig. 1,

and consequently G(8) appears as in Fig. 2, Here § is
the (unique) root of

[ @ dr = [ : f@) da. (16)
With this choice of G we have
E{G(0..)} ~ (1 — NAE{G(6,)}
or
E{G(8,)} ~ G(6,)(1 — N A)". a7)

LoG G (6)

Fig. 1—Log G(O) as a function of ©.

c(6)

o1

| 8

Fig. 2—G(0) as a function of ©.

In other words, as A — 0 and n A = ¢, we have

lim E{G(8,)} = ¢ MG(8,). (18)
If 6, < & we see that for 6 < §
2 -oln
oy = =2 [ Jwp (19)

where

hd £
gt) = fE @) dz = [ 1) da.

It now follows easily from (18) and (19) (by an adaptation
of Tchebysheft’s inequality) that
6, — 6, (20)

in probability,® where 6, is the unique root (to the left
of 6) of the equation

f¢ dg
t=2 —. 21
" 9® @V
It is furthermore seen that as t — «
6, — 0. (22)

It should be noted that, in general, the threshold § wull
not be the same as §. The most important case in which
both coincide, is the case of normal distributions with
different means but the same variance. The case of large
m reported by Lawson and Uhlenbeck® is essentially equi-
valent to the case m = 1 and normal distributions with
different means. Thus a suitably modified device will in
the experimental situations®, perform ultimately as the
‘“ideal observer.” It would be of interest to find out
whether a human observer faced with a situation in which
6 >« @ will perform according to 6 or 6.

3 It is most likely that 6, converges with probability one but in
problems of this sort it does not seem to be of crucial importance.
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APPENDIX

In this Appendix I should like to add a few remarks
concerning the analysis of Section 5). If 6, is an integral
multiple of A we are dealing with a random walk which
is a Markoff chain with infinitely many states.

The rule (13) for changing the threshold gives easily
the transition probabilities. In fact, we have (the notation
being self-explanatory)

Pma|(m+1)8=1 [ Z f@dr (23

(24)

Poma -1 ) =% [ f@a

Pma|ma) =1 —%{[2 fo(@) da + fr L@) dx}. 25)

Let W,(l1A) be the probability that 6, = [A. We have

Woa(lA) = W, (1 -1 AP((L—-1)A]14)
+ W (lAPI ALY
W+ 1) AP+ 1)Aa]|la) (26)
and the initial condition
Wl A) = 51 — 1), 27)

where 6, = l,A and §(m) = 1 for m = 0 and 0 otherwise.
The difference equation (26) and the initial condition
(27) go over in the limit

A—0 nA=t¢

into

W L2 we [ 160 a]

+ == [W(x) f H® df] (267)
and
W(z, 0) = é(x — 6o),

where 6 is now the Dirac §-function.

We could now appeal to the general theory of partial
differential equations of first order and obtain the result
of Section 5).

The easiest way to see this is to multiply both sides
of (26’) by G(x) and integrate on z. One obtains then, by
integration by parts,

27)

L fi G Wiz, f) dz = %f_: 6@

[ [ T - [ e ds]mx, hdz,  (28)

February

and if G is chosen so as to satisfy (15) one gets
d%f_m C@Wa, b dz = —\ [ G@W, 1) dz
or
f G@W(z, &) dz = ¢™'G(6).

This, of course, is equivalent to (18) and one gets (for
6, < 6,z < §)

Wi, 1) = 6( 2f g@) 9(@)’

which can formally be verified to be the solution of (26")
satisfying (27%).

We can now apply the analog of this method to the
original system of (26). We introduce an auxiliary function
G(1A) and get

(29)

2 GUAW,L08 = 3 GO,

=—o

Ls wa A){[G<<z+1) A) — G 8] f folz) da

I=—w

1A
~ 1608 -6 -] [ e dx}.
If @ is chosen in such a way that

@@+ 8 - 6a8) [ ) dz

~ @y -6t-D ) [ h@d

= —2\ AG( B), (30)

we get

2 GU AW(LA) = (1 — 2\ A)'G(l A).

l=—o

G2Y)

Formula (31) should be sufficient to discuss the dis-
tribution of 6, as n — . Unfortunately, the analysis
becomes rather involved due mainly to the fact G(IA)
changes sign in the neighborhood of § (only in the limit
A — 0 is G(IA) non-negative). We hope to return to a
detailed investigation of the discrete case some time in
the future.
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Interactive Pattern Analysis and Classification

Systems: A Survey and Commentary

LAVEEN N. KANAL, FELLOW, IEEE

Abstract—Startinz with the era of learning machines, reasons
are presented for the current emergence of graphics-oriented inter-
active pattern analysis and classification systems (IPACS) as a
general approach to practical pattern-recognition problems. A
number of representative systems and their application to a wide
variety of patterns aire surveyed. Various aspects of alternative
hardware and softwire implementations are commented upon and
computational algorithms and mappings relevant to interactive
analysis and classification of patterns are discussed.

I. INTRODUCTION

N THE Talk ¢f the Town section of the New Yorker for
I[ December 6, 1958, “our man about town” reported on a
conversation with Frank Rosenblatt, the inventor of
Perceptrons [151] The report was titled “Rival,” and it
reflected the anthropomorphism that was then fashionable in
pattern recognition and computers.

Rosenblatt’s brilliant conjectures and the colorful names
for his “self-organizing” machines attracted wide attention.
He had high hopes for his “artificial intelligences.” They were
to be replacements for human perceivers, recognizers, and
problem solvers. C'ver the next few years there followed a
flock of other “adaptive” and “learning” machines such as
ADALINE and MADALINE [201], APE (see [91]), MINOS
[17], CONFLEX [187], and SOCRATES [188].

Manuscript received February 12, 1972; revised July 14, 1972. This
work was supported in part by the Directorate of Mathematical and In-
formation Sciences, A r Force Office of Scientific Research, Air Force
Systems Command, U5AF, under Grant AFOSR 71-1982 to the Uni-
versity of Maryland.

The author is with the Computer Science Center, University of
Maryland, College Patk, Md. 20742.

As was to become evident, the true contribution of the
brilliant conjectures, catchy names and audacious claims for
these machines, was not in providing a general approach to
pattern recognition. Rather it was in creating an air of excite-
ment about automatic pattern-recognition and learning
machines.

Today there is greater appreciation of the complexities of
what is called pattern recognition. But the excitement con-
tinues, as does the urge to look for relatively general theoreti-
cal and experimental approaches and models which are ap-
plicable to a wide class of problems. Aspects of the structural-
geometric or linguistic-statistical models for pattern recogni-
tion that have recently aroused interest are presented else-
where [94]. Here we survey graphics-oriented interactive pat-
tern analysis and classification systems, for which we use the
abbreviation IPACS. IPACS represent responses to demands
for generality in the experimental domain.

Computer-driven interactive graphic displays together
with input devices such as the light pen, the Rand tablet,
the Sylvania tablet, the mouse, and joy sticks, have improved
man—computer communication in recent years. In addition to
displaying relationships in two or three dimensions (using
perspective) for human inspection, the graphics terminal
provides a high data-rate communication link to the com-
puter, enabling dynamic control and manipulation of pro-
grams by means of line drawings, as well as character codes or
function buttons.

Section II discusses the impact of interactive display
technology on approaches to pattern-recognition problems.
Section III lists some existing IPACS and gives an idea of the

Reprinted from Proc. /EEE, vol. 60, pp. 1200-1215, Oct. 1972.
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diversity of applications on which these systems have been
tried. The development of an interactive pattern analysis and
classification system involves both systems aspects and com-
putational algorithms for pattern analysis and pattern classi-
fication. Section IV outlines the overall system features
that should be considered when designing IPACS, describes
how various specific features have been implemented in
existing systems and comments on the desirability and
effectiveness of some alternate implementations. Section V
describes and comments on the algorithms and mappings
being experimented with in some existing systems.

This is a survey of the state of the art of a field in the
process of development. Developments in IPACS cited here
are those we feel the reader should be aware of, whether or
not their descriptions have been published in easily available
journals.

II. Reasoxs ForR IPACS

‘For engineers trying to develop practical systems for
alphanumeric character recognition, postal address reading,
speech recognition, and imagery screening in photointerpre-
tation [26], [72], [97], “self-learning” approaches were at
first highly seductive [151], [57], [84], [18]. Looking at
classified learning samples, the machines would produce an
output which a teacher would tell them was correct or incor-
rect. And through simple routines they would organize them-
selves so as to improve their performance. What could be
simpler?

Unfortunately, performance on independent test data fell
far short of expectation, and after a short detour most optical
character recognition (OCR) designers reverted ‘to explicit
feature-selection and classification-logic design based on
“structural” analysis- through intuition and interaction with
the misclassifications produced on character reader “test beds”
and prototype hardware. Finding the simple Perceptron
structures and learning routines wanting, they often pro-
ceeded to ignore all subsequent developments in the under-
standing of statistical classification and feature optimization.
The result was that many of the present commercial OCR
systems grew like Topsy, and even when adequate perfor-
mance was achieved the design was often not cost-effective.

When deterministic structural descriptions are the -basis
of the decision logic, a large amount of information has been
transmitted to the recognizer. To statistically “learn” the
same type and amount of information would take an inor-
dinately large number of samples. But the within-group vari-
ability of patterns in most nontrivial real problems is such
that, following a purely structural approach without severe
constraints on the input, the performance of practical pattern-
recognition systems is unacceptable or marginal. Statistical
methods begin where deterministic structural methods leave
off—there is a residual core of uncertainty which can be ex-
pressed only in terms of probabilistic structures. In most real-
life pattern-recognition problems we are faced with the neces-
sity of inferring both deterministic and probabilistic struc-
tures governing the patterns and pattern classes in order to
achieve good classification performance.

Under the title “Discriminant Analysis,” the statistical
analysis of data structure had, since the early part of the
century, been the subject of a large number of papers; most of
these results were summarized by Rao [143]. Rao also related
classificatios: into groups to statistical decision theory [191].
He treated classification as a partitioning of a probabilistic
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feature space into mutually exclusive regions, considered the
case of more than two groups, and introduced the concept of a
reject region. A 1954 paper [178] on speech recognition, which
refers to Rao’s book, is perhaps the first pattern-recognition
application of this material in the IEEE (IRE) literature.
Since 1954, a large number of papers has been published on
the subject in the engineering literature, under the title “Pat-
tern Recognition” [120], [82], [113].

All this literature has had but limited impact on the de-
sign of optical character readers and other practical pattern-
recognition systems. A majority of the papers in the engineer-
ing literature on pattern recognition have been solely con-
cerned with the decision theoretic aspects. For many design-
ers of practical systems these papers have been difficult to
appreciate, unlike the Perceptron-type learning algorithms
which were easy to follow and intuitively appealing even
when their underlying mathematics was not understood. In
addition, much of the published research represents theo-
retical studies of specific models under specific assumptions
or laboratory-oriented investigations of specific techniques on
small nonstandard data sets. Little attention has been given
to the constraints on dimensionality and sample size which
must be observed in order to have valid estimates of per-
formance [92]. Thus a large percentage of the results suffer
from “the love-at-first-sight effect in research” [138].

