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Over the years, the field of pattern recognition has attracted

workers from a variety of areas such as engineering, system the-

ory, statistics, linguistics, psychology, etc., resulting in a vast

literature containing abstract mathematical approachesas well

as highly pragmatic techniques. This literature is scattered in

a large numberof journals in several fields. At least three IEEE

journals regularly publish pattern recognition papers. While

several textbooks are available for a beginner in the field, a

need often arises to go to the source, which, due to the nature

of the literature in this field, is not always a straightforward

task. This collection of selected readings is not limited to

early or “classic’’ papers. Rather it is designed to be a com-

panion volume to manyof the textbooks in pattern recognition

and to be asource of useful references for engineers interested

in developing the many potential applications of pattern recog-

nition methodology.

The first paper in this volume, ‘‘Patterns in Pattern Recogni-

tion” by L. N. Kanal, serves not only as an excellent overview

of machine pattern recognition, but also as a suitable introduc-

tion to this volume. In addition to discussing the status of var-

ious aspects of the field as of 1974 and putting different ap-

proaches, techniques, and trends in perspective, this paper

provides a very useful bibliography.

In the current literature on pattern recognition, one discerns

two dominant models: the feature extraction-classification

model and the linguistic or syntactic model. As can be seen

from the discussion of syntactic methods by Kanal, while ad

hoc structural methods have been around from the very begin-

ning of machine pattern recognition, the syntactic formalisms

currently receiving much academic attention have not as yet

had any significant impact on practical pattern recognition.

The current flurry of research activity suggests that in a few

years it will probably be desirable to put together a volumeof

papers devoted to this aspect of pattern recognition methodol-

ogy. Meanwhile, the discussion by Kanal provides an excellent

introduction and references to the literature for those readers

who wantto explore this aspect further.

In every field of scientific endeavor, some of the landmark

work has a tendency of going out of print or becoming very

difficult to find. A highlight of this volumeis the inclusion of

a few papers that fall in this category. The work by Fix and

Hodgeson discriminatory analysis done in 1951 and 1952 was

Preface

published as USAF School of Aviation Medicine Technical

Reports. This work opened up a whole new area of research

in nearest neighbor classification techniques. The original

technical reports went out of print some time ago; their inclu-

sion here should prove helpful. The classic paper by R. A.

Fisher, although having had a significant impact on the field,

is not easily accessible, having been published in the Annals of

Eugenics in 1936. The inclusion of this paper here may allow

the reader to go to the original source.

Pattern recognition is an applied field which tends to discover

techniques to solve practical problems. Over the years, how-

ever, a lot of theory has been developed withlittle application

of the theory being attempted to the extent that, for a prac-

tical problem, the approach to be taken Is rarely clear. Within

the last few years, there has been a tendencyto use interactive

systems which allow the user to apply a variety of techniques

to the problem at hand. The problems of dimensionality, sam-

ple size, and the error rate often tend to limit the design goals.

A highlight of this volume is the selections on these topics.

Nine papers covering all the major issues involved in these areas

are included.

Although pattern recognition techniques can be applied to a

variety of problems in a numberof fields, only optical charac-

ter recognition (OCR), blood cell recognition, and isolated

speech recognition have reached a stage of commercial use.

However, except in the already mature area of OCR, no fully

documented case histories are available in the literature. Al-

though the work on OCRis nearly two decadesold, the early

approaches did not exploit the theoretical advances and relied

only on ad hoc techniques. Due to proprietary reasons, most

of the more recent commercial applications (e.g., blood cells)

described in the literature give general discussions, often leaving

out crucial details. The application papers included here are

intended to give an indication of potential rather than specific

case histories. One hopes that well-developed case histories

will appear in the not too distant future.

In closing, | would like to express my gratitude to Professor

Laveen Kanal who, in addition to writing the paper which

serves as the introduction to this volume, has been a source of

many helpful suggestions.

ASHOK K. AGRAWALA

Editor
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Patterns in Pattern Recognition: 1968—1974
Invited Paper

LAVEEN KANAL, FELLOW, IEEE

Abstract—This ;aper selectively surveys contributions to major topics

in pattern recognition since 1968. Representative books and surveys on

pattern recognition published during this period are listed. Theoretical

models for automatic pattern recognition are contrasted with practical

design methodolog;. Research contributions to statistical and structural

pattern recognition are selectively discussed, including contributions to

error estimation and the experimental design of pattern classifiers. The

survey concludes with a representative set of applications of pattern

recognition technology.

I. INTRODUCTION

\ N [HAT IS a pattern that a machine may knowit, and

a machine that it may know a pattern? Thatis the

fundamenta: mystery challenging research in automatic

pattern recogni‘ion. This survey reviews the main paths

followed since 1968 and examines some of the research
performedin tkquest for answers.

This paper complements two 1972 articles. The paper by

Kanal and Chandrasekaran (1972) probed theoretical ap-

proaches based on alternate models for pattern recognition

and assessed c)ntributions to the problem of inferring

grammars from samples. To make the present survey some-

whatself-contained and accessible to readers not working

in pattern reccgnition, a brief discussion of models is

presented in S:ction II. However, work on interactive

pattern analysis and classification systems is mentioned only

In passing becaiise the 1972 article in the PROCEEDINGS OF

THE IEEE [Kanal (1972)] considered that topic at length.

The topics ccvered here are grouped under the following

section heading::

II.

Il.

IV.

Journals, Books, and Surveys

Models for Automatic Pattern Recognition

Design Methodology For Automatic Pattern Rec-

ognition Systems

Statistal Feature Extraction, Evaluation, and

Selection

Dimensionality, Sample Size, and Error Estimation

Statisti:al Classification

Structu-al Methods

Applications

Prospe«ts.

V.

VI.

VI.

VUI.

IX.

xX.

Section II gives a representative list of journals, books,

and surveys for the period 1968-1974. Section IIT contrasts

Manuscript rece: ved July 5, 1974. This work was supported in part
by the Air Force ‘Dffice of Scientific Research under Grant AFOSR
71-1982, in part by the National Science Foundation under Grants
GK39905 and GK.41602, and in part by L.N.K. Corporation.
The authoris w. :h the Department of Computer Science, University

of Maryland, College Park, Md. 20742, and with the L.N.K. Cor-
poration, Silver Spring, Md. 20904.

two models, the feature extraction statistical-classification

model and the linguistic structural model, which have

served as the basis for pattern recognition theory; it also

briefly introduces a hybrid model. In Section IV, I describe

how these theoretical models differ from the practical

design methodology which has evolved during the last few

years.

Prior to 1968 classification algorithms seemed to be the

main output of theoretical research in statistical pattern

recognition. Section V reflects the effort devoted since 1968

to theoretical approaches to problems of feature extraction,

evaluation, and selection. In Section V, I examine recent

approaches to defining pattern representation spaces and

to deriving features that enhance class separability; the-

oretical and experimental investigations of distance mea-

sures and error boundsandtheir use in feature evaluation;

and feature subset selection procedures.

Problems in the design and analysis of pattern classifica-

tion experiments represent another area receiving increased

attention since 1968. Section VI summarizes recent in-

vestigations and the resulting rules of thumb on the ratio

that should be maintained between the number of design

samples per class and the numberoffeatures. Insights gained

from work on howbestto use a fixed size sample in design-

ing and testing a classifier are also summarized. In addition,

Section VI presents results on the nonparametric estimation

of the Bayes error and on the use of unlabeled samples in

estimating the errorrate.

Section VII is primarily concerned with nonparametric

classification. It also briefly describes attempts to compare

classification procedures.

Using examples in waveform segmentation and speech

recognition in Section VIII, I comment on certain key

concepts and differences that distinguish some recent prob-

lem-oriented contributions to segmentation, feature extrac-

tion, and structural analysis from other general numerical

analysis and grammar based approaches. In addition,

research on generalizing pattern grammars to overcomethe

limitations of string grammarsis described.

Section IX considers the present status of applications,

and Section X comments on how work in pattern recogni-

tion is likely to proceed in the near future. References follow

Section X.

It is not feasible to cover the waterfront of pattern

recognition in a journal article. The aim of the selective

discussion of topics and contributions which I present here

is to provide a perspective on how pattern recognition

theories, techniques, and applications have evolved during

the last few years.
Reprinted from /EEE Trans. Inform. Theory, vol. |\T-20, pp. 697-722. Nov. 1974.
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II. JOURNALS, BOOKS, AND SURVEYS

Since 1968 more than five hundred journal articles on

pattern recognition have appeared in the English language

engineering literature alone. Within the family of IEEE

journals, articles on pattern recognition have been regularly

published in the TRANSACTIONS ON COMPUTERS, TRANS-

ACTIONS ON INFORMATION THEORY, TRANSACTIONS ON SYS-

TEMS, MAN, AND CYBERNETICS, and occasionally in the

TRANSACTIONS ON AUTOMATIC CONTROL, TRANSACTIONS ON

BIOMEDICAL ENGINEERING, and the PROCEEDINGS OF THE

IEEE. Other journals regularly publishing papers in this

area include Pattern Recognition, Information Sciences, and

Information and Control. Statistical journals that frequently

publish papers relevant to pattern classification include the

Journal of the American Statistical Association, Biometrics,

Biometrika, Technometrics, and the Journal of the Royal

Statistical Society.

For years the closest item to a textbook in pattern recog-

nition was a monograph entitled Learning Machines

[Nilsson (1965)]. In 1974, one could choose from more than
half a dozen textbooksofvarying merit onstatistical pattern

recognition, e.g. [Andrews (1972), Young and Calvert

(1974), Chen (1973), Duda and Hart (1973), Fukunaga

(1972), Mendel and Fu (1970), Meisel (1972), and Patrick

(1972)|; for a book review see [Cover (1973)]. In addition,
one could turn to monographs devoted to, or including

some discussion of, various aspects of pattern recognition

[Anderberg (1973), Bongard (1970), Fu (1968), (1974),

Lindsay and Norman (1972), Rosenfeld (1969), Tsypkin

(1971), (1973), Uhr (1973), Ullmann (1973), and Watanabe

(1969)] and numerous hardcovercollections of papers and

conference proceedings [e.g., Cacoullous (1973), Cheng et

al. (1968), Fu (1970), Grasselli (1969), Kanal (1968),

Kohlers and Eden (1968), Krishnaiah (1969), Tou (1970),

(1971), and Watanabe (1969), (1972)].

The books by Duda and Hart, Meisel, and Ullmann

provide broad coverage of the literature up to early 1972.

Duda and Hart’s bibliographic and historical remarks at

the end of each chapter set a high standard of scholarship

and give a “who did what, when, and where”’ picture of the

pattern classification and scene analysis literature. Meisel’s
bibliographyis also thorough. Ullmannstarts with a descrip-
tion of a 1929 patent for a reading machine and gives the

reader a guided tour of 451 references including several

patents. Anderberg summarizesliterature on clustering tech-

niques, while Fukunaga examines the problems of error

estimation in greater depth than the other textbooks.

Young and Calvert include a chapter each on twospecific

applications, viz., electrocardiograms and optical character

recognition (OCR).

In addition to these books, many surveyarticles, reviews,

and bibliographies were also published in this period. The

PROCEEDINGS OF THE IEEE devoted its October 1972 issue

to papers extensively surveying applications of digital pat-

tern recognition [Harmon (1972)]. Earlier survey papers

that appeared in the PROCEEDINGSinclude [Ho and Agrawala

(1968), Levine (1969), and Nagy (1968)]. A series of papers

[Rosenfeld (1972), (1973), (1974)] covers developments in
picture processing by computer during the period 1969

IEEE TRANSACTIONS ON INFORMATION THEORY, NOVEMBER 1974

through 1973 and provides an extensive bibliography. For
speech recognition, a survey[Hill (1971)], a study committee

report [Newell et al. (1973)], a recent conference proceeding
[Erman (1974)], and a forthcoming book [Reddy (1974)]
provide adequate coverage. Additional survey articles on

specific topics are cited in subsequentsections of this paper.

III. MODELS FOR AUTOMATIC PATTERN RECOGNITION

An early motivation for work on automatic pattern

recognition was to model pattern recognition and intel-

ligence as found in living systems; the Perceptron [Rosen-

blatt (1960)] and other 1960 vintage “learning” or “‘self-

organizing” networks are examples of models that, at least

initially, were biologically motivated. Although the excite-

ment about them had been greatly dampened by 1968, such

““‘bionic”’ models continuedto attract a few circles interested

in pattern recognition [Amari (1972)], adaptive control

[Business Week (1974), Mucciardi (1972)], the implicit
storage of a fixed set of patterns [Moore (1971)], modeling

the cerebellum [Albus (1971), (1972)], and modeling the
input-output relationships of other complex systems

[Ivakhnenko (1971), Mucciardi (1974)]. The Proceedings
of a 1974 Conference [Conf. on Biologically Motivated

Automata (1974)] indicates a revival of interest in bio-
logically motivated automata, neural models, and adaptive

networks. |

How well the “bionic”? networks model the biological

systems that served as their motivation is open to question.

The point is moot if one accepts the view that recognition

is an attainmentor a goal rather than a process, method, or

technique [Sayre (1965)]. Then machines can “‘recognize”’

certain patterns without necessarily having anything in

common with the methods used by biological systems to

recognize those same patterns [Kanal and Chandrasekaran
(1968)]. Most of the theoretical work on machine recogni-
tion of patterns has not been biologically motivated but has
adopted oneor the other of two models, the feature extrac-

tion statistical-classification model or the linguistic model.

The period 1960-1968 witnessed extensive activity on

decision-theoretic multivariate statistical procedures for the

design of classifiers. However, the statistical decision theory

approach was justly criticized for focusing entirely on

Statistical relationships amongscalar features and ignoring

other structural properties that seemed to characterize pat-

terns. The general feature-extraction classification model,

shown in Fig. 1, was also criticized for performing too

severe data compression, since it provided only the class

designation of a pattern rather than a description that would

allow oneto generate patterns belonging to a class.

These criticisms led to proposals for a linguistic model
for pattern description whereby patterns are viewed as

sentences in a language defined by a formal grammar. By

1968 these proposals together with the success of syntax-

directed compilers had attracted manyto research in pattern

grammars. The linguistic or syntactic model for pattern

recognition uses a “‘primitive extractor,’ which transforms

the input data into a string of symbols or some general

relational structure. The primitive extractor may itself be

a feature extractor classifier. Then a structural pattern
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Fig. 1. (a) Operational system. (b) An example.

analyzer uses a formal grammarto parse the string and thus

constructs a description of the pattern.

In the past, much has been made of the apparent dif-

ference betweer: the two models. The stress on the distinc-
tion between tle two models hides many similarities: in

practice, in the syntactic model, the extraction of “prim-

itives” can invalve statistical classification procedures, and

the association of patterns with generative grammars is

equivalent to the classification of patterns into categories.

The definitica of the formal linguistic model can be

enlarged to include other familiar generative mechanisms,

such as differential equations, functional equations, and

finite-state Markov chains. Stochastic-syntactic models in-

troduce probabilistic aspects into the linguistic model by

specifying a discrete probability distribution over produc- -

tions of a base grammar. For an N class problem, one could

develop N stochastic grammars. Each parse provides a

structure along with a probability that the structure repre-

sents the input pattern; the input is associated with the

grammar giving the most probable parse [see, e.g., Fu and

Swain (1971), Fu (1972)].

Whena formal modelis not explicitly present, the terms

“ad-hoc” or “heuristic” are used. The phrase “structural

pattern recognition” refers to all pattern recognition ap-

proaches base! on defining primitives and identifying

allowable struc:ures in terms of relationships among prim-

itives and substructures that combine primitives. This term

represents less 1 specific set of procedures than anattitude,

i.e., that pattern recognition algorithms should be based on

the mechanism: that generate and deform patterns.

The structur:al pattern recognition model is reminiscent

of the ‘“‘analysis by synthesis” model proposed for speech

recognition in this TRANSACTIONS [Halle and Stevens

(1962)]. In the latter model, a synthetic pattern was gen-

erated and ma‘ched with the input pattern. The emphasis

was on using a generative model that embodied the physical

processes thought to govern speech pattern generation in

humans, and criving this synthesizer with parameter values

obtained from ‘he input pattern. The set of parameter values

that provided : match were then used to characterize and

recognize the input pattern. The general flavor of the

“analysis by synthesis” model and of the structural pattern

recognition werk now being doneis similar, but the em-

phasis is no longer on identically matching the input pattern

nor on matching the physical processes closely. More

flexibility is obtained through “black-box” generative

models that generate patterns “‘like’’ the input pattern with-

out necessarily being closely related to the physical processes

about which we may not have much information.

An outline of a formalism that attempts to combinethe

linguistic and statistical aspects of patterns has been pre-

sented in some thought-provoking papers by Grenander

(1969), (1970). The major outlines of the proposalarefairly

easy to follow but the details of the model are quite am-

biguous and much interpretation must be provided by the

reader. This model assumesweare given a set of primitive

structural objects called signs, which together with known

grammars or other known generative mechanisms, produce

a set ¥ of “pure images.” Subsets of ¥ satisfying certain

similarity properties (which we do notdefine here) are called

“pure patterns.” The pure images are subjected to prob-

abilistic deformations to give a set ¥” of deformed images.

Recognition algorithms would then have to define the

inverse mappings from the set of deformed images to the

pure patterns.

The formalism requires that there exist a method of

analysis leading to a unique history of formation for any

given image. In practice, in most interesting problemsit is

only the deformedpatterns, further corrupted by noise, that

are available, and the deformations and generative mech-

anism must be discovered from a limited set of samples.

Because there will rarely be a unique definition of primitives —

and generative mechanisms, there will rarely be a unique

analysis as required by the model.

In the period being considered, the fuzzy set model

proposed by Zadeh (1965) has been applied to classification

in a number of theoretical papers. Unlike classical sets,

fuzzy sets are defined to have a membership function that

can take on any real value between zero and one. This

produces a nonexclusive assignmentof a pattern to class.

It should be emphasized that this concept is different from

a probabilistic assignment of patterns to classes even though

a probability also takes on values between zero and one. In

the latter case, for a two-class problem, for example, an

individual pattern may be probabilistically assigned to one

class or the other, but is not thought of as inherently belong-
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ing to both classes simultaneously, as is true in the fuzzy

set model. An extensive bibliography on fuzzy sets is given

in Kauffman (1973). Zadeh’s papers remain the best source

for understanding the idea and stimulating thinking about

potential applications [Zadeh (1973)].

IV. DESIGN METHODOLOGY FOR AUTOMATIC PATTERN

RECOGNITION SYSTEMS

The term “pattern analysis’? was not noticeably men-

tioned prior to 1968 and does not appearin the surveys on

pattern recognition published that year in the PROCEEDINGS

OF THE IEEE [Nagy (1968) and Ho and Agrawala (1968)]. Its

widespread use in the literature seems to have followed the

publication of Sammon’s reports on the “On-Line Pattern

Analysis and Recognition System” (OLPARS) [Sammon

(1968)].
As it is understood today, pattern analysis consists of

using whatever is known about the problem at hand to

guide the gathering of data about the patterns and pattern

Classes which mayexist in the environment being examined,

and then subjecting the data to a variety of procedures for

inferring deterministic and probabilistic structures that are

presentin the data. Statisticians call this exploratory data
analysis. Histogram plots, scatter plots, cluster analysis

routines, linear discriminant analysis, nonlinear mappings,

analysis of variance, and regression analysis are examples of

procedures used to detect and identify structures and sub-

structures in the data. The purpose is to understand the

regularities and peculiarities of a data base to enable better

feature definition leading to simpler andbetterclassification

or description.

Pattern analysis is now considered an intrinsic and im-

portant part of the design process. In contrast, in the

literature prior to 1968, automatic pattern recognition sys- —

tem design consisted primarily of designing the classifier.

The available features and samples were not explored much

but used directly, perhaps in a “learning machine” approach

wherein parameters of a fixed structure are sequentially

adjusted until correct classification is obtained for all

“training” samples or until an error criterion is minimized;

or the features were used in a fixed discriminant function

the coefficients of which werestatistically estimated from

the available samples; or assuming parametric forms for

the joint densities of feature vectors from each class,

sequential and nonsequential statistical estimation pro-

cedures were proposed to estimate parameters of the den-

sities for each class and derive classifier designs based on

statistical decision theory.

Prior to 1968, it was acknowledged that the boundaries

between feature definition, extraction, and classification

were not sharp and that feedback between them wasneeded.

However,this was notreflected in the work presented in the

literature. At least all the theory-based papers assumed neat

partitions between feature extraction andclassification. The

theoretical research published during the past few years on

the syntactic approach to pattern recognition has, for the

most part, continued on this path. For example, in the

papers on the stochastic syntactic approach to pattern

recognition [Fu (1972) and Lee and Fu (1972)], the extrac-
tor and analyzer functions are treated independently, which

prevents the structural information available to the analyzer

from influencing the primitive extraction. Without this feed-

back the representation provided by the extractor may not

be well suited to the patterns being examined. Noting this

limitation, models that incorporate feedback between the

analyzer/classifier and the extractor have recently been

proposed. These are described in Section VIII
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A major evolution that has occurred during the last few

years is to view the design of a pattern recognition system

as a highly iterative process. Fig. 2 illustrates the complex

nature of this desizn process. The theoretical models, in

which the flow of data and decisions is in only one direction,

from the input pattern environment to the categorizer/

structural analyzer, are indicative of the operational pattern

recognition system one seeks as an endresult.

The advantages of human interaction and intervention

in all phases of tk: iterative design process and the im-

portantrole of interactive computing and display technology

in makingthis feasi le have been elaborated upon in Kanal

(1972), which also summarized the data analysis techniques

based on clusterin::, statistical discriminant analysis non-

linear mapping, ec. New graphical representations to

enable human understanding of multivariate data continue

to be explored, e.g., see Chernoff (1973). While no radically

new statistical approaches to data analysis have appeared

since 1968, effort has been devoted to improving and

comparing algorithms and interpreting their relevance to

feature extraction, evaluation, and selection. The next

section presents sorie of the results.

V. FEATURE EXTRACTION, EVALUATION, AND SELECTION—

‘““\TATISTICAL METHODS”’

Feature extracticn and selection can have a variety of

goals. We maybeinterested in: finding key features that

permit the generation or reconstruction of the original

patterns, selecting f2atures that parsimoniously characterize

patterns, finding fe:.tures that are effective in discriminating

between pattern classes, or some combination ofthese goals.

In this section, tlie word “feature”? denotes an entity that

is derived from son‘e initial measurements; this implies that

somehow we knowwhat initial measurements should be

made. Reducing the initial measurements can lead to

economies in sensor hardware and data processing. A

simple approach to discarding measurements might be to

examine how closely a linear combination of.the selected

measurements repr2sents a discarded measurement[ Beale,

Kendall and Manz (1967), and Allen (1971)]. Clearly, no

reduction in measurementeffort is achieved if the selection

is from features tiat are combinations of all the initial

measurements; this is true of many ofthe feature extraction

selection proceduri:s that have been proposed. However, in

the resulting lower-dimensional space, the search for a

classifier may be greatly simplified.

Much of the mathematical-statistical work on feature

extraction and selection during the past few years has been

on:

1) linear and nonlinear transformations to map patterns

to lower-dim:nsional spaces for pattern representation

or to enhanc:class separability;

2) feature evaluation criteria that bound the Bayes error

probability and transformations that are optimum

with respect to such criteria;

3) search procec ures for suboptimalselection of a subset

from a given set of measured or derived features.

Pattern Representation Spaces

Many transform techniques, such as Fourier, Walsh-

Hadamard, and Haar, have been proposed for deriving

feature domains [Andrews (1972)]. The method of prin-
cipal components, which rank orders the eigenvalues of the

pooled covariance matrix of all the classes according to the

magnitude of their associated eigenvalues, has a long history

in classical multivariate analysis. Some papersin this period

have considered nonlinear principal component analysis

where, given a class of possible nonlinear coordinates, one

finds the coordinate along which the data variance is max-

imum, and then obtains another coordinate uncorrelated

with the first, along which the variance is next largest, etc.

[Gnanadesikan and Wilk (1969)].
Among linear transformations, the Karhunen—Loéve

(K-L) expansion in terms of the eigenvectors of the co-

variance matrix is in one sense the minimax or “most

reliable” feature extractor [Young (1971)]. Watanabe and

others have proposed feature domains based on eigen-

vectors of the pooled autocorrelation matrix and on the

eigenvectors of the autocorrelation matrix of a given class

[Watanabe (1969)]. A novel K-L type modification of the

Fourier transform has been suggested recently for pictures

[Fukunaga and Sherman (1973)].
Their ‘“‘optimality” properties notwithstanding, for a

given data set the preceding procedures may or may not

provide effective representations. Other candidates to be

tried include nonlinear mappings based on multidimen-

sional scaling and intrinsic dimensionality algorithms.

Multidimensional scaling and parametric mapping are tech-

niques for finding a configuration of data points in the

smallest dimensional space that, according to some defined

error criterion, preserves the local structure of the points

in the original n-dimensional space. It is possible that the

data may tend to lie on a curve in the n-dimensional space;

estimation of the parametric form of this curve would

indicate the intrinsic dimensionality of the collection of

data points.

These nonlinear mappings have been the subject of some

investigation during the past few years [Bennett (1969),

Calvert and Young (1969), Sammon (1969), Fukunaga and

Olsen (1971), Trunk (1972), and Olsen and Fukunaga

(1973)]. The basic ideas and references on these mappings

were briefly summarized in Kanal (1972). Some recent

contributions aimed at simplifying or improving nonlinear

mapping algorithms are mentioned next.

Sammon’s nonlinear mapping algorithm [Sammon

(1969)] involves computing all the K(K — 1)/2 interpoint

distances in the lower-dimensional space. In Chang and

Lee (1973) simultaneous adjustment ofall the K points to

minimize the error function is replaced by a heuristic

relaxation procedure in which a pair of points1s adjusted

at a time.

Iterative algorithms for nonlinear mapping must be

repeated for new data points. A noniterative nonlinear

mapping is proposed in Koontz and Fukunaga (1972).

Noniterative procedures, using K-L expansions for local

regions, have also been proposed for estimating the in-



trinsic dimensionality of the nonlinear surface on which

the data may lie [Fukunaga and Olsen (1971) and Olsen

and Fukunaga (1973)]. The local dimensionality estimation

could be affected by noisy data samples being distributed

abouttheir intrinsic dimensional surface, rather than falling

exactly on it. In Fukunaga and Hostetler (1973), a method

for density gradient estimation is presented, and it is

suggested that the samples be moved according to the

density gradient so as to condense them onto an intrinsic

dimensional skeleton.

Iterative nonlinear mapping algorithms have often been

useful for representing pattern data in a lower-dimensional

space. Whether or not the noniterative procedures men-

tioned here truly improveexisting implementations of non-

linear mapping and intrinsic dimensionality estimation

remainsto beseen. |

Representations Enhancing Separability

Instead of the information preserving aspects of K-L

representations, Fukunaga and Koontz (1970) emphasized
the extraction of eigenvectors that enhance class separ-
ability. This was done by finding the linear transformation
that when applied to the autocorrelation matrix of the
mixture of the two classes gives an identity matrix. Then
after rank ordering the eigenvalues for class 1, one has
1S 4,0 22,9 >--->14,9 >0 and for class 2,
A = 1 — A{?. The recommendation that |2; — 0.5] be
the criterion to select the eigenvectors to be used as features
has been disputed in Foley (1973) where a three-dimensional
two-class counterexample is presented. In this example,
there is complete overlap between the two classes along
two of the dimensions with very little overlap in the remain-
ing dimension, and it is shown that the Fukunaga—Koontz
ranking procedure leads to the two features with zero
discriminating power being given the same weight as the
one feature that provides high discrimination. As an al-
ternative, a generalization of an optimal discriminant plane
[Sammon (1970)] is recommended.

Let

d(X0 — YO

d'Ad

where d is the (column)vector (of direction cosines) repre-
senting the direction on which the data is to be projected,
(X™— X))is the difference between sample meanvectors
for the two classes, and A = cW, + (1 — c)W,, where
0 <c <1 is a weight constant and W,, i = 1,2, is the
within-class scatter matrix for class i. Orthogonal dis-
criminantdirections are obtained by maximizing this *“gen-
eralized Fisher ratio” and successively constraining each
discriminant direction to be orthogonal to the previousset
of discriminant directions. Foley (1973) presents examples
in which this “discrim-vector” approach is superior to the
Fukunaga—Koontz method.
For the multiclass case most of the work haseither cast

the M-class problem as M(M — 1)/2 two-class problems or

employed multidimensional scatter ratios popular in clas-

sical statistical multiple discriminant analysis [Duda and

iC 
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Hart (1973)]. While based on linear operator theory, the
attempt in Watanabe and Pakvasa (1973) to systemize the

generation of orthonormal feature spaces for the multiclass

problem, such that separability of the classes is emphasized,

is different. Additional investigation is needed before its

usefulness can be assessed.

Distance Measures and Error Bounds

If classification rather than description of patterns is the
goal, the ultimate test of a set of features is their contribu-

tion to the Bayes error probability. The aim of feature

selection is to reduce the number of features without ad-

versely affecting error performance. Unfortunately, in most

situations, even if the class conditional densities are known,

a straightforward analytical relationship between the Bayes

error probability and the features used is not available.

Hence, various measures of information and distance have

been proposed to measure the effectiveness of a given set

of features. The majorresults relating such measures to the

Bayes error probability are summarized in Table I.

The primary utility of the distance measures and corre-

sponding boundsin Table is for theoretical investigations.

For example, the Bayesian distance and related bounds led

Devijver (1973) to a theoretical justification for the least

mean-squared error (LMSE) as a feature selection and

ordering criterion [Wee (1968)] and to the relationship of

the LMSEcriterion to the nearest-neighborrule. Of course,

like the nearest-neighbor (NN) rules, the relationships

derived from these bounds represent asymptotic results.

Despite the many papers published in this area, the net

result of the extensive investigations on distance measure

bounds for P, seems to be that one should try to estimate

the error probability itself in some direct manner.

Subset Selection and Heuristic Search

The feature selection problem can be viewed as a (com-

binatorial) optimization problem requiring a criterion func-

tion and a search procedure. All the literature on feature

subset selection can be described in these terms. Some of the

procedures were suggested years ago. I will cite here a few

recent papers that illustrate the procedures.

In diFigueredo (1974) the probability of misclassification

is the criterion functional to be minimized. Within a class

of transformations that could include nonlinear transforma-

tions, the optimal transformation from the initial space to

a feature space of prescribed lower dimensionis determined,

such that the increased misclassification error in the lower-

dimensional space is minimized. The iterative algorithms

presented are computationally much more complex than

corresponding iterative algorithms for the Bhattacharyya

bound [Decell and Quiren (1973)]. The kK-NN bound was
suggested as an evaluation criterion in Cover (1969) and

used in Whitney (1971). Average information content

T(QLXY) = AQ) — H(QLX) was suggested for feature

evaluation at least a decade ago. Experiments with this

measure in different contexts continue to be reported[e.g.,

Simon et al. (1972) and Michael and Lin (1973)]. The

divergence is another measure with a long history [Kailath
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TABLEI
DISTANCE MEASURES AND ERROR BOUNDS

Name Expression Relationships

Bayes error probability P, =

1) Equivocation or Shannon
entropy

H(Q|X)

2) Average conditional quad-
ratic entropy [Vajda (1970)]

3) Bayesian distance [Devijver BQIUX) = E . P, 2Bayesi (Q|X) [2| olor}

4) Minkowski measures of non- P, (w;|x) — -
m

inkow , M(Q|X) = E{y
uniformity [Touss.aint (1973)] i=1  

5) Bhattacharyya bound [see
Kailath (1967)]

6) Chernoff bound [see Kailath C(Q\|X;s) = E{[P,(wi|x)'~s -
(1967)]

7) Kolmogorovvari:tional
distance [see Kailiuth (1967)]

8) Generalized Koln: ogorov
distance [Devijver (1974),
Lissack and Fu (J 973)]

9) A family of approximating 0,(Q|X) = 4 — EP.|x)
functions[Ito (1972)]

10) The Matusita dist.ince [see
Kailath (1967)]

E|— ¥. Psowilx) log P,0vlx)|

MOIX) = E|X Pwlxl — Pow]

2(k+—

 

P,(w2|x)

JAQ|X) = E{|Pwi|x) — PrQw2|x)|"},

y= [ftom - peelwad? dx]

1 — ,_max [Pip(X|w,)] dx
x («tl

m Class Bounds

3f1 — BOQ|X)]

 mB(O|X)1)— m— 1< (1 - VB@i)]s™—— [1 - [EO

IA Pe < [1 — BQ|X)]

HOLX) = Rw = == — mai);
P. < “ee < Rxnn < coe cs Ronn < Ryn

{see Cover and Hart (1967) and Devijver (1974)]

Two Class Bounds

B(Q|X) = EXLP.w,|x) » Pe(w2|x)]"7}
m m

multicategory error: P,.< >) > P.(wi,wy);
i=1 j=it+t

41 — [FZ(Q|X)]3 < Pe Ss HI — J(Q|X)},
fora > 1;

upper bound equals [1 — B(Q|X)], when a = 2;

On+1 < Qn3 Qo = 1 — B(Q\X);

K(Q\X) = 4E{|P.wi |x) — Pp(w2|x))}

0<a<a@

_ (w2 |x)]2"+ 1)/2n+ 14]

y gives the same bound as b(Q|X);

two-class bound relations:

P. < O,(Q\X) < Ql(Q|X) < FHOQ|X) S JOQ[X)

[see Ito (1972) and Hellman and Raviv (1970)]

 

Notation: Q = (wi, i := 1,2--:m;2 < m < ©)—aset of pattern classes; P; is an a priori probability of class w,;; X is a n dimensional vector

random va<iable; S, is a sample space of X; p(X|w,) is a conditional probability density function; P,(w;|X) is a posterior probability

of class w, conditioned on X; f(X) = X™, P;p(x|w,—the mixture distribution; E is an expectation over S, with respect to f(X);

Rynis an rnclass infinite sample nearest-neighbor risk; Rxnn is a k nearest-neighborrisk.

(1967)] on which experiments continue to be reported. Only

for a few distributions is it possible to obtain analytical

expressions for the distance measures of Table I and use

them in feature selection. It is also generally necessary to

estimate the distri>utions.

It is an annoyirig fact that the set of K individually best

discriminating features is not necessarily the best discrim-

inating feature set of size K, even for the case of (condi-

tionally) independent features [Elashoff et al. (1967),

Toussaint (1971), and Cover (1974)]. Unfortunately, the

only way to ensur that the best subset of K features from

a set of N is chosen is to explore all (%) possible combina-

tions. Since this .; usually infeasible, various suboptimal

search procedures are used.

A search proceilure which has been used much in the

past is the “forward sequential’ selection procedure in

which the best individual features are chosen on thefirst

round, and then the best pair including the best individual

feature are chosen, etc. An example of the use of this

selection procedure is the experimental comparison of seven

evaluation techniques in Mucciardi and Gose (1971). A

much used counterpart to forwardselection is the sequential

rejection procedure in which one finds the best set of

(n — 1) features by discarding the worst one, then the best

set of (n — 2) among the preceding (n — 1) selected features

is chosen, etc. The dynamic programming formulations for

feature selection presented in Fu (1968), Nelson and Levy

(1968), and Chang (1973) translate problems of feature

selection into the notation of dynamic programming.

Other systematic approaches to feature subset selection,

which arelikely to receive attention in the near future, are

suggested by the possibility of posing many problems in



pattern classification as graph searching problems. Branch

and bound algorithms [Lawler and Wood (1966)] and
heuristic search algorithms [Hart, Nilsson and Raphael
(1968) and Nilsson (1972)] can be applied not only to clus-
tering [Koontz et al. (1974)] but also to reducing the search

involved in feature subset selection. Simple heuristic search

procedures have been used with automatic feature genera-

tion procedures in Becker (1968) and Simonet al. (1972).

The usefulness of the result, whether in feature generation

or feature reduction, is, of course, dependent on the

appropriateness of the evaluation function used in the

search procedure.

Further Comments on Statistical Feature Extraction

The preceding approaches to feature extraction and

evaluation start with the patterns as points in a multi-

dimensional measurement space that has somehow been

defined. The statistical procedures then act as if relation-

ships such as joint probability distributions, interpoint

distances, and scatter matrices were the only relationships

that mattered in defining patterns and their class member-

ships. All the optimization, with respect to variouscriteria,

glosses over the fact that the initial representation space

(and the “semantic coordinate space’’) has nothing optimal

about it but was arrived at arbitrarily by some accepted

convention, or by a combination of intuition, problem

knowledge, etc. There is no guarantee that with the repre-

sentations chosen in a given situation the minimum achiev-

able error will be acceptably low.

The initial representation space and the features selected

must be iteratively refined in terms of one another and the

classifier as described in Section IV; the proper role of the

feature extraction, evaluation, and selection proceduresde-

scribed in this section is that of intermediate tools or sub-

routines in such a recursive interactive design procedure.

VI. DIMENSIONALITY, SAMPLE SIZE, AND ERROR ESTIMATION

For feature selection and classifier assessment, estimates

of the Bayes error probability are of interest, as are estimates

of the probability of misclassification of any “suboptimal”

classifier that is used. Very often, little is known about the

underlying probability distributions, and performance must

be estimated using whatever samples are available. In this

context various questions arise concerning the relationships

between the number of features, the limited size of the

sample, the design of the classifier, and the estimation ofits
performance.

The questions and the answers available to them in 1968

were discussed in Kanal and Chandrasekaran (1968); see

also Duda and Hart (1973). Here we summarize some

recent results concerning:

1) quantitative estimation of the bias in the error estimate

based on the design sampleset;

2) whether statistical independence of measurements

allows performance to be improved by using addi-

tional measurements;

3) how to best use a fixed size sample in designing and

testing a classifier;
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4) comparison of error estimation procedures based on

counting misclassified samples with nonparametric

estimation of the Bayes error probability using density

estimation techniques;

5) use of unclassified test samples in error estimation.

“Testing on the training set’? and “resubstitution”’ are

names for the approach in which the entire set of available

samples is first used to design the classifier, and future

performanceis predicted to be that obtained on the design

set. The well-known optimistic bias of this approach was

confirmed by various theoretical and experimental demon-

strations [Hills (1966) and Lachenbrach and Mickey (1968)].
A classical alternative is the sample-partitioning or “hold-

out”? method, whereby some samples are used to design the

classifier and the remaining to test it. Usually half the

samples are held out. An attempt [Highleyman (1962)] at

analytically determining the optimal partitioning in order

to minimize the variance of the estimated error rate has been

shown [Kanal and Chandrasekaran (1968)] to rest on shaky

assumptions. Based on experimental comparisons reported

in Lachenbruch and Mickey (1968) and elsewhere, the con-

clusion at the end of 1968 seemed to be that one should use

the “‘leave-one-out’? method. In this method, given N

samples, a classifier is designed on N — 1 samples, tested

on the remaining sample, and then theresults of all such

partitions of size N — 1 for the design set and onefor the

test set are averaged. Except in some special cases, this

method takes N times the computation of the hold-out
method.

In Glick (1972) it is shown that the resubstitution method

is consistent for general nonparametric density estimation

schemes, and Wagner (1973) proved that the leave-one-out

method is consistent in the nonparametric case under

certain mild conditions. As pointed out in Foley (1972),

even if a sample partitioning scheme is used during the

experimental phase of designing a classifier, the entire set

of samplesis likely to be used for the final design. Thus one

would like to know the conditions under which the estimate

using resubstitution is a good predictor of future per-

formance, and the relationship between that and the optimal

probability of error achievable by a Bayesclassifier.

For two multivariate normal distributions with equal

known covariance matrices and estimated mean vectors,

Foley (1972) derived the amountof bias of the resubstitution

estimate as a function of N/L, the ratio of the number of

samples per class to the number of features. The practical

qualitative recommendation that emerges from the analysis

and simulations is that if N/L is greater than three, then

(for the case considered) the expected error rate, using the

resubstitution method, is reasonably close to one with an

independenttest set. An approximate upper boundof 1/8N

for the variance of the design set error rate suggests that

even if just a few features are used, there must be enough

samples per class to get a good low-variance estimate of

the error rate. Thus, for NV = 50, regardless of the value of

the expectation of the design set error rate, the variance is

bounded above by 0.0025. In addition to this, the analysis
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in Foley (1972> reinforces a well-known result, viz., that by
adding more ard morefeatures one can keep on decreasing
the error rate on the design set and yet have the additional
features provide no additional discrimination ability on
independent test samples.
As mentioned in Kanal and Chandrasekaran (1968), the

less that is known about the underlying probability struc-
ture, the larger is the ratio of sample size to dimensionality
that is needed. This is borne out by the analyses and results
in Mehrotra (1473), which extended the investigation of the
N/L ratio in Foley (1972) to the case where the common
covariance matrix of two multivariate normal distributions
is no longer assumed knownbut has to be estimated from
samples. The nature of the results is similar to those in
Foley (1972) but now, even for a N/L ratio aslarge asfive,
the expected probability of error on the design set is shown
to be considerably optimistically biased. The results of
Foley and Melirotra are based on certain expansions, ap-
proximations, «nd simulations and are meant to provide
insight and rules of thumb for practice. They lead to the
conclusion that the larger the ratio of training sample size

to feature set dimensionality, the better is the error estimate

obtained from the training set. Furthermore, a sufficiently

large number o* samples per class is required in order to

have a low-vari:.nce error estimate.

What about t1e numberof features? That is, for a given

finite design sample size N, is there an optimal measurement
complexity? Experimentally it has often been observed,

given finite training sets, that as the number of measure-

ments is increa‘ed, the performance of the classifier first

improves, later reaches a peak, and finally falls off. The

analyses in Hugies (1965) and Chandrasekaran and Harley

(1969) convincingly demonstrate that, in general, there does

exist an optim: measurement complexity at which the

mean classificat:2n accuracy peaks andthat the value ofthe

optimal measur::‘ment complexity increases with increasing

sample size. Later, the effect of constraining the measure-

ments to be statistically independent was examined in

Chandrasekaran (1971) and Chandrasekaran and Jain

(1973). In the first paper, Chandrasekaran studied the

optimal Bayesian decision function for the case of inde-

pendentbinary variables, with class conditional probabilities
{pi(1 — p;} and {q;,(1 — ¢;)} under class one and class

two, unknown and to be estimated from finite samples

from the two classes, using uniform a priori distributions
for p; and qg;. His conclusion was that in this case the mean

probability of correct classification monotonically increases

with N, the nuriber of measurements, giving perfect clas-

sification as N — oo. The resulting conjecture that in-

dependence of :neasurements guarantees an optimal mea-

Surement compexity of infinity was proved invalid in

Chandrasekarar. and Jain (1973). This second paper

presents necessa‘y and sufficient conditions to test whether
or not the number of measurements in the statistically
independentcas:: should bearbitrarily increased. From this

work and from thefeature selection example in Elashoff et

al. (1967), one learns that statistically independent variables
can behave mor: strangely than one might suspect.

The qualitative practical conclusions to be drawn from
the aforementionedinvestigations on dimensionality, sample
size, and expected performance seem to be the following.
Depending on the probability structure, our degree of
knowledge about it, and the estimation procedure used:
a) there exists a lower limit on the number N of design
samples per class needed to achieve a low enough variance
for the error estimate; b) the ratio of N to the dimen-
sionality L must be “large enough”if we are to get a good
estimate of the average probability of misclassification;
c) for the given sample size there is an optimalvalue for L,
1.€., an optimal measurement complexity consistent with
N/L that satisfies b). These conclusions do not, of course,
hold for the case of completely knownstatistics but the
latter would be a fortunate situation enabling the use of
simple statistical methods. It is apparent that only the
surface has been scratched thus far, and the phenomena of

dimensionality, sample size, and optimal measurement

complexity need to be quantitatively investigated in a

variety of contexts not hitherto examined.

Next consider how best to use a given fixed sample of

size N in designing andtesting a classifier. Toussaint (1974)

gives an extensive bibliography on this and related topics

in the estimation of misclassification. With the “rotation” or
II method recommended there is a compromise between

the hold-out (7) method and the leave-one-out (U) method.

It consists of partitioning the total set of N class tagged

samples into a test set {X},"s = {X,,-::,X,}, where
1 < k < N/2, N/k an integer, and a training set {¥},7" =
{X,41,°'',Xy}; and then training the classifier on {X},7"
and testing it on {X},7* to get an error estimate denoted by

P.[11];. The procedure is repeated with additional disjoint

test sets {X},"5, i = 2,---,N/k and correspondingtraining
sets, and the average over the various disjoint test sets

results used for the expected error, ie., E[P,(I1)] =

k/N>N* PTI]; With k = 1 this is the leave-one-out
method, and with k = N/2 this gives a version of the

hold-out method well known instatistics as cross valida-

tion in both directions [Mosteller and Tukey (1968)]. The

rotation method is also related to the “‘jackknifing”’ pro-

cedures described in Mosteller (1971).

The average resubstitution error rate E{P,(R)} provides

a lower bound onthetrue error probability while the other
approaches yield upper bounds. In the graphs in Foley

(1972) one finds that an average of the design set andtest

set results gives a good estimate of the true error prob-

ability. This leads Toussaint (1974) to recommend the

estimate

P.* = aE{P(T)} + (1 — a)P(R)

where 0 < « < 1 is a constant depending on the sample

size N, the feature size L, and the test set size k. In

Toussaint and Sharpe (1973)it is reported that experimental

work with a = 1/2, k/N = 1/10, and N = 300, led to P,*
essentially equal to P,(U). To compute the leave-one-out

estimate P,(U) would take 300 training sessions, while to
compute P,* takes only 11 training sessions, one for P,(R)
and ten for E{P,(I1)}.



Estimation of the Bayes error probability using classified,

i.e., class-tagged design samples but unlabeled test samples

has been investigated in a number of papers. These in-

vestigations use a result of Chow (1970) that, for optimal

classification involving a reject option, a surprisingly simple

fundamental relation exists between the error and reject

rates. In a Bayes strategy, the conditional probability of

error 1S

Pip&{X)

F(X)

where f(x) is the mixture density >°; P;p,(x). With rejection

allowed, the optimum strategy is to reject whenever

r(X) > t, where ¢ is the rejection threshold, and decide as
before, otherwise. The reject rate R(t) = Pr[r(X) > t] =
1 — G(t), where G(t) is the cumulative distribution func-

tion (cdf) of r(X). The error rate is then given by

r(X) = | — max
i

t

| y AR(y).
0

A plot of this relationship gives an error-reject tradeoff

curve the slope of which at a given point is the rejection

threshold. Chow (1970) noted that this simple integral rela-

tion allows the error rate and tradeoff curve to be determined

from the empirically observed reject rate function R(t) on

unlabeled samples; it can also be used for model validation

by comparing the empirical error-reject tradeoff curve with

the theoretical one derived from the assumed P; and p,(X).

This latter idea was applied in Fukunaga and Kessel

(1972), which pointed out that the suggestion was equivalent

to a goodness-of-fit test for the distributions G(t) or R(f).

One of the methods examinedis a test based on the expecta-

tion of the conditional probability of error r(X); E{r(X)}

is just the Bayes error probability P,, without the reject

option. For the M-class case, the estimate

EQ) = | ye) = -
0

bE=1L¥ ww
N, x rd

based on N, independent unlabeled samples from the mix-

ture density f(X), has a variance at least P,/M less than the

variance Pl — P,) of the estimate based on counting

misclassified labeled test samples. This paradoxical be-

havior, whereby one gets a better estimate by ignoring the

class tags on test samples, is attributed to the fact that the

error count estimate gives a binary quantization of the

error on a test sample, while r(X;) assigns a real value.

The application in Fukunaga and Kessel (1972) of

optimum error-reject rules to two-class multivariate normal

problems, for equal and also unequal covariance matrices,

provides some interesting comparisons with the work of

Foley (1972) and Mehrotra (1973) described earlier, and

the remarks made in Kanal and Chandrasekaran (1968)

concerning the role of structure.

For the equal covariance case with sample means and

sample covariance estimated from a total of N, + N, = N,

design samples, the analysis in Fukunaga and Kessel (1972)

suggests that N,/L should be ten or greater in order for

mean performanceto reasonably approximate the optimum.
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In terms of number of samplesperclass, this suggestion 1s

consistent with Mehrotra (1973), although the latter’s result

was obtained by a different approach not involving the

reject option.

For the unequal covariance case with unequalas well as

equal mean vectors, simulation experiments in Fukunaga

and Kessel (1972) showed that the results still depended on

the ratio of the number of samples per class to the feature

dimensionality but that an even larger number of design

samples is needed. Also, with estimated parameters the

true error rate is greatly underestimated by the error rate

calculated from the empirical reject function. The article
concluded that ‘“‘using the empirical reject rate to predict

error rates can produce very inaccurate results if the model

used in the classifier design is inaccurate.”

Asnoted earlier, the asymptotic error rate of the nearest-

neighbor classification rule provides a bound that is as

close or closer to the Bayes error probability than any of

the other bounds. Cover (1969) proposed that the numberof

misclassified samples when using a nearest-neighbor clas-

sifier be considered as an estimated bound for the Bayes

error probability. As the total number of samples asymp-

totically increases, for increasing k, the k-NN rules do

provide increasingly better asymptotic bounds on the Bayes

error probability. Cover’s suggestion was followed up in

Fralick and Scott (1971) and Fukunaga and Kessel (1973),

where nonparametric estimation of the Bayes error prob-

ability was investigated via a) error rates resulting when

k nearest-neighbor classification was used, and b) error

rates of approximate Bayes decision rules based on es-

timated density functions obtained by using multivariate

extensions [Murthy (1965)] of Parzen estimators [Parzen

(1962)].

Fukunaga and Kessel (1973) used labeled design samples

and unlabeled test samples. For a test sample X; from

the test set of N, unlabeled samples, consider its k nearest

neighbors among the design set N,. Of these k neigh-

bors, let k, be from class w, and k, from class w,, andlet

r,(X) = min {k,/k, k,/k}. Then the sample mean EF, =

1/N, >, 7,(X;) has an expectation that is a lower bound
on the Bayes error. An upper bound is obtained from an

unbiased estimate of the conditional k nearest-neighbor

error. For N, very large, the average of the lower bound

r,(X) and the upper bound, over the unlabeled samples,

gives a good experimental estimate for the Bayes error.

The use of unlabeled test samples results in a lower variance

for this estimate than an error estimate based on labeled

test samples.

The results in Fukunaga and Kessel (1973) and previous

results in Fralick and Scott (1971) suggest that for a small

number of design samples the approach using Parzen

estimates performs better than the k nearest-neighbor

procedures. Further comments are madein Section VII.

When designing a pattern classification device, it Is

expected that a large labeled design set will have to be

gathered. These results suggest a way of estimating the

minimum probability of error that is achievable with a
given set of features, without having to also label a large
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set of test saniples. The labeling oftest samples is not only
expensive but can often be an additional source of error,
as has been found in some medicalapplications.
The investigations into dimensionality, sample size, and

error estimation described in this section represent perhaps
the most useii1l research in statistical pattern recognition
during the period 1968-1974. Although incomplete, they do
provide rules of thumb and guidance for designing pattern
classification systems and analyzing their experimental
performance.

VII. STATISTICAL CLASSIFICATION

The basic a:sumption underlyingstatistical classification
is that there exists a multivariate probability distribution
for each class.Membersof a pattern class are then treated as
samples from a population, which are distributed in a
n-dimensional feature space according to the distribution
associated with that population. For two classes an observa-

tion x on the vector random variable X representing the

features is treated as coming from one of two distributions
F, or F3.

This theoretical framework leads to subcategories ranging

from complete statistical knowledge of the distributions to

no knowledge except that which can be inferred from

samples. The s1bcategories are

a) known distributions;

b) parametric families of distributions for which the

functiona! forms are known, but somefinite set of

parameters need to be estimated;

c) the nonpzrametric case in which the distributions are

not known.

Under b) and ¢) there are the possibilities that either some

sample patterns of known classification are available, or

unlabeled samples are available.

The subcateyories a), b), and c) were discussed in Fix and

Hodges (1951) and by various other authors in statistics.

In Ho and Agrawala (1968) the basic categorization scheme

was enlarged to include the additional aspect of unlabeled

samples. The j:aper surveyed work onstatistical classifica-

tion algorithm: presented in the engineering literature on

pattern recognition through early 1968. Some topics under

categories a) arid b) that were considered in some detail are

sequential and nonsequential statistical decision theoretic

algorithms, recursive Bayesian procedures for “learning

with a teacher’ when labeled samples are available, and

the Bayesian formulation of “learning without a teacher”

when unlabelei| samples are available. Under category c)

the paper described: algorithms for learning the coefficients

of linear decision functions based on iterative deterministic

optimization rocedures for solving linear inequalities

under some criterion function; extensions of these pro-

cedures to desl with nonlinear inequalities or piecewise

linear inequali:ies; algorithms based on stochastic approx-

imation methods to find the coefficients of orthonormal

series represenations for the difference between the un-

known a posteiori probability distributions for each class;

and someclust:-ring algorithms for unlabeled samples. Also

11

mentioned wastheresult in Cover and Hart(1967) that for
an infinite sample size, using the nearest-neighbor rule for
classifying a sample leads to an error rate that is never
worse than twice the Bayes error probability.

In the period since 1968, papers on classification under
subcategories b) and c) for labeled and unlabeled samples
have continued to appear; a survey ofstatistical classifica-
tion similar to that in Ho and Agrawala (1968) could now
easily be the sole topic of a very long journal article.
However, the majority of recently published booksin pat-
tern recognition devote almost all their attention to statis-
tical classification, estimation, and clustering procedures,
and some of them, Duda and Hart (1973) in particular,
provide very good surveys of the literature on these topics

through early 1972. Thus I have limited the scope of this

section to 1) some recent references and surveysforstatis-
tical classification procedures that derive from approaches

covered in earlier surveys, and 2) brief descriptions and

comments on somerecent contributions. Under 2) I focus —

on topics in nonparametric classification. In recent years,

this is the category of classification procedures that has

been of greatest interest for work in pattern recognition.

Some Recent References

Prior to 1968 algorithms for the optimal solution of linear

inequalities were often proposed in the pattern recognition

literature. Papers on this topic continue to appear regularly.

A recent example is Warmack and Gonzalez (1973) that

claims to have the first direct algorithm, not based on

gradient optimization techniques or linear programming,

for the optimal solution of consistent and inconsistentstrict

linear inequalities. An accelerated relaxation-based pro-

cedure for finding piecewise linear discriminant functionsis

described in Chang (1973).

Many papers on decision-directed learning and on

various other unsupervised learning schemessuchaslearn-

ing with a “probabilistic teacher” and learning with an

“imperfect teacher” have appeared since 1968. In Agrawala

(1973) schemes for learning with various types of teachers

are reviewed, and simple block diagrams are presented to

reveal their interrelationships.

For learning with various types of teachers and for many

other problems in statistical pattern classification, e.g.,

automatic threshold adjustment, taking context into ac-

count, intersymbolinterference, and distribution-free learn-

ing, at least conceptually, compound decision theory

provides an integrated theoretical framework. A_ brief

tutorial exposition of compound decision theory procedures

appears in Kanal and Chandrasekaran (1969); see also the

comments in Cover (1969) and the extended presentation in

Abend (1968). In pattern recognition, examples of recent

papers based on compounddecision theory approachesare

Welch and Salter (1971) and Hussain (1974). The optimal

processing algorithms based on these approaches are

generally unwieldy, and many approximations must be

invoked.

Complementing the surveys of clustering presented in the

pattern recognition literature is an excellent survey [Har-
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TABLEII
NonPARAMETRIC PROBABILITY DENSITY FUNCTION EsTIMATORS [SEE COVER (1972)]

 

Formulation

f(X) density function; X1 +++ Xn-°> (independently

 

 

 

 

where k, iS an integer n, d(n) is the distance to
the k,th closest sample point from x

tigan (1974)], which provides many interesting recent

references not cited in pattern recognition books and

articles. The author aptly describes the present status of

clustering theory as chaotic and says

the probabilistic and statistical aspects of clustering are

still immature, the principal body of knowledge being

clustering algorithms which generate standard clustering

structures such as trees or partitions from standard forms

of input data such as a distance matrix or data matrix.

Dissatisfaction with heuristic approaches has led to some

theoretical analyses of clustering. A recent reference is

Wright (1973), who attempts an axiomatic formalization

of clustering.

Some recent papers have considered the comparative

evaluation of alternative discrimination procedures, a topic

that is of direct interest to pattern recognition practice.

In Moore (1973), five discriminant functions for binary

variables are evaluated. These are the first- and second-

order Bahadur approximations, linear and quadratic dis-

criminant functions, and a full multinomial procedure

 

No. Estimator identically distributed random variable) Comments

. 1 .

1 Histogram partition real lineinto sets S1552,° °°, let g(x) be variance > Oas =? unbiased

indicator function for i, then 1) selection of S;’s and their numberis arbitrary

. k iz 2) results in piecewise constant fn(x)

fo = Dad Y ale}
i Nj=1

k

.

2 Orthogonal function fix) = YX CWC) 1) reduces to histogram approachif v1 = 91
i=1 2) possibility of negative values for f,(x) exists

where 3) scale of w; must be selected before the datais observed

a 1 2 [see also Crain (1973)]

C,{= - > wi(x,)n j=

which minimizes

Jr = | (0) — Aoy? ae

f ~~ _ - h? u"

3 Rosenblatt estimator fix) = Linx + 2) ah F(x

—

MI Ef.(x) = f(x) + ef (x) + o(h*)

5 4 1where ; EAC) — fey? = E2 + Eisreor + 0 (5; + A)
lo, 2hn 36 nh

F(x) == g(x — x;)n=

wa . fl, x20

F(X) = ff x <0

4 Parzen estimator f(x) = 1 y K (* —_ unbiased
" h(n) ;= h(n) ; 1 1 x — x1\\?L i

var (f,(x)) < = (Fp K( ))
K is bounded, absolutely integrable Kernel n \A(n) hn

function 1

IxK(x)| 0 as |x| > 0 rate of convergence ¥ * (depends on continuity off)

[ Koay = 1

5 Loftsgaarden and f(x) = ky/n if k, > 0, Kn > 0

Quesenberry 2d(n) n

=> consistent estimate

based on estimating the class conditional probability dis-

tributions. Among the conclusions drawn is that for binary

variables, the quadratic discriminant function rarely per-

forms as well as the linear discriminant function. This

confirms the experience reported by many persons working

in pattern recognition [Kanal (1972)]. A comparative study

of linear and quadratic discriminant functions for inde-

pendent variables from three nonnormal continuous dis-

tributions is reported in Lachenbruck et al. (1973). Other

comparative studies of some classification procedures are

Gessaman and Gessaman (1972) and Odell and Duran

(1974).

Many of the comparisons in these studies leave one less

than satisfied as to the generality or objectivity of the

conclusion. An objective approach suggested by decision

theory is to develop admissibility criteria that would

eliminate obviously bad algorithms. Admissibility of k-NN

algorithmsfor classification is discussed in Cover and Hart

(1967). In a recent study [Fisher and Van Ness (1973)],
seven seemingly reasonable admissibility conditions were

used in an attempt to compareeightclassification procedures

12
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including k-NNrules,linear discriminant analysis, quadratic
discriminant analysis, and Bayes procedures. Unfortunately,
the approach did not provide much comparative information
about the alternate algorithms.

Nonparametric Classification Procedures

Nonparametric approachesto classification include:

1) linear, nonlinear, and piecewise linear discriminant

functions;

2) stochastic approximation and potential function

methodsfor approximating the decision boundary;

3) clustering prc.edures;

4) density estimation methods for use in an optimal

decision rule;

5) nearest-neighlor classification rules;

6) statistically equivalent blocks;

7) discrete variable methods when there is no inherent

metric.

The basic concepts underlying the first five approaches

are clearly presente! in Duda and Hart (1973) and Fukunaga

(1972). These booksalso briefly deal with discrete variables

and present some series approximations for the joint

probability functio: of binary variables. Extensive develop-

ment and discussion of research contributions to the first

five topics, up to 1972, are presented in Patrick (1972),

which is the onl, pattern recognition book with any

material on the topic of statistically equivalent blocks. In

the following, I briefly describe some recent contributions

to topics 4) to 6) that have not been previously surveyed

and appear to mer:t comment.

Five commonly ised nonparametric probability density

function estimators are examined and compared in Cover

(1972), which gives 87 references on nonparametric density

estimation. Table [I presents a summary of the five es-

timators. The appl cation of B-splines to multivariate pdf

estimation using Parzen estimators is the subject of a recent

dissertation [Bennett (1974)]. B-splines are local rather
than global approximating functions, so that each point in

a set of data point; being approximated with the B-spline

basis functions has influence on a fixed fraction of the

density estimate. For estimating a L dimensional pdf from

nrandom L-vectors of data, Bennett presents an algorithm

that uses a L dimensional density kernel estimator with a

L-fold tensor product of B-splines as basis functions.

The & nearest-nei zhborclass of estimators of Loftsgaarden

and Quesenberry derive from a method of nonparametric

density estimation suggested by Fix and Hodges (1951). In

this approach the volume of the region containing the k

nearest neighbors cf a point is used to estimate the density

at that point. Thus the numberof observations is fixed and

the volume is rardom. This contrasts with the Parzen

estimator approaclin which the volume is fixed and the

number of data pxints is random. This symmetry is sug-

gestive and Fralick and Scott (1971) pointed out that the

need to choose the kernel K and window (weighting) func-

tions / in the Parzen estimator has its counterpart in the

need to choose th: number of nearest neighbors and the

metric in the k near2st-neighbor approach. Using techniques

similar to earlier work on the derivation of the optimum
kernel function for Parzen estimators, Fukunaga and
Hostetler (1973) obtained a functional form for the optimum
kK in terms of sample size, dimensionality, and the underlying
probability distribution. The optimality is in the sense of
minimizing an approximated mean-square error or inte-
grated mean-squareerrorcriterion.
A number of papers, many of them published in this

TRANSACTIONS, have been concerned with the asymptotic
convergence of kK-NN rules and certain variations thereof,
[Cover (1968), Peterson (1970), Wilson (1972), Wagner

(1971), (1973), and Wolverton (1973)]. Of course, the small

sample behavior of any nonparametric decision rule is

problematical. Cover (1969) has conjectured that

The failure of the NN rule score to be nearits limit is a

good indication that every other decision rule based on

the m samples will also be doomed to poor behavior. A

small sample with respect to the NN rule is probably a

smaller sample with respect to more complicated data

processing rules.

The experiments of Fralick and Scott (1971) and Fukunaga

and Hostetler (1973) would not seem to support that con-

jecture, as they appear to favor Parzen estimates. However,

as Cover has pointed out, Parzen estimates involve a

smoothing parameter that the experimenter can adjustafter

looking at the data. My own experimental comparisons,

done in 1964, of nearest-neighborrules with other competing

classification procedures for a specific problem did not favor

nearest-neighbor rules. However, these are isolated ex-

periments, and theoretical analysis and systematic ex-

perimentation are needed to answer questions about the

small sample performance of NN rules and, indeed, all

competing classification procedures.

Other than the early work of Fix and Hodges (1952) for

univariate and bivariate Gaussian distributions, the only

published studies of the small sample performance of the

NNrule seem to be Cover and Hart (1967) and the recent

paper by Levine, Lustick, and Saltzberg (1973), for the case

of samples from two uniform univariate distributions. Not

surprisingly, for this case it is shown that the probability of

misclassification is close to its asymptotic value even for

extremely small samples. An unpublished result by W.

Rogers and T. Wagner has been communicated to me by

one of the reviewers of an early draft of this paper. For

nearest-neighborclassifiers they find that with the leave-one-

out method the variance in the risk estimate is less than

5/4n + 3/n3/? independentof the underlying distribution. A
similar result is claimed for any local classifier. This result is

a nonparametric finite sample size result that should allow

competing classification procedures to be compared using

confidence intervals on the risk estimates.

During the period under consideration, a few papers on

nonparametric classification using distribution-free toler-

ance regions have appeared. Unlike most of the pattern

recognition literature, these papers take a non-Bayesian

Neyman-—Pearson approach to error performance and are

thus of some interest.
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In 1947, J. W. Tukey used the term “‘statistically equiv-

alent block” for the multivariate analog of the interval

between two adjacent orderstatistics; to extend the concept

of orderstatistics to the multivariate case, it is necessary to

introduce ordering functions. Given n observations from a

continuous distribution, the sample space is divided by

these observations into n + 1 blocks. For any block B; the

proportion of the population covered, referred to as the

“coverage,” is treated as the value of a random variable U;,.

Subject to mild restrictions on the procedure used to divide

the sample space, the random variables U,::: U,4, have a

joint distribution that is independent of the distribution

giving rise to the sample observations. The distribution is

the Dirichlet distribution—a uniform distribution over a

set prescribed by simple inequalities. This property of the

coveragesof the (n + 1) blocks leadsto the term statistically

equivalent blocks.

Since the sum of any group of the U; has a beta distribu-

tion, the marginal distribution of the proportion of the

population that lies in a group of the blocks has the beta
distribution. Enough blocks can be chosen to make a

probability statement such as “in repeated sampling the

probability is p that the region R contains at least « of the

population.” Thus a distribution-free tolerance region
whose coverage has the beta distribution can be constructed

in the multivariate case by defining ordering functions to

generate statistically equivalent sample blocks.

In Quesenberry and Gessaman (1968), an optimal pro-

cedure, in the two-class case, is defined to be one that

minimizes the probability of reserve judgment, i.e., rejec-

tion, while controlling the conditional error probabilities

for each class within prescribed upper bounds. The paper

presents a nonparamettic classification procedure based on

forming regions of reserve judgment from intersections of

distribution-free tolerance regions. The choice of the order-

ing functions determines the usefulness of the procedures;

for some families of distributions it is possible to select

ordering functions that will make the nonparametric

procedure consistent with the optimal procedure for the
given family.

In the same context as the preceding paper, Anderson

and Benning (1970) present a suboptimum nonparametric

classification procedure for the two-class problem. In this

paper, the set of ordering functions used to form tolerance

regions for thefirst distribution are based on clusters of the

sample drawn from the seconddistribution, and vice versa.

Hyperspherical (Euclidean distance) and hyperelliptical

ordering functions are suggested to order observations with

respect to cluster means. Note that the general theory of

distribution-free tolerance regions does not consider the

case where the regions corresponding to a distribution

depend on randomness from a source different than the

observations on that distribution. Anderson and Benning

(1970) prove that the theory does hold for this case.

Anearlier paper in this area is Henrichon and Fu (1969).

A recent paper is Beakley and Tuteur (1972), which presents

three ordering procedures to develop nonparametric toler-

ance regions and uses them in automatic speakerverification.
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In Gessaman and Gessaman (1972) reserve judgment pro-

cedures based on nonparametric tolerance regions are

compared with other standard procedures.

For discrete variables satisfying only a nominal scale

(ie., when there is no inherent metric), a switching theory-

based approach is presented in Michalski (1972), (1973)

and Stoffel (1972), (1974). In the past, various similarity

and clustering metrics have been tried for nominalvariables

[Anderberg (1973), Goodall (1966), and Hills (1967)].

Sammon (1971) suggested procedures for transforming such

discrete variables, termed Discrete Type II variables, into

continuous features; the OLPARS Discrete Variable Sub-

system commented upon in Kanal (1972) provides a number

of such transformations. The contribution of Michalski

(1972) and Stoffel (1972) is a feature generation and clas-

sification procedure that generates a small set of n-tuplesfor

discrete nominal variables. These n-tuples, called “prime

events” in Stoffel (1972), are claimed both to fit a specific

class and to discriminate it from other classes.

The independent developments by Michalski and by

Stoffel of essentially the same concepts and procedures

are based on theidea of the “‘cover’’ of two events, and they

are related to work on the synthesis of switching functions

from incompletely specified input-output relations.

Michalski’s work on a “‘covering theory’ approach to

switching andclassification problemspredates Stoffel’s 1972

report, but his formulation, development, and exposition

are imbedded in complex notation. Here I follow Stoffel’s

terminology.

An eventis an n-tuple (x,,x2,'°*,x,) in which a subset

of the elements have specified values, and the unspecified

elements are “don’t care” variables. Event e, “‘covers”’

event e,, if and only if every element of e, which has a

specified value equals the value of the corresponding

element in e,. Thus event e, = (2,-,-°), where - denotes an

unspecified element, covers event e, = (2,1,0) and event

e; = (2,2,:), but e, does not cover e, or e3, and e3 does not

cover e, or e,. A prime event is an event that covers only

those measurement vectors assigned to one class by a

Bayes classifier. Also a prime event is not covered by

another prime event. An algorithm to generate a sufficient

set of prime events that will cover the class is given; the

resulting set may not be the smallest possible.

To accountfor vagaries in the sample, Hammingdistance

is used as a measureofsimilarity between events or between

a measurement vector and an event. Classification is done

by assigning a sample to that class the set of prime events

of which covers the sample vector. If the distance from all

prime events exceeds a threshold, then the sample is

rejected.

The procedure is certainly a systematic approach to the

generating of a small set of good templates. However, it

generates prime events for each class versus the rest of the

classes. It is easy to give examples where by grouping classes

together and usinga tree classification structure one can do

as well with fewer prime events.

The last comment brings up the question as to whether

the complexity of patterns and pattern representation
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schemes can be considered independently of the classifica-
tion structure adopted.

In an essay on the complexity of patterns and pattern
recognition systems [Kanal and Harley (1969)|, it is argued
that complexity of patterns is in the eye of the beholder and
that one can consicler evaluating the complexity of different
patterns with respect to specific beholders, i.e., specific
pattern recognition systems or recognition logics. This is
the approach taken by Minsky and Papert (1968), who
compute the complexity, or what they call the “order” with
respect to single layer threshold logic of a number of
interesting geometrical properties. Various aspects of the
complexity of patterns and pattern recognition systems are
also described heu-istically in Kanal and Harley (1969).
Cover (1973) represents the beginning of an attempt to
obtain a measure «f the intrinsic complexity of a pattern
so that different belolders, i.e., computational systems,will

arrive at the same complexity measure up to an additive

constant. Until such time as this effort succeeds,it is likely
that problem complexity and system complexity will be

matched heuristical y in the manner described in Harley et

al, (1968).

Commentary on Statistical Classification

There has been s me tendency to question, in the name

of practicality and simplicity, the need for further theoretical

studies in the area Dfstatistical classification. No engineer

will quarrel with th: emphasis on practicality and simplicity

but as demonstrate:l by the attempts to compareclassifica-

tion procedures, not having theoretical guidelines makesit

difficult to select lsetween competing techniques without

extensive experimentation. A suitable criterion and analysis

can be used to analytically decide on the best technique

among a set of ad hoc methods. What recent attempts at

comparing classification procedures show is that, if any-

thing, more analy:ical studies are needed so that ex-

perimental compar.sons can be more meaningfully con-

ducted undertheorstical guidelines. The study ofclassifica-

tion procedures needs to be extended to cover the com-

bination of hierarchical classification structures and dis-

criminant procedures commonly employed in practice.

Finally, the proper role of nonparametric procedures is in

the early exploratory stage of a pattern recognition problem.

There is no substiti te for discovering the underlying struc-

ture and taking adantage of it. As an example, the use of

a nonparametric tdlerance region procedure in speaker

verification is warranted in the early phase of an investiga-

tion but for such »roblems considerably more structural

knowledge can be used, and approaches such as those

considered in the next section seem more appropriate.

VID]. STRUCTURAL METHODS

The linguistic approach views patterns as complexes of

primitive structural elements, called words or morphs, and

relationships amon:: the wordsare defined using syntactic

or morphological rules. The primitive structural partsare

perceptually and conceptually higher level objects than

scalar measuremen's. For instance, the gray levels of in-

dividual points of a digitized picture would be too low-level
to be meaningful units of that picture, nor would the
individual amplitude levels of a digitized waveform be
meaningful units for structural analysis.

In practice, the structural approach involves a set of
interdependent processes: 1) identification and extraction
of morphs—this is the segmentation problem; 2) identifica-
tion of the relationships to be defined among the morphs;
3) recognition of allowable structures in terms of the morphs
and the relationships among them. Two-dimensional line
drawings, fingerprints, X-ray images, speech utterances, and
other such patterns that exhibit strong deterministic struc-
ture and for which a priori information in the form of some
model can be easily used, are natural candidates for the
structural approach.

Adhocstructural processing has a much longer history

in pattern recognition practice than statistical methods,

which are based on abstract relationships involving joint

probability distributions and distances in multidimensional
space among sets of scalar measurements. Commercial
print readers involve ad hoc structural processing, and

biomedical programsare usually of this kind.

Muchof the literature on structural pattern recognition

has been devoted to formal methods. Fu and Swain (1971)

surveyed the literature prior to 1970 and the November

1971 and January 1972 issues of Pattern Recognition to-

gether constituted a special issue on syntactic pattern

recognition. Much of the published work ‘on structural

methods for pattern recognition and scene analysis from

1969 to 1973 is mentioned in Rosenfeld (1972), (1973), (1974).

A brief survey also appears in Klinger (1973). A book on

Syntactic Methods in Pattern Recognition has recently been

announced [Fu (1974)].
These general surveys allow us, in this section, to focus

on a few key concepts and differences in approach that

underlie current work on segmentation and structural

analysis. |

Segmentation and Structural Analysis

Pattern description has been viewedeither as two distinct

processes—segmentation followed bystructural description,

or as an integrated process—segmentation-structural de-

scription. The first approach often delegates segmentation

to preprocessing and concentrates on formal models for

structural description which assume that the patterns are

already represented as a segmentedstructure [Evans (1968),

Fu and Swain (1971), and Lee and Fu (1972)].

Piecewise functional approximation is one method for

preprocessing waveform data [Pavlidis (1973) and Horowitz

(1973)]. The data are fit according to an errorcriterion with
line (or polynomial) segments. The output from the pre-

processor is a string oftriples {(x;,y,),4;,B;}, i = 1,°°°,S,

where S is the number of segments, y = A,;x + B; is the

linear approximation to the th data segment, and (x,,y,) is

the right endpoint of the line segment. This string is trans-

lated into the terminal symbols (tokens) of a grammar under

the control of parameters appropriate to the application.

The structural analysis is accomplished bya left-to-right
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Fig. 3. (a) Original generative description of carotid pulsewaves
through B.N.F. (b) Smooth extrema morphsused in pilot pulsewave
analysis and rough extraction procedure. (c) One cycle ofraw carotid
pulsewave data juxtaposed with fitted representation obtained via
parsing.

parser for a grammar that defines more complex relations

among the terminal symbols, for example, several appro-

priate line segments could form a peak.

The advantages of this approach are preprocessing speed,

generality, and the mathematical tractibility that approx-

imation theory provides. However, the approach has more

the flavor of numerical analysis than pattern analysis. This

comment also applies to proposals to use truncated

K-—L series expansions in pattern analysis [McClure (1974)

and Lavin (1972)]. Also such preprocessing usually results

in arbitrary segmentations and requires excessive time for
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scanning and matching of all the data. Furthermore, the

segments extracted may not be meaningfulin the context of

a specific application. In separating the analysis of structure

from the extraction of morphs, each process is excluded

from information available to the other. Thatis, the extrac-

tion of individual morphs must proceed in ignorance of the

a priori combinatorial restrictions known by the structural

component, and the structural component cannot profit

from the intermediate work of extraction.

The alternative approach, integrated segmentation-struc-

tural description, is exemplified by the work of Stockman

et al. (1973), (1974) for carotid artery pulse waveforms and

Miller (1973) and Reddyet al. (1973) for speech recognition.

The salient points of this approach are the following.

a) Knowledge-based segmentation. Thereis a priori knowl-

edge of the possible segments in the data. For example, in

a carotid pulse wave, it is known that an upslope,a trailing

edge, a peak in between, anda dicrotic notch arelikely to be

found; see Fig. 3. Morphs can be defined that are believed

to be of functional importance to the particular problem at

hand and can vary in complexity from local extrema to

exponential segments.

For scene analysis, Tennenbaum (1973), (1974), discusses

the desirability of knowledge-based searchfordistinguishing —

features in preference to scanning the entire scene with

low-level operators. The term ‘‘knowledge-based,” currently

popularin the artificial intelligence (AI) literature, generally

refers to “nonstatistical” a@ priori information, although

statistical information and Bayes’ theorem are now also

acceptable in AI [Yakimovsky and Feldman (1973)].
b) A priori knowledge is represented by means of decision

trees [Narasimhan and Reddy (1971)], graph models and
decision graphs [Harlow and Eisenbeis (1973)], andgrammars

[Stockman (1973)].

c) Several levels ofstructural information are utilized. For

example, for speech recognition the following types of

information have been used.

1) Acoustic-phonetic constraints that limit occurrences

of given phonemes in segments of speech in the

language under study and specify the phonemic con-

tent of vocabulary items.

Syntactic constraints in the form of a grammatical

model that define what word sequencesare allowable

utterances of the language.

Semantic constraints that allow a hypothesized word

sequenceto be referred to a particular problem domain

so that some measure of its reasonableness can be

obtained.

2)

3)

d) Parsing is bottom-up and top-down and non-left-to-

right. In other words, the more prominent morphs are

soughtfirst regardless of their location, and then the gram-

mar is used to predict where other morphsare to be found.

In the case of pulse waves, the most prominent morph might

be the upslope. Having extracted the upslope, a grammar

could be used to predict that the next morph to be scanned

is the trailing edge. Having extracted the trailing edge, the

next morphs to be scanned might be peaks and a dicrotic
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notch between thie upslope and the trailing edge. In this
fashion, the extracted morphs clue the system to the rest
of the structures to be searched andalso allow future search
to be performed overrestricted intervals.

In Miller (1973°, parse trees are “‘seeded”’ byfirst scanning
the entire input 1:tterance for prominent vocabulary items
(usually long words). Words in the local context of those
found are then sought and partial parse trees (PPT) are
assembled anywkere in the input. The PPT represents the
grammatical structure of this part of the utterance, while
the terminals of the tree are words in the vocabulary
believed to exist in the input. PPT’s are enlarged by using
the grammarto guide the search for hypothesized wordsin
the neighborhood of PPT’s and to connect several PPT’s into
one. Analysis cari terminate any time the complete utter-

ance is “‘covered’”’ by some PPT. The bottom-up non-left-

right approachis attractive because of the ability to search

first for reliable n:orphs regardless of location and to guide

future analysis accordingly.

There is an analogous technique to this type of parsing,

when decision trees rather than grammarsare used torepre-

sent the possible s:ructures. In the X-ray analysis in Harlow

and Eisenbeis (1973), one searches for each lung lobe with

respect to those lolves already found beforeit in the image.If

processing leads ‘o an impossible structural outcome, the

analysis is backed up and extraction of morphsis taken up

again. In Narisinhan and Reddy (1971), isolation of a

given morph narrowsthe structural possibilities, while the

present state of structural possibilities dictates the next

morph extraction to be attempted.

The parsing approach can also be top-downandleft-to-

right [Walker (1974), Erman (1974)]. By going top-down

only syntactically and semantically acceptable configura-

tions are considered, and very expensive preprocessing can

be minimized. By going left-to-right, classical parsing

methods can be used and the state of analysis is easily

recorded.

One can define a probability (or fit error) that a given

morph matches a given segment of raw data. This prob-

ability can also t2 backed up a PPT to yield a figure of

merit for a partia) parse. The probability of a PPT can be

changed by “‘semintic conditioning” [Erman (1974)]. By

maintaining this figure of merit for all partial analyses only

the most promisir z ones need to be extended, or in the case

of complete analyses only the most likely cases need to be

accepted.

Pattern Grammars

Much ofthe litzrature on structural pattern recognition
deals with forma. string grammars and their multidimen-

sional generalizations. Recall that one of the reasons for

introducing linguistic methods wasthe limited relationships

handled in statistical pattern classification. However,

phrase-structure s:ring grammars are also severely limited

in the relationships they model. Basically, they deal only

with concatenation of primitives and immediate con-

stituent structure.

According to a 1971 article [Uhr (1971)], past work on

formallinguistic 1ethods for pattern recognition has been

17

either purely theoretical, or merely an incidental portion of
some pattern recognition system, or incomplete in the sense
of never actually resulting in a running program.Asfar as
applications of purely formal syntactic methods are con-
cerned, the situation remainsessentially the same in 1974 as
it was in 1971.

An incomplete effort of some interest (because it deals
with a real problem) is Moayer and Fu (1973), which
describes how a syntactic approachto fingerprintclassifica-
tion might be based on a context-free grammar model. This
is one of the few formal grammar-based efforts aimed at
obtaining a complete analysis from primitive extraction to

classification. It contains: a) a careful study of the data

environment yielding the choice of primitive syntactic

elements; b) the hierarchical syntactic analysis that permits

the one-dimensional concept of concatenation to readily

apply to the two-dimensional representations used; and

c) the “sequential recognition algorithm” that amalgamates

syntactic recognition, primitive feature extraction, and se-

quential decision-making for computational and logical

efficiency. However, no conclusive results have been

reported yet on the performance of the technique.

Theoretical research in syntactic pattern recognition has

been extensive during the past few years. Various gen-

eralizations and new formalisms have been proposed to

overcome some of the limitations of string grammars. For

example, stochastic finite state and context-free grammars

obtained through the specification of a discrete probability

distribution over each set of alternative productions have

been used as a means of accounting for ambiguities of

structure or generation [Fu and Swain (1971)].

We noted earlier the cleavage between the extractor and

analyzer that occurs in formal models. In the work based on

stochastic formal grammars [Fu and Swain (1971) and Lee

and Fu (1972)], while the analyzer is designed to handle

ambiguities of structure there seems to be no provision for

ambiguities of representations handed overby the extractor.

It seems clear that some data objects could be represented by

alternative strings of primitives. Also, because the schemeis

based on string grammars, it is forced to overemphasize the

concatenation relation between primitives.
There have been several proposals for multidimensional

generalizations of phrase structure string grammars. For

example, in array grammars, instead of replacing one sub-

string by another, rewrite rules are defined to replace a

two-dimensional subarray by another subarray. Properties

of array grammars and the relationship between array

grammars and array automata have been investigated in

Milgram and Rosenfeld (1971). In Siromoneyet al. (1973),

rectangular array models are generalized to n dimensions,

and three-dimensional array models are used to describe

the growth of crystals.

Plex grammars [Feder (1969), (1971)] involve primitive

entities called napes. Each nape has a finite number of

attaching points, each of which has an associated identifier.

Napes are combined by bringing attaching points into

coincidence. A picture description language [Shaw (1969,

1970)] can be used to describe pictorial patterns, the prim-

itive elements of which have arbitrary shapes and dis-



tinguished heads and tails. The hierarchic structure of a

picture is defined by using a “picture description grammar”

to combine expressions in the picture description language.

In coordinate grammars [Rosenfeld (1973) and Anderson

(1968)], morphs have coordinatesassociated with them, and

functions that compute the coordinates of the new morphs

from the old morphsare associated with the rewriting rules.

Coordinate grammars have been proposed for the descrip-

tion of mathematical notation, shapes, signs, textures, etc.

[see, e.g., Chang (1970), (1971), Narasimhan and Reddy

(1971), Carlucci (1972), Muchnik (1972), Nake (1971), and

Simon and Checroun (1971)]. Graph grammars model

various arbitrary relational structures among morphs. These

include grammars that generate trees [Brainerd (1969) and

Rounds (1969)] and labeled graphs, called webs [Pfaltz and

Rosenfeld (1969)]. The notion of graph embedding has been

generalized in Ehrig et al. (1973).

Bhargava and Fu (1973) present a schemefor representing

line drawings in terms of trees. A tree grammarthat gen-

erates trees is thus a formal description of the corresponding

set of patterns. Among the examples given are tree gram-

mars for the chemical structure of a natural rubber molecule

and for twoelectrical circuit diagrams. |

There are some problemsin using trees and tree grammars

in the manner of Bhargava and Fu (1973). First, since trees

are acyclic graphs, a single tree cannot completely describe

the connectivity of a closed figure. Second, trees introduce

ambiguity into a pattern that may not itself be ambiguous.