In problem-oriented pattern-recognition investigations,
the starting point is usually some samples of patterns. The
question then asked is whether or not the recognition of pat-
terns such as these can be automated, and if it can how com-
plex a machine will be needed [95].

To go from these initial vague questions to an actual pat-
tern-recognition system involves a series of refinements and
formalizations concerning the deterministic, probabilistic,
or mixed structure that we can infer about the patterns; what
level of performance we should strive for; what competing
design approaches we think are worth considering; and what
manner of implementation is relevant.

The first step in this process is pattern analysis. In order
to understand the variability in relatively unconstrained data
and to come up with solutions, we need to study the detailed
peculiarities of a very large data base. We are no longer con-
tent to do what was often done a decade ago, i.e., jump to a
hardware implementatian of a particular learning machine,
an optical spatial filtering system, etc. It is true that one can
go a long way, using a problem-oriented approach and a theo-
retical analysis of requirements, toward rejecting candidate
solutions, as was shown [73] for the problem of detecting and
locating objects of military interest in aerial reconnaissance
photography. That analysis showed what invention was
needed before optical spatial filtering techniques would be
practical for automatic target detection. It made apparent the
electronic methodology and classification design approach
that would serve the problem needs. Nevertheless, that type
of analysis is limited to certain overall aspects of a problem.

The desirability of an automated interactive approach to
pattern analysis and classification logic design can be sum-
marized as follows.

1) Itis now recognized that the key to pattern-recognition
problems does not lie wholly in learning machines. statistical
approaches, spatial filtering, heuristic programming, formal
linguistic approaches, or in any other particular solution
which has been vigorously advocated by one or another group
during the last one and a half decades as the solution to the
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pattern-recognitior: problem. No single model exists for all pat-
tern-recognition problems and no single technique is appli-
cable to all proble ms. Rather what we have in pattern recogni-
tion is a bag of tools and a bag of problems.

2) Feature definition and extraction, and pattern classi-
fication, are best examined via trial and evaluation. The
boundaries between feature selection and classification are not
sharp. We need fredback between feature selection, logic de-
sign, classification, and testing. And we need many iterations
of the feedback process. This is naturally an interactive opera-
tion. We cannot preprogram a batch mode operation to go
through all the pessibilities—it would be too time consuming
and costly. So we turn to an on-line and interactive mode of
operation.

3) Most data analysis techniques try to answer questions
about the structure of the data in a high-dimensional space.
Interactive pattern analysis is a way of allowing examination
of structure. (Humans are superior in recognizing structure of
certain types, especially clusters, where automatic clustering
routines are ofter thrown off by outliers between clusters.)
However, to mak: this examination of structure feasible we
must arrange for siitable graphics for displaying relationships
among data elements.

4) In many pattern-recognition problems, the human is
the standard; we :hould put him in charge of the design and
evaluation process but help him with automation in an inter-
active mode. For good interaction, the lag between the initia-
tion of some contiol function and the completion of the re-
quested action should be short enough that it will not inter-
rupt his train of thought.

We would like to have a quick flexible way of analyzing
sample patterns, trying out various tools from a versatile tool
kit to determine which algorithm or approach should be se-
lected for a given :pplication. This exploratory pattern anal-
ysis and evaluation of competing tools is greatly enhanced
by automation of known procedures [185] so that they can be
applied in a routin: fashion. Itis further enhanced by an inter-
active environmen'. Standardizing the testing of our hypoth-
eses concerning data requires that we incorporate a variety
of statistical and nonstatistical procedures; we must under-
stand their theoretical properties, and gain experience regard-
ing their practical limitations and capabilities.

ITI. SoME REPRESENTATIVE IPAC “SysTEMS”

Although we cull them “systems” only a few IPACS de-
serve this apellaticn. For the most part they appear to have
been developed piecemeal from software tailored to fairly
specific applications without provision for the capabilities
which should be i-.corporated (see Section IV). It should be
emphasized that tl'e capability of primary interest is the feed-
back provided fror1 machine to man or vice versa during the
process of designin:y procedures for feature extraction, pattern
analysis, and patiern classification. Thus applications pro-
grams such as des :ribed in [66] and [67] for recognition of
characters handprinted on-line are not discussed.

The IPACS considered here are properly viewed as a sub-
set of a larger group which includes interactive systems for
mathematics [98], [171], computer-aided design [37], [106],
[153], question arswering [118], [169]. and computer ani-
mation [99], {5], [6], [186]. While each of the above areas
has individual requirements, past developments in these fields

have strongly influenced the development of existing IPACS,
and will continue to exert such an influence.

For the IPACS discussed in this section, a dominating
descriptor is the type of input accepted: vectors, images, or
waveforms. Interactive image and waveform preprocessors
usually produce the data required for the pattern analysis and
classification systems which accept vector input. In addition,
we have included a discussion of a few interactive systems
which are being developed for special applications.

STATPAC [64] is credited with being the forerunner of
the group of systems aimed at multivariate statistical an-
alysis and classification of vector data; using clustering, dis-
criminant analysis, and related statistical routines in an in-
teractive-graphics environment. This group is now repre-
sented by PROMENADE and OLPARS.

PROMENADE, Stanford Research Institute’s (SRI)
system for multivariate data analysis, has one clustering op-
tion and one clustering based classification routine [69].
With its interactive graphics capability, the limited options
have provided insight in the following diverse problem areas:
1) analysis of spectrometer data to perform automatic recog--
nition of chemical compounds; 2) classification of corpora-
tions, to predict which companies are likely to become clients
for SRI's long-range planning services; 3) utility of cluster
analysis relative to regression analysis for producing housing-
construction price indexes for apartment projects; and 4)
analysis of cloud patterns in weather satellite photographs to
obtain brief descriptors of meaningful information in the
photographs and to identify and track cloud masses in suc-
cessive pictures in order to determine wind motions.

OLPARS [155], [157], [29] [159] located at the U. S.
Air Force’s Rome Air Development Center, is perhaps the
foremost system currently in operation. Developed as a sequel
to PROMENADE, OLPARS is used for interactive analysis
of cluster- and string-type structures in high-dimensional
vector data and the design of classification logics using tech-
niques derived from discriminant analysis. OLPARS has made
it feasible to experiment with data from a variety of applica-
tion areas [155]-[157] including radar signature identifica-
tion, cartographic classification of aerial photographs, an-
alysis of data on personal loans, classification of candidates
applying for admission to an Air Force Program, construc-
tion of a Document Classification Space for document retrie-
val, speech recognition for isolated spoken words, hand-
printed character recognition, and analysis of dermatoglyphic
(palm-print) patterns to determine whether there is suffi-
cient information in the palm to discriminate among a variety
of diseases [175], [174].

The IBM Interactive System for complex data analysis
provides some of the features found in OLPARS; it has been
used in the study of biomedical data from critically ill pa-
tients [60]-[62], [168], and in the further analysis [63], of
certain previously studied data on bees [49]. Some of the
UCLA biomedical statistical packages are now also said to be
available for interactive-graphics mode of operation [38]-
[40].

Some IPACS for vector data are being augmented by in-
teractively controlled feature definition and extraction “front
ends” to produce vector data. Examples of image-processing-
feature-extraction subsystems are the IBM image-processing
subsystem for interactive scanning and display [79], and the
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image feature extraction system (IFES) for OLPARS [128]
The IBM system has been used in the development of an in-
teractive man—machine system for reading unformatted type-
set text, with all necessary operations being performed on-line
at a single sitting [4]. A number of other applications in
image processing of Jine drawings, maps, chromosomes are
mentioned in [79].

IFES is described as an extensive software system for on-
line search, feature definition, extraction, and processing of
images. Coupling an optical scanning device to OLPARS, it
is designed to allow one to interactively perform various
global and local picture-processing operations of the type de-
scribed in [152].

SARF, a signature analysis research facility [172], [123],
was designed to display time function and feature space plots
to a user and enable him to do interactive feature selection,
analysis, and classification. A diffraction pattern sampling
system which can be interactively controlled through SARF
for image feature extraction from aerial photographs was de-
scribed recently in the Proceedings of the IEEE [108]. Sampling
the diffraction pattern resultsin a sampling signature, which is
different for each sampling geometry.

Various applications of SARF are described in [108],
[173], and [125], [126]. Because of its emphasis on display,
manipulation, and processing of time functions, it is grouped
here with other systems and subsystems which have their
primary emphasis on interactive waveform analysis.

INTERSPACE [131], [132] like SARF, is designed to
accept image data from certain optical scanning devices, but
the reports [134] have emphasized its waveform processing
capabilities. It incorporates various classical expansions and
related user defined operations-for waveforms. Past applica-
tions include underwater signal processing; the system is
presently being directed toward biomedical-image and signal-
data processing.

The Experimental Dynamic Processor, DX-1 [192], [195]
was started around the late 1950’s to study on-line interactive
sensor data processing. This was one of the pioneering efforts
in the study of interactive statistical signal analysis using a
graphics display and the use of color displays in this context
[194], [196]. In addition to radar and biological signal pro-
cessing and on-line filter design [193], [149], the major use
of this system has been in studies of various statistical band-
width compression schemes.

The Waveform Processing Subsystem (WPS) for OLPARS
[161] currently under development, is the waveform counter-
part of IFES. It is to be an extensive software system for ex-
traction of signal features and manipulation and transforma-
tion of waveforms using interactive graphics. The WPS is de-
signed to allow globai expansious o1 wavetorms 1n terms ot
classical basis functions such as Fourier, Legendre, Laguerre,
Hermite, Walsh; user specification and design of digital filters;
algebraic and calculus operations on waveforms, such as seg-
mentation differentiation, integration, scaling, zero crossings.
A subsystem of WPS allows on-line definition on linguistic
features whereby a signal is decomposed into a string of sym-
bols or numbers, and features are defined over this domain
[136].

There are a number of man—machine interaction systems
for pattern analysis which have a somewhat different flavor.
Systems designed specifically for interactive speech analysis,
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Fig. 1. Merlin display of daily high-close-low-close chart of Xerox stock,
with daily volume, buy-sell volume, and a 30-day moving average of
closing prices. Options are on right side of display.

synthesis, and recognition are being developed at the Univer-
sity of California at Santa Barbara [33], [76], [77], Carnegie-
Mellon University (CMU) [147], and the University of Wash-
ington [176]. An informative discussion of the earlier work at
Stanford [146], [148], [190] on which the CMU system is
based, is included in a recent survey of man—machine interac-
tion using speech [81].

The Bell Laboratories study of a real-time man—machine
interactive system for human face identification [59] is con-
cerned with optimizing search and decision strategies: a hu-
man describes a face to a computer using features provided by
the computer, his own set of features, or some combination
thereof; the machine searches a file population to find a stored
member which best fits the target. The IBM system for auto-
mating the conversion of unformatted typeset text to com-
puter code [4] is concerned with optimum strategies for hu-
man intervention in a production-oriented system.

The Merlin System [115], [116] demonstrates the power
of an interactive system to facilitate analysis of a large data
base. A staggering volume of past and current (15-min de-
layed) data on all stocks listed in the New York and American
Stock Exchanges and on an extensive group of commodities is
available on-line to the system user in the graphic form ap-
propriate for trying out the various methods of analysis. The
system grew out of Project Merlin which Stanford Research
Institute (SRI) undertook in the early 1960's under contract
from Merrill Lynch, Pierce, Fenner and Smith, for on-line
manipulation and display of graphical data. Fig. 1 shows a
phaoto from the storage tube display. The standard methods of
“technical analysis” [43], shown on the right side of the dis-
play, are available as options. Additional time series methods
such as those described in a recently developed interactive
time series analysis package [170], and additional methods of
data analysis could be incorporated into the menu of available
options.

At this stage in the development of IPACS, one of the
dangers is that working with inadequate embryonic systems
may turn users away from an interactive approach to some
problems. The interactive systems discussed in this section
use diverse hardware and software to achieve some degree of
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man—machine symbiosis. Systems under development should
provide a higher cegree of interactive capability. However, no
single system surveyed incorporates all the features desired
for effective interactive preprocessing and pattern analysis
and classification. In the following section, we review the basic
conceptual bases Jor the implementations and bring out some
of the differences of opinion regarding system configurations
and options..

IV. DEsiGN CONSIDERATIONS AND THEIR REALIZATION

The general capabilities that a user would like to have
available [70], [172], [155] in an IPACS are not unlike those
desired for interactive systems for mathematics [48] or for
computer-aided graphics design [87], [140]. The desired
capabilities are as follows.

Communication and control of the system through simple
procedures, such as: selection of options displayed at each
stage of the desig- process in the form of a menu on the side
of the graphic display; selection using a function keyboard;
and selection of cptions through a simple language using an
alphanumeric keyhoard.

Quick respon:e in an on-Jine mode, allowing rapid formu-
lation, insertion, and testing of alternate hypotheses.

Easy on-line generation and modification of algorithms
and programs; selection, labeling, merging, and splitting of
data sets; performing all types of set operations on data sets
and subsets; retri:val of selected data for visual inspection
and trial design of algorithms.

Ability to go lorward and back to any option available in
the system; to teraporarily store and compare results of ap-
plying various op-ional procedures on a data set; to obtain
intermediate and end results while sequencing through options.

Additional requirements for IPACS relate to providing an
ability to define ard examine “structure” in large sets of high-
dimensional multivariate data and to try out statistical and
nonstatistical algo:ithms on mass data, or on user defined sub-
sets of the data.

The large amounts of data which have to be stored in a
structured manne: and the many programs for implementing
user options cannct all be stored in the main core memory of
the computer. Tt s together with the interactive interrupts
and the limitation:. on how much data can be displayed at any
time on the CRT lead to the requirement of allocating pro-
grams and data cynamically to main and auxiliary storage.
This situation aris2s in most interactive graphics applications
[189], [203]. The approaches followed by developers of
IPACS cover the standard range of solutions for multipro-
gramming and time-sharing systems [36]. These include static
storage allocation by dividing a program into units which
“overlay,” i.e., rejlace one another in main storage; automat-
ing dynamic storage allocation [14] to provide a “virtual
memory” which r.akes the auxiliary storage look like an ex-
tension of the main memory; and programmer-controlled
dynamic storage a location using software and hardware, such
as Algol on the stick-oriented Burroughs B5500 [116] to de-
fine routines for allocation and deallocation of memory blocks.

The editing, filing, data transformation, display, and other
options provided in an IPACS are a function of the type of
data to be handled and the relationships and logical associa-
tions between data items. To select data on which to execute
user options, and have the data resulting from one routine be
in a form suitable ‘or the next option, the data must be repre-
sented in an orgarized manner which models structural rela-

63

RSTATA NoEE Paxx
Mt
TRESEAREL RN one 1e
s GHTYGUN NODE NAMESH®
CONN
NB22
PYYY
N1l
seIT
SEN®
NECC BDOW
SLEF
NEBB
AVVY
NEAA
AKKK
OF THE

BhoE6Teh WOBE BELLFQR BRLERLQMrrvy svanodEs

Fig. 2. An OLPARS tree data-structure display.

tionships between data items. Such representations which
provide a coupling between problem data and computer anal-
ysis are usually referred to as “data structures.” Stacks, linked
lists, arrays, trees, and rings [100] are examples of structures
used for the representation and manipulation of relationships
among data items.

The OLPARS vector filing system represents data structure
in the form of a tree or a set of trees. Each node of a tree cor-
responds to a list of vectors, the list being the union of the lists
associated with the nodes of the subtrees of this node. Point-
ing at a particular node of a data tree displayed on the CRT
causes that set of vectors to be selected as the current data set
for input to an option at level 1 and subsequent levels of the
control tree. The result of applying various transformations
and logical operations to user selected nodes of an existing
data tree is a new data tree. Fig. 2 shows an OLPARS data
tree display.

SARF, which is primarily concerned with waveform in-
puts, builds a hierarchical ring structure, shown in Fig. 3, to
represent the data. This has been the most popular data struc-
ture for computer graphics [203], as it permits extensive cross
referencing of data with ease.

The command structure of an IPACS may also take the
form of a tree [14], [70], [157]. The commands available to
the user are often presented in the form of lighted words or
symbols along the boarders of the display. These light buttons
get brighter, when pointed at by a cursor or a light pen, or
referenced by the keyboard. The command is then imple-
mented and the next list of options shows up on the display. A
user can follow a branch from a node at a given level down to a
terminal node, and return to any higher level node on the
same path,

SARF and WPS are examples of systems providing user
extendibility by adding to preprogrammed subroutines which
can be selected by depressing function keys, pointing a light
pen, or entering a parameter. In SARF the operators used
during the OPERATE function in the EXAMINE data option, and
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that are to be used in the analysis are linked together
in a ring within the data structure.
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Fig. 3. Ring data structure of SARF.

in the definition phase of FEATURE space plot are user supplied
routines. In WPS the capability of on-line compilation of
algorithms programmed in an interactive session is expected
to be implemented using a simple linguistic-feature oriented
language called oLwpPL (on-line waveform processing lan-
guage). Each preprogrammed option for segmentation, feature
extraction, or transformation has a corresponding predicate in
the language. Such extendability approaches the desired goal
of allowing any algorithm constructed on-line to be saved in
an applications program library.

The need for high-precision graphic display and for dy-
namic rotation of three-dimensional plots of data has been
stressed in some IPACS [70] but disputed by others [197].
The Plot 3-D option included in PROMENADE and OLPARS
provides a two-dimensional projection of a three-dimensional
space. The center of the CRT represents the center of mass of
the three-dimensional data, and a viewer can zoom a window
along a radial path toward this center. Combining radial and
rotational movement, a viewer gets the illusion of flying about
in the three-dimensional data space.

While three-dimentional rotation and tumbling may pro-
vide some insight in simulation and modeling studies of well-
defined entitities such as space vehicles and chemical struc-
tures and is a most impressive demonstration, experience thus
far indicates that in IPAC, spinning around, or even just
shifting around in three-dimentional data space is confusing
and provides no useful insights. While the display should be
flicker-free and comfortable to look at, most applications do
not require highly precise measurements from the displayed
quantities. However, the observation of clustering and related
phenomena could be helped by using gray scale and color
[70], [197].

Most IPACS use various attention focusing and display
manipulation procedures [88] which are becoming standard in
computer graphics. These include such options as change of
scale, zoom, blink data set, eliminate a data set, eliminate a
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data point, draw a piecewise-linear boundary, rotate or other-

wise transform data, label items on the display. These options
are implemented through a graphics executive program which
drives the display, processes the interrupts, contains basic
graphics routines to generate points, lines, arcs, circles, and
alphanumerics, and accesses various items from a library of
graphics display routines.

Although the user is primarily interested in the computa-
tional algorithms for feature selection, pattern analysis, and
pattern classification that are available on a system, the sys-
tem architecture is what ultimately determines the nature and
extent of interactive capability. Most developers of existing
IPACS, having come from a pattern-recognition background,
have tended to accept various computer-system implementa-
tions found useful in other contexts. Usually, the starting
point for their systems has been some existing computer hard-
ware rather than a suitably chosen configuration.

Existing and proposed processor configurations for IPACS
cover the range from large time-sharing systems and satellite
systems, in which a minicomputer or “intelligent” terminal
serves as a remote satellite to a central time-shared computer,
all the way to dedicated multiprocessors such as used in.the
experimental dynamic processor, DX-1. In the context of
general interactive graphics, various configurations have been
discussed in [28], [87], [31].

The emergence of computer networks such as the ARPANET
of the Advanced Research Projects Agency and the Education
Network of the National Science Foundation raises interesting
possibilities for processor configurations. IPACS on such net-
works would permit many users to share data and programs.
However, arguments have been advanced [197] against im-
plementing IPACS in a general-purpose time-sharing environ-
ment. These arguments are based on the difficulty of writing
efficient general-purpose utility systems which can serve a
number of independent users with diverse applications.

Since some minicomputers provide as much computing
capability as a large second-generation computer at a reason-
able cost, they deserve serious consideration for IPACS. A
dedicated minicomputer or one shared by a small number of
compatible users, driving a not very high precision display
(perhaps just a storage CRT. and a Rand tablet) appears
worth investigating.

The extensive computations required in exploring solu-
tions to some practical pattern analysis problems have dis-
couraged the use of interactive processing. While analog
techniques for preprocessing have been incorporated in some
systems (e.g., [68]) no serious attempts are reported in the
literature on the possibility of using analog and hybrid tech-
niques to avoid some of the time-consuming digital computa-
tions.

V. COMPUTATIONAL ALGORITHMS

The usefulness of an ITPACS in exploring solutions to a
variety of problems depends on the extent and versatility of
the algorithms available on the system. Various ad hoc and
theoretically derived algorithms for clustering, mapping,
classification feature evaluation, etc., are being tried out in
difierent IPACS. Fig. 4 illustrates the organization and com-
putational capabilities of OLPARS. In this section we con-
sider some details of the algorithms available on representa-
tive systems. Some applications are also described briefly.

Clustering algorithms attempt to detect and locate the
presence of groups of vectors, in a high-dimensional multi-



KANAL: PATTERN ANALYSIS AND CLASSIFICATION

Analyst

Graphics
Console

Display
Executive

Data 1/0 Con|
trol Module

key program calls

+ ata Storage
| anagement
l
______ — Yy _ PR
~ I iz S _t
1 r 1 1
| I f I | |
¥ ) ¥ 3 1
Structure Transfor- Measurement pystem Utili g;z:riguﬁo“
Anzlysis mations Evaluation Ey Functions Desigrgx
¥ x T
! | | R
e e Y. . _ _|System Tablq_. . _ . . . __ ¥ 3
Maintenance Logic Logic
Design Test
4 Nﬁn—Linear
apping
(2-sgace only)
iscriminant l ‘l
Plane Dption B
Mapping to Mapping to Option C Egmg_lete )Etion A
. ata Set thin- earest
1, 2, ard 3- iseriminant 2 and 3- Grouping Group Mean
Subspace iscrim Vector
dimensi:nal Coordinate dimensional
Subspace
space:
Least Squares spaces
Eigenvectors
s Arbitrary
Subspaces

Fig. 4. Organization of OLPARS.

variate space, which share some property of similarity. A large
number of simil:rity measures and other clustering criteria
based on general ~elations among samples have been proposed.
Some of these me asures and the resulting clustering algorithms
are surveyed in |9], [120], [51], and [41].