This ambiguity arises because the description of a figure by

means of a tree requires a segmentation of the figure

described, and an ordering of the segments. A different

choice of segments and ordering would result in a different

description of the pattern. Graphs and graph grammarsare

probably more appropriate structures for describing line

drawings because cyclic graphs can completely describe the

connectivity of closed figures, and a graph description need

not order the parts ofa figure.

It has often been suggested that transformational rules

might be just as useful in pattern analysis as they have been

in providing insights into the structure of natural languages.

A transformational grammar is defined as G, = (G,@),

where G is a reasonably simple “‘base’’ grammar such as a

context-free grammar, and @ is a mapping that maps a

structure in G,1.e., a tree, into a related tree. Joshi (1973)

presents a detailed example of a transformational grammar

derivation for a class of polygonal patterns. The example

shows how a context-free base grammar and transforma-

tional rules for deletion of the interior lines of the generated

patterns lead to much simpler derivation than a moredirect

approach involving a context-sensitive grammar.

Bhargava and Fu (1973) also discuss the application of

transformational rules to trees generated by tree grammars.

The paper considers transformations: 1) to duplicate pat-

terns, i.e., to represent complex patterns as a periodic

repetition of some simple pattern and 2) to relate two

occurrences of the same pattern, one of which has under-

gone a shape-preserving transformation,e.g., rotation, linear

translation, or reflection.
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In Tauber and Rankin (1972), it is suggested that the

syntactic structure of chemical structure diagrams be de-

scribed by context-free web grammars or array grammars.

However, there are somerelations between chemical struc-

ture diagrams that cannot be described by context-free web

grammars, for example, the relation between equivalent

structural formulas of the same compound. Transforma-

tional rules can be used to transform equivalent diagrams

into a canonical form, as well as to combine diagrams and

to decompose diagramsinto “‘kernel’ diagrams. These are

the ideas motivating the work of Underwood and Kanal

(1973), which introduces the concept of a transformational

web grammar. Because of the potential of graphs for de-

scribing patterns of practical interest, graph and trans-

formational graph grammarsare likely to receive increasing

attention in syntactic pattern recognition.

LX. APPLICATIONS

It is not difficult to formulate problems from a variety

of fields in the terminology of pattern recognition. While

that need not imply much about how amenable they are to

solution, the terminology and methodology do provide a

common framework for investigators in various fields as

they become acquainted with work in pattern recognition.

Some interesting recent examples are Pang et al. (1974),

in which each set of measurements describing a state of a

power system is treated as a pattern and classifiers, 1.e.,

“security functions” are derived to indicate whether the

system is in a secure or alert state; a dissertation in

economics that shows how certain models proposed by

economists for problems in voting theory and consumer

demandcan beinterpreted and extendedvia the terminology

and methodology of syntactic and decision-theoretic pattern

recognition Piccoli (1974)]; a classification of membersof
defined categories of stochastic nonlinear systems from

input-output data vectors [Saridis and Hofstadter (1973)];

and a use of clustering and discriminant functions to

classify characteristics of jobs received by a large digital

computer in order to develop dynamic scheduling algo-

rithms [Northouse and Fu (1973)].
Over the years certain investigators in chemistry have

been quick to try whatever pattern classification algorithms

happened to be popular, from Perceptron algorithms to k

nearest-neighborclassifiers, on infrared spectrometric data,

NMRspectra, and other chemical data [Kowalski et al.

(1969, (1972) and Kowalski and Bender(1972), (1973)].

Most of these “applications” of pattern recognition in

variousfields have been academic demonstrations that sug-

gest the relevance of the methodology. Similarly, many of

the “applications” reported in the literature by persons

developing pattern recognition techniques are merely in-

cidental to the purpose of demonstrating that a new al-

gorithm “workswell,” with the demonstration usually being

performed on a limited data set. During the past two

decades alphanumeric characters have been the favorite

data for such ‘“‘show andtell’? experiments with new

algorithms.
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The focus of most of the published research in pattern
recognition has bern on techniques. This is very much in
evidence in the books that have appeared in the last two
years. They are almost entirely technique-oriented,giving a
host of techniqueswith little insight into their comparative
utility in different applications. This point is made rather
colorfully in a review [Bremermann (1974) of Andrews

(1972)]: .

While he should not be blamed for the unsatisfactory state

of the art, he can be blamed for not making any attempt

to convey to the reader a sense of the effectiveness and

ineffectiveness of his methods. There are almost no ap-

plications (of 242 pages, only 6 are concerned with actual

pattern recognition experiments). Thus a new sacred cow

of mathematical rnachinery is created—its priesthood will

probably make a good academic living regardless of
whether the cow gives any milk.

Similar comments were also made until recently about

information theory but one hears them less often now.

The blame for the state of affairs decriedby Bremermann

lies in part with the fact that the developmentoftheoretical

and heuristic insights, which are relevantto practical applica-

tions, requires the type of interaction between theoreticians

and experimentalisis that is very evident in physics. In

pattern recognition. from time to time, such interaction has

been fostered in ind istrial and government research labora-

tories by organizations interested in applications, such as

optical character recognition, target recognition, electro-

cardiograms, and b oodcells. For the most part, however,

technique developrent has occurred without much feed-

back from experiments, since meaningful experimentation

in pattern recognition often requires that significant re-

sources be spent on collection, verification, and handling

of large data bases Someeffort at sharing standard data

bases is now present [IEEE Computer Society]; this should

help. In many application areas, effective use of the data

- requires close intere.:tion with persons knowledgeable about

the processes that generate the data. Also required is a

sustained effort dev. »ted to the particular application.

Negative examples abound, wherein inadequate data

bases were used arid arbitrary operations were performed

on data without kiowledge of the field, thus leading to

unconvincing results. A positive example is the work on the

differential diagnosis of white blood cells. Much of the

credit for the explcration of this application area goes to

the pioneering anc. sustained work of Prewitt and her

colleagues who, wit1 adequate access to data gathering and

experimental facilit:es, established many of the basic ideas

for the development of this application [Prewitt and

Mendelsohn (1966), Prewitt (1972)]. These ideas and other

contributions [e.g., Bacus and Gose (1972), Ingram and

Preston (1970), and Young (1969)] have led to the develop-

ment of commercial products in this area. Whether or not

these products of pattern recognition research becomeeither

a technical or a ma-ket success remains to be seen.

An annual review of progress in cell recognition and

related areas occurs at the Engineering Foundation Con-

ference on Automatic Cytology [Engineering Foundation,
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N.Y.C.]. Other examplesof sustainedefforts include various
projects in electrocardiogram pattern recognition [see
Caceres and Driefus (1970) and Zyweitz and Schneider
(1973)]. One reason why this applications area is of con-
siderable interest to theoreticians and experimentalists in
pattern recognition is the extensive data base gathered by
Pipberger [Pipberger et al. (1972)]. Although a few pro-
grams are supposed to work well, available pattern recog-
nition products in electrocardiographyarestill undergoing

evaluation [Cox ef al. (1972) and Bailey (1974)]. Other
areas of interest in medical pattern recognition include

chromosomes[Castleman and Wall (1973)], X-rays [Chien
and Fu (1974), Pratt (1973), Harlow and Eisenbeis (1973),

and Ballard and Sklansky (1973), (1974)], and the process

of diagnosis [Kulikowski (1970), Jacquez (1972), and

Patrick et al. (1974)]. Only a few recent references have
been cited here for these and other applications areas.

Through these references, the interested reader can trace

the literature in the area. A bibliography of articles on

automatic quantitative microscopy is provided in Imanco

(1973),

Much data aré being gathered by remote sensing using

the Earth Resources Technology Satellite (ERTS) and

various other elevated platforms for pointing sensors back

at the earth. It appears that this particular application grew

more out of a need to justify continuation of the space

program than out of experimental evidence that the data

to be gathered would provide adequate information for

discrimination of various phenomena. An excellent survey

[Nagy (1972)] and subsequent symposia proceedings [ERTS

Summaries, Remote Sensing Symposia] describe the ex-

tensive work being done in remote sensing. So far, only a

small part of the work in this area is concerned with

automatic classification but this is likely to change. Nagy

has discussed, rather well, the prospects and pitfalls that

await pattern classification studies on data gathered from

satellites and aircraft. A study of the application of pattern

recognition techniques to weather radar data is reported

in Duda and Blackmer (1972) and Blackmeref al. (1973).

Table III presents a representative list of pattern recog-

nition problems that have been attempted.It is interesting

to note the recent activity in fingerprint and palmprint

recognition and also in signature verification, which has

been generated by the interest of law enforcement and

military base security groups [Eleccion (1973), Nagel and

Rosenfeld (1973), Proc. of the Electronic Crime Counter-

measures Conf., and Sprouse et al. (1974)]|. Pattern recog-

nition methodology has also served as the basis for a study

of the decision mechanisms used in palmistry [Odaet al.
(1971)]. A more modern interpretation, viz., the genetic

basis of dermatoglyphic patterns, underlies the preliminary

pattern classification studies of palm and fingerprint pat-

terns for their potential in diagnosing Down’s syndrome,
leukemia, and schizophrenia [Stowens and Sammon(1970),

and Stowens, Sammon, and Proctor (1970)]; see also

Penrose and Loesch (1971).

Applications of pattern recognition in industrial process

control are being explored[see, e.g., Business Week (1974)].
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TABLEIII
SOME APPLICATIONS OF PATTERN RECOGNITION

Problem

Medical Applications

Identification and counting ofcells

Detection and diagnosis of disease

Prosthetic control devices
X-ray diagnosis

Military Applications
Interpretation of aerial reconnaissance imagery

Detection of enemy navy vessels

Detection of underground nuclear explosions

Commercial and Government Applications
Automatic detection of flaws—

impurities in sheet glass, bottles, paper, textiles,
printed circuit boards, integrated circuit masks

Classification and identification of fingerprints

Traffic pattern study

Natural resource identification

Identification of crop diseases
Economic prediction
Speech recognition—

remote manipulation of processes, parcel post sort-
ing, management information systems, voice input
to computers

Weatherforecasting

Object recognition—
parts handling, inspection of parts, assembly

Character Recognition

Bank checks

Automatic processing of documents—
utility bills, credit card charges, sale and inventory
documents

Journal tape reading
Page readers—

automatic type setting, input to computers, reading
for the blind

Label readers
Address readers

Other readers—
licence plate readers, telephone traffic counter
readers

Input to Pattern Recognition System

slides of blood samples, micro-
sections of tissue

electrocardiogram waveforms
electroencephalogram waveforms
slides of blood samples

mypotentials
X-ray photograph

visual, infra-red, radar, multi-
spectral imagery

passive and active sonar wave-
forms

seismic waveforms

scanned image (visible on infra-
red,etc.)

scanned image

aerial photographs of highways,
intersections, bridges, road sen-
SOrs

multispectral imagery

multispectral imagery
time series of economic indicators
speech waveform

weather data from various land-
based, airborne, ocean, and
satellite sensors

scanned image

magnetic response waveform,
optical scanned image
optical scanned image

optical scanned image
optical scanned image

optical scanned image
optical scanned image

optical scanned image

Output of Pattern Recognition System

types ofcells

types of cardiac conditions
classes of brain conditions
various types and proportions of normal and ab-

normalcells
categories of movements oflimbs
presence or absenceof specific conditions

tanks, personnelcarriers, weapons, missile launchers,
airfields, campsites _

surface vessels, submarines, whales, fish

nuclear explosions, conventional explosions, earth-
quakes

acceptable vs. unacceptable, markings, bubbles,flaws,
radiation patterns,etc.

fingerprint descriptions based on Henry system of
classification

automobiles, trucks, motorcycles, etc., to determine
the characteristics of the traffic flow

terrain forms, agricultural land, bodies of water,
forests

normal and diseased crops
economic conditions
spoken words, phonemes

categories of weather

object types

numeric characters, special symbols

alphanumeric characters, special symbols

numeric characters, special symbols
alphanumeric characters, special symbols

alphanumeric characters, special symbols
letters and numerals combined into zip codes, city
and state names, and street addresses

alphanumeric characters, special symbols

 

In some areas of automatic assembly, flaw detection using

simple pattern classification techniques is feasible [Jensen

(1973)], but the requirements on precision and low error

rate may be quite severe. In other applications, e.g., stock

market patterns, the problems are quite difficult but any-

thing better than a 50-percent error rate may justify the

effort. Another example is that of postal address readers, a

number of which have been operating for several years.

Even if they reject a substantial percentage of the letters

they process, the sheer volume of mail they correctly sort can

still make the installation worthwhile.

Character recognition is the only pattern recognition

application area that has led to some commercially viable

products. However, as a data entry device for converting

written material into computer code, OCR equipment has
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so far not quite come up to earlier expectations in terms of

revenues, customer acceptance, and technical achievement.

Now there are new serious competitors to the data entry

function performed by OCR; e.g., key-to-tape equipment,

typewriter terminals using software editors, or on the near

horizon, limited vocabulary isolated-word speech input to

computers (also a pattern recognition technology). Also, the

past few years have shown that the effectiveness of OCR

installations depends upon complex interactions between

computer systems, programming, forms design, imprinters,

inks, systems and procedures, training, and so forth.

In summary, systems considerations have played a

dominant role in the success of an installation, and this is

likely to be true of many future pattern recognition

products.
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A survey of techniques for automatic recognition of

print and script: appears in Harmon (1972); for an ele-

mentary introdu:tion to scanning techniques for OCR see

Freedman (1974). Activity in this field continues, as ev-

idenced by patents and papers [see, e.g., Sammon ef al.

(1973), Ullmann (1974)], and by the attendance at annual
seminars of th: Data Processing Supplies Association

[DPSA (1971)] and other meetings. However, it is sobering
to note that alt:ough many companies entered the OCR

market over the last decade, not many have prospered in

OCR activity. (Possible reasons why rosy predictions of

rich markets did not quite materialize are offered in Kanal

(1971).) Fortunately, the OCR experience has notstifled

the entry of new companies into other pattern recognition

product areas. In addition to blood cell and electro-

cardiogram recognition devices, isolated-word limited-

vocabulary speech recognition devices are now available

for trial in varicus applications. Perhaps these new areas

will henefit from the lessons learned in OCR.

X. PROSPECTS

In pattern recognition there have been repeated expres-.

sions of concern (similar to those familiar to information

theorists) that tleoretical research bears little relationship

to practical applications. The research described in Sections

VI and VIII sugyests that this situation is changing. In the

coming years, wattern recognition research is likely to

intensify efforts :o combine heuristic and formal methods

and statistical aid structural methods. Also likely to in-

crease is the ir.terplay between pattern recognition and

various problem: solving techniquesin artificial intelligence.

The next few years should witness an increasing infiltration

of pattern recognition techniques into various disciplines

and an increase in serious collaborative investigations in-

volving large data bases, especially in biomedical and

remote sensing <.pplications.
The interest ir! experimenting with real data bases should

stimulate furthe: theoretical and experimental studies on

the design and analysis of pattern classification experiments.

Because of thei importance to practice, comparisons of

various approaches to multiclass classification will no doubt

be further inves :igated. In syntactic methods, the current

interest in scenes, line figures, chemical structure, and

electronic circuit diagrams is likely to stimulate further

work on graphs and graph grammars.

Challenged bi the question, ““What is a pattern that a

machine may kiow it?” perhaps someone will come up

with a suitable definition of ‘“‘pattern” in the way that

Shannon gave precision to the colloquial word “informa-

tion.” If the resulting theory for such precisely defined

patterns were rilevant to a larger class of problems than

existing theories—that would be a “Kendo” stroke of

genius! However, the lack of such a theory does not prevent

applied researcl from producing now results that would

justify the promise held out by pattern recognition for the

last fifteen year:. Applications of pattern recognition tech-

nology to indus:rial automation, health care delivery, and

other societal p:oblems are being pursued andare likely to

play a significarit role in the near future.
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An Optimum Character Recognition System

Using Decision Functions’

C. K. CHOW}

Summary—The character recognition problem, usually resulting
from characters being corrupted by printing deterioration and/or
inherent noise of the devices, is considered from the viewpoint of
statistical decision {heory. The optimization consists of minimizing
the expected risk fot a weight function which is preassigned to meas-
ure the consequenc:s of system decisions. As an alternative, mini-

mization of the errorrate for a given rejection rate is used asthecri-

terion. The optimu:n recognition is thus obtained.
The optimum system consists of a conditional-probability densi-

sities computer; character channels, one for each character; a re-

jection channel; and a comparison network. Its precise structure and

and ultimate performance depend essentially upon the signals and
noise structure.

Explicit examples for an additive Gaussian noise and a ‘‘cosine”’
noise are presented Finally, an error-free recognition system and a

possible criterion tc measure the character style and deterioration
are presented.

* Manuscript received by the PGEC, June 3, 1957.
+ Burroughs, Corp., Paoli, Pa.

INTRODUCTION

( HARACTERrecognition has been receiving con-

siderable attention as the result of the phenomenal

growth of office automation and the need for

translating human language into machine language.}?

Broadly speaking, the character printed in conventional

form and size on the document(checks,etc.) is first con-

verted to electrical signals, and sufficient information is

then extracted from the latter. The purpose of the

recognition system is based on the observed data and

on a priort knowledge of the signal and noise structure

1K. R. Eldredge, F. J. Kamphoefner, and P. Hf. Wendt, “Auto-
atic input for business data processing system,” Proc. Eastern Joint
Computer Conf., pp. 69-73; December 11, 1956.

E. C. Greanias and Y. M. Hill, “Considerations in the design of
character recognition devices,” 1957 IRE Nationa, CoNvENTION
REcoRD, pt_4, vol. 5 pp. 119-126.

Reprinted from /RE Trans. Electron. Comput., vol. EC-6, pp. 247-254, Dec. 1957.
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to identify which of the possible characters is present,

or to reject if the data are ambiguous.

The over-all performance of the recognition system

dependsnot only uponitself, but also upon the number

of characters to be recognized, the character style, and

noise statistics. In this paper the character style and

noise statistics are assumed given and adequate, and

the purpose of the paperis to obtain an optimum recog-

nition system. For convenience, the recognition prob-

lem is considered oneof statistical inference, so that use-

ful results in decision theory can be applied.*~° To ac-

complish this, the notion of risk is employed and proper

weights are assigned to various typesof error, rejection,

and correct recognition to measure the consequencesof

decisions. This results in an optimum system which

minimizes the expected (average) risk function and in-

cludes a possible alternate system with a minimum

error rate. The results reveal the explicit structure of an

optimum system which is determined by the a priori

noise statistics, the signal structure, and the preassigned

weights.

SystEM APPROACH TO THE PROBLEM

One practical application of a character recognition

system for business documentsis to read arabic numer-

als and selected symbols printed in magnetic ink. A

method?! for achieving this is shown in Fig. 1. The char-

READ
AMPLIFIER

HEAD  

DELAY LINE

  
 

_..TAP

POINTS
v

° °

v

    
 

RECOGNITION

SYSTEM

J J
Fig. 1—A recognition system.

  
 

| OUTPUTS

acter is first passed through the field of a permanent

magnet where it is magnetized in a given direction be-

fore being scanned by the read head. From the read

head, the printed character is converted into an elec-

trical signal corresponding to the differentiation of the

plane area of the character. The function of the recogni-
tion system is to examine the amplitude-time signal

3A. Wald, “Statistical Decision Functions,” John Wiley & Sons,
Inc., New York, N. Y., 1950.

4D. Van Meter and D. Middleton, “Modern statistical ap-
proaches to reception in communication theory,” IRE TRANs.,
vol. PGIT-4, pp. 119-145; September, 1954.

6 D. Middleton and D. Van Meter, “On optimum multiple-al-
ternative detection of signals in noise,” IRE TRANs., vol. IT-1, pp.
1-9; September, 1955.
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obtained by the read head andto decide which of the

possible characters is being recognized.

It is convenient, at times, to deal with the sampled

data rather than the continuous time waveforms. By the

sampling theory,if the number of samples is sufficiently

large, little information carried by the continuous signal

is lost. As shown in Fig. 1, the signal from the read

head is first amplified and then fed into a tapped delay

line. This serves as a means for sampling and acts as a

temporary storage device to convert the series informa-

tion into parallel information. Although not essential,

sampled data are used in the following discussion.

Let the vector v= (v1, v2, - + « ¥s) (subscript s being the

number of samples) denote voltages on the taps of the

delay line at the instant of sampling. (See Appendix |

for the meaning of the Symbols.) The vector a;=

(a1, di, - + * » Qis) denotes the true sampled signal asso-

ciated with the 7th character where 7=1, 2,°°-:,6¢,¢

being the number of possible characters to be recog-

nized. The vector v constitutes the input to the recog-
nition system. It is assumed that the characters are dis-

tinct, z.e., all a,’s are different.

In a simple form, the recognition system may consist

of c separate channels, one for each character. Each

channel obtains a weighted sumof v,’s, with properly

chosen weights, b;;. The output of the zth channel is

X;(v) = » bj}.
1 3°79 (1)

This operation may be realized by a summing amplifier

and possibly with some inverters to provide negative

weights,if required. One possible set of weightsis:

aij

8 1/2 ,

| » oat
j=l

The recognition system is known as a correlation net-

work when the weights are defined by (2).

If the printing is perfect, and the reading devices are

noiseless, the observed data v will be identical to one of

the a,’s and therefore, it can easily be shown that the

right channel of the correlation network has the largest

(algebraic) output. Consequently, the recognition sys-

tem identifies the character with absolute accuracy by

the channel having the highest output. However, in

practice, there are always, to some degree, deteriora-

tions in printing and inherent noise in the devices.

Therefore, the observed data v generally will not be
identical to any of the a,’s. In view of this, ambiguities

arise which may result in possible misrecognition. To

safeguard against the occurrence of error, the recogni-

tion system should have provisions for examining the

degree of ambiguity and making rejects when required.

This function can be achieved in various ways; @.g.,

whenever the next highest output of the correlation

network exceeds some preassigned fraction of the high-

est output, the system will reject, otherwise the system

bi = (2)
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identifies the character by the channel having the high-
est output.

The system described above merely represents one of
many possible recognition systems and is not necessar-
ily optimum. A basic problem in the design of recogni-
tion systems is to evaluate the system performance in
the presence of printing deterioration and inherent
noise and to obtin an optimum system. Optimum per-
formance depencls primarily upon the character style
and permissible deterioration. Greanias and Hill in a
recent paper’ describe the effects of character style and
printing deterio:ation on the character recognition

problem from the viewpoint of matching the character
with an ideal character and further propose definitions

for character quality and style factors. In this paper,

the discussion is confined to the problem of obtaining

an optimum recognition system for a given set of ade-

quately styled cl:aracters and knownstatistics of char-

acter deterioration. The recognition problem is consid-

ered to be that of testing multiple hypotheses in the

statistical inference. Consequently, the design and

evaluation of a recognition system is comparable to a

statistical test. [tesults of decision theory can be ap-

plied.*-,

In order to judge the relative merit of recognition

systems, some criterion of evaluating system perform-

ance must be established. The error rate of the system

for a given rejection rate is used as the performance
criterion for case's where no distinction is made among
misrecognitions. Cases may arise where different mis-

recognitions have different consequences; e.g., the regis-

tering of a four as an asterisk maynot be as serious an

error as registeriig it as a nine. The criterion of mini-

mum error rate .3 then no longer appropriate. Instead,

the criterion of minimum risk* is employed. Proper
weights are assi;ned to measure the consequences of

errors, rejections, and correct recognitions. These

weights indicate the loss incurred by the system for

every possible decision. The loss, which should be re-

garded as negative utility, may actually represent loss

in dollars or unit of utility in measuring the conse-

quence of the system decision. The over-all performance

of the system is j idged by its expected (or average) risk.

In the following discussion, an optimum system

which minimizes the expected risk is derived, and a sys-

tem having minimum errorrate is obtained. Examples

are presented fcr illustration purposes. An error-free

system and a possible criterion for judging character

stvle and deterio-ation are also presented.

THE EXPECTED RISK

The vector a;=: (@i1, @, * + *, Gis) in the s-dimensional

space denotes the true sampled signal associated with

the zth characte: (¢=1, 2,--+,c¢), where c and s are

respectively, the number of possible characters to be

recognized and the number of samples. Let p=(1, po,

--+, p.) be the a priori distribution of characters (;

is the a priort probability that the zth character occurs).

Chow: An Optimum Character Recognition System Using Decision Functions

Then, evidently,

Da p=1, p> 0. (3)
w=1

The received data are denoted by a s-components vector
Y= (%, v2, +++, Us). It is the signal corrupted by factors

such as the deterioration of printing and inherent noise

of the devices. A priori noise statistics and the manner

in which various signals and noise are combined deter-

mine precisely the conditional probability density

F(v| a,) of the observed data v when a; is the incoming

signal. |

The space of decisions available to the recognition

system consists of c+1 possible decisions do, di, ds,

-++,d,.. The quantity d;(z40) is the decision that the

7th character is present while dg is the decision for re-

ject. A basic problem in statistical decision theory is the

selection of a properdecision rule 6. The rule is expressed

as a vector function of the data v, namely, 6(v) = (6(do| v),

5(d,|v), 6(delv) - - - 8(d,|v)) with c+1 components, and
satishes the restriction that:

  

 >, 6(d;|v) =1 for ally, (4)
i=0

and

d(d;| v) > 0 for all 7 and ». (5) 

 

The quantity 6(d;/v) is the probability that, for a given

observed data v, the decision d; will be made.

In order to judge the relative merits of the decision

rules it is necessary to assign the weight function

W(az, d;). This is a function of a; and d;, which is the

loss incurred by the system if the decision d; is made

when a; is the true signal. This measure of consequence

for various d; under various a; is a datum of the problem

and is given in advance. Let the weight function be:

7=1,2---€
W (a;, d; = Wij

Man Gi) wy j=0,1,2---6, (6)

where w,;(2%0) is the weight of correct recognition of

the zth character; w.;(447 40) is the weight of misread-

ing the zth character as the jth one, and wio(140) is the

weight of rejecting the zth characters. Therefore, it is

required that

(i #j #0). (7)

Usually, w.; 1s much larger than wy since the mostseri-

ous consideration in design of a character recognition

system is the occurrence of undetectederrors.

In general, w,;'s may all differ, so that various mis-

recognitions, rejections, and correct recognitions can be

properly weighted. The expected risk for any decision

rule 6 is

Wig > Win > Wii

R(p, 5) = » > 5(d;| V0)pWF(v | a;)dv,
ti=1 j=0"Y V

(8)

with integration over the entire observation space V.
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THE MINIMUM RISK SYSTEM

The problem is then to choose a decision rule to

minimize the average risk. By using (4), and since

{vF(v|a:)dv =

1

for all i, (8) may be written as:

where

Ryo = DX Pio, (10)

Ay = > 6(d;| v)Z;(v)do, (11)
V j=0

and

za) =| Oe MOPMOL ADT b2 6 ay
0 for 7 = 0.

The symbol Ro will express the expected risk when re-

jection is madeforall recognition aad R; is that part of
R which maybe adjusted through the choice of 6. Evi-

dently

Ri(p, 8) > Jmin [2;(0) le, (13)

and the equality sign holds if, and onlyif, the decision

rule is chosen as:

5*(d,, | v) = 1,

6*(d;|v) =0 forall Xk (14)

whenever

min [Z;(v)] = Z,(v). (15)

This is the optimum decision rule 6* (the Bayesstrat-

egy) which minimizes the expected risk and is non-

randomized since its componentsare either zero or one.

Therefore, R; for this decision rule is always nonposi-

tive, and its expected risk (the Bayes risk) is no greater

than Ro. The expected risk for the optimum decision

rule, 6*, is

R(p, 6*) = > PiWio +f min [Z;(v) ]dv. (16)
t=] V j

Eqs. (14) and (15) reveal that the optimum system

for character recognition consists of a computer which

evaluates F(v|a,)’s; (c=1, 2,--+-+, ¢c) for an observed

data v; computes the various Z;(v) (j=1, 2,---, ©);

examines and comparesthese Z,(v) (j=0, 1, 2,---, 0c);

selects the smallest (algebraically) one, say Z,(v); and

finally makes the decision d; [having the same subscript

as Z;(v)]. Of course, this method of setting up the com-

puting procedures is not unique; ée.g., any ordering-pre-

serving transformation may be used. In any event, the

system must be equivalent to the above.
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Fig. 2—Functional diagram of an optimum system.

The functional diagram of the optimum system is
shownin Fig. 2. Station No. 1 consists of c similar com-

ponent networks. Each network receives the observed
data v=(v1, ve, + + + , ¥s) and computesthe corresponding

conditional probability density F(v| a3) as its output.

This operation depends only upon thea priori knowl-
edge of signal and noise structure and on the observed

data v; it does not depend upon the weight function

W(a,, d;) or on @ priort probability distribution of sig-

nals, p.

The outputs of station No. 1 are fed to station No.2,

which consists of c character channels No;(7%0), and
one rejection channel, No. They perform the linear

operation of weighting each input and then the sum-

ming of all weighted inputs. The weights are p,w,;,’s

and p,w,9's. The output of the rejection channelis

Xa(e) =D wapiF(o| os), (17)

while the outputs of character channels are

X,(v) = Di wispsF(v| a) (f= 1,2-+-0). (18)
t=1

The comparison station receives X’s from station

No. 2, examinesall its inputs, and makes decision by

selecting the algebraically smallest of the c+1 X’s.If

the rejection channel has the smallest one, the system

rejects. If one of the character channels has the smallest

output (say X;:(v), (k#0)) then the system recognizes

the signal as the kth character.

Since X;(v) (7=0, 1, - - + , c) is equal to Z;(v) +Xo(v),
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this system makes decisions in accordance with 6* as
defined by (14) and (15), and thus minimizing the ex-
pectedrisk.

PROBABILITIES OF ERROR AND REJECTION

The expected risk provides a means for evaluating

the performance of a recognition system. At times, it

may be desirable to compute the probabilities of error,

rejection, and ccrrect recognition as an auxiliary set of

merit figures. They are obtained for any decision rule 6

as follows:

‘The probabili:y of correct recognitionis:

 

P,(6) = f » d(d; v) piF(v| a;)dv; (19)

V i=l

the probability of rejection, or rejection rate, is:

P,(8) := f 5(do| v) >> pF(v| a,)dv; (20)
v i=l

and the probability of misrecognition, or error rate, is:

P.(6) =1—P, — P,. (21)

Eqs. (19)-(21) result directly from the fact that
fv8(do| v) F(v| ayc'v and fyé(d; v) F(v| a,)dv are, respec-

tively, the conditional probabilities of rejection of the

ith character ancl correct recognition of the zth character.

 

CRITERION OF MINIMUM ERROR RATE

Cases may arise in which thecriterion of judging the

system performance is the magnitude of its error rate

for a given rejection rate. In using this criterion, the

optimum recognition system is the one which, for a

given rejection rate, a, has a minimum errorrate. The

optimum decisio1 rule is obtained as: (See Appendix II

for proof.)

s'*(d,|v) =1 (k #0) (22)

whenever

pik(0 | ay) = pF(0 | a;) forall; ¥ k, and

pil’(v| ae) > B DY pF(v| a), (23)
t=1

and

6**(dy| v) = 1, (24)

whenever

B > pF| aj) >> pF(0 | a;) forallj(j = 1,2 +++), (25)
i=1

where 6(0 <8 <1) is a nonnegative constant determined

by the condition that P,(6**) =a; namely,

[er v) 2 pF(0 | a;)dv = a. (26)

The constant 6 iacreases with increasing a, and P,(6**)

and P,.(6**) are monotonic decreasing functions of a.
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Fig. 3—Functional diagram of the system having the minimum
error rate.

The change in the constant 6 provides a control over

the error-reject ratio.

The optimum rule providesthe basis for the func-

tional diagram of the system of minimumerror rate as

shown in Fig. 3. The first station is identical to that of

the minimum risk system (see Fig. 2) which computes

the conditional probability densities F(v| a;)’s.

The second station for this system is somewhat simi-

lar to that shown in the functional diagram for the

minimum risk system (see Fig. 2). The c-character

channels perform the weighting operation and have

p:F(v| ax) as outputs. The rejection channel, No, per-

forms the operation of weighting and summing and has

B>-°_, p:F(v| a.) as its output. All of these c+1 outputs

are nonnegative. The comparison station then examines

these outputs and selects the largest. If the output of

the rejection channel is the largest, the system rejects;

otherwise the system will identify the character by the

channel having the largest output.

It can be shownthat the system depicted in Fig. 2 re-

duces to the system shownin Fig. 3 when @ is replaced

by (Wm—W,)/(Wm—wW-), and the following weight func-

tion is used.

o**

 

w, fort=7#0

W(az, d;) ={w, fori# 0,7 = 0.

oo. (27)
Wm fort ~j #0.

EXAMPLES

1) As an illustration, consider a condition where the

signals and noise are additive, and the noise has inde-

pendent normal distribution To be explicit, the prob-
ability density function of the noise of the jth compo-

nent of the 7th characteris taken as:
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1 vjo— aij)?

—— exp {- eee (28)
V/2105; 2043"

where v;—a,; is the noise and a;,;? is the given variance.

The conditional probability density F(| a;), under

the assumption that noiseis statistically independent,is

‘S. (vj — aj)?ep {-pt
a)j=l F(v| a) = (29)

(Qr)*/? [] a;
j=l

Therefore, the last expression dictates the precise struc-

ture of station No. 1 for the optimum system. Each com-

ponent circuit performs the operations of taking differ-

ences, squaring, weighting, summing, and taking ex-

ponential. This station is common for a minimum risk

or minimumerror rate system. The structuresof the sec-

ond station and comparison station are indicated in

Figs. 2 and 3.

2) In this example, the signal and noise structure are

such that the conditional probability density for a

given length, | 2 | , of v is directly proportional to the co-

sine of the angle @ between vectors v and a;for |6| </2
and is zero elsewhere, and that the distributions of ||
for given a; are identical for all 7.6 [It is denoted as

fC v| ).| In other words, F(v| a;) can be written as

F(v| a;) for a;-v > 0
az:U

= pf(| 2) -]o|

= 0 (30)

wherep is a constant independentof 7 and is determined
by the fact that fyF(v|a,)dv=1, and a,;-v denotes the
scalar productof vectors a; and 9.
An inspection of the optimum decision rule (8* or

6**) reveals that the system remains optimum if the
first station is to compute T|F(v|a,) | instead of F(o| ai),
where T is defined as

elsewhere,

Tela)
ef(lv])

a;

"s0
where b,;’s are constants [see (2) ]. This operation can be
easily realized. Each componentof the first station is
simply a correlation network followed by a half-wave
rectifying circuit. The circuit passes the positive output
of the correlation network unaltered and converts its
negative output into zero.

The above results also indicate that the recognition
system described in the second section of this paperis
not optimum for the particular signal and noise struc-
ture as given in examples 1 or 2.

T(0 | a;)

8

v= >) b,j; for a;-7 > 0
aa

 

(31)
for a;'v < 0,

® This particular signal and noise structure was suggested by the
author’s colleague, I. M. Sheaffer, Jr., Burroughs Corp., Paoli, Pa.
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ERROR-FREE SYSTEM

For convenience, let V; denote the set (or region) of

all possible observation v when the ith characteris pres-

ent, and let V; be the largest subset of V; so that V;’s

are nonoverlapping. If noise distributions are so trun-

cated and the signal vectors a,’s are so placed thatall

V's are nonempty, then an error-free system for char-

acter recognition does exist. Evidently for any observed

data v belonging to V;, only F(v| ax) is nonzero while all

others are zero; the character can then be identified

with certainty. On the other hand, if the data v do not

belong to any one of the V,’s, then more than oneof the

F(v|a,)’s will be nonzero. This results in the data being
ambiguous for recognition purpose, and an error-free

system will reject. Symbolically, the error-free decision

rule is:

6(d,|v) =1 if F(v| a) > 0

and

F(vla) =0 foralli#¥ &, (32)

and

5(do| v) = 1, otherwise,

the rejection rate is determined by the probability

measures of V,’s, namely {¥,F(v|a;)dv. The latteris de-
termined by the characterstyle and allowable deteriora-

tion. The character style may be considered ideal and

the control over the printing perfect, if the resultant

S¢F| a;)dv is unity for all 7, and all characters with al-

lowable deterioration can then be recognized with

neither an error norreject. In this sense, the probability

measures of V;’s may be used to evaluate the combined

quality of the character style and printing.

CONCLUSION

The decision theory has been successfully applied

to the problem of character recognition. By employ-

ing the concept of risk, differences in consequences

for various decisions have been taken into considera-

tion. A rejection channel has been introduced to exam-

ine the degree of ambiguity of input signal and make

rejections when necessary.

As developed, the structure and performance of an

optimum system depend upon thesignal and noise sta-

tistics; therefore, a priori knowledge of these statisticsis

required. Usually, a realistic estimate of noise statistics

is not easy to obtain. However,it is sincerely felt that

the requirementfor high grade performancein character

recognition warrants the expenditures in this direction.

Quite often an optimum system may proveto be too

expensive for mechanization. Nevertheless, the results

presented in this paperare considered useful in that they

provide insight into the recognition problem and furnish

an ideal system, which actual recognition circuitry may

be patterned after.

Although it is recognized as being beyond the scope

of this paper, it is worth mentioning that one practical
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approach to the over-all problem would be to design

adequately the character style and to control properly

the printing process so that a reliable system would not

be too far fetched or difficult to ultimately realize.

APPENDIX I.

List OF SYMBOLS

a;= (Ga, 12, °° * , Ais), S-dimensional vector as-

sociated with the ith character, (¢=1, 2,
-,C).

ai;=jth simple of the signal of the zth character.

las| =(D05. 1 aj?) 72, the length of vector ay.
¢=number of characters.

dy =decis on that rejection be made.

d;=decis on that the signal is the jth character

(g=1,2,---,0).

f(|v|) =probuability density of the length of ».
F(v| as) =conditional probability density for the ob-

served data v when a; is the incomingsignal.

1,j, k =indexes.

Ni;=a network of station No. 1,7=1, 2,---, 6c.

No; =a network of station No. 2,7=1, 2,-:+-,c.

No=the retwork of rejection channel.

P,=probability of correct recognition.

P,=probuability of rejection (rejection rate).
P,.=probubility of misrecognition (error rate).

p;=a priort probability that the zth character

occurs, (#=1,2,:+--,¢).

b=(f1,| » De).

R(p, 6) =expe::ted risk of the system; R=Ro+R1.

Ro(p) =expe:ted risk of the system when rejection

is madefor all recognition.

R,(p, 6) = part of R which is dependent upon6.

s =number of samples.

T =functional transformation.

V =s-dinension observation space.

V;=set of all v when the 7th characteris present.

V;=largest subset of V; such that Vi\V;=0
for all 7 Az. :

Y=(01,0:, °° *,Vs),a vectorin V.

lv} = (05.1. 02)", the length of vectorv.

vt =ith component of the observed data v.

W(a;, d;) =weigit function.

Wii= W(a;, d;).

W., Wr, Wm = Weiglits.

x,(v) =output of the zth channel.

a = permissible rejection rate.

8 =constant.

§(v) =decisionrule,5 =[5(do| v),6(di|v) + + -6(d.|)).
6*(v) =optirium decision rule which minimizes the

expected risk.

6**(yv) =optirium decision rule which minimizes the

error rate.

6=anegl::.

p =a normalizing constant.

o;;2=statistical variance of noise.

  

Chow: An Optimum Character Recognition System Using Decision Functions

APPENDIX II.

To Prove Tuat 6** Has A Mintmum ERROR

RATE FOR A GIVEN REJECTION RATE

Without loss of generality, it is assumed that the ab-

solute probability density of the occurrenceof v, namely,

Dui=1 PiF(v|a;) is nonzero over the entire observation
space V. Otherwise, the set over which )°¢_, biF(o| a;)

is zero is first deleted.

Let m(v) be the subscript such that

max [pF(o| a:)] = pPaF(v| am) (33)

and let 64(v) be any arbitrary decision rule having the

same rejection rate as 6**. It is to be proved that

P.(6!) > P.(6**).
For every 6'(v), a decision rule 6?(v) can be con-

structed asfollows:

For every v,

  

52(do| v) = 53(do| v)

52(dm|v) = 1 — 64do| v) = Dd) 8'(di| ») (34)
i=1

6°(d;|v) =O foralli XOX ™m.

Evidently,

P,(6?) = P,(6') = a, (35)

and

P.(6') -| > é'(d; v) pil(v| a;)dv

V i=l

< é}(d; 0)PmE(0 | Am) av
V i=1

= [oan 0)Pm(0| Am) Av
V

= P,(62). (36)

It follows from (35) and (36) that

P.(6?) < P.(5'). (37)

Thatis, 6? is better than 6! (or at least as good) in the

sense that for the same rejection rate 6? has an error

rate smaller than, or equal to, that of 61.

The next step is to show that P.(6**) <P.(67). As

shown in (22) ad (23), the decision rule 6** partitions

the observation space V into two nonintersectingre-

gions, Vo¥* and V— Vo**, so that for every ve Vo**

PmF(v| am) < B dy piF(v| as) (38a)
t=1

o**(dy |v) = 1, (38b)
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Vo**and for every ve V—

pnF (v| am) = B > piF(v| a.) (39a)
i=1

5**(dm | 0) = (39b)

Let Vo? be the largest subspace of V such that §2(do| v)

is nonzero for all v belonging to Vo?. Vo? is not properly

contained in Vo**. This follows readily from the condi-

tion that P,(6**) = P,(62). The latter may be written as:

> pF (v| a,do
J 3VorVoOV? i=1

+f [= sao] »)] D piPCo| aideVor"tOve ram

= { 62(do| v) >> psF(v| a,)dv. (40)
VoVo"Vo i=1

Substitution of (38) and (39) in (40) gives:

f Pk (0| Om) dv
VorVoNVee

+ [1 — 5%(do| v) |pmF (0 | am)dv
Vo"

< f 5?(do| v) pmE'(v| am)do. (41)
Vor—VoAV,2

The equality sign prevails if, and only if, bnF(v| dm)

‘sequal toB >.°_, pb;F(v| a;) throughout the region V)**U

V0’.
The probabilities of correct recognition of 6** and 6?

maybe written respectivelyas:

December

Pua) =[uF (o| an)ar
v-V,**

= { PmF (0 | am) dv
V—Vo"*UV9")

      

+ PmF'(v| am)d2, (42a)
VeVotve

P.(82) = ;| v)piF(v| a;)dv
V i=l

-{ PmF(v| am)dv
V—V"UV 0")

+ PmF (v | am)dv
Vo"Von,

+ 52(dm | v)PmF (2 | Am) dv
VorNvy

+ 5?(dm | 0)pmF (v |am)dv. (42b)
2

In accordance with (42), (41) is equivalent to P,(6**)

<P.(62). Proof that P,.(6**) <6P.(6!) is thus completed.
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Perceptron Simulation ixperiments”

FRANK ROSENBLATTT

Summary—An ¢xperimental simulation program, which has been
in progress at the Cornell Aeronautical Laboratory since 1957, is

described. This program uses the IBM 704 computerto simulate per-

ceptual learning, re: ognition, and spontaneousclassification of visual
stimuli in the perceptron, a theoretical brain model which has been
described elsewhere. The paper includes a brief review of the or-
ganization of simp\e perceptrons, and theoretically predicted per-
formance curves aré compared with those obtained from the simula-
tion programs, in several types of experiments, designed to study
“forced” and “spon:aneous”learning of pattern discriminations.

INTRODUCTION

NUMBER of papers and reports have been pub-

lished describing the theory of a new brain

model called the perceptron. The perceptron is a

minimally constrained “nerve net” consisting of logi-

cally simplified :ieural elements, which has been shown

to be capable of learning to discriminate and to recog-

nize perceptual patterns [5]-[8]. This paper is con-
cerned with a report of digital simulation experiments

which have bee1 carried out on the perceptron, using

the IBM 704 co:nputer at the Cornell Aeronautical Lab-

oratory. These experiments are intended to demonstrate

the performance of particular systems in typical en-

vironmental situations, free from any approximations

which have be2n used in the previously published

mathematical aualyses. In the simulation programs,the

action of every cell and every connection in the network

is represented i1 detail, and visual stimuli are repre-

sented by dot patterns corresponding to illuminated

points in a retinal mosaic.
Several related experiments have been conducted

previously, usirg a digital computer for the simula-

tion of a nerve ret in learning experiments [1], [2], [4].
Rochester and associates, at IBM, have reported onsev-

eral attempts to simulate the formation of “cell as-

semblies,” in a model based on the work of Hebb [3]

Hebb proposes that a set of neurons whichis repeatedly

activated by a particular sensory stimulus becomes

organized into a functional unit, which can be triggered

as a whole bysensory patterns sufficiently similar to the

original one. Hebb’s book, however, does not attempt

to specify in a rigorous manner the exact organization

or parameters under which the predicted effects would

be obtained, so that the IBM group found it necessary

to improvise se.eral models and variations of their own,

having various degrees of biological plausibility, in an

attempt to construct a definite system. The results of

these experiments seem ambiguous, not only because

* Original mani.script received by the IRE, July 16, 1959; re-
vised manuscript received, December 14, 1959. This paper waspre-
sented at the 1959 IRE National Convention. The work was sup-
ported by the Inforination Systems Branch, Office of Naval Research,
under Contract no. Nonr-2831(00), since July, 1957.

+ Cornell Aeron:utical Lab., Inc., Buffalo, N. Y.

of the uncertain relationship of the final model to the

nerve net originally suggested, but also because the

phenomenon which wassought after has never been de-

fined in a fashion precise enough so that one might

say whether or not it has actually occurred. These ex-

periments illustrate the importance of selecting a suit-

able measure of performance in work of this type; it is

essential that a clearly defined test should be specified

for the “learning” which has presumablytaken place, or

else it is impossible to say either how well a particular

system has performed or to compare its performance

with any other system, or class of systems, in a system-

atic fashion.

From this standpoint, the experiments reported by

Farley and Clark [1], [2] seem to have been better con-

ceived. In this model, a network of eight randomly con-

nected neurons was simulated. Inputs consisted of stim-

uli applied to one of two disjunct pairs of “input cells,”

and outputs were measured as the activity of two pairs

of “output cells.” In later experiments, the size of the

network was increased to sixteen cells. It was demon-

strated that this system can learn to favor the output

from one set of output cells following the presentation

of one of the two stimuli, and the alternative output set

following presentation of the other stimulus. The prob-

lem of generalization was considered only in terms of

relatively slight displacements or alterations of the

stimulus patterns, and it was suggested that, under these

conditions, the response would be most likely to occur

which was previously associated to the stimulus having

the greatest overlap with the altered stimulus. The prob-

lem of generalization to similar but completely disjunct

stimuli was aot specifically considered. Nonetheless,

the process of generalization advocated as a result of

these experiments has much in commonwith ourearly

work on the perceptron. A more thorough consideration

of this problem will be published elsewhere [8].

The design of a simulation program for studies of pat-

tern recognition and perceptual generalization in nerve

nets should fulfill at least three basic conditions, each

of which has been ignored too frequently in previous

work along these lines.

1) Simulation should not, in general, be attempted

without a theoretical analysis of the nerve net in ques-

tion, sufficient to indicate suitable parameters andrules

of organization, and to indicate questions of theoretical

interest. The examination of arbitrary networks in the

hope that they will yield something interesting, or the

simulation of networks which have been specially de-

signed to compute a particular function by a definite

algorithmic procedure seem to be about equally lacking

in value.

Reprinted from Proc. /RE, vol. 48, pp. 301-309, Mar. 1960.
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2) Suitable measures of performance must be de-

fined. This means that some task must be set for the

system, the outcome of which can be clearly recognized,

and, preferably, counted or quantified in some manner.

Signal strengths, waiting times for achievement of a

criterion, or percentage of correct decisions are ex-

amples of suitable measures.

3) Experiments should be designed with suitable

controls against trivial or ambiguous results. If we are

interested in teaching a device to generalize a response

to visual forms, for example, it is essential that a dis-

crimination test should be made involving at least two

different responses, to make sure that the system has

not simply generalized the desired response universally

to all stimuli, regardless of their similarity to one an-

other. \loreover,it is often important to make sure that

the cue for the response is the actual form of the stim-

ulus, rather than its location on the retina, or some

other unintentional source of information. This last

condition is often quite tricky to satisfy, and in most of

our current work we make use of Born-von Karman

boundary conditions (in which patterns shifted off of

one edge of a retinal field re-enter on the opposite side,

as in a toroidally connected space) in order to guarantee

the logical equivalence of all points in the retinal space.

Given such retinal field, it is sufficient to place each

stimulus pattern with equal probability or frequency at

all possible locations in the retinal space, in order to

guarantee that the illumination of a particular retinal

point does not convey any information about which

stimulus is present. It should be noted that this condi-

tion is not always observed in the experiments reported

in this paper, stimuli often being confined to some sub-

field of the retina in order to increase the rate of learn-

ing. In at least one case (the experiment with the “con-

tinuous transducer perceptron” shownin Fig. 8) a dis-

crimination has thus been obtained which would not
hold up if the field were uniformly covered with the
stimulus patterns.

ORGANIZATION OF A PERCEPTRON

Anvperceptron, or nerve net, consists of a network

of “cells,” or signal generating units, and connections

between them. The perceptronis defined by twosetsof

rules: 1) a set of rules specifying the topological con-

straints upon the network organization, such as the

number of connections to a given unit, or the direction

in which connections are made, and 2) a set of rules

specifying the dynamic properties of the system, such as

thresholds, signal strengths, and memory functions. A

“fully random network” would be one in which only

the number of cells and the number of connections is

specified, each connection being equally likely to orig-

inate or terminate on anycell of the system. The topo-

logical rules for the organization of a perceptron take

the form of constraints applied to such a random net-

work, and it is assumed that all connection properties
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other than those specified remain “random,” in the sense

just indicated.

A simplified version of the known features of a mam-

malian visual system is shown in Fig. 1, for a compari-

son with the organization of a perceptron, which will be

described presently. At the extreme left we see a mosaic

of light-sensitive points, or retina, from which signals

are transmitted to the visual projection area, in the

cerebral cortex. Several intermediate relay stations

exist in a typical biological system, which are not shown

here. These connections preserve topological charac-

teristics of the stimulus in a reasonably intact form.

Beyond the projection area, however, connections ap-

pear to be largely random. Impulses are delivered

through a large numberof paths to the association areas

of the cortex, where local feedback loops are activated,

so that activity may persist for some time past the termi-

nation of the original visual stimulus. From the associa-

tion area, signals are transmitted to the motor cortex,

which again has a clear topological organization cor-

responding to the location of muscle groups to be con-

trolled.

Association

Area (Outer
Layer)

Association
Area (Deeper

Retina Layers)Projection Area

Raise
left
Arm

lowes
Left
Arm   Topographic Random Local Random

Connections Connections Feedback Connections
————— ——— Cirtyits

ee od

Cd

Fig. 1—Organization of a biological brain. (Heavy black
areas indicate active cells, responding to the letter X.)

This general plan of organization has been consider-
ably simplified in the perceptron. First of all, we will
eliminate the projection area, and assume that the
retinal points are directly coupled to associationcells,
or “A units.” The number of input connections to each
A unit is specified, but the locations of the origin points
for the connections are selected at random fromthe set
of sensory points. Each A unit receives some number, x,
of excitatory connections, and some number, y, of
inhibitory connections. The connection system from the
sensory to association system is a many-to-many sys-
tem. An excitatory connection from an illuminated
sensory point is assumed to transmit a unit positive sig-
nal, while an inhibitory connection carries a unit nega-
tive signal. Each A unit has a fixed threshold, 6, and is
triggered to deliver an output pulse if the algebraic sum
(a) of the signals received from the x+y input con-
nections is equal to or greater than 6. A further sim-
plification is introduced at the outputside of the associa-
tion system. Instead of delivering its output signals at
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random to a la-ge number of “motor area” cells, the

cells of the association system are connected to one or

more binary response units, which are turned to their

“1” state if they receive a positive signal from the asso-

ciation system, or to their “0” state if they receive a

negative signal. The magnitude of the output signal

generated by ar active A unit is called the “value” of

that unit, and is represented by the symbol v. The

values of the units are stochastic variables, which

change as a function of the history of the system. The

organization of : simple perceptron with a single binary

response is shown in Fig. 2. The total signal delivered

by the set of A units is equal to 2a;*v; where a;* is equal

to 1 if unit a; is active, and 0 if a; is inactive, and 2; is

the current value of unit a, Note that there are two

feedback lines from the response unit (or R unit) to the

set of A units. [These feedbacks control the “reinforce-

ment,” or changes in value, of the A units. In general,

if the response .R=1 occurs, active A units will gain in

value, while if the response R=O occurs, active units

will lose in valu2. The value of the A unit thus acts as

the memory variable for the system. It has been shown

to be desirable to further modify the values of the A

units by the rule that if some subset of units gains or

loses in value, then the remainder of the units must

change in the opposite direction just sufficiently to

balance out the net change to zero. Thus, one unit can

only gain paras.tically, at the expense of the otherunits,

and the total value of all of the A units is kept equal to

zero at all times. A perceptron with this property ts

called a “gamma system.” The theory of such systems

has been consiczred in detail elsewhere [5], [6].
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Fig. 2---Organization of a simple perceptron.

DESCRIPTION OF SIMULATION PROGRAMS

Fig. 3 shows the organization of a typical simulation

program,for the study of perceptron performancein an

environment o! visual forms. Actually, four basically

different programs have so far been written with a num-

ber of variatious of each, but the two programs which

were used for most of the experiments reported here

are both organized in the mannerillustrated. The third

program involves more direct methods of computation

rather than trie simulation, while the fourth program

(designed to study “cross-coupled systems,” in which

A units may be connected to one anotheras well as to

S points and F. units) has proven too slow to be used

successfullv.!

Rosenblatt: Perceptron Simulation Experiments

The simulation programs have four main tasks, each

of which is actually performed by aseparate, self-suf-

ficient program, whichis stored on tape, and called into

the computer by a supervisory routine. The supervisory

routine reads instruction cards provided by the experi-

menter, which provide information on parameters, and

control the sequence of subprograms performed in the

course of the experiment. When each subprogram has

been completed, control is passed back to the super-

visory routine, which reads the next card for further

instructions. In a typical experiment, the sequence is as

follows:

 

SUPERVISORY ROUTINE

READ INSTRUCTION CARD
AND SET UP NEXT PROGRAM

aZO
   

  

     
CONSTRUCT STIMULUS TRAINING TESTING
PERCEPTRON PROTOTYPES PROGRAM PROGRAM

     

TRAINING PROGRAM TESTING PROGRAM
  

  

  

  
  

  

  

  
  

  
        

COMPOSE COMPOSE
STIMULUS STIMULUS
TRANSFORM TRANSFORM

t Y
COMPUTE COMPUTE

INPUT SIGNALS INPUT SIGNALS
TO A-UNITS TO A-UNITS

i t
MARK MARK
ACTIVE ACTIVE

A- UNITS A-UNITS

‘ ’
COMPUTE COMPUTE
SIGNALS TO SIGNALS TO
R- UNITS R- UNITS

t t

REINFORCE GO TO NEXT TALLY 60 TO NEXTCORRECT
A+SYSTEM STIMULUS RESPONSES STIMULUS

  

Fig. 3—Flow diagram for simulation program.

1) The perceptron construction routine is called into

the core memory, and reads in a set of parameters de-

scribing the perceptron to be constructed. These param-

eters include the number of A units, the numberof ex-

citatory and inhibitory connections to each unit, the

thresholds of the units, the number of R units, the num-

ber of R units connected to each A unit, the decayrate

for A unit values (which decay with time in some

models) and a random numberto be used for priming

the pseudo-random-number generator used to control

the choice of connections. The program then selects for

each A unit a set of x+y sensory points to be assigned

as origins for the input connections. This is done by gen-

erating a random number number modulo J,(the num-

ber of sensory points) for each connection. This number

is used to locate one of the NV,storage locations in which

 

1 The cross-coupled system was successfully simulated, and pre-
dicted effects obtained in December, 1959, using an improved pro-
gram. Results will be reported in later publications.
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the state of each sensory point is indicated when a “vis-

ual” pattern is presented.? The perceptron construction

routine preparesa table listing all of these connections.

In the first simulation program this table was stored on

tape; but in the second program, by cutting down the

admissible number of A units and connections, it was

possible to store the entire table in the core memory,

saving a factor of about five in running time of the pro-

gram. The R units to which each A unit is connected are

similarly assigned at random in each of the first two

programs, which permit multiple output connections

from each A unit. Since, in practice, all experiments

have been concerned only with simple binary discrim-

ination problems, more recent programs have been de-

signed with only one R unit, to which all A units are

connected. In the second program,it is also possible to

assign an initial randomdistribution of values to the A

units, although in most experiments it is assumed that

the values start out uniformly from zero.

2) The second stage in the experimentcalls for read-

ing a set of “prototype stimulus patterns” into the

memoryof the computer. These patterns consist of ac-

tual dot images of the stimuli to be used, punched as

patterns of holes in IBMcards. Thus,if it is planned to

teach the perceptron the first four letters of the alpha-

bet, we would read in the images of the letters A, B, C,

and D, which are stored for future reference by later

routines. These prototypes are never altered, but are

used bythe stimulus transformation routines which are

included in the remaining two programs, to construct

variously displaced, rotated, or contracted patterns

which are the stimuli actually “shown” to the percep-

tron.

3) Having constructed the connection tables and read

in the prototype stimuli, the computeris ready to begin

the actual learning experiment. This consists of an

alternation between the two remaining programs, one

of which attempts to “teach” the perceptron to recog-

nize the stimulus patterns, while the other evaluates

the performance of the perceptron at intervals specified

by the control cards. For example, in a typical experi-

ment, the discrimination of the letters “E” and “X,” the

procedureis as follows. First, a control card calls for the

training program to show ten different transformations

of the letter “E” (the first stimulus). Each of these is

generated by applying a vertical and lateral shift of

random magnitudes between zero units of retinal dis-

tance and a maximumshift specified by the control card,

2 In each of the first two simulation programs, multiple connec-
tions from the same A unit to the same S point are prohibited. In the
second program,an inverse constraint wasoriginally employed,fixing
the numberof connectionsoriginating from each sensory point, and
assigning termini at random in the association system. This was
later modified by the addition of a schemeto obtain, as nearly as pos-
sible, uniform numbers of inputs to each A unit as well as fixed num-
bers of outputs from the sensory units. These variations have not
seriously affected the performance of the program, but it appears
that somewhat better performance is obtained with the numbers of
inputs to the A units is kept uniform.
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a rotation between zero degrees and a specified maxi-

mum, and a size somewhere between a specified lower

and upper bound. Random numbers generated by the

routine determine the exact transformation to be ap-

plied to each stimulus, and a new image is composed.

The control card then specifies that the response “1”

is to be reinforced as the appropriate response for the

letter “E.” The program accordingly calculates the sig-

nals received by each A unit from the transformed stim-

ulus, determines which A units are active, and rein-

forces the units according to the rules for reinforcement

of the R=1 condition, for the gamma system, 17.e., each

active A unit gains an incrementin value, while the in-

active units lose a compensating amount. In the second

of the simulation programs, it is also possible for the

stimulus to persist for a designated number of cycles,

undergoing a random walk during this time, consisting

of unit displacements, rotations, or size changes from

the position in whichit first appeared. This procedureis

characteristic of the “forced learning mode” of experi-
ment, which is the only mode possible for the first simu-

lation program. In this mode, the desired response is

turned on, or forced, by the training program at the

same time that a stimulus is presented. The second pro-

gram is also designed to permit a “spontaneous learning

mode,” in which stimuli occur in a random sequence,

and the response spontaneously occurring upon presen-

tation of the stimulusis reinforced, regardless of whether

or not it is the response ultimately desired. Most of the

experiments to be described in this paper were per-

formed in the forced learning mode. After having pre-

sented the ten transformations of the letter “E” which

were called for, and reinforced the response R=1 for

each transformation, control is returned to the super-

visory routine, which reads the next control card. In

this typical experiment, we nextcall for ten transforma-

tions of the letter “X,” to be associated to the response

R=0. This procedureis carried out in the same manner

as before.

We now switch to the testing program, which com-

poses a series of stimulus transformations in the same

manner as the training program, and goes through an

identical set of calculations to determine the active A

units in each case. Instead of reinforcing the association

units, however, this program merely records the re-

sponse, and checks it against the desired response for

correctness. If the response is correct, it increments a

tally of correct responses. Typically, we may look at

twenty transformations of the “E” and twenty trans-

formations of the “X,” determining in each case the

percentage of correct responses (R=1 or R=0O, respec-

tively). During this procedure, a running description

of the responses of the system, numbers of active units,

and other analytic data, are printed out by the com-

puter. We maynowpresent another ten E’s and another

ten X’s, reinforcing the system as before, then test the

performance once more, to find out whether this addi-
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tional training has improved the performance, and thus
continue alternating between training and testing pro-
grams indefinitely. It is also possible to reverse the as-
signed responses in the middle of the experiment, thus
reversing previous learning. In order to obtain unam-
biguous comparisons of performance in different parts
of the training series, the testing series are generally
“primed” with the same random number to guarantee
that the same stimulus transformations will be used on

each repetition of the program. The training programs,

on the other hand, continue to select stimuli at random,

independently of what has gone before. A comparison

of the organization of the training and testing programs

is presented in the flow diagramsin Fig. 3.

The two ma‘n simulation programs total about 5000

words each. The first program was designed to handle

up to 1000 A units, and a 72 by72 sensory mosaic. It

was found thet this large sensory system presented

stimuli with a fineness of grain considerably better than

the limits of discrimination of a thousand-unit percep-

tron, and at the same time, required an excessive

amount of time for stimulus transformations, since each

illuminated point in the stimulus must be transformed

individually in:o its image point. The second program

reduced the retina to a 20 by 20 mosaic, and limited the

number of A units to 500. For the first system, the com-

puting time averaged about 15 seconds per stimulus

cycle, while in the second system the time was cut to

about 3 second: per cycle. Subsequent improvementsin

programming techniques‘indicate that it should be pos-

sible to reduce the computing time still further—sayto

about one secoid per cycle—for perceptrons of the size

allowed by the second program. At the same time, how-

ever, analytic developments have suggested a wayof

actually calculating the exact performance of a given

perceptron of the type discussed above, provided all

possible stimui are known, and a matrix of g co-

efficients, describing the interactions of each pair of

stimuli, is computed for the particular network in ques-

tion. This technique is discussed in the appendix to [7],

and is the method employed in the third of our simula-

tion programs for the analysis of spontaneous learning

in infinite perc:ptrons. In that program, the responseof

the system is obtained analytically, rather than simu-

lated, but the s2quence of stimuli is governed by series

of random nun.bers generated by the program. We will

consider some «f the results of this programlater in this

paper.

THEORETICAL PREDICTIONS AND PROBLEMS

Before considering the results of the simulation ex-

periments, let us review the main predictions coming

from the theo:y of the perceptron (see [5]-[7]). The

simulation experiments were designed in part to verify

these predictions, and in part to study problems which

were suggested by the theoretical investigations.

Rosenblatt: Perceptron Simulation Experiments

Fig. 4 shows a set of theoretical performance curves
for perceptrons of three different sizes, in the problem
of discriminating a square from a circle. The broken
curves (for P,) show the probability of giving the correct
response to a stimulus which is identical in position,
size, etc., to one which was shownpreviously, during the
training period. The horizontal axis indicates the
number of stimuli of each class (squares and circles)
which were presented during the training period. The
solid curves indicate the probability of correct response
to any squareorcircle, regardless of whether it was used
as a training stimulus or not. Note that both sets of
curves approach the same asymptotes as the numberof
training stimuli becomes large. The first task of the
simulation program was to check the general character

of these learning curves for typical stimulus material,
such as letters of the alphabet or geometric patterns.
In particular, it was essential to determine whether the
rates of learning agreed with the predicted rates, at least
to a reasonable approximation.

Broken curves (Pr) = probobility of correct response to training stimulus

Solid curves (Pg) = probability of correct generalization.

= 998
~ 500 A - UNITS
~ * 968

A= UNITS =":

P, © .887
100 A = UNITS

RANDOM LEVEL 
4 10 100 , 1000 10,000

NUMBER OF STIMULI IN EACH CLASS

Fig. 4—Learning curves for three typical perceptrons.

A second problem concerned the effect of particuiar

types of transformations, such as shifting of stimuli,

rotations, or size changes, upon the learning curves. The

original theory did not distinguish among these typesof

transformations, and it was important to find out

whether the system would work equally well for all of

them. While sufficient demonstrations have now been

made of performance undershifting and rotation condi-

tions, the problemof size changes remains a serious one,

with a number of special cases. One such special case

involves the assignment of different responses to two

stimuli, one of which could be considered a “part” of the

other, such as a small circle which could be completely

imbedded in a larger one, or the letter “F,” which can

be considered as an “E” with the lower bar missing. It

waspredicted that such discriminations would be possi-

ble only with a mixture of excitatory and inhibitory in-
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put connections, excitatory connections alone being

insufficient.*

Related to the problemof size variation in the stimuli

is the problem of frequency variation, 1.e., some kinds

of stimuli being more frequent than others. The response

assigned to the more frequent stimulus type will gen-

erally tend to dominate the response assigned to the less

frequent type, unless the system is designed in such a

wayas to minimize interaction between different classes

of stimuli. The extent of this frequency bias was one of

the problemsoriginally set for the simulation programs,

but a systematic investigation has not yet been com-

pleted.

A different problem area concerns the performance of

linear systems. At one stage of the perceptron program,

we were particularly interested in systems in which no

threshold at all was employed in the A units, the output

simply being equal to av (the algebraic product of the

input signal and the stored value) rather than a*v, as in

the model described above. The values were to be aug-

mented by a quantity equal to@if R=1, and diminished

by aif R=0. It can easily be shownthat in such a sys-

tem, if a stimulus pattern can occur with equal proba-

bility anywhere in the retinal space (and eliminating

special boundary conditions, as in the toroidally con-

nected model), the expected value of every A unit after

a long series of stimulus exposures will be exactlyzero.

Such a system clearly would not learn at all, if stimuli

were distributed uniformlyin space. If the stimuli were

not uniformly distributed, however, the values would

tend to correlate with any bias existing in the input

signals, and it was predicted that such a system should

learn to discriminate. The second simulation program

was originally set up to studylinear systemsof this type,

both in forced learning and spontaneous learning experi-

ments. The theory of such systems in spontaneous

learning is considered elsewhere [7]. While linear sys-

tems have now been abandoned, a typical experiment

will be considered presently, as it illustrates several

points of interest.

The problem of spontaneous learning—the ability of

a perceptron to form meaningful classifications of stimu-

lus patterns without anv assignment of “correct” re-

sponses by a human experimenter—has prompted an

extensive series of experiments. The effect wasoriginally

demonstrated with the second simulation program,

where two disjunct classes of stimuli were properly

separated, in a numberof experiments. More interesting

results were obtained with the third program, which

eventually pointed the way to the development of the

“cross-coupled association system,” which promises to

yield substantially improved performance in a large

variety of problems [8]. In studying these spontaneous

3 F. Rosenblatt, “The Perceptron: A Theory of Statistical Separa-
bility in Cognitive Systems,” Cornell Aero. Lab., Buffalo, N. Y.,
Rept. no. VG-1196-G-1; January, 1958. See p. 53.
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learning effects, the first question was whether they

could actually be obtained at all, and the second was

how much experience would be required, a question for

which nosatisfactory theoretical answer had been found

at the time the simulation experiments were under-

taken. In this area, there has been particularly close

feedback between simulation work and development of

the theory, the simulation program frequently demon-

strating the existence of special cases, involving particu-

lar parameters or particular stimulus forms, which had

not been anticipated. More recent theoretical models

owe a great deal to this period of empirical exploration.

RESULTS OF SIMULATION EXPERIMENTS

The first experiments which we shall consider are

concerned with the discrimination of the letters “E” and

“X” in a forced learning situation, and are illustrated

in Fig. 5. The stimuli were constrained to a central por-

tion of the field (as shownbythe insert) partly to facili-

tate learning, and partly to prevent truncation at the

boundaries, since the toroidal stimulus space was not

used in this program. Fig. 5(a) shows the probability of

correct generalization (P,) as measured on a sample of

20 X’s and 20 E’s. The stimulus sequence consisted of

ten X’s followed by ten E’s, followed by atest of per-

formance; then ten more X’s, ten more E’s, and a second

test, for a total of 100 training stimuli. The data points

shownin the figure are means obtained from ten 100 A

unit perceptrons, each of them having a different con-

nection network, but exposed to the same sequence of

stimuli. The curves in Fig. 5(b) show the performance

of a larger (1000 A unit) perceptron, on a more difficult

variation of the same problem. In the solid curve, we see

the performance of the system for stimuli rotated by

some integral number of degrees selected at randombe-

tween 0 and 30 degrees. This rotation is combined with

vertical and horizontal translations selected within the

same limits as in the preceding case. For rotations up

to 30 degrees, note that the system attains perfect per-

formanceafter only ten stimuli of each type. The broken

curve shows the performance of the same system for

rotations up to 359 degrees, combined with translations

as above. In this case, there is a definite decline in the

perceptron’s performance, although it has attained a

P, of better than 0.90 after 30 stimuli of each type.

The next experiment (Fig. 6) was designed to check

the hypothesis that performance on outline figures

should be better than on solid figures, since unlike fig-

ures represented by their contours would have a mini-

mumintersection on the retina, while solid areas might

still have a large intersection even though their shape

was different. The figures used were squares(illustrated

in the inset) and diamonds, which covered the same

areas as the squares, rotated 45 degrees. As shown by

the two curves, the outline figures did indeed yield a

better performance than the solid figures, giving a per-
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Fig. 6—Experiments 16, 17. Square-diamonddiscrimination. V4 = 1000,
x=10, y=0, :nd 6=4. Centers placed in 13 by 13 field.

fect response record after 60 training stimuli (30 of each

class). In this experiment, of course, rotation was

eliminated to avoid confusion of squares and diamonds,

and the figures vrere merely displaced in the same man-

ner as the E’s and X’s in the preceding experiment.

Fig. 7 shows two experiments concerned with part-

whole discrimination, which was discussed in the pre-

ceding section. I1 Experiment18,illustrated in Fig. 7(a)

a system with only excitatory connections to the A units

was simulated. The stimulus is shifted at random in the

central portion of the field, as before. In this case, the

letter “E” was correctly learned, but the system was

unable to learn t » give the opposite responseto the letter

“EF.” In Experin ent 22, shown in Fig. 7(b), we see that

Rosenblatt: Perceptron Simulation Experiments
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Fig. 8—Linear system experiments (“E” vs “X”). (a) Experiment
4-14, 15. N4=500, x=4, y=4. Centers placed in 13 by 13 field.
(b) Experiment 4-16. N4=500, x =4, and y=4. Centers placed in
5 by5 field.

a system, in which half of the connections to the A units

are inhibitory, is able to learn the correct response to

both classes of stimuli, although the F response is con-

siderably less consistent then the E response. Experi-

ments 18 and 22 are, unfortunately, not fully compara-

ble, as the perceptron in the second case was a thousand-

unit system, while in Experiment 18 only a hundred A

units were used. The character of the curves in these

experiments, however, is definitely not a function of the

size of the systems, but rather of the stimulus relation-

ships, as shown by supporting evidence from many other

cases. These results are in closer agreement with the

theoretical predictions referred to earlier.

The next experiment (Fig. 8) was performed with the

second simulation program, and represents the learning

whichis possible with a purely linear model, if the stim-

uli are constrained to one region of the retinal field. In

this experiment, instead of testing the perceptron after

every twenty stimuli, as in previous experiments, it was

tested after every ten stimuli, which yields the charac-

teristic pattern of converging oscillations shown in the

figure. The first ten stimuli were all E’s, and after these

bu
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ten exposures, we find that the system has learned the

‘E” perfectly, but always gives the wrong response to

stimuli of the opposite class (the letter “X”). The per-

ceptron was then shown ten X’s, to which the opposite

response was forced, and wefind at time 20 that it has

nowlearned to give the desired response to the X, but

has almost completely forgotten the proper response to

the letter E. The amplitudes of such oscillations are apt

to be increased by a large decay rate for the values of

the A units (which makes more recent reinforcement

more effective than earlier experience), but in the ex-

perimentillustrated here the decay rate was zero. Note

that in Experiment 4-16 [illustrated Fig. 8(b)] the

mean learning curve, shown by the broken line, climbs

towards a high probability level as experience with both

stimuli increases. At the same time, the swings in per-

formance become considerably less pronounced, as each

series of ten stimuli represents a progressively diminish-

ing portion of the total experience of the system. The

important conclusion from this experiment is that dis-

crimination learning zs possible for a linear system, pro-

vided the stimuli are sufficiently constrained in location.

The retinal field in this case was 20 by 20 units, and the

centers of the stimuli were constrained toa 5 by 5 region

in the center of the retina. In Experiment 4-14 [shown

in Fig. 8(a)], where the stimuli were distributed more

freely over the retina (with the centers in a 13 by 13

field), no learning was demonstrated even after 200

stimuli. As a methodological experiment, these results

indicate the importance of making sure that the stimu-

lus distribution employed does not include “location

cues” which are sufficient to indicate which stimulus 1s

present, if we wish to test the ability of the perceptron

to discriminate pattern characteristics exclusive of loca-

tion. This can be fully guaranteed, in general, only by

a uniform stimulus distribution over the entire field,

with the elimination of special boundary effects by as-

suming a closed space, or an infinite space, as with the

Born-von Karman boundary conditions referred to in

the Introduction.

Experiment 4-36, shown in Fig. 9, was again carried

out with the second simulation program,this time with

a more conventional perceptron. The threshold of zero,

employed here, is sufficient to make the system funda-

mentally nonlinear, by eliminating the output of A units

in the presence of negative input signals. The experi-

ment was designed to show the performance of the sys-

tem in the presence of a high degree of randomness, or

noise, in the initial values of the A units. The stimuli

for this experiment were vertical and horizontal bars, 4

units in width and 20 units long. A 5 per cent decay rate

was introduced for the values of the A units. Note that

in spite of the high decay rate and high initial noise

level, the system achieved perfect performance on both

classes of stimuli after a total of only 50 stimuli. This

should be compared with the performance of very large

(or infinite) perceptrons, in a spoftaneous learning ex-

periment with the same types of stimuli, which is illus-

trated in Fig. 10.
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Fig. 10—Experiment 5-4. (a) Spontaneous organizationof infinite
perceptron in environment of 4 by 20 vertical and horizontal
bars. (b) Expected waiting time to perfect performance, as a
function of decay rate (meansof 10 runs).

In the experiment shown in Fig. 10, stimuli were

placed with equal probability at any position in a 20 by

20 retinal field, with Born-von Karman boundary con-

ditions. The stimuli were 4 by 20 horizontal and vertical

bars, as in the previous case. The perceptron used in

this experimentis one in which the A units are reinforced
for the response R=1, but are left unaltered if the re-

sponse R=0 occurs. Unlike all of the previously illus-

trated experiments, this is a spontaneous learning ex-

periment, in which no attempt is made to control the
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response during the learning procedure, reinforcement
being applied for whichever response is elicited by a

given stimulus. The perceptron here was assumed to

have an infinite :1umber of A units, and the calculations

were done with the third program, which was specif-

ically designed :o handle these conditions. The family

of curvesin Fig. 10(a) shows the performance asa func-

tion of the deca’ rate, 6. We find that for a zero decay

rate, the system eventually learns to dichotomize the

bars correctly 1C0 per cent of the time, 7.e., it learns to

assign one response to all horizontal bars, and the op-

posite response to all vertical bars. However, this takes

upwards of 300) stimuli in most cases. As the decay

rate increases, performance improves progressively,

until a decay rate is reached (0.05 in this case) for which

the system is unstable, and never attains perfect per-

formance. The e‘fect of the decay short of the instability

level appears to le to keep previous reinforcements from

accumulating to such a degree that they are difficult or

impossible to undo, as the system settles into a more

satisfactory terminal state; in other words, the decay

keeps the system flexible, by making it possible to re-

verse the effects of previous learning more readily. At

the instability .evel, previous reinforcements are re-

versed so readily that they are unable to maintain their

effect at all, and associations are likely to be lost and

reformed continually. The curve in Fig. 10(b) which

shows expected waiting time to perfect performance,for

the sameseries o: runs, indicates the same phenomenon.

Wefind that there is a clear optimum in performance

as a function of the decay rate, for 6=approximately

0.01. Beyond this point, instability begins to occur, as

indicated by the broken curve in the figure.

This experime it is the best demonstration to date of

the “self-organiz ng” capability of a perceptron. None-

theless, it can be demonstrated that minor changes in

the stimulus environment will make it impossible for the

same perceptror. to achieve a satisfactory dichotomy.

For example, if the 4 by 20 horizontal bars are replaced

by double bars, somposed of two 2 by 20 vertical bars

separated by a space of 3 units, the perceptron will never

spontaneously learn to distinguish the double bars from

the single bars. Dther classes of stimuli can be set up

which are equallydifficult, or impossible, for the system

to learn spontaneously, although in each of these cases

the problem would present no difficulty in. a forced

learning situatio1. Moreover, the curves in Fig. 10 are

convex, indicating increasing difficulty in correctly as-

sociating the last few stimuli after most of the class has

been learned. In a human subject faced with this task

we would expect concave curves instead. These con-

siderations indic:te that the spontaneous learning capa-

bility of this perceptron, while interesting, is not suf-

ficient to provid: a basis for a biological theory of per-

ceptual organizition. This problem is considered in

further detail els2where [8].

4 Individual runs differ from one another due to differences in
stimulus sequence, ven though the perceptrons are infinite; the
curves shown are me:ins of ten different runs.

Rosenblatt: Perceptron Simulation Experiments

CONCLUSIONS

The simulation experiments described above have
gone a long way toward demonstratingthefeasibility of
a perceptron as a pattern-recognizing device. Both
forced lea. ning and spontaneous learning performances
have been investigated, and some insight has been
gained into conditions under which different systems
break down,or deviate from typical biological learning
phenomena. Although digital simulation is apt to be
time-consuming and expensive, particularly for large
networks, improved programming methods have cut
down the running time considerably, so that for early

investigations of all systems proposed up to this time,

digital simulation is still competitive with the construc-

tion of actual hardware models. As the number of con-

nections in the network increases, however, the burden

on a conventional digital computer soon becomes ex-

cessive, and it is anticipated that some of the models

now under consideration [8] may require actual con-

struction before their capabilities can be fully explored.
Digital programs undertaken to date have been con-

cerned exclusively with the logical properties of the net-

work, rather than with any particular hardware em-

bodiment; that is, there has been no attempt to intro-

duce simulation of electronic noise, component varia-

tion, or other factors which mightaffect the performance

of an actual system. The results of these programs,

therefore, should be interpreted as indicating perform-

ances which might be expected from an “ideal,” or per-

fectly functioning system, and not necessarily as repre-

sentative of any particular engineering design. A Mark

I perceptron, recently completed at the Cornell Aero-

nautical Laboratory, is expected to provide data on

the performance of an actual physical system, which

should be useful for comparative study.

A new program is currently heing employed to simu-

late the “cross-coupled perceptron” described else-

where [8]. The results of this study will be reported

separately when theyare available.
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Speech Recognition: A Model and a Program
*

for Research
M. HALLE} anp K. STEVENSI, MEMBER, IRE

Summary—A speech recognition modelis proposed in which the

transformation from an input speech signal into a sequence of

phonemes is carried out largely through an active or feedback

process. In this process, patterns are generated internally in the

analyzer according to an adaptable sequence of instructions until

a best match with the input signal is obtained. Details of the process

are given, and the areas where further research is needed are

indicated.

HE FUNDAMENTALproblem in pattern recogni-

Yon is the search for a recognition function that

will appropriately pair signals and messages. The

input to the recognizer generally consists of measured

physical quantities characterizing each signal to be recog-

nized, while at the output of the recognizer each input

signal is assigned to one of a number of categories which

constitute the messages. Thus, for instance, in machine

translation, the signals are sentences in one language and

the messages are sentences in another language. In the

automatic recognition of handwriting, the signal is a two-

dimensional curve and the message a sequence ofletters

in a standard alphabet. Similarly, research on automatic

speech recognition aims at discovering a recognition func-

tion that relates acoustic signals produced by the human

vocal tract in speaking to messages consisting of strings

of symbols, the phonemes. Such a recognition function is

the inverse of a function that describes the production

of speech, z.e., the transformation of a discrete phoneme

sequence into an acoustic signal.

This paper proposes a recognition model in which

mapping from signal to message space is accomplished

largely through an active or feedback process. Patterns

are generated internally in the analyzer according to a

flexible or adaptable sequence of instructions until a

best match with the input signal is obtained. Since the
analysis is achieved through active internal synthesis of

of comparison signals, the procedure has been called

“analysis by synthesis.’’”

* Received by the PGIT, September 25, 1961; revised manu-
script received, October 12, 1961. This work was supported in part
by the U. S. Army Signal Corps, the Air Force Office of Scientific
Research, and the Office of Naval Research; in part by the National
Science Foundation; and in part by the Air Force (Electronic
Systems Division) under Contract AF 19(604)-6102.

+ Research Laboratory of Electronics and Department of Modern
Languages, Massachusetts Institute of Technology, Cambridge,

ass.
t Research Laboratory of Electronics and Department of Elec-

trical Engineering, Massachusetts Institute of Technology, Cam-
bridge, Mass.

Tur Process OF SPEECH PRODUCTION

In line with the traditional account of speech production,

we shall assume that the speaker has stored in his memory

a table of all the phonemesandtheir actualizations. This

table lists the different vocal-tract configurations or

gestures that are associated with each phoneme and the

conditions under which each is to be used. In producing

an utterance the speaker looks up, as it were, in the table

the individual phonemes and then instructs his vocal

tract to assume in succession the configurations or gestures

corresponding to the phonemes.

The shape of man’s vocal tract is not controlled as a

single unit; rather, separate control is exercised over

various gross structures in the tract, e.g., the lip opening,

position of velum, tongue position, and vocal-cord vib-

ration. The changing configurations of the vocal tract

must, therefore, be specified in terms of parameters

describing the behavior of these quasi-independent struc-

tures.” These parameters will be called phonetic param-

eters.”
Sincethe vocal tract does not utilize the same amount

of time for actualizing each phoneme (e.g., the vowel in

bit is considerably shorter than that in beat), it must be

assumed that stored in the speaker’s memory there is

also a schedule that determines the time at which the

1The relevance of such analysis procedures to more general
perceptual processes has heen suggested by several writers. See, for
example:

D. M.MacKay, ‘‘Mindlike behavior in artefacts,” Brit. J. sor
Philosophy of Science, vol. 2, pp. 105-121; 1951.

G. A. Miller, E. Galanter, and K. H. Pribram, ‘‘Plans and the
Siructure of Behavior,’’ Henry Holt and Co., New York, N. Y.;

M. Halle and K. N. Stevens, ‘‘Analysis by synthesis,’’ Proc. of
Seminar on Speech Compression and Processing, W. Wathen-Dunn
and L. E. Woods, Eds., vol. 2, Paper D7: December, 1959.

2 This view was well understood by the founder of modern pho-
netics, A. M. Bell, who deseribed utterances by means of symbols
(“Visible Speech and The Science of Universal Alphabetics,”’
Simpkin, Marshall and Co., London, Eng.; 1867) from which the
behavior of the quasi-independent structures could be read off
directly. The subsequent replacement, for reasons of typographical
economy, of Bell’s special symbols by the Romic of the Internatl.
Phonetic Assoc. has served to obscure the above facts and to sug-
gest that phonemes are implemented by controlling the vocal tract
as a single unit.

3 We cannot discuss in detail at this point the nature of the
phonetic parameters, and we do not take sides here in the present
discussion between proponents of the Jakobsonian distinctive
features (R. Jakobson and M.Halle, “Fundamentals of Language,”’
Mouton and Co., The Hague, The Netherlands; 1956) and those of
moretraditional views (‘‘The Principles of the International Phonetic
Association,” University College, London, England; 1949). We
insist however, that the control of the vocal-tract behavior must
be described by specifying a set of quasi-independent phoentic
parameters.

Reprinted from /RE Trans, Inform. Theory,vol. \T-8, pp. 155-1 59, Feb. 1962.
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vocal tract moves from one configuration to the next,
t.e., the time at which one or more phonetic parameters
changein value. The timing will evidently differ depending
on the speed of utterance—it will be slower for slower
speech and faster for faster speech. |
Because of the inertia of the structures that form the

vocal tract and the limitations in the speed of neural
and muscular control, a given phonetic parameter cannot
change instantaneously from one value to another; the

transitions from one target configuration to the next must

be gradual, or smooth. Furthermore, when utterances are

produced at any but the slowest rates, a given articulatory

configuration msy not be reached before motion toward

the next must »e initiated. Thus the configuration at

any given time may be the result of instructions from

more than one phoneme. In other words, at this stage in

the speech production process, discrete quantities found

in the input have-been replaced by continuous parameters.

A given sequencr of phonemes, moreover, may produce a

variety of voca-tract behaviors depending upon such

factors as the past linguistic experience of the talker, his

emotional state, nd the rate of talking.

The continuous phonetic parameters that result from

a given phonemesequence giverise in turn to changes in

the geometry and acoustic excitation of the cavities

forming the vocal tract. The tract can be visualized as a

time-varying linear acoustic system, excited by one or more

sound sources, ‘vhich radiates sound from the mouth

opening (and/or :rom the nose). The acoustic performance

of this linear systi2m at a given time andfora given source

of excitation can be characterized by the poles and zeros

of the transfer function from the source to the output,

together with a constant factor.* For voiced sounds the

vocal tract is excited at the glottis by a quasi-periodic
source with higl acoustic impedance. Its fundamental

frequency varies ‘with time, but the waveform or spectrum

of each glottal pulse does not change markedly from one

speech sound to another. In addition, the vocal tract

may be excited xn the vicinity of a constriction or ob-

struction by a »road-band noise source or by sound.

In the proces; of generating an acoustic output in

response to a seyjuence of phonemes, a talker strives to

produce the appropriate vocal-tract configurations to-

gether with the proper type of source, but he does not

exert precise cottrol over such factors as the detailed

characteristics of the source or the damping of the vocal

tract. Consequer.tly, for a given vocal-tract configuration

the shape of the source spectrum, the fundamental fre-

quency of the g]>ttal source, and the bandwidths of the

poles and zeros ¢in be expected to exhibit some variation

for a given talker Even greater variation is to be expected

among different t ilkers, since the dimensions of the speech-
production apparitus are different for different individuals.

This variance is superimposed on the already-mentioned

variance in artic. latory gestures.

4G. Fant, “Acc istic Theory of Speech Production,’”’ Mouton
and Co., The Hagu:, Neth.; 1960.

REDUCTION OF THE CONTINUOUS SIGNAL TO A MESSAGE

CONSISTING oF DiscRETE SYMBOLS;

THE SEGMENTATION PROBLEM

The analysis procedure that has enjoyed the widest
acceptance postulates that the listener first segments the
utterance and then identifies the individual segments with
particular phonemes. No analysis scheme based on this
principle has ever been successfully implemented. This
failure is understandable in the light of the preceding

account of speech production, where it was observed that
segments of an utterance do not in general stand in a
one-to-one relation with the phonemes. The problem,

therefore, is to devise a procedure which will transform

the continuously-changing speech signal into a discrete

output without depending crucially on segmentation.

A simple procedure of this type restricts the input

to stretches of sound separated from adjacent stretches by

silence. The input signals could, for example, correspond

to isolated words, or they could be longer utterances.

Perhaps the crudest device capable of transforming such

an input into phoneme sequences would be a “‘dictionary”’

in which the inputs are entered as intensity-frequency-time
patterns’ and each entry is provided with its phonemic

representation. The segment under analysis is compared

with each entry in the dictionary, the one most closely

resembling the input determined, and its phonemic trans-

cription printed out.°
The size of the dictionary in such an analyzer increases

very rapidly with the number of admissible outputs, since

a given phoneme sequence can giverise to a large number

of distinct acoustic outputs. In a device whose capabilities

would even remotely approach those of a normal human

listener, the size of the dictionary would, therefore, be

so large as to rule out this approach.’
The need for a large dictionary can be overcomeif the

principles of construction of the dictionary entries are

5 The initial step in processing a speech signal for automatic
analysis usually consists of deriving from the time-varying pressure
changes a sequence of short-time amplitude spectra. This trans-
formation, which is commonly performed by sampling the rectified
and smoothed outputs of a set of band-passfilters or by computing
the Fourier transform of segments of the signal, is known to preserve
intact the essential information in the signal, provided that suitable
filter bandwidths and averaging times have been chosen.

6 A model of this type was considered by F. 8. Cooper, e¢ al.,
‘Some experiments on the perception of synthetic speech sounds,”’
J. Acoust. Soc. Am., vol. 24, p. 605; November, 1952.

“The problem of speech perception is then to describe the
decoding process either in terms of the decoding mechanism or—
as we are trying to do—by compiling the code book, one in which
there is one column for acoustic entries and another column for
message units, whether these be phonemes, syllables, words, or
whatever.’’

7 This approach need not be ruled out, however, in specialized
applications in which a greatly restricted vocabulary of short utter-
ances, such as digits, is to be recognized. See, for example:

H. Dudley and 8. Balashek, ‘‘Automatic recognition of phonetic
patterns in speech,” J. Acoust. Soc. Am., vol. 30, pp. 721-732;
August, 1958.

P. Denes and M. V. Mathews, “Spoken digit recognition using
time-frequency pattern matching,” J. Acoust. Sec. Am., vol. 32,
pp. 1450-1455; November, 1960.

G. 8. Sebestyen, ‘‘Recognition of membership in classes,’ IRE
TRANS. ON INFORMATION THEORY, vol. IT-6, pp. 44-50; January,
1961.
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known. It is then possible to store in the “permanent

memory” of the analyzer only the rules for speech produc-

tion discussed in the previous section. In this model the

dictionary is replaced by generative rules which can syn-

thesize signals in response to instructions consisting of

sequences of phonemes. Analysis 1s now accomplished by

supplying the generative rules with all possible phoneme

sequences, systematically running through all one-

phoneme sequences, two-phoneme sequences, etc. The

internally generated signal which provides the best match

with the input signal then identifies the required phoneme

sequence. While this model does notplace excessive de-

mands on the size of the memory, a very long time is

required to achieve positive identification.

The necessity of synthesizing a large number of com-

parisonsignals can be eliminated by a preleminary analysis

which excludes from consideration all but a very small

subset of the items which can be produced by the gene-

rative rules. The preliminary analysis would no doubt

include various transformations which have been found

useful in speech analysis, such as segmentation within

the utterance according to the type of vocal-tract excita-

tion and tentative identification of segments by special

attributes of the signal. Once a list of possible phoneme

sequences is established from the preliminary analysis,

then the internal signal synthesizer proceeds to generate

signals corresponding to each of these sequences.

The analysis procedure can be refined still further by

including a control component to dictate the order in

which comparison signals are to be generated. This con-

trol is guided not only by the results of the preliminary

analysis but also by quantitative measures of the goodness

of fit achieved for comparison signals that have already

been synthesized, statistical information concerning the

admissible phoneme sequences, and other data that may

have been obtained from preceding analyses. This infor-

mation is utilized by the control component to formulate

strategies that would achieve convergence to the required

result with as small a numberof trials as possible.

It seems to us that an automatic speech recognition

scheme capable of processing any but the most trivial

classes of utterances must incorporate all of the features

discussed above—the input signal must be matched against

a comparison signal; a set of generative rules must be

stored within the machine; preliminary analysis must be

performed; and a strategy must be included to control

the order in which internal comparison signals are to be

generated. The arrangement of these operations in the

proposed recognition model is epitomized in Fig. 1.

PROCESSING OF THE SPEECH SIGNAL PRIOR TO

PHONEME IDENTIFICATION

In the analysis-by-synthesis procedure just described,

it is implied that the comparison between the input and

the internally generated signal is made at the level of

the time-varying acoustic spectrum. It is clear, however,

that the input signal of Fig. 1 could equally well be the
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Fig. 1—Block diagram of analysis-by-synthesis procedure for ex-

tracting a phoneme sequence from a time-varying input spectrum.

The input spectrum, which may be placed in temporary storage

pending completion of the analysis,is compared in the comparator

with signals synthesized by the generative rules. Instructions as

to the phoneme sequences to be tried are communicated to the

generative rules by the control component, which bases its deci-

sions on the results of a preliminary analysis of the input signal

and on the output of the comparator for previous trials, as well

as on other information as noted in the text. When a best match

is obtained in the comparator, the control component reads out

the phoneme sequence which, through the generative rules, pro-
duced that match. This figure also serves to show the arrange-

ment of components in the proposed model for the reduction of
speech spectra to continuous phonetic parameters.

result of some transformation of the acoustic spectrum

carried out at a previous stage of analysis. Indeed, in

any practical speech recognizer, it is essential to subject

the spectral pattern to a certain amount of preliminary

processing before entering the phonemic analysis stage.

Thenecessity for initial transformations or simplifications

stems from the fact that many acoustic signals may cor-

respond to a given sequence of phonemes. To account

for all the sources of variance or redundancy in one stage

of analysis is much too difficult an undertaking. Through

a stepwise reduction procedure, on the other hand,

variance due to irrelevant factors can be eliminated a

small amount at a time.

The proposed procedure for speech processing contains

two major steps. In the first stage the spectral representa-

tion is reduced to a set of parameters which describe the

pertinent motions and excitations of the vocal tract, 2.e.,

the phonetic parameters. In the second stage, transforma-

tion to a sequence of phonemes is achieved. These steps

provide a natural division of the analysis procedure into

one part concerned primarily with the physical and

physiological processes of speech, and the other concerned

with those aspects of speech primarily dependent on

linguistic and social factors. In the first stage, variance in

the signal due to differences in the speech mechanism

of different talkers (or of a given talker in different

situations) would be largely eliminated. The second stage

would account for influences such as rate of talking,

linguistic background or dialect of the talker, and con-

textual variants of phonemes.

Many of the problems involved in the first analysis

stage are not unlike those encountered in reducing an

utterance to a phoneme sequence. It is not feasible to

store all possible spectra together with the corresponding

articulatory descriptions. Since, however, rules for gene-

rating the spectrum from the articulatory description are



1962

known, it is posisible to use an analysis-by-synthesis pro-
cedure® of the type shownin Fig. 1.
The output o/ this stage is a set of phonetic param-

eters (rather than the phoneme sequence shownin Fig. 1).
The heart of thisfirst-stage analyzeris a signal synthesizer
that has the ability to compute comparison spectra when
given the phonetic parameters, 7.e., an internal synthesizer
in which are stored the generative rules for the con-
struction of speech spectra from phonetic parameters.
A strategy is required to reduce the time needed to match
the input spectrum and the comparison spectrum. The
strategy may agsin depend ontheresults of a preliminary
approximate analysis of the input signal, and on the error

that has been computed at the comparator on previous

trials. It may also depend on the results that have been

obtained for the analysis of signals in the vicinity of the

one under direci. study. Some of the instructions that

are communicated by the control component to the

generative rules “emain relatively fixed for the matching

of spectra genera‘ed by a given talker in a given situation.

When signals generated by a different talker are pre-

sented, the strat2gy must be able to modify this group

of instructions ai..tomatically after sufficient data on that

talker’s speech have been accumulated. The analysis-by-

synthesis procedire has the property, therefore, that its

strategy is potentially able to adapt to the characteristics

of different talkers.

SUMMARY Ol MopEL FOR SPEECH RECOGNITION

The complete model for speech recognition discussed

here takes the form shown in Fig. 2. The inputsignalis

first processed bv a peripheral unit such as a spectrum

analyzer. It then undergoes reduction in two analysis-by-

synthesis loops, and the phoneme sequence appears at

the right. In order to simplify the diagram, the group of

components periorming the functions of storage, pre-

liminary analysis, comparison, and control have been

combined in a sir gle block labeled strategy.

The procedure depicted here is suitable only for the

recognition of sequences of uncorrelated symbols, such

as those that control the generation of nonsense syllables.

If the speech ma‘erial to be recognized consists of words,

phrases, or continuous text, then the output of the present

analysis scheme would have to be processed further to

§ Partial implem:ntation (or models for implementation) of the
analysis-by-synthesis procedure applied at this level, together with
discussions of the ad-vantages of the method, have been presentedin:

K. N. Stevens, ‘‘Toward a model for speech recognition,” J.
Acoust. Soc. Am., vol. 32, pp. 47-51; January, 1960.

L. A. Chistovich, “Classification of rapidly repeated speech
sounds,’’ Sov. Phys. Acoustics, vol. 6, pp. 393-398; January-March,
1961 (Akust. Zhur., ‘rol. 6, pp. 392-398; July, 1960).

S. Inomata, “Ccmputational method for speech recognition,”
Bull. Electro-Tech. l.ab. (Tokyo), vol. 24, pp. 597-611; June, 1960.

M. V. Mathews, J. EH. Miller, and E. E. David, Jr.,. ‘Pitch syn-
chronous analysis of voiced sounds,” J. Acoust. Soc. Am., vol. 33,
pp. 179-186; Februs.ry, 1961.

C. G. Bell, H. Fujisaki, J. M. Heinz, K. N. Stevens, and A.S.
House, ‘‘Reduction of speech spectra by analysis-by-synthesis tech-
niques,” J. Acoust. ‘ioc. Am., vol. 33; December, 1961.
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Fig. 2—Block diagram of two-stage scheme for speech processing.
Following processing by a spectrum analyzer, the input speech
signal is reduced in Stage I to a set of quasi-continuous phonetic
parameters, which are processed in Stage II to yield an output
phoneme.sequence. An analysis-by-synthesis procedure is used for
processing the signal at each stage. The heavy lines indicate the
operations that are involved in generating a speech signal from
a phonemesequence.

take account of the constraints imposed by the morpho-
logical and syntactic structure of the language.

The final analysis stage of Fig. 2 includes, of course,

the generative rules for transforming phoneme sequences

into phonetic parameters. These are precisely the rules

that must be invoked in the production of speech. During

speech production the output from these stored rules can

be connected directly to the speech mechanism, while the
input to the rules is the phoneme sequence to be generated.

Addition of peripheral speech-generating structures to

Fig. 2 then creates a model that is capable of both speech

recognition and speech production. The samecalculations
are made in the second set of generative rules (and in the

generative rules at possible higher levels of analysis)

whether speech is being received or generated. It is

worthwhile observing that during the recognition process

phonetic parameters are merely calculated by the ‘‘gene-

rative rules II” and direct activation of the speech

structures is nowhere required.”
For the recognition of continuous speech it may not

always be necessary to have recourse to analysis-by-syn-

thesis procedures. A rough preliminary analysis at each of

the stages in Fig. 2 may often be all that is required—

ambiguities as a result of imprecise analysis at these early

stages can be resolved in later stages on the basis of

knowledge of the constraints at the morphological, syn-

tactic, and semantic levels.*°

* This point was discussed by A. M. Liberman (‘‘Results of
research on speech perception,” J. Acoust. Soc..Am., vol. 29, pp.
117-123; January, 1957) who suggested that speech is perceived with
reference to articulation, but that ‘‘the reference to articulatory
movements and their sensory consequences must somehow occur
in the brain without getting out into the periphery.”

10 Knowledge of constraints imposed on phoneme sequences by
the structure of the language has been incorporated in the design
of an automatic speech recognizer described by Fry and Denes
(D. B. Fry, ‘Theoretical aspects of mechanical speech recognition,”’
and P. Denes, ‘‘The design and operation of the mechanical speech
recognizer at University College, London,” J. Brit. IRE, vol. 19,
pp. 211-234; April, 1959.
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IMPLEMENTATION OF THE MODEL: PROBLEMS FOR

RESEARCH

While certain components in both major stages of

analysis can be designed from present knowledge, further

research is necessary before the remaining components

can be realized and before the system can be designed to

function as a whole.

In the first stage of analysis, one of the major problems

is to devise a procedure for specifying in quantitative

terms the “phonetic parameters.” These must describe

the behavior of structures that control the vocal-tract

configuration as well as activities of the lungs and vocal

cords. A great deal is known about some parameters,

e.g., parameters that relate to voicing, nasalization, inter-

ruptedness, and labialization. For others, such as tenseness

or the so-called point of articulation, our knowledge is

still far from adequate.

A second task is to establish the generative rules de-

scribing the conversion of phonetic parameters to time-

varying speech spectra. These rules involve a series of
relations, namely, those between 1) the phonetic param-

eters and the vocal-tract geometry and excitation charac-

teristics, 2) the transformation from vocal-tract geometry

to the transfer function in terms of poles and zeros, and

3) the conversion from the pole-zero configurations and

pertinent excitation characteristics to the speech spectra.

The last two of these, which involve application of

the theory of linear distributed systems, have been studied

in some detail,°'’’’’” whereas the first is less well under-

stood.

‘The generative rules of the second stage are made up

of several distinct parts. First, they embody the relation

between what linguists have called a ‘narrow phonetic

transcription of an utterance’ and its “phonemic or

meorphophonemic transcription.”’ The nature of this rela-

tion has received a fair amount of attention in the last

30 years and a great deal of valuable information has

been gathered. Of especial importance for the present

problems are recent phonological studies in which this

relation has been characterized by means of a set of

ordered rules.’* Secondly, the generative rules II must

1T, Chiba and M. Kajiyama, “The Vowel, Its Nature and
Structure,” Tokyo-Kaiseikan, Tokyo, Jap.; 1941.

12H, K. Dunn, “The calculation of vowel resonances, and an
electrical vocal tract,” J. Acoust Soc. Am., vol. 22, pp. 740-753;
November, 1950.

18 M. Halle, ‘“‘The Sound Pattern of Russian,’”’ Mouton and Co.,
The Hague, The Netherlands; 1959. N. Chomsky and M. Halle,
“The Sound Pattern of English,’’ to be published.
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describe the utilization of those phonetic parameters that

are not governed by the language in question, but are

left to the discretion of the speaker. Thus, for instance,

it is well known that in English speech, voiceless stops

in word final position may or may not be aspirated. The

precise way in which individual speakers utilize this

freedom is, however, all but unknown. Thirdly, the

generative rules II must specify the transformation from

discrete to continuoussignals that results from the inertia

of the neural and muscular structures involved in speech

production. There are wide variations in the delay with

which different muscular movements can be executed,

but the details of the movements are not understood.

The study of these problems, which essentially are those

of producing continuous speech from phonetic trans-

scriptions, has just begun in earnest. We owe important

information to the work of Haskins Laboratory on simpli-

fied rules for speech synthesis.** This work must now be

extended to take physiological factors into consideration

more directly, through the use of cineradiography,”

electromyography, and other techniques. Contributions

can also be expected from studies with dynamic analogs

of the vocal tract.”°
Finally, for both stages of analysis, the design of the

strategy component is almost completely unknown ter-

ritory. To get a clearer picture of the nature of the strategy

component, it is useful to regard the generative rules as a
set of axioms, and the outputs of the generative rules as

the theorems that are consequences of these axioms.

Viewed in this light the discovery of the phonemic repre-

sentation of an utterance is equivalent to the discovery

of the succession of axioms that was used in proving a

particular theorem. The task of developing suitable

strategies is related, therefore, to a general problem in

mathematics—that of discovering the shortest proof of
a theorem when a set of axioms is given. It should be

clear, however, that the powerful tools of mathematics

will be at our disposal only when we succeed in describing

precisely and exhaustively the generative rules of speech.

Until such time we can hope only for partially successful

analyzers with strategies that can never be shown to be

optimal.

14 A.M. Liberman, F. Ingemann,L. Lisker, P. Delattre, and F. 8.
Cooper, ‘‘Minimum rules for synthesizing speech,”’ J. Acoust. Soc.
Am., vol. 31, pp. 1490-1499; November, 1959.

1H, M. Truby, ‘‘Acoustico-cineradiographic analysis consider-
ations,’’ Acta Radiologica, (Stockholm), Suppl. 182; 1959.

16 G, Rosen, ‘‘Dynamic Analog Speech Synthesizer,’’ Res. Lab.
of Electronics, Mass. Inst. Tech., Cambridge, Tech. Rept. No. 353;
February 10, 1960.
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Abstraction and Pattern Classification

R. BELLMAN, R. KALaBA, AND L. ZADEH

The RAND Corporation, Santa Monica, California

1. INTRODUCTION

This note deals in a preliminary way with several concepts and ideas
which have a bearing on the problem of pattern classification—a problem
which plays an important role in communication and control theories.
There are two basic operations: abstraction and generalization, which

appear undervarious guises is most of the schemes employed for classifying
patterns into a finite number of categories. Although abstraction and
generalization can be defined in termsof operations on sets of patterns, a more
natural as well as more general framework for dealing with these concepts
can be constructed around the notion of a ‘‘fuzzy’? set—a notion which
extends the concept of membershipin a set to situations in which there are

many, possibly a continuum of, grades of membership.
To be morespecific, a fuzzy set 4d in a space Q = {x} is represented by a

characteristic functionf whichis defined on 2 and takes valuesin the interval
[O, 1], with the value off at x, f(x), representing the ‘grade of membership”’
of x in A. Thus, if 4 is a set in the usual sense, ;(x) is 1 or 0 according as
x belongs or does not belong to 4. When 4 is a fuzzy set, then the nearer
the value of f(x) to 0, the more tenuous is the membership of x in 4, with
the ‘“‘degree of belonging” increasing with increase in f(x). In somecasesit
may be convenient to concretize the belonging of a point to a fuzzy set 4
by selecting twolevels ¢, and €, (e, , e, € [0, 1]) and agreeing that(a) a point
x “belongs” to A iff(x) > 1 — e, ; (b) does not belong to A iff(x) < €, ; and
(c) « 1s indeterminate relative to A if e, < f(x) < 1 —,. In effect, this
amounts to using a three-valued characteristic function, with f(x) = 1 if
xé A; f(x) = 1/2, say, if x is indeterminate relative to 4; and f(x) = if
x€é A.

Let 4 and B be twofuzzysets in the sense defined above, with f, and f,
denoting their respective characteristic functions. The union of 4 and B will
be denoted in the usual wayas

C= AUB, (1)
|

Reprinted with permission from J. Math. Anal. Appl., vol. 13, pp. 1-7, 1966.
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with the characteristic function of C defined by

Ic(x) = Max( fA(~), fa(*))- (2)

For brevity, the relation expressed by (2) will be written as

fo =fhaVSa- (3)

’

Note that when A and aresets, (2) reduces to the definition of “‘or.’

In a similar fashion, the intersection of two fuzzy sets .4 and B will be

denoted by
C=ANB (4)

with the characteristic function of C defined by

fe(x) = Min( f4(~); fa(*)), (5)

which for brevity will be written as

fo =Sa rte: (6)

In the case of the intersection, when A and B are sets (5) reduces to the

definition of “‘and.’’ When the characteristic functions are three-valued, (2)

and (5) lead to the three-valued logic of Kleene [1].

2. ABSTRACTICN AND GENERALIZATICN

Let x!,..., x” be given members of a set A in 2. In informal terms, by

abstraction on x!,...,x*” is meant the identification of those properties of

x!,.... x” which they have in common and which, in aggregate, define the

set A.

The notion of a fuzzy set provides a natural as well as convenient way of

giving a more concrete meaning to the notion of abstraction. Specifically,

let f* denote the value of the characteristic function, f, of a fuzzy set 4 ata

point x’ in 92. A collection of pairs {(x!, f1), ..., (x”,£)} or, for short {(x?, f*)}",

will be called a collection of samples or observations from A. By an abstraction

on the collection {(x*, f*)}”", we mean the estimation of the characteristic

function of A from the samples (x!, f1), ..., (x”,/"). Once an estimate of /

has been constructed, we perform a generalization on the collection {(x’, f*)}"

when weuse the estimate in question to compute the values of f at points

other than x}, ..., x”.

An estimate of f employing the given samples (x1, f1), ..., (x", /”) will be

denoted by f or, more explicitly, by f(x; {x‘, f*)}"),and will be referred to as
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an abstracting function. Clearly, the problem of determining an abstracting
function is essentially one of reconstructing a function from the knowledge
ofits values overa finite set of points. To make this problem meaningful, one
must have somea priori information aboutthe class of functions to which f
belongs, such that tnis information in combination with the samples from A
would be sufficient to enable oneto construct a “‘good”’ estimate of f. As in
interpolation theory, this approach involves choosing—usually on purely
heuristic grounds—a class of estimates of f: Ff = { f(x; A) | AER} and
finding that memberof this family whichfits, orfits ‘“best”’ (in somespecified
sense of “‘best’’), the given samples (x!,f2),..., (x", f"). A special case of this
procedure which applies to ordinary rather than fuzzy sets is the widely
used technique for distinguishing between twosetsofpatternsvia a separating
hyperplane.Stated in termsof a single set of patterns, the problem in question
is essentially that offinding, if it exists, a hyperplane L passing through the
origin of R'(2 = R', by assumption) such that the given points x!, ..., x”
belonging to a set 4 are all on the sameside of the hyperplane. (Note that,
since 4 is a set, f1 = f? = --- = fm = |.) In effect, in this case f(x; A) is of
the form

f(w;A)=1 for <x, rA SO,
. (7)
f(x; A) =0 for <x,A> <Q,

where <x, A> denotes the scalar product of x and A, and the problem is to
find aA in R! such that

<x',rA> > 0 for t= l,..,2.

Any f(x; A) whose

A

satisfies (8) will qualify as an abstracting function, and
the corresponding generalization on (x!, 1), ..., (x", 1) will take the form of
the statement “Any x satisfying <x, A> > 0 belongs to the sameset as the
samples x’, ..., x”.”’ If one is not content with just satisfying (8) but wishes,
in addition, to maximize the distance betweenL and theset of points x!, ..., x”
(in the sense of maximizing Min¢<’, X»), || A |] = 1, then the determination
of the correspondingabstracting function requiresthe solution of a quadratic
program,as was shownbyRosen [2] in connection with a related problem in
pattern recognition.

In mostpracticalsituations, the a priori information aboutthe characteristic
function ofa fuzzyset is not sufficient to construct an estimate ofF(x) whichis
“optimal” in a meaningful sense. Thus, in most instances one is forced to
resort to a heuristic rule for estimating f(x), with the only meansof judging
the “goodness’’ of the estimate yielded by such a rule lying in experimentation.
In the sequel, we shall describe one such rule for pattern classification and
show that a special case of it is equivalent to the ‘“minimum-distance”
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principle which is frequently employed in signal discrimination and pattern

recognition.

3. PATTERN CLASSIFICATION

For purposes of our discussion, a pattern is merely another name for a

point in Q, and a category of patternsis a (possibly fuzzy) set in 82. When we

speak of pattern classification, we have in mind

a

class of problems which can

be subsumed underthe following formulation andits variants.

Let A and B denote two! disjoint sets in 2 representing two categories

of patterns. Suppose that we are given 7 points(patterns) a}, ..., a” which are

known to belong to A, and m points6, ..., 8” which are known to belong

to B. The problem is to construct estimates of the characteristic functions of

A and B based on the knowledge ofthe samplesa1, ..., «” from 4 and f, ..., 8”

from B.

Clearly, one can attempt to estimate f, without making any use of the B’,

j = 1,..., m. However, in general, such an estimate would not be as good as

one employing both a’s and f’s. This is a consequence of an implied or

explicit dependence between4 and B (e.g., the disjointness of A and B),

through which the knowledgeof f’s contributes some information about tae

The sameapplies to the estimation of f,.

The heuristic rule suggested in the sequel is merely a way of constructing

estimates off, and f,, given al, ..., o”, and 8’, ..., p”, in termsof estimates of

f, and f,, given a single pair of samples «’ and f’. Specifically, suppose that

with every a € A and every f € B are associated two sets A(«; B) and B(B; «)

representing the estimates of A and B, given « and B. (In effect, A(a; B)

defines the set of points in 2 over which the estimate f4(%; B) of f, is unity,

and likewise for f,(8; «) and B(B; «). Points in 2 whichare neither in A(«; B)

nor in B(8; «) have indeterminate statusrelative to these sets.)

In terms of the sets in question, the estimates of A and

B

(or, equivalently,

f, and fz), given a, ..., «” and ?,..., B”, are constructed as follows

n

A= (\\U Alot; 8’), (9)
j=1 i=1

B= (\ U Bs 0’). (10)
i=1 j=l

Thus, under the rule expressed by (9) and (10), we generalize on al, ..., a”

1 The restriction to two sets serves merely to simplify the analysis and does not

entail any essential loss in generality.
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and f!, ..., B” by identifying A with A and B with B. Notethat this rule is

consistent in the sense that if « is known to belong to A then ae A, and

likewise for a point belonging to B. However, the consistency of this rule

does not extend to fuzzy sets. Thus, if (9) and (10) were applied to the

estimation off, and f, when A and arefuzzysets, it would not necessarily

be true thatf(a) = f,(«) for all given «in A.

In essence, the rule expressed by (9) and (10) implies that a point x is

classified as a memberof A if and only if for all 8’ there exists an a# such that

x lies in A(a‘, 8’), For this reason, the rule in question will be referred to as

the “‘rule of complete dominance.”’

To illustrate the rule of complete dominance and indicate its connection

with the “minimum-distance’”’ principle which is frequently employed in

signal discrimination, consider the simple case where Q is R! and A(a;B)

and B(B; «) are defined as follows:

Ata: B) =|x| (x - 242)4p) 501, (11)

BB; x) = v|(x-ESap) <of. (12)

 

In effect, A(a; 8) is the set of all points which are nearer to « than to f or

are equidistant from « and £, while B(8; «) is the complementof this set with

respect to R’,

Now consider the following ‘‘minimum-distance” decision rule. Let

A* and B* denote the sets of samples a!, ..., «” and f!, ..., B”, respectively.

Define the distance of a point x in 2 from A* to be Min,|| x — a||, where|| ||

denotes the Euclidean norm andi == 1, ..., 2; do likewise for B*. Then, given

a point x in 2, decide that x € 4 if and only if the distance of x from A*is

less than or equalto the distance of x from B*.

It is easy to show that this decision rule is a special case of (9) and (10).

Specifically, with A(«; 8) and B(B; «) defined by (11) and (12), respectively,

the decision rule in question can be expressed as follows:

xeAe VP raitix—allic'x—P i}, t=1,..,9%,
j=l,..,m (13)

Now

A(a!; B’) = {x || —of|| < || * — BI} (14)

and consequently (13) defines the set

A = {x | VB) a(x € A(a!; B’))}. (15)
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Clearly, (15) is equivalent to

A= A(ot; B*), (16)_
3

C
3

t=1

and similarly for B. Q.E.D.

In the foregoing discussion of the minimum-distance decision rule, we

identified Q with R' and used the Euclidean metric in R! to measure the

distance between two patterns in 2. However, in many cases of practical

interest, 2 is a set of line patterns in R® such as letters, numerals, etc., to

which the Euclidean metric is not applicable. In this case, the distance

between twoline patterns in R®, say L, and L, , can be defined by
<

d(L,),L,) = Max Min || yp — 94 ||, (17)
YpELg YAEL,

S
s Ml ~~

where|| || is the Euclidean norm in R?, and y, and y,are points in R? belonging

to L, and L, , respectively.

Now supposethat we agree to regard two patterns L, and L, as equivalent

if one can be obtained from the other throughtranslation, rotation, contraction

(or dilation) or any combination of these operations. Thus, let 7, denote the

translation y — y + 6, where y, 5 e€ R®; let T, denote the rotation through

an angle 6 around the origin of R?; and let T, denote the contraction (or

dilation) x — px where pc R!. Then, we define the reduced distance of L,

from L, by the relation

d* (L, ; Ly) = Min Min Min d(L,, T,TTL), (18)
Ts TT» p

where 7,7,7,L, denotes the image of L, under the operation 7,7,7,, and

dL), T;T,T,L,) is the distance between L, and T,7,7,L, in the senseof(17).

Clearly, it is the reduced distance in the sense of (18) rather than the distance

in the sense of (17) that should be used in applying the minimum-distance

decision rule to the case where 22 is a set of line patterns in R?.

To conclude our discussion of pattern classification, we shall indicate

how the formulation given in the beginning of this section can be extended

to fuzzy sets. Thus, let 4 and B denote two suchsets in 92, with f, and fp,

denoting their respective characteristic functions. Suppose that we are given

n sample triplets (x1, f,}, fp'), ..., (x", £4", fp”), with (x*, f,’, fp’) representing

a sample consisting of x* and the values of f, and f, at x*. The problem of

pattern classification in this context is essentially that of estimating the

characteristic functions f, and f, from the given collection of samples.

Clearly, this formulation of the problem includesas a special case the pattern-

classification problem stated earlier for the case where A and aresets in 22
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A Note on Learning Signal Detection”

M. KACT

Summary—This paper considers a threshold detector operating

on noisy binary pulses. It is shown that an adaptive error-correction

procedure can bring the threshold to the point of equal false alarm

and missed detection probabilities.

1) HE SUBJECT of devices capable of some

ike of learning has received considerable

attention in recent years. In particular, it has

been demonstrated that circuits can be designed which

can be “taught” to classify objects by a suitably designed

error correcting training procedure.’

This paper discusses the applicability of error correcting

procedures to the problem of signal detection. The author

has chosen the simplest version of the problem to make

a rigorous analysis possible and to gain clarity. The reader

will notice that the procedure described below is closely

related to stochastic approximation methods first. intro-

duced by Robbins and Monroe.

2) Let usfirst review briefly the detection problem from

the point of view of the theory of the “‘ideal observer”

(or equivalently, the Neyman-Pearson theory).” An ob-

server looking at the radar screen is told that with an

a priori probability of, say, 50 per cent a signal may be

sent and if it is sent it will appear at a specified point

(the so called off-on experiment). The observer is then

asked to tell each time whether the signal 1s present or not.

Let fo(x) be the probability density of the deflection

at the specified point on the screen if the signal is absent

(7.e., we have noise alone) and f,(x) if the signal is present.

The optimal detectability criterion is the one which

minimizes the probability of making an error.

Any detectability criterion is of the following general

type. Let 2 be a set of real numbers (deflections); if the

observation falls within 2 we say that the signal is present

and if it falls outside Q (7.e., within the complementary

set 2) we say that the signal is absent.

For a given choice of Q the probability of making

an error 1s

l 1 1,1
5 [ fo) dx +5 I fv) de =5 +5 [ [fo(x) — f,(x)] dx

and, clearly, this is minimum if © is the set on which

fo(x) < fila). (1)

* Received by the PGIT, August 11, 1961.
+ The Rockefeller Institute, New York, N. Y. Also Consultant,

Aeronutronic, Division of Ford Motor Co., Newport Beach, Calif.
1 For an excellent review of certain phases of this work, see H. D.

Block, ‘‘The perception: A model for brain functioning,’”’ to appear
in Rev. Mod. Phys. |

2 J. L. Lawson and G. E. Uhlenbeck, ‘‘Threshold Signals,’’ Rad.
Lab. Ser., McGraw-Hill Book Co., New York, N. Y., vol. 24; 1950.

We assume(as is often the case in practice) that fo(z) =

f,(x) has a unique root 6 and that (1) is equivalent to

a> 6. (2)

For example, in case of unrectified signals

  

1] —7? a? ]

€ 0 ) fi(2) =oV lm oV 2m
fo(x) _ e ~ ew) A/a" (3)

we have

A— F, 46=5 (4)

3) In experiments performed during the war at the

Radiation Laboratory’ the observers were presented with

m(30) observations at each time and the optimal detecta-

bility criterion in this case is easily seen to be

fo(t1) +++ fol@,) < filti) +++ fila). (5)

In the case (3) this criterion is equivalent to

XH, tt ++ $2 bu
- > 5° (6) 

b
o

In a more realistic case

Xx —_— 2 2 Xx — 2 2 — p22 2 XxMa = Sere", pe =herrrerrr(S)
Oo oO Oo

the detectability criterion is no longer of the simple

threshold type (6). Howeverfor large m, it is easily seen,

a threshold type criterion gives essentially the same

(minimal) probability of error. It has been found that

human observers, after a period of training performed

almost as well as the ‘‘ideal observer’’ and that they were

unable to explain clearly the psychological basis for their

decisions, which led to a nearly perfect statistical per-

formance.

I shall now show that, under certain conditions, a

self-adaptive device can be conceived which too will ap-

proach the performance of the “ideal observer’.

4) I shall restrict myself to the case m = 1. The

device operates as follows. It starts with an arbitrarily

chosen threshold 6, and if the first deflection x, 1s greater

than 6, it claims that signal is present. If 7, < 4 the

device claims that signal is absent. If the answeris correct

the threshold is kept for the next observation. If the

answer is wrong, the threshold is increased or decreased —

according to the type of error committed.

Therule for changing the threshold (which falls under

the general classification of erro-correcting procedures)

can be written as follows:

On 41 = 6, + A(O(Xn41 — 6,,) (8)— Eni),

Reprinted from /RE Trans. Inform. Theory, vol. \T-8, pp. 126-128, Feb. 1962.

56



Kac: Learning Signal Detection

where

if «<0

o(e) = i t>0 9)

0

and

if signal is present (10)
_

€ =:

0 if signal is absent.

To simplify the inalysis we assume that A is small and

that the length of the training sequence n is such that

nA = t. (11)

In the limit A — 0) we have then a continuous (in time)

adjustment proces:.

5) Let U,, V,, €, be independent random variables

such that U,, has }robability density f,(z), V, has proba-

bility density f(z) and e, assumes values 0 and 1 with
equal probabilities (¢.e., 50 per cent). Let

X, =¢U, +d — «)V, (12)

and

Ont — C, + A(O(Xn 41 ~ 6,,) ~~ Ensy)-

Let us now calculase H{G(6,.1)}, where the function G(@)
will be chosen a lit ile later.

Wehave

G8, + A@(Xner - On) — €r41)]

~ G(6,) + G’(O,)A(Xns1 — On) —

(13)

En+1) (14)

and consequently

E{G(ns1)} ~ E{G8,)}.

+ az{< (o9|4 [ fox) dx — of. f.(@) a|b

Let us now chocse G(@) in such a way that

AG(8) = —3G'(8)

|I “ fla) dx — [. f,(2) i,

It is easily seen thit log G(@) appears as shown in Fig. 1,

and consequently G(@) appears as in Fig. 2, Here @ is

the (unique) root of

>O (15)

/ "fole) dx = - f,(a) de. (16)

With this choice o! G we have

EtG(@,41)} ~ A — A ADL (G(G,) }

or

E(G.O,)} ~ GCA) — » A)". (17)

LOG G (@)

.
|
|

Fig. 1—Log G(@) as a function of ©.

|

|
|
|
|
|
|

|

G(@)

|

6

Fig. 2—G(Q) as a function of O.

In other words, asA 0 and n A = #, we have

lim £{G(6,)} = e'G(6,). (18)

If 0, < 6 we see that for 6 < 6

G6) exp {~ ay

G6) > nfs9(€) 8)
where

oo E

gi) = | fale) de — |fia) ae,

It now follows easily from (18) and (19) (by an adaptation

of Tchebysheff’s inequality) that

6, 8, (20)

in probability,’ where 6, is the unique root (to the left
of 6) of the equation

0 t dé

t= 2 21
Bo g(é) ( )

It is furthermore seen that ast — o~

é,— 6. (22)

It should be noted that, in general, the threshold 6 will
not be the same as 6. The most important case in which
both coincide, is the case of normal distributions with

different means but the same variance. The case of large

m reported by Lawson and Uhlenbeck’is essentially equi-

valent to the case m = 1 and normal distributions with

different means. Thus a suitably modified device will in

the experimental situations’, perform ultimately as the

‘ideal observer.’ It would be of interest to find out

whether a human observerfaced with a situation in which

6 ~ 6 will perform according to 6 or 8.

>It is most likely that 6, converges with probability one but in
problems of this sort it does not seem to be of crucial importance.

57



IRE TRANSACTIONS ON INFORMATION THEORY

APPENDIX

In this Appendix I should like to add a few remarks

concerning the analysis of Section 5). If 4) is an integral

multiple of A we are dealing with a random walk which

is a Markoff chain with infinitely many states.

The rule (13) for changing the threshold gives easily

the transition probabilities. In fact, we have (the notation

being self-explanatory)

Pim A | (m+ 1) A) = : [. fo(x) dx (23)

P(m A | (m — 1) A) =a f(a) dx (24)

1 0 mA

P(mA|m A) =1- 5 if fo(x) dx + [ f,(2) a) (25)

Let W,(1A) be the probability that 6, = JA. We have

Wrs(l A) = W,((l — 1) AP(I— 1) A | 0A)

+ W,(1 A)P(L A | 1A)

W,((l + 1) AP(U + 1) A| 1A) (26)

and theinitial condition

W(lA) = 60 — |), (27)

where 6). = 1,A and 6(m) = 1 for m = 0 and 0 otherwise.

The difference equation (26) and the initial condition

(27) go over in the limit

A—0 nvN=1

into

We 18 ley [ie ae|

“45 ie [. fi(€) ae (26)

and

W(x, 0) = 6(x — 4), (27)

where 6 is now the Dirac 6-function.

We could now appeal to the general theory of partial

differential equations of first order and obtain the result

of Section 5).

The easiest way to see this is to multiply both sides

of (26’) by G(x) and integrate on x. One obtains then, by

integration by parts,

~ G(x)
—O

7 [. G(x)W(e, t) dx = I

|ifede — [A ae|e, ) dz, (28)

February

and if G is chosen so as to satisfy (15) one gets

ff G@we,pde=-r[ G@We, ax

or

| G(x)Wx, t) dx = eG(6).

This, of course, is equivalent to (18) and one gets (for

0.< 6,2 < 8)

ae)2
ao G{E)/ g(2) ’

which can formally be verified to be the solution of (26’)
satisfying (27’).

We can now apply the analog of this method to the

original system of (26). We introduce an auxiliary function

G(lA) and get

Wz, t) = i(« —2 (29)

> G(L AW,A)
l=—o

GUA)Will A) =
=—O

+ :x W,A(1 ayia + 1) 4) — Gl A)] | fo(x) dx

LA

— [GU A) — Gd — 1) A)] rl fi(z) ae}

If G is chosen in such a way that

(UL + 1) 4) -— GCA) [foeax

~ (G(s) -G0- 1a) | hea
= —2\ AG(L A), (30)

we get

>> GILA)W,(1 A) = (1 — 20 A)"G(L A).
L=—o

Formula (81) should be sufficient to discuss the dis-

tribution of 0, as n — o. Unfortunately, the analysis

becomes rather involved due mainly to the fact G(lA)

changes sign in the neighborhood of @ (only in thelimit
A — 0 is G(lJA) non-negative). We hope to return to a

detailed investigation of the discrete case some time in

the future.

(31)
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Interactive Pattern Analysis and Classification

Systems: A Survey and Commentary

LAVEEN N. KANAL,FELLOW, IEEE

Abstract—Startinz with the era of learning machines, reasons
are presented for the current emergence of graphics-oriented inter-
active pattern analysis and classification systems (IPACS) as a

general approach to practical pattern-recognition problems. A
number of representative systems and their application to a wide
variety of patterns are surveyed. Various aspects of alternative
hardware and softwire implementations are commented upon and
computational algorithms and mappings relevant to interactive
analysis andclassification of patterns are discussed.

I. INTRODUCTION

N THE Talk cf the Town section of the New Yorker for

| December 6, 1958, “our man about town” reported on a

conversation with Frank Rosenblatt, the inventor of

Perceptrons [151]. The report was titled “Rival,” and it
reflected the anthropomorphism that was then fashionable in

pattern recognition and computers.

Rosenblatt’s brilliant conjectures and the colorful names

for his “self-organizing” machines attracted wide attention.

He had high hopesfor his “artificial intelligences.” They were

to be replacements for human perceivers, recognizers, and

problem solvers. (ver the next few years there followed a

flock of other “adaptive” and “learning” machines such as

ADALINE and MADALINE[201], APE(see [91]), MINOS

[17], CONFLEX 187], and SOCRATES[188].

Manuscript received February 12, 1972; revised July 14, 1972. This
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formation Sciences, A r Force Office of Scientific Research, Air Force
Systems Command, U:3sAF, under Grant AFOSR 71-1982 to the Uni-

versity of Maryland.

The author is wi:h the Computer Science Center, University of

Maryland, College Patk, Md. 20742.

As was to become evident, the true contribution of the

brilliant conjectures, catchy names and audacious claims for

these machines, was not in providing a general approach to

pattern recognition. Rather it was in creating an air of excite-

ment about automatic pattern-recognition and learning

machines.

Today there is greater appreciation of the complexities of

what is called pattern recognition. But the excitement con-

tinues, as does the urgeto look for relatively general theoreti-

cal and experimental approaches and models which are ap-

plicable to a wide class of problems. Aspects of the structural-

geometric or linguistic-statistical models for pattern recogni-

tion that have recently aroused interest are presented else-

where [94]. Here we survey graphics-oriented interactive pat-

tern analysis and classification systems, for which we use the

abbreviation [PACS. IPACSrepresent responses to demands

for generality in the experimental domain.

Computer-driven interactive graphic displays together
with input devices such as the light pen, the Rand tablet,

the Sylvania tablet, the mouse, and joy sticks, have improved

man-—computer communication in recent years. In addition to
displaying relationships in two or three dimensions (using

perspective) for human inspection, the graphics terminal

provides a high data-rate communication link to the com-

puter, enabling dynamic control and manipulation of pro-

grams by meansofline drawings, as well as character codes or

function buttons.

Section II discusses the impact of interactive display

technology on approaches to pattern-recognition problems.

Section III lists some existing IPACSand gives an idea of the

Reprinted from Proc. /EEE, vol. 60, pp. 1200-1215, Oct. 1972.
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diversity of applications on which these systems have been

tried. The development of an interactive pattern analysis and

classification system involves both systems aspects and com-

putational algorithms for pattern analysis andpattern classi-

fication. Section IV outlines the overall system features

that should be considered when designing IPACS, describes

how various specific features have been implemented in

existing systems and comments on the desirability and

effectiveness of some alternate implementations. Section V

describes and comments on the algorithms and mappings

being experimented with in some existing systems.

This is a survey of the state of the art of a field in the

process of development. Developments in IPACScited here

are those we feel the reader should be aware of, whether or

not their descriptions have been published in easily available

journals.

II. REAsons FOR IPACS

For engineers trying to develop practical systems for

alphanumeric character recognition, postal address reading,

speech recognition, and imagery screening in photointerpre-

tation [26], [72], [97], “self-learning” approaches were at
first highly seductive [151], [57], [84], [18]. Looking at

classified learning samples, the machines would produce an

output which a teacher would tell them was correct or incor-

rect. And through simple routines they would organize them-

selves so as to improve their performance. What could be

simpler?

Unfortunately, performance on independenttest data fell

far short of expectation, and after a short detour mostoptical

character recognition (OCR) designers reverted ‘to explicit

feature-selection and classification-logic design based on

“structural” analysis- through intuition and interaction with

the misclassifications produced on character reader “test beds”

and prototype hardware. Finding the simple Perceptron

structures and learning routines wanting, they often pro-

ceeded to ignore all subsequent developments in the under-

standing of statistical classification and feature optimization.

The result was that many of the present commercial OCR

systems grew like Topsy, and even when adequate perfor-

mance was achieved the design was often not cost-effective.

When deterministic structural descriptions are the basis

of the decision logic, a large amount of.information has been

transmitted to the recognizer. To statistically “learn” the

same type and amount of information would take an inor-

dinately large number of samples. But the within-group vari-

ability of patterns in most nontrivial real problems is such

that, following a purely structural approach without severe

constraints on the input, the performanceof practical pattern-

recognition systems is unacceptable or marginal. Statistical

methods begin where deterministic structural methods leave

off—there is a residual core of uncertainty which can be ex-

pressed only in termsof probabilistic structures. In most real-

life pattern-recognition problems weare faced with theneces-

sity of inferring both deterministic and probabilistic struc-
tures governing the patterns and pattern classes in order to

achieve good classification performance.
Under the title “Discriminant Analysis,” the statistical]

analysis of data structure had, since the early part of the

century, been the subject of a large number of papers; most of

these results were summarized by Rao [143]. Rao also related

classification into groups to statistical decision theory [191].

He treated classification as a partitioning of a probabilistic

,
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feature space into mutually exclusive regions, considered the

case of more than two groups, and introduced the concept of a

reject region. A 1954 paper [178] on speech recognition, which

refers to Rao’s book, is perhaps the first pattern-recognition

application of this material in the IEEE (IRE) literature.

Since 1954, a large number of papers has been published on

the subject in the engineering literature, under the title “Pat-

tern Recognition” [120], [82], [113].
All this literature has had but limited impact on the de-

sign of optical character readers and other practical pattern-

recognition systems. A majority of the papers in the engineer-

ing literature on pattern recognition have been solely con-

cerned with the decision theoretic aspects. For many design-

ers of practical systems these papers have been difficult to

appreciate, unlike the Perceptron-type learning algorithms
which were easy to follow and intuitively appealing even

when their underlying mathematics was not understood. In

addition, much of the published research represents theo-

retical studies of specific models under specific assumptions

or laboratory-oriented investigations of specific techniques on

small nonstandard data sets. Little attention has been given

to the constraints on dimensionality and sample size which

must be observed in order to have valid estimates of per-

formance [92]. Thus a large percentage of the results suffer

from “the love-at-first-sight effect in research” [138].
In problem-oriented pattern-recognition investigations,

the starting point is usually some samples of patterns. The

question then asked is whether or not the recognition of pat-

terns such as these can be automated, and if it can how com-

plex a machinewill be needed [95].
To go from theseinitial vague questions to an actual pat-

tern-recognition system involves a series of refinements and

formalizations concerning the deterministic, probabilistic,

or mixed structure that we can infer about the patterns; what

level of performance we should strive for; what competing

design approaches we think are worth considering; and what

manner of implementation is relevant.

The first step in this process is pattern analysis. In order

to understand the variability in relatively unconstrained data

and to come up with solutions, we need to study the detailed

peculiarities of a very large data base. We areno longer con-

tent to do what was often done a decade ago, i.e., jump toa

hardware implementatian of a particular learning machine,

an optical spatial filtering system, etc. It is true that one can

go a long way, using a problem-oriented approach and a theo-

retical analysis of requirements, toward rejecting candidate

solutions, as was shown [73] for the problem of detecting and
locating objects of military interest in aerial reconnaissance

photography. That analysis showed what invention was

needed before optical spatial filtering techniques would be

practical for automatic target detection. It made apparent the

electronic methodology and classification design approach

that would serve the problem needs. Nevertheless, that type.

of analysis is limited to certain overall aspects of a problem.

The desirability of an automated interactive approach to

pattern analysis and classification logic design can be sum-

marized as follows.

1) Itis now recognized that the key to pattern-recognition

problems does not lie wholly in learning machines,statistical

approaches,spatial filtering, heuristic programming, formal

linguistic approaches, or in any other particular solution

which has been vigorously advocated by one or another group.

during the last one and a half decades as the solution to the
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pattern-recognittor: problem. No single model exists for all pat-

tern-recognition problems and no single technique is appli-
cable to all problems. Rather what we havein pattern recogni-

tion is a bag of tonls and a bag of problems.

2) Feature definition and extraction, and pattern classi-
fication, are best examined via trial and evaluation. The
boundaries between feature selection andclassification are not
sharp. We need f:edback between feature selection, logic de-
sign, classification, and testing. And we need manyiterations
of the feedback process. This is naturally an interactive opera-
tion. We cannot preprogram a batch modeoperation to gO
throughall the pessibilities—it would be too time consuming
and costly. So we turn to an on-line and interactive mode of
operation.

3) Most data inalysis techniques try to answer questions
about the structure of the data in a high-dimensional space.
Interactive pattern analysis is a way of allowing examination
of structure. (Humansare superior in recognizing structure of
certain types, especially clusters, where automatic clustering
routines are ofter. thrown off by outliers between clusters.)
However, to makthis examination of structure feasible we
must arrange for s1itable graphics for displaying relationships
among data elements.

4) In many pattern-recognition problems, the human is
the standard; we should put him in charge of the design and

evaluation process but help him with automation in an inter-
active mode. For good interaction, the lag betweentheinitia-

tion of some control function and the completion of the re-

quested action should be short enough that it will not inter-

rupt his train of thought.

We would like to have a quick flexible way of analyzing

sample patterns, t:ying out various tools from a versatile tool

kit to determine which algorithm or approach should bese-

lected for a given :.pplication. This exploratory pattern anal-

ysis and evaluation of competing tools is greatly enhanced

by automation of known procedures [185] so that they can be

applied in a routin: fashion. It is further enhanced by an inter-

active environmen’. Standardizing the testing of our hypoth-
eses concerning data requires that we incorporate a variety

of statistical and nonstatistical procedures; we must under-

stand their theoretical properties, and gain experience regard-

ing their practical] limitations and capabilities.

III. SomME REPRESENTATIVE IPAC “SysTEMs”

Although we cull them “systems” only a few IPACS de-

serve this apellaticn. For the most part they appear to have

been developed piecemeal from software tailored to fairly

specific applications without provision for the capabilities

which should be i:.corporated (see Section IV). It should be
emphasized that tle capability of primaryinterest is the feed-

back provided fror1 machine to man or vice versa during the

process of designing procedures for feature extraction, pattern

analysis, and pat:ern classification. Thus applications pro-

grams such as described in [66] and [67] for recognition of
characters handprinted on-line are not discussed.

The IPACS considered here are properly viewed as a sub-

set of a larger group which includes interactive systems for

mathematics [98], [171], computer-aided design [37], [106],

[153], question arswering [118], [169], and’ computer ani-

mation [99], [5], [6], [186]. While each of the above areas
has individual requirements, past developments in these fields

have strongly influenced the developmentof existing IPACS,
and will continue to exert such an influence.

For the IPACS discussed in this section, a dominating
descriptor is the type of input accepted: vectors, images, or
waveforms. Interactive image and waveform preprocessors
usually produce the data required for the pattern analysis and
classification systems which accept vector input. In addition,
we have included a discussion of a few interactive systems
which are being developed for special applications.

STATPAC [64] is credited with being the forerunner of
the group of systems aimed at multivariate statistical an-
alysis and classification of vector data; using clustering, dis-
criminant analysis, and related statistical routines in an in-
teractive-graphics environment. This group is now repre-
sented by PROMENADEand OLPARS.

PROMENADE, Stanford Research Institute’s (SRI)
system for multivariate data analysis, has one clustering op-
tion and one clustering based classification routine [69 ].
With its interactive graphics capability, the limited options
have provided insight in the following diverse problem areas:
1) analysis of spectrometer data to perform automatic recog-
nition of chemical compounds; 2) classification of corpora-
tions, to predict which companiesare likely to becomeclients

for SRI’s long-range planning services; 3) utility of cluster

analysis relative to regression analysis for producing housing-

construction price indexes for apartment projects; and 4)

analysis of cloud patterns in weathersatellite photographsto

obtain brief descriptors of meaningful information in the

photographs and to identify and track cloud masses in suc-.

cessive pictures in order to determine wind motions.
OLPARS [155], [157], [29] [159] located at the U.S.

Air Force’s Rome Air Development Center, is perhaps the
foremost system currently in operation. Developed as a sequel

to PROMENADE, OLPARSis used for interactive analysis

of cluster- and string-type structures in high-dimensional

vector data and the design of classification logics using tech-

niques derived from discriminant analysis. OLPARS has made

it feasible to experiment with data from a variety of applica-

tion areas [155]-[157] including radar signature identifica-
tion, cartographic classification of aerial photographs, an-

alysis of data on personal loans, classification of candidates
applying for admission to an Air Force Program, construc-

tion of a Document Classification Space for documentretrie-

val, speech recognition for isolated spoken words, hand-

printed character recognition, and analysis of dermatoglyphic

(palm-print) patterns to determine whether there is suff-

cient information in the palm to discriminate among a variety

of diseases [175], [174].
The IBM Interactive System for complex data analysis

provides some of the features found in OLPARS; it has been

used in the study of biomedical data from critically ill pa-

tients [60|-[62], [168], and in the further analysis [63], of
certain previously studied data on bees [49]. Some of the
UCLAbiomedicalstatistical packages are now also said to be
available for interactive-graphics mode of operation [38 ]-
[40].

Some IPACSfor vector data are being augmented by in-

teractively controlled feature definition and extraction “front

ends” to produce vector data. Examples of image-processing-

feature-extraction subsystems are the IBM image-processing

subsystem for interactive scanning and display [79], and the
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image feature extraction system (IFES) for OLPARS [128]

The IBMsystem has been used in the development of an in-

teractive man—machine system for reading unformatted type-

set text, with all necessary operations being performed on-line

at a single sitting [4]. A number of other applications in

image processing of Jine drawings, maps, chromosomes are

mentioned in [79].
IFESis described as an extensive software system for on-

line search, feature definition, extraction, and processing of

images. Coupling an optical scanning device to OLPARS,it

is designed to allow one to interactively perform various

global and local picture-processing operations of the type de-

scribed in [152].
SARF, a signature analysis research facility [172], [123],

wasdesigned to display time function and feature space plots

to a user and enable him to do interactive feature selection,

analysis, and classification. A diffraction pattern sampling

system which can be interactively controlled through SARF

for image feature extraction from aerial photographs was de-

scribed recently in the Proceedings of the IEEE [108]. Sampling
the diffraction pattern results in a sampling signature, whichis

different for each sampling geometry.

Various applications of SARF are described in [108],
[173], and [125], [126]. Because of its emphasis on display,
manipulation, and processing of time functions, it is grouped

here with other systems and subsystems which have their

primary emphasis on interactive waveform analysis.
INTERSPACE [131], [132] like SARF, is designed to

accept image data from certain optical scanning devices, but

the reports [134] have emphasized its waveform processing
capabilities. It incorporates various classical expansions and

related user defined operationsfor waveforms. Past applica-
tions include underwater signal processing; the system is

presently being directed toward biomedical-image and signal-

data processing.

The Experimental Dynamic Processor, DX-1 [192], [195]
wasstarted aroundthe late 1950’s to study on-line interactive

sensor data processing. This was one of the pioneeringefforts

in the study of interactive statistical signal analysis using a

graphics display and the use of color displays in this context

[194], [196]. In addition to radar and biological signal pro-
cessing and on-line filter design [193], [149], the major use

of this system has been in studies of variousstatistical band-
width compression schemes.

The Waveform Processing Subsystem (WPS) for OLPARS
[161] currently under development, is the waveform counter-
part of IFES. It is to be an extensive software system for ex-

traction of signal features and manipulation and transforma-

tion of waveforms using interactive graphics. The WPSis de-

signed to allow globai expansious of wavetorms in terms ot

classical basis functions such as Fourier, Legendre, Laguerre,

Hermite, Walsh; user specification and designof digital filters;

algebraic and calculus operations on waveforms, such as seg-

mentation differentiation, integration, scaling, zero crossings.

A subsystem of WPS allows on-line definition on linguistic

features whereby a signal is decomposedintoa string of sym-

bols or numbers, and features are defined over this domain

[136].
There are a number of man—machine interaction systems

for pattern analysis which have a somewhatdifferent flavor.

Systems designed specifically for interactive speech analysis,
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Fig. 1. Merlin display of daily nigh-close—low-close chart of Xerox stock,

with daily volume, buy-sell volume, and a 30-day moving average of

closing prices. Options are on right side of display.

synthesis, and recognition are being developed at the Univer-

sity of California at Santa Barbara [33], [76], [77], Carnegie-
Mellon University (CMU) [147], and the University of Wash-
ington [176]. An informative discussion of the earlier work at
Stanford [146], [148], [190] on which the CMU system is
based, is included in a recent survey of man—machineinterac-

tion using speech [81].
The Bell Laboratories study of a real-time man—machine

interactive system for human face identification [59] is con-
cerned with optimizing search and decision strategies: a hu-

man describes a face to a computer using features provided by

the computer, his own set of features, or some combination

thereof; the machine searches a file populationto find a stored

member which best fits the target. The IBM system for auto-

mating the conversion of unformatted typeset text to com-

puter code [4] is concerned with optimum strategies for hu-

man intervention in a production-oriented system.

The Merlin System [115], [116] demonstrates the power
of an interactive system to facilitate analysis of a large data

base. A staggering volume of past and current (15-min de-
layed) data on all stocks listed in the New York and American

Stock Exchanges and on an extensive group of commoditiesis

available on-line to the system user in the graphic form ap-

propriate for trying out the various methods of analysis. The

system grew out of Project Merlin which Stanford Research

Institute (SRI) undertook in the early 1960's under contract
from Merrill Lynch, Pierce, Fenner and Smith, for on-line

manipulation and display of graphical data. Fig. 1 shows a

photo from the storage tube display. The standard methodsof

“technical analysis” [43], shown on the right side of the dis-
play, are available as options. Additional time series methods

such as those described in a recently developed interactive

time series analysis package [170], and additional methodsof

data analysis could be incorporated into the menuof available

options.

At this stage in the development of IPACS, one of the

dangers is that working with inadequate embryonic systems

may turn users away from an interactive approach to some

problems. The interactive systems discussed in this section

use diverse hardware and software to achieve some degree of
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man—machine symbiosis. Systems under development should

provide a higher cegree of interactive capability. However, no

single system surveyed incorporates all the features desired

for effective interactive preprocessing and pattern analysis

and classification. In the following section, we reviewthe basic

conceptual bases “or the implementations and bring out some

of the differences of opinion regarding system configurations

and options.

IV. DESIGN CONSIDERATIONS AND THEIR REALIZATION

The general capabilities that a user would like to have

available [70], [172], [155] in an IPACS are not unlike those
desired for interactive systems for mathematics [48] or for
computer-aided graphics design [87], [140]. The desired
capabilities are as follows.

Communicati9n and control of the system through simple

procedures, such as: selection of options displayed at each

stage of the desig. process in the form of a menu on theside

of the graphic display; selection using a function keyboard;

and selection of cations through a simple language using an

alphanumeric keyloard.

Quick respon:e in an on-line mode, allowing rapid formu-

lation, insertion, and testing of alternate hypotheses.

Easy on-line generation and modification of algorithms

and programs; selection, labeling, merging, and splitting of

data sets; performing all types of set operations on data sets
and subsets; retri:val of selected data for visual inspection

and trial design of algorithms.

Ability to go forward and back to any option available in

the system; to tezaporarily store and compare results of ap-

plying various opional procedures on a data set; to obtain

intermediate and end results while sequencing through options.

Additional requirements for IPACSrelate to providing an

ability to define ard examine “structure”in large sets of high-

dimensiona] multivariate data and to try out statistical and

nonstatistical algo:ithms on mass data, or on user defined sub-

sets of the data.

The large amounts of data which have to be stored in a

structured manne: and the many programs for implementing

user options cannct all be stored in the main core memory of

the computer. Tk s together with the interactive interrupts

and the limitation: on how much data can be displayed at any

time on the CRT lead to the requirementof allocating pro-

grams and data cynamically to main and auxiliary storage.

This situation aris2s in most interactive graphics applications

[189], [203]. The approaches followed by developers of
IPACS cover the standard range of solutions for multipro-

gramming and time-sharing systems [36]. These includestatic

storage allocation by dividing a program into units which

“overlay,” i.e., rey:lace one another in main storage; automat-

ing dynamic storage allocation [14] to provide a “virtual

memory” which rakes the auxiliary storage look like an ex-

tension of the main memory; and programmer-controlled

dynamic storage a location using software and hardware, such

as Algol on the stick-oriented Burroughs B5500 [116] to de-

fine routines for al/ocation and deallocation of memory blocks.

The editing, filing, data transformation, display, and other

options provided in an IPACSare a function of the type of

data to be handled and the relationships and logical associa-

tions between dati items. To select data on which to execute

user options, and have the data resulting from one routine be

in a form suitable or the next option, the data must be repre-

sented in an orgarized manner which models structural rela-
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Fig. 2. An OLPARStree data-structure display.

tionships between data items. Such representations which

provide a coupling between problem data and computeranal-

ysis are usually referred to as “data structures.” Stacks, linked

lists, arrays, trees, and rings [100] are examples of structures

used for the representation and manipulation of relationships

among data items.

The OLPARSvectorfiling system represents data structure

in the form of a tree or a set of trees. Each nodeof a tree cor-

respondsto a list of vectors, the list being the union ofthelists

associated with the nodes of the subtrees of this node. Point-

ing at a particular node of a data tree displayed on the CRT

causes that set of vectors to be selected as the current data set

for input to an option at level 1 and subsequentlevels of the

control tree. The result of applying various transformations

and logical operations to user selected nodes of an existing

data tree is a new data tree. Fig. 2 shows an OLPARS data

tree display.

SARF, which is primarily concerned with waveform in-

puts, builds a hierarchical ring structure, shown in Fig. 3, to

represent the data. This has been the most popular data struc-

ture for computer graphics [203], as it permits extensive cross

referencing of data with ease.

The command structure of an IPACS may also take the

form of a tree [14], [70], [157]. The commandsavailable to
the user are often presented in the form of lighted words or

symbols along the boardersof the display. These light buttons

get brighter, when pointed at by a cursor or a light pen, or

referenced by the keyboard. The command is then imple-

mented andthe nextlist of options shows up on the display. A

user can follow a branch from a nodeat a given level down toa

terminal node, and return to any higher level node on the

same path.

SARF and WPSare examples of systems providing user

extendibility by adding to preprogrammed subroutines which

can be selected by depressing function keys, pointing a light

pen, or entering a parameter. In SARF the operators used

during the OPERATE function in the EXAMINE data option, and
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that are to be used in the analysis are linked together
in a ring within the data structure.
 

ALL INSTANCES (Ij)
for each EVENTare linked together.

 

All INSTANCES of the same category are tied together

(across all EVENTS) by the catagory rings Ci).

 

Various types of physical measurements representing

the INSTANCES, called SIGNATURE TYPES, G)),
are tied to each INSTANCE,

AND

The data -e—e—e- available for each INSTANCE
is linked to its appropriate SIGNATURE TYPE,  

Fig. 3. Ring data structure of SARF.

in the definition phase of FEATURE space plot are user supplied

routines. In WPS the capability of on-line compilation of

algorithms programmed in an interactive session is expected

to be implemented using a simple linguistic-feature oriented

language called OLWPL (on-line waveform processing lan-

guage). Each preprogrammedoption for segmentation, feature

extraction, or transformation has a corresponding predicate in
the language. Such extendability approaches the desired goal

of allowing any algorithm constructed on-line to be saved in

an applications program library.

The need for high-precision graphic display and for dy-

namic rotation of three-dimensiona] plots of data has been

stressed in some IPACS [70] but disputed by others [197].
The Plot 3-D option included in PROMENADEand OLPARS

provides a two-dimensional projection of a three-dimensional

space. The center of the CRT represents the center of mass of

the three-dimensional data, and.a viewer can zoom a window

along a radial path toward this center. Combining radial and

rotational movement, a viewergets theillusion of flying about

in the three-dimensional data space.

While three-dimentional rotation and tumbling may pro-

vide some insight in simulation and modeling studies of well-

defined entitities such as space vehicles and chemical struc-

tures and is a most impressive demonstration, experience thus

far indicates that in IPAC, spinning around, or even just

shifting around in three-dimentional data space is confusing

and provides no useful insights. While the display should be

flicker-free and comfortable to look at, most applications do

not require highly precise measurements from the displayed

quantities. However, the observation of clustering and related

phenomena could be helped by using gray scale and color

[70], [197].
Most IPACS use various attention focusing and display

manipulation procedures [88] which are becoming standard in

computer graphics. These include such options as change of

scale, zoom, blink data set, eliminate a data set, eliminate a
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data point, draw a piecewise-linear boundary, rotate or other-

wise transform data, label itemson the display. These options

are implemented through a graphics executive program which

drives the display, processes the interrupts, contains basic

graphics routines to generate points, lines, arcs, circles, and

alphanumerics, and accesses various items from a library of

graphics display routines.

Although the user is primarily interested in the computa-

tional algorithms for feature selection, pattern analysis, and.

pattern classification that are available on a system, the sys-

tem architecture is what ultimately determines the nature and

extent of interactive capability. Most developers of existing

IPACS, having come from a pattern-recognition background,

have tended to accept various computer-system implementa-

tions found useful in other contexts. Usually, the starting

point for their systems has been someexisting computerhard-

ware rather than a suitably chosen configuration.

Existing and proposed processor configurations for [PACS

cover the range from large time-sharing systems andsatellite

systems, in which a minicomputer or “intelligent” terminal

serves as a remote satellite to a central time-shared computer,

all the way to dedicated multiprocessors such as used in.the

experimental dynamic processor, DX-1. In the context of

general interactive graphics, various configurations have been

discussed in [28], [87], [31].
The emergence of computer networks such as the ARPANET

of the Advanced Research Projects Agency and the Education

Network of the National Science Foundation raises interesting

possibilities for processor configurations. IPACS on such net-

works would permit many users to share data and programs.

However, arguments have been advanced [197] against im-

plementing IPACSin a general-purpose time-sharing environ-

ment. These arguments are based on the difficulty of writing

efficient general-purpose utility systems which can serve a

number of independent users with diverse applications.

Since some minicomputers provide as much computing

capability as a large second-generation computer at a reason-

able cost, they deserve serious consideration for IPACS. A

dedicated minicomputer or one shared by a small numberof

compatible users, driving a not very high precision display

(perhaps just a storage CRT. and a Rand tablet) appears
worth investigating.

The extensive computations required in exploring solu-

tions to some practical pattern analysis problems have dis-

couraged the use of interactive processing. While analog

techniques for preprocessing have been incorporated in some

systems(e.g., [68]) no serious attempts are reported in the

literature on the possibility of using analog and hybrid tech-

niques to avoid some of the time-consuming digital computa-

tions.

V. COMPUTATIONAL ALGORITHMS

The usefulness of an IPACS in exploring solutions to a

variety of problems depends on the extent and versatility of

the algorithms available on the system. Various ad hoc and

theoretically derived algorithms for clustering, mapping,

classification feature evaluation, etc., are being tried out in

difierent IPACS.Fig. 4 illustrates the organization and com-

putational capabilities of OLPARS. In this section we con-

sider some details of the algorithms available on representa-

tive systems. Some applications are also described briefly.

Clustering algorithms attempt to detect and locate the

presence of groups of vectors, in a high-dimensional multi-
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variate space, which share someproperty ofsimilarity. A large

number of simil:.rity measures and other clustering criteria

based on general -elations among samples have beenproposed.

Someof these me asures and theresulting clustering algorithms

are surveyed in [9], [120], [51], and [41].

In these algorithms, based on someclustering criterion, a

classification rule is iteratively applied. Rules for creating and

destroying classes; as the iteration progresses are sometimesin-
corporated. The ISODATA program [11] for clustering uses
the mean distanc2 of each sample from the closest cluster cen-

ter, and employs merging or splitting rules on each iteration.

This program available in both PROMENADE and

OLPARS.An im proved version of ISODATAwhich attempts

to incorporate useful features of a number of the cluster-

seeking techniques is described in [10].

Clustering criteria based on scatter matrices [202] and
invariance under linear transformations of the coordinate sys-

tem have been examined in [49] and are used in the IBM

interactive system [63].
OLPARSals» provides a similarity matrix method for

data grouping [157] which is related to a numberof contribu-

tions [15], [75], [120]. The similarity matrix is an approach
to representing first-order associations between pairs of data

vectors. The zt: element of this matrix is some numerical

measure of the “similarity” between the zth and jth vectors.
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In OLPARSa generalized similarity matrix is defined as a
polynomial in terms of powers of the original matrix. The

elements of the generalized matrix are replaced by 1 or 0

depending on whether or not they exceed a threshold chosen

by the user. The resulting matrix of 0’s and 1’s becomesthe

starting point for a procedure to define cluster centers and

clustering configurations.

Designers of the INTERSPACEsystem [131] propose

that clustering be performed bya search overpartitions of the

observation space, in order to maximize the expected value of

the natural logarithm of the estimated mixture density. The

complexity of this theoretically interesting approach may not

be justifiable; reports on its experimental performance com-

pared to other methods mentioned above would be of interest.
In an IPACS,clustering routines can be used for data com-

pression, feature reduction, mode identification, and identi-

fication of outliers. Often the large amount of data gathered

can only be handled by representingall vectors in a cluster by

an appropriately weighted vector. On occasion, feature reduc-

tion may be achieved by using these weighted cluster vectors

to define a new lower dimensional] subspace. Modeidentifica-

tion for density estimation and construction of Classification

boundaries, and identification of outliers for further examina-

tion or rejection are typical uses. OLPARS uses ISODATAto

do data compression prior to certain mapping algorithms be-
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Fig. 5. Histogram of palm-print data along Fisher discriminant for right-handed females, showing separation

between normals and downs. Samples used: 295 normals, 263-downs.

cause these algorithms cannot handle more than 250 vectors.

Clustering has also been used to avoid the problems involved

in preparing an adequatetraining set [4].

Programssuch as ISODATArequire thesetting of a num;

ber of control parameters in an ad hoc manner; the merging

and splitting rules are heuristic. The evaluation of the result-

ing cluster configuration also presents a major problem. Both

problems are ameliorated in an on-line interactive graphics

environment. The display of a graph which showsthe user the

progress of an iterative clustering procedure is an advantage

of the on-line interactive approach. For example, OLPARS

allows the user to construct and display scoring and evalua-

tions. The plot of an appropriately defined error function

against the numberof clusters gives visual identification of the

clustering algorithms: the error graph helps bring out the

cluster structure of the data. Through trial and error several

cluster configurations may be generated unti} the user. is

satisfied. :

The main advantages of interactive graphics for analysis

of clusters in data comes about becaaise of the superiority of

humans over mechanistic approaches in recognizing cluster

structures and simple linear or curvilinear relationships in

one-, two-, and three-space—it is easy to have automatic

clustering routines thrown off by isolated “wild shots,”

or outliers bridging clusters, etc.

To inake use of this superior ability of humans, the high-

dimensional data must be displayed in one, two, or at most

three dimensions in such a way that “structure is preserved”

or class separability enhanced. Then the user can discover

strays

66

clusters, and. identify and classify patterns interactively.

Linear and nonlinear mappings which attempt to preserve

various aspects of structure in the data while mapping it

down to one-, two-, and three-space have been incorporated

in various IPACS.

The main categories of linear and nonlinear mappings for

IPACS which maybe discerned from the literature, are the

following.

1) Linear mappings to one, two, and three spaces defined

by the principal components of the lumped-data covariance

matrix or correlation matrix.

2) Linear mappings to one and two spaces which em-

phasize some measure ofclass separability.

3) Nonlinear mappings, based on multidimensional] scaling

and intrinsic dimensionality algorithms, which map: multi-

variate data from an 1-dimensional space into two dimensions

in such a wav that some measureof resulting distortion, of in-

tersample distances in the two-space, is minimized.

4) Nonlinear mappings which map data into two-space

while enhancing class separability.

5) Mappings of high-dimensional functions into one- and

two-space based on the idea of space-filling curves.

6) Miscellaneous.

The method of principal components, introduced by Pear-

son [137] and developed by Hotelling [86], now has an exten-
sive literature devoted to it [2], [202], [144], [145], [127] and
is widely used. It shows up indirectly under the terms factor

analysis and Karhunen—Loeve expansions [198] and intrinsic

analysis [204 | for feature selection andordering. In OLPARS,
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Fig. 6. Typical features used in study of relationship of dermatoglyphics to humandisease.
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it is called the Minimum Residual Distance Method [157];
another example of its use is in the IBMInteractive System

[63].
After solving for the eigenvectorsof the lumped covariance

matrix of the data being considered, the user could select any

one, two, or three eigenvectors to define the linear projection

subspace. The plane defined by etgenvectars corresponding to

the twa: largest eigenvalues is the two-space which fits the

data in the least squares sense. Scatter plots of data on this.

plane, in the course of interactive analysis, are shown in [29]
and [63].

The most widely used linear mapping which emphasizes

class separability is termed multiple:discriminant analysis. It

is the subject of an extensive literature [202] and many com-

puter programs [30], [38] exist for it. The discriminant vec-

tors defining the resulting space are obtained by solving a

generalized eigenvector equation (B—AW)d=0, where B is

the between-class covariance matrix and W is the pooled-

within-class covariance matrix. This expression results when

the ratio of the between-class scatter d?Bd to the sum of the
within class scatter d’ Wd is maximized with respect to d. The

mapping gives a space of dimension oneless than the number

of classes, or of dimension equal to feature space dimensional-

ity, whichever is smaller. The first is the usual situation en-

countered in pattern recognition. Aplot of 60 talker utterances

in the space defined by the two eigenvectors corresponding to

the two largest eigenvalues of a W~!B matrix calculated from

a 16-dimensional summary associated with each utterance

[58] shows that sometimes this method brings out cluster
structure rather nicely.

For the two-class case the above gives the well-known

Fisher Discriminant Function [47] whichis easily understood
as the line of projection obtained when the two centers of

gravity (means) of the projected samples are separated as far

as possible while keeping the total spread (variance) of the

combined sample constant. Fig. 5 shows the histogram of sam-

ples of palm-print data projected on the Fisher discriminant,

indicating the possibility of discriminating between normal

subjects and those with Down’s syndrome using dermatogly-

phic features [174]. The possibility that dermatoglyphics—
the ridged skin patterns found on the fingers and toes, the

palms of the hand, and the soles of the feet in man—can be

used in the diagnosis of mongolism, leukemia, schizophrenia,

congenital rubelia, and other humandiseases, is now the sub-

ject of a numberofserious investigations [114]. The relation-
ship of certain specific patterns to various chromosomedis-

orders was demonstrated sometime back [34] and the-genetic
basis of dermatoglyphic patterns is now takenseriously [85].

Studies of palm- and fingerprint patterns using OLPARS

have been. based on twenty-three features derived from the

analysis described in the classic book on the subject [35]. Fig.
6) shows someof the features used. The features represent

three groups of measurements: 1) pattern types such as

whorls, loops, and arches on fingers and palms; 2) direction

and termination of certain skin ridges on the palm; and 3)

relative distances between certain reference points located on

the palms. Preliminary results of the OLRARS’ studies in-

dicating the discriminatory potential of dermatoflyphic pat-

terns have been reported for leukemia [174] and_ schizo-

phrenia [175].

Additional investigations were carried out to investigate

possible links between apparently disparate disorders and test
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the validity of some conjectures on the familial transmission

of Down’s syndrome. The optimal discriminant plane proved

to be a very useful plot in these investigations. The optimal

discriminant plane has the Fisher discriminant as one coor-

dinate axis and the second is obtained under the constraint

that it be orthogonal to the first while maximizing the same

criterion used to derive the first direction. For example, Fig. 7
shows an optimal discriminant plane plot found useful in

hand-print character-recognition application.

For the palm-print data, and various other applicationsof

OLPARS,it was necessary to use nominal data,i.e., measure-

ments whichsatisfied only a nominal scale. Since the OLPARS

algorithms applied only to ordinal and cardinal data, termed

“Discrete Type I” and “Continuous” measurements, respec-

tively, a discrete variable subsystem (DVS) for OLPARS has
been developed recently to handle nominal variables, which

are called “Discrete Type II” measurements in the OLPARS

final report. The DVS subsystem provides a number of sub-

optimal but feasible derivations of continuous measurements

from Discrete Type II measurements. (These discrete to con-

tinuous measurement transformations may be viewed as com-

putations estimating certain marginals in the parametric

representation of the class conditional joint distributions of
the discrete variables.) Mixed discrete and continuous mea-

surements are handled by transforming the discretemeasure-
ments and adjoining the resulting variables to the set of con-

‘tinuous variables.
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A normalizing transformation can be used [52] to extract

the important features for separating two classes by finding

the linear transformation which, applied to the autocorrela-

tion matrix of the mixture of two classes, gives an identity

matrix.. The result is that the eigenvector with the largest

eigenvalue for class 1 has the smallest eigenvalue for class 2

and so on. This has been applied to data grouping [53] and

seems a good wayto define a two-space with. the eigenvectors

having the largest eigenvalue in each class, respectively, serv-

ing as the coordinates.

Varioussolutions have been proposed to handle singularity

of the pooled within-class covariance matrix W which enters

into the eigenvector equation for finding the discriminant vec-
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tors. The pseudo-inverse matrix method has been a standard

one in statistics and has been applied to pattern-recognition
problems [199]. I: restricts attention to the subspace in which

the design samples lie. A modified discriminant analysis
method [119] has been used in a speaker identification ap-

plication. In this approach one first transforms the between

class covariance matrix B to eliminate singularities, and in the
transformed space sets up the eigenvector equation B’—!/’,
where the prime indicates a matrix in the transformed space,

so that vectors corresponding to small eigenvalues are the de-
sirable directions.

A pseudo-estiniate different from the pseudo-inverse solu-
tion has been sugyested in an imagery screening application

[96], [71]. Bayesian arguments for such a pseudoestimate
exist [3]. Experimental results obtained with this approach in

certain problems were excellent but this has not always been

the case [117]. Some IPACSat present offer the pseudo-in-
verse approach.

There exists substantial literature on the methods of

multidimensional scaling and parametric mapping [165],
[166], [101], [102], [167], [104], [25]. These methods have
served as the basi: for nonlinear mappings from multidimen-

sional space to two- and three-space, for interactive graphic
display of data [155], [156], [22]-[24].

Multidimensional scaling and parametric mapping are
techniquesfor fin:ling a configuration of data points, in the

smallest dimensional space, that, according to some defined

criterion, preserves the local structure of the points in the

original n-dimensional space. Shepard’s and Kruskal’s meth-

ods need no more than a measure of similarity between the

data points, wherzas Shepard and Carroll’s and Sammon’s

approaches requir: that there be a metric defined on the ob-

servation space.

Let d;; be the d stance from point z to point7 in the original
space and D,; the distance between the ith and jth points in

the lower dimensional space, and let W;; be weights. The
“stress” criterion of [101] is }o;,; Wij(di;—Di;)? and the
“continuity” crite-ion used in [167] is >oi,; Wij[(di;/Di;) |2.

The procedurefor finding the configuration in the lower dimen-

sional space is to compute the d,; in the original space, and

starting with an arbitrary configuration of an equal number

of data points in t1e new space, iteratively move them (using
for example a stee pest descent method) so as to minimize the

criterion.

The mapping zlgorithms in [22], [23] used the continuity
criterion of Shepard and Carroll. The apparent difference

between the erro: criterion of the nonlinear mapping algo-

rithm in OLPARS [156] and a stress criterion used in a
particular version of a program for multidimensional scaling

[25] has recently been explained [103]. In OLPARSthe non-
linear mapping aljrorithm is specifically designed as an inter-

active program fo:: mapping to two- and three-space.

It is possible that the data may tendto lie on a curve in the

n-dimensional spav:e; estimation of the parametric form of this

curve would indic:.te the intrinsic dimensionality of the collec-

tion of data points. The methods for discovering intrinsic

dimensionality [15], [181], [182], [184], [54], are closelyre-

lated to the mett.ods of multidimensional scaling. Bennett’s

method requires tliat the observation space be a metric space,

and Trunk’s metl od requires that it be a metric space with

an inner product. The Fukunaga and Olsen algorithm differs

in that it provides a method of specifying variable local re-

gions and relies hravily on interactive operation [183], [55].
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Nonlinear or generalized principal component analysis is

considered in [58]. Given a class of possible nonlinear coordi-
nates, this approach, just like linear principal components,

finds the coordinate along which the data variance is maxi-

mum, then obtains another, uncorrelated with the first, along

which the variance is the next largest, and so on. An example

of a quadratic principal component analysis is given in [58].