In these algotithms, based on some clustering criterion, a
classification rule is iteratively applied. Rules for creating and
destroying classes as the iteration progresses are sometimes in-
corporated. The ISODATA program [11] for clustering uses
the mean distancz of each sample from the closest cluster cen-
ter, and employs merging or splitting rules on each iteration.
This program :s available in both PROMENADE and
OLPARS. An imoroved version of ISODATA which attempts
to incorporate useful features of a number of the cluster-
seeking techniques is described in [10].

Clustering criteria based on scatter matrices [202] and
invariance under linear transformations of the coordinate sys-
tem have been :xamined in [49] and are used in the IBM
interactive system [63].

OLPARS als> provides a similarity matrix method for
data grouping [137] which is related to a number of contribu-
tions [15], [75], [120]. The similarity matrix is an approach
to representing first-order associations between pairs of data
vectors. The ¢jt:. element of this matrix is some numerical
measure of the “similarity” between the 7th and jth vectors.
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In OLPARS a generalized similarity matrix is defined as a
polynomial in terms of powers of the original matrix. The
elements .of the generalized matrix are replaced by 1 or 0
depending on whether or not they exceed a threshold chosen
by the user. The resulting matrix of 0’s and 1’s becomes the
starting point for a procedure to define cluster centers and
clustering configurations.

Designers of the INTERSPACE system [131] propose
that clustering be performed by a search over partitions of the
observation space, in order to maximize the expected value of
the natural logarithm of the estimated mixture density. The
complexity of this theoretically interesting approach may not
be justifiable; reports on its experimental performance com-
pared to other methods mentioned above would be of interest.

In an IPACS, clustering routines can be used for data com-
pression, feature reduction, mode identification, and identi-
fication of outliers. Often the large amount of data gathered
can only be handled by representing all vectors in a cluster by
an appropriately weighted vector. On occasion, feature reduc-
tion may be achieved by using these weighted cluster vectors
to define a new lower dimensional subspace. Mode identifica-
tion for density estimation and construction of classification
boundaries, and identification of outliers for further examina-
tion or rejection are typical uses. OLPARS uses ISODATA to
do data compression prior to certain mapping algorithms be-
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cause these algorithms cannot handle more than 250 vectors.
Clustering has also been used to avoid the problems involved
in preparing an adequate training set [4].

Programs such as ISODATA require the setting of a nums
ber of control parameters in an ad hoc manner; the merging
and splitting rules are heuristic. The evaluation of the result-
ing cluster configuration also presents a major problem. Both
problems are ameliorated in an on-line interactive graphics
environment. The display of a graph which shows the user the
progress of an iterative clustering procedure is an advantage
of the on-line interactive approach. For example, OLPARS
allows the user to construct and display scoring and evalua-
tions. The plot of an appropriately defined error function
against the number of clusters gives visual identification of the
clustering algorithms: the error graph helps bring out the
cluster structure of the data. Through trial and error several
cluster configurations may be generated untii the user is
satisfied.

The main advantages of interactive graphics for analysis
of clusters in data comes about because of the superiority of
humans over mechanistic approaches in recognizing cluster
structures and simple linear or curvilinear relationships in
one-, two-, and three-space—it is easy to have automatic
clustering routines thrown off by isolated “wild shots,”
or outliers bridging clusters, etc.

To inake use of this superior ability of humans, the high-
dimensional data must be displayed in one, two, or at most
three dimensions in such a way that “structure is preserved”
or class separability enhanced. Then the user can discover

strays
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clusters, and. identify and classify patterns interactively.
Linear and nonlinear mappings which attempt to preserve
various aspects of structure in the data while mapping it
down to one-, two-, and three-space have been incorporated
in various IPACS.

The main categories of linear and nonlinear mappings for
IPACS which may be discerned from the literature, are the
following. :

1) Linear mappings to one, two, and three spaces defined
by the principal components of the lumped-data covariance
matrix or correlation matrix.

2) Linear mappings to one and two spaces which em-
phasize some measure of class separability.

3) Nonlinear mappings, based on multidimensional scaling
and intrinsic dimensionality algorithms, which map- multi-
variate data from an n-dimensional space into two dimensions
in such a way that some measure of resulting distortion, of in-
tersample distances in the two-space, is minimized

4) Nonlinear mappings which map data into two-space
while enhancing class separability.

5) Mappings of high-dimensional functions into one- and
two-space based on the idea of space-filling curves.

6) Miscellaneous.

The method of principal components, introduced by Pear-
son [137] and developed by Hotelling [86], now has an exten-
sive literature devoted to it [2], [202], [144], [145], [127] and
is widely used. It shows up indirectly under the terms factor
analysis and Karhunen—Loeve expansions [198] and intrinsic
analysis [204] for feature selection and ordering. In OLPARS,
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it is called the Minimum Residual Distance Method [157];
another example of its use is in the IBM Interactive System
[63]..

After solving for the eigenvectors of the lumped covariance
matrix of the data being considered, the user could select any
one, two, or three eigenvectors to define the linear projection
subspace. The plane defined by eigenvectars corresponding to
the twa.largest eigenvalues is the two-space which fits the
data in the least squares sense. Scatter plots of data on this
plane, in the course of interactive analysis, are showa in [29]
and [63].

The most widely used linear mapping which emphasizes
class separability is termed multiple:discriminant analysis. It
is the subject of an extensive literature [202] and many com-
puter programs [30], [38] exist for it. The discriminant vec-
tors defining the resulting space are obtained by solving a
generalized eigenvector equation (B—AW)d=0, where B is
the between-class covariance matrix and W is the pooled-
within-class covariance matrix. This expression results when
the ratio of the between-class scatter dTBd to the sum of the
within class scatter d” Wd is maximized with respect to d. The
mapping gives a space of dimension one less than the number
of classes, or of dimension equal to feature space dimensional-
ity, whichever is smaller. The first is the usual situation en-
countered in pattern recognition. A plot of 60 talker utterances
in the space defined by the two eigenvectors corresponding to
the two largest eigenvalues of a W~!B matrix calculated from
a 16-dimensional summary associated with each utterance
[58] shows that sometimes this method brings out cluster
structure rather nicely.

For the two-class case the above gives the well-known
Fisher Discriminant Function [47] which is easily understood
as the line of projection obtained when the two centers of
gravity (means) of the projected samples are separated as far
as possible while keeping the total spread (variance) of the
combined sample constant. Fig. 5 shows the histogram of sam-
ples of palm-print data projected on the Fisher discriminant,
indicating the possibility of discriminating between normal
subjects and those with Down’s syndrome using dermatogly-
phic features [174]. The possibility that dermatoglyphics—
the ridged skin patterns found on the fingers and toes, the
palms of the hand, and the soles of the feet in man—can be
used in the diagnosis of mongolism, leukemia, schizophrenia,
congenital rubella, and other human diseases, is now the sub-
ject of a number of serious investigations [114]. The relation-
ship of certain specific patterns to various chromosome dis-
orders was demonstrated sometime back [34] and the genetic
basis'of dermatoglyphic patterns is now taken seriously [85].

Studies of palm- and fingerprint patterns using OLPARS
have been.based on twenty-three features derived from the
analysis described in the classic book on the subject [35]. Fig.
6) shows some-of the features used. The featiires represent
three groups of measurements: 1) pattern types such as
whorls, loops, and arches on fingers and palms; 2) direction
and termination of certain skin ridges on the palm; and 3)
relative distances between certain reference points located on
the palms. Preliminary results of the OLRARS’ studies in-
dicating the discriminatory potential of dermatoflyphic pat-
terns have been reported for leukemia [174] and schizo-
phrenia [175].

Additional investigations were carried out to investigate
possible links between apparently disparate disorders and test

PROCEEDINGS OF THE IEEE, OCTOBER 1972

LusSTLLN BLOKPLOT
SKiPPLOT
CLUSTEP
INTENSFY
EPASLINE
HAPDCOPY
200M

iX PPINT
ELIM SET
DIAGPPNT
PPTiTiON

9
s’

9y 49
3

By

S{P.Y PusNE 1/9 SEP:#, _PAOE
JF 9.

sc?:a- 1. .2b6%

Fig. 7. Optimal* discriminant plane mapping. Horizontal axis gives
Fisher score. Vertical axis has score along orthogonal direction which
satisfies same criterion as Fisher LDF,

the validity of some conjectures on the familial transmission
of Down’s syndrome. The optimal discriminant plane proved
to be a very useful plot in these investigations. The optimal
discriminant plane has the Fisher discriminant as one coor-
dinate axis and the second is obtained under the constraint
that it be orthogonal to the first while maximizing the same
criterion used to derive the first direction. For example, Fig. 7
shows an optimal discriminant plane plot found useful in
hand-print character-recognition application.

For the palm-print data, and various other applications of
OLPARS, it was necessary to use nominal data, i.e., measure-
ments which satisfied only a nominal scale. Since the OLPARS
algorithms applied only to ordinal and cardinal data, termed
“Discrete Type I” and “Continuous” measurements, respec-
tively, a discrete variable subsystem (DVS) for OLPARS has
been developed recently to handle nominal variables, which
are called “Discrete Type I1” measurements in the OLPARS
final report. The DVS subsystem provides a number of sub-
optimal but feasible derivations of continuous measurements
from Discrete Type 1I measurements. (These discrete to con-
tinuous measurement transformations may be viewed as com-
putations estimating certain marginals in the parametric
representation of the class conditional joint distributions of
the discrete variables.) Mixed discrete and continuous mea-
surements are handled by transforming the discrete measure-
ments and adjoining the resulting variables to the set of con-

‘tinuous variables.
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A normalizing transformation can be used [52] to extract
the important features for separating two classes by finding
the linear transformation which, applied to the autocorrela-
tion matrix of the mixture of two classes, gives an identity
matrix.. The result is that the eigenvector with the largest
eigenvalue for class 1 has the smallest eigenvalue for class 2
and so on. This has been applied to data grouping [53] and
seems a good way to define a two-space with.the eigenvectors
having the largest eigenvalue in each class, respectively, serv-
ing as the coordinates.

Various solutions have been proposed to handle singularity
of the pooled within-class covariance matrix W which enters
into the eigenvector equation for finding the discriminant vec-
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tors. The pseudo-inverse matrix method has been a standard
one in statistics and has been applied to pattern-recognition
problems [199]. It restricts attention to the subspace in which
the design samples lie. A modified discriminant analysis
method [119] has been used in a speaker identification ap-
plication. In this approach one first transforms the between
class covariance matrix B to eliminate singularities, and in the
transformed space sets up the eigenvector equation B—!W’,
where the prime indicates a matrix in the transformed space,
so that vectors corresponding to small eigenvalues are the de-
sirable directions.

A pseudo-estiniate different from the pseudo-inverse solu-
tion has been suggested in an imagery screening application
[96], [71]. Bayesian arguments for such a pseudoestimate
exist [3]. Experim=ntal results obtained with this approach in
certain problems were excellent but this has not always been
the case [117]. Some IPACS at present offer the pseudo-in-
verse approach.