An example of a nonlinear mapping which emphasizes class

separability for a two-class case, is the two-dimensional d

display [56].
Space-filling curves are continuous mappings from the unit

interval onto the n-dimensional unit hypercube. From the

time (1891) that examples were provided by Hilbert [80] until
recently, they have been of purely mathematical interest. The

first application of space-filling curves [1] has been followed

by applications in mathematical programming [19], band-

width reduction [8], and computer-graphic display [133].

An algorithm generalizing Hilbert’s curve to 2 dimensions

was provided in [20]; alternative algorithms which are byte
oriented are now available [21]. The computer--graphic appli-

cation maps domains of multidimensional space onto sub-

intervals of the unit intervalin order to display an approxi-

mated probability density function for eachof several classes

so that their degree of separability may be visually deter-

mined [135].
A variety of miscellaneous plots—histograms,scatter plots,

contour plots, two- and three-dimensional maps, pair-wise

linkage, and association plots, etc.—have been developed to

enable on-line graphical display of multidimensional data for

interactive analysis. Options available in OLPARS, PROM-

ENADE, and SARFare described in [155], [29], [70],

[123], [124], respectively. Some other references related to

this section are [62], [44], [109], [179], [32].
Fig. 8 shows a SARFfeature space plot (FSP) of events

from three categories. The FSP routine displays points in

twa- or three-dimensional feature spaces, where featurerefers



to both original and derived features. In this system, as in a
numberof others, the points to be displayed can be selected

by category, subcategory, computational criteria, and/or by

position relative to surfaces which are injected from the dis-

play into the feature space. In the UCSB speech system [77]

scatter plots for two features at a time are used to develop a

classification tree. Many of the systems provide the capability

of rapidly stepping through a series of such plots.
In addition to the transformations of the original features

described above, routines for rank ordering feature subsets or
individual features have been considered for use in IPACS,

and deserve some comment here. Various approaches to

selecting a subset of a larger set of features have been proposed

but there are both computational [120] and conceptual prob-

lems. For example, it has been demonstrated [180], [42] that
the individually best feature out of a set of three binary fea-

tures need not be a memberof the set of two best features.

Raiffa [142] treated the problem of selecting features as a

problem in the comparison of experiments [16] and suggested

sequential and nonsequential proceduresfor selecting a subset

of properties from a larger set. Bahadur [7] considered the
problem of finding a good numerical index which would mea-

sure the effectiveness ofa given set of properties in classifica-

tion. Various measures of information, distance, and separa-

tion have been posed to serve this need but they may or may

not bear any relation to classification error [89], [27], [78],
[107]. Bahadur used the symmetric divergence, also called the
Kullback—Leibler information number [105], to define an
effective distance between two groups, and derived an ap-

proximate formula which indicated the contribution of any
particular feature, to the distance.

Basically, the above approaches underlie many of the con-

tributions on selecting a subset of features, which have ap-

peared in the literature [74], [50], [122], [200], [110], [112].
The computational problems in using many of these tech-

niques may be appreciated by the report [155] that for

OLPARSon the CDC 1604, the estimated computation time

for a simple method which uses the symmetric divergence to

rank the measurementsis about 18 times that estimated for a

“discrimination” method which uses the following criterion:
discrimination value of feature x, for differentiating between
class 1 and j, denoted by M,;(x,). is the squared difference be-

tween the mean of x, in each class, divided by the sum of the
weighted variances of each class, with the variances being

multiplied respectively, by one less than the number of sam-

ples for that class. For discriminating class i from all other

classes, the measure usedis

Mi(xp) = > M;;(xp)

jt

and an overall measurefor x, is

M(xp) = » ~ Mi;(xp).
1 get

It is interesting to note that M;;(x,), which has been widely

used on heuristic grounds,is also, essentially, the measure of

separability for univariate distributions, which, following a

conjecture [12], has been shown [27] to bear a simple relation-

ship to the probability of error.

The overall measure MJ(x,) is of course suboptimal for the

multivariate case but it is computationally easy, and is an
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interactive system where unimodality of classes can be es-

timated quickly, the method can be practically useful.

Another suboptimal measure of the discrimination ability

of a feature, termed the probability of confusion measure, is

used [157] where the unimodal class assumption cannot be

justified. This method requires estimation of the marginal

class distributions from sample data and is therefore com-

putationally not as desirable as the previous method.

A reference of related interest is the article [119] which
examines the virtues and faults of analysis of variance as a

method for rank-ordering individual features [141]. There
are many articles containing examples of stepwise discrimi-

nant analysis in which one variable at a time is entered into

the set of discriminating variables [117]. Standard program-

ming packagesare available for this method [38].

Techniques for pattern classification abound. There is a
voluminousliterature on the subject, part of which has been

surveyed in [82], [154], [41], [51]. Much of the rest through

1968 may be foundcited in the bibliography [113].

Any worry about having to incorporate a vast number of

the techniques covered by this staggering volumeof literature

into an IPACS should be dispelled by the experience reported

thus far. It is well known that the vital difference to per-

formance is made by the appropriateness of the features se-

lected and by the analysis of the details of the within-classand

between-class structure present in the data.

Some studies, e.g., [163], for the case of dichotomous

variables have found that the Fisher linear discriminant

function (LDF) compared rather favorably with certain

competing “optimal” techniques. Experience also indicates

[96], [93] that “appropriate” use of the Fisher LDF gives
performance at least as good or better than most competing

techniques, and is tar superior to learning algorithms o1 the

Perceptron and stochastic approximation type. If within class
clusters and modes are identified, and some estimate of the

class overlap can be obtained, then pair-wise-linear discrimi-

nants put together into a piecewise-linear decision logic, could

be most effective. As we noted the Fisher discriminant and the

optimal discriminant plane have proven useful prior to
IPACS. With the on-line clustering and mapping capability

of an IPACS, the approach has proven even moreeffective

[157].
Foljlowing an initial analysis of sample data to determine

the potential difficulty of the problem by estimating the modes

in each class and the relative overlap of classes. the classes that
are easily discriminated are taken care of. Then the more diffi-

cult cases are examined in greater detail. The on-line capabil-

ity facilitates the strategy of designing and trying out simple

logics first and determining their inadequacies before going on

to more sophisticated methods.

An algorithm [46], [150] which performs an adaptive
search for cluster centers while satisfying the constraint of

known categories has been used in PROMENADE[70] to
allocate a new datum pointto the class of the nearest cluster

center. It is reported [157] that in each of the manyreal data
applications undertaken with OLPARSthe piecewise-linear

logic using the Fisher discriminant per each pair of clusters,

has outperformed the nearest mean vector solution.

The detection of clusters using a projection option such as

nonlinear mapping or eigenvector plot, and the insertion of a

decision boundary, e.g., via the feature space plot display in

SARF [123], [124], and the principal components or optimal

discriminant plane in OLPARS[156], makesit easy to follow
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the strategy for designing a classification logic recommended

earlier. More complicated decision procedures using K-nearest

neighbor rules, recursive Bayesian estimation, and stochastic

approximation are being proposed for INTERSPACE [131].

The precedingdiscussion pertains to the techniques which
are currently being tried out. The usefulness of some of the

simpler methods is well accepted. However, no consensus has
been reached on the efficacy of the more sophisticated tech-

niques. One of the major benefits of work on IPACSislikely
to be a clearer identification of techniques which are not worth

pursuing. This sk.ould have a significant impact not only on

practical problem solving but also on future directions of

theoretical research.

\7IT, CONCLUDING REMARKS

As a result of the developments in computer graphics

(e.g., Hobbs [83], Prince [139], [140], Van Dam [189], Sec-

rest and Nieverzelt [164], Faiman and Nievergelt [45],
Pankhurst [129], Parslow and Green [130]) and man-com-

puter symbiosis ((icklider [111]), the partnership of man and

the computer in the solution of problems is now available to

investigators in a variety of fields; many of these fields are

related to patterr: recognition. Indeed, since recognizing pat-

terns is, in one for n or another,intrinsic to intelligent activity

and since the search for regularities is the principal concern of

scientific inquiry, it follows that the field of pattern recogni-

tion impinges upon all scientific inquiry and intelligent be-
havior. This has |:d, for example, to the comment “Is there—

can there be—a fi:ld of inquiry devoted to whatis called ‘pat-
tern recognition’? Almost certainly not...” (Neisser [121]).

Such comments have not prevented an influx of theoretical

and experimental :‘esearchersinto what is called pattern recog-
nition—not only to probe further into the meaning of words
such as “learnir.g,” “identification,” “classification,” and

“recognition” (Sayre [162]) and to see what aspects of these
functions could b: automated (Kanal [90], Kanal and Chan-
drasekaran [93])-—but also to develop tools for pattern anal-
ysis, classification, induction, and problem solving that are

applicable to a variety of situations and fields. The interactive

systems surveyed n this paper represent some attemptsin this

direction.

Taking advantage of the experience gained thus far, the

next generation of IPACS could be very powerful, experimen-

tal facilities for solving practical pattern-recognition problems

arising in a wide variety of fields. However, the significant

resources needed to implement a truly effective interactive

pattern analysis znd classification system should not be un-

derestimated. Suc1 IPACS will flourish only in those environ-

ments in which the number and variety of problems provides

economic viability. Otherwise, an IPACSis likely to go the

way of SARFwhich, having been directed towards a certain
area of defense research, fell victim to a Jack of funding in

that area.

Placing an IFACS in an open environment attracting a

wide variety of u:ers with different backgrounds should help

the continual evolution of the system. This assumes that the

people associated with the effort are capable in both computer

systems and pattern recognition.

Because of the impact we feel IPACS will have on problem

solving in pattern recognition, it is highly desirable to make

this capability ine <pensively and widely available. At present,
both these attribt.tes are missing. Work remains to be done on

processor configurations and system organization to overcome

these limitations ‘vhile still satisfying the large data-handling
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and computational demands imposed by practical pattern-

recognition problems. Also neededis the addition to IPACSof

the next natural step, i.e., the development of a capability to

do on-line modeling, for rarely is analysis and classification the

end of our interest in a body of data.
Even as we sing the praises of experimental interactive

pattern analysis classification and modeling, we must keep in
mind that these are not a guarantee against poor use of re-

sources nor a substitute for theory and thought. Difficult

problems of pattern recognition will continue to require care-

ful planning, time, and effort. However, in this effort we now

seek some helping hands—the Rival of 1958 has been replaced

by a Partner, the graphics-oriented IPACS.

ACKNOWLEDGMENT

Many people responded quickly to the author’s request

for papers, reports, and memorandadescribing work related

to IPACS by themselves and their colleagues. These letters

and internal reports were useful in providing a perspective of

current work in IPACS. The author thanks those concerned

and regrets that limitations of space made it impossible to do

full justice to each contribution. For example, descriptionsof
hardware and peripherals used to implement each IPACS

have been omitted.

The author thanks G. G. Lendaris, J. W. Machanik, W.C.
Neinow, and J. W.Sammon,fr., for providing the photographs

andillustrations which appear in the paper. The authoris also

grateful to A. K. Agrawala and A. E. Pottala for their critical

reading of earlier drafts anu their suggestions which led to

many improvements in the paper.

REFERENCES

[1] K. Abend, T. J. Harley, and L. N. Kanal, “Classification of binary
_ random patterns,” IEEE Trans. Inform. Theory, vol. IT-11, pp.

538-544, Oet. 1965.

T. W. Anderson, Introduction to Multivariate Analysts.

York: Wiley, 1958.

A. Ando and G. M. Kaufmann, “Bayesian analysis of the inde-

pendent multinormal process—Neither meannorprecision known,”
J. Amer. Statist. Ass., vol. 60, pp. 347-358, Mar. 1965.

R. N. Ascher, G. M. Koppelman, M. J. Miller, G. Nagy, and G. L.

Shelton, Jr., “An interactive system for reading unformatted
printed text,” TEEE Trans. Comput., vol. C-20, pp. 1527-1543,
Dec. 1971.
R. Baecker, “Interactive computer-mediated animation,”
MAC,Tech. Rep. TR-61, June 1969,

, “From the animated student to the animated computer to

the animated film to the animated student... ,” in Proc. Purdue
1971 Symp. Applications of Computers to Electrical Engineering

Education.

R. R. Bahadur, “On classification based on responses to ” dichot-
omous items,” in USAF SAM Series in Statistics (Randolph AFB,
Tex.), 1959; also in Studies in Item Analysis and Predication, H.

Solomon, Ed. Stanford, Calif.: Stanford Univ. Press, 1961, pp.

169-176.

T. Bially, “Space-filling curves: Their generation and their appli-

cation to bandwidth reduction,” [EEE Trans. Inform. Theory,
vol. IT-15, pp. 658-664, Nov. 1969.

H. G. Ball, “Data analysis in the social sciences,” in 1965 Fall Joint
Computer Conf., AFIPS Conf. Proc. Washington, D. C.: Thomp-

son, 1965, pp. 533-560.

[10] ——, “A comparison of some cluster-seeking techniques,”
Air Develop. Cen., Tech. Rep. TR-66-514, Nov. 1966.

G. H. Ball and D. J. Hall, “A clustering technique summarizing
multivariate data,” Behavior Sci., vol. 12, pp. 153-155, Mar. 1967.

P. W. Becker, “Recognition of patterns using the frequencies of oc-

currence of binary words,” Polyteknisk Forlag (Copenhagen, Den-
mark), 1968. .

R. S. Bennett, “The intrinsic dimensionality of signal collections, ”
IEEE Trans. Inform. Theory, vol. IT-15, pp. 517-525, Sept. 1969.
M. L. Berman, J. W. Machanik, and S. Shellans, “Preject Merlin,
a graphics operating system,” in Advanced Computer Graphics

Economics, Techniques and Applications, R. D. Parslow and R. E.

Green, Eds. New York: Plenum, 1971, pp. 735-773.

[2] New

[3]

[4

o
o
t

Project[S]

[6]

(7]

[8]

[9]

Rome

[11]

[12]

{13]

[14]



[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33],

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

R. E. Bonner, “On some clustering techniques,” IBM J. Res.
Develop., vol. 8, pp. 22—32, Jan. 1964.

D. Blackwell and M. A. Girshick, Theory of Games and Statistic

Decisions. New York: Wiley, 1956.

A. Brain, G. Forsen, D. Hall, and C. Rosen, “A large self-contained
learning machine,” in Proc. 1963 IEEE Western Electronics Conv.
(San Francisco, Calif.), 1963.

J. S. Bryan, “Experiments in adaptive pattern recognition,” IRE
Trans. Mil. Electron., vol. MIL-7, pp. 174-179, Apr.—July 1963.

A. R. Butz, “Space filling curves and mathematical programming,”
Inform. Cont., vol. 12, pp. 314-329, Apr. 1968.

——, “Convergence with Hilbert’s space filling curve,” J. Comput.
Syst. Sci., vol. 3, pp. 128-146, May 1969.

——, “Alternative algorithm for Hilbert’s space-filling curve,”
IEEE Trans. Comput. (Short Notes), vol. C-20, pp. 424-426, Apr.

1971.
T. W. Calvert, “Projections of multidimensional data for use in

man-computer graphics,” in 1968 Fall Joint Computer Conf.,

AFIPS Conf. Proc., vol. 33, pt. 1. Washington, D. C.: Spartan,

1968, pp. 227-231.

——, “Nonorthogonal projections for feature extraction in pattern
recognition,” [EEE Trans. Comput. (Short Notes), vol. C-19, pp.
447-452, May 1970.

T. W. Calvert and T. Y. Young, “Randomly generated nonlinear
transformations for pattern recognition,” IEEE Trans. Syst. Sci.
Cybern., vol. SSC-5, pp. 266-273, Oct. 1969.

J. D. Carroll, J. B. Kruskal, and M. Wish, “Multidimensional
scaling and closely related topics—Selected, annotated references

to papers, programs, and workin progress,” Bell Lab. Memo., 1970.
J. B. Chatten and C. F. Teacher, “Character recognition techniques
for address reading,” in Optical Character Recognition, Fischeret al:,
Eds. New York: Spartan, 1962, pp. 51-59.

H. Chernoff, “A bound on theclassification error for discriminating
between populations with specified means and variances,” Dep. of

Statistics, Stanford Univ., Stanford, Calif.. Tech. Rep. 66, Jan.

1970.

C. Christensen and E. N. Pinson, “Multi-function graphics for a
large-computer system,” in 1967 Fall Joint Computer Conf., AFIPS
Conf. Proc., vol. 31. Montvale, N. J.: AFIPS Press, 1967, pp.

697-711.

D. B. Connell, D. W. Clark, B. K. Opitz et al., “Programming pack-
age for on-line pattern recognition,” Rome Air Develop. Cen.,

Final Tech. Rep. TR-70-139, Aug. 1970.

W. W. Cooley and P. R. Lohnes, Multivariate Procedures for the

Behavioral Sciences. New York: Wiley, 1962.

I. W. Cotton and F. S. Greatorex, Jr., “Data structures and tech-
niques for remote computergraphics,” in 1968 Fall Joint Computer
Conf., AFIPS Conf. Proc., vol. 33, pt. 1. Washington, D. C.:

Spartan, 1968, pp. 533-544.

G. M. Coulam, W. H. Dunnette, and E. H. Wood, “A computer-
controlled scintiscanning system and associated computer graphic

techniques for a study of regional distribution of blood flow,”
Comput. Biomed. Res., vol. 3, pp. 249-273, June 1970.

G. J. Culler, “An attack on the problems of speech analysis and
synthesis with the power of an on-line system,” in Proc. Int. Joint

Conf. Artificial Intelligence (Washington, D. C., May 1967), pp.
41-48.

H. Cummins, “Dermatoglyphic stigmata in mongoloid imbeciles,”
Am. Neurolog. Ass. Trans., Rec. 7, vol. 73, p. 407, 1939.

H. Cummins and C. Midlo, Finger Prints, Palms and Soles.
York: Dover, 1943, chs. 4 and 5.

P. J. Denning, “Virtual memory,” Comput. Surveys, vol. 2, pp. 153-
189, Sept. 1970.

M. L. Dertouzos, G. P. Jessel, and J. R. Stinger, “CircaL-2: Gen-
eral-purpose on-line circuit design,” Proc. IEEE,vol. 60, pp. 39-48,
Jan. 1972.

W. J. Dixon, “Statistical packages in biomedical computation,”
in Computers in Biomedical Research, R. W. Stacy and B. D. Wax-

man, Eds. New York: Academic Press, 1965, ch. 3, pp. 47-64.

——, “Use of displays with packaged statistical programs,” in
1967 Fall Joint Computer Conf., AFIPS Conf. Proc., vol. 31.

Washington, D. C.: Spartan, 1967, pp. 481-484.

——, “The future of statistics in biomedical sciences,” in The
Future of Statistics, D. G. Watts, Ed. New York: Academic Press,
1968, pp. 47-60.

R. O. Duda and P. E. Hart, Pattern Classification and Scene An-

alysts. New York: Wiley, 1972.

J. D. Elashoff, R. M. Elashoff, and G. E. Goldman, “On the choice
of variables in classification problems with dichotomous variables,”

Biometrika, vol. 54, pp. 668-670, 1967. .
Encyclopedia of Stock Market Techniques.

Schuster.

J. W. Eusebio and G. H. Ball, “Isodata-lines—A program for de-

scribing multivariate data by piecewise-linear curves,” in Hawaii

Syst. Sci. Conf., pp. 135-138, 1968.

M. Faimanand J. Nievergelt, Eds., Pertinent Concepts in Computer

Graphics. Urbana,Ill.: Univ.of Illinois Press, 1969.
O. Firschein and M. Fischler, “Automatic subclass determination

New

New York: Simon and

72

[47]

[48]

[49]

[SO]

[S1]

[52]

[53]

[54]

[SS]

[S6]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

PROCEEDINGS OF THE IEEE, OCTOBER 1972

for pattern-recognition applications,” IEEE Trans. Electron.

Comput. (Corresp.), vol. EC-12, pp. 137-141, Apr. 1963.

R. A. Fisher, “The use of multiple measurements in taxonomic
problems,” Ann. Eugen., vol. 7, pp. 179-188, 1936.
B. D. Fried, “On the user’s point of view,” in Interactive Systems
for Experimental Applied Mathematics, M. Kierer and J. Reinfelds,

Eds. New York: Academic Press, pp. 11-12, 1968.

H. P. Friedman and J. Rubin, “On some invariant criteria for
grouping data,” J. Amer. Statist. Ass., vol. 62, pp. 1159-1178, Dec.
1967.

K. S. Fu, Y. T. Chien, and G. P. Cardillo, “A dynamic program-
ming approach to sequential pattern recognition,” [EEE Trans.

Electron. Comput., vol. EC-16, pp. 790-803, Dec. 1967.

K. Fukunaga, Introduction to Statistical Pattern Recognition.

York: Academic Press, 1972.

K. Fukunaga and W.L. G. Koontz, “Application of the Karhunen—
Loéve expansion to feature selection and ordering,” [EEE Trans.

Comput., vol. C-19, pp. 311-318, Apr. 1970.

——, “A criterion and an algorithm for grouping data,” IEEE
Trans. Comput., vol. C-19, pp. 917-923, Oct. 1970.

K. Fukunaga and D. R. Olsen, “An algorithm for finding intrinsic
dimensionality of data,” IEEE Trans. Comput., vol. C-20, pp. 176-
183, Feb. 1971.
——, “Authors’ reply to comments by G. V. Trunk on ‘An algo-
rithm for finding intrinsic dimensionality of data’,” IEEE Trans.
Comput. (Corresp.), vol. C-20, pp. 1615-1616, Dec. 1971.

——, “A two-dimensional display for the classification of multi-
variate data,” IEEE Trans. Comput. (Short Notes), vol. C-20, pp.
917-923, Aug. 1971.
A. Gamba, G. Palmieri, and R. Sanna, “Preliminary experimental

results with PAPA, 2,” Suppl. Nuovo Cimento, vol. 23, ser. X, pp.
280-284, 1960.

R. Gnanadesikan and M. B. Wilk, “Data analytic methods in
multivariate statistical analysis,” in Multivariate Analysis II, P. R.

Krishnaiah, Ed. New York: Academic Press, 1969, pp. 593-638.

A. J. Goldstein, L. D. Harmon, and A. B. Lesk, “Man machine
interaction in humanface identification,” Bell Syst. Tech. J., vol.
51, pp. 399-427, 1972.

R. M. Goldwyn, L. Loh, and J. H. Siegel, “The analysis of physio-
logic abnormalities in the critically ill using a time-sharing system

for the conversational manipulation of a large data bank,” in Proc.
Annu. Princeton Conf. Information Sciences and Systems, p. 317,

1969.

R. M. Goldwyn, M. Miller, H. P. Friedman, and J. H. Siegel, “The
use of time-sharing and interactive graphics for the assessment of
circulation in the critically ill,” IEEE Comput. Commun. Conf.
Rec. IEEE Cat. 69C67-NVSEC), p. 121, 1969.

R. M. Goldwyn, H. P. Friedman, and J. H. Siegel, “Iteration and
interaction in computer data bank analysis: A case study in the

physiologic classification and assessment of the critically ill,”
T. J. Watson Res. Cen., Yorktown Heights, N. Y., IBM Res. RC
3157, Dec. 1970.

R. M. Goldwyn, H. P. Friedman, M. Miller, and J. H. Siegel, “An
interactive system for complex data analysis—Command descrip-

tion,” T. J. Watson Res. Cen., Yorktown Heights, N. Y., IBM
Res. RC 3256, 1971.

J. B. Goodenough, “A light-pen-controlled program for on-line
data analysis,” Commun. Ass. Comput. Mach., vol. 8, no. 2, pp. 130-
134, 1965.

J. C. Gray, “Compound datastructure for computer aided design:
A survey,” in 1967 Proc. Ass. Comput. Mach. Nat. Meeting. Mont-
vale, N. J.: AFIPS Press, 1967, pp. 355-365.

G. F. Groner, “Realtime recognition of handprinted text,” Rand
Corp., Santa Monica, Calif., Memo. RM-5016-ARPA, ASTIA

Doc. AD-341252, Oct. 1966.

G. F. Groner, J. F. Heafner, and T. W. Robinson, “On-line com-
puter classification of handprinted Chinese characters as a trans-

lation aid,” IEEE Trans. Electron. Comput. (Short Notes), vol.
EC-16, pp. 856-860, Dec. 1967.

J. E. Guignon and R. M. Kline, “Developmentof an on-line image
processing system,” Comput. Syst. Lab., Washington Univ., St.

Louis, Mo., Tech. Rep. TR 5, ASTIA Doc. AD-668966, Feb. 1968.

D. J. Hall, G. H. Ball, and D. E. Wolf, “Applications of PROMEN-
ADEdata-analysis system,” IEEE Comput. Commun. Conf. Rec.
(IEEE Cat. 69-C67-MUSEC), pp. 101-108, 1969.

D. J. Hall, G. H. Ball, D. E. Wolf, and J. W..Eusebio, “PROMEN-

ADE—Animprovedinteractive-graphics man-machine system for

pattern recognition,” Rome Air Develop. Cen., Tech. Rep. TR-68-

572, June 1969.

T. J. Harley, “Pseudoestimates versus pseudo-inverses for singular
sample covariance matrices,” sec. 2, ASTIA Doc. AD-427172,
Sept. 1963.

T. J. Harley, J. Bryan, L. Kanal, and D. Taylor, “Semi-automatic
imagery screening—Research study and experimental investiga-

tion,” Philco Reports, Contract DA-36-039-SC-90742, ASTIA
Docs. AD-293616 and AD-4193616, 1962-1963.

T. J. Harley, L. N. Kanal, and N. C. Randall, “System considera-

tions for automatic imagery screening,” in Pictorial Pattern Recog-

New



KANAL: PATTERN ANALYSIS AND CLASSIFICATION

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

nition, G. C. Cheng et al., Eds.

1968, pp. 15- 32.
P. E. Hart, ‘A brief survey of preprocessing for pattern recogni-
tion,” Defenze Documentation Cen., Washington, D. C., ASTIA
Doc. AD-647:275, 1967.

J. A. Hartigan, “Representation of similarity matrices by trees,”
J. Amer. Statist. Ass., vol. 62, pp. 1140-1158, Dec. 1967.
D. O. Harris, J. A. Howard, and R. C. Wood, “Research in on-line
computation,” Univ. of California, Santa Barbara, Calif., Rep.
AFCRL-70-0535, June 1970.

——.,“Reseatch in on-line computation,” University of California,
Santa Barbara, Calif., Final Rep. on AFCRL Contract, Aug. 31,
1971.

T.L. Henderson and D. G. Lainiotis, “Comments onlinear feature
extraction,” IEEE Trans. Inform. Theory (Corresp.), vol. IT-15,
pp. 728-730, ‘Nov. 1969.

N. M. Herbs: and P. M. Will, “An experimental laboratory for
pattern recog:1ition and signal processing,” Commun. Ass. Comput.
Mach., vol. 14, pp. 231-244, Apr. 1972.
D. Hilbert, ““Jeber die stetige Abbildung einer Linie auf ein Flach-
enstuck,” Mah. Ann., vol. 38, pp. 459-460, Mar. 1891.
D. R. Hill, “'fan—machine interaction using speech,” in Advances
in Computers, F. L. Alt et al., Eds. New York: Academic Press,
1971. pp. 165--230.

Y. C. Hoand 4. K. Agrawala, “On pattern classification algorithms
——Introductica and survey,” Proc. IEEE, vol. 56, pp. 2101-2114,
Dec. 1968.

L. C. Hobbs, “Display applications and technology,” Proc. IEEE,
vol. 54, pp. 1870-1884, Dec. 1966.
A. Hoffman, “The ‘whirling dervish,’ a simulation study in learning
and recogniticn systems,” in 1962 IRE Int. Conv. Rec., pt. 4, pp.
153-160, 1962:

S. B. Holt, Th: Genetics of Dermal Ridges.

C Thomas, 16:58.

H. Hotelling, “Analysis of a complex of statistical variables into
principal com.sonents,” J. Educ. Psychol., vol. 24, pp. 417-441,
498-520, 1933

C. I. Johnson, “Interactive graphics in data processing: Principles
of interactive systems,” IBM Syst. J., vol. 7, nos. 3.and 4, pp. 147—
173, 1968.

Washington, D. C.: Thompson,

Springfield, Il.: Charles

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115

e
e
d

[116]

[117]

[118]

[119]

J. D. Joyce zad M. J. Cianciolo, “Reactive displays: Improving .
man-machine graphical communication,” in 1967 Fall Joint Com-
puter Conf., A.IPS Conf. Proc., vol. 31. Montvale, N. J.: AFIPS
Press, 1967, pp. 713-721.

T. Kailath, “T‘he divergence and Bhattacharya distance measures
in signal selec:ion,” IEEE Trans. Commun. Technol., vol. COM-15,
pp. 52-60, Fel:. 1967.

L. N. Kanal, Pattern Recognition. Washington, D. C.: Thompson,

1968: Silver S: ring, Md.: L.N.K. Inc.

——, “Review of ‘Target detection, prenormalization and learning
machines’, by M. R. Uffelman,” in Comput. Rev., no. 18004, p. 562,
Dec. 1969.

L. Kanal and B. Chandrasekaran, “On dimensionality and sample
size in statistical pattern classification,” in Proc. Nat. Electronics
Conf., 1968, p». 2-7: also in Pattern Recognition, vol. 3, 1971, pp.
225-234.

——, “Recognition, machine ‘récognition,’ and_ statistical ap-

proaches,”in .'Lethodologies of Pattern Recognition, M.S. Watanabe,
Ed. New Ycerk: Academic Press, 1969, pp. 317—332.

——, “On lin:ruistic, statistical and mixed models for pattern

recognition,” “Jniv. of Maryland Comput. Sci. Cen., College Park,
Md., Tech. R.zp. TR-152, Mar. 1971. To appear in Frontiers of

Pattern Recognition, M.S. Watanabe, Ed. New York: Academic
Press, 1972.

L. Kanal and T. J. Harley, Jr.. “The complexity of patterns and
pattern recognition systems,” Aerosp. Med. Res. Lab., Wright-
Patterson AF)3, Ohio, Tech. Rep. AMRL-TR-69-62, Nov. 1969.

L. N. Kanal :nd N. C. Randall, “Recognition system design by
statistical analysis,” in Proc. 19th Nat. Ass. Comput. Mach. Conf.

New York: Asis. Comput. Mach., 1964, pp. D2.5—-1-D2.5-10.

L. Kanal, F. slaymaker, D. Smith, and W. Walker, “Basic prin-
ciples of some pattern recognition systems,” in Proc. Nat. Electron-
ics Conf. (Chicigo, Ill.), 1962, pp. 279-295.

M. Klerer anc J. Reinfelds, Eds., Interactice Systems for Experi-

mental Applie! Mathematics. New York: Academic Press, 1968.

K. C. Knowlton, “Computer-animated movies,” in Emerging Con-
cepts in Comt uter Graphics, Secrest and Nievergelt, Eds. New

York: Benjam:n Publishing Co., 1968, pp. 343-370.

D. E. Knuth, The Art of Computer Programming.
Addison-Wesl« y, 1968, vol. I, ch. 2.

J. B. Kruskal, “Multidimensional scaling by optimizing goodness
of fit to a nontaetric hypothesis,” Psychometrika, vol. 29, pp. 1-27,
Mar. 1964.

—-—, “Nonme:ric multidimensional scaling,” Psychometrika, vol.
29, pp. 115-120, June 1964.
——, “Comm:nts on ‘A nonlinear mapping for data structure
analysis’,” IE.ZE Trans. Comput. (Corresp.), vol. C-20, p. 1614,

New York:

[120]

[121]

[122]

[123]

[i24]

[125]

[126]

(127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

73

Dec. 1971.

J. B. Kruskal and J. D. Carroll, “Geometric models and badness-of-
fit functions,” in Multivariate Analysis, vol. 2. New York: Aca-
demic Press, 1969, pp. 639-671.

S. Kullback, Information Theory and Statistics.
1959.

F. F. Kuo and N. G. Magnuson, Eds., Computer Oriented Circuit
Design. New York: Prentice-Hall, 1969.
D. G. Lainiotis, “A class of upper bounds on probability of error
for multihypotheses pattern recognition,” in IEEE Trans. Inform.
Theory (Corresp.), vol. IT-15, pp. 730-731, Nov. 1969.
G. G. Lendaris and G. L. Stanley, “Diffraction-pattern sampling
for automatic pattern recognition,” Proc. IEEE, vol. 58, pp. 198—
216, Feb. 1970.

R. G. Leonard and D. L. Tebbe, “Graphical displays for the inter-
active analysis of relations between dichotomous variables,” in
Proc. SMC Conf. (San Francisco, Calif.), 1968, pp. 191-200.
P. M. Lewis, II, “The characteristic selection problem in recogni-
tion systems,” IRE Trans. Inform. Theory, vol. IT-8, pp. 171-178,
Feb. 1962.
J. C. R. Licklider, “Man-computer symbiosis,” TRE Trans. Hum.
Factors Electron., vol. HFE-1, pp. 4-11, Mar. 1960.
C. N. Liu, “A programmedalgorithm for designing multifont char-
acter recognition logics,” IEEE Trans. Electron. Comput., vol.
EC-13, pp. 586-593, Oct. 1964.
C. J. W. Mason, “Pattern recognition bibliography,” IEEE SMC
Group Newsletter, 1970.

“Dermatoglyphysics,” in Medical World News, pp. 24-29, July 31,
1970.
Merlin System, “Large data base tapped interactively by storage
terminals,” Comput. Decisions, June 1970.
Merlin System, User’s Guide. New York: Merlin Systems Corp.,
1970.
R. G. Miller “Statistical prediction by discriminant analysis,”
Meteorol. Monogr., vol. 4, no. 25. Boston, Mass.: Amer. Meteorol.
Soc., Oct. 1962.

J. Minker and J. D. Sable, “Relational data system study,” Rome
Air Develop. Cen., Tech. Rep. TR-70-180, Sept. 1970.
W. S. Mohn, Jr., “Two statistical feature evaluation techniques
applied to speakeridentification,” IEEE Trans. Comput., vol. C-20,
pp. 979-987, Sept: 1971.

G. Nagy, “State of the art in pattern recognition,” Proc. IEEE,
vol. 56, pp. 836-862, May 1968.
U. Neisser, Review of “Recognizing patterns: Studies in living and
automatic systems,” Amer. Sci., vol. 56, no. 4, pp. 464A-465A,
1968.

G. D. Nelson and D. M. Levy, “A dynamic programming approach
to the selection of pattern features,” JEEE Trans. Syst. Sci. Cybern.,
vol. SSC-4, pp. 145-151, July 1968.
W. C. Nienow, “Signature analysis research facility (SARF) users’

manual,” Delco Electron. Rep. OM 71-03, June 1971.
, “Analysis of engine emission data using SARF,” Delco

Electron. Publ., Tech. Rep. TR71-45, Sept. 1971.

W. C. Nienow and B.P. Miller, “Analysis of submarine echoes in an
ice environment using signature analysis research facility (SARF),”
in Proc. 14th Tech. Conf. on Naval Minefield (United States Naval

Ordnance Lab., White Oak, Md., Jan. 1971).

——, “Analysis of submarine echoes in an ice environment using
SARFII,” Delco Electron. Publ., Tech. Rep. TR71-53, Santa
Barbara, Calif., Nov. 1971.

M. Okamota, “Optimality of principal components,” in Multivari-
ate Analysis II, P. R. Krish’naiah, Ed. New York: Academic
Press, 1969, pp. 673-685.

B. K. Opitz et al., “Feature definition and extraction,” Rome Air

Develop. Cen., Tech. Rep. TR-70-179, Sept. 1970.

R. J. Pankhurst, “Computer graphics,” in Advances in Information
System Science, vol. III, J. T. Tou, Ed. New York: Plenum, 1970.

R. D. Parslow and R. E. Green, Advanced Computer Graphics,

Economics, Techniques and Applications. New York: Plenum,
1971.

E. A. Patrick, “INTERSPACE: Interactive system for pattern
analysis, classification and enhancement,” in IEEE Comp. and
Commun. Conf. Rec. (IEEE Cat. 69C67-MVSEC), pp. 113-120,
Sept. 1969,

———, “Interactive pattern analysis and classification utilizing prior
knowledge,” Pattern Recogn., vol. 3, pp. 53-71, 1971.
FE. A. Patrick, D. R. Anderson, and F. K. Bechtel, “Mapping multi-
dimensional space to one dimension for computer output display,”
IEEE Trans. Comput., vol. C-17, pp. 949-953, Oct. 1968.

E. A. Patrick, F. P. Fischer, and L. Y. L. Shen, “Computer analysis
and classification of waveformsand pictures, part I—Waveforms,”
Rome Air Develop. Cen., Tech. Rep. TR-EE69-23, July 1969.

FE. A. Patrick and F. P. Fischer, II, “Cluster mapping with experi-
mental computer graphics,” [EEE Trans. Comput., vol. C-18, pp.
987-991, Nov. 1969.

T. Pavlidis, “Linguistic analysis of waveforms,” in Software En-
gineering, vol. 2, J. T. Tou, Ed. New York: Academic Press,

New York:Wiley,

 



1971, pp. 203-225.

[137] K. Pearson, “On line and planes of closest fit to systems of points
in space,” Phil. Mag., vol. 6, no. 2, pp. 559-572, 1901.

[138] H. Pipberger, M. A. Schneiderman, and J. D. Klingeman, “The
love-at-first-sight effect in research,” Circulation, vol. 38, pp. 822-
825, Nov. 1968.

[139] M. D. Prince, “Man-computergraphics for computer-aided design, ”
Proc. IEEE,vol. 54, pp. 1698-1708, Dec. 1966.

, Interactive Graphics for Computer-Aided Design. Reading,

Mass.: Addison-Wesley, 1971.

[141] S. Pruzansky and M. V. Mathews, “Talker recognition procedure
based on analysis of variance,” J. Acoust. Soc. Amer., vol. 36, pp.
2041-2047, Nov. 1964.

[142] H. Raiffa, “Statistical decision theory approach to item selection
for dichotomous test and criterion variables,” in Studies in Item

Analysis and Prediction, H. Solomon, Ed. Stanford, Calif.: Stan-

tord Univ. Press, 1957, pp. 187-220.

[143] C. R. Rao, Advanced Statistical Methods in Biometric Research.
New York: Wiley, 1952.

, “The use and interpretation of principal component analysis
in applied research,” Sankhya, vol. A26, pp. 329-358, 1964.

, Linear Statistical Inference and Its Applications. New York:

Wiley, 1965.
[146] D. R. Reddy, “Computer recognition of connected speech,” J.

Acoust. Soc. Amer., vol. 42, pp. 329-347, 1967.

[147] D. R. Reddy, L. D. Erman, andR. B. Neely, “The CMUspeech
recognition project,” in Proc. IEEE 1970 Syst. Sci. Cybern. Conf.

(Pittsburgh, Pa.), pp. 234-238, Oct. 1970.

[148] D. R. Reddy andP.J. Vicens, “A procedure for the segmentation

of connected speech,” J. Audio Eng. Soc., vol. 16, pp. 404-611,

1968.
[149] R. Roper, “An interactive operating system for multivariate data

compression andclassification,” Systems Res. Lab., Dayton, Ohio,
Final Rep. AFCRL-71-0462, Contract F19628-70-C-0108, 1971.

[150] C. A. Rosen and D.J. Hall, “A pattern recognition experiment with

near-optimum results,” JEEE Trans. Electron. Comput. (Corresp.),
vol. EC-15, pp. 666-667, Aug. 1966.

[151] F. Rosenblatt, (1960), “Perceptron simulation experiments,” Proc.
IRE, vol. 48, pp. 301-309, Mar. 1960.

[152] A. Rosenfeld, Picture Processing by Computer. New York: Aca-
demic Press, 1969.

[153] D. T. Ross, “AED approach to generalized computer-aided de-

sign,” in Proc. Ass. Comput. Mach. Nat. Meet., pp. 367-385, 1967.
[154] D. Rutovitz, “Pattern recognition,” J. Roy. Stat. Soc., Ser. B, pt. 4,

pp. 504-530, 1966.
[155] J. W. Sammon, Jr., “On-line pattern analysis and recognition

system (OLPARS),” Rome Air Develop. Cen., Tech. Rep. TR-68-
263, Aug. 1968.

, “A nonlinear mapping for data structure analysis,” [EEE
Trans. Comput., vol. C-18, pp. 401-409, May 1969.

, “Interactive pattern analysis and classification,” JEEE
Trans. Comput., vol. C-19, pp. 594-616, July 1970.

, “An optimal discriminant plane,” IEEE Trans. Comput.
(Short Notes), vol. C-19, pp. 826-829, Sept. 1970.

[159] J. W. Sammon, Jr., D. B. Connell, and B. K. Opitz, “Programs for

on-line pattern analysis,” Rome Air Develop. Cen., Tech. Rep.

TR-177 (2 vols.), Sept. 1971

[160] J. W. Sammon, Jr., A. H. Proctor, and D. E. Roberts, “An inter-
active graphic subsystem for pattern analysis,” Pattern Recogn., vol.
3, pp. 37-52, 1971. .

[161] J. W. Sammon, Jr., and J..H. Sanders, “The waveform processing

subsvstem (WPS),” P.A.R. Inc., Rep. 72-26, Feb. 1972.
[162] K. M. Sayre, Recognition-A study in the Philosophy of Artificial

Intelligence. Notre Dame, Ind.: Notre Dame Press, 1965.

[163] E. L. Schaefer, “On discrimination using qualitative variables,”
Ph.D. dissertation in statistics, Univ. of Michigan (University

Microfilms, Inc.), Ann Arbor, Mich., 1966.

[164] D. Secrest and J. Nievergelt, Eds., Emerging Concepts in Computer

Graphics. New York: Benjamin, 1968.

[165] R. N. Shepard, “The analysis of proximities: Multidimensional
scaling with an unknowndistance function I,” Psychometrika, vol.
27, pp. 125-140, June 1962.

(166] ——, “The analysis of proximities: Multidimensional scaling with
an unknowndistance function II,” Psychometrika, vol. 27, pp. 219-
245, Sept. 1962.

{167] R. N. Shepard and J. D. Carroll, “Parametric representation of
nonlinear data structures,” in Multivariate Analysis, P. R. Krish-

narah, Ed. New York: Academic Press, 1966, pp. 561-592.

[168] J. H. Siegel, L. Loh, M. Miller, and R. M. Goldwyn, “An interac-
tive computer system to aid the physician in care oriented clinical

research to benefit the critically ill,” T. J. Watson Res. Cen., York-
town Heights, N. Y., Rep. RC 2918, 1970.

[169] R. F. Simmons, “Natural language question-answering systems,”
Comm. Assoc. Comput. Mach., vol. 13, pp. 15-30, 1969.

[170] R. R. Singers, “TSAP—A timeseries analysis package for terminal

use,” M.Sc., thesis, Computer Sci. Cen., Univ. of Maryland, Col-
lege Park, Md., 1972.

[140] 

 [144]

[145] 

[156] 

 [157]

 [158]

74

[171]

[172]

[173]

[174]

[175]

[176]

177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

193]

[194]

[195]

[196]

[197]

[198]
[199]

[200]

[201]

[202]
[203]

[204]

KANAL: PATTERN ANALYSIS AND CLASSIFICATION

L. B. Smith, “A survey of interactive graphical systems for mathe-
matics,” Comput. Surv., vol. 2, pp. 261-301, 1970.
G. L. Stanley, W. C. Nienow, and G? G. Lendaris, “SARF,an inter.
active signature analysis research facility,” in Purdue Centennial
Symp. on Informat. Processing, vol. 2, pp. 436-448, Apr. 1969.

G. L. Stanley and W. C. Nienow, “Initial investigation of applica-
tion of SARFto engine diagnostic data,” AC Electronics, D. R. T..
Publ. S69-13, May 1969.

D. Stowens and J. W. Sammon, Jr., “Dermatoglyphics and leu-

kemia,” Lancet, pp. 846, Apr. 18, 1970.
D. Stowens, J. W. Sammon, Jr., and A. Proctor, “Dermatoglyphics
in female schizophrenia,” Psychiatric Quart., vol. 44, pp. 516-532,

July 1970.
E. Strassbourger, “The role of the cepstrum in speech recognition,”
in Proc. 1972 Int. Conf. on Speech Communication and Processing

(Boston, Mass.), Apr. 1972.

D. Streeter and J. Raviv, “Research on advanced computer meth-
ods for biological data processing,” Report IBM Corp., Tech. Rep.
AMRL TR-66-24, 1966, ASTIA Doc. AD 637 452, 1966.

H. L. Stubbs, “Discriminatory analysis applied to speech sound
recognition,” in IRE 1954 Nat. Conv. Rec., pt. 4, pp. 41-44, 1954.
H. Thompson,Jr., and M. Woodbury, “Clinical data representation

in multidimensional space,” Comput. Biomed. Res., vol. 3, pp. 58-

73, 1970.
G. T. Toussaint, “Note on optimal selection of independent binary-

valued features for pattern recognition,” TEEE Trans. Inform.
Theory (Corresp.), vol. IT-17, p. 618. Sept. 1971.

G. V. Trunk, “Representation and analysis of signals: Statistical

estimation of intrinsic dimensionality and parameteridentification, ”

Gen. Syst., vol. 13, pp. 49-76, 1968.

——, “Statistical estimation of the intrinsic dimensionality of data
collections,” Inform. Contr., vol. 12, pp. 508-525, May-June 1968.
——, “Commenton ‘An algorithm for finding intrinsic dimension-
ality of data’,” IEEE Trans. Comput. (Corresp.), vol. C-20, p. 1615,

Dec. 1971.
——, “Parameter identification using intrinsic dimensionality,”
IEEE Trans. Inform. Theory, vol. IT-18, pp. 126-133, Jan. 1972.

J. W. Tukey, “The future of data analysis,” Ann. Math. Stat., vol.
33, pp. 1-67, Mar. 1962.

UAIDE (1968-1971), Proceedings of the 1908, 1969, 1970 and 1971

Users of Automatic Information Display Equipment Conference.

San Diego, Calif.: Stromberg Datagraphic, 1968-1971.

M. R. Uffelman, “CONFLEX 1,” in IRE Int. Conv. Rec., vol. 10,
pt. 4, 1962.
—--—, “Target detection, prenormalization, and learning machines,”
in Pictorial Pattern Recognition, G. C. Cheng et al., Eds. Washing-
ton, D. C.: Thompson, 1968, pp. 503-521.

A Van Dam, “Data and storage structure for interactive graphics, ”
in Proc. Symp. on Data Structure in Programming Languages,

J. T. Tou and P. Wegner, Eds., vol. 6, pp. 237-267, Feb. 1971.

P. Vicens, “Aspects of speech recognition by computer,” Stanfora
Univ., Stanford, Calif., Computer Sci. Dep. Rep. CS127. Apr. 1969.

A. Wald, “Contributions to the theory of statistical estimation and
testing hypotheses,” Ann. Math. Stat., vol. 10, pp. 299-326, 1939.
C. M. Walter, “The experimental dynamic processor DX-1,” in
IRE Int. Conv. Rec., vol. 10, pt. 9, pp. 151-156, 1962.

——, “Signal representation and measurement data manipulation
in N-space using an on-line PDP system,” Proc. Dig. Equip. Com-
puter Users Soc. (Maynard, Mass.), 1963.

——, “Color—A new dimension in man-machine graphics,” in
Proc. IFIP Cong. 1965, vol. 2, pp. 579-581, 1965.

—_—, “On-line computer-based aids for the investigation of sensor
data compression, transmission and delay problems,” in 1966 Proc.
Nat. Telemetry Conf., May 1966.

——, “Status report on some applications of processor controlled
color displays in signal analysis—1957 to 1967,” in DECUS—
Digital Equipment Computer Users Soc. Proc. Spring Symp., pp.

21-30, 1967.

——, “Some comments on interactive systems applied to the re-
duction and interpretation of sensor data,” in IEEE Computers and
Communications Conf. Rec. (IEEE Special Publ. 69 C67-MVSEC),
pp. 109-112, 1969.
S. Watanabe, Knowing and Guessing. New York: Wiley, 1969.

W. G. Wee, “Generalized inverse approach to adaptive multiclass

pattern classification,” [EEE Trans: Comput., vol. C-17, pp. 1157-
1164, Dec. 1968

——, “On feature selection in a class of distribution-free pattern

classifiers,” IEEE Trans. Inform. Theory, vol. IT-16, pp. 47-55.
Jan. 1970.
B. Widrow, “Generalization and information storage in networks
of Adaline ‘neurons’,” in Self-Organizing Systems. Washington,
D. C.: Spartan, 1962.
S. S. Wilks, Mathematical Statistics. New York: Wiley, 1962.

R. Williams, “A survey of data structures for computer graphics

systems,” Comput. Surv., vol. 3, pp. 2-21, Mar. 1971.
T. Young and W. Huggins, “Representation of electrocardiograms
by orthogonalized exponentiaos,” ASTIA Doc. AD 256 364, 1961.



SYSTEM CONSIDERATIONS FOR

AUTOMATIC IMAGERY SCREENING

T. J. HARLEY, JR., L. N. KANAL AND N. C. RANDALL

System Sciences Laboratory

Philco-Ford Corporation

Blue Bell, Pennsylvania

1. INTRODUCTION

There is a large and steadily growing body of literature on the

theory and techniques of pattern classification; however, very few

papers have dealt with the problems of developing effective systems

for real world pattern recognition tasks.

For several years, we have been actively investigating the theo-

retical aspects of pattern classification and appreciate the need for

continued research on theory, techniques and devices in this area.

But we have also been deeply involved in programs aimed at the

development of useful recognition systems. This paper describes some

of the things we have learned.

Our approach is problem oriented; that is, we consider a specific

recognition problem that requires a solution and then determine

what techniques are suitable for solving it. This is in contrast to a

technique-oriented approach in which a specific technique is devel-

oped and then attempts are madeto find existing problems to which

it might be applicable.

The specific problem we consider here is the screening of tactical

aerial reconnaissance imagery, primarily photographs. Screening has

been defined as: “Gross selection, early in the total interpretation

process, to identify those areas in the total supply of imagery which

Reprinted frm Pictorial Pattern Recognition, pp. 15-31, 1968. Published by Thompson Book Company, Washington D.C., 1968.
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meet the minimum qualifications for further interpretation by a

human”. This type of operation is required in order to reduce the

large amounts of imagery that are obtained from aerial reconnais-

sance. When the amount of information has been sufficiently reduced,

a human can then perform the photointerpretation task. It should be

noted that no attempt is being made here to design a machine which

will actually do photointerpretation. The screening task appears to

be a natural one for computer-type machines, since they can provide

high speed operation and do not get fatigued or bored as humansdo.

Furthermore, the operation required is one that can presently be

done by humans.

There are a number of aspects to the imagery screening problem.

However, the most important and most difficult to solve is that of

detecting discrete tactical targets such as armored vehicles, aircraft,

fortifications, and artillery. The detection of such small tactical tar-

gets can provide the basic language for the performance of more

compiex tasks. For example, suppose the present locations of all

enemy armored vehicles can be made quickly available to a computer.

This data can be combined with less volatile information on such

items as terrain type, location of strategic targets (e.g., bridges, air-

fields, villages), and the deployment of friendly forces to establish

the location and perhaps the mission of an armored brigade, par-

ticularly if repeat cover photographyis available over a suitable time

scale in order to establish the direction of movement of the armor.

Indeed, there are a great number of ways in which the data gener-

ated by a target detection device could be used, but consideration of

these is not central to the purpose of this paper. Our intent here is

to consider the specific problem of quickly and reliably detecting

discrete tactical targets in a large amount of imagery.

We attempt to demonstrate in this paper that the constraints of

the imagery screening problem lead to the selection of a type of

machine implementation, the form of the decision logic, methods for

the logic design, and even techniques for evaluating candidate

systems.

2. ESTABLISHMENT OF SYSTEM PARAMETERS

In order to clearly illustrate the point of this paper, it is necessary

to assume specific values for a set of system parameters. The values

selected should be regarded as typical and could vary by a factor of

at least two or three in either direction. However, the force of the

arguments is not greatly dependent on the exact numbers used.
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The first parameter value to be established is that of the resolution,

referenced to the object or ground plane, required to detect targets.

The question becomes: What resolution is required to reliably detect

tactical targets from the air? This parameter is perhaps the most

critical of all those to be assigned since its influence on the overall

system parameters is very great, perhaps varying as the third or
fourth power. One approach to arriving at accurate figures for this
parameter is to determine what resolution is required by humansfor
good performance. On the basis of practical experience, a value of
one foot ground resolution seems reasonable; in some imagery, no
more resolution is available.

Next, the coverage of a typical frame of photography is estab-
lished as one thousand feet by one thousand feet, giving rise to a
million resolution elements per frame. This is typical of imagery
provided by the Army for imagery screening investigations in the
early-to-mid-1960’s.*

The target size is taken to be 12 ft. by 25 ft., representing typical
dimensions of tactical targets, and allowing a small border for im-
proved detection reliability. This means that there are 300 resolu-
tion elements in an area occupied by a target.

There is, of course, no a priort knowledge about the orientation
of the target on the photograph, and there are very few targets
with significant rotational symmetry (oil tanks seem to be a favorite
object for experiments in target recognition because of their sym-
metry). Most target detection systems which have been proposed

utilize an orientation search in order to ensure detection of the tar-

get regardless of which direction it is pointing. It is assumed here

that the detection logic will have approximately a plus or minus

three degree tolerance. This figure is consistent with the results of
experiments performed at Philco-Ford, and also with the fact that

a 2 1/2 degree rotation displaces the end element of the 12 x 25
element array by one element. This means that, at each position on
the frame, 60 different orientations must be tested in order to detect
the target reliably.

Some people familiar with optical correlators have questioned the

*It was pointed out by a member of the audience at the Symposium that
resolutions approaching 10,000 elements across a frame are now available from
military reconnaissance. The ground resolution involved, and the area coverage
of a single frame, depend, of course, on the scale factor used. At one foot ground
resolution, one would have about 100 million elements to consider per frame.
Such figures only serve to strengthen the force of the arguments presented in
this paper.
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necessity for a rotation search. It has been suggested that it is only

necessary to rotate the target mask (or spatial filter, or hologram,

etc.) while integrating the correlation function over all rotations.

Then by scanning the integrated correlation function, one may

determine the presence or absence of the target in question. However,

this reasoning is fallacious, since if the integration is linear, this is

exactly equivalent to using, without rotation, a single mask gen-

erated by rotating the sample target about its center. A mask of this

sort is certainly going to give inferior performance.

Another possibility is to generate scans, such as a spiral, which

give signals that are invariant with orientation. However, it will be

found that these scans are translation sensitive, and would require

meve scanning time. Other processing techniques that are rota-

tionally invariant, such as Blum’s “grass-fire’ 1, cannot be used be-

cause they require that the object to be recognized be isolated from

its background.

Finally, it is assumed that one hundred distinct target classes

must be searched for at any one time. In light of the number and

variety of weapons, vehicles, shelters, and other paraphernalia of

war used by modern armies, this is a conservative figure.

Notice that this discussion has omitted consideration of scale and

aspect angle searches. Scale search should not be required in an

automated system because the aircraft altitude and camera focal

length are known, thereby enabling calculation of the proper scale

to within a few percent. There can be a significant aspect angle

problem, especially when low altitude, short focal length imagery is

considered. Targets located outside the field center will be seen at

a slightly oblique angle, and, of course, targets can be located on

irregular or sloped terrain which can alter the aspect angle even at

the camera nadir. While it would be theoretically possible and prob-

ably desirable to account for the first of these two effects on a point

by point basis over the frame, such compensation seems to be a

practical impossibility in terms of the presently available imple-

mentations.

3. SYSTEM PERFORMANCE SPECIFICATIONS

From the parameter values established in the preceding section,

and summarized in Table 1, it is possible to establish the required

pattern recognition system performance in terms of probability of

false alarm, and probability of false dismissal. From the previous

numbers,it can be established that in each frame there are six billion
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opportunities for a false alarm! This is obtained by multiplying
together the numberof resolution elements (a decision must be made
at each element), 10°, the number of rotations in the orientation
search, 60, and the number of target classes, 100. It is the sheer
magnitude of this number that severely constrains the design and
evaluation of a screening machine.

It is reasonable to require that a high-performance imagery screen-
ing machine produce, on the average, no more than one false alarm
in each 100 frames. Performance of this magnitude is highly desir-

Table 1. System Parameters

Resolution—1 ft.
Frame Size—1000’ x 1000’ On ground
Target Size—12’ x 25’

Orientation Tolerance—+3°

Target Classes—100

False Alarms—1 in 100 frames
Detection Probability—0.95

able since each frame in which a target is detected is a frame that
must be presented to the human photointerpreter, and the whole
object of screening is to reduce the number of frames which must
be further scrutinized by the photointerpreter. Unfortunately, human
psychology seems to dictate that the photointerpreter will not limit
his scrutiny to the single area on the frame that the machine desig-
nates as the probable target area, and so the false alarm performance
must therefore be stipulated in terms of frame rates, and one in a
hundred is probably acceptable. From this, one can calculate the
equivalent false alarm probability for each separate decision at each
point on the film is 1.6 x 10-2. This is indeed an extremely small
false alarm probability.

The magnitude of this false alarm probability should be compared
with that reported in many papers on pattern recognition, where an
accuracy of 80 or 90 percent is considered very good. However, the
basic importance of the severe detection probability constraints is
that every effort must be made to achieve superior detection results.
It is essential therefore not to compromise on any of the system
parameters which influence the detection performance, such as reso-
lution, orientation tolerance, etc. Since these very parameters are
the ones that gave rise to the need for such reliability, we can see
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that we are “locked in” to a rather sophisticated and complex sys-

tem. Certainly, one cannot escape this dilemma by such shortcut

routes as lowering the resolution of the output plane scanner, or

detecting all orientations in one fell swoop.

It is somewhat more difficult to establish requirements for false

dismissals. Fortunately, within limits, the performance specified

does not substantially affect the computations that are relevant to

the point of this paper. A probability of detection of 0.95 is assumed

in this paper. This specification refers to unobscured, uncamou-

flaged targets, and must be relaxed in the face of countermeasures.

Such performance probably exceeds that achieved by human photo-

interpreters in a screening operation, but unfortunately the infor-

mation available on this subject is not definitive.

4. SPEED COMPARISONS OF CANDIDATE SYSTEMS

In addition to requiring extremely reliable detection performance,

the large numberof resolution elements in a frame dictates that the

speed of the machine be considered very carefully. In order to assign

some numbers to this problem, let us assume that it takes one

microsecond to scan an element of the picture and operate on it.

Suppose first that we have a system which operates completely

serially and that the 12 ~ 25 element target area is scanned at every

position in the frame Since the scan must also be repeated 60 times

for the orientation search and 100 times for different targets, the

total time for this process is 1.8 x 10® seconds, which is approxi-

mately 21 days. This time is typical of that required to screen

imagery using a general purpose digital computer. Therefore, it can

be seen that implementation of an imagery screening system with a

sequential device such as a general purpose digital computer is not

going to yield adequate results.

In the previous example each element of the picture was scanned

300 times at each rotation and for each target class. This is cer-

tainly not efficient, and no one has seriously advocated the use of a

completely serial system for tactical target detection. There are

many, on the other hand, who advocate optical systems for this ap-

plication. In these systems, an entire frame is processed in parallel by

optically correlating it with a reference pattern. Both noncoherent

optical correlators and coherent optical spatial filtering systems

perform in this way, although the specific mechanisms involved and

the techniques for designing the reference pattern are quite different.
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In either case, the amplitude of the illumination at each point in the

output plane is proportional to the degree of correlation between the
reference pattern and the local target area centered at the corre-
sponding point on the frame. Since the entire 12 ~ 25 area is

processed into a single correlation value by a parallel operation, the
time required to process one frame of imagery would be reduced by
a factor of 300 compared to the purely sequential system. In this
case, each resolution element of the picture is scanned only once for
each reference pattern. However, because only one reference pattern
may be processed at a time, each orientation and each target class
must be done sequentially.* The total time to process a frame in such
a system, using a microsecond per element scan rate, is one hour and
forty minutes.

There may be some question as to why any scanning is required
in the optical system, since the correlation function for an entire
frame is available simultaneously at the output plane. It is important
to remember that a decision process is required, which means that
the correlation function must be thresholded. Ideally, this could be
done in parallel, point by point over the entire output field by
making use of a mosaic of photo-sensitive solid state flip-flops, or by
use of an electronic image tube. However, such a device must be ex-
tremely stable, must have an easily controllable threshold setting,
must be uniform in effect over the entire field, compensating in the
process for optical vignetting and for variations in average overall
illumination, and, most important, must have an input resolution
equal to one foot per element referenced to the ground. At the present
time, we are not aware that any such device is available, although
various investigators are attempting to perfect one.

It thus appears necessary at present to scan the output image, and
to threshold electronically. If the output plane transfer function is
linear, the resolution of the spot scanning the correlation peaks
must be just as good as the scanner used on the input image. This is
because the system is completely linear, and interchanging the order
of operations does not affect the output at all. Since the spot which
is used to scan the output image can be considered as a filter, it can

* In a coherent optical system, referenced patterns may be multiplexed by use
of different optical “carrier” frequencies. This produces several output images,
one for each reference pattern, displaced so that they do not overlap. Note how-
ever that the total number of resolution elements in the output plane is limited,
and these must now be shared by the various images. This means that only a
fraction of a frame can be processed at one time, and the throughput rate is not
really increased.
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be moved forward in the system without changing the net effect.

Thus, we could filter the input image just as readily and obtain the

same result. Those who do not object to using a low resolution

scanner at the output must certainly object to lowering the resolu-

tion of the input image beyond the point of human recognition. In

effect, both of these processes have the sameresult. In practice, the

transfer function of camera tubes is not linear, but quadratic; that

is, the output signal is proportional to the intensity rather than the

amplitude of the illumination. This has the effect of enhancing the

correlation peaks, but not nearly as much as is desired. Therefore,

while the linear filter analysis suggested here is not entirely valid,

the required scanner resolution is not significantly reduced. The

time required to optically process a frame in all orientations, and

with 100 target classes, while much more reasonable than can be

obtained with a strictly sequential system, is still too great, because

as described above, the full parallel processing of the optical tech-

niques cannot be realized in practice.

Wehave been advocates of an electronic implementation in which

the input frame is scanned sequentially, and the various target

classes in various orientations can all be detected in parallel. In order

to understand the system, one must understand the processing of

the scanned image. Figure 1 shows this in conceptual form. The

sequential scan of the elements of the image is represented by the

numbered elements on the tape being stripped off the input frame.

The tape is spiralled around a drum and as the scan advances one

element, the tape slides one element around the drum. Theillustra-

tion shows a three-element square window corresponding to a target

area. Within the window are elements 3,4, 5, 13, 14, 15, 23, 24, and

25, which on the original frame formed a similar three-element

 

Figure 1. Conceptual Form for Processing of the Scanned Image
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square area, as shown outlined in the illustration. As the scan ad-

vances one element the strip advances one element, and elements 4,

5, 6, 14, 15, 16, 24, 25, and 26 are in the window, while equivalently,

on the frame, the window has moved over one element. Thus, as the

element-by-element scan proceeds over the frame, the window also

scans over the frame.

In the real world, the frame is much larger—1000 by 1000 ele-

-ments—and the window also is much larger—perhaps 12 by 25

elements, so that it can contain an entire target. The drum of the

illustration is replaced by a dynamic storage medium such as a delay
line or a shift register. The elements of the store corresponding to

the window area are tapped, and provide the inputs to the recog-

nition logic. The elements on the drum, but outside the window, are

not tapped, serving only as a circulating buffer store. Many commer-

cial print readers work on this kind of a scan and store. Because the

system is electronic, as many separate detection logics as are desired

can be connected in parallel to the taps within the window, with

limits set by economic considerations only. In the limit, each element

of the frame is scanned only once. Also, because the input transpar-

ency can be scanned with a flying-spot scanner rather than a

camera tube, much faster scan rates can beused.

For purposes of discussion, let us assume a speed of 0.1 microsecond

per element. If all targets and orientations are detected in parallel,

the system can process a frame in one hundred milliseconds. How-

ever, to do this, a shift register and/or delay line storage of 12000

elements is required. By overlapping scans by fifty percent, so that

each element is scanned twice, this requirement can be reduced to

550 elements. The lower limit, in a system with maximum overlap,

is 300 elements.

A brief calculation shows that the optimum point of time versus

storage tradeoff is obtained at 50 percent scan efficiency. The size of

the storage required is H-W, where H is the scan height and W is the

width of the target in the direction orthogonal to the scan. The rela-

tive slowness, or time for different degrees of overlap, is given by

H/(H+1—N), where N is the dimension of the target along a scan

line. The storage size-time product can be used as a measure of

cost. The time-storage product per unit width W is given by

H?/(H+1—N), and this achieves a minimum for H = 2(N—1); ie,

for the case of fifty percent scan efficiency. Table 2 shows the appro-

priate numbers for the cases where each element is scanned only

once (i.e., the completely parallel system); where each element is
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scanned twice; and the completely serial case in which each element

is scanned N times. The minimum is achieved in each case by proper

orientation of the target area with respect to the scan.

It is not necessary to implement all targets in all orientations

simultaneously. An electronic system which scans at fifty percent

efficiency, at 0.1 microsecond per element, and which detects all 100

targets at a single orientation in parallel but requires a complete

orientation search with sixty increments, would operate at a rate of

Table 2. Time—Storage Tradeoff

Sean Height 12 22 1,000

Minimum Storage in Elements 300 550 12,000

Relative Processing Time 12 2 1

Time-Storage Product 3,600 1,100 12,000

six seconds per frame. Such a system is entirely feasible. Is such a

frame rate necessary, or alternatively, is it adequate?

5. SYSTEM SPEED REQUIREMENTS

In order to determine what the operational speed requirementsare,

let us consider how fast a reconnaissance aircraft can generate photo-

graphic data. Let us assume that the aircraft speed is 600 knots or

1000 feet per second and that the aircraft flies at an altitude of 2000

feet. If a camera using five inch by five inch film is used with a

focal length of 10 inches, each frame will show a 1000 x 1000 foot

area. This picture will have a scale of 1:2400 which is typical of

tactical imagery. At the speed the aircraft is flying, it will have

to take a picture every second in order not to leave gaps in the record.

In practice, pictures must be taken more often in order to achieve

some degree of overlap for various purposes such as stereo viewing.

Let us therefore assume that a picture is taken every 0.6 seconds.

With a six second ground processing time by the imagery screening

machine, wefind that ten hours of processing will be required for each

hour of flight. When one considers that more than one reconnaissance

aircraft will be flying each day and feeding its photography into the

game machine, it is clear that the imagery screening machine will

become fully loaded in a very short time even with a six second pro-

cessing time. Therefore, longer times to process a frame of data

should not be considered. In fact, every effort should be made to re-

duce the processing timestill further.
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6. DESIGNOF THE DECISION LOGIC

In the context of the system parameters presented, let us now

consider some of the approaches we might take to the design of

the decision logic. We might consider, for example, the use of optical

matched filtering in which we use one example of the target class to

generate a matched filter and subsequently use this filter to detect

the presence or absence of the target. While requiring only one sample

per target class might be considered a virtue, the fact remains that

optical matched filtering gives us a linear decision function based

upon one sample per target class, and this is just not adequate for

the task at hand. When weconsider the possibility of using iterative

techniques based upon a number of samples for the design of our

decision logic, that is, when we consider the use of so called “learn-

ing machines,” we note that if we are provided with a fixed design

sample and all members of the sample are available to us at one

time, then any iterative use of these samples can at best only lead us

to a terminal state which could have been obtained by an

appropriate technique which made use of all the samples at one

time. Many of the learning-adaptive algorithms which have been

proposed, in the limit of infinite iterations, give essentially a linear

discriminant function equivalent to Fisher’s discriminant function,

which we could have computed from the very beginning in one oper-

ation. In fact, there are no advantages to be gained through the use

of iterative techniques except in a truly sequential or nonstationary

situation where the samples are coming one by oneorthe statistics

of the process are changing. Furthermore, the learning techniques

require that all the design samples be used on each iteration, which

requires the repeated storage and recovery of each pattern in the

design set. While there will usually not be many samples available

of the various enemy targets to be detected, there will generally be

at least a few, and there will be a large number of ‘“non-target’’

samples. Therefore, we think that there is little point to using iter-

ative design techniques when in fact one could generate the decision

logic quickly and effectively through a combination of statistical clas-

sification procedures and heuristics.

Probably the most important criterion for the selection of a design

approach, as well as for the selection of an implementation approach,

is that it allow for the generation of a hierarchy of logics of in-

creasing power and complexity, so that if an initial, simple logic is

not powerful enough for the job, then a more powerful logic can be

generated straightforwardly. Polynomial discriminant functions pro-
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vide such a capability. With good estimates of coefficients, a quadratic

discriminant function will do better than a linear one, and in general,

a higher order discriminant function will do better yet. The problem

is, of course, that the sample size is limited, and therefore the esti-

mates of the coefficients are not very good. If the input consists of

300 variables, then a linear discriminant function requires estimation

of 300 coefficients. A general quadratic discriminant function will

have close to 45,000 coefficients, although this might be reduced by

making use of assumptions about the stochastic nature of image-

ry.2 The higher the order of the discriminant function, the more

coefficients to be estimated, and generally, the more samples

required to achieve the same precision in the estimation of the

individual coefficients.2 With the small sample sizes available, a

quadratic discriminant function may perform more poorly than a

linear discriminant function because the estimates of the extra coeffi-

cients are inherently noisy. Thus, because of the large dimensionality

of the problem and the small design samples available, the higher

order discriminant function approach must be discarded, in favor of a

more heuristic method such as the one wefirst described a number

of years ago.*® The large number of input variables is partitioned

into subsets, a classification function is designed for each subset, and

then a second layerclassification function is designed with the first

layer decisions as inputs. Similar techniques have been used in com-

mercial print readers in which simple logics are designed to recognize

individual strokes, and a final decision is made using the stroke deci-

sions as inputs.

In the target detection problem, it is not possible to identify, a

priori, all the significant features, analogous to the character strokes,

required to characterize all the target classes. However, because of

the spatial structure of the objects to be recognized, it is realistic

to assumethatthe significant features will be local, that is, they will

be contained within small well-defined subareas of the target area.

The target area is divided up into a number of small local area

feature blocks, overlapping each other by about fifty percent. A sepa-

rate decision logic is statistically designed for each feature block.

Since the feature decisions are independent, based on different

areas of the target, it is possible to use the same sample targets to

design each feature, and because there are only a small number of

elements in each block, fewer target samples are needed to obtain

good estimates of coefficients. An additional independent sample set

is then used to determine the coefficients of the second decision layer.
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The individual feature logics, and the second layer decision, can

utilize linear, quadratic or higher order decision functions if desired.

For example, suppose that the 12 by 25 element target area. were

partitioned into 27 overlapping feature blocks, each 5 by 6 elements.

The problem of designing 27 linear discriminant feature logics, with

30 variables each, and one 27 input linear discriminant second layer

logic is roughly equivalent to that of designing a single linear dis-

criminant function for a 57-element target area. For this problem of

tactical target detection, the feature block approach provides the

opportunity to use heuristic thinking and yet also includes the pos-

sibility of making use of statistical design techniques. In this way,

it mitigates both the problem of sample size and the inherent com-

plexity of nonlinear logics which plague the use of statistical tech-

niques.

7. SYSTEM EVALUATION

Despite any claims that may be made in favor of a particular

iniplementation or design technique, one must recognize that claims

are no substitute for proof. Certainly, some hardware considerations

can be determined straightforwardly fron the manufacturers who

supply the basic components: scanning tubes, delay lines, logical cir-

cultry, light sources, etc. The one thing that cannot be determined

straightforwardly is — can the system recognize targets? An auto-

matic target detection imagery screening machine is going to be

very expensive — probably comparable in cost to a large, fast dig-

ital computer. Is it possible to determine whether a proposed system

is capable of meeting the performance specifications before a full-

scale system is designed and built?

Since the object is to solve a real problem, and not just to develop

general techniques, it is necessary to evaluate the system perform-

ance experimentally on real-world imagery. It is enlightening to con-

sider what such an evaluation requires. First, the experiments must

confirm that the system will detect 95 percent of the unobscured tar-

gets present in the imagery. Second, on the average, there must not

be more than one false alarm every hundred frames.

Of course, performance must be evaluated using test samples which

are independent of those used in the design process. That perform-

ance on design samples considerably underestimates the probability

of error is illustrated by the results in Figure 2 for the cumulative

distributions of scores obtained for a feature block discriminant

function for design and independent test samples.
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Figure 2. Discriminant Function Scores for Design and Test Samples

It is a well-established principle that a system required to meet

some performance specification should be designed to yield much

better performance if it is to: have much chance of meeting the re-

quirement. Assume for the moment that the target detection logic

to be evaluated is in fact infallible; that is, it never misses a target

or triggers a false alarm. In practice, of course, such performance is

impossible. If the system recognizes 59 consecutive targets of a par-

ticular class with no failures, then the recognition specification for

that class has been confirmed with a confidence coefficient of 0.95.*

On the other hand, about 300 frames of nontarget imagery must

be processed by the logics for every target class in all orientations

without any false alarms in order to achieve the same confidence that

the false alarm specification has been met. This means that a test

system built or programmed on a computer to recognize a single

target class would have to sequentially scan 30,000 frames of imagery

in every orientation without an error in order to confirm the per-

formance. This assumes, of course, that the performance data for a

single target class can be extrapolated to one hundred classes. If

the system occasionally makes errors, the required sample sizes be-

come much greater. While only 59 target samples are needed with

perfect performance, 93 would be needed if the system made only one

mistake. While only 300 nontarget frames are needed with perfect per-

* This means that a machine that just fails to meet the specification can be

expected to pass the test no more than 5 percent of the time.
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formance, 475 would be needed if the system made a single false

alarm. If the system is capable of performing at exactly the design

specification, the expected number of samples required to verify that it

does meet the specifications is infinite. As noted previously, to pass a

practical evaluation test, the system must be superior to the specifi-

cation.

How can such a large number of samples be processed? Computer

simulation is not adequate, because based on the figures developed

above for a sequential machine, the complete evaluation would require

many years of running time. The answer is that an experimental

system must be built that approaches real time data rates and ex-

ceeds the performance specifications.

The operational frame rate for an electronic target detection sys-

tem was computed to be ten frames per minute. A frame rate about
one-tenth of this should be suitable for system evaluation. Consider

for example a prototype capable of recognizing 100 targets in paral-

lel in a single orientation, and capable of a sequential orientation

search. Since scanning speeds of ten elements per microsecond and

comparable logic circuitry are near the limit of the art, and are

therefore quite expensive to achieve, the prototype could reasonably

be built to scan at one element per microsecond. Such a prototype

would completely process one frame per minute. In about one day,

involving only five hours of actual running time, the prototype could

test 300 frames for false alarms. If performance were not perfect,

it could easily process 3000, or even 10,000 frames within a reasonable

period of time in order to achieve the sample size needed to obtain

the desired level of confidence. If 10,000 frames could be processed,

then the actual machine false alarm rate would have to be one in 120

frames to have a reasonable chance (50 percent) of demonstrating

that the performance was one in 100 frames or better.

This is not to say that computer simulations, and evaluations on

relatively slow and inexpensive experimental systems, are not called

for. Using such techniques, it is possible to rule out many approaches

because they fail to perform adequately on even a few samples. Also,

it is unwise to undertake to construct an expensive prototype with-

out first performing preliminary experiments to establish the credit-

ability of the approach. Butit is clear that it is not possible to confirm

the operational capabilities of even a perfect system without build-

ing and thoroughly testing a full scale prototype that has all the

power, and much of the speed, of the final system.
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8. CONCLUSIONS

The problem-oriented approach to the design of an imagery screen-

ing target detection system has been used to demonstrate that the

system requirements severely constrain the courses of action open

to the investigator. In this example, one is led to the following con-

clusions, which are summarized in Figure 3:
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Figure 3. Summary of Conclusions

Because of the required frame rates, the system must be imple-

mented electronically.

Because the number of samples of enemytargets available is quite

small, the decision logic must be designed by a combination of

statistical and heuristic methods.

A two-layer local area feature logic can resolve the sample size

problem while still providing logical power.

For evaluation, a prototype system must be built which has all the

logical power, and most of the speed capability, of an operational

system.

Our purpose in presenting this paper is twofold. First, it has been

our experience that too few investigators concerned with target de-

tection appreciate the constraints that the system requirements

create. Research on techniques, methods, and devices is necessary and

vital, but ultimate success in the application of pattern recognition

technology to real world situations requires a problem-oriented ap-

proach. Second, too often even the best investigators can become

entranced with a particular technique, method, or device and claim

that it will solve all the world’s problems. We hope that we have
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conveyed the idea that real world problems are not so easily solved,

and that experimental results showing 90, 95, or even 99.9 percent

correct recognition, more often than not, demonstrate that a tech-

nique is not applicable to the problem being investigated.
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A Comparison of Analog and Digital Techniques

for Pattern Recognition

KENDALL PRESTON, JR., SENIOR MEMBER, IEEE

Abstract—Since the computer technology utilized often places

limitations on the performance of a particular pattern-recognition
task, it is important to compare the state-of-the-art and future trends

in both the digital and the analog-computerfields. Electronic, acous-

tical, and optical analog computers for use in pattern recognition are
discussed and their performance compared with that of both general-

purpose and special-purpose digital computers.

It is shown that the analog computer offers workers using low-

precision high-speed one-dimensional or two-dimensional linear

discriminant analysis a significant advantage in hardware perfor-
mance (equivalent bits per second per dollar) over the digital com-

puter in certain limited but important areas. These areas include
fingerprint identification, word recognition, chromosome spread
detection, earth-resources and land-use analysis, and broad-band

radar signal processing.
A trend analysis is presented which indicates that the advantages

of analog computation will probably be overcome in the next few

decades by the rapid performance advances being madein digital-

computer hardware.

I. INTRODUCTION

|HE MAIN PURPOSEof this issue of the PROCEEDINGS

is to treat digital pattern recognition. However, pattern

recognition may also be carried out by analog means.

It is worth comparing the implementation of these two

approaches.

This paper rounds outthe issue by treating in some detail

the use of analog computation—in particular, optical analog

computation—in pattern recognition. In order to assist the

reader in evaluating this alternate approach to pattern recog-

nition, the cost, speed, and accuracy of digital andanalog

techniques are compared. The comparison not only relates to

the current state of the art but also attemptsto predict future

trends.

The digifal approach to problems in pattern recognition

has many advantages. Digital computers provide the user

with the capability of performing calculations to essentially

any degree of precision with almost infinite flexibility as

regards the type and scope of the problem addressed. Due to

the universality of most major programming languages and

the general availability of digital computing facilities, the

user also benefits from both ease of programming and the

transferability of software. Last but not least, the digital

computer ordinarily offers the user absolute repeatability on

each execution of a given program. These are the advantages

which have led to an almost overwhelming preference for the

use of digital computers in carrying out calculations relating

to pattern recognition.

In certain limited cases, however, when the pattern-recog-

nition tasks follow the traditional lines of correlation detec-

tion of either features or gestalts by matched filtering (linear

discrimination), it may be advantageous to use the analog

computer. The same is true when performing detection by
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means of quadratic discrimination. Here analog-computer

hardware has a significant speed advantage over most digital

hardware. In some cases a considerable cost advantage may

also be realized. This is particularly true in the processing of

two-dimensional data where optical analog computation may

be used to advantage.

This paper argues that, although at present the analog

computer offers significant advantages in certain fields, this

advantage will eventually be overcome by the digital com-

puter. This may not occur for perhaps three decades. There-

fore, it is important for workers in pattern recognition who

wish to optimize their their experimental approach to be

appraised of both the state of the art and future expectations

in the analog pattern-recognition field.

Since the technology utilized often places limitations on

performance of a particular recognition task, this paper re-

views three major categories of analog technology used in

pattern recognition. In addition to analog computers using

optical excitation, the electronic analog computer and analog

computers using acoustical excitation are discussed. Section

II introduces the reader to these three techniques. Section III

is concerned with operating systems, illustrating the use of

analog computersin pattern recognition and delineating some

of their basic characteristics. Section IV, the final section,

presents a numerical evaluation of the cost and performance

of various analog computers in comparison with electronic

digital computers. Future trends are predicted based upon an |

analysis of the performance advances which have taken

place in both the digital and analog fields during the past

decade.

II. Bastc TECHNOLOGY

This section reviews three means (electronic, acoustical,

and optical) which may be used to carry out high-speed

analog computations typical of those required in both linear

and quadratic discriminant analysis. Since most of the ma-

terial presented has been extensively described in existing

literature, the presentation takes the form of a digest rather

than being rigorously analytical or tutorial.

A. Electronic Analog Computers

The developmentof the operational amplifier by Philbrick

[1] and others [2] in the late 1930’s opened the era of the

electronic analog computer. General-purpose versions of these

computers, developed extensively in the 1950’s and in the

early to mid-1960’s [3], [4], are now gradually being displaced

by the general-purpose digital computer. Dedicated analog

computers and hybrid computers, i.e., those using analog

circuitry to obtain high speed, but using digital circuitry for

control and programming, are still under active develop-

ment [5], [6].

The basic components of the electronic analog computer

are shownin Fig. 1. Most of these components makeuseof the

Reprinted from Proc. /EEE, vol. 60, pp. 1216-1231, Oct. 1972.

92



PRESTON: ANALOG AND DIGITAL PATTERN RECOGNITION

 

COMPONENT SYMBOL ACTION

AMPLIFIER e, o—{kK>—« eo Cp = Ke,

SUMMING aa = -(ne.+ bet
AMPLIFIER ee G2 @g = ~(aegt bepteec)

INVERTING _.
AMPLIFIER F258

POTENTIOMETER e, @, p= Be,

INTEGRATING fa _Irt
AMPLIFIER 2 @2 e@2=-| |(aegtbe,tce, )dt+N

c 0

 

   

 

   

  

  

fa
MULTIPLIER

eb O— Qo €p= €gey / REFERENCE

|
REFERENCE

Fig. 1. Symbolic representation of components for

use in electronic analog computers.
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Fig. 2. Gain versus frequency characteristic

of a typical operational amplifier.

operational amplifier. By tailoring the inputs to the amplifiers

used and byadjusting their feedback networks, it is possible

to perform the functions of summation, inversion, multipli-

cation, and inte;ration. Detailed descriptions of these func-

tions are provide: in the references.

Fig. 2 shows the frequency response of a typical opera-

tional amplifier. Here the dc open-loop gain is 164 dB with a

frequency cutoff in the 1- to 10-M4Hzregion. In order to ob-

tain stability and uniformity of response as a function of

frequency, a feedback network is usually inserted so that

gain is uniform .ver a frequency band which extends to the
0.1-1.0-MHzrarge. If the operational amplifier is used as an

adder or multiplier within this region, its performanceis in-

dependentof fre:yuency and, owing to the high loop gain and

the large amour.t of feedback, its stability and accuracy are

great. Accuracy, in fact, may be held to within one part in

10 000. Thus the operational amplifier 1s equivalent to a 14-

bit digital adder or multiplier with an operation time of
1-10 us.

Miniaturization has produced considerable size reduction

in analog-computer hardware. In the late 1950’s and early

1960’s, when the operational amplifier was usually a vacuum-

tube device, a single amplifier would occupy 3-4-in on a

standard 19-in electronic rack. With the advent of integrated

circuitry, many operational amplifiers are now contained in

single dual-in-line packages. From 50 to 100 operational

amplifiers may be mounted on a single circuit board, thus

providing the processing capability of as many digital multi-

pliers working in parallel. In fact, it is this extremely eco-

nomical parallel-processing capability that still makes analog

hardware an attractive means of instrumenting large-scale

dedicated pattern-recognition computers (see Section III-A).

In large-scale analog computers, performanceis limited by

the precision available, which ranges from 4 to 5 decimal

digits (0.01 to 0.001 percent), and accuracy, which ranges
from about 1 percent on 10-V machines to perhaps 0.1

percent on 100-V machines. Naturally, on both manually

programmed and digitally programmed machines, the pro-

grams which may berunarestrictly limited by the number

of components and the available interconnections. It is this

restriction that makes the general-purpose analog computer

far less attractive than the general-purpose digital computer.

However, in machines dedicated to a particular task, the high

throughout per dollar (measured in equivalent bits per

second per dollar) still makes the dedicated analog computer

extremely attractive (see Section IV).

B. Analog Computation Using Acoustical Excitation

In the mid-1960’s workers in both the United States [7 |

and Great Britain [8] devised acoustical-wedge delay lines
which could be used in the analog computation of correlation

functions. Such devices are useful in pattern-recognition
studies using linear discrimination for the detection of signals

in noise. Twoforms of these delay lines are currently in use

for one-dimensional signal detection. These two forms are

shown in Fig. 3. In the original form, the signal to be intro-

duced is applied to an electrode along one face of a wedgeof

homogeneousisotropic material suitable for acoustical propa-

gation within the signal bandwidth utilized. This electrode
is designed so as to generate a collimated beam of acoustical

radiation over this bandwidth. The device is designed so that

the start of the signal to be detected reaches point B at the

same time that the latter portion of the signal reaches point
A. The face of the device between points A and B contains an

output transducer whose electrode structure matches the

structure of the signal to be detected. Owing to the simultane-

ous arrival along AB of acoustical radiation generated byall

portions of the signal, a correlation function is generated at

the output electrode given ideally by

n=N

e(t) = » Cnéi(t — Tn) (1)
n=]

wheree,(¢t) is the inputsignal, 7, is the transit time to the nth

segment of the output electrode, and c, 1s the response of the

nth segment to continuous-wave excitation anywhere over the

signal bandwidth W. If (ta41—Tn) <Wfor all n, then all
resolvable components of e:(¢) are weighted multiplicatively

by the corresponding c, and summed over the interval

T= (Tn —7}).

If the components of e:(¢) are considered to form a feature

vector, then (1) represents the application of a linear dis-

criminant function whose value eo(t) may be compared to an

appropriate threshold. Thus the acoustical-wedge delay line

is equivalent to a collection of multipliers and adders oper-

ating in parallel whose number equals the time—-bandwidth

product (JTW) of the delay line. Each multiplier and adder
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Acoustic-wedge delay line for use in linear discriminant analysis showing structured output transducer

for performing a correlation detection of a known signal waveform.

completes its calculation in an overall computation interval
of W.

When considering the wedge delay line as a filter matched

to the signal e:(t), the c, may be found from the frequency-

domain equation

n=N

E\*(w) = a Cn EXP (—Jwrn)
n==]

(2)

where £(w) is the Fourier transform of e(t) and the asterisk

indicates the complex conjugate. However, since e,(¢) is real,

a time-domain synthesis of the c, is usually simpler whenit is

recognized that the inverse Fourier transform of E,*(w) is

e:(—?), i.e., the time inverse of e,(¢). Thus the c, are deter-

mined simply from samples of e:(—t) taken at the Nyquist

rate so that the impulse response of the wedge delay line
becomese;(—?) as required by (2).

Because of the high acoustical velocity 1n most materials

used in wedge delay lines, the time extent of signals which

may be handledis usually limited to less than 100 us. Further-

more, although one can conceive of multiple channels incor-

porated in a single acoustical structure, fabrication problems

make it difficult if not impossible to handle two-dimensional

signals in this fashion. Also, although output electrode seg-

ments are easily applied by standard photolithographic tech-

niques, they produce a device having, so to speak, a fixed

program. These factors limit the use of such devices in pat-

tern-recognition studies. Usually acoustical-wedge delay lines

are formed as end items in signal processing systems where

the detection tasks to be performed are well defined a priori.

A typical application is the processing of pulse-Doppler radar

signals.

The second structure for use in acoustical matchedfilter-

ing by correlation detection is shown in Fig. 4. Here the

entire interaction is accomplished using surface waves. In this

structure the incoming signal is launched as a Rayleigh wave

using the input transducer J. As this wave propagates along

the surface of the acoustical medium, it interacts with an
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Fig. 4. Drawing of input and output transducer structures for an acous-

tic surface-wave delay line for use in correlation detection by linear

discriminant analysis.

electrode structure 4 Bin much the samefashion as with the

wedge delay line. Once again this structure is designed to

have a spatial form relating to the inverse time waveform of

the signal to be detected. When the configuration and position

of the traveling acoustical wave matches that of the electrode

structure, a correlation peak occurs in the output signal. Thus

just as with the acoustical-wedge structure, it is possible

to carry out correlation detection by linear discrimination.

The surface-wave devices have the advantage of smaller

size due to the fact that acoustical velocity is lower for surface

waves byat least a factor of two. Also, there is the advantage

that all photolithography is done on a single surface of the

device. This permits one to consider realistically two-
dimensional signal processing using many parallel channels.

Transducer width w may be calculated from

Vi,Vs —

fo

where», is the velocity of acoustical propagation and fo is the

midband frequency. Equation (3) is based on the assumption

that all segments of the output transducer must be in the

near field of the input transducer. (The length of the output

transduceris, of course, simply v,7.) The literature [9], [10]

WwW (3)
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reports typical transducer widths of 5-50 mm with band-

widths of the order of 5X10’Hz and TW= 10%.

One channel of an acoustical-wedge delay line is equiva-

lent to a single digital multiplier-adder combination perform-

ing 5X10" computations per second. This type of analog

computeris thus two orders of magnitude faster than typical

electronic analoy computers having 100 operational amplifiers.

Also, such devices are far more compact (assuming each

output-transducer segment is equivalent to a single opera-

tional amplifier). Finally, it should be noted that it may be

possible to overcome the fixed-program limitation of the

acoustical analog computer by using a second acoustical

wave in place of the segment structure of the output trans-

ducer, thus forming an “acoustically programmable” system.

Experimental versions of such systems are reported in the

recent literature [11], [12].

C. Analog Computation Using Optical Excitation

Pattern recognition by matchedfiltering is feasible, using

optical analog computation, because of the Fourier-trans-

form relationsh:p which exists between the electromagnetic

radiation fields in the input and output planes of an an ap-

propriately desi zned lens system [13]. In the ideal case this

relationship is sriven by

+0

F(cos a, cos 8) = cf f(x, y)

2
“exp Ee< (x cosa + ycos a)| dxdy (A)

L

where C is a rormalizing constant, f(x, y) is the complex

amplitude of the radiation field in the input plane, Az is the
optical wavelength, and cos a and cos @ are the direction

cosines of propagation with respect to the x’ and y axes,

respectively. The details of the derivation of this important

equation are provided in the Appendix.
The coordinites of the Fourier transform given in (4) may

readily be expressed in terms of the spatial coordinates of the

output plane using the followinggeometrical relationships:

x2 = Fcosa/cosy ye = F cos B/cos y (5)

where F is the output focal length of the lens system and

cos y is the direction cosine with respect to the optical axis.

Since the direction angle y is ordinarily small in most optical

analog-computer systems, its direction cosine may be set

equal to unity. Equation (4) then becomes

+oo

Flexo) = [fflslexp flex +e)|dxdy (©)

where wz and «, are the radian spatial frequencies and have
units of radiars per unit length. These quantities may be

expressed eithe’ in terms of the direction cosines of optical

propagation in “he input space or in terms of the output-plane

coordinates as follows:

27x2/ALF

2ryo/ALF. (7)

a, = 27 cosa/Az

w= 27 cos B/XL

Also note that the so-called “spatial frequencies” f, and fy,

are related to a}, and w, as follows:
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Fig. 5. Typical coherent optical computer configuration for use in two-

dimensional matched filtering of the input signal s(x, y) by means of

a spatial-frequency-plane filter H(w;, wy).

fe = 0;/204 fy = w,/24 (8)

and have the units of cycles per unit length. If the spatial

frequencies present in f(x, y) cover a spatial bandwidth W,

and the pupil in the input plane covers a spatial aperture A,

then the optical computer is said to exhibit an area space

bandwidth equal to (AW)*. The quantity AW is directly

related to the time—bandwidth product TW in electronic

analog systems[14].
By concatenating lens systems as shown in Fig. 5 suc-

cessive Fourier transforms may be taken. Therefore, it is

possible to design optical analog computers to perform two-

dimensional frequency-plane matched filtering as well as two-

dimensional spatial-plane correlation.
In certain applications the large-area space bandwidth of

the optical computer and the fact that optical systems

operate in parallel give optical analog computation a signifi-

cant advantage over all other techniques. The computation

rate R, at which an optical analog computer performs may

be calculated from the expression

enP

~ Aw(S/NY? )
c

where ¢ is the transfer efficiency, 7 is the quantum efficiency

of the output detector, P is the optical input power, h is

Planck’s constant, v is the optical frequency, and (S/J) is the

desired rms outputsignal-to-noise ratio at the minimumsignal

level. For typical values such as e=0.5, »=0.1, P=1.0 W,

y=10" Hz, and S/N=10, R, is of the order of 10multipli-

cations per second. This is at least six orders of magnitude

faster than electronic analog computers and four orders of

magnitude faster than acoustical analog computers.

The main drawbacks to using optical analog computers

are 1) the difficulty of I/O conversion and 2) the inaccuracy

of the computations performed. New devices for solving I/O

problems include such input devices as electrooptic delay

lines, membrane light modulators, and photochromic films,

as well as such output devicesas arrays of light detectors and

television pickup tubes. These are discussed extensively by

Preston [15].
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Fig. 6. Graph of the d(x, y, wz, w,) function for a highly corrected coher-

ent optical-computer lens system. Courtesy of the Perkin-Elmer

Corp. (Excerpted from Coherent Optical Computers by permission of

publisher, copyright 1972, McGraw-Hill, Inc.)

 

Aberrations in the optical system cause (6) to become

+2

F(wz, wy) = f F(x, y) exp —jlw.x + wry

+ $(wz, wy, x, y)|}dxdy (10)

where (wz, w,, x, y) is the function which relates the distor-

tion of the output optical wavefronts to their points of origin

in the input plane andto their direction of propagation.It is

this aberration function which limits the performance of even

the most highly corrected and carefully designed optical

computer. The structure of the aberration function for an
actual optical-computer lens system for a point on axis

(x=0, y=0) is shown in Fig. 6, in which the peak-to-peak

aberration is 0.3 rad with an rms value of 0.06 rad. These

values are typical of optical-computer lens systems of the

highest quality. This aberration causes a 0.5-percent ac-

curacy in the value of the functions computed [16]. An ordi-
nary lens, such as those used in high-quality cameras, will

often exhibit an rms value of the aberration function of 0.5
rad representing an accuracy of only 25 percent.

The optical computer which uses photomultipliers as out-

put transducers has a precision which is limited by the level

of scattered light in the output plane. With extreme care in

the fabrication of the optical system, a precision of 6 to 7

decimal digits may be reached. Thus the optical analog

computer is useful where low to moderate accuracy is ac-

ceptable but extremely high speed and precision are required.

III. ANALOG PATTERN-RECOGNITION SYSTEMS

Analog computersfor use in pattern recognition have been

implemented in a variety of operating systems. This section

describes certain systemsselected by the author for purposes

of illustration: one is an electronic analog system; the others,
optical analog systems. Systems using acoustical radiation in
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TABLE I
 

 

Channel Number Wavelength Interval (nm)
 

1 400- 440
2 440- 460
3 460- 480
4 480- 520
5 520- 550
6 550- 580
7 580- 620
8 620- 660
9 660- 680
10 680- 720
ll 720- 800
12 800- 999
 

delay-line matched filters for signal detection are omitted.

At present such systems are used primarily for pulse com-

pression in radar and in secure communicationsand are rela-

tively unsophisticated as regards the pattern-recognition

aspects of their performance.

A. Electronic Analog Systems for Pattern Recognition

The system selected here is the Spectral Analyzer and

Recognition Computer (SPARC) installation at the Willow
Run Laboratories of the University of Michigan. SPARCis a

special-purpose analog-computer system of major importance

which is used in pattern-recognition studies related to multi-

spectral earth-resources analysis. The sensor, which provides

data for SPARC,is a 12-channel spectral scanner which re-

celves energy radiated from the surface of the earth. It uses

an aircraft platform carrying a rotating-mirror scanner

feeding a 12-channel spectrophotometer. The result is a 12-

channel analog recording of a multiplicity of images generated

in the spectral bands given in TableI.

SPARCis used to provide real-time classification of each

point in the terrain scanned. Quadratic discrimination is em-

ployed with the spectral signature of each point being taken

as the input function. Four classes of terrain may be dis-

criminated when using the 12-channel signature. More

classes may be included (proportionally) if the number of

channels is reduced. Only a single class is addressed during

one pass by the computer. The recognition criterion used is

the likelihood ratio. The action of the computer is based on

the traditional multivariate statistical calculation which uses

predetermined covariance matrices for each of the terrain

classes treated. Consider a four-class separation constructed

using data from the full complement of 12 channels. The

likelihood ratio for class A is given by

_ pafa

‘ Pafe + pefe + pofp

where pg is the a priort probability that the spectral signature

being examined belongs to class A, and fg is the multivariate

normal probability density function for class A evaluated

using the instantaneous values of the signals received from

all 12 channels. The quantity in the denominatoris the prob-

ability that the signature belongs to any of the otherclasses

being considered. The expression for the multivariate normal

probability function for the Ath class is given by

 (11)

fx = (2m)=°| CK 1/2

eof12 E Fewest] a
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Fig. 7. Sch: matic diagram of one of the four f computers used in the SPARC system whose purposeis to generate the multivariate

:ormal probability function for the Kth pattern class in real-time from a 12-channel multispectral signature.

where c;;* is the :jth element of the 12 X12 inverse covariance
matrix for class K, | CX| is the determinant of the inverse
covariance matrix, and 5; and 5; are the average values of

signals from charnels 7 and j, all based on a priori data gath-

ered on a “training set” of spectral signatures.

In matrix fora (12) becomes

fe

=

(2r)-®| CK [1/2 exp (—1/2S7CS).

The quantity S is the 12-element signature vector and T

indicates transpcse. Equation (12) may be simplified as fol-

lows by taking into account the fact that the covariance

matrix is real anil symmetric:

fx = (2n)-§| CK |1/2 exp (—1/2 ¥7 Y)

(13)

(14)

where Y=SP ani P is the triangular matrix obtained from

PPT=CX¥. The elements of Y may be found from therecursion

formula

bi i-a
 

ut

bin bis
yi = bi (Si--— 5) H— yt— pt: - i- 15

bi: bi: * ic

where the b;; are directly related to the elementsof P.

This simplification in the matrix multiplication required

for the computa‘ion of the quantities needed for the calcula-

tion of the likelihood ratio results in a considerable simplifica-

tion of the electronic analog-computer circuitry in SPARC.

It leads to the black diagram in Fig. 7, which showsone of the
four “f computers” in SPARC. Each f computer contains

12-input operaticnal amplifiers. These amplifiers are used to

produce signals equal to the differences between the 12 in-

stantaneous multispectral signal values and the means of

these signals as c.2termined from a priori data. The next bank

of amplifiers anc their associated potentiometers is used to

compute the product terms needed in the simplified matrix

multiplication given in (14). As can be seen, the number of
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Fig. 8. Block diagram of the Spectral Analyzer and Recognition Com-
puter (SPARC) in use at the Willow Run Laboratories of the Uni-

versity of Michigan for pattern-recognition studies based on multi-

spectral analysis.

   
potentiometers and associated inputs increases linearly from

spectral channel to spectral channel until, in the final channel,

there are 12 potentiometer-controlled inputs including that

controlled by the feedback potentiometer. This leads to a

total of 90 potentiometers per f computer, 12 of which are set

up from data on the means, and 78 from the matrix-multiplier

coefficients.

Following this bank of amplifiers are 12 function genera-

tors for squaring the signals which feed a 12-input summing

amplifier. This amplifier is followed by a multiplier for the

purpose of exponentiation. A final potentiometer is used for

the purpose of applying the normalizing constants required

in (14).

The SPARCsystem is capable of processing input signals

having a 50-kHz bandwidth. This is accomplished by using

four f computers operating in parallel as shown in Fig. 8. The

likelihood ratio for the class being addressed is compared with



Safflower Recognition

aateoSeee 
Bare Soll Recognition |

Fig. 9. Photographs of (top to bottom) the SPARC video channel data

in the 0.8- to 1.0-u channel, as well as binary recognition functions

generated for areas of rice, safflower, and bare soil as derived from

12-channel multispectral video data of the same scene. Courtesy of

the Willow Run Laboratories, University of Michigan.

an adjustable threshold yielding a binary (yes/no) output.

The output feeds an image recorder which produces a binary

overlay for the terrain images being processed. An example is

given in Fig. 9, where the image formed in a single spectral

channel is shown in conjunction with three binary overlays
corresponding to the following three classes: rice fields,

safflower fields, bare soil. In this example the training sets

were subsets of picture points for regions of each of the

terrain types recognized.

The SPARCelectronic analog-computer system described

conducts the equivalent of four 12 X12 matrix multiplications

each 10 us. This yields a data-processing rate equal to 6X10’
multiplications per second. A digital system with a single

arithmetic unit would require a 10-bit multiplier with a 17-ns

computation time to compete with the SPARC system.

(Alternatively, of course, a timed-shared bank of digital

multipliers could be used which operated at a correspondingly

lowerrate.)

Note also that the SPARC system is programmable in

that the coefficients of all four Y vectors are alterable from

their corresponding potentiometers. One of the disadvan-

tages of SPARC is that manual programming is required,

but it is understood that the University of Michigan is con-

sidering further modifications of the SPARC system which

will add electronic control of all potentiometer settings. In
such a configuration a digital computer would be used to

calculate covariance matrices from spectral samples derived

from a training set. This computer would then commandthe

SPARCto assumethe proper configuration to process further

spectral images at high speed in real time.

B. Optical Analog Systems for Pattern Recognition

This subsection gives examples of the use of optical

analog computers for pattern recognition in biology, remote
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sensing, word recognition, and personnel verification. Other

applications, such as character recognition, are also mentioned

briefly. Each application is evaluated in terms of data-

processing rates achieved and is compared with digital

capabilities.

1) Systems Using Wiener-Spectrum Analysis: The simplest

operation which can be performed by an optical analog com-

puter is the computation of the Fourier transform of an input

pattern as expressed by (6). When the transform is sensed by

an energy detector, the result is a measure of the Wiener spec-

trum of the input pattern, namely,

W(a2, Wy) = Flws, w) F* (wz, wy). (16)

Only a single lens plus an output detector array is required to

construct and record W\w,z, w,). As illustrated by the follow-

ing examples, this rather elementary hardware is all that is

required in implementing certain simple but significant pat-

tern-recognition tasks.

a) Chromosome-spread location: One of the most success-

ful applications of optical Wiener-spectrum analysis for pat-

tern recognition is in the high-speed location of chromosome

spreads on microscope slides. As indicated by the optically

generated Wiener spectra shownin Fig. 10, the chromosome

spread has a Wiener spectrum whichis unique in comparison

with the two other classes of objects ordinarily encountered

on the microscope slide. These other objects the are nonmi-

totic cell and particulate matter, such as ordinary dust and

dirt.

Fig. 11 is a graph of the spatial-frequency content of the

Wiener spectra corresponding to chromosome spreads (mi-

totic cells), nonmitotic cells, and “noise.” This graph was
generated from data taken from a sample consisting of 64

such objects [17]. The Wiener spectra of chromosome
spreads contain a relatively high energy content in the 300—

400-cycles/mm band with respect to their energy content in

the 65—-90-cycles/mm band. The Wiener spectra of non-

mitotic cells exhibit relatively low energy content over both

these spatial-frequency bands, whereas particulate matter,

such as dust, has a high energy content in both bands.

To investigate high-speed chromosome location using

Wiener-spectrum analysis, the Perkin-Elmer Corporation

built an automatic microscope slide scanner (see Fig. 12)

incorporating a laser-energized optical computer. This system

illuminates a moving microscope slide over an aperture of 50

um corresponding to the typical diameter of a chromosome

spread. Light diffracted by any object within this aperture

enters two optical-computer channels. The Wiener spectra

generated are annularly integrated and recorded over the

two spatial-frequency bands given.

The optical computer is followed by an electronic analog

computer which compares the energy detected in the high-

spatial-frequency band with a threshold JT, in order to indi-

cate the presence of a chromosome spread (or dirt). Simul-

taneously, the electronic computer calculates the ratio of the

energy levels detected in both bands and comparesthis ratio

with a threshold J». In order to detect the presence of a

chromosome spread, the detection criteria are

Wa >T1 Wu/W1.> T>2 (17)

where Wz and Wy correspond to the energy content in the

high- and low-frequency bands.

One great advantage of utilizing the Wiener spectrum in

automatic microscopy is that errors in the focal position of
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Fig. 11. Graph sh: wing the annularly integrated Wiener spectra of the
three types of ol)jects shown in Fig. 10 averaged over a sample of 64
such objects.

the moving microscope slide have an extremely weak effect

on measurement: accuracy. For example, only a 10-percent

departure from the correct value of the Wiener spectrum

occurs if the microscopy slide is displaced along the optical

axis by as large in amount as 1 cm. In ordinary microscopy,

Viener spectra generated by meansof an optical analog computeranalysis of 50-u diameter regions on a microscopeslide

ccntaining (left) a chromosome cluster (mitotic cell); (center) a nonmitotic cell; and (right) debris (dust or dirt).

 
Fig. 12. A breadboard optical analog computer constructed for the pur-

pose of high-speed detection of chromosome clusters on microscope
slides using two bands in the Wienerspectrum as a signature. From

left to right: 1, output aperture of the laser illuminator; 2, illuminat-

ing optics; 3, microscope stage; 4, linear traverse mechanism; 5, micro-

scope viewing optics; 6, annular filter for low spatial-frequency band;

7, annular filter for high spatial-frequency band; 8, integrating
optics; and 9, photodetectors.

focal position must be held to between 1073 and 1074 cm to

permit a visual image of a chromosomespread to be formed
with sufficient clarity so that it can berecognized.

The optical computer shown in Fig. 12 has a slide trans-

port velocity of about 2.5 cm/s. Thus 30000 50-uwm-diam

fields are examined per minute and anentire slide (10° fields)

can be searched in 30 min. The dwell time perfield is 2 ms.

The calculation of the Wiener spectrum for this system cor-

responds to taking a 20 X20-point Fourier transform (0—400-
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Fig. 13. Microphotographsof the first twenty objects detected by the

optical analog computer shown in Fig. 12 when a previously un-

processed slide was loaded on the stage. Of the false positives, three

are bubbles in the preparation (5, 7, 18) and one is fiber (13).

cycles/mm bandwidth at a spatial-frequency resolution of 1

cycle/50 wm). Thus this optical computer operates at a rate

equivalent to about 108 multiplications per second.

The optical-computer system described was used to gather

statistical performance data on somesix million fields of view
taken from portions of about 50 microscope slides which were

used in a study for the Graduate School of Public Health of
the University of Pittsburgh. It was found that there were

several thousand nonmitotic cells per square centimeter on

these slides and about 10 chromosome spreads per square

centimeter. To maintain a reasonable false-positive rate, the

thresholds 7; and T2 were adjusted so that about 30 percent

of all chromosome spreads were located. It was determined

that as many as 80 percentof the false positives occurred due

to poor sample-preparation techniques. With improved

sample-preparation techniques, a drop in the false-positive
rate to 20 percent was demonstrated. This situation is illus-

trated in Fig. 13, which showsthe objects located on the first

20 detections on a previously unscreened microscopeslide

taken from the test set. Sixteen of the objects are chromo-

some spreads; three are bubbles in the preparation; one is a

piece of fiber.

This approach to high-speed chromosome-spread location

has now been implemented as a second-generation automatic

microscope for use by the University of Pittsburgh [18]. The

technique has been further refined there by including a mea-

surement of the time during which the 7, threshold is ex-

ceeded as the microscope slide is scanned by the optical

computer. Use of this signal-width measurementhassignifi-
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Fig. 14. False-positive rate as a function of false-negative rate for the
laser illuminated optical analog-computer portion of the University

of Pittsburgh automatic microscope system showing results using a

high spatial-trequency versus low spatial-frequency comparison (ratio

criterion) in comparison with performance obtained when the time

duration of the high spatial-frequency content of the Wiener spectrum

is substituted for the value of the low spatial-frequency content

(width criterion). Courtesy of the Graduate School of Public Health

of the University of Pittsburgh (with permission from “Computers in
Biology and Medicine”).

cantly improved performance (see Fig. 14) so that it now

appears that all chromosome spreads may be located with

few, if any, false positives. Pittsburgh has also succeeded in

upping slide velocity by almost a factor of ten so that the

computation rate of the optical analog computeris now of the

order of 10° multiplications per second.

The complete system under development at the Univer-

sity of Pittsburgh includes not only an optical analog com-

puter for high-speed chromosome-spread location but also a

digital cytogenetic-analysis system. Once a chromosome

spread is located, its image is converted inte binary form by

a cathode-ray-tube flying-spot scanner. Pattern-recognition

software for on-line digital analysis of the image is then used

to determine significant cytogenetic data. The entire system

is intended for use in rapid cytogenetic analysis of large

populations of individuals. Thus this system represents a

melding of analog and digital pattern-recognition technology

in its overall implementation.

b) Remote-sensing applications: In addition to using

optical analog computation to derive the Wiener spectrum

for use in chromosome-spreadlocation, this same technology

has been employed in terrain analysis and land-use determi-

nations in the remote-sensing field. In the late 1960’s the AC

Electronics Defense Research Laboratories of General

Motors built an elaborate system for use in applying optical

analog-computer techniques in this field [19]. The input to
the system was a photographic transparency of the terrain

to be analyzed. The optical system took the Fourier trans-

form which was projected into an output plane and scanned

by means of a mechanical scanner and photomultiplier so as

to record the Wiener spectrum. This information was then

delivered to a digital computer which used the structure of

the Wiener spectrum to determine the type of land use.

Typical categories reported are “buildings, roads, road inter-

sections, and orchards” in one experiment and “residential,

agricultural, and natural areas” in another.

This appears to be an excellent application of optical

analog-computer techniques due to the fact that the input
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(d)

Fig. 15. Photograph comparing the Wiener spectra of an aerial photo-

graph exhibiting cloud cover with one which does not exhibit cloud
cover. Courtesy of .tecognition Systems, Inc.

data in photograpk.ic remote sensing are normally obtained

in the form of trans darencies which are ideal for direct use as

input material. Using the high data-processing rate inherent

in optical analog computation, the user may compute Wiener

spectra at a much |igher rate than can the electronic digital

computer. This is particularly useful in all types of recon-

naissance (both airborne and satellite-borne) where large

quantities of high-resolution imagery are generated.

Similar techniques have been applied by a variety of

workers to other tasks in remote sensing. Recognition Sys-

tems, Inc., has applied Wiener-spectrum analysis in some

recent experiments to distinguish aerial photographs exhibit-

ing cloud cover fromthose which do not [20]. Fig. 15 provides
an example of both types of photographs and the correspond-

ing Wiener spectra. In an experiment involving 2048 such

photographs, the Wiener spectrum of each was computed
optically. Eight annularly integrated and 32 radially inte-

grated measuremerts of each spectrum were recorded. A

linear discriminant analysis was, performed which excluded

the total power in the spectrum as a feature and used only the

relative spatial-frecuency distribution as a signature. The

false-positive rate was 10 percent, with a false-negative rate
of 4 percent. Recognition Systems estimates that each photo-

graph contains abo..t 10® resolvable picture points so that the

optical analog comy:uter performed whatis equivalent to 10?”

complex multiplications in producing the Wiener spectrum of

each photograph ir this experiment.

One final exampie of the use of Wiener spectra for pattern
recognition is illustrated in Fig. 16. This figure is an aerial
photograph of a region in the Caribbean which shows a

variety of ocean-wzve patterns in the vicinity of two islands.

The eight inserts in this figure are optically generated Wiener

spectra of the ocean-wave structure at their respective loca-

tions. The zero spitial-frequency point is at the center of

each insert. Measurements taken from these Wiener spectra

may be used to distinguish 1) the frequency content of the

  Fig. 16. Wiener spectra (inserts) of various portions of an aerial photo-

graph of an area in the Caribbean Ocean. Both the direction, ampli-

tude, and spatial-frequency contents of the wave structure are dis-

played. Courtesy of the Optics and Radar Laboratory of the Uni-

versity of Michigan.

wave structure and 2) the relative wave-structure intensity
as a function of direction in each region analyzed. As can

be seen, one spectrum indicates quiet ocean in the lee of an

island; another, wave structure composed of two intersecting
patterns traveling in different directions; a third, a highly

directional pattern, etc. The work shown here, which was

conducted at the Radar and Optics Laboratory of the Uni-

versity of Michigan [21], provides anotherillustration of the
ease with which the optical analog computer may be used to
generate Wiener spectra from transparencies produced by

aerial photography.

2) Systems Using Optical Analog Matched Filtering: In

addition to computation of the Fourier transform, the optical

analog computer may be used for both frequency-domain

and spatial-domain detection in pattern-recognition systems.

An optical computer for frequency-domain matchedfiltering

was shownin Fig. 5. Here a transparency or other equivalent

spatial-light modulator is placed in the frequency plane so
structured that it is the complex conjugate of the transform

of the pattern to be identified. The product formed in the
frequency plane is then transformed so that the electric field

in the output plane is given by

Es(ay9) = Cff Se, 6)S*e2, 6)

"EXP [—j(xsw. + yw)|dwrdw,

=Cff s@ yest 995+ yddady (18)

where S(w,, w,) is the Fourier transform of the input pattern,

S*(w,, wy) is the complex-conjugate frequency-plane matched
filter, and E3(x3, y3) is the output electric-field distribution.

Note from the second line of (18) that this type of pattern
recognition corresponds to the classical technique of correla-

tion detection.

In a practical sense, the complex quantity S*(w,, wy) may
not be realized as a photographic transparency in that there

is no way of producing the controllable phase modulation

required or of recording the negative values required. The
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matchedfilter must, therefore, be made by some other means.

This is usually accomplished by holographic techniques where

an intensity-only recording medium is placed in the frequency

plane and is illuminated both by the Fourier transform of the

pattern to be recognized and by the transform of what is

called the “reference function.” The reference function

usually consists of a point source or, in some cases, a source

consisting of several points having a spatially coded structure.

In the frequency plane, the optical intensity J2(w,, w,) to

which the recording medium respondsis given by

Io(Wz, Wy) Ey(wz, wy) Eo* (wz, wy)

| S(wz, wy) + R(wz, wy) |?
| S(ws, wy) |? + | R(w2, wy) |?
+ S(wz, wy) R*(w2, wy)
+ S*(w2, wy)R(w2, Wy) (19)

where R(wz, wy) is the Fourier transform of the reference
function. The recording medium is exposed to Jo(wz, wy), de-

veloped, and placed in the Fourier plane for use as the

matched filter. When s(x, y) appearsas the input, the output-

correlation function results from the S*(w,, wy) R(wz, wy) term
and occurs at an off-axis position in the output plane. In all

other respects performance is equivalent to that obtained
from the idealized situation given by (18).

Another approach to correlation detection which maybe

useful when the input recording ‘is moved continuously

through the input plane is to employ an optical analog com-

puter using spatial-plane correlation detection. Here an addi-

tional lens beyond the x3, y3 plane produces a correlation

function given by

E,(t, ys) = ic — vrt)s,,(x)dx (20)

where v7 is the transport velocity of the input-signal recording

and sy,(x) is a comparison-function transparency located in

the x3, y3 plane. Since motion is usually in one direction only,

the signal detected by such a computer must also be one-

dimensional. The signal can, however, be compared with a

two-dimensional comparison function consisting of a library
of one-dimensional functions.

Ordinarily the most useful optical analog-computer con-

figuration for matched filtering is the one employing fre-

quency-plane rather than spatial-plane detection. This is due

to the fact that no mechanical motion is required, the number

of optical elements are minimized, and two-dimensional

signals may be processed. Furthermore, a frequency-plane

matched filter may be created and so arranged as to act asa

filter which is matched to a multiplicity of patterns. This is

done by using a reference function which takes up different

positions and/or structures for each input pattern to be
detected. Such a matched filter is simultaneously matched

to many signals and can handle a two-dimensional input

pattern which is screened for a variety of pattern matches
in a single look. A few specific applications are now described

which illustrate the use of the optical analog computer

operating as a matchedfilter.
a) Character recognition: One application which has

received extensive treatment is optical character recognition.

Someof the earlier work reported by IBM demonstrated both
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Fig. 17. Speech spectrograms of six words enunciated by the same

speaker which contain similar phonemes. Courtesy of Voice Prints,

Inc. (Excerpted from Coherent Optical Computers by permission of

publisher, copyright 1972, McGraw-Hill, Inc.)

the Fourier transforms and correlation functions of fixed

fonts [22]. More recent work along these lines, using a

matched filter formed from a set of reference functions

structured as digital codes, has been reported by Nakajima

et al. [23]. This employs the approach initially proposed by

Gabor [24]. The main deficiency in the use of the optical
computer for character recognition is that input material is

usually not in the form of a transparency but rather in the

form of material printed on a page. This implies that a photo-

graphic intermediary must be made. This step makes the

entire process unattractive except, perhaps, in reading previ-

ously microfilmed pages.

To solve the input problem, recent work has been applied

to a- variety of optical-to-optical converters which may be

utilized as input transducers for use in character recognition

[25], [26]. These converters are sensitive to the radiation
field produced by a noncoherent image of the printed page

and are capable of modulating coherent light simultaneously

so as to provide a real-time input to an optical computer.

None of these devices have been taken past the feasibility

stage so that work in this entire area is still confined to the

research laboratory. However, if these converters are carried

to the point of success in terms of both economyandrelia-

bility, then the high data-rate capability of the optical com-

puter may find application in the character-recognition field.

102



PRESTON: ANALOG ANI: DIGITAL PATTERN RECOGNITION

 

   
 

   

1.0

> SEASON SEAHORSE SEEMING
~

a / / J
2
tad
_

= -
101 - 7

uJ

2
—

<
aad
uJ
«

1072
AUTOCORRELATION PEAKS

1075

is SE AHORSE-
7) SEASON: SEEMING

< SEAHORSE:

: /z
~ 40°F SEEMING- =
Ww ENEMY

: /
<
|
tu

10°5 A
HIGHEST CROSS CORRELATIONS

Fig. 18. Autocorrelation and cross-correlation functions for the speech

spectrograms shown in Fig. 17 computed by means of an optical

analog computer. ‘‘ourtesy of the Perkin-Elmer Corp. (Excerpted

from Coherent Opticcl Computers by permission of publisher, copyright

1972, McGraw-Hill, Inc.)

b) Word recoguttion: Word recognition using optical

analog matched fi.tering of speech spectrograms of words

spoken by a know1 speaker has been pursued by Perkin-

Elmer [27]. So far the work reported is exploratory and the
samples studied are small. An example is furnished in Fig. 17,

which shows the speech spectrograms recorded from the

voice of a known speaker enunciating words deliberately

chosen to have a inarked degree of similarity. Frequency-

plane matched filters were constructed holographically for

each of the spectroyrams. Both the autocorrelation and cross-

correlation functions were computed using an optical analog

computer. The resu.ts of this experimentare given in Fig. 18,
which shows, for t!.is small sample, a discrimination margin

of 30-40 dB. Clearly, this encouraging result must be backed

up with further experimentation before the value of this

method of word recognition of a given speaker’s vocabulary

may be properly evaluated. However, the work is of interest

since, with the mu'tiple-pattern matched filter described in

Section III-B2), the large area-space-bandwidth product of

the optical computer would permit simultaneous interroga-

tion of a vocabulary of 1000 words.

c) Fingerprint recognition: Extensive work has been

carried out in the fingerprint-recognition field. A recent inves-

tigation of the use «f optical analog computers for fingerprint

identification by riatched filtering has been reported by

KMS Industries [78]. Fig. 19 provides probability—density
curves for optically generated cross-correlation functions for

fingerprints generaed from a sample set of 13 persons. These

results are taken fr»m an actual operating system where the

input pattern is generated by a human forefinger pressed

against a window.‘)‘he front surface of the window forms the

input plane to an optical analog computer. The frequency-

plane matched filter is introduced into the system in the form
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Fig. 19. Cross-correlation functions generated by the optical analog.

computer incorporated in the KMS Automatic Personnel Verifier for

a population of 13 persons. The false correlation curve is based on

data taken from 535 trials. The true correlation curve is based on

data taken from 429 trials. Courtesy KMS Industries, Inc.

of an ID card. Results indicate that, with the threshold

adjusted so that the probability of false positives is 0.001,

the false-negative probability is about 0.2. Clearly, other

threshold values would lead to different results and the actual

selection of the threshold value depends on the penalties

assigned to the production of false positives and false nega-

tives, respectively. In personnel verification it is usually

more desirable to adjust for a very low false-positive rate at

the expense of a relatively high false-negative rate.

IV. SUMMARY AND CONCLUSIONS

From the preceding it is evident that the use of analog

techniques in pattern recognition may be advantageous in

linear and quadratic discrimination and in recognition based

on spectrum analysis. Due to accuracy limitations and the

difficulty of obtaining the special-purpose hardware required,
this advantage is due primarily to the speed of analog hard-

ware. We should now ask whether the rapid advances in the

electronic digital-computer art may soon challenge the speed

advantage held by the analog computer.

A. Analog Versus Digital

Cost, as well as speed, is critical. In an attempt to com-

pare analog-computer performance with that of the digital

computer, the graph shownin Fig. 20 has been prepared. This

graph showsbest estimates of the cost performance (in bits

per second per dollar) of two of the special-purpose analog-

computer systems described. These entries consist of two-

pointed arrows, the lower point of which is the best estimate

of the price performance of the analog computer in the

original system; the upper point, the price performance of the

same system in limited-quantity production. Fig. 20 also

charts the price trend in general-purpose digital-computer
power as a function of time over the past decade [29] and
extrapolates this line into the future. Furthermore, the

present range of fast Fourier transform (FFT) computersis

shownin order to indicate the performance of special-purpose

digital computers in comparison with the general-purpose

computer systems.

The economic justification for the SPARC electronic
analog computer is clear considering the decade in which it

was conceived.If electronic-analog-computer device costs can

be reduced at the same rate as those of electronic digital

computers, then systems such as SPARCwill continue to be
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Fig. 20. Performance data (in bits per second per dollar) for a variety

of special-purpose analog- and special-purpose digital-computer sys-

tems overlaid by the predicted upperbound for optical analog-com-

puter powerand an extrapolation of general-purpose digital-computer

power for purposes of comparison. A general trend favoring digital

electronic systems is evident, but it appears that special-purpose

optical analog systems will have an advantagein certain limited areas

of application for the next 10 to 30 years.

competitive. Otherwise,it is evident that they will be replaced

by digital systems in the 1970's.

The University of Pittsburgh optical analog computer for

chromosome-spread detection is seen to be competitive with

its digital electronic equivalent. Since the basic components

of this system are extremely simple (see Fig. 12), the falloff

in laser prices and in the prices of photodetectors (as solid-

state detectors replace photomultipliers) should keep such a

system competitive for the next decade. The reader interested

in commercial biomedical systems using Wiener-spectrum

analysis should review the characteristics of the optical

cytoanalyzing computers reported by Kamentsky [30].

To add further information to Fig. 20, the price perfor-

mance of two special-purpose military optical analog com-

puters is also indicated. The Precision Optical Processor

(POP) built for the University of Michigan by Perkin-Elmer

is a specialized multichannel cross correlator for use in syn-
thetic-aperture radar-signal analysis. This system has the

highest equivalent bit rate (10? bit/s) of any optical com-

puter in existence. Its original price is estimated at about

250 000 dollars. Note that this price is for the complete system

including laser illuminator, input and output signal film

transports, output plane scanner and x—y plotter, the optical

system (including auxiliary optics for modifying the process-

ing mode), mounting equipment (a 25-ft-long granite slab),

and room air conditioning for both cleanliness and tempera-

ture stability.

Another military computer is that fabricated for the

Johns Hopkins Applied Physics Laboratory (APL) by

Perkin-Elmer [31]. This computer is also used in radar
signal processing and is capable of computing a 100-point

Fourier transform in 1 ws at a precision equivalent to 10-bit
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and a 5-bit accuracy. This is equivalent to a processing rate

of about 101! bit/s. Its initial price was considerably less

than the POP yielding about the same overall performance.

Interestingly, none of the optical analog computers

mentioned have achieved the 10'-multiplications-per-second

rate predicted by an evaluation of (9) for 1-Wlaserillumina-

tion. This is primarily because of input/output limitations

(see Section III-B2)a)).

To complete Fig. 20, the ultimate physical limitations of

optical analog computation were taken into account in order

to derive a performance bound which would be difficult to

penetrate. It was assumed that typical optical analog com-

puter systems will not significantly decrease in price over the

next few decades. This will be due to the fact that this type

of computer is expected to represent a low-quantity high-

price business, to require a significant amount of manual

labor in the fabrication and testing of optical systems, and to

depend upon precision mechanical-assembly techniques which

are not likely to be automated in the same fashion that elec-

tronic assembly is now automated. The maximum perfor-

mance rate, as indicated in Fig. 20, is based on the assump-

tions that the price for ultimate systems will stay in the 10°

10®-dollar range and that thermal considerations, i.e., prob-

lems associated with the life of the I/O devices themselves

at high illumination levels, will keep laser illumination levels
below 10-100 W. This leads to a tentative upper bound in

the 10%-10!2-bit/s/dollar range. Therefore, if science and

engineering can capitalize upon this type of very specialized

computing powerfor pattern recognition, the special-purpose.

optical analog computer will probably be competitive with

special-purpose digital computers for at least another decade

and with general-purpose digital computers perhaps until the

end of the 20th century.

APPENDIX

The basis of optical analog computation is related to the

interaction of coherent light with certain pattern input de-

vices called “spatial light modulators.” A spatial light
modulator is a device which may be used to introduce a

two-dimensional function across theinput plane of an optical

analog computer. Typical spatial light modulators consist of

thin films of certain materials which may be used to locally

modulate the light passing through them (or reflecting off

them) either separately in amplitude, phase, or polarization

or in combination. Electrooptic films, silver-halide emulsions,

thermoplastic films, liquid-crystal films, deformable-mem-

brane mirrors, etc., are typical spatial light modulators.

The action of any one of these devices may be repre-

sented by a complex phase modulating function whose action

is characterized by a Jones matrix

L= ue yi) fica, ”)
(Al)

for(i, v1) fe2(%1, yx)

where the x1, y: plane is the input plane. The elements of Z
relate the xy components of the incident electric-field vector

to the electric-field vector generated by the interaction

between the incident light and the spatial light modulator.

In most cases isotropy prevails so that the off-diagonal terms

of the Jones matrix are zero and the diagonal terms are

identical. Let each diagonal term be represented in this case

by the complex function f(x, 1).
In order to demonstrate the results of the interaction of

incident light with the spatial light modulator, expand
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~)

A

2rkx1 2rlyym2) on
where the indices & and / are positive integers, A is the linear

extent of the spatial light modulator, and the Fourier coeff-

cients do, bx7, anc. chy are given by

+.4/2

Sf. f(a, yi)dxidy1

PRESTON:

f(x1, y1) in a Fourierseries as follows:

<—e 2akx

f(x, 41) = a) + » >» cos (== +

bse] l=1

 + Ckl sin (

ado =

+.4/2 2rkx, 2rly,

bit =fff(x1, v1) cos (== +7 dxyay1

$.4/2
Chi =fff(1, 91)

(== 1 wa i (A3)
-sin ——-- ——— dx

A A wor

Equation (A2) rnay be rewritten as follows using the imag-
inary exponential notation:

>> { (ber — jour)

-exp [j(2mrkx1/A + 2nly:/A)] + (ber + jens)

-exp [—j(2rkx1/A + 2nly,/A)]}. (A4)

f(x1, 91) = do +

If the electric vector describing the incident light is

polarized along the x axis and has a maximum value of Em
and frequency w., then the electric vector generated by the

interaction with the spatial light modulator is

Em
E(x1y1) = dE exp (—jwxrt) + > exp (—jw1)

= I R ll 00

U(x — Cri)

a
n
y

= I

exp [/Onkin) A + 2y1/A)] + (ber + jeer)i
exp [—j(2rkx1/A + 2nly,/A)]}. (A5)

By expressiny the complex Fourier coefficients as follows

+A /2

bet — C1 = ©ff f(x, y1)
—A/2

-exp [—j(2rkx1/A + 2mly,/A)|dxidy,
+A /2

—ff f(x1, y1)
—A /2

-exp [j(2rkx1/A + 2nly,/A)|dxidy,

bx + 7Ck =

(A6)

and recognizing that the above equations are complex conju-

gates, we may combine (A6) in a single equation given by

= ff.“Ses 91)

-exp [—j(2rkx1/A + 2nly,/A)]dxidy, (A7)

where dx; are the complex Fourier coefficients with the indices

Y3

4

 
 

Fig. 21. Schematic of an optical analog computer taking two successive

two-dimensional Fourier transforms thus mapping a delta function

at x1, 1, in the input plane into a delta function at —x3, — 3 in the

output plane.

k and | now taking on both positive and negative values.

Finally, (A5) becomes

Em
E(x1, 91) = doEm exp (—jwrt) +> exp (—jwzt)

k=+e0 [=-+00

> >> daexp[j(2rxik/A + 2ryil/A)].
=—«o l=—o

(A8)

In order to appreciate the significance of (A8) refer to
Fig. 21. This figure shows a typical optical-computer con-

figuration with a spatial light modulator in the input plane

plus two lenses which are followed by the output plane.

There is also an intermediate plane or “Fourier plane”
between the two lenses. Utilize the convention that electro-

magnetic energy propagates in the direction of the z axis.

(This axis is normally called the “optical axis.”) In order to

clarify the significance of the exponential notation, note that
the instantaneous phase of an electromagnetic wave propa-

gating in the z direction may be written exp [j(2rwz2/c) |

implying that phase increases with z. The quantity c is the

velocity of electromagnetic propagation. The complete ex-

pression for the exponential is exp {j[2mwz(z—ct)/c]}. The
negative sign is necessitated by the fact that, since it has been

assumed that phase increases with z, phase must therefore

decrease with time as the wave propagates in the positive 2

direction. (It is, of course, possible to define a phase angle

which decreases with z which in turn would imply increasing

phase with time. This, however, is not the usual convention.)

The expression

aoEm exp (—jwzt) (A9)

in (A8) represents the electric field in the input plane (z=0)
corresponding to the plane wave propagating along the 2

axis. The expression

Em
> exp (—jwzt)de: exp [7(2rxik/A + 2ryil/A)| (A10)

represents the electric field in the input plane of one of an
infinity of plane waves having the same temporal frequency

wz and complex amplitudes given by Emd,1/2. Note that each
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waveis phase shifted by 27k radians across the extent A of the
input plane in the x direction and by 27/ radians in the y
direction. Since a positive phase shift implies a retrogression
in time, those portions of the &/th wave having positive
values of both k and xy lag behind the wave attheorigin.
Thus the wave in question is retarded in the first quadrantof
the xy plane. Since a phase shift of 27k radians is equivalent

to a retardation of k wavelengths, the normal to this plane

wave has direction cosines which are given by

kX1 Int
cosa = —- cosg = — All7 B (A11)

where @ and @ are the direction angles with respect to the x

and y axes, respectively, and Az, is the wavelength of light.

Similarly, a wave with negative values of k/ is advanced in
the first quadrant, etc.

The above considerations lead to a demonstration of the

fact that the primary effect of the spatial light modulator

resident in the input plane and whose action is described by

f(x, y) is to divide the incident optical radiation into an
infinity of new waves whose complex amplitudesare directly

related to the complex Fourier coefficients of f(x, y). The

directions of propagation of these waves are determined by

the corresponding direction cosines. This physical fact is an

explanation of the phenomenoncalled “diffraction.” It is this
phenomenon which permits the optical analog computer to

be used in Fourier analysis. This also permits optical com-

puters to be applied to pattern recognition using correlation

detection and matched filtering.

To complete the discussion, let the quantity A become

infinite so that k/A and /1/A becomeinfinitesimals. A two-

dimensional Fourier transform of the function f(x, y) is then

obtained which is given by

+00

f(x,y) exp |—j(2m cos ax/Nz
—co

1
F(cos a, cos 8) = a

+ 2m cos By/dz)]dxdy. (A12)

The quantities (27 cos a)/Az, and (27 cos 8)/Xz are called the

“radian spatial frequencies” and are symbolized by w,; and wy.

This permits the above equation to be written in the form

1 +
F(es; )) =— ff tesdexp[-seax+e,y) ldedy. (A13)

—e

The measure of w, and w, are radiansper unit length. The
corresponding “spatial frequencies” whose measure is cycles

per unit length are f,=w,/2m and f, =w,/2r.
It should be noted that the optical analog computer

takes successive two-dimensional Fourier transforms rather

than carrying out a Fourier transform followed by its inverse.

Thus a delta function in x1y; plane shownin Fig. 21 is mapped

into a delta function at —x3, —y3in the output plane.

The purpose of the lenses in the optical computer is to

permit the separation of the Fourier components of f(x, y)

at a convenient physical distance from the spatial light

modulator. With an input aperture A and no lenses, the

Fourier components become separable at the Rayleigh dis-

tance given by

Ry = A?/2Xz (A14)

which, for typical values of A and Az, may range from 10? to

10? m. Whena lensis interposed with the spatial light modu-
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lator in its front focal plane, the Fourier components are
separably displayed in its back focal plane (A2). Thus except
for small values of A and/or large values of Xz, lenses are a
necessity. They are also a necessity when successive Fourier
transformsare to be takenfor use in correlation detection and
matched filtering.
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Abstract—Many algorithms for grouping data without super-

vision depend on somecriterion. We state two basic requirements

such criteria should meet and we discuss several criteria in terms of

these requirements. An attempt to satisfy both requirements simul-

taneously with a simple criterion leads us to introducea linear trans-

formation of the data. Although our principal result is for a two

category problem, we present discussion and an example for the

many category problem as well.

Index Terms—Clustering, data analysis,

unsupervised learning.

pattern recognition,

I. INTRODUCTION

URprincipal results are relevant to the problem of

() grouping multivariate data without supervision.

This problem arises in the design of pattern recogni-

tion systems when nopreclassified samples are available

Even whenclassified samples are available, it is sometimes

necessary to subdivide the known categories without super-

vision. The importanceof data grouping, or clustering, and

many approaches to solving this problem are discussed in

Ball’s survey paper[1].

Data grouping is not a rigorously or uniformly defined

concept. Some speak of it as the division of a set of data

into subsets whose members are similar in some sense.

Others seek subsets exhibiting a cohesiveness whichis not

entirely related to point-to-point similarity. In the most
general case, the proper number of subsets is unknown.

However, in this paper we consider the simpler problem

where the numberof subsets is fixed. Many procedures for

solving the general problem combine an algorithm for

grouping data into afixed number of subsets witi: some

procedures for merging or splitting subsets.

It is worth noting at this point that two basic techniques

for grouping data appearin the literature. The hierarchical

approach is to divide the data into subsets, divide each

subset into subsets, and so on, until the desired number of

subsets is created. The direct approach, on the other hand,

is to subdivide the data into the desired numberof subsets

in one step. The direct approach seems to yield more rea-

sonable classification but requires more computation. Casey

and Nagy [2] advocate a compromise where the data are

directly grouped into a small number of subsets and these

Manuscript received February 4, 1970. This work was supported in
part by the Joint Services Program under ARPA Contract N 00014-67-

A0226-004.

The authors are with the Department of Electrical Engineering,

Purdue University, Lafayette, Ind. 47907.

subsets are subdivided further hierarchically. Hierarchical

classification may require only the ability to divide data

into two subsets.

Data grouping is often accomplished with the aid of a

criterion. This criterion assigns a number to each possible

partition of the data. The partition which yields an extreme

value of the criterion is chosen as the desired partition. As

we see it, the criterion must meet two basic requirements.

1) Performance: The resulting partition must fall along

natural boundaries of the data when such boundaries

are well defined.

2) Efficiency: There must exist an efficient algorithm

for finding the optimum partition.

Another requirement worth noting is uniqueness. We

would like to have only one partition which extremizes our

criterion. Although uniqueness is an important factor, we

will limit our discussion here to performance andefficiency.

In what follows, we will first discuss some criteria which

have appearedin the literature. We will then define a linear

transformation whichcan be applied to the original data.

Under this transformation, all of the criteria can be ex-

pressed in terms of the eigenvalues of a certain matrix.

They may, therefore, be compared with one another.

Further, it will be shown that for the case of grouping data

into only two subsets, all of the criteria are equivalent in

terms of the performance requirement. Thus, the choice of

criterion for this problem dependsentirely on the efficiency

of the extremizing algorithm.

Wewill propose a procedure for grouping data. We will

examine our procedure both analytically and numerically.

For the case where the data come from two Gaussian dis-
tributions, we will derive some useful convergence prop-

erties.

Il. CRITERIA AND ALGORITHMS FOR GROUPING DATA

A. Statistical Scatter

All of the criteria which we will discuss may be defined in

termsofthe statistical scatter matricesintroduced by Wilks

[3]. First, we will define these matrices and: organize our

notation.
Let {X,, X2,°°-, Xy}, a set of L-dimensional column

vectors, be the data set. We wish to divide this set into M

groups, G,, G2,°°°, Gy, with populations N,, N2,°°:, Nu,

respectively. The scatter matrices are then defined as follows.

Reprinted from /EEE Trans. Comput., vol. C-19, pp. 917-923, Oct. 1970.
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Total scatter:

N

TS Y X,XT. (1)
k=1

Intragroupscatter:

W; a » (X, — C)(X, _ C;)" (2)
X,EGj;

where

C,= 4 y X (3)
’ N; XKEG; .

Total intragroupscatter:

M

Wi > W (4)
j=1

Intergroupscatter:

M

B= Y N,C,CT. (5)
1j

The superscript JT denotes transposition.It is easily shown

that

T=W+B (6)

regardless of the partition. Another important property of

the scatter matrices is the fact that the eigenvalues of W~'B,

A,,°°*, Ay are invariant under nonsingular linear trans-
formationsofthe .,’s. |

B. Criteria for Grouping

Several criteria may be defined in terms of the scatter

matrices defined above. The intragroupscatter is a measure

of the degree of association of the membersof the group.

The criteria we will discuss are all based on some measure

of the “magnitude”of W.

Thefirst, which we denote Jo, is simply

M

J=trw= > Y [%-C\lP
J=1 X,peGj

(7)

where tr W is the trace of the matrix W. J) may be inter-
preted as the mean-squared distance to the group center.

The optimum partition is taken as the one which minimizes

Jo. This criterion has been used by several authors, includ-

ing Casey and Nagy [2] and MacQueen[4].

J. is not invariant under nonsingular linear transforma-

tions ofthe X,’s. This means that by changing thecoordinate

system of the original data, one may alter the optimum

partition. Friedman and Rubin [5], disturbed by this

ambiguity, introduced a family of invariant criteria. A

criterion of the form

J= f(Ay-++, Ay) (8)

is invariant under nonsingularlinear transformations. Two

such criteria are

  

CHOOSE INITIAL
GROUP CENTERS  
 

 

FOR EACH MEMBER
OF THE DATA:
I) CALCULATE THE EUCLIDEAN
DISTANCE TO EACH GROUP
CENTER.

2) LABEL THE MEMBER
ACCORDING TO THE NEAREST
GROUP CENTER.

DOES ANY MEMBER
RECEIVE A NEW LABEL?

   
 

   

——+CST0F
YES

 
MEAN VECTORS FOR
PRESENT GROUPS

BECOME NEW GROUP
CENTERS

  
   

Fig. 1. Basic grouping algorithm.

J, = det T/det W, (9)

= i (1 + 4;) (10)

and

J, = tr W"*B, (11)

-¥ 4, (12)
i= 1

Here, the optimum partition is the one which maximizesthe

criterion.

Several numerical examples were used to show that J, and
J, are superiorto Jy in the sense of the performance require-

ment. In each example, data of knownclassification were

clustered according to Jp, J,, and J,. Fewer misclassified

samples resulted when J, or J, were used. However, any

relationship between this performance and the invariance

property was not rigorously shown.

A basic assumption in clustering is that the group struc-

ture is somehowreflected by the data. If we feel that this

structure is reflected in an invariant manner, then we

should use an invariant criterion to detect it. This was

essentially what Friedman and Rubin assumed, and the

notion was supported by their experiments.

Let us simply accept J, and J, as superior performers,

compared to Jo, and turn our attention to the efficiency

requirement.

C. Algorithms

The basic algorithm shownin Fig. 1 has been widely used

and studied. The well-known ISODATA program [6] is
based on this procedure. The asymptotic properties of this

algorithm have been studied by MacQueen and others
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where

a, =—[ ue”? du =— e Hl2st (40)
a / 2n Li/Si \/ 27

e~”/2 du = erf(+1,/s;). (41) 
1 [toa

b; = __ |

/2n £1; /si

(If D, is located in R;,, the positive sign 1s used. If D; is

located in R,,, the negative sign is used.)

ss = V'K,V. (42)

U, is the mass center of R,, and R,,, and U,is the one of

R,, and R,,. Therefore,U, and U, are obtained as follows:

_ GipUip + G2pU2p
 

 

  

 

U (43)
: dip + 2p

U, _ dinYin + Ganan . (44)

din + d2n

Substituting (36) through (41) into (43) and (44),

U, —U,

p,a p2a
Pip2(b, —b2) (Dy -D,)+( + K,+==KV

_ Sy S> | (45)

(pb, + pb,)[1 —(p,b, + Pb.)|

For the equal covariance case,

Furthermore, under our normalization conditions (29) and

(30), K and D,can be expressed as functions of D, so that

(45) becomes

 

 

U, —_ U, = c,D, + CoV (47)

where

p
p,(b, — b,) — — (pia, + P242)D{V

C= 2 (48)
(pb, + p2b)[1 — (pyby + D2b>)|

1
Cy 5 (p1a, + p42) (49)

~ (pid, + pzb»)|1 — (p,b, + P2b>)|

The normal of the new hyperplane has a componentin

the direction of V and anotherin the direction of D,. If the

coefficient of D, has the same sign as D1 V, then the succes-

sive hyperplanes become more nearly parallel to D,. To

prove this result we must show that the numeratorof c, of

(48) has the same sign as D{V, because c, and the denomi-

nator of c, are always positive. We need only examine in

detail the case where D'V >0. The discussion for DiV <0
can be donesimilarly as for DIV >0. For D{V >0, we see
from Fig. 3 that

L, + l, = (D, — D,)'V

1
= — pTV (50)

P2
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and our condition for convergence becomes

l l
 (p,a, + P24) > 9. (51)

It is easily seen that the inequality of (51) is not satisfied

for certain combinations of parameters. However, the

region of parameters where(51) is satisfied can be calculated

numerically. The result is shown in Fig. 4. Equations (40),

(41), and (46) with (51) show that we have three parameters

in (51), l,/s, l,/s, and p,(p2= I — Px), Or

k=(1,+1L)/s, «=1,/(l, +1,) and p,. (52)

In Fig. 4, the convergence regionsof « and p, are plotted for

various k. The figure shows that convergenceis quite likely

in practice except for either extremep,’s or «’s.

C. Convergence for the Unequal Covariance Case

When K, #K,,it is very difficult to find the convergence

region as we did previously. However, the convergence can

be proved when the hyperplane passes a certain point.

Therefore, it can be said that some convergence region

aroundthe point should exist.

For K, # K,, the normalization leads us to

P,K, + p2K, + p,D,D; + p,D,D3= (53)

instead of (29). Equation (30) is also satisfied.

Let us suppose that the hyperplane passesthe point where

a, a,
= 9; (54)

Sy Sy

then, substituting (53) and (31) into (45), we have

pitt — b,) — Pov|p, + yV
2

(p1b, + pob2)[1 — (pyb, + P2b2)|

Using the samereasoning as before, we obtain the following

convergence condition:

 U, —_ U, = ° (55)
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b,-—b,-y >0- (56) TABLE I

CONFUSION ARRAYS FOR A VERSUS B
      

       

This condition can be expressed,via (50) and (54), as

a a
b,-—1l-—-b,-=21 3, 2 b, 5 l,>0 (57)
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This inequality holdsfor all 1,/s, and 1,/S>.
Thus, when the hyperplane passes the point where (54) is

satisfied, the new difference-in-mean vector, U 1 — U,,
approaches D,—.D, closer than V. Although weofferno
theoretical justification, there should be a region of con-
vergence aroundthepoint.

Original Coordinates
 

Assigned Group

1 2 3
 

Actual A |84 16

Class B |26 73 l

Ci; 14 11 75
 

VV. NUMERICAL EXAMPLES

In addition to our analytical study, we have performed
numerical experiments with our procedure. Data were ob-
tained by genera:ing Gaussian random vectors according
to a prescribed :nean vector and covariance matrix. The
means and covariances were taken from Marill and Green’s

Normalized Coordinates
 

Assigned Group

1 2 3
 

Actual A |100 0 0

Class B} 27 73 0

C; 18 0 82 
 8-dimensional character data [11]. Various properties of

this data are disciissed in [12] and [13].

A. Two Groups

For ourfirst e).periment, we generate 100 samples each

corresponding to 4’s and B’s. Wefirst grouped the data in

the original coo-dinate system according to the basic

algorithm. Then we normalized the data and grouped

them once again. Table I showsthe confusion arrays that
result in each case. Fewer misclassified samples result when
the data are normalized.

B. Three Groups

In this experiment we have 100 samples each of A’s, B’s,

and C’s. The sarae procedure was applied. The resulting
confusion arrays shown in Table II indicate that superior
classification maystill result.

Fig. 5 is a plot cf two coordinatesof the data in the origi-
nal and in the nor-nalized coordinate system.

VI. SUMMARY

Wefeel that the most systematic approachto data group-
ing is by means cf a criterion. Thus, our study has been
aimed at

1) defining the properties of a data groupingcriterion,
and

2) finding a crilerion which has these properties.
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Westated two important properties: performance and

efficiency. Initially, we compared three criteria, Jo, J,, and

J,, in terms of these properities. A tradeoff between per-

formance and efficiency wasillustrated.

A newcriterion J, was constructed by applying a linear

transformation which unitized the total scatter matrix. Jo

has the same form andefficiency as Jy and hasthe invariance

property of J, and J).

For the two group problem, Jo yields the same optimum

partition as J, and J, with greater efficiency. We therefore

feel that J’, is indeed a promising criterion for dichotomizing

data.

For the multigroup problem, we were unable to demon-

strate the performance of Jo analytically. However, its

efficiencyis still superiorto that of J, and J,. Jp measures the

cohesiveness of the subsets according to the mean-squared

distance to the group center in the normalized space. The

effect of the normalization is to equalize variations in the

componentsofthe datavectors. In the original space, Jo may

depend mostly on distance along one or two components.

Importantstructural information in the other components

maybe ignored. Fig. 2(a) showssucha case.Let us Just say

that unless we have a priori knowledge that the groupstruc-

ture of our data is reflected by a particular choice of co-

ordinates, we should use an invariantcriterion. Then Jo isa

logical choice because

1) it is efficient,

2) it is invariant, and

3) it has a straightforward interpretation.

Finally, we suggest that further study of this problem be

carried on. The basic question is: What do we want from a

data grouping algorithm? This question may have many

answers and,therefore, manyvalid criteria may exist. Thus,
the production of a single criterion does not constitute a

solution to the problem.
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A Comparison of Seven Techniques for
Choosing Subsets of Pattern

Recognition Properties
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Abstract—The only guaranteed technique for choosing the best
subset of N properties from a set of M is to try all (¥) possible com-
binations. This is computationally impractical for sets of even mod-
erate size, so heuristic techniques are required. This paper presents
seven techniques for choosing good subsets of properties and com-
pares their performance on a nine-class vectorcardiogram classifi-
cation problem. |

Thefirst techniq.ie ranks properties according to their expected
probability of error when used separately. The rationale is that a
property that has a Iw error rate when used alone should be a valu-
able memberof a sul)set of properties.

The second technique is based on the idea that a propertythat is
very similar to another in use addsverylittle additional discriminatory
information. According to this technique,thefirst of the WV properties
is chosen arbitrarily or by another technique. The second property
selected is the property least correlated with thefirst. Subsequent
properties are those that have the minimum average absolute correla-
tion coefficients with those already chosen.

The third techniq.e is to arbitrarily choosethefirst property and
to determine which 1:wo classes are most often confused in a multi-
class problem. The property which (when used alone) is the best
discriminator between these two classes is the next addition to the
set. This procedureis iterated.

The fourth technique is to perform a principal components analy-

sis and to form new properties corresponding to the eigenvectors.

The fifth technique is similar to the fourth, but the original proper-
ties that make small contributions to the eigenvectors are omitted

from each eigenvector.

The sixth techniqiie chooses those original properties that make

the largest average contributions to the eigenvectors.

The seventh techniqueis a combination of the first two. Properties

are ranked according to a weighted sum of their probabilities of error

whenusedaloneandtheir average coefficients of correlation with the

other properties. It is shown that this new technique selects proper-

ties as well as any of t:he others,and thatit is less expensive to imple-

ment than the neares! contender, the eigenvector technique.

All the techniques resulted in lower error rates than did a random

selection of properties.

Index Terms—Classification techniques, dimensionality reduc-

tion, electrocardiogra'n classification, feature extraction, Karhunen—

Loéve expansion, multivariate data analysis, pattern recognition,

principal components, propertyselection, statistical decision making.
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INTRODUCTION

N pattern classification problems, the properties of an
object to be classified are measured and combinedin a
decision rule to rendera classification. The selection of

properties that contain the most discriminatory information
is important becausethe cost of decision makingis directly
related to the numberofproperties used in the decisionrule.
The problem ofselecting a highly discriminatory subset of
properties has been approached in a numberof ways. Pro-
posed property selection techniques may be divided into
three categories: 1) statistical, 2) information theoretic, or
3) sequential.

In the statistical category, stepwise multiple linear regres-
sion wasoneofthefirst techniques examined [23]. A candi-
date property is admitted to the propertyset if the incremen-
tal increase in the Mahalanobis D? measure [21] satisfies a
Statistical test of significance. The Mahalanobis D? measure
is the squared distance between the means of two classes
normalized by the combined covariance matrices [1]:

D? = (fi, — jz)’ *(A,+A,)7 1 (1; —f2), where ~ and A de-
note the mean and covariance, respectively. The D?statis-
tical criterion has been used by others [2], [11], [27], [35]

to judge the usefulness of individual properties and sets of

properties. A second statistical technique examines the

correlations between pairs of properties [35]. A third tech-
nique, eigenvector analysis (known also as the Karhunen—

Loéve expansion and principal components analysis), at-
tempts to reduce the dimensionality of the property space

by creating new properties that are linear combinations of
the original properties [4], [5], [11], [12], [39], [40]. This

procedure finds the subspace in which the original sample
vectors may be approximated with the least mean-square
error for a given dimensionality.

All the proposedstatistical property selection techniques
possess disadvantages that limit their utility in pattern
classification problems. Stepwise multiple regression and
the D? criterion schemes require the joint probability den-
sity functions to be unimodal. The secondstatistical tech-
nique assumesthat the twoclasses are normally distributed
with equal covariance matrices. The eigensystem procedure
suffers from two disadvantages: the reduction in the num-
ber of properties to be used in the decision rule is sometimes
offset by the increase in computation necessary to map
vectors into the selected subspace; and the dimensionality

Reprinted from /EEE Trans. Comput., vol. C-20, pp. 1023-1031, Sept. 1971.
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reduction maybe at the expense of separability information

betweenthe classes.

The secondcategory of property selection techniques, the

information theoretic approach,includes those schemesthat

judge the utility of a property set based on one of two com-

monly used figures of merit : entropy or divergence. Entropy

[19], [20], [36] is a measure of the spread of the samples of

each class in the property space. The entropy of a class of

samples distributed according to the probability distribu-

tion p(X), where X is a property vector, is computed by

integrating the quantity p(X) log p(X) overall X (and negat-

ing the result). The entropy is zero if all membersofa class

have the same vectorrepresentation. Divergence [19], [22],

[36], [37] is a measureof the distance or differences between

pairs of class probability densities in the property space.It

is computed by integrating the quantity [p(X |i) — p(X{/)|

log p(X|i)/p(X|j) over all X, where p(X|i) is the conditional

probability of observing property vector X on class i. One

of the disadvantages of both figures of merit is the amount

of computation required to evaluate them; (y) N-fold inte-

grals are requiredto find the best subset ofN out ofM prop-

erties. Another disadvantage of the two information the-

oretic methodsis that neitheris a direct measure ofthe over-

all probability of error. It should be noted, however, that for

special cases in which the probability distributionsare mul-

tivariate normal with commoncovariance matrix, thereis

a monotonic relation between divergence measure and

error probability [22]. A similar property holds for the

entropy measure if feature properties are assumed to be

statistically independent [20].

The procedures of sequential analysis and dynamic pro-

gramming have also been applied to the property selection

problem. Sequentialanalysis [9], [11], [12], [38] is designed

to make decisions using the smallest possible number of

properties. Dynamic programming [9], [10], [28] has been

used to select the optimal subset of properties as a function

of the measurementcost. If the class probability density

functions are known,and for given class a priori probabil-

ities, both of these procedures will select the subset of

properties that minimizes the average decision-making

risk [12].

The principal objectives of this research were to search

for computationally feasible property selection techniques

that require no assumptions aboutthestatistical structure

of the data and to comparetheir utilities to the methods

described above. The main product of this research is a

property selection technique that considers both the ex-

pected probability of error and average correlation coeffi-

cient. The technique requires no assumptions about the

statistical structure of the classes and is computationally

simple.

Electrocardiograms (EKGs) were chosen as a data source

with which the developed techniques could be tested. This

choice was madefor the following reasons: 1) EKGclassi-

fication is a complex problem involving multigroupclassifi-

cation; 2) a set of properties has been established byclinical

and research studies and can form thebasis of the original

property set; and 3) relating the various properties mea-
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sured from the elec:v-ardiogram to the diagnostic groups,

and evaluating the importance of these various measured

properties in making a given diagnosis can contribute to the

understanding of the electrocardiogram itself and to its

clinical use.

DESCRIPTION AND COMPUTATION OF

THE PROPERTIES

Description of the Electrocardiographic Data

The EKG data used in this study were obtained from

Dr. H. V. Pipberger of the Veterans Administration Re-

search Center for Cardiovascular Data Processing, Wash-

ington, D. C. The methods of data collection, editing, and

confirmation ofclinical diagnoses are well documented by

Pipberger [17], [29], [33]. In brief, a three-lead corrected

Frank lead system was used to record the body surface po-

tentials. The portion ofthe record with theleast noise from

muscle tremors and baseline shifts was digitized at a rate

of 250 samples/s. The tape obtained from Pipberger con-

tained 1140 records from 9 diagnostic classes. Four-hundred

and eighty two records were randomlyselected for this study

and these were divided into a training and testing set con-

taining 242 and 240 records, respectively. One beat from

each record wasselected, from whichall the property values

were measured. The class distribution in each set is pre-

sented in Table I.

Three orthogonal leads are used, so vector information

can be measured from the waveform as well as single-lead

(scalar) information. One-hundred and fifty seven proper-

ties were computed from each waveform; some were the

measured variables themselves and others were functionsof

the measured variables. The types of properties used are

summarized below. A detailed listing of the 157 properties

is given in [25].

Thefirst step in computing the property values is to

locate the beginning and end of the QRS complex and the

end of the T wave. These points are found by constructing

the spatial velocity waveform fromthe x, y, and z waveforms

and then searching the sv waveform for those points that

fall below a certain threshold. This technique works very

well for the ORS and T waves[30], [31], [34]. A battery of
programs similar to those listed in the “Users Guide”

provided by Pipberger’s group [34] was then used to mea-

sure property values 1-147.

The properties are computed by performingthe following

operations on the EKG waveform: timeintegrals are com-

puted for the ORS complex and T waves; spatial maxima

in both the ORS and T wavesare located; instantaneous

vectors are computed for the x, y, and z leads; anda single-

lead analysis of the ORS waves and ST— T segmentsis per-

formed. The ORS complex and ST— T segments were both

divided into 0.01-s intervals so that instantaneous vectors

could be determined at the initial and terminal portionsof

each complex.

Thedigital representation of the EKG waveform consists

of a numberof points. The points from the ORS complex

form a vector loop that passes through the origin of the

three-dimensional space. Property 148 is the area of the
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TABLE I

DISTRIBUTION OF THE TRAINING AND TESTING SET IN Eacu
OF THE NINE EKG CLASSES

 
 

 

Number of Numberof
Training Fraction of |Testing

Class Class: Name Samples DataSet Samples

1 Normal (NOR) 35 0.1446 35
2 Left Ventric..lar

Hypertrophy (LVH) 35 0.1446 35
3 Right Ventricular

Hypertrop1y (RVH) 27 0.1116 27
4 Biventricular Hypertrophy

(BVH) 19 0.0785 19
5 Left Ventricular Conduc-

tion Defect (LVCD) 23 0.0950 23
6 Right Ventricular Conduc-

tion Defect (RVCD) 23 0.0950 22
7 Apical Infarction (API) 19 0.0785 18
8 Anterior Infarction (ANI) 25 0.1033 25
9 Posterior Infarction (POT) 36 0.1488 36

242 240   
 

ORS vectorlooy:, defined as the sum oftheareasoftriangles

formed from each adjacent pair of points in the loop and

the origin. A least-squares plane wasfit to the vector loop
points and the rms error between the actual points and

those predicted by the plane wasused as a measureofthe

planarity of the QRS vector loop, which is property 149.

Property 150 is the difference between the largest and
smallest voltages recorded in the ORS loop. Properties
151-157 are angles between certain average vectors [25].

After the 157 property values were obtained for each of
the 482 records, the mean and standard deviation of each

property was computed based on all 482 records. Each

property was tlien standardized to zero mean and unit
variance.

Eigensystem Analysis of the Correlations Among the 157

Properties

The correlation among the 157 properties was determined

from a 157x157 correlation matrix. Thirty-five samples

from each of the 9 classes were randomly chosen and the

correlation matrix was computed from these 315 samples.

A convenient method of summarizing the information con-
tained in such a large correlation matrix is to perform an

elgensystem analysis. The eigenvector associated with the

largest eigenvalue is the axis in the 157-dimensional prop-

erty space along whichthe variance (of the 315 points) is a

maximum. The eigenvector associated -with the second

largest eigenvalt.z is the second axis, orthogonalto thefirst,

which accounts jor as much of the remaining variance as

possible, and so on. Each new orthogonal axis accounts for

a smaller propertion of the original variance. The total

variance to be accountedforis

157

> e; = 157
j=l

and the amount of variance each axis accounts for can be

computed as shcwn in (1).
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Fig. 1. Eigensystem analysis ofthe 157-dimensional EKG property space.

Fraction of variance accounted

for by the ith axis = e,/157 (1)

and the amountof variance accounted for by n of the 157
eigenvectors (ordered with respect to decreasing eigen-
value) is

n

Ss” e,/157
i=1

Fraction of variance accounted

for by n eigenvectors 7 (2)

wheree;is the ith eigenvalue.

A plot of the percentage of the original variance ac-

counted for versus the numberof eigenvectors is a conve-

nient methodofdisplaying the amountofcorrelation among

the 157 properties. These data are presented in Fig. 1. The

first 35 eigenvalues account for 90 percent of the variance.

The possible reduction in dimension from 157 to 35 while
maintaining most of the spatial information among the

points showsthat a great deal of redundancy exists among

the 157 properties. This is not unexpected because many of
the properties are instantaneous vectors measured at very
close intervals on the waveform.

PROPERTY SELECTION TECHNIQUES

Probability of Error

An intuitively appealing approach for finding a good

property set is to begin with a large numberof candidate
properties, individually rank each one by its performance,
and eliminate those with low rankings. The expected prob-
ability of error (POE) can isolate the best single discrimina-

tors. The POEis the fraction of patterns (from K classes)

that are misclassified using a single property. This technique

has been used by others for property selection [32], [36].

Implicit in this approach is the assumption that a set of
properties composed of those properties that individually

obtain a high ranking with respect to the POE rankingcri-

terion is a good choice. The POE techniquehasthe disad-

vantage that correlations among the properties are not

considered, and hence property sets chosen according to
POE maycontain redundant members.
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Average Correlation Coefficient

The second property selection technique takes correla-

tions into account by ranking the properties according to

their average correlation coefficients (ACC). In this case

the first property is arbitrarily chosen as that which gives

the smallest POE. The second property chosenis that which

has the smallest correlation with the first property. The

third property is chosen such that its average correlation

with the first two is smaller than that of all the remaining

candidate properties, and so on. The choice of the ith prop-

erty on the list depends on its average correlation with the

i—1 properties already chosen.

Sequential

The third technique requires training and testing for each

new property added. Thefirst property is chosen as that

which gives the smallest POE. The error rates among the

K classes are computed (by a clustering decision rule to be

described) and the two classes that are mostoften confused

with each other are noted. The second property selected

is that property which is the best discriminator between

these two classes when used alone. The error among the K

classes is now recomputed using these two properties and

the third property is admitted on the basis of its ability to

discriminate among the two classes presently most con-

fused. This procedureis iterated.

Eigenvector Analysis

Eigenvector analysis is a technique used by some in-

vestigators for property selection [4], [5], [11], [12], [39],

[40]. (This procedure is known also as the Karhunen—

Loéve expansion andprincipal components analysis.) The

idea is to reduce the dimensionality of the property space by

creating new properties that are linear combinationsof the

original properties. The nth eigenvector property is

(3)

where u,; is the ith componentof the nth eigenvector. This

procedurefinds the subspace of the property space in which

the original sample vectors may be approximated with the

least mean-square error. The subspace is in fact the space

spanned by the eigenvectors computed from the sample co-
variance matrix. (The property values are standardized to

unit variance in this study, so the correlation and co-

variance matrices are identical.) The eigenvector properties

can be ordered with respect to the magnitude of their as-

sociated eigenvalues as explained above. Eigenvector prop-

erties are selected from this orderedlist.

Incomplete Eigenvectors

Since each eigenvector propertyis a linear weighted com-

bination of the 157 standardized EKG properties, the mag-

nitude of the weight on an EKGpropertyis an indication of

its importanceto a particular eigenvector property. For this

property selection technique, someofthe N original proper-

ties are eliminated from each eigenvector. The same prop-

erties are eliminated from each eigenvector property. The
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average absolute weight size was the elimination criterion ~

used ; the lowest weighted properties were eliminatedfirst.

The average absolute weight size for property 1 is

(4)

where i=1,°°:, N and n=1,-::, NE=number of eigen-

vectors. If N’ of the original properties are retained (N’ < N),

and the remaining properties and their associated weights

are relabeled 1 to N’, (3) becomes

N’

So UnjX;-
j=l

E, = (5)

Property Weighting by Eigenvector Component

A sixth ordering technique consists of computing the

average absolute weight of the ith EKG property over the

first 35 eigenvectors. (The first 35 eigenvectors were used

because of computational considerations. They account for

90 percent of the variance as shownin Fig. 1.) The EKG

properties are then ordered with respect to decreasing

average absolute weightsize.

Weighted Sum

If POE and ACC have merit as property selection cri-

teria, then it seems reasonable to combine them. The seventh

property selection technique combines the twofactors in a

weighted sum. Property i is ranked according to the value

of W:

W = w, (POE) + w,(ACC) (6)

where w,, w, are two weights with the constraint that
w,+w,=1. The POE values are first scaled to the range

(0, 1) as follows:

POE, —
POE

POEnin

— POEnin
 Normalized POE; = (7)

The first property chosen is the property with smallest
POE.The property that produces the smallest value in (6)

is chosen second. Before choosingthe ith property, the

absolute ACC values of the remaining candidate properties

at the ith step are rescaled to (0, 1) so that w, and w, con-

tinue to represent the true measure of importance of the

termsin (6). The POE and ACCtechniquesare special cases

of this one, in which the weights.assumetheir extreme values

(w, =1, w,=0, and w, =0, w, =1, respectively).

EXPERIMENTAL EVALUATION OF THE PROPERTY

SELECTION TECHNIQUES

Lower Bound on Testing Set Error Rate

Observer Variation: Error rates of a classificatory system

trained to discriminate medical data are determined by

comparing the computer’sclassifications to the physician’s

classifications. It is therefore important to establish the
error rate of the physicians’ diagnoses. Most physician

errors can be attributed to poorly collected data containing

noisy measurements and to variations in methods of mea-

suring waveform properties and in diagnostic criteria [3].
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Fig. 2. Testing set error rates of properties ordered by the weighted sum and sequential techniques.

The w,, w, data have been smoothed. Theerrorrates of properties randomly ordered are shown for
comparative purposes. Nine-class EKG dataare used.

For example, it has been reported that two groupsofelec-

trocardiographers reading the sameset of 561 EKGsdis-
agreed in over 4) percent of the normal—abnormalclassifi-
cations [13]. In our study, when the data from each ofthe
eight abnormal EKG classes were combinedinto a single
class and the data were processed as a two-class normal—
abnormaldiscrimination problem, a testing set error rate

of 7.6 percent was obtained for N=30 properties [25]. An
attempt was maile to increase the reliability of the data used
in this study by \1pdating clinical diagnoses upon the avail-

ability of pathological reports. Other techniques that were

used are described in detail in [32].
Irreducible Ervor: Another source of error, which relates

directly to the properties and diagnostic classes under con-
sideration, has been termed the irreducible error [8] and

can be visualizedas follows. A set ofN properties forms the
coordinate axes of an N-dimensional property space and

the probability distribution of each class is a surface in this
space. Decisionsare madeby assigning samplesto theclass

with the largest probability at the point in space where the

sample lies. If the properties are not perfect discriminators,

the surfaces will overlap and someregionsofthe spacewill
be covered byseveral classes. If an unknownis observedin

one of these regions, any decision rule must at times be in

error. This is the irreducible error. If a different set of prop-
erties is used, the distributions will change and a newirre-
ducible error results.

If the actual probability distributions for each diagnostic
class are known,the irreducible error is equal to

> {| re | P(k)P(X|k)dX (8)
k=1

Ry

Irreducible /zrror =

where R,is the region of the N-dimensional property space
where samples are classified as membersof class k and R,
is its complement. When the true distributions are un-
known, the irreducible error might be approximated by
determining the smallest error produced by a numberof

different decision procedures, each using the sameset of
properties. Another wayis to computetheerrorrate of the

nearest neighbor decision rule since this error is bounded
above by a function of the irreducible error [6], [7]. It has

been shown [6] that the nearest neighbor probability of
error in the K-categoryclassification problem is

TE < NNE < IE[2 — (K/K — 1)IE] (9)

where IE and NNE denote the irreducible and nearest

neighborerror rate, respectively, and K is the number of

classes. Therefore, the nearest neighborerrorrate is at most

twice the irreducible error regardless of the number of

classes and, thus, any other decision rule based on a large

data set can decrease the probability of error by at most
one half.