There exists substantial literature on the methods of
multidimensional scaling and parametric mapping [165],
[166], [101], [10Z2], [167], [104], [25]. These methods have
served as the basi: for nonlinear mappings from multidimen-
sional space to two- and three-space, for interactive graphic
display of data [155], [156], [22]-[24].

Multidimensional scaling and parametric mapping are
techniques for fin:ling a configuration of data points, in the
smallest dimensional space, that, according to some defined
criterion, preserves the local structure of the points in the
original n-dimensional space. Shepard’s and Kruskal’s meth-
ods need no more than a measure of similarity between the
data points, wher:as Shepard and Carroll’s and Sammon's
approaches requir: that there be a metric defined on the ob-
servation space.

Let d;; be the d stance from point 7 to point j in the original
space and D;; the distance between the 7th and jth points in
the lower dimensional space, and let W;; be weights. The
“stress” criterion of [101] is X ;; Wij(dij—Di;)? and the
“continuity” crite-ion used in [167] is Y_.; Wi[(dij/Dij) ]2
The procedure for linding the configuration in the lower dimen-
sional space is to compute the d;; in the original space, and
starting with an arbitrary configuration of an equal number
of data points in t1e new space, iteratively move them (using
for example a stee pest descent method) so as to minimize the
criterion.

The mapping :lgorithms in [22], [23] used the continuity
criterion of Shepurd and Carroll. The apparent difference
between the error criterion of the nonlinear mapping algo-
rithm in OLPARS [156] and a stress criterion used in a
particular version of a program for multidimensional scaling
[25] has recently heen explained [103]. In OLPARS the non-
linear mapping aljiorithm is specifically designed as an inter-
active program fo mapping to two- and three-space.

Itis possible that the data may tend to lie on a curve in the
n-dimensional space; estimation of the parametric form of this
curve would indic:.te the intrinsic dimensionality of the collec-
tion of data points. The methods for discovering intrinsic
dimensionality [13], [181], [182], [184], [54], are closely re-
lated to the methods of multidimensional scaling. Bennett’s
method requires that the observation space be a metric space,
and Trunk’s metl od requires that it be a metric space with
an inner product. The Fukunaga and Olsen algorithm differs
in that it provides a method of specifying variable local re-
gions and relies heavily on interactive operation [183], [55].
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Nonlinear or generalized principal component analysis is
considered in [58]. Given a class of possible nonlinear coordi-
nates, this approach, just like linear principal components,
finds the coordinate along which the data variance is maxi-
mum, then obtains another, uncorrelated with the first, along
which the variance is the next largest, and so on. An example
of a quadratic principal component analysis is given in [58].
An example of a nonlinear mapping which emphasizes class
separability for a two-class case, is the two-dimensional d
display [56]. :

Space-filling curves are continuous mappings from the unit
interval onto the z-dimensional unit hypercube. From the
time (1891) that examples were provided by Hilbert [80] until
recently, they have been of purely mathematical interest. The
first application of space-filling curves [1] has been followed
by applications in mathematical programming [19], band-
width reduction [8], and computer-graphic display [133].
An algorithm generalizing Hilbert's curve to # dimensions
was provided in [20]; alternative algorithms which are byte
oriented are now available [21]. The computer-graphic appli-
cation maps domains of multidimensional space onto sub-
intervals of the unit interval in order to display an approxi-
mated probability density function for each of several classes
so that their degree of separability may be visually deter-
mined [135].

A variety of miscellaneous plots—histograms, scatter plots,
contour plots, two- and three-dimensional maps, pair-wise
linkage, and association plots, etc.—have been developed to
enable on-line graphical display of multidimensional data for
interactive analysis. Options available in OLPARS, PROM-
ENADE, and SARF are described in [155], [29], [70],
[123], [124], respectively. Some other references related to
this section are [62], [44], [109], [179], [32].

Fig. 8 shows a SARF feature space plot (FSP) of events
from three categories. The FSP routine displays points in
twa- or three-dimensional feature spaces, where feature refers



to both original and derived features. In this system, as in a
number of others, the points to be displayed can be selected
by category, subcategory, computational criteria, and/or by
position relative to surfaces which are injected from the dis-
play into the feature space. In the UCSB speech system [77]
scatter plots for two features at a time are used to develop a
classification tree. Many of the systems provide the capability
of rapidly stepping through a series of such plots.

In addition to the transformations of the original features
described above, routines for rank ordering feature subsets or
individual features have been considered for use in IPACS,
and deserve some comment here. Various approaches to
selecting a subset of a larger set of features have been proposed
but there are both computational [120] and conceptual prob-
lems. For example, it has been demonstrated [180], [42] that
the individually best feature out of a set of three binary fea-
tures need not be a member of the set of two best features.

Raiffa [142] treated the problem of selecting features as a
problem in the comparison of experiments [16] and suggested
sequential and nonsequential procedures for selecting a subset
of properties from a larger set. Bahadur [7] considered the
problem of finding a good numerical index which would mea-
sure the effectiveness of-a given set of properties in classifica-
tion. Various measures of information, distance, and separa-
tion have been posed to serve this need but they may or may
not bear any relation to classification error [89], [27], [78],
[107]. Bahadur used the symmetric divergence, also called the
Kullback-Leibler information number [105], to define an
effective distance between two groups, and derived an ap-
proximate formula which indicated the contribution of any
particular feature, to the distance.

Basically, the above approaches underlie many of the con-
tributions on selecting a subset of features, which have ap-
peared in the literature [74], [50], [122], [200], [110], [112].

The computational problems in using many of these tech-
niques may be appreciated by the report [155] that for
OLPARS on the CDC 1604, the estimated computation time
for a simple method which uses the symmetric divergence to
rank the measurements is about 18 times that estimated for a
“discrimination” method which uses the following criterion:
discrimination value of feature x, for differentiating between
class ¢ and j, denoted by M,;(x;). is the squared difference be-
tween the mean of x, in each class, divided by the sum of the
weighted variances of each class, with the variances being
multiplied respectively, by one less than the number of sam-
ples for that class. For discriminating class ¢ from all other
classes, the measure used is

Mi(x,) = 2 Mii(xp)

J#

and an overall measure for x, is

M(x,) = E Z M i;(xp).

1 J#Et

Itisinteresting to note that M,;(x,), which has been widely
used on heuristic grounds, is also, essentially, the measure of
separability for univariate distributions, which, following a
conjecture [12], has been shown [27] to bear a simple relation-
ship to the probability of error.

The overall measure M (x,) is of course suboptimal for the
multivariate case but it is computationally easy, and is an
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interactive system where unimodality of classes can be es-
timated quickly, the method can be practically useful.

Another suboptimal measure of the discrimination ability
of a feature, termed the probability of confusion measure, is
used [157] where the unimodal class assumption cannot be
justified. This method requires estimation of the marginal
class distributions from sample data and is therefore com-
putationally not as desirable as the previous method.

A reference of related interest is the article [119] which
examines the virtues and faults of analysis of variance as a
method for rank-ordering individual features [141]. There
are many articles containing examples of stepwise discrimi-
nant analysis in which one variable at a time is entered into
the set of discriminating variables [117]. Standard program-
ming packages are available for this method [38].

Techniques for pattern classification abound. There is a
voluminous literature on the subject, part of which has been
surveyed in [82], [154], [41], [51]. Much of the rest through
1968 may be found cited in the bibliography [113].

Any worry about having to incorporate a vast number of
the techniques covered by this staggering volume of literature
into an IPACS should be dispelled by the experience reported
thus far. It is well known that the vital difference to per-
formance is made by the appropriateness of the features se-
lected and by the analysis of the details of the within-class-and
between-class structure present in the data.

Some studies, e.g., [163], for the case of dichotomous
variables have found that the Fisher linear discriminant
function (LDF) compared rather favorably with certain
competing “optimal” techniques. Experience also indicates
[96], [93] that “appropriate” use of the Fisher LDF gives
performance at least as good or better than most competing
techniques, and is tar superior to learning algorithms o1 the
Perceptron and stochastic approximation type. If within class
clusters and modes are identified, and some estimate of the
class overlap can be obtained, then pair-wise-linear discrimi-
nants put together into a piecewise-linear decision logic, could
be most effective. As we noted the Fisher discriminant and the
optimal discriminant plane have proven useful prior to
IPACS. With the on-line clustering and mapping capability
of an IPACS. the approach has proven even more effective
[157].

Following an initial analysis of sample data to determine
the potential difficulty of the problem by estimating the modes
in each class and the relative overlap of classes. the classes that
are easily discriminated are taken care of. Then the more diffi-
cult cases are examined in greater detail. The on-line capabil-
ity facilitates the strategy of designing and trying out simple
logics first and determining their inadequacies before going on
to more sophisticated methods.

An algorithm [46], [150] which performs an adaptive
search for cluster centers while satisfying the constraint of
known categories has been used in PROMENADE [70] to
allocate a new datum point to the class of the nearest cluster
center. It is reported [157] that in each of the many real data
applications undertaken with OLPARS the piecewise-linear
logic using the Fisher discriminant per each pair of clusters,
has outperformed the nearest mean vector solution.

The detection of clusters using a projection option such as
nonlinear mapping or eigenvector plot, and the insertion of a
decision boundary, e.g., via the feature space plot display in
SARF [123], [124], and the principal components or optimal
discriminant plane in OLPARS [156], makes it easy to follow
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the strategy for designing a classification logic recommended
earlier. More com plicated decision procedures using K-nearest
neighbor rules, recursive Bayesian estimation, and stochastic
approximation are being proposed for INTERSPACE [131].

The preceding discussion pertains to the techniques which
are currently being tried out. The usefulness of some of the
simpler methods is well accepted. However, no consensus has
been reached on rhe efficacy of the more sophisticated tech-
niques. One of the major benefits of work on IPACS is likely
to be a clearer identification of techniques which are not worth
pursuing. This stould have a significant impact not onity on
practical problen: solving but also on future directions of
theoretical research.

V7I. CONCLUDING REMARKS

As a result of the developments in computer graphics
(e.g., Hobbs [83], Prince [139], [140], Van Dam [189], Sec-
rest and Niever;elt [164], Faiman and Nievergelt [45],
Pankhurst [129], Parslow and Green [130]) and man—com-
puter symbiosis (Licklider [111]), the partnership of man and
the computer in the solution of problems is now available to
investigators in a variety of fields; many of these fields are
related to patterr. recognition. Indeed, since recognizing pat-
terns is, in one for n or another, intrinsic to intelligent activity
and since the sear:h for regularities is the principal concern of
scientific inquiry, it follows that the field of pattern recogni-
tion impinges upon all scientific inquiry and intelligent be-
havior. This has l:d, for example, to the comment “Is there—
can there be—a fi:ld of inquiry devoted to what is called ‘pat-
tern recognition’? Almost certainly not . ..” (Neisser [121]).

Such comments have not prevented an influx of theoretical
and experimental esearchers into what is called pattern recog-
nition—not only to probe further into the meaning of words
such as “learnir.z,” “identification,” “classification,” and
“recognition” (Savre [162]) and to see what aspects of these
functions could b: automated (Kanal [90], Kanal and Chan-
drasekaran [93])--but also to develop tools for pattern anal-
ysis, classification, induction, and problem solving that are
applicable to a variety of situations and fields. The interactive
systems surveyed n this paper represent some attemptsin this
direction.

Taking advantage of the experience gained thus far, the
next generation of IPACS could be very powerful, experimen-
tal facilities for solving practical pattern-recognition problems
arising in a wide variety of fields. However, the significant
resources needed to implement a truly effective interactive
pattern analysis ¢nd classification system should not be un-
derestimated. Suc1 [PACS will flourish only in those environ-
ments in which the number and variety of problems provides
economic viability. Otherwise, an IPACS is likely to go the
way of SARF which, having been directed towards a certain
area of defense r:search, fell victim to a lack of funding in
that area.

Placing an IFACS in an open environment attracting a
wide variety of u:ers with different backgrounds should help
the continual evolution of the system. This assumes that the
people associated with the effort are capable in both computer
systems and patt:rn recognition.

Because of the impact we feel IPACS will have on problem
solving in pattern recognition, it is highly desirable to make
this capability ine <pensively and widely available. At present,
both these attribi.tes are missing. Work remains to be dene on
processor configurations and system organization to overcome
these limitations 'while still satisfying the large data-handling
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and computational demands imposed by practical pattern-
recognition problems. Also needed is the addition to IPACS of
the next natural step, i.e., the development of a capability to
do on-line modeling, for rarely is analysis and classification the
end of our interest in a body of data.

Even as we sing the praises of experimental interactive
pattern analysis classification and modeling, we must keep in
mind that these are not a guarantee against poor use of re-
sources nor a substitute for theory and thought. Difficult
problems of pattern recognition will continue to require care-
ful planning, time, and effort. However, in this effort we now
seek some helping hands—the Rival of 1958 has been replaced
by a Partner, the graphics-oriented IPACS.
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SYSTEM CONSIDERATIONS FOR
AUTOMATIC IMAGERY SCREENING

T. J. HARLEY, JR., L. N. KANAL AND N. C. RANDALL

System Sciences Laboratory
Philco-Ford Corporation
Blue Bell, Pennsylvania

1. INTRODUCTION

There is a large and steadily growing body of literature on the
theory and techniques of pattern classification; however, very few
papers have dealt with the problems of developing effective systems
for real world pattern recognition tasks.

For several years, we have been actively investigating the theo-
retical aspects of pattern classification and appreciate the need for
continued research on theory, techniques and devices in this area.
But we have also been deeply involved in programs aimed at the
development of useful recognition systems. This paper describes some
of the things we have learned.

Our approach is problem oriented; that is, we consider a specific
recognition problem that requires a solution and then determine
what techniques are suitable for solving it. This is in contrast to a
technique-oriented approach in which a specific technique is devel-
oped and then attempts are made to find existing problems to which
it might be applicable.

The specific problem we consider here is the screening of tactical
aerial reconnaissance imagery, primarily photographs. Screening has
been defined as: “Gross selection, early in the total interpretation
process, to identify those areas in the total supply of imagery which

Reprinted fi>m Pictorial Pattern Recognition, pp. 15-31, 1968. Published by Thompson Book Company, Washington D.C., 1968.

75



AUTOMATIC TARGET RECOGNITION

meet the minimum qualifications for further interpretation by a
human”. This type of operation is required in order to reduce the
large amounts of imagery that are obtained from aerial reconnais-
sance. When the amount of information has been sufficiently reduced,
a human can then perform the photointerpretation task. It should be
noted that no attempt is being made here to design a machine which
will actually do photointerpretation. The screening task appears to
be a natural one for computer-type machines, since they can provide
high speed operation and do not get fatigued or bored as humans do.
Furthermore, the operation required is one that can presently be
done by humans.

There are a number of aspects to the imagery screening problem.
However, the most important and most difficult to solve is that of
detecting discrete tactical targets such as armored vehicles, aircraft,
fortifications, and artillery. The detection of such small tactical tar-
gets can provide the basic language for the performance of more
complex tasks. For example, suppose the present locations of all
enemy armored vehicles can be made quickly available to a computer.
This data can be combined with less volatile information on such
items as terrain type, location of strategic targets (e.g., bridges, air-
fields, villages), and the deployment of friendly forces to establish
the location and perhaps the mission of an armored brigade, par-
ticularly if repeat cover photography is available over a suitable time
scale in order to establish the direction of movement of the armor.
Indeed, there are a great number of ways in which the data gener-
ated by a target detection device could be used, but consideration of
these is not central to the purpose of this paper. Our intent here is
to consider the specific problem of quickly and reliably detecting
discrete tactical targets in a large amount of imagery.

We attempt to demonstrate in this paper that the constraints of
the imagery screening problem lead to the selection of a type of
machine implementation, the form of the decision logic, methods for
the logic design, and even techniques for evaluating candidate
systems.

2. ESTABLISHMENT OF SYSTEM PARAMETERS

In order to clearly illustrate the point of this paper, it is necessary
to assume specific values for a set of system parameters. The values
selected should be regarded as typical and could vary by a factor of
at least two or three in either direction. However, the force of the
arguments is not greatly dependent on the exact numbers used.

76



AUTOMATIC IMAGERY SCREENING

The first parameter value to be established is that of the resolution,
referenced to the object or ground plane, required to detect targets.
The question becomes: What resolution is required to reliably detect
tactical targets from the air? This parameter is perhaps the most
critical of all those to be assigned since its influence on the overall
system parameters is very great, perhaps varying as the third or
fourth power. One approach to arriving at accurate figures for this
parameter is to determine what resolution is required by humans for
good performance. On the basis of practical experience, a value of
one foot ground resolution seems reasonable; in some imagery, no
more resolution is available.

Next, the coverage of a typical frame of photography is estab-
lished as one thousand feet by one thousand feet, giving rise to a
million resolution elements per frame. This is typical of imagery
provided by the Army for imagery screening investigations in the
early-to-mid-1960’s.*

The target size is taken to be 12 ft. by 25 ft., representing typical
dimensions of tactical targets, and allowing a small border for im-
proved detection reliability. This means that there are 300 resolu-
tion elements in an area occupied by a target.

There is, of course, no a priori knowledge about the orientation
of the target on the photograph, and there are very few targets
with significant rotational symmetry (oil tanks seem to be a favorite
object for experiments in target recognition because of their sym-
metry). Most target detection systems which have been proposed
utilize an orientation search in order to ensure detection of the tar-
get regardless of which direction it is pointing. It is assumed here
that the detection logic will have approximately a plus or minus
three degree tolerance. This figure is consistent with the results of
experiments performed at Philco-Ford, and also with the fact that
a 2 1/2 degree rotation displaces the end element of the 12 x 25
element array by one element. This means that, at each position on
the frame, 60 different orientations must be tested in order to detect
the target reliably.

Some people familiar with optical correlators have questioned the

* It was pointed out by a member of the audience at the Symposium that
resolutions approaching 10,000 elements across a frame are now available from
military reconnaissance. The ground resolution involved, and the area coverage
of a single frame, depend, of course, on the scale factor used. At one foot ground
resolution, one would have about 100 million elements to consider per frame.
Such figures only serve to strengthen the force of the arguments presented in
this paper.
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necessity for a rotation search. It has been suggested that it is only
necessary to rotate the target mask (or spatial filter, or hologram,
etc.) while integrating the correlation function over all rotations.
Then by scanning the integrated correlation function, one may
determine the presence or absence of the target in question. However,
this reasoning is fallacious, since if the integration is linear, this is
exactly equivalent to using, without rotation, a single mask gen-
erated by rotating the sample target about its center. A mask of this
sort is certainly going to give inferior performance.

Another possibility is to generate scans, such as a spiral, which
give signals that are invariant with orientation. However, it will be
found that these scans are translation sensitive, and would require
mere scanning time. Other processing techniques that are rota-
tionally invariant, such as Blum’s “grass-fire”’ 1, cannot be used be-
cause they require that the object to be recognized be isolated from
its background.

Finally, it is assumed that one hundred distinct target classes
must be searched for at any one time. In light of the number and
variety of weapons, vehicles, shelters, and other paraphernalia of
war used by modern armies, this is a conservative figure.

Notice that this discussion has omitted consideration of scale and
aspect angle searches. Scale search should not be required in an
automated system because the aircraft altitude and camera focal
length are known, thereby enabling calculation of the proper scale
to within a few percent. There can be a significant aspect angle
problem, especially when low altitude, short focal length imagery is
considered. Targets located outside the field center will be seen at
a slightly oblique angle, and, of course, targets can be located on
irregular or sloped terrain which can alter the aspect angle even at
the camera nadir. While it would be theoretically possible and prob-
ably desirable to account for the first of these two effects on a point
by point basis over the frame, such compensation seems to be a
practical impossibility in terms of the presently available imple-
mentations.

3. SYSTEM PERFORMANCE SPECIFICATIONS

From the parameter values established in the preceding section,
and summarized in Table 1, it is possible to establish the required
pattern recognition system performance in terms of probability of
false alarm, and probability of false dismissal. From the previous
numbers, it can be established that in each frame there are six billion
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opportunities for a false alarm! This is obtained by multiplying
together the number of resolution elements (a decision must be made
at each element), 10%, the number of rotations in the orientation
search, 60, and the number of target classes, 100. It is the sheer
magnitude of this number that severely constrains the design and
evaluation of a screening machine.

It is reasonable to require that a high-performance imagery screen-
ing machine produce, on the average, no more than one false alarm
in each 100 frames. Performance of this magnitude is highly desir-

Table 1. System Parameters

Resolution—1 ft.
Frame Size—1000’ x 1000 On ground
Target Size—12’ x 25’

Orientation Tolerance—=*3°
Target Classes—100

False Alarms—1 in 100 frames
Detection Probability—0.95

able since each frame in which a target is detected is a frame that
must be presented to the human photointerpreter, and the whole
object of screening is to reduce the number of frames which must
be further scrutinized by the photointerpreter. Unfortunately, human
psychology seems to dictate that the photointerpreter will not limit
his scrutiny to the single area on the frame that the machine desig-
nates as the probable target area, and so the false alarm performance
must therefore be stipulated in terms of frame rates, and one in a
hundred is probably acceptable. From this, one can calculate the
equivalent false alarm probability for each separate decision at each
point on the film is 1.6 x 10-'2. This is indeed an extremely small
false alarm probability.

The magnitude of this false alarm probability should be compared
with that reported in many papers on pattern recognition, where an
accuracy of 80 or 90 percent is considered very good. However, the
basic importance of the severe detection probability constraints is
that every effort must be made to achieve superior detection results.
It is essential therefore not to compromise on any of the system
parameters which influence the detection performance, such as reso-
lution, orientation tolerance, etc. Since these very parameters are
the ones that gave rise to the need for such reliability, we can see
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that we are “locked in” to a rather sophisticated and complex sys-
tem. Certainly, one cannot escape this dilemma by such shortcut
routes as lowering the resolution of the output plane scanner, or
detecting all orientations in one fell swoop.