A lower boundonthe irreducible error rate was estimated
from (9) with K=9. The nearest neighborrule error rates

are reported in [25] for the properties ranked according to
the weighted sum criterion with weights w, =0.1, w,=0.9.
The smoothed data are plotted in Figs. 2, 3 and 5. It can be

seen in Fig. 2, for example, that this curve reaches the

asymptotic value of 26 percent at N=70.In this study, the
majority of errors occurred when distinguishing between

two class pairs: biventricular hypertrophy (BVH)from left
ventricular hypertrophy (LVH), and right ventricular con-

duction defect (RVCD)from right ventricular hypertrophy
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(RVH) [25]. These classes are very difficult to discriminate

on the basis of electrocardiographic data alone, even for

electrocardiographers.

Experimental Results

A histogram for each of the nine classes was constructed

for each property based onthe training data for each class.

A smooth curve, which was a weighted sum of two Gaussian

distributions, was fitted to each of the histograms using a

steepest ascents routine. These curves are the estimated

probability density functions (pdf’s) for the nine classes

with respect to a given property. Theclassa priori probabil-

ities were taken to be their fractional representationsin the

training set. Fora particular property, each training sample

was assigned to one class by computing the probability of

membership in each of the nine classes and choosing the

class with largest value. (The probability of membership in

class k for a training sample having property value x is pro-

portional to the pdf of class k at point x times the a priori

probability of class k.) The fraction of training samples

incorrectly classified is the expected POEfor that property.

A numberofdifferent weight values were used to evaluate

the property listings produced by the weighted combination

technique: w, = 1, 0.75, 0.50, 0.25, 0.20, 0.15, 0.10, 0.05, and

0 (where w, =1—w,). A ranked list is generated for each

set of weight values as explained in the previoussection. The
error rates on the nine-class testing set produced byselect-

ing the top N properties from each of these lists were de-

termined by a clustering decision rule that is described in

detail elsewhere [25], [26]. This decision rule consisted of

locating the dense clusters of data in the N-dimensional

property space for each class andfitting a Gaussian distribu-
tion to each cluster of the class. The pdf of class k was a

weighted sum of these Gaussian distributions. The weight

of each distribution was equalto the fraction of vectors that

fell within the cluster. Thus, the pdf of class k evaluated at

point X was

Cr 1

P(X|k) — » (fur) N (z
r=1 (20) I] a2,

eo(-23(8)
where C, is the numberof clusters found for class k; f,, 18

the fraction of class k points in the rth cluster of class k ; and

X,; and o,; are the center coordinate and standard deriva-

tion, respectively, of the rth cluster along dimension i. The

probability of membership was computed, knowingthe pdf,

as described above.
The testing set error rates of the weighted sum property

selection techniqueare plotted in Fig. 2. Each of the w,, w,

curves has been smoothed. The results of the sequential

technique are shown unsmoothedandare indicative of the

noise in the w,, w, curves before smoothing. The lowest

error rates on the testing data were found using the list of

properties obtained with weights of w,=0.1 and w,=0.9

and the error using the ACCproperty set (w, =0) is smaller
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Fig. 3. Testing set error rates of property sets selected in forward,re-

verse, and random order from the w,=0.1, w,=0.9 lists. Nine-class

EKGdata are used.

than theerror using the POE property set (1, = 1). The high

weight on the correlation factor in the best weighted sum

may be due to the high redundancy of the property set.

The error rates of properties randomly ordered from the

list of 157 are also shownin Fig. 2. The utility of the property

selection techniques1s evident. |

Thesensitivity of the ordering of the weighted sum prop-

erty list was checked by selecting the properties produced

by the w,=0.1, w,=0.9 ranking in reverse and in random

order. If the ordering hasutility, the error rates of proper-

ties selected in forward order should be lower than those
of properties selected in random orderand theseerrorrates,

in turn, should be lowerthan thoseselected in reverse order.

This hypothesis is confirmed as shownin Fig.3.

The results of choosing thefirst 40 properties according

to the sequential téchnique are examined in detail in

Table II. The clustering decision rule was used to determine

the error rate among the nine classes at each step in the

sequential selection procedure. The first property selected

was property 9 because it had the lowest POE. The error

rate using property 9 aloneis 64.6 percent and classes 5 and

2 are most confused with a total of 16 errors. The best single
discriminator among the remaining 156 properties for
these two classes was property 13. The error was recom-

puted using properties 9 and 13 andthe numberoferrors

between classes 5 and 2 dropped from 16 to 11 while the

overall error increased slightly to 65.4 percent. Classes 5

and 2 remained the two most confused classes and property

137 was found to be the best available discriminator. The

numberoferrors between these two classes droppedfurther

to 6 and the overall error decreased to 62.5 percent, and so

on. The data in Table II show thatafter the first 40 property

selections, the errors dueto the properties selected generally

consisted of confusing certain classes with class 2 (22 out

of 39 times). The error rates of the property set generated

by the sequential technique on this data are not small

enoughto justify the large amountofcomputation required

for this technique.

The results for both the complete and the: ineomplete
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TABLE II

RESULTS OF THE SEQUENTIAL PROPERTY SELECTION EXPERIMENT
 

 
 

 

 

 

 

 

 

 

 

Numberof
errors
among

Two most Number of these two Overall
confus:d errors classes

_

percent error
Number of classes with among after using the
properties the N--1 these 2 Property property current N
chosen, V properties classes chosen Nchosen properties

1 — — 9 — 64.6
2 5&2 16 13 11 65.4
3 5&2 11 137 6 62.5
4 3&1 12 140 11 59.6
5 7&2 14 148 9 64.2

6 5&2 13 13] 13 58.3
7 5&2 13 64 11 59.2
8 8&2 14 31 14 58.8
9 8&2 14 20 11 56.3
10 8&2 11 134 8 52.9

11 5&2 1] 60 5 53.3
12 6&3 8 76 10 50.0
13 6&3 10 125 7 47.9
14 6&3 7 79 9 44.2
15 6&3 9 37 6 45.0

16 4&2 7 142 7 45.0
17 7&8 9 36 8 43.8
18 6&3 10 73 7 45.4
19 7&8 9 68 4 42.1
20 4&2 6 153 6 42.1

21 6&3 7 58 6 41.7
22 6&3 6 126 10 44.2
23 6&3 10 88 8 39.6
24 6&3 8 52 7 39.6
25 4&2 7 40 7 40.4

26 4&2 7 123 7 38.8
27 4&2 7 146 7 37.9
28 4&2 7 110 8 40.4
29 3&4 8 32 4 39.2
30 4&2 8 47 8 39.2

3] 4&2 8 111 6 36.7
32 4&2 6 149 8 40.4
33 4&2 8 136 8 39.6
34 4&2 8 6 7 37.1
35 6&3 8 8 7 41.7

36 4&2 7 120 8 40.8
37 6&3 9 55 9 38.8
38 6&3 9 151 8 39.6
39 6&3 8 121 7 40.0
40 4&2 8 24 7 37.1
 

eigenvector techniques are shownin Fig. 4. The same EKG

properties were eliminated from each eigenvector property,

with the lowest weighted properties eliminatedfirst, to form

the incomplete eigenvector properties. For example, the

final experiment ised the nine highest average weighted

EKGproperties in each incomplete eigenvector property.

It can be seen thet the testing error rate does not increase

until half of the EKG properties are eliminated from each

eigenvector prope-ty. So if eigenvector properties are used

in this problem, «nly 78 of the 157 EKG properties will

have to be measured.

9 NUMBER OF ORDERED EKG

PROPERTIES USED IN EACH

WEIGHTED SUM PROPERTY
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Fig. 5. Comparison ofthe error rates of properties selected according to

the weighted sum, eigenvector, eigenvector component, and random

ordering techniques. Nine-class EKG data are used.

The error rates of all the property selection techniques

are compared in Fig. 5. Since the weighted sum technique

with weights of 0.1 (POE)+0.9 (ACC) produced a better

property ranking than either POEor ACCalone,this curve

represents the best results of these three techniques. With

respect to the testing set, it can be seen that the incomplete

eigenvector properties (each a weighted sum of 78 EKG

properties) produced the lowest error rates from N=1 to

N=20, with the 0.1 (POE)+0.9 (ACC) ranking next best.
The 0.1 (POE)+0.9 (ACC) ranked properties gave the

lowest errors beyond N=20. While the weighted sum and
eigenvectoranalysis techniquesgive the best property order-

ings, the weighted sum technique is to be preferred for

N<78 since only N original EKG properties need to be

measured rather than 78 original EKG properties for each
of the (incomplete) eigenvector properties.

Comparison of the Property Lists

A measure of the similarity between two rank-ordered

propertylists is obtained by correlating the position of given

properties within each list. The correlation coefficient be-

tween lists i and j, each of which contains 157 entries, is
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TABLEIII

CORRELATION COEFFICIENTS BETWEEN THE PROPERTY LISTS ORDERED BY FIVE OF THE SEVEN TECHNIQUES. VALUES DERIVED FROM(11).

1s
0.1 (POE) Eigenvector ICinval = re IC

POE ACC +0.9 (ACC) Sequential Component i#j

POE ] — 0.091 —0.031 0.323 0.071 0.129

ACC —0.091 ] 0.945 0.260 0.697 0.498

0.1 (POE)+0.9 (ACC) — 0.031 0.945 ] 0.203 0.708 0.472

Sequential 0.323 0.260 0.203 l 0.272 0.265

Eigenvector Component 0.071 0.697 0.708 0.272 l 0.439

157 The main results of the study are as follows.

d (Rin — 78-5)(Rjn — 78-5) 1) The error rates of properties selected by each of the

Ci = prs 37157 (11) seven techniques were lower than the error rates of proper-

> (Rin — 78.59| y (Rin — 785) ties randomly selected.
n=1 n= 1 2) Low mutualcorrelation amongthis set of 157 proper-

whereR,, is the position of property n onlist iand 78.5 is the

mean position on eachlist. The matrix of correlation coeffi-

cients is given in Table III for the five selection techniques
that rank-order the original EKG properties. The data

show that the property rankings produced by ACC alone
and a weighted combination of 0.1 (POE)+0.9 (ACC)are

are the two most similar (C =0.945) and that the POEcri-
terion, which is the poorest of the seven techniques, gives

the most dissimilar list to all others, on the average

(Cayg = 0.129).avg

SUMMARY AND CONCLUSIONS

Seven techniques have been evaluated for choosing pat-
tern recognition properties and their performances were
compared on a nine-class electrocardiographic problem.

One-hundred andfifty seven properties computed from the

vector EKG waveform were used. Seven techniques for

ordering the properties were studied. Their respective rank-

ing criteria are: 1) expected probability of error (POE) of
individual properties; 2) average correlation coefficient

(ACC) of a set of properties; 3) a sequential ordering tech-
nique based on minimizing the error between the two most

confused classes; 4) eigenvectors, each of which is a linear

combination of the 157 properties, ranked according to the
magnitude of their associated eigenvalues; 5) eigenvectors

fromwhich someofthe original properties have been elimi-

nated; 6) largest average contribution to the eigenvectors;
and 7) a weighted sum of POE and ACC.

An ordered list of properties is generated when the prop-
erties are ranked according to each criterion. Varying

numbers of properties chosen from each of the ordered
lists were used in a clustering decision rule and the error
rates produced by each set of properties were the perfor-
mance measures used to judge the quality of the selection

techniques. The error rates produced by properties chosen

according to each of the seven selection techniques were

compared with the error rates obtained whenthe properties
are ordered randomly.

ties is a muchstrongercriterion for property selection than
the single property probability of error.

3) The lowest error rates obtained by the weighted sum

technique were found using the list of properties obtained

from weights of 0.1 (POE) +0.9 (ACC).

4) The sequential technique requires an excessive amount

ofcomputing time.

5) Seventy-nine of the 157 EKG properties could be
eliminated from each eigenvector without affecting the
error rate of the eigenvector properties.

6) The error rates of the property set ordered by the
weighted sum technique are smaller than the propertyset

ordered by the eigenvector technique when the number of
properties is greater than 20.

7) For this problem, the weighted sum techniqueis to be

preferred since, for a subset of N properties, only N of the

original EKG properties need to be measured rather than

78 of the original EKG properties for each of the N incom-
plete eigenvector properties.

The results show that the properties selected according to
each of the seven techniques contain more discriminatory

information about the classes than properties randomly

chosen and thus all of the techniques are applicable to
pattern classification problems. The choice of a particular
selection method will depend onthe ease ofimplementation,
economic considerations, and the application.
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Feature Extraction on Binary Patterns
GEORGE NAGY, MEMBER, IEEE

Abstract—The objects and methods of automatic feature extrac-

tion on binary patterns are briefly reviewed. An intuitive interpreta-

tion for geometric features is suggested whereby such a feature is

conceived of as a cluster of component vectors in pattern space. A
modified version of the Isodata or K-meansclustering algorithm is

applied to a set of patterns originally proposed by Block, Nilsson,

and Duda, and to anotherartificial alphabet. Results are given in

terms of a figure-of-merit which measures the deviation between

the original patterns and the patterns reconstructed from the auto-
matically derived feature set.

INTRODUCTION

HE CUSTOMARYobject of feature extraction in

pattern recognition is to secure a more consistent and

lower dimensional representation of the differences be-

Manuscript received October 20, 1968. This paper was presented
at the IEEE Systems Science and Cybernetics Conference, San Fran-
cisco, Calif., October 14-16, 1968.
The author is with T. J. Watson Research Center, IB\I Corp.,

Yorktown Heights, N. Y.

tween the pattern classes than is provided by the primary

patterns. This allows the use of relatively simple decision

schemes to assign unknown patterns, as characterized by

the presence or absence of features, to predetermined

classes.

The work reported here is confined to binary patterns

and to features of the same species. Mach feature is a

binary vector of the same dimensionality as the patterns.

This restriction appears to eliminate many of the com-

monpictorial, i.e., those usually defined in two spatial di-

mensions, measurements, such as height and width, central

moments, medial axes or skeletons, lakes and bays, forks

and intersections, curve following and line encoding,

morpho- and quasi-topological invariants, extrema, local

gradients, and the like. On the other hand, it will be seen

that the vectorial features are consonant with n-tuples

and, in noisy patterns, with threshold logic. The relation-

ship between threshold logic units and the properties

sought by more complex measurements has been exten-

sively investigated by Alinsky and Papert.

Reprinted from /EEE Trans. Syst. Sci., Cybern., vol. SSC-5, pp. 273-278, Oct. 1969.
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Our aim is furtherrestricted to finding a minimal set of
features capable of reconstructing the input patterns to
some desired degree of accuracy. The discriminating power
of the features is not taken into accountat all. Of course,
if a feature set can be used for reconstruction of the pat-
terns, thenit is al:o sufficient to differentiate these patterns
from one another, though it may not do this efficiently.

It should be noted that there are always at least two ad-
missible sets of f2atures available: the set of all the indi-
vidual components, i.e., the unit vectors of the pattern
space, and the set of all patterns. The object is to find a
sufficient set smaller in number than the smaller of these

sets. In some aprylications there mayalso be a premium on

obtaining features each of which contains as few points as

possible.

The problem may also be very simply stated as the de-

composition of a binary M X N pattern matrix P into the

Boolean product of an AJ X K feature matrix F and a

A X assignment matrix A in such a way that K is a

minimum [7], [&]. The trivial admissible solutions then

correspond to th: choice of the identity matrix for either

F or A.

AL'TERNATIVE FORMULATIONS

The problem cf designing a highly nonlinearclassifica-

tion system in tvo stages has been approached in many

wavs. In terms ol adaptive systems, Rosenblatt and Wid-

row schools, it 1s equivalent to training a two-layer ma-

chine. The two l:.yers are not independent; the modifica-

tions in each la:ver must depend, through some back-

propagating erroy correction or adaptation scheme, on the

overall performance of the categorizer. Various prob-

abilistie methods have been suggested to promote the ex-

ploration of the vast number of possible weight assign-

ments, but suece:s still seems around the corner.

Viewing the problem as one of dimensionality reduction,

one could apply the statistical and algebraic techniques of

factor and discriminant analysis, principal components, or

Warhunen—Loeve expansions. Unfortunately, all of these

depend on the generally nonbinary eigenvectors of the ap-

propriate covariznce matrices, and there seems to be no

practical method of confining the resulting features to a
binary space. Thereare, to be sure, orthonormal expansions

defined on binary spaces, the Rademacher—Walsh func-

tions, for examp]2, which could be used as basis vectors,

but here also th: coefficients turn out to be real valued

variables. In this. direction, Chow’s investigations of tree-

dependence probably represent the best hope.

From the viewpoint of switching theory and Boolean

algebra, the task is to reduce the number of conjunctive

terms in 2 series of disjunections. No systematic methods

exist, to our knowledge, to accomplish this for expressions

econtaming of the order of several hundred variables. This

also applies to the related fixed word length coding problem.

It is sometimes sufficient merely to select a small sub-

set of features from a pool of intuitively designed or com-

puter generated candidates. Here the information theo-

retic and statistical distance criteria of Lewis, Allais,
Kamentsky, Liu, and others, are available. The serious
drawbackof this procedure is that no matter how many
features are tried, in any situation of practical interest
they represent only an infinitesimal fraction of all possible
combinations.

Buiocx, Niusson, AND Dupa (BND)

The point of departure for the experimental work re-

ported hereis a relatively simple set of patterns constructed

by Block, Nilsson, and Duda, to evaluate their own

feature extraction algorithms, as reported at the 1963

COINS symposium [1]. This excellent pilot study, de-

scribed in the learning machine idiom, is based on the

formation of successive intersections of the Boolean pat-

terns, regarded as subsets of a retinal set, to obtain the

core features of the pattern set.

Block et al. postulate the existence of a minimalset of

features such that 1) each pattern can be synthesized from

the features (as a union), and 2) the intersection of all the

patterns containing a given feature is that feature. While

the first condition is clearly essential, the second condition

merely restricts the numberof possible solutions to a given

problem. In practice it is relatively easy to satisfy both

conditions 1) and 2), the main difficulty being the require-

ment that the features constitute a minimalset.

The sequential algorithm proposed in [1] is shownto ob-

tain features satisfying all the requirements provided that

a certain threshold condition, guaranteeing that the size

of the smallest feature is much greater than that of the

intersection between any two features, is met. None of the

examples successfully processed by Block, Nilsson, and

Dudasatisfy this condition. In fact, it is quite difficult to

construct examples to meet the condition without resort-

ing to nonoverlapping features.

The number of computations required by the sequential

algorithm, for a knownthreshold, is proportional to N X

M X K?®, where N is the number of patterns, M is the

number of componentsin each pattern, and K is the num-

ber of features. BND also describe, without proof of con-

vergence, a faster parallel algorithm. The features are

found here in between N XK M X K andN XM X K?

steps, but each step requires verifying whether the pat-

tern set can be reconstructed with the already derived

features.

The pattern set used by BND is shown, together with

the unique optimal feature set, in Fig. 1(a) and (b). No-

tice that if the retina squares are renumbered as in Fig.

1(c), then the features can no longerbe easily obtained by

inspection.

FEATURE DETERMINATION AS A CLUSTERING PROBLEM

In the schemeof [1], each associator or A unit becomes

selectively attuned to a set of similar patterns, i.e., those

sharing a commonfeature. Thus this method is in a sense

equivalent to clustering the pattern vectors in the space

defined by the components.
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Fig. 1. (a) Pattern set proposed by Block et al. to test feature ex-
traction scheme. (b) Smallest set of binary features sufficient to
reconstruct the patterns of (a). (¢) Scrambled version of pattern
set produced by arbitrary renumbering of the retina squares.

The novelty of the approach proposed in this paperre-

sides in the determination of features by the disposition

of the component vectors in pattern space rather than

vice versa. Tight groups or clusters in this space contain

elements which tend to be present or absent in the same

patterns. Since this is precisely the intuitive meaning of

“feature,” success in our endeavour presumably depends

only on the availability of adequate clustering techniques.

The idea is illustrated in Fig. 2 by means of a simple

example consisting of four patterns on a 3 X 3 retina.

The binary pattern space is schematically represented by a

four-dimensional cube. Unfortunately an ordinary three

cube could not be used because it is impossible to con-

struct a non-trivial example with only three patterns, and

thus, at most, two useful features.

By definition the 7th element of the jth component vec-

tor is 1 if and only if the 7th elementis 1 in the zth pattern.

Thus if the patterns are considered as the columns of a

binary matrix, then the component vectors are the rows of

this matrix, as shownat the top of Fig. 2.

The three clusters of component vectors obtained by

inspection are circled in dotted lines. The collection of

retina points or components in each cluster form the

features shown at the bottom of Fig. 2. The reconstruction

of the original patterns from these features, although im-

 

 

Vz #100]
Pi Po Ps Pa

”. OOO Vi Oo 71 1 0
V2 O11 1

a” vz} 1 100
Pz V4 ] 1 0 0

Vs 1 10 0

Ps ve} 1011
V3 1 00 1

LS Vel 101.1
Pa Vs 0000

Component Vectors (4)Patterns (P_}

 (0,0,1,0) 7

 

‘Ts Vs, Va, Vs

   P.
Ps 2 We ’ Fs

Pa

(0,000) vg P,
   
(1,0,0,0)

Four Dimensional Binary Pattern Space

 

Features (Fe)

Fig. 2. Four-pattern example of disposition of the nine component
vectors V; in the four-dimensional pattern space, and the fea-
tures obtained by clustering these vectors by inspection.

perfect, is as good as can be possibly achieved with only

three features.

The principal clustering method used in the experi-

ments described further on is the popular K-means or

Isodata technique [2], [8] modified to allow overlapping

clusters. Both randomly assigned and computed starting

points were tried in clustering, with the latter proving

vastly superior.

The computed starting vectors were derived from a

similarity matrix obtained from the pair-wise distances

among the component vectors as suggested by Abraham

[4]. This procedure corresponds to the determination of

the disconnected subgraphs of the undirected graph as-

sociated with the similarity matrix. The necessary ulti-

mate connectivity matrix was obtained with Baker’s al-

gorithm [5] for Boolean matrix multiplication, although it

has been kindly pointed out since, by Prof. P. Robert of

the University of Montreal, that a procedure based on

Warshall’s algorithm would yield the same result more

rapidly [6].

Another option allows the experimenter to introduce his

own best guesses as starting features to see if the program

can improve upon them.

A trivial sufficiency condition for the success of the

algorithm is the existence of nonintersecting features cor-
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responding to <lusters concentrated at single points. As in
Block, Nilsson. and Duda’s method, small intersections
between the features represent the most favorable con-
ditions. The speed of operation of the least--squarescluster-
ing algorithm is proportional to N & Mf & K.

A Figure or Merit

Each feature set is automatically evaluated by the pro-
gram by comparing the pattern set, as reconstructed from
the features, tc the original set. The figure of merit is the
total number of bits, or Hamming distance, in which
thesynthetic pattern set differs from the original. In the
example given varlier, for example, the figure of merit for
the three features is two.
The syntheti3: pattern is the union of all the features

assigned to a given pattern. Features are assigned in turn
to every patter’, on the basis of closeness in the Hamming
distance sense, ntil the appropriate term in the figure of
merit begins to increase. At that point the synthetic pat-
tern 1s deemed complete.
To render the system less sensitive to false starts and to

avoid very similar features in the final set, two routines
based on the pattern synthesis portionof the figure of merit

computation were added to the program.

1) Whenevertwo features are similar, i.e., within a given

Hamming distance of one another, one of them is replaced

by the unreconstructed portion of the least successfully
reconstructed piuttern.

2) Theleast used feature, if used in fewer than a speci-

fied number of synthetic patterns, is replaced in the same

way.In either cise, the newset of features are used to form

initial cluster ce:aters for a renewedseries of iterations.

Neither of th:se heuristic attempts proved signally suc-

cessful; to cope with difficult practical problems, more

profound chang:will have to be introduced.

RESULTS

The algorithra described in the preceding sections was

programmed for an IBM 7094 computer, as shown in Fig.

3. The program requires about 1000 rorTRAN statements,

with two short :aachine language subroutines for comput-

ing distances between binary vectors. The running time

for each experiment is of the order of a few minutes.

For the BNI’ patterns the optimal set of features, as

shown in Fig. 1(b), were derived both with random and

with computed initial cluster centers. In the latter case,

the main clustering algorithm converges in three cycles at

an overlap thres.iold of five. The program tries a full range

of overlap thresholds, selecting the final feature set on the

basis of the lowest figure of merit. For these patterns a

figure of merit of O is reached at several values of the
threshold.

For a more severe test of the method, the 36-character

alphabet shownin Fig. 4(a) was constructed. This set was

designed withou’; any regard for reconstructibility in terms
of features.
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Fig. 3. Major portions of the feature extraction and evaluation
program. Tests for leaving the nested loops have been omitted.

TABLE I

NUMBER OF FEATURES
 
 

10 15 18 20
 

Random initial features 140 63 — —
Best guess features 112 45 — —
Similarity matrix features 85 42 33 18

 

Table I shows thefigures of merit F obtained with dif-

ferent methods of generating initial features and for vary-

ing numbers of features in the final set. By way of com-

parison, two sets of 10 features proposed by different per-

sons came in at F of 140 and 147,respectively, although

eventually the best features of these and the machine

generated set were combined to produce an F of 82 with 10

features. Whetherthis figure is the lowest possible remains
unknown.

The best sets of 10 and 15 features generated by the

computer are shown in Fig. 4 along with the corresponding

synthetic patterns. Of course, with 15 features the syn-

thetic patterns resemble the originals moreclosely.
It is noteworthy that with the 36-character alphabet the

sets of features consistently correspond to nonoverlapping

clusters containing all the component vectors. The BND

features have a 20-percent overlap.
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Fig. 4. (a) 36-character alphabet with significant overlap between
patterns. (b) 10 automatically derived features and corresponding
synthetic patterns. (c) 15 automatically derived features and
corresponding svnthetie patterns.

TERNARY FEATURES

While binary features are in principle adequate forfull

reconstruction of any binary pattern set, it is clear that for

the classification of noisy patterns there is much to be

gained by using multilevel features.

Consideration of black, white, or neutral features intro-

duces very little complication in the feature generating

portion of the program. The complement of each compo-

nent vector, which has a | in every position corresponding

to a pattern whichis 0 or white, at that point, is included

among the vectors to be clustered. Since the clustering

algorithms do not distinguish between the black and the

white component vectors, a given feature may include

both black and white elements with all others neutral.

Contradictions do not arise because a component vector

and its complementare always sufficiently far from one

another to be included in the samecluster.

The evaluation of a ternary feature set is, however,

dificult. The union operation cannot be used for pattern

reconstruction, and the figure of merit cannot be based

on the Hammingdistance. The arbitrary nature of the de-

cisions necessary to circumvent these difficulties renders

experimentation with ternary features quite unsatisfying.

Much effort was spent on trying to find satisfactory

ways of generalizing the reconstruction method and the

figure of merit. It soon becameclear, for example, that for

patterns of interest it is unfructuous to try to treat the

black and white points completely symmetrically.

Because in the figure of merit computation weights

must be assigned to neutral elements in the synthetic pat-

tern which correspond to black or white elements in the

original patterns, the ternary feature sets could not be

directly compared to the binary sets derived earlier.

Without the weights an all neutral synthetic pattern could

be misconstrued for perfect reconstruction.

In spite of our inability to formulate this portion of the

problem clearly, it seems worthwhile to continue to try to

close the gap between the rudimentary data reduction

techniques available for binary channels and their more

sophisticated continuous counterparts.

CONCLUSION

A new way of regarding features in binary patterns has

been introduced. An algorithm based on this point of view

was programmed for a digital computer, and the feature

sets obtained by the algorithm were evaluated by meansof

a precise error criterion.

The new method seems faster than previous, algor-

ithms. The transposition of the clustering idea from the

pattern vectors to the component vectors results in a

pleasing duality which is more fully developed in [7].

Although pictorial examples were used to test the

method, it is clearly quite general and would encounter

no more difficulty with the patterns of Fig. 1(c) than with

those of Fig. 1(b). This lack of specialization can be a

hlability as well as an asset.

A more serious disadvantage is the absence of satis-

factory sufficiency and necessity conditions for the correct

convergence of the algorithm. This showsup strikingly in

the four-pattern example, where there seems no way of

extending the set of three plausible features to the four

perfect features corresponding to the patterns themselves.

Recent work by Abdali shows that replacing the thresh-

olded Hamming distance by a logical inclusion test

leads to firmer theoretical foundations [7]. Since the in-

clusion method does guarantee complete reconstruction,

albeit sometimes with an excessive numberof features,

perhaps it could advantageously replace the similarity

matrix method as a preliminary step. This study also

contains a first attempt to apply a mechanistic feature

determination rule to automatically scanned handprinted

characters.

Thecalculations in [1, Appendix I] show the amountof

data reduction which could be realized by a workable

binary feature extraction scheme. Aside from the some-

what questionable applications in pattern recognition, the

development of improved feature synthesizing methods

could lead to impressive economies in narrow-band image

transmission and data compression, particularly where the
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data exhibits consistency or repetitiousness but the
volume transacted exceeds the capability of more con-
ventional coding techniques.
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Abstract—A new method for the extraction of features in a two-
class pattern recognition problem is derived. The main advantageis

that the method for selecting features is based entirely upon dis-
crimination or separability as opposed to the more commonapproach
of fitting. The classical example of fitting is the use of the eigenvec-
tors of the lumped covariance matrix corresponding to the largest
eigenvalues. In an analogous manner, the new technique selects

discriminant vectors (or features) corresponding to the largest
“‘discrim-values.’’ The new method is compared to some of the more

popular alternative techniques via both data-dependent and mathe-
matical examples. In addition, a recursive method for obtaining the
discriminant vectors is given.

Index Terms—Dimensionality reduction, discriminants, eigen-

vectors, feature extraction, feature ranking, feature selection, Kar-
hunen-Loeve expansions, multivariate data-analysis, pattern classifi-

cation, pattern recognition.

I. INTRODUCTION

N MANY PATTERN recognition applications it is
convenient to divide the problem into two parts,

feature extraction or selection and pattern classification.
Although numerous papers exist in the literature on de-
signing classification logic given a set of features, it is
only recently that significant attention has been given to
the area of feature extraction. An indication of this em-
phasis’on feature extraction is the special issue of the
IEEE Transactions on Computers devoted entirely to
this subject area [1].

Usually, an initial set of raw measurements is taken
from examples of each class of interest. For example,
the raw measurements might consist of digitized wave-
forms or images. The number of raw measurements is
frequently quite large. Simply stated, the goal of feature
extraction is to find a transformation which maps the
raw measurements into a smaller set of features which
hopefully contain all the relevant or discriminatory infor-
mation needed to solve the overall pattern recognition
problem.
Most of the feature extraction literature has centered

around finding linear transformations. The most popular
transform is the Karhunen—Loeve or eigenvector ortho-
normal expansion [2], [3]. Since each eigenvector can be
ranked by its corresponding eigenvalue, a subset of the
‘“‘best’’ eigenvectors can be chosen as the most “relevant”
features. Unfortunately, the subset chosen provides the

Manuscript received September 30, 1973; revised August 20, 1974.
The authors are with the Pattern Analysis and Recognition Cor-

poration, Rome, N. Y. 13440.

best fitting subspace. Recognizing that representational

accuracy is not the ultimate objective of pattern recogni-

tion, Fukunaga and Koontz [4] suggest a modification
of the eigenvector technique. A preliminary transforma-

tion for a two-class problem is found such that the eigen-

vectors which best fit class 1 are the poorest for represent-

ing class 2.
This paper suggests and derives an algorithm for ex-

tracting a set of features for a two-class problem in which
the criteria for selecting each feature is based directly

on its discriminatory potential. These features are based
on an optimal set of discriminant vectors which are an

extension of the discriminant plane derived by Sammon

[5]. For the remainder of the paper, the term ‘‘discrimi-
nant vectors” will be used for the new technique.

The following sections of the paper give a quick review

and counterexample for both the eigenvector and the

Fukunaga—Koontz transforms, a derivation of the discrim-

inant vectors, and a comparison of these different tech-

niques.

Besides the obvious use of discriminant vectors for
feature extraction, the discriminant vectors can be used
in interactive pattern recognition systems such as the on-
line pattern analysis and recognition system (OLPARS)
[6]. One objective of OLPARSis to find projections of
high dimensional data into one-, two-, or three-spaces so
an on-line analyst can both observe the inherent structure
of the data and design piecewiselinearclassification logic.
The discriminant vectors provide promising candidates
for the directions on which the data could be projected.

IJ. REVIEW OF KARHUNEN-LOEVE
TRANSFORM

Most of the attention in the literature concerning fea-
ture selection has centered around the discrete Karhunen—
Loeve or eigenvector expansion [2], [3]. In this proce-
dure, the original L-dimensional data vectors are trans-
formed by multiplying by the eigenvectors e; of the esti-
mated lumped covariance matrix >>. The eigenvectors
satisfy the equation

dD ej = Aye;

where); is the eigenvalue corresponding to the jth eigen-
vector. For real data, >> is a real symmetric matrix and

all the eigenvectors are orthogonal, i.e., e:‘e; = 0 fori ¥ j,

and the eigenvalues are all greater than or equal to zero.

Hence the eigenvalues can be ordered such that \, >

Reprinted from /EEE Trans. Comput., vol. C-24, pp. 281-289, Mar. 1975.
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22> -+* > dz > 0. If the eigenvectors are normalized
such that || e; || = e,;*e; = 1, then

e1!

@Dp =

e,!

is an orthonormal transformation such that y = ®x and

each y; = e,'x is the jth feature in the new spacefor the

input vector x. The mean square error obtained by pro-

jecting all the data into a subspace spanned by only a

subset A of K(X < L) eigenvectors is given by

e= >);
JqA

where A is the ‘et containing the chosen K eigenvectors.

For any K, ‘his error can be minimized by choosing

the eigenvectors corresponding to the K largest eigen-

values. In fact, it is known (e.g., see Fukunaga [7]) that
the mean square error in representing a set of random

L-dimensional wectors with only K elements of any ortho-

normal transfornation (i.e., any K-dimensional subspace)

is minimized by selecting the first K elements of the

discrete Karhur.en—Loeve expansion. Although this trans-
formation is optimal with respect to fitting the data, it is

not necessarily optimal with respect to discriminating

the data.
Fig. 1 shows « two-class two-dimensional pattern recog-

nition problem. The eigenvector transform would rank

direction e; as the best fitting direction or feature. How-

ever, it would «bviously result in a poor recognition rate.

III. FUKUNAGA-KOONTZ TRANSFORM

To avoid the conflict of goals just mentioned, Fukunaga

and Koontz [4] suggest in an earlier paper a preliminary
transformation for a two-class problem such that the

eigenvectors wiiich best fit class 1 are the poorest for

representing class 2. In order to briefly describe this

method, let Ry :nd R:z be the weighted correlation matrices

of class 1 and “, respectively, 1.e.,

Ri = Pid t+ pips’),

where P;, >-i, and p: are the a priori probability, the

covariance, anc the mean of class 7. Let 7 be a prelimi-

nary transform such that

7= 1,2

T (Ri + Re) Tt = TL.

Fukunaga shows that the eigenvectors of TRi7" are the

same as the eigenvectors of T7R.T' and all the eigenvalues

are bounded b; 0 and 1. Let the eigenvalues for class 1

be ordered such that

1>AM > AM > eee SD ALM > O.

Fukunaga proves next that \;@ = 1 — \.@. Consequently,

the best fitting eigenvectors for class 1 (e.g., A;= 1)

are the poorest for class 2 (eg., 4;= 1—A,% = 0).

Fukunaga recommends ordering the eigenvectors to be
used as features by picking the largest of | \;® — 0.5 |.

This implies that an eigenvalue of 0.5 is an extremely

poor feature. This may not always be true. The following
is a counterexample. Let

m6 = [0 5 O]; pw’ =(0 -5 0); Pi =P, = 1/2

8 0 0 2 0 0

“.={0 1 0]; YL=]0 1 0

0 0 8 0 0 2

Note that dimensions one and three have zero means

for both classes, while there is considerable separation

along dimension two. For example, if the marginal distri-
bution along dimension two was normal, a Bayes error

rate of 0.0003 percent would result. Along either dimen-

slons one or three a Bayeserror rate of 35 percent would

result if the marginal distributions were normal. Also

note that a double threshold is required. If a researcher

used features which had zero meansand different variances

for the classes, the classification logic should not be as

simple as any of the commonly used linear discriminant

functions.

Proceeding with the Fukunaga—Koontz transform,

8 O 0 2 0 0

Ry = 1/2)}0 26 0]; R, = 1/2)0 26 0

0 O 8 0 O 2

The matrix! 7 and the matrix TR; T' are given by

1/(5)¥2 0 0

T = 0 1/(26)1? 0

| 0 0 1/(5)1
0.8 0 O

TRiT' =|} 0 05 O

0 0.8 | 0

Using the Fukunaga—Koontz ranking (ie, | Aj? —
0.5 |), dimensions one and three are tied with the highest
rating (0.3), while dimension two received the lowest

rating possible, 1.e., 0.0.
In effect, two features with poor discriminatory infor-

mation have been chosen over the one feature with almost

perfect discriminatory capabilities. In addition, features

which prevent the use of a simple linear discriminant

have been chosen.

1 T consists of each eigenvector of & divided by the square root of
its corresponding eigenvalue.
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IV. DISCRIMINANT VECTORS

Before proceeding with a derivation of the discriminant

vectors, it is worthwhile to place the roles of discrimina-

tion andfitting in perspective. Usually if the original set

of features is carefully chosen, it is possible to design

logic based on thestatistics of a design set which achieves

a very high recognition rate. In order to cut the error

rate even further, the authors have found it practical to

use fitting routines in order to create reject strategies.

The fitting routines are applied after a class has been

tentatively identified by the discrimination logic. Our

experience has been to base the routines on the relation-

ships and rangesof certain features. These fitting routines

are usually designed from physical knowledge of what

must be present if a particular class occurs. If the fitting

criteria are not met, a reject decision is output. Other

fitting routines based on criteria derived from eigenvector
algorithms are also possible.

The objective of the discriminant vectors is to aid in

solving the discrimination portion of the task.

In order to find the best vectors for discriminating

between two classes, it is necessary to select some opti-

mality criterion. As our measureof discrimination achieved

by a vector d, let us choose either 1) the Fisherratio, that

is, the ratio of the projected class differences to the sum

of the within-class scatter along d, 1.e.,

(d‘a)?
Ri(d) = d‘Wd

where

d = L-dimensional column vector on which the data

are projected;

d‘ = transposeof d;

Xij¢ = (Bije*+Xij7z); 7th sample vector for class 7;

N; = numberof samples in class1;

fi; = estimated meanofclass 7, fi: = (1/N3):D4 xu;
A = difference in the estimated means, A = fir — fy;

within-class scatter for class 1, W; = re (Xig —

fli) (xiy — Bi)
W = sum of the within-class scatter, W-= Wi + Wa,

or 2) the modified Fisher ratio, that is, the ratio of the

projected class differences to the sum of the within-class
covariance along d,1.e.,

Ri(d) = (d'a)2/d'(S, + Sea

W; =

where

1

N;-1

 
Ni

D> (xi — Pi) (x3 — 8) = (Ni — 1):
j=1

is the estimated covarianceof class 7.
This criterion devotes equal attention to minimizing

the covariance of each class, while the former devotes

more attention to the class with more samples. Since both

criteria have the same general form, Anderson and

Bahadur [8| have suggested using

(d‘a)?
R(d) = “ad

where A = cW,+ (1 —c)We and 0 <c <1. R(d) will
be called the generalized Fisher criterion and will be used

in the derivation of the discriminant vector. For c = 0.5,

maximizing R(d) with respect to d is equivalent to maxi-

mizing Ri(d) with respect to d, while for c = (Nz — 1)/

(Ni + Ne — 2), maximizing R(d) with respect to d is

equivalent to maximizing R2(d) with respect to d.
Caution should be exercised in using any pattern recog-

nition technique, such as the Fisher criterion, which in-

herently makes use of the class means. This is due to the

modality problem, and it might be necessary to partition

each class into its modes before performing the discrimi-

nant vector analysis. If more than twoclasses are involved,

a pairwise voting logic can always be used [5 ].

With this background, a derivation of the discriminant
vectors can begin. Note that the generalized ratio R is
independent of the magnitude of the vector d (since
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R(d) = R(ad)). Consequently, only the direction of d is
important and d will be normalized such that d‘d = 1.
Sammon [5] gives an easily accessible derivation of the
first two directions which maximize the Fishercriterion R.
Thefirst direction d, is

di = a,A—Aa

where a; is choser: such that d,‘d,; = 1 and

a? = (AtTA-MPA),

The second bes= direction for maximizing R subject to
the constraint that di and d. are orthogonal (i.e.,
do'd, = 0 is

dp = aa{Aq! —_ b,LAP} A

where the constant b; is

» - (Am) 2A
1” At(A-)3A *

Now consider tie nth discriminant direction d,. Using
the method of Layrange multipliers, we wish to maximize
R(dn) subject to the constraints that d:‘d, = 0 for i =

1,2,--+,n — 1. Let. C be

_ (d,tA)?—~ — )d,'d, — «>
d,Ad, 1dn'd
 

°_ An—1dn‘dnt.

Setting the partia. of C with respect to d, equal to zero,

  

 

aC = 0=> 2K,A — K,22Ad,
dd,

— Aid; — +** — Ag-idn1 = 0

where

a A‘d, — d,'A

ne datAd,  dntAdn’

Therefore,

1 At An-l
= —AI|A — —d,— --- — d,-i|. 1
anA OK, 2Kn J )

Applying the coustraints, and letting 6; = \;/2K, and
Si; = d;A-d,;, we obtain

81 + SiBe + +++ + Si~—nBna = 1/ar

d,'d, = 0

° => 381 tees +  Sitn—yBn = 0

d,-i'd, = 0

Sm—yiBi + eee + Sa—nin—nBian-= 0.

(2)

Matrix notatio: can be used to simplify (1) and (2).

For (1), let

d, = anA{ A — [d:- ° -d,_1|B} (3)

where B‘ = [(1-++8,-1] and the constant (1/K,) has been
replaced by the normalizing constant an, i.e., aa is

chosen such that d,‘d, = 1. For (2), let

r/o| | 1Jon

0 0

S,~B = n-1 or B= 8,37 (4)

    
where

———n —1
— ont

S11 eee S1(n—1) |

Sr= Sj1 Sj(n—1)

§(n—1) (n—1)_ |

Combining (3) and (4), a recursive definition for the

nth discriminant vector can be obtained:

  |_S(n—1)1

_

( r/o “T

waed, = aA 4 A — [die++da-1Sz (5)

    
The computations involve the inversion of A and S,.

A recursive definition for finding the inverse of S,-1 is

given in the following equations. A useful identity (e.g.,
see Rao [9]) for finding the inverse of a symmetric n X n
matrix in terms of an (n — 1) X (n — 1) submatrix is

given as follows.

Let us partition S, in the following manner:

 

 
    

t Sin

Sri ° Sr-1 yn

Snr —_— e —_—

S(n—1)(n) Yn’ San

LS(n)1* * *8(n) (n—1) San _

where yp, = [Sqy1°* *Scny(in—y) |] and n > 1. Then
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Compute a. using recursive

equation (5)

  
  

Compute o n

equation (7) 
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Compute Ss, using

recursive equation (6)

  ;
== ~~

Fig. 2.

 
Recursive procedure for computing K best discriminant

vectors and discrim-values. Underlined symbols indicate bold-
faced symbols in text.

1 CaSn—t + Sr-ryn¥aSn—1 —Saryn

S,7 = —

Cn
~yn'Srzr 1

(6)
where the scalar Ch = San — Yn'Sn—1Yn.
Note that for each discriminant vector d, there corre-

sponds a “discrim-value” yn, given by

_ (dat)?
d,'Ad,, 7)

Yn

Each y, represents the value of the discriminatory cri-
terion R(d,) for the corresponding discriminant vector
d,. Noting that the discriminant vectors can be ordered
according to their respective discrim-values such that

N2R2Y32 °° > y2> 0

the analogy between the eigenvectors and the discrimi-

nant vectors 1s complete. The former describes the best

fitting subspace while the latter describes the best dis-
criminating subspace.” Since the principal purpose of pat-
tern recognition is discrimination, the discriminant vector
subspace offers considerable potential as a feature extrac-
tion transformation.

Fig. 2 shows the recursive algorithm for computing the
first K discriminant vectors and discrim-values.

V. COMPARISON OF FEATURE SELECTION
TECHNIQUES

Comparing data-dependent transformationsis a difficult
task. One methodis to assumea distribution for the data.
For multivariate class-conditional normal distributions
with a common covariance matrix, it is well known that
projecting the data on thefirst discriminant vector yields
the optimal Bayes results. Certainly for this case, the
discriminant vector technique offers the best results.

? Of course, “best-discriminating subspace” is only optimal with
respect to the criteria chosen.
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YS
class l

N Y
“Ne class 2 

Fig. 3. Illustration of class covariance differences.

A second metl:.od of comparison is via a mathematical

example. For tlie example given in Section III, the

Fukunaga—Koontiz transform fails to rank the features

according to thei discriminatory usefulness. However, the
first. discriminan!; vector d = k[>o, + >),|'A lies along
the second dimer.sion, which is the most significant feature.

The common factor in the two previous methods of

comparison is that the majority of the discriminatory

information is contained in differences in the mean vectors

as opposed to d:fferences in class covariance. For these

cases the discrim‘nant vector technique appears superior.

For those cases in which there is no difference in mean

vectors and sorae difference in class covariance, the

Fukunaga—Koon“z transform is more effective since the

direction chosen by the discriminant vector technique

would be based «nly on sample-size ‘‘noise.”’ Fig. 3 shows

a typical illustration of this case.

Unfortunately, when these cases occur, the probability

of error is usually significant. It has been the authors’

experience in practical problems to avoid these cases by

designing featur2s whose discriminatory information is

reflected in mean vector differences. ©
However, caution should be exercised in using any

pattern recognition technique such as the Fisher criterion

which inherently employs mean vector differences. This

is caused by the modality problem discussed by Sammon

[6] and illustrated here in Fig. 4. In this case the means

of classes 1 and 2 are identical, yet significant discrimi-
natory information exists along feature z.

To avoid mis:ing this information, the authors have

found it necessary to perform a modal analysis and parti-_

tion each class in.to its respective modesbefore performing

any logic design.

Another methc.d of comparison is via a data-dependent

example. One diificult data base readily available to the

a» P(x/cy)  
 

 

 

 

 

>

Fig. 4. Illustration of modality problem.
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Fig. 5. Ejigenvectorplot.

authors and also discussed in the open literature (see

Sammon[6]) consisted of hand-printed characters for the

class of fours and nines. The data base contained 175
fours and 908 nines. Each vector consisted of 40 features.
Fig. 5 shows a cluster plot of the data projected on the
plane defined by the eigenvectors of the lumped covariance

matrix corresponding to the two maximum eigenvalues.
A cluster plot is obtained by placing a mesh overthe area

in the plane spanned by the data. In this figure, each cell

in the mesh contains a 4 if only sample vectors from the

class of fours are present in thecell, a 9 if only nines are
present, and an arrow (J) if samples from both classes
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TABLE I

MULTIPLE OVERPRINTS FOR EIGENVECTOR PLOT
 

 

# of Samples # of Samples

 Column Row Class of Class in Cell Class of Class in Cell

24 13 4 1 9 1

33 13 4 1 9 1

24 14 4 1 9 ]

26 14 4 1 9 ]

31 14 4 3 9 1]

33 14 4 2 9 3

37 14 4 1 9 1

33 15 4 5 9 3

37 15 4 1 9 2

29 16 4 5 9 1

31 16 4 6 9 2

33 16 4 12 9 1

36 16 4 3 9 2

37 16 4 4 9 4

31 17 4 3 9 1

33 17 4 12 9 1

36 17 4 5 9 3

37 17 4 2 9 2

39 17 4 4 9 14

41 17 4 2 9 9

33 18 4 4 9 1

34 18 4 7 9 1

36 18 4 5 9 1

37 18 4 5 9 3

39 18 4 4 9 7

41 18 4 4 9 14

42 18 4 1 9 5

37 19 4 5 9 6

39 19 4 ll 9 6

41 19 4 7 9 4

42 19 4 2 9 1

23 20 4 5 9 1

26 20 4 3 9 1

34 20 4 3 9 1

36 20 4 5 9 1

39 20 4 15 9 l

41 20 4 9 9 1

39 22 4 12 9 l

18 23 4 3 9 1

24 24 4 1 9 1

23 25 4 1 9 1

41 28 4 1 9 1
 

Note: Only cells containing both classes are shown.
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Fig. 6. Fukunaga-—Koontz transform.

TABLEII

MULTIPLE OVERPRINTS FOR FuKuNAGA-Koontz TRANSFORM
 

 

# of Samples # of Samples

 Column Row Class of Class in Cell Class of Class in Cell

29 21 4 1 9 28

33 21 4 765 9 120
 

are present. Table I shows list of cells containing both

classes. One logic design procedure which results in a com-
plicated boundary would assign a sample which fell in a
cell to the class with the largest number of samples in

that cell.Even with this technique, 77 errors would result.

(Although this strategy could be used, the authors feel

that is an example of overdesigning on the training set.)

Fig. 6 showsa plot of the Fukunaga—Koontz transform
using the eigenvectors corresponding to the largest and
smallest eigenvalues (essentially 1 and 0). Table II lists

the multiple points in each cell. Since this plot may be

misleading, it should be noted that the range for the class

of nines in the vertical direction is from —0.000007061 to

+0.000004905. Taking into account the accuracy of the

computer, this range is essentially zero. Within this range

are 290 fours and, of course, all 175 nines. Using thecell

type logic previously mentioned, 121 errors would result.
Fig. 7 shows the data projected on the plane defined

by the first and second discriminant vectors, while Table

III lists the multiple points in each cell. The vertical

boundary shown in the figure would result in only 17
errors. Quite a striking improvement over the two pre-

vious methods!
The questions of the type of logic which can be designed

and the information contained in higher order discrimi-
nant vectors naturally arise. As previously mentioned in
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Fig. 7. Projection on first and second discriminant vectors.

 

 

 

TABLE III

MULTIPLE OVERPRINTS FOR FIRST AND SECOND DISCRIMINANT
VECTORS

# of Samples # of Samples
Column Row Class of Class in Cell Class of Class in Cell

42 16 4 89 9 1
33 20 4 19 9 3
29 21 4 2 9 l
31 21 4 16 9 3
29 22 4 7 9 3
26 23 4 2 9 6
28 23 4 l 9 2
24 24 4 1 9 15
21 25 4 1 9 31
23 25 4 1 9 7
 

the paper, the lugher order discriminant vectors can be

used to define potentially useful projection planes in such
man-machine i:teractive pattern recognition systems as

OLPARS[6]. Fig. 8 contains a projection of this previous
data base on tle plane defined by the fifth and sixth

discriminant vectors. Table IV contains the multiple

overprints.

Since the objective of the discriminant vector trans-

formation is to significantly reduce the dimensionality

while retaining ‘he discriminatory information, it should

be possible to «mploy sophisticated pattern recognition

techniques in tlie new space that were either computa-

tionally impractical or statistically insignificant? in the

original high dimensional space.
A final justification for selecting the discriminant vec-

tors is the intuitive notion that features based on dis-
crimination should be better than features based onfitting
or representing the data.
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On the choice of variables in classification problems with dichotomousvariables

By JANET D. ELASHOFF, R. M. ELASHOFF anp G. E. GOLDMAN

Stanford University, Unversity of California,
San Francisco Medical Center, and University of California, Berkeley

SUMMARY

We study how to choose two out of » dichotomous variables in classification problems. Our results
showthat positive correlation may increase discrimination while negative correlation may decrease
disc1imination. These results were not predicted from the analysis of the same problems with normally
distributed variables.

l. INTRODUCTION

Cc chran (1962) investigated the relation between the discriminating powerof the linear discrimin-
ant function and the discriminating powersof the individual variates used in the function. He assumed
the <ollowing model. Individuals are assigned to one of two populations on the basis of variables
x;(7 = 1,2,...,p). The x; follow a multivariate normal distribution with the same covariance matrix in
eack. population. Each x, has variance one in each population and meanzero in population one and mean
6; = 0in population two. The probability that an individual drawn at random from the two com-
bined. populations belongs to population oneis one-half. Errors in classification have the same cost and
the cost of observing variables may be neglected. The ‘ goodness’ of any set of variables is assessed by
the probability of a misclassification; and the classification rule is the Bayesrule.

Tl en, Cochran states the following importantresults. First, if the x; are independent, the best set of
k ve riables consists of the k best single variables. Secondly, for a set of two variables, any negative
corr: lation reduces the probability of misclassification, while positive correlation, unlessit is sufficiently
high. increases the probability of misclassification.

Reprinted with permission from Biometrika, vol. 54, pp. 668-670, Dec. 1967.
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Miscellanea

Cochran’s nice results are not generally applicable if the x; are dichotomous variables. The next

sections document this statement for the choice of two out ofp variables.

9. INDEPENDENT VARIABLES

If the variables x, are independent, then the k best variables chosen separately are not generally the

best k variables chosen k at a time. Let the variables x; (7 = 1, 2,3), have probabilities

p, = pr(#; = 1|populationl) and q,; = pr(x; = 1|population 2)

given by p, = 0-02, q, = 0°95; p, = 0-04, gq. = 0:90; p3 = 0-01, g3 = 0:80. Then the variables in order of

increasing probability of a misclassification are 7, 7, 73. However, the best two variables chosen jointly

are x, and x3, not x, and 24.

Whydoes this phenomenon occur? Bya relabelling of one’s and zero’s and populations we always

have
P< (9 =1,2); (1)

bya relabelling of the variables we always have

Q1—P1 > 2— Pe: (2)

In addition, we assumethat

the outcomeof the Bayes rule depends upon both x, and %y. (3)

We‘reform’ the parameters as follows: 1; = (¢;—p;), hj = 4(1—p;—@;) = 1,2). Then the prob-

ability of misclassification is
] f —I, 4 1—l,

2\( 2 2
  —1,[hy| —1y|hel}. (4)

Whenvariables are chosen separately, only the parameters /, and /, enter into the choice of the vari-
ables. However, the probability of misclassification is a decreasing function of each of the four para-

meters 1,,1,, |hy| and |he|.

3. DEPENDENT VARIABLES

If the variables x; are dependent, then small positive covariances between two variables may be
helpful and negative covariances may notbe helpful. Let us introduce two covariance parameters p,and

Pz defined by ,
pr(z,;=1 and 2, = l|population 1) = »,p.+ 1,

pr(z,;=1 and «wz, = 1|population 2) = q,q.+/e;

thus p, = E{(x,—p,) (X_—_P2)}. We assumethat

Pi(1— pe) Pi < G(1— 2) — Pre (5)

and PiPot+ Pi < U4 Po: (6)

The probability of misclassification is given by expression (4) plus

3(P2— P1)s (7)

when (3), (5) and (6) hold and p,,P. > 0; thus, positive covariances decrease the probability of mis-

classification for fixed p, and q, if and only if p, > po.
If the inequailty in (5) is reversed, the probability of misclassification becomes expression (4) plus

3(P1— Pe)s (8)

when (4) and (6) hold. For this situation, positive covariances decrease the probability of misclassifica-

tion for fixed p, and q; if and only if p, > (yj.
For negative covariances the probability of misclassification is given by (7), where now pj, Pz < 9.

Thus, negative covariances decrease the probability of misclassification for fixed p,; and q, if and only
if |p,| < |p,|. These conclusions are reversed when inequality (5) is reversed.

If p, = p, = p,; the Bayes rule assuming p = 0 is the same as the Bayesrule for arbitrary p. Thus,
the choice of the best two out of p correlated variables is the same as the choice of the best two ofp

independent variables if E{(a;—-p;) (@m—Pm)} = E{(2;— 4) (®&m—QMm)} for all m and J, m + 7.
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4. CONCLUSIONS

The relatively clear cut results on the choice ofvariables which hold for the normal] theory modeldo not
applwhen variables are dichotomous. To choosethe best subset of two variables when jt is not feasible
to compute the }p(p — 1) possible Bayesrules, a stepwise selection rule (see e.g. Raiffa, 1961) is always
at least as good as choosing the two best single variables. Since computation of the stepwise regression
rule is facilitated if E{(x,—p,) (2;—p,)} = EX(%— 1) (4; —9;)} (7 = 2, 3,...,p), one might wish to test
the null hypotheses that these inequalities hold.
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On the Mean Accuracy of Statistical Pattern Recognizers

GORDON F. HUGHES, MEMBER, IEEE

Abstract—The overall mean recognition probability (mean accu-
racy) of a pattern classifier is calculated and numerically plotted as

a function of the pattern measurement complexity n and design data

set size m. Utilized is the well-known probabilistic model of a two-
class, discrete-measurement pattern environment (no Gaussian

or Statistical independence assumptions are made). The minimum-
error recognition rule (Bayes) is used, with the unknown pattern
environment probabilities estimated from the data relative frequen-
cies. In calculating the mean accuracy over all such environments,

only three parameters remain in the final equation: n, m, and the

prior probability . of either of the pattern classes.
With a fixed design pattern sample, recognition accuracy can

first increase as the number of measurements made on a pattern

Manuscript received November 3, 1966; revised July 19, 1967.
This work was supported in part by RADC under Contract AF
30(602)-3976.

The author is with Autonetics, a division of North American
Rockwell, Inc., Anaheim, Calif. 92803

increases, but decay with measurement complexity higher than

some optimum value. Graphs of the mean accuracy exhibit both an
optimal and a maximum acceptable value of n for fixed m and f..
A four-place tabulation of the optimum n and maximum mean accu-

racy values is given for equally likely classes and m ranging from
2 to 1000.

The penalty exacted for the generality of the analysis is the use

of the mean accuracy itself as a recognizer optimality criterion.

Namely, one necessarily always has some particular recognition
problem at hand whose Bayes accuracy will be higher or lower

than the meanoverall recognition problems having fixed n, m, and p..

I. INTRODUCTION

OMEconsequences of the statistical model of pattern

S recognition will be presented.'*’~'°) It will be shown
that certain useful numerical conclusions can be

drawn from rather few assumptions. Basically, the only

Reprinted from /EEE Trans. Inform. Theory, vol. IT-14, pp. 55-63, Jan. 1968.
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assumption made is that some unknown discrete prob-
ability structure underlies the pattern environment. This
structure defines “he particular recognition problem under
consideration. A pattern is obtained by making a sample
measurement on the environment. Each possible pattern
is to be classified ‘nto oneof a set of classes by a recognition
rule having maxi-nal probability of correct classification
(Fig. 1).

 

RULE
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C
a
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Fig. 1. Known probability example.

It is hoped the.t this model is sufficiently simple and

standard'”’''*”’ to be readily accepted. The intent of the
present analysis 13 to obtain results which follow from

the statistical model itself; e.g., witheut constraining the

unknown probabilities to be Gaussian or otherwise para-

metric. For the same reason, no assumption of statistical

independencebetv, een pattern measurements will be made.

However, only the case of two pattern classes will be

treated.

An optimality criterion: will be proposed for recogni-

tion rules designer! from data sets of m sample patterns.

The measurement complexity n (total number of discrete

values) will also be used as a parameter. It will be shown

that it is also desirable to exhibit explicitly the prior

probability p,, of vlass c, as the third criterion parameter

(where p.. = 1 — py).

The criterion proposed is the mean correct recognition

probability P,,(n, m, pe1) over all pattern environments.

It is obtained by frst fixing n, m, and p,, and calculating
the accuracy P,,(n, m, pei) of the minimal error-rate

Bayes recognition rule for any given environment prob-

ability structure.''*! This accuracy is then averaged over
all such probability structures, giving the mean accuracy

P.,(n, m, Pea). The resultant equation will be numerically

evaluated for pra:tical ranges of n, m, and p,,. Some

interesting optimulity relationships will thereby be ex-

hibited.

A forewarning should be made of a potential mis-

interpretation of this criterion. In the literature, the term

“mean Bayes accuracy” often refers to averaging only

over the possible measurement values of a fixed recogni-
tion problem, namely, one having some knownenviron-
ment probability structure.'*®’ Here, the mean refers to
averaging over all recognition problems having fixed
measurement complexity n and prior class probability
Per. For example, this includes all subsets of parametric
and/or statistically dependent probability structures, as
well as all other discrete, normalizable structures. Con-
sequently, the criterion evaluates the overall performance
of a Bayes recognition rule. Middleton'”’ (Section 23.4)
presents a useful background discussion on criteria selec-
tion.

Il. Statisticat Mopgen

A statement of the statistical pattern recognition model

to be used will first be made. It is fairly standard and

contains as few assumptions and constraints as possible.

By the term “model” is meant that all the required

assumptions are stated, and the applicability of the sub-

sequent analysis to particular recognition problems can

be judged on the modelitself.

It is assumed that there exist two statistical environ-

ments called (caused by) pattern classes c, and c,. Each

environment is characterized by a constant but unknown

probability distribution over the n discrete values of

the pattern measurement variable x. Namely, P(x; | ¢)

is the probability of measurement value x; occurring in

environment c, for 1 = 1, 2, --- , n. These scalars are

termed the cell probabilities. Similarily, the unknown

distribution P(x; | ¢.) characterizes x under the second

environment c,. Vector measurements will be discussed

later.

By unknown, it is meant that no prior information

whatever is given on the 2n scalars P(x; | c;). Any pair

of distributions is equally likely a priori. Sample pattern

data from the environments is to be measured to es-

timate the actual P(x, | c;) existing in any specific rec-

ognition problem (the sample relative frequencies will be

used).

Thus, the only constraints are that all probabilities

be non-negative and that

> Pe lo) = > Pe le.) = 1. (1)

Whenever a measurement x is made, there is a known

prior class probability p,, that class c, is in effect and

P(x; | ¢,) applies. With the complementary probability
Deo = 1 — Der, class c, and P(z; | c.) are in effect. However,

the particular class in effect for any pattern is not known:

only the value x; produced by the pattern measurement

is available.

The pattern recognition problem is to design a recogni-

tion rule to predict (recognize) the pattern class most

likely in effect for each of the n possible measurement

values x,;. Its theoretic solution is known to be a maximal

class recognition accuracy Bayes rule.'*” Specifically, this
rule is to predict c; when x; occurs if P(c, | 7;) > P(e. | x);
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otherwise predict c:.’ This superficially simple rule states

to choose the more probable class, given the measure-

ment value xz, which has occurred. The resultant correct

recognition probability (accuracy) is then

S> [max P(, | 2) IPC) (2)
t=1 j=1,2

Pn, Der) =

» max P(c;, X;) (3)

= DF max (P(x;| ¢;)Deil- (4)

Note that no assumption of measurement statistical

independence is made (Appendix I). Also, a vector of r

discrete measurements, each having n, values, k = 1, 2,

. +, is clearly equivalent to a single measurement with

n= NN. °** TN, (5)

Appendix I details this equivalence.

Use of discrete measurement values in the model is

dictated by practical considerations. Namely, measure-

ments can be made only to a finite precision and con-

sequently only a finite number n of different values can

result. Thus 2 can be termed the measurement complexity.

Many recognition problems are explicitly digital, such

as the visual patterns usually arising in character recogni-

tion.!*)

Ill. InFrniTeE Data SETS

Although the unknown probabilities P(x; | c,) must

actually be statistically estimated from finite pattern

sets, the limiting case of known probabilities (m = )

will be first developed. For example, the two histograms

of Fig. 1 give P(x; | c,) and P(2;| c2) for a problem having

n = 5. Given that the classes are equally likely (p.1 =

Deo = 4), the optimal recognition rule for the five values

is as shown, and the recognition accuracy from (8) and

(4) is

P.,(5, 3)

= Ps, 1) + P(o, 2) + Ps, 3) + Pa, 4) + Pa, Xs)

= 0.65. (6)

It is obvious, but still important to note, that this

Bayes accuracy of 65 percent is the best possible for the

probability structure of Fig. 1. No amount of “improved

recognizer design’ can increase this figure. Clearly all

accuracies will lie between max (p,1, | — pi) and unity,

since the former can be obtained with no measurements

whatever (the rule would be always to predict the same

1 There exist theoretic cases where ties P(ci | xi) = P(ce | ri)
must be more carefully treated, or where randomized decision rules
arise.[5] Also, only the direct criterion of maximal recognition ac-

curacy will be used here. Nosignificant change in the analysis results
if the misrecognition probabilities are weighted in order to speak of
maximizing utility or minimizingrisk costs.

class, that having higher prior probability). In fact, it

will be shown in (16) that the highest average accuracy

(n = o) is only 75 percent for pa = 4,

Next, it may be observed that the distributions of Fig.

1 possess no particular continuity, symmetry, or modality

over the x; range. No reasonable parametric forms could

be assumed for P(x; | c:) and P(x; | cz), such as a pair

of Gaussian density functions

P(r; | C;) Nu;; on)

= (1/V/2007) exp [—(x; — uj)” /20%).

This nonparametric aspect of the pattern environment

appears to be common to many recognition problems.

It is further discussed in Section VII, using some sample

histograms from photographic recognition data.

Alternative parametric assumptions have been tried

by several workers. These include heuristic fitting of an

overlapping sequence of multivariate Gaussian densities

to the data.'®! Local smoothness assumptions have been

made on the densities, according to a metric which leads

to a nearest neighbor recognition rule.'*'''*! However, the

continuity constraints which would be imposed on the

model by these assumptions are of an entirely different

nature than the simple normalizing constraints of (1).

Also, the validity of such assumptions is often difficult

to verify (see Kendall and Stuart,''°’ Section 30.63).

In keeping with the desire for minimal constraints on

the model, no such continuity or parametric requirements

will be imposed at all. Instead, sample pattern data will

be used to estimate individually the discrete cell prob-

abilities by computing relative frequencies.

LV. EVALUATION CRITERION

A natural eriterion to evaluate recognition rule per-

formance is the expected or mean Bayes recognition

accuracy over all possible environment probabilities

P(x, | c;). Namely, no prior information on each scalar

P(x; | c;) is to be assumed before the sample pattern

data are measured. Any set of 2n positive real probability

values is equally likely as long as (1) is satisfied.”

Clearly, if any such set were made more likely than

another, then the criterion would emphasize the accuracy

on that particular recognition problem. Instead, the

criterion is to weigh equally all recognition problems

having given values of p., and n.

It should be remarked that p,; is explicitly exhibited

as a parameter because recognition rule performance

should be judged against the minimum accuracy of

max (pa, 1 — pe) using no measurements. If p.i lies

near zero or unity, then any recognizer should have

nearly 100 percent accuracy.

Thus the Bayes accuracy of (4) is a statistic, in that

it is a function of the random variables

2 This is equivalent to assuming Bayes’ postulate (Kendall and

Stuart,[°l sec. 8.4). Its’ use here is fundamentally based on the

discrete nature of the distributions.
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U; = P(a; | c:)

v;, = P(x; | ce) 7=1,2,--: ,n. (7)
To compute its mean or expected value, first note that

the u; and v; are .niformly distributed due to the “equally

likely” assumption of the model:

adP(u, Us, *°° Uy, Ui, V2, °°" , Vn)

= N GU, dus see AUn—1 dv, dvs (8)

Only 2(n — 1) differentials appear on the right of (8)
because the two normalizing equations (1) fix u, and »v,

in termsof the others. Now, the boundaries of the (n — 1)-

order distribution of the u; alone are given by theinter-

section of the hypercube 0 <u; < 1,7 = 1,2, ---,n —1,

and the symmetric hyperplane

ose AVn~1-

(9)

which is also caused by (1). An identical boundary struc-

ture holds for the v;, so that the normalizing constant

N in (8) is obtained from

1 ‘bus l-—ui~ue

1=N| [ aw| dus | dus ++:

0 a 0

l-uirug— tt tmun- 2

| dun
0

1 l—vs l-vinrvs

° | av, | Avs | dvs eee

0 0 0

Lo—vy7ve—°ttmrn-—o

| dv,|.
0

These two iterated integrals may be easily evaluated,

giving

(10)

N = [(n — 13). (11)

Equation (4) i: the recognition accuracy given the 4,,
v; and is multipl.ed by (8) to obtain a joint probability.

This is integratec! over the u;, v; range to get the mean

accuracy. By symmetry, each of the n terms of (4) will

have an identica| expected value, so that n times the

expected value ofthe first may be taken:

1 1

P.An, Da) = n{(n — YIP | [ Max (Deli, Deas) Au, dv,
0 “0

l-—wui l:-uyr—te lruimueg-tt*mun—2

. / dus | duz °° / dun—1
p 0 0

l—v1 l--virve l—-vy—vertt*~9n—2 7

| | do» | dv; an | do,| (12)

0 0 0

1 1

=na—-a ff a-wya - 0)
0 0

"Max (Det, De2d:) dv; duy. (13)

By requiring thal. p.1 < p.2. (without loss of generality),

the v, integral in. (18) may be broken into two ordinary

integrals. The first is over the range 0 < v, < p.its/Deo,

and the second requires an integration by parts. The u,

integral may be then evaluated as a beta function plus a

second, somewhat cumbersomeintegral whose integrand

may be expanded by the binomial theorem andintegrated

term by term, giving

c2

P..(n, Dei) = Pei + Do2(n ~ p(2+)

n

> n!

fo J (n — j)! (Qn — 7 — Vlpa/( — 2pad}’’
 

(Der < Der): (14)

For the commoncase p,: = Dez = 4, (14) reduces to

= on — 2ay  O%4, -
P.,.(n, 3) An _ 9 (15)

Equation (14) is plotted in Fig. 2 for p,, ranging from

0.1 to 0.9 and n from 1 to 1000. Smooth curves have been

drawn. for clarity, despite the actual discrete measure-

ment nature.
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Fig. 2. Infinite data set accuracy.

Note that each recognition accuracy curve begins at

max (pei, 1 — pei) forn = 1 (a single measurement value

which must always occur and therefore imparts no in-

formation). It monotonically increases with the measure-

ment complexity. )

Each curveis also near its asymptotic maximum recognt-

tion accuracy for all n >> 2. This value is significantly less

than 100 percent unless p,, is near zero or unity. In general,

the knee cf each curve would occur near n = n,, the

number of pattern classes defined.

The asymptotic maximum accuracy is obtained by

letting n — o in (13):

P,,.(n = o ’ Der) = Dei + Deo = Dee + Di = 1 ~~ PeciPe2-

(16)

V. Finite Data SETs

Equation (14) gives the mean Bayes accuracy in the

limiting case where the probability structure is exactly

measurable, by means of an infinite set of sample patterns
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(m = o). At first glance, it might seem that since only

finite data sets exist, the true mean accuracy P,,(n, ™, Der)

could only be approximated. This is because only finite-

sample estimates of the true probabilities in (4) can be

made. Thus, the statistical model would have to be

evaluated by Monte Carlo trials. Experimental sets of

testing patterns would be required in order to measure

the overall mean accuracy.

It is interesting that this is not so. An exact expression

for the true mean accuracy can be derived, extending (14)

to finite m. Of course this analytic preciseness is obtained

at the cost of using a mean accuracy criterion. One neces-

sarily always has some particular recognition problem at

hand with unknown but specific values of P(x; | ¢;). It

may therefore have an accuracy either higher or lower

than the overall mean.

The most direct procedure for employing the m sample

patterns to estimate the cell probabilities is to use the

relative frequencies.'**! If m, of the samples are taken
under class environment c,, and measurement value 2,

occurs s times, then the estimate is P(a, | c.) ~ s/m.

Similarly, if + of the m, = m — m, samples taken under

c, also fall in cell 2,, then P(x, | c2) ~& r/mg.
Such direct use of the relative frequencies is quite

natural, as compared to alternate methods using the

sample moments.'*”? It also offers certain well-known
optimality characteristics. For example, the relative fre-

quencies are unbiased and consistent, and also are the

maximum-likelihood estimates of the cell probabilities

(Appendix I).

To avoid sampling bias, it is necessary that m, =

Daim and m, = p,2m (truncated to integer values). Con-

sider the first term z = 1 in (4). In place of

max [P(a, | ¢))pei, Pay | C2) peo),

one has

max |-£ Pei -— pa| = asts ”.
mM, Ms m

Thus, the relative frequency recognition rule forclassifying

x, 1s to choose c, if s > rand cif s < r. If s = r, choose

the class with higher prior probability. Retaining the

previous arbitrary assumption p.. < p2, choose cz for

such ties.

In genera], the rule for classifying xv, is

predict f
CG ius, <7;

(17)

if 8; > 1; (18)

(De < D2) °

Now, the relative frequencies tend to the true prob-

abilities as m — o. Also, the Bayes rule accuracyis the

maximum attainable for any rule. Consequently, one

expects that the accuracy curves for (18) will lie below

those of Fig. 2 and rise into coincidence as m > o.

Appendix II gives the derivation of the recognition

accuracy for finite m; the result is

P.,(n, m, Der)

aT (ma = 1+(omg =r £2) ts = 1+n= 2) |

7 ¥ S| (mz + 1)(m, + 2) +++ (mg +n — 1)

| (mms Deon <22)n=8-0 2) (r, 8)

(m, + 1)(m, +2) +++ (m, +n—1) mw

where

| ola for s>r

g(r, 8) = n(n — 1): : (19)
r+lrt <p.Io ms En for s<r

Equation (19) is best numerically evaluated by digital

computer (compare Appendix II), and is plotted in Fig. 3

for the common case of p.1 = Pe = 3, nN ranging from

1 to 1000, and m ranging from 2 to 1000. The limiting
m = © curve from Fig. 2 has been appended. Smooth
curves have again been drawn forclarity.
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Fig. 3. Finite data set accuracy (pa = 3).

The most interesting aspect of Fig. 3 is the existence

of an optimal measurement complexity n., which maximizes

the mean accuracy for any given m < o. Examples are

Nopt = 17 for m = 500 and n,,, = 23 for m = 1000 (an

interpretation of the relative magnitude of n,,, will be

made in Section VIII). This behavior is quite reason-

able. With m fixed, the accuracy first begins to rise

with n as in Fig. 2. It ultimately mustfall back asn/m—> ©

because the precision of the probability estimates mono-

tonically degrades. It is shown in Appendix I that this

precision degrades as o(s/m,)/p(zle,)aW/n/m. However,

the effect is easy to see when n > m because most of the

2n cells will contain no samples at all. This then gives

zero relative frequencies for these cells, irrespective of

the actual cell probabilities. Rule (18) then consists

mostly of r; = s; = O ties, which are all resolved by

choosing Cp».
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Consequently, is varies from one to infinity, one ex-

pects the accuracy to rise to a maximum,fall back, and

asymptotically approach max (p,i, ).2). Table I presents

the optimal values for equally probable classes.

TABLE I

Optiv.4L MBASUREMENT COMPLEXITY
 

 

 

m Nopt Por (M,Nopty 3)

2 2 0.5833
5 3 0.6350

10 3 0.6548
20 4. ().6791
500 6 0.7031
100 8 0.7161
200 11 0.7257
500 17 0.7345
1000 23 0.7390

co co 0.7500
 

VI. UnEQquau Cuass PROBABILITIES

Equation (19) may also be used to illuminate what

appears to be a critical aspect of Bayes recognizers de-

signed from finit:: sample sets. Namely, if one pattern

class 1s appreciably more likely to occur than another,

then there exists a maximum acceptable measurement

complexity nmax. Its value increases with m. Specifically,

for 2 > Mmax(m>, the recognizer is inferior to simple

random guessing ‘i.e., always predicting the more likely

class c, irrespective of the measurement value occurring).

Note that the act:.tal value of p.. need not be knownhere,

only that it excee:ls p,1.

Thus, the general statement is that P,,(n, m, Da) <
max (p.1, De2) for all n exceeding some Max, if Pe sufhi-

ciently differs from peo.

Rather than present an algebraic proof of this state-

ment, it seems more useful to exhibit the effect directly

using (19). Fig. 4 presents the accuracy curves for the

case of p.. = 0.:. The maximum values nyax.(m) occur

where the curves fall below the level P,, = 0.8. Note
that Mmax(m) ~ 1%./2. Graphically, the curves are similar
to Fig. 3 except that the asymptote 0.80 is approached

from below. This random-guessing asymptote at n = ©

is due to the ties in (18).° Aninterpretation of the relative

magnitude of Na Will be made in Section VIII.

It is not difficu t to state the reason for this behavior:

If insufficient sample data are available to estimate the

pattern probabilitws accurately, then a Bayes recognizer 1s

not necessarily optimal. Stated this simply, of course, the

statement is obvious. None the less, the problem is often

ignored. In additi»n, the statement remains qualitatively

valid if the probubilities are assumed to be parametric

(e.g., Gaussian). Ihe problem is most severe when one

pattern class dominates (p,. near unity), and vanishes

when both classes. are equally likely.

’'The minimum <f each curve thus gives the worst case of a
recognizer which is tod complex for its desiga pattern set. In practice,
a recognizer inferior to simple random guessing should berejected.
The asymptote line :?., = 0.80 would thus apply for all m > mmax.
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Fig. 4. Finite data set accuracy (p.1 = 4).

VII. ExprerRIMENTAL

lig. 5 presents relative frequency (histogram) data

gathered from an aerial photograph processor. It was

designed to distinguish industrial areas (ci) from res-

idential urban areas (c,). The pattern measurement made

is the edge density. An edge is defined to exist at any

point on the photograph where the two-dimensional

intensity-gradient magnitude |VJ| exceeds a threshold

value. Note that an edge so defined is not necessarily

part of a continuous boundary.

Essentially this measurement is able to distinguish

between the two classes because homes tend to be small

and closely packed, compared to industrial areas. The

latter typically contain fewer and larger structures, as

well as low-detail areas such as storage yards or parking

lots. Consequently, the residential histogram of Fig. 5(a)

is concentrated towards the higher edge density values.

It is fairly disjoint from the industrial histogram.

Take these histograms as estimates of the cell prob-

abilities and assume p.1 = Poo = 3. The Bayes accuracy

estimate from (4) is P,, & 0.787, calculated as in (6).

A total of m = 315 sample patterns was used in the

histograms, and there are n = 32 measurement values.

From Fig. 3, the mean accuracyis then P,,(32, 315, 0.5) =

0.723, somewhat below the particular value of 0.757

obtained. Although the choice of 32 measurement values

is higher than the optimal value of 18 (Table I), the mean

accuracy is not appreciably less than its maximum of

0.729.

As a final experimental topic, one can show that this

photographic recognition problem is indeed discontinuous

and non-Gaussian. More broadly, it cannot be fitted by

reasonable parametric probability functions. This con-

clusion rests on the large histogram discontinuities shown

in Fig. 5; for example, the 210 percent increase from cell

31 to cell 32 under c,. Or note the 77 percent decrease

from cell 14 to cell 15 under ¢,.

However, it must be shown that these discontinuities

reflect the actual underlying probabilities. They could

conceivably be caused merely by random variations due

to the finite sample size of 315.
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A rough argument usffices to dispose of this possibility

It is well known that the relative frequency 7,;/m, for

each cell of c, (say) is a binomially distributed random

variable (Appendix I). Its expected value is equal to the

true cell probability u;, and its sampling varianceis

o = u,(1 — u,)/m,

= r(m, — r;)/m, + O(m7™”).

It is unlikely* that the histogram values 7; /7, will deviate

from the true cell probabilities by more than o,. In Fig.

5(a), m, & 3815/2 and cell 32 is thus unlikely to have

true probability less than 0.152 — o3. & 0.123. Cell 31

is unlikely to be more probable than 0.049 + o3, & 0.066.

Therefore, it is highly likely that a significant discon-

tinuity exists between ps3, and p32 themselves. Roughly,

“highly likely’? means having probability about 1 —

(0.159)” = 0.975.

A moreprecise binomial argument gives Pr[p3. < 0.123]

= 0.118 and Pr[p3; > 0.066] = 0.271. The discontinuity

likelihood is thus nearly 1 — (0.118)(0.271) = 0.968,

rather than 0.975.

(20)

VIII. Concuusions

Certain results have been drawn from the statistical

model of pattern recognition by using mean value argu-

ments. Most interesting is the existence and size of an

4 Using the Gaussian approximation to the binomial distribu-
tion,!6l [4] the probability of a sampling deviation more than co;
in one direction is about 0.159. It is 0.023 for more than a 20; devia-
tion.

optimal measurement complexity, Nop, as well as a maxi-

mum acceptable complexity.

If all pattern probabilities were known in advance, the

recognition accuracy would be expected to be nearly

maximal ifn > n, = 2 (n, being the numberof pattern

classes). More than (say) 20 possible measurement values

gives little additional aid in making a simple decision

between two dichotomousclasses.

The recognition accuracy curves confirm this intuitive

feeling. In Fig. 2, the infinite data set curves have sub-
stantially reached their asymptotes at n = 20. In Fig. 3,

Nopt ranges from 2 to 23 for 2 < m < 1000 sample patterns.

On the other hand, one can easily envision, with Marill

and Green,'”) a vector pattern having 10 component
measurements of 10 possible values each. From (5), this

gives n = 10'°, or some twentybillion cell probabilities

to estimate, merely to classify patterns into two classes.

Howis one to reconcile this with (say) the optimal value

of n = 23 if only 1000 sample patterns are available?

The answer appears to be that only 23 values are

statistically significant. A (singular) mapping should be

sought to transform the 10°" values into 23 before using
the sample patterns to compute the recognition rule. In

other words, the problem arises because the original
measurement structure is incorrectly defined.

Sometimes this mapping can be found by reconsidering

the physical origin of the recognition problem at hand.

However, statistical assistance in measurement selection

is often required. Shannons’ information measure’”!''*”!

or Kullbacks’ divergence measure'**’ might be evaluated
for each of the ten pattern vector measurements, and the

lowest scoring five discarded.'**!''**’ This would leave
n = 10°. More directly, score on the estimated accuracy

is derived by inserting (17) into (4).

Next, individual measurement reduction may be per-

formed on the five remaining measurements. Suppose the

ten values of each are reduced to two by forming in-

dividual recognition rules. Since the five rules will usually

disagree, a final measurement combination of the 2° values

must be made. This value of 32 is not far above the

optimumof 23, so that a combining recognition rule can

be computed by (18) for a final class prediction.

It should be emphasized that these examples of mapping

by measurement selection, reduction, and combination

are not proposed as developed techniques. Rather, they

are illustrative of a framework for further investigation.

Also of interest would be an extension of the present

analysis to n, > 2 classes. This is of no conceptual diff-

culty, yet a general equation giving P.,(n, m, 2, Der)

for all n, has not been found.

APPENDIX [

VECTOR MEASUREMENTS, STATISTICAL INDEPENDENCE,

AND SAMPLING IF'ORMULAS

A discrete vector-pattern measurement y = (y’, y’”,
+++, y?, y’) may be nonsingularly mappedto its equivalent
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scalar measurement x by the x; cell index equation

1=ftmiye -— 1) + MNJ — 1)

++ NNoN3 (4a — 1) +s $NyNe. *°: n--i(j — 1). (21)

Here, 7, is the cell index of component y*, 1 < 3, < m:,
for k = 1, 2, - - , r. This mapping is quite useful for
computer meast.rement handling, and is inverted by

subtracting unity from 7 and then successively dividing

by 2, %, °°: , 2,3 extracting the remainders as 7, — 1,

jo — 1, +--+, J, — 1. Indeed, (21) expresses the representa-
tion of 2 — 1 in s compound-radix number system having

digit radii m1, n; --: , n,. Equation (5) follows directly.

To illustrate the probability constraints caused by

assuming statistical independence'®’ among the measure-
ments y", letr = n, = nz = 2. Assume that the component

measurements y’, y are statistically independent under

each class envircament; viz., P(y’, y’ | ¢) = Ply’ | ¢)
P(y’ | c;) for 7 =: 1, 2 and the two values each of y* and
y'. Using mappi:ig (21), this leads to the two probability
constraints

P(x, | ¢)P(as |e.) = P(ae | ¢.)P(as | ¢.),

This type of constraint would have to be imposed in
addition to (1).