It is somewhat more difficult to establish requirements for false
dismissals. Fortunately, within limits, the performance specified
does not substantially affect the computations that are relevant to
the point of this paper. A probability of detection of 0.95 is assumed
in this paper. This specification refers to unobscured, uncamou-
flaged targets, and must be relaxed in the face of countermeasures.
Such performance probably exceeds that achieved by human photo-
interpreters in a screening operation, but unfortunately the infor-
mation available on this subject is not definitive.

4. SPEED COMPARISONS OF CANDIDATE SYSTEMS

In addition to requiring extremely reliable detection performance,
the large number of resolution elements in a frame dictates that the
speed of the machine be considered very carefully. In order to assign
some numbers to this problem, let us assume that it takes one
microsecond to scan an element of the picture and operate on it.
Suppose first that we have a system which operates completely
serially and that the 12 x 25 element target area is scanned at every
position in the frame Since the scan must also be repeated 60 times
for the orientation search and 100 times for different targets, the
total time for this process is 1.8 x 106 seconds, which is approxi-
mately 21 days. This time is typical of that required to screen
imagery using a general purpose digital computer. Therefore, it can
be seen that implementation of an imagery screening system with a
sequential device such as a general purpose digital computer is not
going to yield adequate results.

In the previous example each element of the picture was scanned
300 times at each rotation and for each target class. This is cer-
tainly not efficient, and no one has seriously advocated the use of a
completely serial system for tactical target detection. There are
many, on the other hand, who advocate optical systems for this ap-
plication. In these systems, an entire frame is processed in parallel by
optically correlating it with a reference pattern. Both noncoherent
optical correlators and coherent optical spatial filtering systems
perform in this way, although the specific mechanisms involved and
the techniques for designing the reference pattern are quite different.
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In either case, the amplitude of the illumination at each point in the
output plane is proportional to the degree of correlation between the
reference pattern and the local target area centered at the corre-
sponding point on the frame. Since the entire 12 x 25 area is
processed into a single correlation value by a parallel operation, the
time required to process one frame of imagery would be reduced by
a factor of 300 compared to the purely sequential system. In this
case, each resolution element of the picture is scanned only once for
each reference pattern. However, because only one reference pattern
may be processed at a time, each orientation and each target class
must be done sequentially.* The total time to process a frame in such
a system, using a microsecond per element scan rate, is one hour and
forty minutes.

There may be some question as to why any scanning is required
in the optical system, since the correlation function for an entire
frame is available simultaneously at the output plane. It is important
to remember that a decision process is required, which means that
the correlation function must be thresholded. Ideally, this could be
done in parallel, point by point over the entire output field by
making use of a mosaic of photo-sensitive solid state flip-flops, or by
use of an electronic image tube. However, such a device must be ex-
tremely stable, must have an easily controllable threshold setting,
must be uniform in effect over the entire field, compensating in the
process for optical vignetting and for variations in average overall
illumination, and, most important, must have an input resolution
equal to one foot per element referenced to the ground. At the present
time, we are not aware that any such device is available, although
various investigators are attempting to perfect one.

It thus appears necessary at present to scan the output image, and
to threshold electronically. If the output plane transfer function is
linear, the resolution of the spot scanning the correlation peaks
must be just as good as the scanner used on the input image. This is
because the system is completely linear, and interchanging the order
of operations does not affect the output at all. Since the spot which
is used to scan the output image can be considered as a filter, it can

*In a coherent optical system, referenced patterns may be multiplexed by use
of different optical “carrier” frequencies. This produces several output images,
one for each reference pattern, displaced so that they do not overlap. Note how-
ever that the total number of resolution elements in the output plane is limited,
and these must now be shared by the various images. This means that only a
fraction of a frame can be processed at one time, and the throughput rate is not
really increased.
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be moved forward in the system without changing the net effect.
Thus, we could filter the input image just as readily and obtain the
same result. Those who do not object to using a low resolution
scanner at the output must certainly object to lowering the resolu-
tion of the input image beyond the point of human recognition. In
effect, both of these processes have the same result. In practice, the
transfer function of camera tubes is not linear, but quadratic; that
is, the output signal is proportional to the intensity rather than the
amplitude of the illumination. This has the effect of enhancing the
correlation peaks, but not nearly as much as is desired. Therefore,
while the linear filter analysis suggested here is not entirely valid,
the required scanner resolution is not significantly reduced. The
time required to optically process a frame in all orientations, and
with 100 target classes, while much more reasonable than can be
obtained with a strictly sequential system, is still too great, because
as described above, the full parallel processing of the optical tech-
niques cannot be realized in practice.

We have been advocates of an electronic implementation in which
the input frame is scanned sequentially, and the various target
classes in various orientations can all be detected in parallel. In order
to understand the system, one must understand the processing of
the scanned image. Figure 1 shows this in conceptual form. The
sequential scan of the elements of the image is represented by the
numbered elements on the tape being stripped off the input frame.
The tape is spiralled around a drum and as the scan advances one
element, the tape slides one element around the drum. The illustra-
tion shows a three-element square window corresponding to a target
area. Within the window are elements 3, 4, 5, 13, 14, 15, 23, 24, and
25, which on the original frame formed a similar three-element

Figure 1. Conceptual Form for Processing of the Scanned Image
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square area, as shown outlined in the illustration. As the scan ad-
vances one element the strip advances one element, and elements 4,
5, 6, 14, 15, 16, 24, 25, and 26 are in the window, while equivalently,
on the frame, the window has moved over one element. Thus, as the
element-by-element scan proceeds over the frame, the window also
scans over the frame.

In the real world, the frame is much larger—1000 by 1000 ele-
ments—and the window also is much larger—perhaps 12 by 25
elements, so that it can contain an entire target. The drum of the
illustration is replaced by a dynamic storage medium such as a delay
line or a shift register. The elements of the store corresponding to
the window area are tapped, and provide the inputs to the recog-
nition logic. The elements on the drum, but outside the window, are
not tapped, serving only as a circulating buffer store. Many commer-
cial print readers work on this kind of a scan and store. Because the
system is electronic, as many separate detection logics as are desired
can be connected in parallel to the taps within the window, with
limits set by economic considerations only. In the limit, each element
of the frame is scanned only once. Also, because the input transpar-
ency can be scanned with a flying-spot scanner rather than a
camera tube, much faster scan rates can be used.

For purposes of discussion, let us assume a speed of 0.1 microsecond
per element. If all targets and orientations are detected in parallel,
the system can process a frame in one hundred milliseconds. How-
ever, to do this, a shift register and/or delay line storage of 12000
elements is required. By overlapping scans by fifty percent, so that
each element is scanned twice, this requirement can be reduced to
550 elements. The lower limit, in a system with maximum overlap,
is 300 elements.

A brief calculation shows that the optimum point of time versus
storage tradeoff is obtained at 50 percent scan efficiency. The size of
the storage required is H-W, where H is the scan height and W is the
width of the target in the direction orthogonal to the scan. The rela-
tive slowness, or time for different degrees of overlap, is given by
H/(H+4+1—N), where N is the dimension of the target along a scan
line. The storage size-time product can be used as a measure of
cost. The time-storage product per unit width W is given by
H2/(H+1—N), and this achieves a minimum for H = 2(N—1); i.e.,
for the case of fifty percent scan efficiency. Table 2 shows the appro-
priate numbers for the cases where each element is scanned only
once (i.e.,, the completely parallel system); where each element is
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scanned twice; and the completely serial case in which each element
is scanned N times. The minimum is achieved in each case by proper
orientation of the target area with respect to the scan.

It is not necessary to implement all targets in all orientations
simultaneously. An electronic system which scans at fifty percent
efficiency, at 0.1 microsecond per element, and which detects all 100
targets at a single orientation in parallel but requires a complete
orientation sedrch with sixty increments, would operate at a rate of

Table 2. Time-Storage Tradeoff

Scan Height 12 22 1,000
Minimum Storage in Elements 300 550 12,000
Relative Processing Time 12 2 1
Time-Storage Product 3,600 1,100 12,000

six seconds per frame. Such a system is entirely feasible. Is such a
frame rate necessary, or alternatively, is it adequate?

5. SYSTEM SPEED REQUIREMENTS

In order to determine what the operational speed requirements are,
let us consider how fast a reconnaissance aircraft can generate photo-
graphic data. Let us assume that the aircraft speed is 600 knots or
1000 feet per second and that the aircraft flies at an altitude of 2000
feet. If a camera using five inch by five inch film is used with a
focal length of 10 inches, each frame will show a 1000 x 1000 foot
area. This picture will have a scale of 1:2400 which is typical of
tactical imagery. At the speed the aircraft is flying, it will have
to take a picture every second in order not to leave gaps in the record.
In practice, pictures must be taken more often in order to achieve
some degree of overlap for various purposes such as stereo viewing.
Let us therefore assume that a picture is taken every 0.6 seconds.
With a six second ground processing time by the imagery screening
machine, we find that ten hours of processing will be required for each
hour of flight. When one considers that more than one reconnaissance
aircraft will be flying each day and feeding its photography into the
same machine, it is clear that the imagery screening machine will
become fully loaded in a very short time even with a six second pro-
cessing time. Therefore, longer times to process a frame of data
should not be considered. In fact, every effort should be made to re-
duce the processing time still further.
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6. DESIGN OF THE DECISION LOGIC

In the context of the system parameters presented, let us now
consider some of the approaches we might take to the design of
the decision logic. We might consider, for example, the use of optical
matched filtering in which we use one example of the target class to
generate a matched filter and subsequently use this filter to detect
the presence or absence of the target. While requiring only one sample
per target class might be considered a virtue, the fact remains that
optical matched filtering gives us a linear decision function based
upon one sample per target class, and this is just not adequate for
the task at hand. When we consider the possibility of using iterative
techniques based upon a number of samples for the design of our
decision logic, that is, when we consider the use of so called “learn-
ing machines,” we note that if we are provided with a fixed design
sample and all members of the sample are available to us at one
time, then any iterative use of these samples can at best only lead us
to a terminal state which could have been obtained by an
appropriate technique which made use of all the samples at one
time. Many of the learning-adaptive algorithms which have been
proposed, in the limit of infinite iterations, give essentially a linear
discriminant function equivalent to Fisher’s discriminant function,
which we could have computed from the very beginning in one oper-
ation. In fact, there are no advantages to be gained through the use
of iterative techniques except in a truly sequential or nonstationary
situation where the samples are coming one by one or the statistics
of the process are changing. Furthermore, the learning techniques
require that all the design samples be used on each iteration, which
requires the repeated storage and recovery of each pattern in the
design set. While there will usually not be many samples available
of the various enemy targets to be detected, there will generally be
at least a few, and there will be a large number of ‘“non-target”
samples. Therefore, we think that there is little point to using iter-
ative design techniques when in fact one could generate the decision
logic quickly and effectively through a combination of statistical clas-
sification procedures and heuristics.

Probably the most important criterion for the selection of a design
approach, as well as for the selection of an implementation approach,
is that it allow for the generation of a hierarchy of logics of in-
creasing power and complexity, so that if an initial, simple logic is
not powerful enough for the job, then a more powerful logic can be
generated straightforwardly. Polynomial discriminant functions pro-
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vide such a capability. With good estimates of coefficients, a quadratic
discriminant function will do better than a linear one, and in general,
a higher order discriminant function will do better yet. The problem
is, of course, that the sample size is limited, and therefore the esti-
mates of the coefficients are not very good. If the input consists of
300 variables, then a linear diseriminant function requires estimation
of 300 coefficients. A general quadratic discriminant function will
have close to 45,000 coefficients, although this might be reduced by
making use of assumptions about the stochastic nature of image-
ry.2 The higher the order of the discriminant function, the more
coefficients to be estimated, and generally, the more samples
required to achieve the same precision in the estimation of the
individual coefficients.? With the small sample sizes available, a
quadratic discriminant function may perform more poorly than a
linear discriminant function because the estimates of the extra coeffi-
cients are inherently noisy. Thus, because of the large dimensionality
of the problem and the small design samples available, the higher
order discriminant function approach must be discarded, in favor of a
more heuristic method such as the one we first described a number
of years ago.*® The large number of input variables is partitioned
into subsets, a classification function is designed for each subset, and
then a second layer classification function is designed with the first
layer decisions as inputs. Similar techniques have been used in com-
mercial print readers in which simple logics are designed to recognize
individual strokes, and a final decision is made using the stroke deci-
sions as inputs.

In the target detection problem, it is not possible to identify, a
priori, all the significant features, analogous to the character strokes,
required to characterize all the target classes. However, because of
the spatial structure of the objects to be recognized, it is realistic
to assume that the significant features will be local, that is, they will
be contained within small well-defined subareas of the target area.
The target area is divided up into a number of small local area
feature blocks, overlapping each other by about fifty percent. A sepa-
rate decision logic is statistically designed for each feature block.

Since the feature decisions are independent, based on different
areas of the target, it is possible to use the same sample targets to
design each feature, and because there are only a small number of
elements in each block, fewer target samples are needed to obtain
good estimates of coefficients. An additional independent sample set
is then used to determine the coefficients of the second decision layer.
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The individual feature logics, and the second layer decision, can
utilize linear, quadratic or higher order decision functions if desired.
For example, suppose that the 12 by 25 element target area. were
partitioned into 27 overlapping feature blocks, each 5 by 6 elements.
The problem of designing 27 linear discriminant feature logics, with
30 variables each, and one 27 input linear discriminant second layer
logic is roughly equivalent to that of designing a single linear dis-
criminant function for a 57-element target area. For this problem of
tactical target detection, the feature block approach provides the
opportunity to use heuristic thinking and yet also includes the pos-
sibility of making use of statistical design techniques. In this way,
it mitigates both the problem of sample size and the inherent com-
plexity of nonlinear logics which plague the use of statistical tech-
niques.

7. SYSTEM EVALUATION

Despite any claims that may be made in favor of a particular
in:plementation or design technique, one must recognize that claims
are no substitute for proof. Certainly, some hardware considerations
can be determined straightforwardly fronmr the manufacturers who
supply the basic components: scanning tubes, delay lines, logical cir-
cuitry, light sources, etc. The one thing that cannot be determined
straightforwardly is — can the system recognize targets? An auto-
matic target detection imagery screening machine is going to be
very expensive — probably comparable in cost to a large, fast dig-
ital computer. Is it possible to determine whether a proposed system
is capable of meeting the performance specifications before a full-
scale system is designed and built?

Since the object is to solve a real problem, and not just to develop
general techniques, it is necessary to evaluate the system perform-
ance experimentally on real-world imagery. It is enlightening to con-
sider what such an evaluation requires. First, the experiments must
confirm that the system will detect 95 percent of the unobscured tar-
gets present in the imagery. Second, on the average, there must not
be more than one false alarm every hundred frames.

Of course, performance must be evaluated using test samples which
are independent of those used in the design process. That perform-
ance on design samples considerably underestimates the probability
of error is illustrated by the results in Figure 2 for the cumulative
distributions of scores obtained for a feature block discriminant
function for design and independent test samples.
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Figure 2. Discriminant Function Scores for Design and Test Samples

It is a well-established principle that a system required to meet
some performance specification should be designed to yield much
better performance if it is to- have much chance of meeting the re-
quirement. Assume for the moment that the target detection logic
to be evaluated is in fact infallible; that is, it never misses a target
or triggers a false alarm. In practice, of course, such performance is
impossible. If the system recognizes 59 consecutive targets of a par-
ticular class with no failures, then the recognition specification for
that class has been confirmed with a confidence coefficient of 0.95.*
On the other hand, about 300 frames of nontarget imagery must
be processed by the logics for every target class in all orientations
without any false alarms in order to achieve the same confidence that
the false alarm specification has been met. This means that a test
system built or programmed on a computer to recognize a single
target class would have to sequentially scan 30,000 frames of imagery
in every orientation without an error in order to confirm the per-
formance. This assumes, of course, that the performance data for a
single target class can be extrapolated to one hundred classes. If
the system occasionally makes errors, the required sample sizes be-
come much greater. While only 59 target samples are needed with
perfect performance, 93 would be needed if the system made only one
mistake. While only 300 nontarget frames are needed with perfect per-

* This means that a machine that just fails to meet the specification can be
expected to pass the test no more than 5 percent of the time.
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formance, 475 would be needed if the system made a single false
alarm. If the system is capable of performing at exactly the design
specification, the expected number of samples required to verify that it
does meet the specifications is infinite. As noted previously, to pass a
practical evaluation test, the system must be superior to the specifi-
cation.

How can such a large number of samples be processed? Computer
simulation is not adequate, because based on the figures developed
above for a sequential machine, the complete evaluation would require
many years of running time. The answer is that an experimental
system must be built that approaches real time data rates and ex-
ceeds the performance specifications.

The operational frame rate for an electronic target detection sys-
tem was computed to be ten frames per minute. A frame rate about
one-tenth of this should be suitable for system evaluation. Consider
for example a prototype capable of recognizing 100 targets in paral-
lel in a single orientation, and capable of a sequential orientation
search. Since scanning speeds of ten elements per microsecond and
comparable logic circuitry are near the limit of the art, and are
therefore quite expensive to achieve, the prototype could reasonably
be built to scan at one element per microsecond. Such a prototype
would completely process one frame per minute. In about one day,
involving only five hours of actual running time, the prototype could
test 300 frames for false alarms. If performance were not perfect,
it could easily process 3000, or even 10,000 frames within a reasonable
period of time in order to achieve the sample size needed to obtain
the desired level of confidence. If 10,000 frames could be processed,
then the actual machine false alarm rate would have to be one in 120
frames to have a reasonable chance (50 percent) of demonstrating
that the performance was one in 100 frames or better.

This is not to say that computer simulations, and evaluations on
relatively slow and inexpensive experimental systems, are not called
for. Using such techniques, it is possible to rule out many approaches
because they fail to perform adequately on even a few samples. Also,
it is unwise to undertake to construct an expensive prototype with-
out first performing preliminary experiments to establish the credit-
ability of the approach. But it is clear that it is not possible to confirm
the operational capabilities of even a perfect system without build-
ing and thoroughly testing a full scale prototype that has all the
power, and much of the speed, of the final system.
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8. CONCLUSIONS

The problem-oriented approach to the design of an imagery screen-
ing target detection system has been used to demonstrate that the
system requirements severely constrain the courses of action open
to the investigator. In this example, one is led to the following con-
clusions, which are summarized in Figure 3:

DECISION LOGIC SYSTEM
LOGIC DESIGN EVALUATION

ELECTRONIC - EAR-REALTIM
EecTROND (HULTLAYER) A rEAL
OPTICAL b -MACH.

IMPLEMENTATION

COMPUTER
LEARNING | g/yyLATION
MATCHED
FILTER

Figure 3. Summary of Conclusions

Because of the required frame rates, the system must be imple-

mented electronically.

Because the number of samples of enemy targets available is quite

small, the decision logic must be designed by a combination of

statistical and heuristic methods.

A two-layer local area feature logic can resolve the sample size

problem while still providing logical power.

For evaluation, a prototype system must be built which has all the

logical power, and most of the speed capability, of an operational

system.

Our purpose in presenting this paper is twofold. First, it has been
our experience that too few investigators concerned with target de-
tection appreciate the constraints that the system requirements
create. Research on techniques, methods, and devices is necessary and
vital, but ultimate success in the application of pattern recognition
technology to real world situations requires a problem-oriented ap-
proach. Second, too often even the best investigators can become
entranced with a particular technique, method, or device and claim
that it will solve all the world’s problems. We hope that we have

90



AUTOMATIC IMAGERY SCREENING

conveyed the idea that real world problems are not so easily solved,
and that experimental results showing 90, 95, or even 99.9 percent
correct recognition, more often than not, demonstrate that a tech-
nique is not applicable to the problem being investigated.
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A Comparison of Analog and Digital Techniques

for Pattern Recognition

KENDALL PRESTON, JR., SENIOR MEMBER, IEEE

Abstract—Since the computer technology utilized often places
limitations on the performance of a particular pattern-recognition
task, it is important to compare the state-of-the-art and future trends
in both the digital and the analog-computer fields. Electronic, acous-
tical, and optical analog computers for use in pattern recognition are
discussed and their performance compared with that of both general-
purpose and special-purpose digital computers.

It is shown that the analog computer offers workers using low-
precision high-speed one-dimensional or two-dimensional linear
discriminant analysis a significant advantage in hardware perfor-
mance (equivalent bits per second per dollar) over the digital com-
puter in certain limited but important areas. These areas include
fingerprint identification, word recognition, chromosome spread
detection, earth-resources and land-use analysis, and broad-band
radar signal processing.

A trend analysis is presented which indicates that the advantages
of analog computation will probably be overcome in the next few
decades by the rapid performance advances being made in digital-
computer hardware.

I. INTRODUCTION

HE MAIN PURPOSE of this issue of the PROCEEDINGS

| is to treat digital pattern recognition. However, pattern

recognition may also be carried out by analog means.

It is worth comparing the implementation of these two
approaches.

This paper rounds out the issue by treating in some detail
the use of analog computation—in particular, optical analog
computation—in pattern recognition. In order to assist the
reader in evaluating this alternate approach to pattern recog-
nition, the cost, speed, and accuracy of digital and analog
techniques are compared. The comparison not only relates to
the current state of the art but also attempts to predict future
trends.

The digital approach to problems in pattern recognition
has many advantages. Digital computers provide the user
with the capability of performing calculations to essentially
any degree of precision with almost infinite flexibility as
regards the type and scope of the problem addressed. Due to
the universality of most major programming languages and
the general availability of digital computing facilities, the
user also benefits from both ease of programming and the
transferability’ of software. Last but not least, the digital
computer ordinarily offers the user absolute repeatability on
each execution of a given program. These are theé advantages
which have led to an almost overwhelming preference for the
use of digital computers in carrying out calculations relating
to pattern recognition.

In certain limited cases, however, when the pattern-recog-
nition tasks follow the traditional lines of correlation detec-
tion of either features or gestalts by matched filtering (linear
discrimination), it may be advantageous to use the analog
computer. The same is true when performing detection by
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