Next, the sampling distributions used in the text and
Appendix II will be briefly developed. (This is largely

a collection of scattered standard results.) Take environ-

ment c, of the model and let u; = P(x; |c1),2 = 1,2,-°-,7.

Of m independer:tly sampled patterns, the probability of

obtaining a combination with r; samples in cell 7 (@ =

(i = 1,2). (22)

. ss 01,111,2, --- , n) is clearly multinomial!''""?:

Pry, 12, se Tn Mm, U;, Uso, on , Un)

m! 1,,72 nSy”Un (23)
rlreler r,!

where

n

Tr; = mM. (24)

i=1

For an individual relative frequency 7;/m, the distribu-

tion is binomial, since there is probability u,; of falling

in cellz and 1 —- u, of falling elsewhere:

m! ut
r,! (m — r;)! .

The relative frequency can thereby be easily shown

to have expecterl value

P(r; | m,u,) = (1 —wu,)”"™. (25)

{11)

u(r,/m) = uy (26)

and variance

r(r;/m) = ul — u,)/m. (27)

Since the expected value is equal to u,, the relative fre-

quency is an unbiased estimator of u;. Since the variance

vanishes at m =: ©, it is also consistent. The maximum-

likelihood estimator @, of u; is obtained from the likelihood

equation”):

d[log P(r; | m, 4] _

au, 7
 0. (28)

Using (25), this shows that the relative frequency is the

maximum-lItkelthood estimator 1; = r;/m.

For a measure of the precision of the relative frequency

estimator, one may take o/p from (26) and (27):

a(r;/m) ~ 7

uJ) n/m.
Here, u; ~ 1/n has been used to get an order of magnitude.

(29)

APPENDIX II

DERIVATION OF ACCURACY WITH FINITE Data SET

The derivation of (19) begins analogously to that of

(14), except (17) is used instead of the max function in (4).

As before, the contribution of measurement value 2, 1s

equal to any other by symmetry, giving

P.(n, m, Der) = NE \upaP|s; > 7; | 21, v, |

+ vpePls: <1 | U1, vil}, (Der < Dev) (30)

where u, = P(x, | c), »: = Pa, | c2). Now s; and 7

arise independently from m, samples of environment c,

and mz of cz (m, is the integral part of p.m and m, =

m — m,). Consequently, the joint probability of s, and

r, is the product of two binomial distributions of the

form (25):

m,! my!

s,! (Mm, —_ si)! r,! (Mm, — r,)!

“uy — uu)”v'1 ~— vi)?,

 

Pls, | ws, v1] =

(31)

The cumulative probability of s; > 7, is obtained by

simply summing (31) over all 7,, s, values obeying the

inequality. Interchanging this linear operation with the

expectation operator in (30) (representing a 2(n — 1)-

fold integration over the u,, v; ranges as in (10), the ex-

pected value of a single term of the s, > 7, variety may

be seen to be

n(n — 1)"pa(si + 1)

|eat + De rt 2)= +n = 2))

(mo + 1)(m, + 2) --- (m+n — VD

| — si + Dm — 8 +2) ++: (m — 5 +n = 2)|
(m, + 1)(m, + 2) +--+ (m +n)

(32)

A term of the s, < 7, variety is obtained from this by

interchanging C2 and C,, 8, and 7, m, and m,, and the

final form of (19) then directly follows.

Numerical evaluation of (19) requires either a three-

parameter tabulation or a digital computer. For n =
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m = 1000 in Fig. 3, there are about 10° multiplications
in the four continued products which range up to mag-

nitude 1500!/500! = 10°°*’. Consequently, a numerical
tabulation is the more reasonable approach (four-place

tables for p,, = + and 3 are available from the author).
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Comments ‘‘On the Mean Accuracy of Statistical

Pattern Recogniiers”’

K. Abend and T. J. Harley, Jr.

In the above, Hughes [1] presents curves! of mean recognition
accuracy in whic:. performance? using measurements can fall

below performance based on prior probabilities alone. He explains
this situation with she statement: “If insufficient sample data are
available to estimae the pattern probabilities accurately, then a
Bayes recognizer is :10t necessarily optimal.’ This seemed paradoxi-
cal, since the term ‘Bayes’? means minimum average risk (Le.,

Manuscript received May 1, 1968; revised July 1, 1968. This work was partially
supported by S. Air Force Contract F33615-67-C-1836 for the Aerospace
Medical Research Labo -atories, Wright-Patterson Air Force Base, Ohio.

1 Hughes’ Fig. 4.
2 The terms “‘perfortaance’’ and ‘“‘mean recognition accuracy’”’ are used inter-

changeably to mean av::rage probability of correct recognition (see [1] for details) .

optimal performance). The problem is that Hughes has not used
the Bayes procedure for unknown cell probabilities. Instead, he
employs the Bayes rule that would be appropriate if the cell proba-
bilities were known; but since they are in fact unknown, he sub-
stitutes the sample cell frequencies. This procedure is only an ad hoc
approximation to a Bayes procedure. A truly Bayes procedure for

distributions with unknown parameter values—in this case thecell
probabilities of the multinominal distribution—would use the
design samples in an optimum manner, and would mazimize the
mean recognition accuracy. In general, such procedures do not
employ estimates of the parameter values in the same way that
the true values would be used if they were known. In the problem
treated by Hughes the useof an estimate turns out to be appropriate
provided that the expected value of the parameter given the design
samples is used rather than an unbiased estimator.
Let y-; represent the set of design samples from class c;, 7 = 1, 2.

The Bayes procedure [2] (which maximizes the probability of

Reprinted from /EEE Trans. Inform. Theory, vol. \T-15, pp. 420-423, May 1969.
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correct recognition given the design samples) chooses the class that

maximizes

D(x, C; | Ye) = p(x; | Yes Ci)Deis (1)

where, for example,

D(x; | Yers ¢,) = | ws.

with u; “4 p(z; | c.). Thus, it turns out that the Bayes procedure
is obtainable by using an estimate @; of the ith cell probability.
The Bayes procedure differs from the procedure in [1] only in that
it specifies the use of the conditional expectation of u:, given the
design samples as the estimate of wu; We now proceed to solve for

ui; explicitly.
Let r; denote? the number of samples (out of a total of m from

class c,) for which the measurementvalue x; occurs. The probability

Yer) du; & Ui; (2) 

of r = (ri, +++, Tn-1) is Multinomial:4

pr | m, U) = piri, mt Pn | ™m,Ury, °°" , Un—1)

m! rats raaa
rll es r,) te O07 Me

(Lu + = Ua), (8)
where 7, is shorthand for m — r1— +++ —?fn_1, and Un is given by

yu, = ], (4)

Assuming a uniform® distribution for u; the prior density of u =

(1, *°*, Un-1) 18

n — 1)! ucs
f(r, mc » Un-1) = ( ())

0 ud¢ S,

where S is the n — 1 dimensional simplex

S = {(h, °° , Un-1):u; = 0,

t=1,-++ ,n—lUjyu tes) + uy< 1} (6)

and wu, is given by (4). The posterior density of u, given the design
samples, is

flu, cet Un-1 | Yer) = fu | m, r)

_ p(t | m, u)f(u)

| pe | m, wpa) du

(nt+tm-— 1)! ,.,, wo
ry'ro! Suu Und (1 —u, — °

 

 oo Un—1)”

ucEs

0 ud S$

(7)
This is the Dirichlet density [3] with parameters y; 44 +7; (for

n = 2 it becomes the beta density). Thus, the Bayes rule maximizes

(1) with p(a; | ye, ¢1) = 4: given by

a, = | Uf(Uy, mt y Uni | Yor)
S

“du, eee dUn-1 = +t, (8)

3 Wefollow the notation in Appendix I of[1].
4{1, (23)].
§{1, (8)-(1))].

[EEE TRANSACTIONS ON INFORMATION THEORY, MAY 1969

The Bayes rule is the same as Hughes and Lebo’s ‘‘maximum mean
accuracy” rule [4]. It differs from Hughes’ approximate-Bayes rule
only in that (1 + 7:)/(n + m) is used instead of r;/m as the estimator

of p(z; | ci). For equal class probabilities the rules are the same;
[1, (19)] gives the maximum recognition accuracy when pei = 1/2.

We hope that this correspondence does nothing to detract from
Hughes’ excellent paper, which treats a long standing problem in a
novel and illuminating manner. The ‘‘peaking”’ of performance at a

level of measurement complexity determined by the size of the
design set is a fact that has long been observed experimentally.
Though wefeel that the actual value of n at which the peak occurs
is much higher in practical pattern recognition problems than that
found on the basis of Hughes’ model, we concur with the qualitative

aspects of his results.
KENNETH ABEND

Tuomas J. HARLEY, JR.

Philco-Ford Corp.
Blue Bell, Pa. 19422
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B. Chandrasekaran and T. J. Harley, Jr.°

In [1] some results concerning the mean accuracyof statistical
pattern recognizers were recently presented. The performance
curves for the unequal prior class probability case were such that
recognition accuracy using measurements can sometimes be lower
than max (Pc, Pez), Where p,; is the a priori probability of the

occurrence of class 7. Abend and Harley have traced the source
of this paradoxical result to the decision rule in [1] and derived

the correct Bayes decision rule that should be used. In this correspon-
dence, we derive the correct expression for the mean recognition
accuracy and examine its behavior with respect to measurement

complexity. We also show that the correct decision rule does in
fact result in performance curves in which the mean probability

of correct recognition is never less than max (pa, De). We discuss
some relatively strange phenomena that occur when the p.; are
unequal.

Wefollow the notation and approach of Appendix II of [1]. Con-
sidering just the measurement value 2, we assign it to Class 1 or
2 according to the following rule (given by Abend and Harley)

fet 1 if Pa mri yl,stl
predict m +n M, +n (1)

c, otherwise, (Der S Deo).

The probability of correct recognition is

P.,(n, ™1, Me, Der)

= nSuP|Be ro > p s, +1
U1, 02m, +n 1) |

s +1 |itlMVTlie Deo me on | »|. (2)
m+n

 

+ oP|pa

Equations (31) and (32) of [1] remain unchanged and the expression

for the mean recognition accuracy can be seen to beidentical to (19)
of [1] if we substitute the following expression for g(r, s):

6 Manuscript received July 2, 1968; revised September 11, 1968. This work was
supported by U.S. Air Force Contract F33615-67-C-1836 for the Aerospace Medical
Research Laboratories, Wright-Patterson Air Force Base, Ohio.
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TABLE I

m1 m Applicable Figure

1 — 2 <A Fig. 1
>A !.

Dp =A Fig. 2

1 — 2 >A Fig. 3

pe <A Fig. 4
1 ~— 2) < 2m1 Fig. 4

- p - > 2m Fig. 2  
 

s+ 1 r+1)
m+n??? m+n)? ©

 

g(r, s) = n(n — 1)” max (p.

that is,

P.,(n, My , Me, Ps)

_aue aatihm or tn 2)
Se aeme
om A EDtm stn — 2)Oey jams

- » 7 Ai M,, M2,T1, s)g(r, 8). (4)
r=Q0 s=

 

 

To see that P..(n) > max(pa, Pez), we first note that max(a, b) is

never less than either a or b. Setting gi(r, s) = n(n — 1)

pa(s + 1)/(m + 7) and g(r, s) = n(n — 1)? pa(r + 1)/(me + n),
it is easy to check t;hat

3 > h(in,, Me, 8, T)gi(7, 8) = Der; += 1,2

and

g(r, 8) > gir, s), i= 1,2.

Hence

P.,(n, M1, Me, Per) = MAX (Per, Pr2)- (5)

Thus, the correct d: cision rule does indeed eliminate the paradoxical
behavior mentionedearlier. In passing, we mention that (4) gives
the mean probabilit: of correct recognition not only for the following
particular division of samples into classes, m = [pam], m2 =m — m

considered in [1], but also for any m: and mz such thatm + me = m,
the total number o? samples.

Some idea of the qualitative behavior of the performance curves
can be obtained from the following considerations. We assume,
without loss of generality, that pa < pe. For given mi, me, and
Pa, setting pa = p and pe = (1 — p), Per(n) = (1 — pjif

stl ; _ trl
mx (» Mm, + -) S a ja P) My + -|
 

or

 (m +1) - Ud =p)

m+n ~ M +n
(6)

P.-(n) > (1 — p) £ the inequality (6) is not satisfied. The range
of values of n for waich (6) is satisfied is given by

m1 + pm) — pm(l + m)

(2p + pm, — 1)
 

n<WN,=

1 — 2p
if ,oT sy 7aif m - (7a)

M
E
A
N

R
E
C
O
G
N
I
T
I
O
N

A
C
C
U
R
A
C
Y

(1-p) fi)—~

|
|
|
|
|
|
|

|  
{ "opt

MEASUREMENT COMPLEXITY, n

Fig, 1. Mean recognition accuracy: Initial clamping.
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n>N, = pm(il + m,) — m1 + pm,)

° (1 — 2p — pm,)

 

1if m, < —-. (7b)

Weconsider only values of measurement complexity n > 2, since
there must be a minimum of two measurement values in order to

distinguish two classes. The behavior is summarized in Table I and
Figs. 1-4. The expressions can be checked by algebraic manipula-
tions of (7), except for the case corresponding to m = (1 — 2p)/p,

which can be obtained from (6). For simplicity, the symbol A has
been used in Table I to denote the expression

m1 + pm,) + 2 — 4p — 2pm.

pl + m,)

 

Figs. 1 and 3 exhibit what may be called “‘clamping’’ phenomena;
there are ranges of values of n for which P., is clamped at max(p,
1 — p), and for n outside this range P., > max(p, 1 — p). Fig. 2
is the performance curve we would normally expect andit is attained
not only if a sufficient total number of samples is available, but
also if there is a sufficient number from Class 1. Further, as long
as 7m< (1 — 2p)/p for any finite number of total samples, there
is a finite value of n after which clamping occurs. If, moreover,
the total numberof samples is insufficient, performance may never
be better than when based on a priori speculation alone, whatever
be the measurement complexity. Thus, it appears there are
‘thresholds’ of thenumberof samples, for the samples to be effective

at all. Below this threshold, the samples have no power to reduce
the risk.

Table I summarizes the behavior for any m and m». If, however,

we use the particular division of the total number of samples into

classes given by m = [pm] and m, = m — m, Table isstill valid,
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TABLE II

m Applicable Figure

1 — 2p
m > -——-——- Fig. 2

p

1 — 2p

—_—-—_ >m>B Fig. 3
p?

1 — 2p
—_ >m<B Fig. 4

p?  
 

but some inequalities become impossible. Table II presents results
corresponding to this case. For analytical simplicity, we assume
that [pm] = pm and ignore the minorerrors associated with this
assumption. Also note that the symbol B stands for the expression

(—p + V/5p? — 6p + 2)/p(1 — p).

Behavior corresponding to Fig. 1 does not occur in this case.
Further, if the total number of samples exceeds a certain threshold,
Pe, > max(p, 1 — p) forall finite values of measurement complexity.
When it is below this threshold for smaller values of n, there is
improvement due to samples, while for higher values, there is no
improvementat all due to samples.

It is interesting to note that it is sometimespossible to get better

performance by a different division of samples than the one corre-
sponding to Table II. For instance, when m = 7 and p = 0.2, if we
use m = [pm] = 1 and m: = 6, we will get behavior corresponding
to Fig. 3. On the other hand, if we use m = 4 and m, = 38, the
behavior corresponds to Fig. 2, in which case there is no clamping
for any value of n.

In spite of these multiple alternatives of behavior, there does

exist an optimal measurement complexity nop_ demonstrated in
Hughes. However, the several qualitative performances that are

possible for the unequal prior class provability case makeit difficult
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to make simple general statements about the relationship between
measurement complexity and the number of samples.

B. CHANDRASEKARAN

Tuomas J. HARLEY, JR.
Philco-Ford Corp.

Blue Bell, Pa. 19422

Author’s Reply’

The aboveletters make several interesting points about decision
proceduresfor discrete measurement nonparametric pattern recogni-
tion in a statistical environment. The areas under discussion appear
to be the mean-accuracy criterion [1], and the Maximum Mean-
Accuracy recognition rule (MMArule) [5] as compared to therelative

frequency recognition rule [1]. Abend and Harley show that the

MMArule is a Bayes procedure that maximizes the mean accuracy
given the data. Chandrasekaran and Harley prove that the expected

accuracy of the MMAruleis never lower than the priors, and they
discuss an interesting accuracy clamping phenomenon that can
arise when the pattern classes do not occur equally in nature. Hughes
and Lebo [5] state that it is natural to propose the MMArule but

that an experimental test of it could not be madein their study.
It is important to remark that the line of argument by both

Chandrasekaran and Harley and [5] rests on a foundation different

from that used to derive the mean-accuracycriterion in [1]. There,
the criterion was to evaluate the ‘‘overall performance of a Bayes
recognition rule’ by averaging overall recognition problems (equally

weighted by Bayes postulate [6]) having fixed measurement com-
plexity n andpriorclass probability p,;. The mean-accuracy criterion
was intended as a theoretic construct that calculates the recognition

accuracy one may expect without using any physical or statistical
information specific to the recognition problem at hand save the

pattern measurement complexity n, prior class probabilities p,,,
and design data sample size m.

If one accepts the Bayes postulate on which it is based, it allows
a numerical estimate of the design patterns to take, without requiring
information on the pattern probabilities. However, relative fre-
quencies were used in the criterion to estimate the truly Bayes
decision rule (which decides class c; when x; occurs if Pl[c;|2;] is
maximal over 7 and achieves maximum accuracy in application).
They were chosen simply because they are classical estimators for
the underlying probabilities P[z; | c;].

The aboveletters suggest that the choice of relative frequency

estimators is inconsistent with the choice of optimality criterion;
namely, the mean accuracy P., is maximized by the MMArule,
not the relative frequency rule. This can be seen directly from
eq. (19) in [1]. Consequently, I agree with Abend, Harley, and
Chandrasekaran that the MMArule is the correct Bayes decision
procedure that should have been usedin [1].

Knowledge of probability structure, continuity, or independence
can significantly influence the optimal sample size [7]. Performance

curves and tables pertinent to the MMArule have been generated
in some independent work [8] in which the partition of the fixed

design sample size m between the two classes is also optimized to
maximize the mean accuracy.

Gorpon F. HuGHEs
Autonetics Div.

North American Rockwell Corp.

Anaheim, Calif. 92803
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Independence of Measurements and the Mean
Recognition Accuracy

BALAKRISHNAN CHANDRASEKARAN, MEMBER, IEEE

Abstract—A situation of great practical importance in pattern

recognition is the case where the designer has only a finite number of

sample patterns frorn each class and the class-conditional density func-

tions are not completely known. Recent results indicate that in this case

the dimensionality cf the pattern vector, i.e., the number of measure-

ments, should not be arbitrarily increased, since above a certain value

(corresponding to the optimal measurement complexity), the performance

starts to deteriorate instead of improving steadily. However, whether

this phenomenon occurs in the case of independent measurements

has been an open question until now. In this paper the following result of

practical importanc: is derived. When the measurements are inde-

pendent, and a Bayesian approach is taken, one can add extra measure-

ments without fear of this peaking ofperformance; i.e., the optimal

measurement complexity is infinite. In fact, under certain conditions,

having just one sample from class 1, and noneat all from class 2, can

result in a recognition accuracy arbitrarily close to unity for a large

enough number of \measurements. The implication of these results to

practice is discussed. along with the general question of dimensionality

and sample size.

Manuscript received March 15, 1970; revised August 19, 1970.
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Wright-Patterson A.FB, Ohio, Contract F33615-69-C-1571 to Philco-
Ford Corporation via a subcontract to LNK Corporation, Blue Bell,
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The author is with the Department of Computer and Information

Science, Ohio State University, Columbus, Ohio 43210.

I. INTRODUCTION AND STATEMENT OF THE PROBLEM

HE RELATIONSHIP between the numberof measure-

ments’ and the performance accuracy ofstatistical

recognition systems, when only a finite number of sample

patterns from which to estimate the recognition function

is available, has received deserved and increasing attention

recently [1]-[4]. A comprehensive discussion of known
results is provided in [4]. Most of this work has been the
theoretical outgrowth of the observation of the following

phenomenon in manypractical pattern recognition systems.

Whenthe number of measurements is increased, after a

certain point performance begins to fall off rather than

improve steadily. However, the theoretical models in the

above references did not provide for the assumption of

independence of measurements. As a result, it was an open

question until now whether this phenomenon occurred in

the case of independent measurements.

Allais [1] was one of the earliest to consider the problem

1In the literature, the terms variables, measurements, and features
are used interchangeably. The term dimensionality is used for the
cardinality of the set of measurements.

Reprintec from /EEE Trans. Inform. Theory, vol. \T-17, pp. 452-456, July 1971. Correction in vol. IT-18, p. 217, Jan. 1972.
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mathematically. He showed that this phenomenon was

indeed to be expected if the measurements were jointly

normally distributed with a nondiagonal covariance matrix

and if maximum-likelihood estimates of unknown param-

eters are used in the decision function, which would be

optimal if the parameters were in fact known. These results

were not totally satisfying, however, since objections that

a nonoptimal decision function was used could beraised.

Hughes [2] has considered the problem in greater scope

and in a Bayesian context. The model applicable to [2]
and [3] can be summarized as follows. Assume that the
measurement space has been quantized such that any

pattern can be represented by one of possible measure-

ment states. Notice that n, which is called the measurement

complexity, can be increased by increasing not only the

number of measurements butalso the levels of quantization.

However, only the problem associated with increasing the

number of measurements is discussed here. A two-class

pattern recognition problem can then be defined by theset

of numbers P(x;|c;), fj = 1,2; 1 = ln; Xj; the ith

measurement state; and c,, the jth class. For a complete

specification, the prior probabilities of the two classes are

also needed. However, it is assumed in the sequel that the

classes are equiprobable. If one makes suitable a priori

assumptions over P in particular, a uniform distribution

such that all measurementstates are a priori equally prob-

able, and, further, one has m, samples from class c;, then

one can derive a mean recognition accuracy, P.,(m,m,,m>).

This is obtained by averaging the accuracy P., overall

problems generatable by the assumed a priori assumptions.

Hughes showedthat for finite values of m, and m,, there

is a finite value for the optimal measurement complexity

No(m,,m,). This is the value at which P,, reaches its max-
imum value. For large values of n, P., approaches 4, no

better than a random decision.

Kanal and Chandrasekaran [4] discuss this question of
dimensionality and sample size, and indicate that Hughes’s

results are to be used with care because of the structural

assumptions made by the model, even though they explained

a long-standing problem in an illuminating manner. The

existence of a spectrum of possibilities is demonstrated [4],

with. Hughes’s result occupying the pessimistic end ofit.

Hughes’s model is in a sense quite unstructured. Not only

are the possible continuity properties between quantization .

levels unreflected in the space of measurementstates, but

because of the way the a priori assumptions are made, the

problem space contains problemsof all degrees of correla-

tion between different measurements.

In this connection, comparison of performance limits

for the infinite sample case (i.e., known parameters) for

different models is also illuminating. Compare P,, = 0.75

for the model in [2j with P., = 1 for the case of independent
measurements ooveying certain conditions [5] or, again,
P., = 1 for the case of normal measurements, which need

not necessarily be independent, but must obey certain mild

correlation conditions [6]. The independence, or more

precisely, the degree of correlation, between successive

IEEE TRANSACTIONS ON INFORMATION THEORY, JULY 1971

measurements substantially affects the existence and value

of no as well as the value of P,,.

The above remarks dealing with the independence of

variables suggest the following question of practical im-

portance. In the case of a finite number of samples, if the

measurements are independent, can the numberof measure-

mentsbe increased arbitrarily without eventual deterioration

of performance? Intuitively it is not clear whether, for a

given sample size, this increased structure merely increases

no to a higher finite value, or whether this peaking with

respect to n vanishes, effectively making 7infinite.

This paper investigates this question for independent,

binary variables in a Bayesian context. In the interests of

analytical simplicity, variables of binary, rather than arbi-

trary quantization are assumed. Surprisingly, somewhatof

a new start has to be made for our investigation; it seems

impossible to adapt knownresults, particularly Hughes’s,

to this case. However, the analysis has been made very

similar as far as possible, so that comparisons can beeasily

made. Further, consider only a two-class problem, with

equal prior probabilities for the classes. It would be a

relatively simple matter to extend the analysis to many

classes and unequalpriors, but it is avoided in order not to

detract from the qualitative aspects of the results.

The model to be considered in this paperis the following.

The pattern is a binary vector (x,,°°°,Xy), where x; = 1

or 0. The dimensionality of the measurement vector is N.

The measurement complexity, defined as the total number

of measurement states is, in this case, n = 2%. Class c,

is specified by the set of numbers {p,,°::,py} where

pi = Pr(x; = 1|c,) and class c, by {q1,°'*.9n}> 4i =
Pr(x; = 1|c,). The variables x; are independent. A prob-

lem is specified by the 2N numbers, p; and qg;, which are

assumed unknown. There are available m, samples from

class c, and m, samples from class c,, to estimate the

unknown parameters and obtain the optimal decision func-

tion. The approach is Bayesian, with uniform prior prob-

ability on p; and qg;, over the interval [0,1], and a zero-one
cost function, so that it is sufficient to minimize the mean

probability of error. Especially note that the variables are

not identically distributed, though the a prior probabilities

on the p; and q; are. The performance measure considered

is P.,(N,m,,m,), the mean probability of correct recogni-
tion, for a given N, m,, and m,. First consider the case

corresponding to known p; and gq;, i.e., the case where

‘m, and m, are infinite.

II. INFINITE SAMPLE SIZE

If f(x), i = 1,2, represent class-conditional density func-

tions, then one can define a distance dy between f, and f, by

dy = DSi) — fax)ax. (1)

In (1), the subscript N emphasizes the dependence of d on

the dimensionality of x. Chu and Chueh [5] show that
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P..AN) can be related to dy by?

PAN) =4+4dy (2)

and hence

P(N) =4 + 4dy (3)
In our case,

| N

Ac) = Tf pe - py

and similarly fo: f,, with q; in place of p,. Further,

dy = { YA) — ALOdps +++ dpy days ++sdaw:
{P},{q} xi=',1

(4)

Due to the symmetries that exist, it is sufficient to consider

x = (1,::-,1) and rewrite (4) as

dy = 2" [Ipi- Py 417 a dp,:*:dpy dq,°*: dqy.

(5)

In the Appendi»;, the following explicit derivation from (5)

has been outlined:

dy =2/3)"A/SON + 6 — DUCK ~ DY)

— x (2'3)P(1/3)"(N + 6 — IUCWN — 1))). ©)

This quantity in: reases monotonically with N. In particular,

lim dy = 2. (7)
N7>©

To show this, rote that each of the summations can be

viewed as arising from negative binomial distributions.

From [7], for large N, (6) can be simplified as

dy = [P(a,) + D(a.) (8)

where ® is the normal probability integral

(a) = (t/v2m) [° exp(—dxdx)

and a, and a, for large enough N can be shown to be

arbitrarily close to JN/3 and \/N/6, respectively. From

this (7) can be obtained directly, leading to the result

lim P(N) = 1.
N-@

(10)

Paraphrasing (10), for this model, when the p, and q;

are known, or.2 can achieve arbitrarily close-to-perfect

recognition, as the number of independent measurements

is increased. Several cautionary remarksare in order. This

result, remarkable as it appears, must be viewed in the

context of the a priori assumptions on the parameters. They

2In this sectio:. P.,(N) is shorthand for P,,(N,oo,0o). Further,
throughout the paper, P., refers to the recognition accuracy for a

specific problem ard P., refers to the mean accuracy.

essentially lead to the fact that

Ellpi:- qi] >0, Wi, (11)

such that whenever a new variable is added, on the average

it has a nonzero distance between classes. .

Chu and Chueh [5] derive a result similar to (10), when
the measurements are independent, but without any

Bayesian assumptions; however, the constraint is that

N

lim )) (pi — ail) = ©, (12)
N70 i=0

which is very similar to (11). See remarks in [4] in connec-
tion with the meaning of this type of result to practice.

Here (10) is used mainly as a benchmark against which to

compare results due to finite sample size. Fig. 1 gives a

comparison of our model with the model in [2] for the
infinite sample size case. One can see how the structural

assumption of independence affects the performance.

II. FINITE SAMPLE SIZE

Here, deriving P.,(N,m,,m,) is discussed. It can be

shown that the Bayes rule for this case can be written as

N

classify as c,, if T] pd — p)c-
i=1

N

> TT ara -ay
classify as cp, otherwise. (13)

In (13), the Bayes estimates are

B; = (8; + D/(m, + 2)

4: = (ri + 1)/(m.+ 2) (14)

where s, and r; are, respectively, the numbers of times the

x, from classes c, and c, take on the value unity. Equation

(14) can be derived along lines similar to those of Abend

and Harley [3].
The derivation for P,, is presented; the initial equations

are similar to the ones in [2]. If {p} = {p1,-°*.py} and
{q} = {q1,'°*.Gy} are the true parameters

Pr (Sy5°**48wo Fist * ow | {PHATS)

= TY fomy%iGsiom, = sp]#0 = py"
x [m2 I)"/ri(m2. — rd)Ja" - a" C5)

Pr (sy ++ Sy > ri °**twl {P}tah)

= y de Pr (S15° °° 5SN> ris’ ‘sln):

oe (16)
Again, due to the symmetry of the problem it is sufficient

to consider x = (1,-::,1). Then the probability that it is

correctly classified is

PAX) = SELpy “Dy Pr (Sy°°* Sy > °° TN) | {p}.i¢}]

+ Elgy:++qy Pr(sy-++S5y Sri '* + ry) | {PEtgh.
(17)
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Combining (16) and (17),

P..N,m,,M2) = (2%~*l(m, + 1)*(m, + 1)*)

Los) 8)
where

(7,8) = max {T] [(s; + Dim, + 2)

I] Cir, + Dim, + 2)]}. (19)

While (18) functionally expresses the variation of P.,

with N in precise terms, it is, however, rather difficult to

interpret directly. It is a subtle function, and it has resisted

considerable attempts by the author to reduce its computa-

tion to manageable proportions. Even a computer evalua-

tion of P,, for, say, N = 10, m, = 20, and m, = 20 (very
reasonable figures), virtually leads to days of computation.

However, much of our objective can be achieved, as will

be seen, by examining (18) for some interesting values of

its arguments.

IV. EFFECT OF INCREASING DIMENSIONALITY

In order to make the analysis more tractable, examine

P.,(N,1,0). These extreme values of the arguments have

the additional advantage of yielding the following dramatic

result.

Proposition:

lim P.,(N,1,0) = 1.
N-+00

Proof: From (17) and (18)

_ 1 N

PANLO =4  Y max {TT (si + 1/3), (12%)
Si,°°°,Sn=0 i=1

(20)

Choice of j of the s; to be zero and the remaining (N — /)

of the s; to be unity can be done in (/') ways; hence (20)

becomes

P.N,1,0) = 4 y (j)) max {(2//3%),(1/2")}. (21)
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Note that

(24/3%) 2 (1/2%) according asj 2 N (log, 3 — 1) A aN. (22)

For large values of N, (21) can then be approximated by

two normaldistributions [7], so that

P.(N,1,0) ¥ ®[2VN(a — 4] - O[-VN]
+ O[V3N] — ®[—((2/3) — a)3(VN/2)] (23)

where ® is as defined in (9). Taking the limit of (23) the

result follows directly.

Remarks

1) The above proof establishes the monotonicity of

P...(N,1,0) after large enough N. A direct evaluation shows

that it is true for smaller values of N also.

2) Note that there is just one sample from class c,, and

noneatall from class c,. Still, one can get arbitrarily close

to 100 percent recognition accuracy. This is rather remark-

able. However, see Section V for the proper perspective

on this.

3) As noted earlier, these values for m, and m, were

used both for simplicity as well as for enhancing the point

of the result. Through more elaborate processing of (18),

the same limit can be shown to hold for P,,(N,1,1) and so
on. For higher values of m, one obtains multinomials in

(21) and multidimensional normal distributions in (23).

Compare these results with those in [6] and in Section II.

V. DISCUSSION AND CONCLUSIONS

First, there are a few disclaimers that should serve to

place the results in proper perspective. Usually, because of

the band-limited nature of all real-world patterns, arbi-

trarily large numbers of independent measurements are

not available. Further, perfect discrimination for infinite N

is admittedly a consequenceof the a priori assumptions on

the {p} and {q}. Presumably, one can have a priori assump-
tions such that P.,(N) will approach a value less than unity

as N tends to infinity. The a priori assumptions have the

advantage of being similar to those in [2]. The results
should be accepted more for their qualitative implications,

rather than for their quantitative finality and applicability

to design, particularly for large values of N. This is also the

case, as was pointed out in [4], for all such results. Hughes’s

results as well as Gaffey’s [6], Chu’s and Chueh’s [5] are
also more valid for understanding certain phenomena,

rather than as specific design equations.

What are these qualitative implications? The most im-

portantof these is that, in general, one can add any number

of independent measurements, however few samples one

has. Hughes showedthat, in general, this can not be done
for measurements of arbitrary correlation. The pessimism

of the results for unstructured measurement space is

eliminated in our model in two ways:by aneffective ny of

infinity and by a far larger value of P.,. This was seen

already in the infinite sample situation where in place of

P,, = 0.75, P., = 1 was obtained. Again in the finite
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sample case P..,(c0,1,0) = 1, in contrast to hardly any

improvement over 4, even for mo, for the unstructured

model. Fig. 2 provides a comparison of these variouscases.

‘This figure makes clear the comparative rates at which P.,

approaches unity for the infinite sample case as against

when m, = 1 and m, = 0.

Not all the cjuestions relating to independent measure-

ments have been answered, however. Our model is in-

adequate to handle some of them. A few unanswered

questions follow.

1) Do the results remain qualitatively the same, for

arbitrary quantization of individual measurements? This

situation can be handled by modifying our modelsuitably.

It becomes more elaborate and cumbersome, butit should

yield essentially the same qualitative results.

2) Irrespective of the correlation or independence of the

variables one has, can the addition of a variable, known to

be independent of all the previous ones, be guaranteed not

to lead to reduced P.,, for the same sample size? The
modifications in the model necessary to answer this become

quite large, and it has not been attempted. Again, the thrust

of our results indicates that this question can be answered

in the affirmative.

APPENDIX

In (5), set py °° Py = 2, and q,°** Gy = Z2. It can be

shown, after repeated convolutions, that z, and z,, which

are identically clistributed, have the density function

Correction to “‘Iadependence of Measurements and the Mean

Recognition Accuracy”

B. CHANDRASEKARAN

In the above pajer,! on page 157, (16) should read as follows.

N N |
Pr (11 (is; + Dim, + 2) > T] (i + D/@m + 2)| (onan)

i=1 i=1

= 2D
over S>R

Pr (s1,° "*5SN15° ° OTN | {p}.{q), (16

Manuscript received July 13, 1971.
The author is with the Department of Computer and Information Science, Ohio

State University, Colu nbus, Ohio 43210.
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f(z) = (MN — 1))dog (1/z))"~*, <1,0O<2z

i = 1,2. (24)

One can then write

1

E[lz, — zl] = | | (2, — 2)f(2)

- } |ey — za)fenf(22) dz,dzy.
(25)

Substituting (24) in (25) and performing the integration,

one obtains from (5)

dy = N31) DY [2.3" — 3/2]

x [FQN — v — DTIN)T(N — v))]. (26)

Changing variables in (26) by setting v = N — {, (6) can
be obtained after a few algebraic manipulations.

ACKNOWLEDGMENT

The authoris grateful to T. J. Harley, Jr., and K. Abend

for discussions relating to this topic.

REFERENCES

[1] D. C. Allais, “The selection of measurements forprediction,”
Stanford Electron. Labs., Tech. Rep. 6103-9, Nov. 1964; also
available as AD 456770.

[2] G. F. Hughes, ‘‘On the mean accuracy of statistical pattern
recognizers,” IEEE Trans. Inform. Theory, vol. IT-14, Jan. 1968,
pp. 55-63.

[3] K. Abend, T. J. Harley, Jr., B. Chandrasekaran, and G. F.
Hughes, ‘“Comments on ‘Onthe mean accuracyofstatistical pattern
recognizers’,” [EEE Trans. Inform. Theory (Corresp.), vol. IT-15,
May 1969, pp. 420-423.

[4] L. Kanal and B. Chandrasekaran,‘‘On dimensionality and sample
size in statistical pattern classification,” in Proc. 1968 Nat. Electronics
Conf., pp. 2-7; also, Pattern Recognition, to be published.

[5] J. T. Chu and J. C. Chueh, “Error probabilities in decision func-
tions for character recognition,’’ Ass. Comput. Mach. J., vol. 14,
Apr. 1967, pp. 273-280.

[6] W. R. Gaffey, ‘Discriminatory analysis: Perfect discrimination
as the number of variables increases,” USAF Sch. Aviat. Med.,
Randolf Field, Tex., Rep. 5, Project 21-49-004, Feb. 1951.

[7] Z. Govindarajulu, ‘Normal approximations to the classical
discrete distributions,” in Classical and Contagious Discrete
Distributions, G. P. Patel, Ed. Calcutta: Statist. Publ. Soc.,
1965, pp. 79-108; also, New York: Pergamon.

where

N
S= I ((s; + 1)/@m, + 2))

N
R= I} (ri + 1)/(m2 + 2)).

Equation (17) should then become

P.Ax) = ${E[pi:+:pn Pr(S > R)| {p}.{q3]

+ Elqi--:qn Pr(S < R)| {p},{q}}. 7)

Equations (18) and (19), as well as the results of the paper, remain

unchanged.
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The Mean Accuracy of Pattern Recognizers with

Many Pattern Classes

Abstract—Hughes [1] presented some curves relating the mean
performance of a pattern classifier averaged over all pattern rec-
ognition problems of given complexity, when there are two classes

of patterns to be distinguished. In this correspondence the mean
recognition probability is computed for the case of q pattern classes
when the a priori probabilities of the classes are equal. When the

a priori probabilities are unequal, the mean performance will im-
prove over the performance with equal a priori probabilities, so
these curves provide a lower bound to the performance of recog-

nizers with more than two pattern classes. Some comments on the
appropriateness of these statistics to common recognition problems

are made.

Wefollow the model of Hughes [1], and let the result of the mea-

surement be expressed as a single discrete quantity having one
of the n values, 1, 12, -**, ®n. Then this recognizer solves a recogni-
tion problem of complexity n. Furthermore, let c; represent the zth
class of patterns. The recognizer can be optimized (maximizing
the a posteriori probabilities), if the a priori probabilities of the
classes and the conditional probabilities P(x; | c;) are known, where

P(z; | c;) is the probability that the measurement value z; is mea-

sured from a pattern of class c;. A recognition problem is specified
if these conditional probabilities and the a priori pattern class

probabilities are known. Wewill average overall problems with the

same a priori pattern class probabilities. Furthermore, we assume
that these problemsareall equally likely.

Let p: be the a priori probability of class 1. Then the probability
of correct recognition is

Pe = max [P(e,| edd. (1)
The objective 1s to nnd the average value of P,, when averaged

over all possible unknown patterns, with all possible problems of
complexity n.
Let

ui; = P(x; | ¢;). (2)

The mean recognition accuracy is found from [1, (13)]

penn o'f' fo[Thaw
sss dUyg. (3)

Whenthe a priori probabilities p; are unequal, this integral can

only be evaluated as a (q — 1)-fold summation. Therefore, we
will consider the equal a priori case only; where

“max [pitii, *fe ’ Dui dus, dUy.

.° , q)- (4)

In this case, (3) simplifies to

.e dUy,q. (5)

We evaluate (5) by finding two recursion relations that must
be satisfied, and then by showing the functional forms that satisfy
the recursion relations.

smax (Ui, °°* , Uig) dus, due

Manuscript received October 9, 1968; revised November 5, 1968. This work
was performed in connection with Project THEMIS, ONR Contract N00014-
68-A-0141-0002.

P(q,n)
 0.8
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qz2
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306

 

   01 > 4 8 6 30 64 >n

Fig. 1. Average probability of correct recognition among qg equiprobable pattern

classes, as a function of the complexity of the problem, n. The horizontal dashes

indicate the asymptotic values of P as n —> oo, for various values of g.

The recursion for P(q, n) is obtained by integrating with respect
to u1q to obtain

P(q,n) = “I=Pq1,0)+7RG), 6)
where

RG, j,n) = (n — 1)’

[i [ a [ (1 — max [u, «

. I] [(l — wy)" du]. (7)

Next we find a recursion relation for the R function, by performing
an integration with respect to w;, to obtain

° y Uy s]}?

1, j, n)

] , .
- — 1 — .n-j—ik n+ j7—1,n) (8)

The starting values for the recursions are found by direct integra-
tion to be

5 —2
PQ,n) =Be (9)

, -1RL, jn)= (10)
The general forms of P and R are given by

 P(q,n) = 42/14 Hea (11)

 

q ‘“! T] (sn +n — s)

RG, j,n) = 3 in — 1)" (12)
IT @k + 7 — &)

Reprinted from /EEE Trans. Inform. Theory, vol. \T-15, pp. 424-425, May 1969.

160



CORRESPONDENCE

Graphs of P(q, n) are shown in Fig. 1 for selected values of g.
The best average performance is obtained by making n large, in
which case P is given by

5-1) Lei LT.wLitetgto +; (13)

This asymptotic value is indicated by horizontal dashes in Fig. 1
for some values of g. When the complexity is equal to the number

of classes, the average performance is approximately 90 percent of
the best average parformance given by (13).
We have computedthe average recognition probability of optimum

recognizers for pattern classification problems of given complexity,

th g pattern classes, and have shown how the performancedeterio-
rates with increasing q. It is important to observe that there are a
large number of pattern classification problems included in the

average that are +o difficult that humans would not consider the

classes so defined to be different. In simple terms, the pattern
recognition problems that people care about necessarily lie far above
these low means, and the average statistics, though interesting,
are not helpful in practical problems.
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An Optimal Discriminant Plane

JOHN W. SAMMON, JR., MEMBER, IEEE

Abstract—In solving pattern classification problems, many re-

searchers have successfully used the Fisher linear discriminant as the

optimal linear method for discriminating between vector samples

from two classes. With the introduction of on-line, interactive,

graphic systems, it has become conveniently possible to extend the

discrimination logicto piecewise linear methods. This paper describes

such a method whichis being used in the on-line pattern analysis and

recognition system (OLPARS).

Index Terms—Dimensionality reductions, discriminants, graphic

systems, multivariate data analysis, on-line systems, pattern recog-

nition.

In solving pattern classification problems, many re-

searchers have used the Fisher linear discriminant [1]

as the optimal linear method for discriminating between

vector samples from two classes. When applying lineardis-

criminant analysis to the two-class problem (K = 2), we seek
to compute a direction d in the L-space defined by a set of L
measurementsso that orthogonally projected samples from

the two classes onto d are maximally discriminated. The

orthogonal projection of a vector X onto the direction d 1s

given by(1).

L

z= (d,X)=d™X = ¥ dx, (1)
j=l

where

L

Yd =1
j=1

d,| T Xi] T

d
d=-|-JL x=| "lL

di | Xr} |

The discrimination criterion suggested by Fisher [4] is

related to the ratio of the projected class differences relative

to the sum of the projected within-class variability. Spe-

cifically, the Fisher discriminant is obtained by solving for

the unit vector d which maximizestheratio in (2).

d'Bd

d'Wd

B is the between-class scatter matrix which is defined in (3)

and W is the sum of the within-class scatter matrices defined

in (4).

B= ¥Nay ~ alm, ~ 0)
_ N,N,

ON
 Le: — He] [e, — we]? (3)

Manuscript received November 17, 1969; revised January 27, 1970.
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where

i, =the mean vectorofclass p
2

b= Dd WN ut, =the lumped data mean vector
p=

N,=the numberof samples from classi

N =thetotal number of samples= N, + N,.

  

W=S, +58, (4)

S, = D;D?
‘ N, — f

D.- (xy — w)(X? — pi) (Xx? — ") L

ok |

rx
, Xb

X‘) =| - = the nth vector from classi.

xf 
In order to solve for the Fisher direction, we take the

vector derivative of the ratio R (2) with respect to d and set

the resultant equation to zero. This procedure generates the

generalized eigenvector equation given in (5).

[B — AW]d =0. (5)

The solution is obtained by solving for the eigenvectors

of (5). The rank of the between-class scatter matrix for the

two-class discrimination problem is one and therefore only

one nonzero eigenvalue solution to (5) exists. The eigenvector
solution corresponding to the nonzero eigenvalue is the

Fisher direction andis given in (6).

d=aW"'[n, —p,]=W'A

A= pf, — Mp (6)

where « is a normalizing constant such that |d|=1. The

eigenvalue solution corresponds to the maximum discrimi-

nation

_ d™Bd NN,
A= awd ~ A (My — By)Wo (nH, — Hy). (7)

 

Thus, the optimal Fisher direction is proportional to the
inverse of the sum of the within-class scatter matrix times
the difference in the mean vectors. It should be noted that
W is nonsingular only if the lumped data does notlie in

some linear subspace of the L-dimensional measurement

space. If this condition approximately exists, the numerical
stability of most inversion algorithms becomestenuous. In
these cases, our program will automatically project the data

orthogonally onto a linearly independent subspace where

W will be nonsingular. The discriminant solution is then

computed in the subspace. In order to complete the two-

class pattern classification problem a threshold (or thresh-

Reprinted from /EEE Trans. Comput., vol. C-19, pp. 826-829, Sept. 1970.
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olds if a reyect region is used) must be specified such that the

following decision is made: decide class 1 iff d"X>0,
otherwise decide class 2. The threshold 6 can be computed

using a minimurnrisk criterion or any othercriterion which

seems satisfactory to the researcher. In any event, the com-

putation of the direction d and a threshold 6 define a
hyperplane which divides the L-space into two decision
regions.
The distribution-free logic design module of the on-line

pattern analysis and recognition system (OLPARS)[2], [3]

makes extensive use of the Fisher linear discriminantin solv-

ing pattern classification problems. OLPARSisa largeinter-

active graphics-oriented system which is used for both
analyzing high-climensional vector data and for designing
decision logic 19 discriminate between K classes. When
solving a pattern classification problem the OLPARSuser

is given several options for designing and testing decision

logic. One such option, in essence, constructs the logic
shown in Fig. 1 where K(K — 1)/2 pairwise Fisher discrimi-

nants and their respective thresholds are computed. The

output from the d;; box is either zero or one depending on

the following cr:terion:

| 1 <d,,X) —6,,>0d.{X) = ij ij
i X) to otherwise. (8)

The signed direction (+) of d;; and the threshold 6;; are

selected so that an output of ‘“‘one”’is interpreted as a vote

for class i and a “zero” as a vote for class j. The I box is an

inverter which produces a “‘one”’ out given a “‘zero”’ in, or a

“zero” out given a ‘“‘one” in. The votes for each class are

collected and a final decision made in accord with the class

having the most votes. Ties are resolved by changing the

vote of that discriminant d;; which is involved in the tie
whose projectecscalar is closest to its respective threshold
G;,. Suppose, for example, that classes i and j are tied (ie.,

have the same numberof votes) with the maximum number

of votes. The system would then examinetheset

S= (dj, x» - Oj

dpi, XY — 0.3

 p< dip, X> — 0
<d;,, X> — 0

 JP\p>j?

pois all p.   p<i? ip

This set will refzrence the indices of all the discriminants
contributing to the present tie. Next, the system would alter
the vote of that discriminant function corresponding to

min,S. Provisions are made to continue this procedure

should a newtie situation arise. In addition, the tie breaking

algorithm functions so as to guarantee a unique decision;

that is, the systen forces convergenceof this procedure.
In those cases where the Fisherlinear discriminant does

not yield satisfactory discrimination, it has been found
useful to replace the linear logic with piecewise linear logic.
In the OLPARS: system, this is accomplished by orthogo-

nally projecting the data onto an optimal discrimination

plane and then «lesigning a decision boundary using piece-

wise linear line segments. This procedure is easily accom-
plished by interactive graphic systems such as OLPARS.

The user simply designates the pair of classes to be used and
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Fig. 1. Discrimination logic.

then requires the system to computethe orthogonal projec-

tion of the data onto the optimal discriminant plane. The
resultant scatter diagram is then displayed on the CRT.

Since OLPARSis an interactive system, the user can desig-

nate the discrimination boundary by drawing piecewise
linear connected line segments which partition the data in
the discriminant plane. The end points of the line segments

are designed by using a movable cursor which is appropri-

ately positioned on the CRT display. The OLPARSsystem,

having stored the vector designation of the optimal plane

(i.e., two orthogonal unit vectors plus an origin), computes

the corresponding piecewise linear hyperplane boundaries.

In OLPARS,the useris restricted to using uptofive linear
segments which must describe a convex boundary with
respect to one of the two classes. Once this boundary is

specified, the user may replace the corresponding linear

discriminant of Fig. 1 with the new piecewise linear

boundary.

The discrimination plane used in OLPARS- 1s defined by
two orthogonal unit vectors through the dataorigin. It is
considered optimalin the sense that the two unit vectors are
determined by maximizing the discrimination ratio R (2)

underdifferent constraints. The x axis of the optimal plane
is the Fisher discriminant vector d, =aW~ '(u, —p). The
second direction is found by maximizing the discrimination
ratio R under the constraint that this second direction d,

be orthogonal to the Fisher direction d,. The derivation

goes as follows; we wish to maximize

d'Bd,
d'Wd,
 — j{d'd,] (9)

where «is the Lagrange multiplier. Taking the vector deriva-

tive with respect to d, and solving the resultant equation

yields

ATTW'/?A_ w-! _ Ww! 2 10
d, i aTTw= "Bal ] (10)

where 7 is a normalizing constant.

One of the present applications of the OLPARS system

is the design of a decision logic for classification of uncon-
strained handprinted numeric characters. The handprinted

character is first located, normalized, edited, and finally
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transformed into a vector composed of 20 méasurements.!

The pairwise Fisher logic shown in Fig. 1 was then com-

puted for all ter. numeric classes (K=10). In several in-
stances, it was found that the pairwise linear logic used to

discriminate a pir of classes produced several errors. In

these cases the on-line user requested the system to project
the classes in question onto their discriminantplane. Fig. 2
shows the CRT display of the classes four and nine or-

thogonally projected onto the 4/9 discriminant plane. The

Fisher direction corresponds to the x axis and the Fisher

linear discrimination boundary is a straight line parallel to

the y axis located precisely in the center of the display. The

individual variance (or scatter) of the two classes along the

X axis is quite small relative to the difference between the

class means, ther:by accounting for the computation of the

x axis as the Fisher direction. An improved discrimination

boundary was constructed by drawing the two lines shown

in Fig. 2. Upon completing this task, the on-line user se-

lected the partition option by light gunning the PARTITION

message displayed along the right side of the display. This

action caused th: system to replace the previously stored

4/9 Fisher discr:minant with the new piecewise linear

boundary. |

The discriminant plane has proven of enormousvalue in

solving the hanc printed character recognition problem.

The above examyle of fours versus nines is not considered

particularly unusual since a similar deficiency of the single

Fisher discriminant has occurred in approximately 4 per-

cent of all handprinted character pairwise discriminations.

The single Fisher discriminant has occasionally been

found lacking fot data sets other than the handprint one.

OLPARShas be#n used to design discrimination logic for

classifying planirnetric features in aerial photography. For

this problem, we wished to design logic to automatically

' A moredetailed discussion of the handprinted character recognition

problem is containec. in [3].

recognize four types of planimetric features ; namely, hydro-

graphic features H, cultivated features C, vegetated features

V, and urban features U. Samples of these classes were ob-

tained by scanning small areas of aerial photographs con-

taining a specified planimetric type [5]. Eventually, 24

measurements related to the spacial frequencies contained

in the scanned area were used to represent a sample. The

four-class, 24-dimensional data was input to OLPARSand

the Fisher pairwise logic computed. The classes of C and H

were projected onto the C/H discriminant planeto deter-

mine whether the logic could be improved. A hard copy of

the resulting display is shownin Fig.3. As before, the Fisher

linear discriminant boundary correspondsto a line parallel

to the y axis located precisely in the middle of the display.

A + sign in this display corresponds to an overprint of a

C and an H. Oneerror was eliminated by replacing the

Fisher boundary with the linear boundary connecting the

two printed y%’s. (The stars are printed to mark the end

points of the lines constructed on the CRT.)

In summary,we have foundthat the additional degree of

freedom provided by the discriminant plane offers a signi-

ficant advantage over the single Fisher discriminant in

those cases where the pair of classes have long elliptically

shaped convex hulls relatively placed as shown in Figs. 2

and 3.
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A Nonlinear Mapping for Data Structure Analysis

JOHN W. SAMMON,JR.

Abstract—An algorithm for the analysis of multivariate data is

presented along with some experimental results. The algorithm is
based upon a point mapping of N L-dimensional vectors from the L-

space to a lower-dimensional space such that the inherent data
“structure” is approximately preserved.

Index Terms—Clustering, dimensionality reduction, mappings,

multidimensional scaling, multivariate data analysis, nonparametric,

pattern recognition, statistics.

INTRODUCTION

HE purpose of this paper is to describe the non-

“| linear mapping algorithm (NLM) which has been

found to be highly effective in the analysis of mul-

tivariate data. The analysis problem is to detect and

identify “structure” which may be presentin a list of

N L-dimensional vectors. Here the word structurerefers

to geometric relationships among subsets of the data

vectors in the L-space. Some examples of structure are

hyperspherical and hyperellipsoidal clusters, and linear

and certain nonlinear relationships among the vectors

of some subset.

The algorithm is based upon a point mapping of the

N L-dimensional vectors from the L-space to a lower-

dimensional space such that the inherent structure of

the data is approximately preserved under the mapping.

The approximate structure preservation is maintained

by fitting N points in the lower-dimensional space such

that their interpoint distances approximate the corre-

sponding interpoint distances in the L-space. Weshall

be primarily interested in mappings to 2- and 3-dimen-

sional spaces since the resultant data configuration can

easily be evaluated by human observationsin 3 orless

dimensions.

THE NONLINEAR MAPPING

Suppose that we have WN vectors in an L-space desig-

nated X;,7=1,--.+-, N and corresponding to these we

define N vectors in a d-space (d=2 or 3) designated Y,,

1=1,---, N. Let the distance! between the vectors

X; and X; in the L-space be defined by d;;*=dist[X,,

X,| and the distance between the corresponding vectors

Y;and Y; in the d-space be defined by d,;=dist[Y,, Y;].

Manuscript received August 26, 1968; revised February 2, 1969.
The author was with Rome Air Development Center, Griffiss

AFB, Rome, N. Y. He is now with Computer Symbolic, Inc., Rome,
N. Y.

1 Any distance measure could be used; however, if we have no a
priori knowledge concerning the data, we would have no reason to
prefer any metric over the Euclidean metric. Thus, this algorithm
uses the Euclidean distance measure.

Let us now randomly? choose an initial d-space con-
figuration for the Y vectors and denote the configura-

tion as follows:

Yl Yai

Y> =

Vid Ved

YVN1

Yi= -Vy =

YNd

Next we compute all the d-space interpoint distances

d;;, which are then used to define an error E, which

represents how well the present configuration of N

points in the d-space fits the N points in the L-space,

1.€.,

pet iae 1
iax * m)

Note that the error is a function of the dX WN variables

Yoo P=1,--+-, Nand q=1,---,d. The next step in

the NLM algorithm is to adjust the yj, variables or

equivalently change the d-space configuration so as to

decrease the error. We use a steepest descent procedure

to search for a minimum ofthe error (see Appendix I for

further details).

SOME COMPUTER RESULTS

We have exercised the nonlinear mapping algorithm

on several data sets in order to test and evaluate the

utility of the program in detecting and identifying

structure in data. Some of the results obtained for sev-

eral different artificially generated data sets® are re-

ported for the case where d=2. Wehavealso run the

algorithm on many real data sets and have achieved

highly satisfactory results; however, for demonstration

purposes it is useful to work withartificially generated

data in order that we can compareourresults with the

knowndata structure. Thetest data sets were as follows.

1) Straight Line Data: These data consisted of nine

points distributed along a line in a 9-dimensional space.

The data points were spaced evenly along the line with

an interpoint Euclidean distance of »/9 units. Theini-

tial 2-space configuration was chosen randomly.

2 For the purpose of this discussion it is convenient to think of
the starting configuration as being selected randomly; however, in
practice the initial configuration for the vectors is found by project-
ing the L-dimensional data orthogonally onto a d-space spanned
by the d original coordinates with the largest variances.

3 One exception is data set 3 which is a classical data set. This
data set was notartificially generated.

Reprinted from /EEE Trans. Comput., vol. C-18, pp. 401-409, May 1969.
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2) Circular Data: The data consisted of nine points,

eight of which were spaced evenly (45° apart) along a

circle of radius ?.5 units in a 2-dimensional space. The

ninth point was placed at the center of thecircle. The

initial 2-space configuration was chosen randomly.

3) Iris Data: This datasetis fairly well-known since

it was used by Fisher [4] in several statistical experi-

ments. The data were originally obtained by making

four measurementson Iris flowers. These measurements

were then used to classify three different species of Iris

flowers. Fifty sample vectors were obtained from each

of the three species. Thus, the data set consists of 150

points distributed in a 4-dimensional space.

4) Gaussian Data Distributed at the Vertices of a Sim-

plex: These data consist of 75 points distributed in a

4-dimensional space. There are five spherical Gaussian

distributions which have their respective mean vectors

located at the vertices of a 4-dimensional simplex.* The

intervertex distance is »/5/4 units and each covariance

matrix is diagonal with a standard deviation along every

coordinate of 0.2 unit. Fifteen points were generated
from each of the five Gaussian distributions, making a

total of 75 points.

5) Helix Data: This data set consisted of 30 pointsdis-

tributed along «a 3-dimensional helix. The parametric

equations for tlis helix are

X =cosZ

Y=sinZ

2
7,

2

The points are distributed at one-unit intervals along

the curve (i.e., '=0, 1, 2,°---, 29). |

6) Nonlinear Data: This data set consisted of 29

points distributed evenly along a 5-dimensional curve.

The parametric equations for this curve are

X =cosZ

Y=sinZ

U = 0.5 cos 2Z

V = 0.5 sin 2Z

z=X?,
2

The points were distributed at one-unit intervals along

the curve (i.e., !=0, 1, ---, 28).

Figs. 1 through 9 display the results obtained using

the nonlinear mapping algorithm. Convergence wases-

sentially obtained for each case in twenty or less itera-

tions using the gradient searching technique described

4 The vertices ci a simplex are all equidistant from one another
as well as from the pdrigin.

in Appendix I. As was expected, the data structure in-

herent in both data sets 1 and 2 was faithfully repro-

duced under the mapping (see Figs. 1 and 2). This was

expected since the data sets are 1- and 2-dimensional,

respectively, and therefore a mapping to a 2-space can

be accomplished with zero error. In both cases the final

error was 107".

Observingthe result of the Iris data mapping (Fig. 3),

we can essentially detect the three species of Iris. The

final error was 2X10-? which is considered quite small.

The results obtained on the simplex data (data set 4)

were quite interesting. The result of the mappingclearly

showed the presence of five clusters (see Fig. 4). How-
ever, when we compare this result with the projection

of the same data onto the 2-space defined by the two

largest eigenvectors of the estimated data covariance

matrix, we can only detect four clusters. Two of the

clusters overlap completely in the 2-space which fits

the data in the least squares sense (see Fig. 5). The re-

sulting NLM error was 0.05. The same experiment has

been conducted using Gaussian data distributed at the

vertices of higher-dimensional simplexes. Figs. 6 and 7

show the NLM and principal eigenvector plots, re-

spectively, for a 19-dimensional Gaussian simplex dis-

tribution. These experimentsindicate that for some data

sets, the NLM is superior to eigenvector projections for

data structure analysis.

Theresults shownin Figs. 8 and 9 clearly indicate the

“string structure” in data sets 5 and 6, respectively. The

mapping error for the helix data was 6 X107*. The error

for data set 6 was 1.6 X107%.

The utility of any data analysis technique is somehow

more convincing when applied to “real” data as opposed
to artificially generated data, presuming, of course, that

the analysis results are correct. For this reason, the

application of the NLM algorithm to an experimentin

documentretrieval by content is reported here.

The experiment, conducted jointly by Rome Air De-

velopment Center (RADC) and the University of Col-

orado, involved the construction of a documentclassifi-

cation space (referred to as the C-space) where every

documentin the library was represented as a 17-dimen-

sional vector. The construction technique devised by

Ossorio [8], [9] describes a mapping of 1125 preselected

words and phrases into the C-space. Documents, or

equivalently retrieval requests, were located in the space

by computing the vector average of the corresponding

key words or phrases which were contained in the docu-

ment or the request. Retrieval was accomplished by

rank-ordering the relevance of the library documentsto

a given request. The relevance measure was computed

using the Euclidean metric between the document vec-

tors and the request vector, the concept being that

document vectors which are close in the C-space are

related by content and therefore should be retrieved to-

gether.
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Briefly, the C-space construction proceeded asfollows.

First the subjec t content covered by the 188 documents

in the experimentallibrary was subjectively partitioned

into 23 technical fields (see Appendix II for a listing of
these fields). ‘several experts representing each field

rated the relevance of each of the 1125 words or phrases

to his field, usirig a scale from 0 to 8. The rating by the

experts within «ach field were then averaged to obtain a

word-by-field relevance matrix designated X; the 7th

element of X represents the relevance of word or phrase

1 to field 7. (It 's convenient to think of the 1125 words

or phrases as being represented by vectors in a 23-

dimensional space spanned by the 23 coordinate fields.)

Next, a 23 X23 field correlation matrix C was computed,

where the zjth element represented the correlation be-

tween the 7th and jth fields. C was then factored using

the minimum residual method and rotated to a Varimax

criterion. Seventeen orthogonal factors were then

selected to define the 17-dimensional C-space.

All 1125 words and phrase vectors were mappedinto

the 17-dimensional C-space using a simple nonlinear

formula which tended to emphasize large coordinate
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projections and minimize small coordinate projections.

Finally, the 188 documents were located in the C-space

by algebraically averaging the word or phrase vectors

corresponding to the word or phrases which appeared in

the documents.®

In order to evaluate the C-space as a potential method

for document indexing,several individuals were asked to

generate English queries (see Appendix III for the per-

-tinent queries used here) which were then keypunched,

automatically scanned for key word or phrase content,

5’ The entire document was never searched for key words or
phrases. Rather, for one half of the documents only the abstracts
were used, and for the remainder several paragraphs from each docu-
ment were used.

andfinally mapped into the C-space. Each requester was

then asked to identify those documents of the entire 188

which he felt were most relevant to his query. The C-

space was then evaluated by examining the rank order-

ing of the retrieved documents to compare them to the

list of relevant documents specified by the requester.

The results of this evaluation can be found in Ossorio
3].
The nonlinear napping algorithm was used to evalu-

ate the “structure” of the documents in the C-space.

Specifically, we were interested in how the documents

considered relevant to a particular request were clus-

tered, and further, how these clusters were interrelated

to each other and to the entire library. To accomplish
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Fig. 10. Nonlinear mapping-photograph of CRT display. Data:

1 =eight Request 1 vectors; 2=seven Request 2 vectors; 3 =six-
teen Request 3 vectors; 4=thirteen Request 4 vectors; 5=seven
Request 5 ve:tors. Starting configuration: maximum variance
coordinate plane. Mapping error = 0.062.

this analysis, sll 188 17-dimensional vectors were used

as the input data to the NLM. The numerals 1 through

5 were used in. the resulting 2-dimensional mapping to

designate the documents labeled relevant to.queries 1

through 5. In addition, the symbol D wasusedto desig-

nate the remaining library documents. It is important

to note that the NLM algorithm did not utilize the

numeric query designations in computing the mapping.

Only at the time of plotting the final 2-space configura-

tion of the 18points were the numeric and symbolic

designators used to distinguish the data. The error in

achieving the NLM shown in Fig. 10 was 0.062, which

was considered to be acceptable for adequate 2-space
representation.

The following facts were obtained upon investigation

of the NLMresult.

1) The documents considered relevant to a given re-

quest were clustered, lending evidence to support the

hypothesis tha: related documents have C-spacevectors

which are clos::.

2) There does not appear to be any natural C-space

structure relating subsets of documents. Instead, the

documents tend to be uniformly distributed throughout

the space.

3) Clusters : and 3 tend to overlap, yet they are well-

separated from clusters 4 and 5. This can easily be ac-

countedfor since requests 2 and 3 are both concerned

with the common subject of statistical data analysis,

whereas 4 and 5 involve completely different subjects.

In general, the intercluster relationships seem consistent

with their respective subject relationships.

In summary. we have found the NLM algorithm to

be of considera dle value in aiding us in our understand-

ing of the C-space as well as other document spaces.

Presently we are planning to incorporate a similar map-

ping technique in an on-line documentretrieval system

in order to im»rove the retrieval via geometric means.

The experimental system will operate as follows. The
on-line user would examine the 30 highest-ranked docu-

ments by retrieving and reading their abstracts. He

would then indicate those he considered relevant. Next,

a scatter diagram similar to Fig. 10 would be presented
upon the CRT display where each of the 30 documents

would be indicated by an J or an R, depending uponits

relevance. In addition, the original query vector will be

displayed as a Q. After examining therelative positions

of the documents in the mapping, the user would select

(using a light pen) one or more relevant documents to

be used to generate a new query vector(s). The concept

is that the query vector can be movedto highly relevant

regions of the documentspace byinteracting at a display

console with a geometric representation of the space.

RELATIONSHIP OF NLM To OTHER

STRUCTURE ANALYSIS ALGORITHMS

A mapping algorithm which bears a relationship to
the NLM algorithm is one developed by Shepard [11]
and later improved by Kruskal [5], [6]. Briefly, the
Shepard—Kruskal algorithm seeksto find a configuration

of points in a é-space such that the resultant interpoint

distances preserve a monotonicrelationship to a given

set of interelement similarities (or dissimilarities).

Specifically, they wish to analyze a set of interelement

similarities (or dissimilarities) given by S;;,,7=1,-°-,

N,j=1,--+, N. Suppose these similarities are ordered

in increasing magnitude, such that

Spin < Spear <
+. <5,

In *

The Kruskal-Shepard algorithm seeks to find a set of

N t-dimensional vectors y;,7=1, ---, N, such that the

order of the interpoint distances d,;=dist|¥y,, y;] devi-

ates as little as possible from the monotonic ordering of

the corresponding similarities. Although the mathema-

tical formulations are similar, the underlying mapping

criterions are quite different.

Ball [1] has compiled an excellent survey of cluster-
ing and clumping algorithms whichareuseful in solving

the “structure analysis” problem. However, it has been

our experience in using clustering techniques that these

algorithmssuffer to some extent from thefollowing four

deficiencies.

1) When using a particular algorithm, the resulting

cluster configuration is highly dependent upona set of

control parameters which must be fixed by the user.

Some examples of such parameters are:

a) the similarity measure;

b) various similarity thresholds;

c) numberof iterations required;

d) thresholds which control the increase or reduc-

tion of the numberof clusters;

e) the minimum numberof vectors required to de-
fine a cluster.
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Whenchoosing the control parameters for complex

data, the user musteither have a good deal of a priori
information regarding the “structure” of his data, or he

must apply the algorithm many times for different val-

ues of the control parameters. This secondalternativeis,

at best, tedious.

2) Most of the existing clustering algorithms are

particularly sensitive to hyperspherical structure and are

inefficient in detecting more complex relationships in

the data.

3) Perhaps the most serious deficiency involving

present-dayclustering algorithms is that there do not

exist really good waysfor evaluating a resultant cluster

configuration.

4) When two clusters are close, the vectors between

tend to form a bridge and cause spurious mergers [7].

Wefeel that the nonlinear mapping is a highly prom-

ising structure analysis algorithm since it suffers little

from the listed clustering deficiencies. Consider the

following facts concerning the algorithm.

1) The routine does not depend upon any control

parameters that would require a priori knowledge about

the data. Specifically, the user must set the number of

iterations and the convergence constant (MF in Appen-

dix I).

2) It is highly efficient in identifying hyperspherical,

hyperellipsoidal, and other complex data structures.

3) The resulting mapping (scatter diagram)is easily

evaluated by the researcher, thereby taking advantage

of the humanability to detect and identify data struc-

ture.

4) The problem concerning extraneous data and

spurious mergers is not present since humans easily

eliminate troublesome data points by making global

evaluations (machines have difficulty performing this

function).

5) The algorithm is simple and efficient.

LIMITATIONS AND EXTENSIONS

There are, of course, limitations to every algorithm

and the nonlinear mapping is no exception. There exist

two limitations which we are presently investigating.

The first has to do with the reliability of the scatter dia-

gram in displaying extremely complex high-dimensional

structure. It is conceivable that the minimum mapping

error is too large (E>>0.1) and the 2-dimensional scatter

plot fails to portray the true structure. However, wefeel

that for data structures composed of superpositions of

hyperspherical and hyperellipsoidal clusters, the non-

linear mapping algorithm will, in general, display ade-

quate representations of the true data “structure.”

The second limitation of the nonlinear mapping al-

gorithm is related to the numberof vectors that it can

handle. Since we must compute andstore the interdis-

tance matrix, which consists of N(N—1)/2 elements,
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we are limited at present to N<250 vectors. In those

cases where N>250, we suggest using a data compres-

sion technique to reduce the data set to less than 250

vectors. Specifically, we propose to use the Isodata [2]

clustering algorithm to perform data compression. This

is actually a natural function of clustering since were-

place several vectors with a typical representative

vector (i.e., the cluster center). Our previous objections

to present-day clustering algorithms do not apply here

since we are only concerned with fitting the data with

250 cluster centers. Weare specifically not using the

clustering algorithm to detect structure.

Wehave used the NLM to analyze multivariate data

from two or more classes for the purpose of determining

how well the classes can be discriminated from one an-

other. In these cases, it is recommended that the dimen-

sionality be reduced to the smallest numberof variables

which still preserve discrimination.’ In many problems

certain measurements provide little discriminatory in-

formation; yet if these measurements are included, the

NLM will attempt to “fit” interpoint distances along

these “noisy” directions as well as along discriminating

directions. In truly high-dimensional problems, there-

sulting mapping may show considerable overlap be-

tween classes and still a high degree of discrimination

may be possible. This phenomena occurred when

analyzing a 4-class, 24-dimensional data set. The result-

ing NLM (thefinal error was 0.5, which was considered

high) showed considerable overlap among the data

from three of the classes; yet, using a piecewise linear

discrimination technique (based upon the use of a

Fisher’s linear discriminant betweenall pairs of classes),

94 percent correct classification was achieved. In this

case, the NLM did not give an incorrect result since the

6 The nonlinear map is programmed in FORTRAN Iv and runs ona
GE-635 computer equipped with 128 K of core. The computation
time can be estimated by

I-N(N -1
T& (1.1 X 107)_—-

minutes, where

J =numberof iterations
N=numberof vectors.

7 A numberof techniques may be used for this purpose. Weoften
use the following:

a) Discriminant measure

M(X) = > (Uzi — Haj)? .

i<j Cri? + Ox;"

  

b) Interpoint measure

1 1
7

Ox” ij

Ni Ni ;

~ dX (%)@ — X,)?M(X) =
*) NiNj p=i q=1

  

where

Mz; = mean of class 7 along X
oz,2 =variance of class 1 along X
ox? = variance of all data along X

Xp=the pth sample from the ith class along X
N; =numberof samples from the 7th class.

c) Multilinear discriminant defined in Wilks [14].
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classes greatly overlapped in approximately 20 dimen-

sions and mildly overlapped in the remaining space. The

NLM weighted all coordinates equally in an attempt to

fit the interpoint distances, and therefore the resulting
mapping indicated the predominantoverlap which actu-

ally existed.

The NLM algorithm described here is one of manyal-

gorithms which are being programmed and incorporated

into a large ori-line graphics-oriented computer sys-

tem, entitled the On-Line Pattern Analysis and Recog-

nition System (OLPARS) [10].8 Once the NLM al-
gorithm is incorporated into the OLPARSsystem, the

on-line user will be able to designate a data set, and from

the graphics console execute the NLM. Theuser shall

specify a mapping to a 2-space or a 3-space. For d=2,

the resultant scatter diagram will be displayed upon the

CRT; for d=3, a perspective scatter plot will be dis-

played. If the 3-space option is selected, the user will be

able to dynamically analyze the resultant perspective

scatter diagram by selecting various rotations of the

three space. When the user selects d= 2, he will be given

the capability to designate subsets of data (via piecewise

linear boundaries drawn on the CRT) representinga col-

lection of points in the scatter diagram which exhibit

structure, and thereby partition the initial data list into

structured subsets.

APPENDIX |

Let E(m) be defined as the mapping error after the

mth iteration, i..,

1

E(m) = —- >) [di;* — dij;(m)]*/d.;*
C i<j

where

N

c= a [dij |
i<j

and

 

di;(m) = 2 [yix(m) — yie(m) |? .

The new d-space configuration at time m+1 is given by

Vnq(m -|- 1) = Vpq(m) — (MF) + Agg(m)

where

0E(m)

palm)
0?E(m)

OYpq(m)?

and MF is the “magic factor” which was determined

empirically to be MF~0.3 or 0.4. The partial derivatives
are given by

Apg(m) =

 

® For other exam les of interactive pattern analysis systems, see
Ball and Hall [3], Stanley et al. [12], and Walters [13].

  

GE  —2 XC dy* — dy;

ymekdager|Om =7
ix

and

07k —2N 1

OVpe? —¢ at. Upi*dpj
jx

~ y,,)2 d.* — d..
|Gs" _ dy;) _ (Ypq 3 ia)” (1 4 pj "|.

dy} dy;

In our program we take precautions to prevent any

two points in the d-space from becomingidentical. This

prevents the partials from “blowing up.”

APPENDIX II

CLASSIFICATION SPACE FIELDS

1) Adaptive Systems
2) Analog Computers

3) Applied Mathematics

4) Automata Theory

5) Computer Components and Circuits

6) Computer Memories

7) Computer Softwave

8) Display Consoles
9) Human Factors

10) Information Retrieval

11) Information Theory

12) Input-Output Equipment
13) Language Translation

14) Linear Algebra
15) Multivariate Statistical Analysis

16) Nonnumeric Data Processing

17) Numerical Analysis

18) Pattern Recognition

19) Probability and Statistics

20) Programming Languages

21) Stochastic Processes

22) System Design and Evaluation

23) Time-Sharing Systems.

APPENDIX III

REQUESTS

Request 1: What is known aboutthestatistical dis-
tributions of words or concepts in English text? What
impact does this knowledge or lack of knowledge have

on the effectiveness of standard statistical methods to

information retrieval problems? Are nonparametric

methods more applicable?

Request 2: 1 am interested in techniquesfor data anal-

ysis. In particular, I wish information on “cluster-seek-

ing” techniques as opposedto thoseof factorial analysis

and discriminant analysis. “Cluster-seeking” techniques

may be classified as follows: probabilistic techniques,
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signal detection, clustering techniques, clumping tech-

niques, eigenvalue-type techniques, and minimal mode-

seeking techniques.

Request 3: I would like any information concerning

Bayesian statistics. In particular, I would like to know

if one can define or devise multiple-decision procedures

from the Bayes approach. Also, how sensitive are Bayes

procedures to the prior distribution? Finally, I would

like a comparison of the Bayes approachto otherclassi-

cal decision theoretic approaches.

Request 4: What is the structure and characteristics

of paging techniques?

Request 5: Are there survey documents (information)

available which discuss or detail the relative practical-

ity of memories; for example, capacity versus utiliza-

tion, density, weight, environmental features, failure

rates, economics, etc.?
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A Projection Pursuit Algorithm for Exploratory Data Analysis

JEROME H. FRIEDMAN anp JOHN W. TUKEY

Abstract—An algorithm for the analysis of multivariate data is

presented and is discussed in terms of specific examples. The algo-
rithm seeks to find one- and two-dimensional linear projections of
multivariate data that are relatively highly revealing.

Index Terms—Clustering, dimensionality reduction, mappings,

multidimensional scaling, multivariate data analysis, nonparametric
pattern recognition, statistics.

INTRODUCTION

APPINGof multivariate data onto low-dimensional

manifolds “or visual inspection is a commonly used

technique in data analysis. The discovery of mappings

that reveal the salient features of the multidimensional

point swarm is often far from trivial. Even when every

adequate description of the data requires more variables

than can be conveniently perceived (at one time) by

humans,it is quite often still useful to map the data into
a lower, humanly perceivable dimensionality where the

humangift for pattern recognition can be applied.

While the particular dimension-reducing mapping used

may sometimes he influenced by the nature of the problem

at hand, it usually seems to be dictated by the intuition of

the researcher. Potentially useful techniques can be divided
into three classes.

1) Linear dimension reducers, which can usually be
usefully thought of as projections.

2) Nonlinear «dimension reducers that are defined over
the whole high-dimensional space. (No examples seem as
yet to have beer. seriously proposed for use in any gen-
erality.)

3) Nonlinear mappings that are only defined for the
given points—most of these begin with the mutual inter-
point distances a,the basic ingredient. (Minimal spanning
trees [2] and iterative algorithms for nonlinear mappings
[3], [4] are examples. The literature of clustering tech-
niques is extensive.)

While the noulinear algorithms have the ability to
provide a more faithful representation of the multi-
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University, Princetc.1, N. J. 08540 and Bell Laboratories, Murray
Hill, N. J. 07974.
_1 See [1] and [2] and their references for a reasonably extensive

bibliography on clus‘ering techniques.

dimensional point swarm than the linear methods, they

can suffer from some serious shortcomings; namely, the

resulting mappingis often difficult to interpret; it cannot

be summarized by a few parameters; it only exists for the

data set used in the analysis, so that additional data

cannot be identically mapped; and, for moderate to large

data bases, its use is extremely costly in computational

resources (both CPU cycles and memory).

Our attention here is devoted to linear methods, more

specifically to those expressable as projections (although

the technique seems extendable to more general linear

methods). Classical linear methodsincludeprincipal com-

ponents and linear factor analysis. Linear methods have

the advantages of straightforward interpretability and

computational economy. Linear mappings provide par-

ameters which are independently useful in the understand-

ing of the data, as well as being defined throughout the
space, thus allowing the same mappingto be performed on

additional data that were notpart of the original analysis.

The disadvantage of many classical linear methodsis that

the only property of the point swarm that is used to

determine the mappingis a global one, usually the swarm’s

variance along various directions in the multidimensional
space. Techniques that, like projection pursuit, combine

global and local properties of multivariate point swarms

to obtain useful linear mappings have been proposed by

Kruskal [5], [6]. Since projection pursuit uses trimmed
global measures, it has the additional advantage of robust-

ness against outliers.

PROJECTION PURSUIT

This paper describes a linear mapping algorithm that

uses interpoint distances as well as the variance of the

point swarm to pursue optimum projections. This pro-
jection pursuit algorithm associates with each direction
in the multidimensional space a continuous index that
measures its ‘‘usefuiness’”’ as a projection axis, and then

varies the projection direction so as to maximize this
index. This projection index is sufficiently continuous to
allow the use of sophisticated hill-climbing algorithms for
the maximization, thus increasing computational effi-
ciency. (In particular, both Rosenbrock [7] and Powell
principal axis [8] methods have proved very successful.)
For complex data structures, several solutions may exist,
and for each of these, the projections can be visually in-
spected by the researcher for interpretation and judgment
as to their usefulness. This multiplicity is often important.

Computationally, the projection pursuit (PP) algorithm
is considerably more economical than the nonlinear

Reprinted from /EEE Trans. Comput., vol. C-23, pp. 881-890, Sept. 1974.
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mapping algorithms. Its memory requirements are simply
proportional to the number of data points N, while the

number of CPU cycles required grows as N log N forin-

creasing N. This allows the PP algorithm to be applied to

much larger data bases than is possible with nonlinear

mapping algorithms, where both the memory and CPU

requirements tend to grow as N?. Since the mappings are

linear, they have the advantages of straightforward in-

terpretability and convenient summarization. Also, once

the parameters that define a solution projection are ob-

tained, additional data that did not participate in the

search can be mappedonto it. For example, one may apply

projection pursuit to a data subsample of size N,. This

requires computation proportional to N,log N,;. Once a

subsample solution projection is found, the entire data

set can be projected onto it (for inspection by the re-

searcher) with CPU requirements simply proportional

to N.

When combined with isolation [9], projection pursuit
has been found to be aneffective tool for cluster detection
and separation. As projections are found that separate

the data into two or more apparent clusters, the data

points in each cluster can be isolated. The PP algorithm

can then be applied to each cluster separately, finding new

projections that may reveal further clustering within

each isolated data set. These subclusters can each be 1iso-

lated and the process repeated.

Because of its computational economy, projection pur-

suit can be repeated many times on the entire data base,

or its isolated subsets, makingit a feasible tool for explora-

tory data analysis. The algorithm has so far been imple-

mented for projection onto one and two dimensions; how-

ever, there is no fundamental limitation on the dimen-

sionality of the projection space.

THE PROJECTION INDEX

The choice of the intent of the projection index, and to

a somewhat lesser degree the choice of its details, are

crucial for the success of the algorithm. Our choice of
intent was motivated by studying the interaction between

human operators and the computer on the prim-9 inter-

active data display system [10]. This system provides

the operator with the ability to rotate the data to any

desired orientation while continuously viewing a two-
dimensional projection of the multidimensional data.

These rotations are performed in real time and in a con-

tinuous manner under operator control. This gives the

operator the ability to perform manual projection pursuit.

That is, by controlling the rotations and viewing the
changing projections, the operator can try to discover

those data orientations (or equivalently, projection direc-

tions) that reveal to him interesting structure. It was

found that the strategy most frequently employed by

researchers operating the system was to seek out projec-

tions that tended to produce many very small interpoint

distances while, at the same time, maintaining the overall
spread of the data. Such strategies will, for instance, tend
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to concentrate the points into clusters while, at the same

time, separating the clusters.

The P-indexes we use to express quantitatively such

properties of a projection axis k can be written as a

product of two functions

I(k) = s(k)d(k) (1)

where s(&) measures the spread of the data, and d(k)

describes the “local density” of the points after projection

onto k. For s(k), we take the trimmed standard deviation

of the data from the mean as projected onto k:

a (l—p)N . _ 1/2

oh) =| Eek Xy/a-2”NV] @)
i=pN

where

(l—p)N

Xi = DL Xi-k/(1 — 2p)N.
i=pN

HereN is the total numberof data points, and X;(7 = 1,N)

are the multivariate vectors representing each of the data
points, ordered according to their projections Xi-k. A

small fraction p of the points that lie at each of the

extremes of the projection are omitted from both sums.

Thus, extremevalues of X;-k do not contribute to s(k),

which is thus robust against extremeoutliers.

For d(k), we use an average nearness function of the

form

N WN

d(k) = > DX f(ris)1(R — riz) (3)
i=1 j=l

where

rij = | Xi-k _ X;-k |

and 1(7) is unity for positive-valued arguments and zero

for negative values. (Thus, the double sum is confined

to pairs with 0 < 7r;; < R.) The function f(r) should be

monotonically decreasing for increasing 7 in the range

r < R, reducing to zero at r = R. This continuity assures

maximum smoothness of the objective function [(k).

For moderate to large sample size N, the cutoff radius
R is usually chosen so that the average number of points

contained within the window, defined by the step function

1(R — r;;), is not only a small fraction of NV, but increases

much moreslowly than N, say as log N. After sorting the
projected point values X;-k, the number of operations

required to evaluate d(k) [as well as s(k) ] is thus about

a fixed multiple of N log N (probably no more than this

for large N). Since sorting requires a numberof operations

proportional to N log N, the sameis true of the entire

evaluation of d(k) and s(k) combined.

Projections onto two dimensions are characterized by

two directions & and / (conveniently taken to be orthogonal

with respect to the initially given coordinates and their

scales). For this case, (2) generalizes to

s(k,l) = s(k)s(0) (2a)

176



FRIEDMAN AND TUKEY: EXPLORATORY DATA ANALYSIS

and r;; becomes

rag = [(Xiek — Xj)? +(Kel — Xj}? (Ba)

in (3).

Repeated application of the algorithm has shown thatit

is insensitive to the explicit functional form of f(r) and

shows major dependence onlyon its characteristic width

j=[1 ir/ [40) dr

j= [ rf(r)r ar/[ f(r)r dr (two dimensions).

(4)(one dimension)

(4a)

It is this characteristic width that seems to define ‘“‘local’’

in the search for rnaximum local density. Its value estab-

lishes the distance in the projected subspace over which the

local density is averaged, and thus establishes the scale of
density variation :o which the algorithm is sensitive. Ex-
perimentation has also shown that when a preferred

direction is available, the algorithm is remarkably stable

against small to moderate changes in 7, but it does respond
to large changes in its value (say a few factors of two).

The projection index I(k) (or I (k,l) for two-dimen-

sional projections) measures the degree to which the data

points in the prcjection are both concentrated locally
(d(k) large) while, at the same time, expanded globally

(s(k) large). Experience has shown that projections that

have this property to a large degree tend to be those that

are most interesting to researchers. Thus, it seems natural
to pursue those projections that maximize this index..

ONE-DIMENSIONAL PROJECTION PURSUIT

The projection i:adex for projection on to an one-dimen-

sional line imbedded in an n-dimensional space is a func-

tion of n — 1 independent variables that define the direc-

tion of the line, conveniently, its direction cosines. These

cosines are the n components of a vector parallel to the

line subject to the constraint that the squares of these

components sum tunity. Thus, we seek the maximaof

the P-index I(k) on the (n — 1)-dimensional surface of a

sphere of unit radius S*(1) in an n-dimensional Euclidean

space.
One technique fcr accomplishing this is to apply a solid

angle transform (fAT) [11] which reversibly maps such

a sphere to an (:2 — 1)-dimensional infinite Euclidean
space E"-!(—,0:) (see the Appendix). This reduces
the problem from {inding the maxima of I(k) on the unit

sphere in n dimensions to finding the equivalent maxima
of ILSAT(k) ] in £/"-!(— 0,0), This replacement of the
constrained optimization problem with a totally uncon-

strained onegreatl;’ increases the stability of the algorithm

and simplifies itsmplementation. The variables of the

search are the n -- 1 SAT parameters, and for any such

set of parameters, there exists a unique point on the

n-dimensional sphere defined by the n componentsofk.

The computational resources required by projection

pursuit are greatly affected by the algorithm used in the

search for the maxima of the projection index. Since the

number of CPU cycles required to evaluate the P-index

for N data points grows as N log N,it is important for
moderate to large data sets to employ a search algorithm

that requires as few evaluations of the object function

as possible. It is usually the case that the more sophisti-

cated the search algorithm, the smoother the objectfunc-

tion is required to be for stability. The P-index I(k), as

defined above, is remarkably smooth, and both Rosen-

brock [12] and Powell principal axis [13] search algor-
ithms have been successfully applied without encountering

any instability problems. For these algorithms, the num-

ber of objective function evaluations per varied parameter

required to find a solution projection has been found to

vary considerably from instance to instance and to be

strongly influenced by the convergence criteria estab-
lished by the user. Applying a rather demanding conver-

gence criteria, approximately 15-25 evaluations per varied
parameter were required to achieve a solution. (Stopping

when the P-index changes by only a few percent seems
reasonable. A convergencecriteria of one percent was used
in all of our applications.)

In order to be useful as a tool for exploratory data
analysis on data sets with complex structure, it is impor-

tant that the algorithm find several solutions that repre-
sent potentially informative projections for inspection by
the researcher. This can be accomplished by applying the

algorithm many times with different starting directions
for the search. Useful starting directions include the larger
principal axes of the data set, the original coordinate axes,

and even directions chosen at random. From each starting

direction k,, the algorithm finds the solution projection
axis k,* correspondingto the first maximum of the P-index
uphill from the starting point. From these searches, several

quite distinct solutions often result. Each of these pro-

jections can then be examined to determine their usefulness

in data interpretation.

In order to encourage the algorithm to find additional
distinct solutions, it is useful to be able to reduce the

dimensionality of the sphere to be searched. This can be

done by choosing an arbitrary set of directions {6;},.1”,

m <n, which need not be mutually orthogonal, and

applying the constraints

k*-6 =0; t=1,m (4)

on the solution direction k*. Possible choices for constraint

directions might be solution directions found on previous
searches, or directions that are known in advance to

contain considerable, but well understood, structures.

Also, when.~the choice of scales for the several coordinates

is guided by considerations outside the data, one might

wish to remove directions with small variance about the

mean, since these directions often provide little informa-

tion about the structure of the data. The introduction of

each such constraint direction reduces by one the number
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of search variables, and thus increases the computational

efficiency of the algorithm.

The algorithm can allow for the introduction of an

arbitrary number m < n of nonparallel constraint direc-

tions. This is accomplished by using Householder reduc-

tions [14] to form an orthogonal basis for the (n — m)-
dimensional orthogonal subspace of the m-dimensional sub-

space spanned bythe m constraint vectors {0;}:.1”. The

n — m — 1 search variables are then the solid angle trans-
form parameters of the unit sphere in this (n — m)-dimen-

sional space. The transformationfrom the original n-di-

mensional data space proceeds in twosteps. First, a linear

dimension reducing transformationto the (n — m)-dimen-

sional complement subspace, and then the nonlinear SAT

that maps the sphere S*-”(1) to H"-™"1!(— 0,0),

TWO-DIMENSIONAL PROJECTION PURSUIT

The projection index I (k,l) for a two-dimensional plane

imbedded in an n-dimensional space is defined by (2a),

(3), and (3a). This index is a function of the parameters
that define such a plane. Proceeding in analogy with one-

dimensional projection pursuit, one could seek the maxi-

mum of I (k,l) with respect to these parameters. The data

projected onto the plane represented by the solution

vectors k* and /* can then be inspected by the researcher.

Another useful strategy is to hold one of the directions

(for example, k) constant along some interesting direc-

tion, and then seek the maximum of I(k,1) with respect
to 1 in E(k), the (n — 1)-dimensional subspace or-

thogonal to k. This reduces the numberof search param-
eters to n — 2. The choice of the constant direction k

could be motivated by the problem at hand (like one of

the original or principal axes), or it could be a solution
direction found in an one-dimensional projection pursuit.

A third, intermediate strategy would be to first fix k
and seek the maximum of J(k,/) in £»-(k), as described

above. Then, holding 1 fixed at the solution value i*, vary

kin £>—(1*), seeking a further maximum of I (k,i*), This

process of alternately fixing one direction and varying the

other in the orthogonal subspaceofthefirst can be repeated

until the solution becomes stable. The final directions k*

and /* are then regarded as defining the solution plane.

This third strategy, while not as completely general as the

first, is computationally much moreefficient. This is due

to the economies that can be achieved in computing

I(k,t), knowing that one of the directions is constant and

that k-2 = 0. (Usingsimilarcriteria for choosing the cutoff
radius as that used for one-dimensional projection pursuit,

and sorting the projected values along the constant direc-

tion, allows I (k,l) to be evaluated with a numberof opera-

tions proportional to N log N.)

As for the one-dimensional case, the two-dimensional

P-index I(k,l) is sufficiently smooth to allow the use of

sophisticated optimization algorithms. Also, constraint

directions can be introduced in the same manner as de-

scribed above for one-dimensional projection pursuit.
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TABLE I

SPHERICALLY RANDOM DATA
 

 

14 Dimensions 975 Data Points

 

Search P- Index P-Index Search P-Index P-Index
No. Starting Solution No. Starting Solution

1 151.8 156.3 15 150.6 155 .8

2 150.7 156.7 16 150.6 156.9

3 149.4 156.0 17 151.0 157.0

4 152.4 159.7 18 152.2 155.6

5 152.3 159.2 19 152.1 160.2

6 151.0 154.4 20 152.9 159.0

7 152.6 155.6 21 150.0 160.8

8 149.6 155.4 22 150.0 157.9

9 150.0 156.1 23 150.7 155.4

10 151.8 153.0 a4 151.5 158 .4

11 154.0 154.6 25 151.0 155 .3

12 151.4 156.7 26 152.8 159.6

13 149.7 154.2 27 151.8 157.0

14 152.1 154.2 28 152.1 157.9
 

SOME EXPERIMENTAL RESULTS

To illustrate the application of the algorithm, we de-
scribe its effect upon several data sets. The first two are
artificially generated so that the results can be compared

with the known data structure. The third is the well-known

Iris data used by Fisher [15], and the fourth is a data set
taken from a particle physics experiment. For these

examples, f(r) = R —r, for one-dimensional projection

pursuit (3), while for two-dimensional projection pursuit

3(a), f(r) = R? — 7. In both cases & wasset to ten per-

cent of the square root of the data variance along the

largest principal axis, and the trimming (2) was P = 0.01.

A. Uniformally Distributed Random Data

‘To test the effect of projection pursuit on artificial data
having no preferred projection axes, we generated 975

data points randomly from a uniform distribution inside a

14-dimensional sphere, and repeatedly applied one- and

two-dimensional projection pursuit to the sample with

different starting directions. Table I showsthe results of

28 such trials with one-dimensional projection pursuit

where the starting directions were the 14 original axes

and the 14 principal axes of the data set. The results of
the two-dimensional projection pursuit trials were very

similar.
The results shown in Table I strongly reflect the uni-

form nature of the 14-dimensional data set. The standard

deviation of the index values for the starting directions

is less than one percent, while the increase achieved at

the solutions averages four percent. Also, only two searches

(runs 13 and 14) appeared to converge to the same solu-

tion. The angle between the two directions corresponding

to the largest P-indices found (runs 19 and 21) was 67

degrees. The small increase in the P-index from thestart-

ing to the solution directions indicates that the algorithm

considers these solution directions at most only slightly
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better projection axes than the starting directions. Visual

inspection of the data projections verifies this assessment.

B. Gaussian Data Distributed at the Vertices of a Simplex

The previous «xample shows that projection pursuit

finds no seriously preferred projection axes when applied

to spherically uniform random data. Another interesting
experiment is to test its effect on an artificial data set

with considerable multidimensional structure. Following

Sammon [4], we applied one-dimensional projection pur-
suit to a data set consisting of 15 spherical Gaussian

clusters of 65 points, each centered at the vertices of a

14-dimensional siinplex. The variance of each cluster is

one, while the distance between centers is ten. Thus, the

clusters are well separated in the 14-dimensional space.

Fig. 1(a) shows these data projected onto the direction

of their largest principal axis. (For this sample, the largest

standard deviation was about 1.15 times the smallest.)

As can beseen, th:s projection showsno hint of the multi-

dimensional structure of the data. Inspection of the one-

and two-dimensional projections onto the other principal

axes showsthe sarie result.

Using the largest principal axis [Fig. 1(a) | as the start-
ing direction, the one-dimensional PP algorithm yielded

the solution show: in Fig. 1(b). The threefold increase

in the P-index at the solution indicates that the algorithm

considersit a mucl: better projection axis than the starting

direction. This is verified by visual inspection of the data

as projected onto the solution axis, where the data set is

seen to break up into two well-separated clusters of 65

and 910 points.

In order to investigate possible additional structure, we

isolated each of the clusters and applied projection pursuit

to each one individually. The results are shown in Fig.

1(c) and (d). The solution projection for the 65-point

isolate showed no evidence for additional clustering, while
the 910-point sample clearly separated into two sub-

clusters of 130 anci 780 points. We further isolated these

two subclusters and applied projection pursuit to each

one individually. ‘he results are illustrated in Fig. 1(e)

and (f). The solution for the 130-point subcluster shows

it divided into two clusters of 65 points each, while the

780-point cluster separates into a 65-point cluster and

715-point cluster. Continuing with these repeated appli-

cations of isolation and projection pursuit, one finds,

after. using a sequence of linear projections, that the data

set is composed of 15 clusters of 65 points each.
Two-dimensiona] projection pursuit could equally well

be applied at each stage in the above analysis. This has

the advantage that. the solution at a given stage sometimes

separates the data, set into three apparent clusters. The

disadvantage is the increased computational requirements

of the two-dimensional projection pursuit algorithm.

C. Iris Data

This is a classica.. data set first used by Fisher [15] and

Simplex Data
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Iris Data Iris Data
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Fig. 2.

subsequently by many other researchers for testing sta-

tistical procedures. The data consist of measurements

made on 50 observations from each of three species (one

quite different from the other two) of iris flowers. Four

measurements were made on each flower, and there were

150 flowers in the entire data set. Taking the largest

principal axes as starting directions, we applied projection

pursuit to the entire four-dimensional data set. The result

for two-dimensional projection pursuit is shown in Fig.

2(a). As can be seen, the data as projected on the solu-

tion plane show clear separation into two well-defined

clusters of 50 (one species) and 100 (two unresolved

species) points. The one-dimensional algorithm also

clearly separates the data into these two clusters. How-
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ever, this two-cluster separation is easy to achieve andis

readily apparent. from simple inspection of the original

data.

Applying the procedure discussed above, we isolate the
100-point cluster (largest standard deviation was about

six times the smallest) and reapply projection pursuit,
starting with the largest principal axes of the isolate. Fig.

2(b) showsthe data projected onto the plane defined by the

two largest principal axes. Here the data seem to show no

apparent clustering.

One-dimensional projection pursuit, starting with the

largest principal axis, was unable to separate this isolate

into discernible clusters. Fig. 2(c) shows the results of

two-dimensional projection pursuit starting with the
plane of Fig. 2(9). This solution plane seems to divide

the projected data into two discernible clusters. One in

the lower right-hand quadrant with higher than average

density seems slightly separated from another, which is

somewhat sparser and occupies most of the rest of the

projection. In order to see to what extent this apparent

clustering corresj;ondsto the different iris species known

to be contained 11this isolate, Fig. 2(d) tags these species.
As can be seen,tie two clusters very closely correspond to

the two iris species. Also shown in Fig. 2(d) are some

level lines of (the projection onto the same plane of)

Fisher’s linear discriminant function [15] f for this iso-

late, calculated by using the known identities of the two

species. In this example, the angle between the direction
upon which this inear discriminant function is a projec-

tion and this plare is a little more than 45°.

The projection pursuit solution can be compared to a

two-dimensional »rojection of this isolate that is chosen

to provide maximum separation of the two species, given

the a priort information as to which species each data

point represents. Fig. 2(e) shows the isolate projected

onto such a plane whose horizontal coordinate is the value

of Fisher’s linear discriminant for the isolate in the full

four-dimensional space f, while the vertical axis is the

value of a similar Fisher linear discriminant in £3( f), the

three-dimensional space orthogonal to f [16]. (If. the

“within variance’ were spherical in the initially given

coordinate systen., this vertical coordinate would not be

well defined, since the centers of the two species groups

would coincide ir. £3( f). While we may feel that the

vertical coordinat: addslittle to the horizontal one, linear

discrimination seems to offer no better choice of a second

coordinate, especially since we would like this view also

to be a projection of the original data—a projection in
terms of the original coordinates and scales—asall two-

dimensional proje:tion pursuit views are required to be.)
Acomparison of Fig. 2(d) and (e) shows that the unsuper-

vised projection pursuit solution achieves separation of

the two species eqiivalent to this discriminant plane. Since

these two species are known to touch in the full four-

dimensional space [2], [4], it is probably not possible to

find a projection ‘hat completely separates them.

D. Particle Physics Data

For the final example, we apply projection pursuit to a
data set taken from a high-energy particle physics-

scattering experiment [17]. In this experiment, a beam

of positively charged pi-mesons, with an energy of 16

billion eV, was used to bombard a stationary target of

protons contained in hydrogen nuclei. Five hundred

examples were recorded of those nuclear reactions in

which the final products were a proton, two positively
charged pi-mesons, and a negatively charged pi-meson.
Such a nuclear reaction with four reaction products can

be completely described by seven independent measur-

ables.2 These data can thus be regarded as 500 points in

a seven-dimensional space.

The data projected onto its largest principal axis are

shown in Fig. 3(a), while the projection onto the plane

defined by the largest two principal axes is shown in Fig.

3(c). (The largest standard deviation was about eight

times the smallest.) One-dimensional projection pursuit

was applied, starting with the largest principal axis. Fig.

3(b) shows the data projected onto the solution direction.

Theresult of a two-dimensional projection pursuit starting

with the plane of Fig. 3(c) is shown in Fig. 3(d).

Although the principal axis projections indicate possible

structure within the data set, the projection pursuit solu-

tions are clearly more revealing. This is indicated by the
substantial increase in the P-index, and is verified by

visual inspection. In particular, the two-dimensional solu-

tion projection shows that there are at least three clusters,

possibly connected, one of which reasonably separates

from the other two. Proceeding as above, one could isolate

this cluster from the others and apply projection pursuit

to the two samples separately, continuing the analysis.

DISCUSSION

The experimental results of the previous section indicate

that the PP algorithm behaves reasonably. That is, it

tends to find structure when it exists in the multidimen-

sional data, and it does not find structure when it is known

not to exist. When combined with isolation, projection

pursuit seems to be an effective tool for the detection of

certain types of clustering.

Because projection pursuit is a linear mapping algo-

rithm, it suffers from some of the well-known limitations

of linear mapping. The algorithm will have difficulty in

detecting clustering about highly curved surfaces in the

full dimensionality. In particular, it cannot detect nested

spherical clustering. It can, however, detect nested cylin-

? For this reaction, 7»*p: — pmitmeta, the following measurables
were used: X; = wear, m1", mot), Xo = wa, m1"), X3 = u?(p, ~),

X4 = wa, m2"), Xs = w(p, m*), Xe = u(p, m1", — Pt), and X7 =

w(p, ™2", — pr-Here, w(A, B, os ) = (Es + Bp + Ec)? ~~ (Pa +

Pz + Po)? and w(A, + B) = (FE, + Eps)? — (P4 + Pz), where
F and P represent the particle’s energy and momentum,respectively,
as measured in billions of electron volts. The notation (p)? represents
the inner product P/P. The ordinal assignment of the two 7*’s was
done randomly.
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drical clustering where the cylinders have parallel gen-

erators.

Projection pursuit leaves to the researcher’s discretion
the choice of measurement variables and metric. The
algorithm is, of course, sensitive to change of relative

scale of the input measurement variables, as well as to

highly nonlinear transformations of them. Ifthere is no
a prior? motivation for a choice of scale for the measure-

ment variables, then they can be independently scaled

(standardized) so as to all have the same variance. In the

spirit of exploratory data analysis, the researcher might

employ projection pursuit to several carefully selected

nonlinear transformations of his measurement variables.

For example, transformations to various spherical polar

coordinate representations [11] would enable projection

pursuit to detect nested spherical clustering.
Frequently with multidimensional data, only a few of

the measurement variables contribute to the structure or
clustering. The clusters may overlap in many of the dimen-

sions and separate in only a few. As pointed out by both

Sammon [4] and Kruskal [6], those variables that are

irrelevant to the structure or clustering can dilute the
effect of those that display it, especially for those mapping

algorithms that depend solely on the multidimensional

interpoint distances. It is easy to see that the projection

pursuit algorithm does not suffer seriously from this effect.
Projection pursuit will automatically tend to avoid pro-

jections involving those measurement variables that do
not contribute to data structure, since the inclusion of these

variables will tend to reduce d(k) while not modifying

s(k) greatly.

In order to apply the PP algorithm, the researcher is
not required to possess a great deal of a prior: knowledge

concerning the structure of his data, either for setting up

the control parametersfor the algorithm or for interpreting

its results. The only control parameter requiring care is
the characteristic radius 7 defined in (4). Its value estab-

lishes the minimum scale of density variation detectable

by the algorithm. A choice for its value can be influenced

by the global scale of the data, as well as any information

that may be known about the nature of the variations
in the multivariate density of the points. The sample size

is also an important consideration since the radius should

be large enough to include, on the average, enough points
(in each projection) to obtain a reasonable estimate of

the local density. These considerations usually result in a

compromise, making 7 as small as possible, consistent with

the sample size requirement. Because of the computational
efficiency of the algorithm, however,it is possible to apply

it several times with different values for 7. Interpretation

of the results of projection pursuit is especially straight-

forward, owing to the linear nature of the mapping.
The researcher also has the choice of the dimensionality

of the projection subspace. That is, whether to employ

one-, two-, or highér dimensional projection pursuit. The
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two-dimensional projection pursuit algorithm is slower
andslightly less stable than the one-dimensional algorithm;
however, the resulting two-dimensional map contains
much more information about the data. Experience has

shown that a useful strategy is to first find several one-

dimensional PP solutions, then use each of these direc-

tions as one of the starting axes for two-dimensional pro-

jection pursuits.

APPENDIX

This section presents the solid angle transform (SAT)

that reversibly maps the surface of a unit sphere in an

n-dimensional space S"(1) to an (n — 1)-dimensional in-

finite Euclidean space E"—!(— 0,0). This transformation

is derived in [11] and only the results are presented here.

Let (X1,X2,+++,Xn) be the coordinates of a point lying

on the surface of an n-dimensional unit sphere and

(m,n2,***,nn-1) be the corresponding point in an (n — 1)-
dimensional unit hypercube £"—!(0,1). Then for n even,

the transformation is

i—1

Xo = be ne;| cos [sin2:49 |] sin (ari),
j=l

L<i<n/2—-1
n/2—1

Xn = IT 1,| sin (277-1)

  

j=l

Xoj-1 = Xo; cot (22-1), ] < 1 < n/2.

for n odd, we tale

pe 7

X,=! I] mpl (2nn—-2 — 1)
LL jl

| (n—8) /2 7

Xn-1 = mpi!m2) (nn—2 — Nn—2") 1/2 sin (2ann—-1)
L. j=1 J

t—]

Xo; = 1 nj!| cos [sinn,!/"—29 ] sin (Qarna:-1),
j=l |

1<i< (n—-3)/2

Xoi1 = Xo; cot (2an2i-1), 1<1t< (n—1)/2.

The Jacobian of this transformation,

is a constant, namely, the well-known expression for the

surface area of an n-dimensional sphere of unit radius.

Adjusted by a factor of the (n — 1)st root of Ja, the

transformation is volumepreserving, one to one, and onto.
The inverse transformation can easily be obtained by

solving the above equations for the 7’s in terms of the
X coordinates. The unit hypercube E”—(0,1) can be

expanded to the infinite Euclidean space E"—}(— 0,0)

by using standard techniques [18], specifically, multiple
reflection.
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Bibliography on Estimation of Misclassification
GODFRIED T. TOUSSAINT

Abstract—Articles, books, and technical reports on the theoretical and

experimental estimation of probability of misclassification are listed for

the case of correctly labeled or preclassified training data. By way of

introduction, the problem of estimating the probability of misclassification

is discussed in order to characterize the contributions of the literature.

INTRODUCTION

NE OF THE most important problems in pattern

OC recognition is estimating the probability of mius-

classification. Before embarking on a description of the

literature in this field it is proper to make a distinction

between some of the various measures of probabilities of

misclassification (error) usually considered.

1) The optimal or Bayes probability of error, denoted by

P.2, is given by P,? = 1 — | max; {P(X/C,)P(C,}} dX,
where P(X/C;) and P(C;) are the class-conditional prob-

ability density function and the a priori probability of the

ith class, respectively. This error probability results when

one has complete knowledge of the probability density

functions with which to construct the optimal decision rule

and uses the Bayes decision rule. Knowledge of the under-

lying distributions could have resulted from observing an

infinite number of independent labeled pattern samples.

Thus the Bayes error rate can be thoughtof as the infinite-

sample error.

2) The error probability that results when one has

complete knowledge of the probability density functions

and uses a decision rule other than the Bayes’ rule is denoted

by P.*.

It is clear that P,° > P.®, with equality holding when the

given classifier is (Bayes) optimal. The term P, will be used

when no distinction is made between P,° and P,”, andit
will be referred to as the “‘actual” error probability.

In practice one usually obtains a data set which is not

only finite, but in fact quite small. Frequently no knowledge

is available concerning the underlying distributions. In such

situations one would,ideally, like to know whatthe resulting

probability of error is going to be on future pattern samples

whentheclassifier is trained, i.e., its parameters estimated,

on the given dataset.

3) Denote by P, the probability of error on future

performance when the classifier is trained on the given

data set.

4) Denote by E{P,} the expected error probability on

future performance over the distribution of training sets.

P, is an estimate of E{P,} and both approachthe “‘actual”’

error probability P, as the number of pattern samples

approaches infinity. P, and E{P,} are also knownin the
literature as error rates of the sample-based classifier design

Manuscript received March 10, 1973; revised January 22,1974. _
The author is with the School of Computer Science, McGill

University, Montreal, P.Q., Canada.

or decision rule. It is obvious that P,2 > P,3, although it
is not necessarily true that P,° > P,° unless the underlying

distributions are such that the given classifier is Bayes

optimal.

5) Denote the “‘apparent”’ error probability by P,(app).

For example, P,2(app) is obtained by estimating the
probability distributions or their parameters and subse-

quently substituting these estimated values into the

expression for error probability. The apparent Bayeserror

probability is given by

P.,(app) = 1 — { max {P(X/C,)P(C;)} dx

where P(X/C;) and P(C,) are estimates of P(X/C,) and
P(C;), respectively.

Alternately, one can consider the ‘apparent’ error

probability to be that obtained when the sample-based

classifier design or decision rule is tested on an infinite

number of pattern samples coming from distributions, the

parameters of which take on the estimated rather than the

true values. P,2(app) may be greater or less than P,?, but

has a tendency to be optimistically biased.

6) For 1), 3), 4), and 5) and anyclassifier considered in

2), denote by P,,, the transition probability of error that a

pattern belonging to class i is classified into class j, for i,

j = 1,2,-+:,M, i 4 j, where there are M classes.

7) For 1), 3), 4), and 5) and anyclassifier considered in

2), denote by P.jc, the class-conditional probabilityof error,

i.e., the probability that any one pattern belongingto class

iis misclassified. It follows that

M

Pic; = y P..,:

j=1
jJ#Fi

8) For 1), 3), 4), and 5) and anyclassifier considered in

2), denote by P,,, the conditional probability oferror given a

particular unclassified pattern. It follows that

P= | P(X)P,x dX

where P(X)is the unconditional, or mixture, distribution.

In most pattern recognition problemsoneis interested in

P,. However, P, cannot be obtained exactly because, by
definition, all the available pattern samples are used for

training the classifier and hence noneareleft for testing it.

Several methods are available for estimating P,. Some of

these methodsare described in the following. Emphasis is

placed on nonparametric techniques, since usually nothing

is known aboutthe distributions.

There are two basic approaches to the problem of

estimation of misclassification : the nonparametric approach,

which is almost always used in problems such as character

recognition; and the parametric approach, in which it is

Reprinted from /EEE Trans. Inform. Theory, vol. !1T-20, pp. 472-479, July 1974.
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assumed that the unknown distributions belong to a

parametric family. The nonparametric methods will be

consideredfirst.

Let {X,6} = {N,, 0,3 X2, 0.3°°+; Xy, Ov} be the set of

N pattern samples available, where X; and 6, denote,

respectively, the rieasurement information and the label or

classification information of the ith pattern sample. It is

assumedthat each 6; associated with X; is the correct label,

i.e., the pattern samples have been correctly preciassified.

Method 1

The first method considered here is the resubstitution, o:

R method, which consists of the following steps.

1) The classifier is trained on {X,0}.

2) The classifier is tested on {X,0}.

Let the resulting proportion of errors encountered during
testing be denoted by P.[.R]. When pattern recognition asa
field of study wasstill in its infancy, P,[.R] was a popular
method of estimating P,. As a matter of fact, this method
of estimating P, was suggested by somestatisticians in
discriminant analysis long ago [161].

Researchers in the field of pattern recognition soon
became interestec! in the “generalizing” capability of a
“learning” machine (adaptive classifier), which gaverise to
methods 2)-4). It should be noted that although the three
methods are discussed separately for the purpose ofclarity
and historical perspective, they are all special cases of the
method referred to by somestatisticians as cross-validation.

Method 2

The second method underinvestigation is the holdout, or
H method, which can be described as follows.

1) Partition {X,0} into two mutually exclusive sets {X,0},
and {X,0}, such that

{X,0}, = X), O13; X, O25 °°°; XNa)? N(a)s

{XO} 5 = Xway +13 Ona) +15 “+3 Xy, Oy}

and N(B) = N — N(a).
2) Train the classifier on {X,0},.

3) Test the classifier on {X, Ot».
Let the proportion of errors observed during testing be

denoted by P,[H]. Traditionally 50 percent of the available
samples have beer used for training, and 5O percent for
testing. The H method was analyzed by Highleyman [89],
who indicated a method for obtaining confidence intervals
on the results and presented graphs showing how

a

finite
data set of size N sl ould be partitioned between training and
test sets for various values of N. However, Kanal and
Chandrasekaran [112] showed that Highleyman’s analysis
and the resulting graphsare valid only when

N

is sufficiently
large, whereas the ;;roblem of estimation of misclassification
is of most concern when

JN

is small. Additional work on
obtaining confidence intervals and partitioning the data set
can be found in [16], [17], [50], [51], [118], [127], and
[143]. Researcher: using the R and H methods soon
reported large discrepancies between P.[R] and P,[H].
Some of the important works that discuss these discrep-
ancies are [11], [13], [31], [45], [46], [88], and [142]. It

was observed that AP,(H — R) A P.[H] — P.[R] was
usually positive, and it was conjectured [45], [88], that the
value of AP,(H — R) was inversely proportional to sample
size and that

lim {APH — R)} =
N> oo

As it turns out, although the R method uses the data
efficiently, it is an overly optimistic estimate of performance.
Furthermore, unless N is large, the H method tendsto give
an overly pessimistic estimate of performance, as well as an
unreliable one because the value of P,[H] for a given data
set depends on the partitioning of {X,0}. The H method
also uses the data in an inefficient manner. It can, however,
be made morereliable by averaging P.[H] overall possible
partitions offixed size.

1) Partition {X,0} into K randomly chosen pairs of sets
of equal size

XO} a: {XO}ps {XO}: {XO} 5
such that for 7 = 1,2,-++,K, {X,0}; and {X,0}4, are mutually
exclusive.

2) For i = 1,2,:+-+,K train the classifier on {Y0}: and
test it on {X,O}p, letting the resulting proportion of errors
be denoted by P.[H],.

3) An estimate of the expected value of P,[H] over the
partitions is then given by

K

» PL]. (1)

This method of improving the reliability of the estimate was
mentioned by Duda and Hart [46], and is known in some
circles as ‘data shuffling” [68]. Although the estimate in
(1) uses the data more efficiently than the H method, it
still uses only half of the available data for training each
time. Furthermore, thefinal result is still overly pessimistic,
A method which has come to be known in North

American circles as the U method or “‘leave-one-out”
method goes a long way towards makingefficient use of the
data and yielding an estimate of performance with a small
amount of bias compared to the previous methods.

Method 3—(U Method)

1) Take one pattern sample (X;,0;) out of {X,0}. Then
define

{X,0}; & 1X4, p50 9°53 Xi, Oi 15 Xia, Oiast Xn, Oy}.

2) Train the classifier on 1X,0} ,.

3) Test the classifier on (X;,0;). If X; is classified into the
category associated with 0, set e; = 0; otherwise set
e; = I, where e, acts as an error indicator.

4) Do steps 1)-3) for i = 1,2,--+,N to obtain values for
€;, 1 = 1,2,°°°,N.

5) The estimate of P,, denoted by P,[U], is then
computed as follows:

PJ[U] = ee (2)

M
zi

Ni

In the statistics literature the U method is attributed to
Lachenbruch, [90], [165], who published results on it as
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early as 1967 [119]. However, the U method has been under
investigation in the pattern recognition literature since the

early 1960’s. Lunts and Brailovskiy [128] attribute the U
method, which they refer to as a “‘sliding’ estimate, to

Weinzweig, and they themselves published experimental and

theoretical work onit as early as 1964 [21], [22], and [128].
An experimental comparison of the U/ method with the R

method and the actual error probability for different ratios

of sample size to feature size (dimensionality) for different

nonnormaldistributionsis given in [124].
In spite of its advantages with regard to bias, the U

method suffers from at least two disadvantages. Denote by

E{P.[U]} the expected value of P,[U] over the distribution
of training sets. Althoughit is desirable to have E{P,.[U]}

“close” to the actual error probability, it is probably more

important to use an estimator with a small variance. Hence,

an estimator which is more biased than the U method but

has a much smaller variance may be preferred by a

researcher who may then have more confidence about his

particular result on his particular data set. This problem has

been considered by Lunts and Brailovskiy [128], who atso
derive an expression for the variance of P,[U] unaer
certain restrictions. Glick has shown that the U method has

much greater variance than the R method for discrete

distributions and, in fact, the U method in some sense

achieves bias reduction in exactly the ‘“‘worst’’ way for the

discrete case.’ Recently Lissack and Fu [126] have proposed

a method which they call the F method, and have reported

experimental results on Gaussian data. They foundthat the

F method wasless biased and had smaller variance than the

U method. A secondpractical disadvantage of the U method

is that it requires excessive computation in the distribution-

free-case, in the form of N training sessions, unless N is very

small. For the case of Gaussian distributions a certain

amount of computation can be saved [63], [64], [119]. To
combat this disadvantage of the U method the following

method, also referred to as the rotation or I] method, was

proposed in [171] and [173].

Method 4—(11 Method)

1) Take a small subset of pattern samples

{X,0}7° A {X4, O,; Xo, 0; my Xp, Op}

such that | < P « N and N/P is an integer, P/N < }.

Then

{X,0t7% A {Xpat O5413 me Xy, Oy}.

2) Train the classifier on {X,0}7%.
3) Test the classifier on {X,0}7% to obtain a proportion of

errors denoted by P,[1],.
4) Do steps 1)-3) for i =

and {X,0}7° are disjoint for i =
N/P, andi # j.

5) The resulting estimate of P, is computed as

1,2,---,N/P such that {X,0}7°

1,2,° ° ,N/P, J= 1,2,° fy

N/PP
— P[11),. 3
N X el. ]i ( )

! Ned Glick, personal communication.
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Note that when P = 1 the II method reduces to the U
method. On the other hand, when P = N/2 the IT method
reduces essentially to the H method, where the roles of
training andtesting are interchanged. Thisis the well-known
“cross-validation in both directions” method [139].? The I
method is also considered in [128]. Obviously, the IT
method is a compromise between the U and AH methods.

One would expect the I] method to be less biased than the

H method (depending on the values of P, N, and 4, where

4 denotes feature size, dimensionality, or the number of

parameters to be estimated) and to require less computation

than the U method. Therefore,it is a method well suiced to

‘““medium-sized’’ data sets. Some experimental results on

this method of estimating P, are given in [99], [100],
[172], and [174]. This method of cross-validation has the
flavor of the estimation methods usedin statistics to reduce

bias that are referred to as “‘jackknifing” procedures [138].
Two problems closely related to the estimation of the

probability of misclassification from a given aata set are: 1)

reducing the bias of the estimates of the parameters that

results when designing the classifier, especially when the

training set is small, and 2) estimating the stability of the

classifier or estimated parameters based on the given data

set. The jackknife [138] serves the dual purpose of
eliminating bias in the estimates of the parameters and

giving an honest measure of variability, based on the

training data itself. For example, consider a linear dis-

criminant function g(X). Let the data be divided into k

subgroups andlet g,,,(X) and g(X’) denote the discriminant
functions computed using the entire data set and usingall

the data left after omitting the jth subgroup, respectively.

The jackknifed discriminant function is then given by

g(X) = kaX) — === Ygf). 4)
In [139] Mosteller and Tukey propose a ‘‘leave-two-out”’

method? in which jackknifing and cross-validation are

carried out simultaneously. At each step one pattern sample

is put aside for cross-validation while anotheris successively

removed from the remaining group of size N — | in order

to obtain a jackknifed classifier design. These methods have

been applied to an authorship classification problem in

[138]-[141].

Several studies [56], [57] show that these estimates of
P, converge to P, as N > oo. In particular, a quantity such

* This method is referred to as ‘‘double cross-validation’’ in the
psychologyliterature [137], [145]. A further extension of these methods
is possible, as indicated by Norman [145]. For example, one can use
“triple cross-validation’’ [145] to estimate the probability of mis-
classification of the best subset of n out of N features for a specified
feature-selection criterion. The data set is first partitioned into three
subsets. With knowledge of each subset of data, a subset of n features
is chosen with the specified feature-selection criterion. For each of the
three subsets of 7 features the classifier is trained with a data subset not
used in the feature subset selection procedure. Finally, the classifier
incorporating a particular feature subset is tested on the third data
subset. The average of the three results is a measure of the performance
of the best ” features according to a given feature-selection criterion.

° It should be kept in mind that this “leave-two-out’’ method is not
the same as the “‘second-order-jackknife.’’ The latter involves leaving
two out for the purpose of bias reduction and has nothing to do with
cross-validation. Work on the “‘second-order-jackknife’’ can be found
in Adamset al., Ann. Math. Statist., vol. 42, pp. 1606-1612, 1971.
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as E{P.[R]} approaches P, from below whereas another
quantity such as E{P.[I1]} approaches P, from above.
Therefore, another estimate for P, can be defined as

NIP .
P* = W(N,P,A)~ Y PLT, + [1 — WN,PAIPLR]

=1Ni

(5)

where 0 < W(N,P,A) < 1. In fact, since (3) and P,[R] are
estimates of P, biased in opposite directions, it should be

possible to determine the function W(N,P,A), at least

empirically, such that P,* is an essentially unbiased estimate

of P,. For example, in the work of Foley [56], the average

of the results on the test set and training set provides quite

a good estimate of the actual error probability, even for

small N. In [174], P,* was applied to a problem in medical
diagnosis and it was found empirically that for W(N,P,A) =

constant = 1/2 and P/N = 1/10, where N = 300, P.* was
essentially equal to P,[U]. Furthermore, a tremendous

saving was realized, because 300 training sessions were

needed to obtain P,[U], whereas for P,* only 11 training
sessions were needed—one to obtain P,[R] and ten to
obtain (3).

Studying the error probability on the training and

testing sets as a function of N, the number of pattern

samples, is not the whole story. The estimation of P, is also

intimately related! to the number of features or measure-

ments used by the classifier.* Early experimental observa-

tions of this deperidence in pattern recognition, discriminant

analysis, and disease diagnosis can be found in [4], [5],
[33], [38], [49], [67], [73], and [175]. Some theoretical
work along the samelines is given in [1], [28], [29], [46],
[56], [57], [96], [98], [111], and [154]. The problem of
estimating P, is further complicated by the fact that it
depends on whether there exist dependencies among the

features and ultimately on the actual distributions for the

problem at hand. One measure oferror probability not yet

defined here is the “‘problem-average” error rate or, as

defined by Hugh«s [96], the “‘mean-recognition-accuracy”
denoted by P,(L,/V), where N is the number of samples and
L is the number of “cells”? or values X can take ir. the

discrete case. P,(L,N) represents the error probability

averaged overall possible pattern recognition problems or

distributions on 4”. Further results on P,(L,N) are given in

[1], [28], [29], [98], and [111].

The literature “ontains a wide variety of other methods
(the parametric methods) for estimating various measures
of probability of misclassification when certain a priori
information concerning the distributions is available.
These methods usually invoke the normality assumption.
An example is the D method in [123], where it is assumed
that there are two classes (M = 2) with means p, and pp,
and equal covariance matrix 2. Obviously,if the parameters
were known there would be no problem andtheclass-

* Anderson and Isenhour [6] have recently done extensive Monte
Carlo studies on dirsensionality 4 versus sample size N as related to
linear separability. They found that even for constant N/A the prob-
ability of error on tle testing set tends to decrease as 4 increases for
values of N/A < 3.

conditional Bayes probabilities of misclassification would

be given by

Pac, = Pac, = O( — 0/2)

where 567 = (uy — pf)’Z ‘(uy — Hy) is the Mahalanobis
distance, ® is the cumulative normal distribution, and T

denotes the transpose. When the parameters are not known

the D method yields an estimate of Pic,, i = 1,2, which
is given by

P; = ®(- D/2)

where D? is the Mahalanobis sample distance when the

sample means X, and X, and the sample covariance matrix

S are substituted for u,, u,, and X, respectively. Various

modifications of this D method exist, in which different

types of estimates of the Mahalanobis distance are used.

Discussions and comparisons of all these methods can be

found in [23], [119], [120], [122], [123], [151], [162]-

[165], and [167]. It should be noted that the D method
yields the “‘apparent” error rate discussed earlier for the

case of normaldistributions.

The parametric approach to estimation of misclassifica-

tion involves two other theoretical aspects of the problem:
the distributions of classification statistics on one hand

[19], [20], [84], [102]-[110], [133]-[135], [146], [158],

[159], and the convergence properties of the estimators on
the other [54], [55], [74]-[76], [176]. For example, in a
typical approach, for the two-category problem with

Gaussian distributions and known equal covariance

matrices, John [102] proposes a classification procedure

based on the calculation of a classification statistic and

derives an analytic expression, in the form of an infinite

series, for the probability of misclassification as a function

of N, and N,, where N, + N, = Nand VN,is the number

of training pattern samplesin the ith category. Furthermore,

for the case of M categories, M > 2, he derives an upper

bound on the probability of misclassification. In order to

set up the classification procedure and to study performance

characteristics, such as the probability of misclassification,

it is necessary to know thedistribution of the statistic used

in the classification procedure. In [104] John gives the exact
distribution of several classification statistics. Glick [75],

[76] extensively covers what hecalls “plug-in” estimates
(for -Gaussian distributions, actually the D method of

Lachenbruch and Mickey [123]) and ‘“‘deletion-counting”
estimates (actually the “‘sliding”’ estimates in [128] or the U
method in [123]). He also considers these estimates for
various decision rules such as the nearest-neighborrule.

The ‘deleted nearest-neighbor” estimate of P, wasfirst

proposed by Cover [39]. Since then further theoretical work

has been done on the estimate and on an interesting

modification ofit in [178], [179], and [187]. The modifica-
tion is essentially a recursively updated nearest-neighbor

estimate as new pattern samples are added. Experimental

work with the deleted nearest-neighbor estimate can be

found in [174] and [184]. Additional work on the con-
vergence of nearest-neighbor estimates is given in [41],
[42], [78], [82], [85], [147]-[150]. Estimating error
probabilities using nearest-neighbor rules requires a great
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deal of storage when data sets are large. Hence some

attempts have been made at decreasing the size of the

training data; in some cases better estimates of P,® are

obtained than those obtained by using the entire training

set [53], [83], [87], [147], [170], and [186].°

Some further miscellaneous work concerning the estima-

tion of P, and related problems can be found in [3], [12],
[13], [15], [34], [36], [37], [58], [81], [116], [125], [152],

[156], and [166]. Friedman defines A = P,? — P,? as the
“error determined by classifier,” the parameters of which

are estimated from a particular training set. For the two-

class problem with equal a priori probabilities, he derives

expected values of A and examines their asymptotic

behavior for a few simple univariate Gaussian cases.

Wilkins and Ford [185] discuss the effects of unrepre-

sentative samples present in the trainingsets.

The reader should be reminded that estimating the error

on a given data set by making proper use of the best

procedures available is only half the problem. One may

have a large enough data set relative to the number of

parameters to be estimated, but does it adequately represent

the variability in the data for the problem oneis trying to

solve? Hence a problem of perhaps even greater importance

than the previous one is the adequacy of the datasetitself.

For example, in speech recognition and alphanumeric

handprinted character recognition, thousands of samples

are required to represent the true variability in the data

from the population at large. This is the price which must

be paid when the underlying class-conditional distributions

are not known.
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ON _DIMENSTIONALITY AND SAMPLE SIZE IN

STATISTICAL PATTERN CLASSIFICATIONL
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I. INTRODUCTION

Some questions on dimensionality and sample
size which arise in the statistical approach to the
design of pattern classification systems are: what
is the best way to use a fixed size sample to de-
Sign a classification system and evaluate its per-
formance? When a certain finite number of samples
is available what should be the dimensionality of
the pattern vector, i.e., how many variables should
be used, and if one can get as many samples as one
wants, can the probability of error be made arbi-
trarily small by increasing the number of samples?

Surprising as it may seem now, in much of the

earlier work in pattern classification, especially
that based on adaptive algorithms, the entire set

of available samples was first used for design and

future performance was then predicted to be that

achieved on this design set. By now it is well

known that this procedure is biased, resulting in
too optimistic an estimate of performance.

The choice between competing design procedures
can only be based on predicted performance. We
would like the ranking of procedures based on per-
formance estimated from a fixed size sample to

correspond to the ranking that would occur given

actual performance. Moreover we want the estimated

performance of the system finally selected to be a

"'good'' predictor of its actual performance. Both

the sizes of the design and test sample sets in-

fluence the accuracy of these estimates. We are
then faced with the problem of the optimum use of

a fixed size sample for maximizing the accuracy of

these estimates. This can be considered without
reference to the specific competing design procedures

Pattern vector dimensionality enters into the
effectiveness of the design based on finite samples,
In statistical classification, estimation, and pre-
diction, it has often been noted that, with finite
samples, performance does not always improve as the

number of variables is arbitrarily increased.
Sometimes it may even deteriorate. This added to

the increase in system complexity for more variables,

makes the relationship of pattern vector dimension-
ality to design sample size, worth investigation.

Some answers to these questions have been pre-

viously proposed. In this paper we (1) examine the
specific formulation and applicability of the pro-

posed solutions and consider modifications which

make the results more useful; (2) formulate a trade-

off between the number of variables and the number

of samples, and (3) consider the role of structural
assumptions in questions concerning dimensionality
and sample size.

 

IT. DESIGN AND TESTING

Suppose we have alternate design procedures
applicable to a problem and have a finite sample
set. Eventually we want to choose the best design
procedure and then use it to design a system with
all available samples. But first we do the alter-
nate designs using only part of the total sample
set and then test their performance on the remain-
der. This method is hereafter referred to as the
holdout or H method.

For the selection of the best design procedure
based on performance data we need to maximize our
confidence in the test results obtained. On the
other hand we would like the systems designed with
@ subset of the available samples to reflect faith-
fully the design based on the entire set. This
leads to the problem of optimum use of a sample set
to maximize overall confidence in the design and
testing of the system.

To our knowledge, Ref. 1 is the only publica-
tion presenting analytical results for this problem.
The paper suggests partitioning the total sample
set into disjoint design and test sets and obtains
the optimum partitioning to minimize the variance
of the estimated error rate. The assumptions
underlying the analysis are: the error rate, e,can
be expressed as a function of a finite number of

estimated parameters;' it can be expanded into a

Taylor series about the error rate, G5, Of the

optimum system based on infinite design samples;
and the deviations (e - e,) are small enough for
terms, in the expansion, higher than second order
to be neglected. The result of the analysis is a
set of curves showing the fractions of the avail-

able sample set, which should be used for design

and testing, versus a function of the ideal error,
€o, the total number of samples, t, and a quantity
which measures the effectiveness of the design.

The H method analysed in Ref. 1 and the recom-
mendations given there are interesting. Hawever,
it has not been recognized that they are valid

only when the total sample size is large. When a

prescription is most needed, i.e., in the small

sample case, the analysis breaks down because the

deviations (e - eo) can no longer be considered
small enough to be approximated by just two terms
of the Taylor expansion. In this case the result-
ing recommendations are not applicable. Fortunate-
ly, approaches other than the H method are possible
and do apply to the small sample case. They also

give a better estimate of the error rate for the

system designed with all the available samples,
something for which there is no provision in the

linvited talk, Pattern Recognition Session, Natl. Electr. Conf., Chicago, 1968.
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H method.
We sugge:t the use of the following method,

which is the most promising general procedure among

the various ‘yrocedures that have been experimental-

ly evaluated in Ref. 2. The problem considered in

this paper is more general than the one posed in

Ref. 1, but this only enhances the usefulness of

the results. If m is the total number of samples,
take all possible partitions of size 1 for the test

set and m-l vor the design set. This results in

successively omitting one sample in the design

procedure. “he estimates of error obtained are

unbiased est:.mates of the error rate for a design

based on m-l samples. Following Ref. 2, we term

this the U method.
The H mevshod is quite uneconomical with samples;

the U method is definitely superior in this respect.

However, it vequires the computation of m designs

for each candidate procedure. If the design calls

for the invexsion of a covariance matrix, the pros-

pect of computing m inverses might appear formid-

able. Fortunately an identity by Bartlett leads to

a method which requires only one explicit inversion

for each class covariance matrix (only one for the

whole problenif covariance matrices are assumed
equal). The details are given in Refs. 2 and 3.

Having considered the first question mentioned

in the introduction we turn to the relationship

between dimensionality and sample size. We con-

sider first “she ideal situation.

‘II. INFINITE SAMPLE SIZE

Optical Vharacter Recognition is an example of

situations in which the designer has, potentially,

a large, essentially infinite sample. Models lead-

ing to very ».ptimistic and rather pessimistic

results have been presented for classification

based on an infinite sample set. Representative

of optimisti: results are those presented in Refs.

4, 5, and 6. Ref. 4, which appears to have gone
unnoticed du:ring the last decade, assumes multi-

variate Gaussian distributions. Its results are

sharper thar. those presented in Ref. 6 which are
more general since they do not invoke the Gaussian

assumption. However, Ref. 6 assumes independent
variables. ‘ief. 5 evaluates bounds for the error

rate for ind2pendent, Gaussian variables. These

references d2rive conditions whereby the probabil-

ity of error can be made arbitrarily close to zero

as the number of variables increases. (i)

In the maltivariate normal case, with Ly. and
o. denoting respectively the mean and variance of

the kth variate in class i, with variances assumed
equal for beth classes, this result is obtained,

when the variables are independent, if

ing2) apyg(2)
k = >§ > 0 for all k,

 

 

ox

ec

and =A? liverges. If the variables are not
indepefident, but the lower bound § for theA,'s
exists, ther. the sufficient condition becomes, _

roughly spea.xcing, that all the elements r“J of the
reciprocal cf? the correlation matrix be non-zero.
Or we have tiie equivalent necessary condition that

the series

J
rs A, A, diverge.

J Ss

2 2
k=l j=l
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If we do not assume normal distributions and let

f,(,) and fo(%,) be the probability density func-
tions of the variable X, for classes 1 and 2 re-

spectively, then defining a distance by

dy = l£1(x,) - fo(x,)| dx, »

co

the condition, = dy, diverges, is sufficient for

the probability of error to be arbitrarily close
to zero when the number of variables is increased

indefinitely.
The implication of these conditions is that if

each variable, being considered for inclusion in

the decision function, contributes ever so little

to the discrimination, by using sufficient numbers

of them, we can eventually get perfect discrimin-

ation. A corrolary is that, by adding another

variable, even if we don's do any better, we can

never do any Worse.
How much do these optimistic results help us

in practice? First the assumption of independence

for arbitrarily large numbers of observables is

unrealistic. In most practical problems the ob-

servables represent bandlimited functions such as
two dimensional visual patterns and time functions.

Even if we are prepared to process all the observ-

ables there are just so many independent ones

available. Secondly, in practice it is even more

difficult to determine if they are truly indepen-

dent than if

o co
2 4, or 2.A,,? diverges.
k=1 k=1

Thirdly, these results do not give any idea of the

danger involved in the statement '' the more, the

better'' applied to the number of variables, when

the number of samples available for estimating the

decision function is not large. This last point is

quite important in a number of contexts @.g. Ref.7}
The extreme among pessimistic results is that

presented in Ref. 8. This reference considers the

problem of finding the average probability of error

over all problems with a fixed number of measure-

ment states. The number of measurement states can

be computed as follows. If we have N variables and

the kth variable can take on one of nr, values, then
the total number of measurement states is

N
\ %-
k=1

No assumption of statistical independence or de-

pendence between the variables is made, nor is
there a metric in the measurement space. The

latter point, broadly speaking, means that no

parametric families of distributions can be reasm-

ably fitted on the probability functions in the

measurement space. This statistical model is

general enough and even, as we shall see, too

general. In this model, in making the decision

about class membership, we need the probabilities

P[S;/K] where S; are the measurement states and «
the class index. When S; occurs, the class for
which P(K) P(S;/K) is highest is decided upon as
the class from which the pattern came. If we know

these probabilities, or equivalently if we have an
infinite number of samples from which to estimate

them, then for two class problems with equal prior

probabilities, Ref. 8 establishes that, on the
average, even if we increase the number of measure-

ment states (or the number of variables) indefinitely



the probability of correct recognition only

approaches 0.75.

This result takes into account that in some

problems the variables may be independent, in some

others correlated; in some the probability den-

sities may be continuous while in others they may

be essentially discontinuous. The figure 0.75 for

the probability of correct recognition over all

such problems is admittedly a consequence of the

particular probability distribution over the

problem-space. This particular distribution is

summarized by the statement that the quantities

p(s,/&) are for alle&'s, uniformly distributed in
the n-l dimensional simplex

{ tp(sz/«), eee p(Sp_1/&)]:p(S4]a) > 0,i=l,...n-1;

n-1

2Plsi fa) <1 j and p(s, /&)

n-1
isl - DS v(s,/a).

i=l

Here n is the total number of discrete measurement

values that are assumed possible. The results

based on this model are further examined in the

section on probability structure and sample size.

IV. FINITE SAMPLE SIZE

In many problems such as target recognition and

fault diagnosis, the available sample size is finite

and usually small. The relationship of measurement -

space dimensionality to sample size is considered

in Ref. 8, within the framework of a statistical
model which is very general, assuming practically

no structure. The model is the same as that

described for Ref. 8 previously except that Hs;|)

are now not known but need to be estimated from

samples; a suitable decision rule is based on these

estimates.
Defining measurement complexity as the total

number of measurement states allowed, the mean

correct recognition probability is calculated as

an average of performance over all classification

problems falling within the purview of the model

and having a specified measurement complexity
and prior class probabilities. The reason for

considering prior probabilities as a separate

parameter is that some interesting phenomena occur

for the case of unequal prior probabilities. Some

paradoxes present in Ref. 8, have been clarified
in Refs. 9, and 10. We now consider the conse-

quences of the general model of Ref. 8, taking into
account the contributions of Refs. 9, and 10.

Let m; and mo be the mumber of samples avail-

able for estimating the parameters for both the

classes and let n be the measurement complexity.

Let ry and s; be the numbers of times out of mj and
Mo respectively, that the measurement value 5;

occurred for classes 1 and 2. Let the prior prob-

abilities of the classes be given by Doe) and Dan.

The Bayes decision rule (Ref. 9) is then to compare
the quantities

r. +1 s. +1
i i

(Poy mntm) and (Po, n>7m=?

and assign S; to class 1 if the first is greater

than the second, and assign it to class 2 otherwise.

When the a priori probabilities of the classes

are equal, this decision rule leads to an average

performance curve in which, for a fixed number of

samples, when the measurement complexity is in-

creased, the mean classification accuracy increases
until an optimum value is reached after which

performance falls off. At infinite measurement

complexity the performance is no better than that

based on prior probabilities. As would be expected,

the value of the optimum measurement complexity

increases with the number of samples. The values

obtained are astonishingly pessimistic. For

instance, when 500 samples are available from each

class, the optimum measurement complexity is 23.

For a vector of binary variables, this allows less

than 5 variables. As shown in Ref. 10 some inter-

esting variations on this behaviour occur for the
case of unequal prior probabilities. The existence

of an optimum measurement complexity is a likely

characteristic of all statistical classification

systems designed with a finite sample.

Performance as a function of the dimensionality

of the variables and the sample has been considered

in Ref. 11. Although it deals with the prediction

problem assuming Gaussian statistics, the important

similarities between prediction and pattern clas-

sification make the results worth discussing.

The decision function considered in Ref. ll is

the maximum likelihood estimator of the ideal pre-

diction function, based on known parameters, and

derived from a minimum mean square error criterion.

Assuming an N-dimensional multivariate normal vector

with a non-singular, in general, non-diagonal

correlation matrix and assuming that the predictand

and the variable vector are jointly normal, the

expected value of the error,é , is given by

 2 mtl N
P (==) (1 + muN2D? for N < m-2

E(E€) = 4 for N = m-2

undefined for N> m-l,\
V

where m is the number of samples available to

estimate the predictor function, and #<© is the min-
imum mean square error achievable when all the

parameters are known. The ideal error p@ is in
general a monotonically non-increasing function of

the dimensionality, N, such that, if the variables

satisfy the conditions of Ref. 4, mentioned in the
previous section,

lim p* = 0.
N00

For N < m-2, there is an optimum value of N at which

E(€) is a minimum. The value of this optimum
dimensionality depends on the particular form,taken

py P°(N). For instance (Ref. 11) if p°(N) = Tapa
and m = 200, 82 variables provide the minimum
expected error. Increasing the number of variables

above this value only decreases the performance of

the predictor.

V. A TRADE-OFF PROBLEM

We now formulate a trade-off between the number

of samples and the number of variables. In many

situations a cost is associated with acquiring one

more sample or one more block of r samples. A cost

is also associated with mechanizing sensor systems

to measure one more variable. The motivation for
considering the trade-off is that even when it is

certain that increasing the number of variables is

going to result in improved performance, it may be
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more cost-ezfective to achieve the same improvement

by increasing the number of samples.

For illustration, consider the prediction prob-

lem of Ref. 11. For simplicity let us ignore the

term (m+1)/m, which enters into the expression for
the expected error, so that

E(wjm) = P°ES
where m is “she number of samples and N the number

of variables. Let Cy, be the cost associated with
obtaining one more sample and Cy the cost to
mechanize the system to measure one more variable.

Assume that (“, the ideal error, decreases as a
function of N in the manner P< = 1/1 + aN, so that
the N for which the minimum error is attained is

_ (m2) 1
opt ~ 2 2a,"

 ) for N < m-2,

N

The question then is: what are the optimum numbers

of samples and variables which achieve a given

error rate and minimize the cost ? Since the cost

is C = Cy,’m + CyeN, letting the error rate € =
we can minimize the cost,under this constraint.

Substitutiny for m andf’~ from the expressions
given above C can be written as

2]soe. E(N+2)(1+aN
= Cr ote 4

Setting dc/ciN equal to zero gives the optimum

number of variables corresponding to the error rate
E: ~ -

For E << 1, this expression can be reduced to

 

 

 

(2E-1)
AEN, (1-E) +, /(1-2E)a. Q.

(JI-E)(JI-E +1) & 2;
CN

For q ? O, Q »(1-E) + Ji-£ =
m

for ae, Q »(1-E) = 1.

Substituting, Nopt = Q/aE into the expression for €
gives

Mopt “= * +5 |S925]
Thus, for “y/Cy 0, m, » H/aE = Nope; for

CylCon ~» 6O, Mont » 0.

These results prescribe, simply, that when var-

iables are cheap relative to samples, having speci-

fied the op::imum number of variables corresponding

to the erro: rate E, we need only use twice that

many samples; when variables are very expensive

compared to samples we pick only half as many var-

lables, viz, 1/aE, and use a very large number of
samples.

VI. PRCBABILITY STRUCTURE AND SAMPLE SIZE

The opti.mum dimensionality corresponding to a

given sample size depends on the probability struc-

ture assumec| for the problem and the correspondence

between the assumed structure and reality. Furtheyz

optimal decision procedures differ for different

underlying probability structures. For instance
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decision procedures involving estimated covariance

matrices when nothing is known, about the depen-

dence or independence of the variables, are non-

optimal when in fact the variables are independent.

The optimum dimensionality for a given sample

size increases, in general, with the increased

structure in the problem formulation, with a

corresponding increase in the maximum probability
of correct recognition. For example with a finite
sample size and N binary variables, assuming no

structure at all the problem is equivalent to the

model in Ref. 8 where the measurement complexity

is 2N; with 500 samples from each class, the
optimum number of variables is 5 and the optimal

probability of correct recognition is 0.74. In
contrast consider the problem generated by increas-

ing the structure considerably by imposing the

following constraints (Ref. 12, p. 25). Let X =
(X,, ---Xy) and Y = (Y¥),...Yy) denote respectively,
the pattern vectors from class 1 and class 2, where

the X;'s and Y;'s are independent, binary random

variables with“REx, = 1] =¥ and P[Y;, = 1)=4(1-7)
for all i. Let ¥ be estimated using m samples from

each class. If sample Z=(Z),...Zy) of unknown
origin, to be classified into one of the two class-

es, contains r ones and N-r zeros, the Bayes dec}-

sion rule is: decide class 1 if r < N/2 and v< 5
or if r>N/2 andé@> 1/2; and decide class 2 if r< N/2’and
s> Ye or if r> We and d< 5+ The probability d errar
is derived in Ref. 12. Gaing me step beyond Ref. 12 we

arrive at the result of interest here. Itcan be verified

that lim RB, =0 for finite m and lim P,#0 for finite N.
N-»e n~2

In this example, for any finite sample size, arbitrarily

increasing the number of variables always improves

performance. Thus the optimal measurement complexity

for this highly structured problem is infinite. The

case of non-identically distributed independent

variables lies inbetween those of Ref. 8 and 12,and
numerical results remain to be worked out.

Another aspect of the relationship between

probability structure, sample size and measurement -

space dimensionality is brought out rather clearly

in any decision procedure involving the estimation

of covariance matrices. Let a sample of size m be

available from an N-variate population. Regardless

of the actual populationcovariance matrix, if

N > m-l, the estimated ocvariance matrix is singu-
lar. If samples from both classes are pooled to

estimate a single covariance matrix, then with m

now representing the total of samples from classes

1 and 2, the estimated covariance matrix is singu-
lar for N>m -2. Traditionally this point was

avoided by restricting consideration to those cases

where the number of variables is less than m-2,
although Hottelling (Ref. 13) explicitly mentions
an example with four samples and five observables.

In Ref. 13 Hottelling says '' some of the informa-

tion mist be allowed to go to waste'' and discards

three of the five random variables. He admits his
dissatisfaction with this procedure and with the

alternate approach of removing the singularity

problem by assuming independent variables. A ra-

tionale against reducing the number of variables
to get around the singularity problem in the small
sample case, is presented in Ref. 14, When the
estimated covariance matrix is of rank r < N, then

all the sample points lie on an r dimensional

hyperplane. The suggestion by many authors of

using the Generalized Inverse, which exists even
for singular matrices, is undesirable as it con-

strains the estimated population to the



r dimensional hyperplane of sample points. Ref.15

presents a class of 'tppsuedo estimates!'! for the

covariance matrix, obtained by adding a term pro-

portional to the average variance to each diagonal

element of the sample estimate of the covariance

matrix. It also contains examples showing the

superiority of the suggested estimates over the

Generalized Inverse solution. The Bayesian version

and justification for the ad-hoc approach of Ref.

15 appears in Ref. 16. We note that from a
Bayesian point of view the Generalized Inverse

procedure is untenable since it implies a prior

distribution which assigns zero probability to

some part of the space of variates.

Consideration of the structural assumptions of

the model of Ref. 8 leads to an explanation of the
rather pessimistic results for measurement complex-

ity. First, there is no provision in the model

for the case of independent variables and conse-

quently for the use of more variables than allowed

by the general model. The mean performance is

calculated as an average over all problems with

various degrees of correlations between variables.

This tends to lower the average performance from

the value corresponding to the case of independent

variables. However, in the abscence of any know-

ledge of independence it is not unreasonable to

obtain average performance over all correlations

that are possible.

Another important assumption responsible for

the conservative results on measurement complexity

is that of lack of continuity in probability

values of neighboring measurement cells. To illus-

trate this consider just two variables Y; and Yo
each taking values from 1 to 10, with increments

of 1. Let us index the 100 measurement states as

follows. States 51 to Sj09 represent states for

which (Y,, Yo) = (i, 1) where i goes from 1 to 10;
states S]1 to Soop represent (i, 2), 1< i< 10 and
so on. if we construct three dimensional proba-

bility diagrams where one horizontal axis repre-

sents the ten values of Y),, @ second horizontal

axis ten values of Yo, and the vertical axis the

probabilities associated with these values, we

would normally not expect highly discontinuous

changes in these probabilities. Ref. 8 gives an
example where the estimated probabilities in a

real problem are indeed discontinuous. However

there are very many other problems where this does

not apply, and in these cases the usefulness of

the conservative results for maximum measurement

complexity is questionable.

A further examination of this assumption

provides meaning to these numbers and also an

insight for tightening the design procedure. Con-

tinuity provides redundancy and redundancy is

generally helpful in reducing error. However if

estimates of the nature of this redundancy are

unreliable performance can worsen rather than

improve. When we do not have enough information

for estimating redundancy, it can be removed by

quantizing the variables no finer than is abso-
lutely necessary. That is we provide just enough

levels so that knowledge of P[S;/€] does not in-
crease our knowledge of P[S./&] where j # i.
Another way to reduce the measurement complexity,

when it is necessary to improve average perfor-

mance, is to eliminate relatively insignificant

variables. Various suggestions for the selection

and evaluation of features have been made. A use-

ful but not well known reference on this subject

is Ref. 17.

10.

11.
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VII. CONCLUSIONS

On the question of the optimum use of a fixed

size sample to maximize overall confidence in the

design and testing of pattern classification sys-

tems, the only published theoretical analysis of

the simple partitioning of samples between design

and test sets, and the recommendations based on it,

are invalid in the small sample case. In this case

a definitely superior alternate method is available.

On the question of how many variables to use

in designing a classification system, the probabil-

ity structure assumed and its correspondence to the

real problem at hand determine the relationship

between the design sample size, the number of

variables and the probability of error. Earlier

investigations led to very optimistic results while

recent results have been very pessimistic. As we

have shown, these are only extremes of a range of

possibilities.
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Considerations of Sample and Feature Size
DONALD H. FOLEY, MEMBER, IEEE

Abstract—In manypractical pattern-classification problems the under-

lying probability distributions are not completely known. Consequently,

the classification logic must be determined on the basis of vector samples

gathered for each class. Although it is common knowledge that the error

rate on the design set is a biased estimate of the true error rate of the

Classifier, the amount of bias as a function of sample size per class and

feature size has been an open question. In this paper, the design-set error

rate for a two-class problem with multivariate normal distributions is

derived as a function of the sample size per class (NV ) and dimensionality

(L). The design-set error rate is compared to both the corresponding

Bayes error rate and thetest-set error rate. It is demonstrated that the

design-set error rate is an extremely biased estimate of either the Bayes

or test-set error rate if the ratio of samples per class to dimensions (N/L)

is less than three. Also the variance of the design-set error rate is

approximated by a function that is bounded by 1|/8N.

INTRODUCTION

N MANY practical pattern-recognition problems, the

[onceryine class conditional probability densities are

either partially or completely unknown. Consequently, the

classification logic must be designed from information

based on representative samples from each class. The dif-

ficult question of how many samples are needed for an

adequate classifier design naturally arises and has received

some attention.

The deleterious effects of inadequate sample size have

been discussed in the past. For multivariate normal dis-

tributions with commoncovariance, John [1] and Sitgreaves
[2] discuss the distribution of the Fisher linear discrim-
inant.’ Estes [3] showsthat the error rate using the Fisher
linear discriminant deviates severely from the theoretical

optimum whentheratio of sample size (N) to feature? size

(L) is small. For the related problem of linear prediction,

assuming normalstatistics, Allais [4] derives a comparable
result. Hughes [5] and Abender a/. [6] show that the aver-
age probability of correct classification over all possible

discrete class distributions deteriorates as the ratio of

samples to measurement states decreases. Ullman [7] has
reported a similar phenomenon occurring in his expert-

ments in the numeric handprint character-recognition

problem. All of these results pertain to the expected per-

formance of a classifier on future test samples when the

classifier has been designed using a design set of finite size.

Manuscript received January 27, 1971; revised January 12, 1972.
This paperis part of a dissertation submitted to Syracuse University,
Syracuse, N.Y., in partial fulfillment of the requirements for the Ph.D.
degree.
The author was with the Rome Air Development Center, Griffiss

Air-Force Base, Rome, N.Y. He is now with Pattern Analysis and
Recognition, Inc., Rome, N.Y., and with the Department of Systems
and Information Sciences, Syracuse University, Syracuse, N.Y.

1 The Fisher linear discriminant d is £~'(g@, — M2) where ZX, Ay,

and #2 are the estimated common covariance and the estimated means
of class 1 and 2.

2In the literature, the terms feature, measurement, variable, and
dimensionality are used interchangeably.

A number of people have noticed that the error rate on

the design set gives an optimistically biased estimate of the

true performance or error rate of the classifier. Hills [8]
showed for multivariate normal distributions that the ex-

pected value of the estimated error rate of a classifier that

was designed and tested on the same data(i.e., the design

set) 1s always less than the true error rate. Lachenbruch

and Mickey [9], Lachenbruch [10], and Fukunaga [11]
have experimentally verified this result. Cover [12] has
derived some results, which may be interpreted as follows:

regardless of the true performance of a two-classclassifier,

if the total number of samplesis less than twice the number

of features, there exists a linear hyperplane such that the

probability of error on the design set is always zero.°

Kanal and Chandrasekaran [13] have considered two

questions. |) What is the best way to design a classification

system and evaluate its performance given a fixed sample

size? 2) When a finite number of samplesis available, how

many features should be used? In answering thefirst ques-

tion, Kanal recommendsthe “‘hold-one-out”’ method orig-

inally proposed by Lachenbruch [10]. In this method, a
classifier is designed on N — 1 samples and tested on the

one remaining sample. This procedure is then repeated for

all N samples. In answering the second question, Kanal[13]
points out that the number of features that can be used for

a fixed sample size depends upon the probability structure

assumedfor the problem. |

Generally speaking, the greater the knowledge of the

underlying probability structure, the greater the number of

features that can be used without degrading the performance

of the classifier.

In this paper, the error rate on the design set as-a function

of the number of samples per class (V) and the number of

features (L) is derived and related to both the true error

rate of the classifier and the Bayes error rate for the corre-

sponding minimum-probability-of-error classifier. The un-

derlying probability structure consists of a) a two-class

problem with equal a priori probabilities; b) a cost of | for

any error andzero for any correct decision; c) N independent

and identically distributed samples for each class from two

multivariate normal distributions with common covariance.

The emphasis on the design set is for two reasons. First,

although a number of authors have noted that the error

rate on the design set is a biased estimate of the true error

rate of the classifier, the amountof the bias as a function of

sample size per class (V) and feature size (L) has been an

Open question until now. Secondly, in some problems the

3 Actually, Cover [12] shows that the design-set error rate eg is zero
when (2N/L) < 1 and that eg rapidly approaches zero when (2N/L) < 2
and L increases without bound. Also note that Cover refers to the
total number of samples in a two-class problem. This is equivalent to
2N in this paper since N is the sample size perclass.

Reprinted from /EEE Trans. Inform. Theory, vol. |\T-18, pp. 618-626, Sept. 1972.
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hold-one-out method of estimating the error rate of a

classifier is too time consuming. Consequently, the data

must be dividec. into a design set and a test set. Unfor-

tunately, this makes poor use of the data since a classifier

designed on the entire data set will on the average perform

better than a classifier designed on only a portion of the

data. Therefore, if a designer is satisfied with the test-set

results, he would normally recombine the two data sets and

redesign the classifier based on all the samples. Although

this makes better use of the data for design purposes, the

evaluation of the performance must be based only on

design-set results. Consequently, knowledge of both the

amount of the bias and the relationship between the design

estimate and true performance is required.

EXPERIMENTAL ILLUSTRATION

In this sectior., some new experimental results point out

a Statistical tray) involved in using the error rate on the

design set &, as a measure of the true performance of the

classifier when the ratio of the sample size per class (V) to

feature size (L) .s small. In addition, the average error rate

on the design set: is computed for a numberof experimental

runs. The result: indicate that the ratio of the sample size

to feature size (/V/L) can be related to the amount of bias

between the error rates on the design andtest sets.

Suppose that a researcher has selected L features that

hopefully contain enough information to allow twoclasses

to be reasonably distinguished. NM representative samples

are gathered frcm each class. One possible classification

procedure woul: be to orthogonally project the samples

from the two classes onto the optimal discriminant plane*

[14]. Next, the researcher could attempt to construct a

piecewise linear boundary in the discriminant plane that

would separate the samples from the twoclasses.

In one particuar experiment, ten samples for each of two

classes were randomly generated from their twenty eight-

dimensional clas:-conditional distributions. The OLPARS°

system [15] was used to project the samples onto the

discriminant plane, shown in Fig. 1. It is obvious that a

linear boundary will separate the two classes perfectly.

Consequently, cn the basis of these results, a researcher

might conclude that he had selected a useful set of features

and an excellent decision rule for this particular problem.

However, in this experiment the samples for these two

classes were generated from identical uniform distributions!

In effect, a class has been perfectly distinguished fromitself.

This contradicticn glaringly illustrates the deceiving results

on the design se: when the ratio N/L is small. The results

are deceiving in this case since the true error rate (assuming

equal a priori probabilities) for any classifier without reject

regions is 0.5. This “statistical trap’ may have been the

source of some exaggerated claimsin the past. These results

* The x axis of the discriminant plane is the Fisher direction, while
the y axis is the di-ection that maximizes the samecriterion as the
Fisher direction su:ject to the constraint that the two directions are
orthogonal.

° The on-line pattern analysis and recognition system was developed
by Sammonandis presently implemented at RADC.

are compatible with Cover’s results [12] since the ratio of
the total number of samples to features (2N/L) is less than

two.

Fig. 2 shows the resulting discriminant plane when a

larger ratio of sample size to feature size is used. No matter

what linear boundary is drawn in this plane, the resulting

error rate on the design set will give a more realistic indica-

tion of the true errorrate.

Since it is only hypothesized by the designer that he has

selected a useful set of features, the example is not un-

reasonable. For instance, in a signal-recognition problem,

the first L discrete power spectrum coefficients may be

selected as features. If the difference between the two classes

lies in higher frequencies than represented by the Lth

coefficient, then the two class-conditional densities are

identical. If the ratio of the sample to feature size 1s small

enough, the designer will have no indication of the poor

quality of his feature extractor.

Instead of just investigating whether the error rate on the

design set (&,) is a biased estimate of the true performance,

we ran experiments to determine the effect of the ratio of

the sample size per class (NV) to the feature size (L) on &.

Consider the following two-class problem. Each class has

equal a priori probability. Each class has identical L-dimen-

sional class-conditional probability densities. The density

along each of the L features 1s statistically independent and

uniform overthe interval [0,1]. Two sets ofN L-dimensional
samples were randomly generated on a computer. Oneset

was arbitrarily labeled class 1; the other was labeled class 2.

The Fisher linear discriminant d was computed using the

OLPARSsystem. The threshold @ was placed halfway

between the estimated means along d. Any sample that was

arbitrarily labeled as class 7 and assigned by the above

classifier to class 7 (i ¥ /)) was considered in error.

Selected values of L and N were chosen. A number of

runs were made for every pair of values of L and N. The

error rate on the design set was computed for each run.

Fig. 3 shows the average error rate on the design set as a

function of sample to feature size (V/L) with L as a param-

eter. The curves for L equal to 21, 28, and 45 are nearly

identical. |

It appears that the error rate on the design set is very

misleading for cases where the ratio of N/L is small. The

curves appearto level off for ratios greater than three. For

instance, when AN/L is three, the difference between the

average estimate andthe true error rate (0.5 in this case) is

approximately 0.15. When N/L is ten, the difference has

only been reduced to approximately 0.08. This leveling off

of the curve for values of N/L greater than three is even

more apparent in the theoretical curves obtained in the

following section.

EXPECTED DESIGN-SET ERROR RATE

Consider a two-class pattern-recognition problem. Let

each class have equal a priori probability. Let the design

set consist of N independent and identically distributed L

dimensional samples from each class. Let the class-con-

ditional densities be L-dimensional normal distributions
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Fig. 1.

with means p, and pm, respectively, and with common

covariance %,i.e.,

x/c, ~ O,(y,2)

x/C2 ~ Dy(H2,%).

For the minimum-probability-of-error classifier, it is well

knownthat the errorrate ¢ is given by

erf (6/2),1 _
2é

where

y

erf (y) = | (2n)7*/?e7#/2 dt
O

is the standard error function and

6° = (My — My)'Z"(Hy — pt)
is a measure of the separability of the two distributions.

Suppose a researcher, ignorant of the underlying dis-

tributions except for knowledge of the common covariance

x, attempts to design and evaluate a classifier on the basis

of N samples per class. A classification procedure that is

reasonable, simple, and commonly used is the linear dis-

criminant d given by

d= =Ay — fir),

where

A; = C/N) dX Xij

is the sample (or estimated) mean of class i and x,, is the

jth sample of class 7. The threshold 6 is given by

0 = [(A, — fi,)/2]'d.
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Discriminant plane (N/L = 0.36).

Therefore, a sample x is assigned to class | if x‘d > 6 and

to class 2 otherwise.

The error rate on the design set is a random variable

since it is a function of the particular 2N samples that are

collected. In Appendix A, the expected value of the error

rate on the design set &, is shown to be the prebability that

an arbitrary sample x,, in the design set is misclassified. In

Appendix B, this expected value is derived as a tunction of

the feature size (L), sample size per class (NV), and the

separation, 6, and is given by

E{@é,L,N,6*)} = > o7 (N82/4) + (N62/4)"

r=0 r!}

T(r + L/2 + 4)

T(4)I(L/2 + r)
 I,(L + 2r, N),

where

A

I,(L + 2r, N) = | sin’*2"~! 9 dé
0

and

A = tan”! (2N — 1)”,

which may be written recursively as

I,(L + 2r, N)

_L+2r—2
= ——____—_ J,(L + 2r — 2
Laon 1% )

|1 1

L+2r—1./9n — 1

2(N — 1)
2N — 1
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Note that as a corollary the sameresult holds if the common

covariance is diagonal (£ = o*J) and nearest estimated

mean vector loyic is used.

A computer »rogram waswritten to calculate

E{€(L,N,67)}

for various values of L, N, and 57. Curves of E{&,(L,N,67)}
for 6* = 0.0, 1.0, and 2.0 as a function of N/L with L as a
parameter are shownin Figs. 4-6, respectively. The corre-
sponding error rates (e = 0.5, 0.309, and 0.240) for the
minimum prob: bility of error classifier are also shown.

Experimentresults: Identical uniform distributions.

A number of limiting cases are of interest. For one

sample per class (N = 1), E{@,(L,1,6”)} = 0; and con-

sequently the curves all begin with E{€,} = 0 at 1/L. This

is expected since the probability that the single sample

from class | is exactly the same as the single sample from
class 2, is zero.

At the other extreme, Hoel and Peterson [16] show that
as the sample size increases without boundthe design-set

error approaches the optimum @&. This is reasonable since

as N increases without bound, the sample means approach

the true means and consequently the classification rule
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based on the sample means approaches the optimum

discriminant.
For the case where 67 = 0, the two class-conditional

distributions are identical. In essence, Fig. 4 indicates that

whenthe ratio of samples to features is small, it is possible

to discriminate between samples of the same class on the

design set. In fact, Foley [17] shows that as the numberof

features increase without bound,

lir E{@(L, N, 6* = 0)} = 0.
L>:9

Recalling that L represents the numberof features for which

there is no difference in the class-conditional distributions,

this implies that the error rate on the design-set can, on the

average, be reduced by selecting more and more useless

features. However, since this has no effect in improving the

true performance: of the system, the researcher should be

cognizant of this phenomenon of “beating his problem to

death.”

Another extreme case is letting both L and Nincrease

without bound, while constraining the ratio of N/L to be a

fixed constant. The computer runs shown in Fig. 4 indicate

that under these conditions E{@,} converges to an asymp-

totic solution very rapidly. However, no limiting form has

been obtained.

COMPARISON “)F DESIGN- AND TEST-SET ERROR RATES

For the same iinderlying probability structure considered

in the previous section, John [1] derives the expected value
of the error rate on an independenttest set given that the

classifier was derived from a design set of N samples per

class. Unfortunately, the expression (except for L = 1) is

so complicated “hat a computer run would be too time

consuming. However, John [1] also derives a useful ap-
proximation. For completeness, these expressions are

written in Appendix C.

Computer programs were written to obtain graphic re-

sults. Figs. 7 and 8 show a comparison of the approximate

and true test-set error‘rates for L = 1 and 67 = 1.0 and

2.0, respectively. The approximation appearsto beslightly

low. John [1] comments that the approximation involvedis
of the same orcler as that involved in assuming that the

cube root of a noncentral chi-square variable has a normal

distribution. For purposes of comparison, Figs. 5-8 show

the relationship between the expected design andthetest-

set error rates. he curves indicate that when the ratio of

the sample size yer class to the feature size is large enough

such that the design-set error rate gives a reasonable in-

dication of the true error rate of the classifier, the true error

rate of the classiier is close to the optimum probability of

error € achievable by the minimum-probability-of-error

classifier.

VARIANCE OF THE DESIGN-SET ERROR RATE

_ Although the expected value of the design-set error rate

&4 has been derived, little is known about the distribution

of &, until its variance is determined. In Appendix A,it is

shown that an approximation for the variance o7 is

o? = [6(1 — &)]/2N.

Foley [17] gives someresults indicating the closeness of
the true and approximate values for o*. Since the maximum

of y(1 — y) for y € [0,1] is } at y = 4, an upper bound for
the approximation is

o? = [6,1 — &)/2N < 1/8N.

For instance, if N is 50, then no matter what value &4

assumes, the variance and standard derivation are ap-

proximated by functions that are bounded by 0.0025 and

0.05, respectively.

Note that as N increases without bound the variance

approaches zero and consequently the design-set error rate

is a consistent estimate of the test-set error rate, since the

expected value of both the design- and test-set error rates

approach the minimum probability oferrore.

SUMMARY

New experimental results indicate the statistical trap in-

volved in using the design-set error rate as an estimate of

the true error rate of the classifier when the ratio of sample

size to feature size is small.

The expected value for the design-set error rate has been

derived and related to the test-set error rate for a two-class

pattern-recognition problem with underlying multivariate

normal class-conditional distributions. Although it is well

known that the design-set error rate is a biased estimate of

the test-set error rate, the amount of bias is shown to be

dependent upon the ratio of the sample size per class to

the feature size (N/L). Although it is recognized that the

greater the ratio of N/L the better the results, a reasonable

engineering rule of thumb for this particular probability

structure appears to be that if the ratio of sample to feature

size is greater than three, then on the average the design-set

error rate is reasonably close to the test-set error rate, and

also the test-set error rate is close to the optimum error

rate attained by the minimum probability of error classifier.

As Kanal and Chandrasekaran [13] point out, if less is
known about the underlying probability structure, an even

greater ratio of sample size to feature size is needed.

In addition, the variance of &, is shown to be approx-

imated by a function that is bounded by 1/8N. This indicates

that even if the numberof features is small, enough samples

must still be used in order to minimize the variance of @3.

As expected, it was shown that the design-set error rate

can be decreased by adding more and moreuseless features.

Of course, since these features add no discriminatory in-

formation no improvement in the test-set results can be

expected.

Although these results were proved only for underlying

multivariate normal distributions, the results may be more

general. In the proof (Appendix B), two key variables

(Z,,A,) are each linear sumsofidentically and independently

distributed samples from their underlying distributions. For

reasonable distributions, these variables will approach

normal distributions.
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APPENDIX A

In order to determine the expected value and the variance of

the design-set error rate &,, consider the new random variables,

7 if the jth sample from the ith class is misclassified1,
i; — 0,

= 1,2 and j = 1,2,:--,N. By definition, the design-set error

rate is the total number of misclassified samples from the design

set divided by 2N,1.e.,

otherwise

2

E€4= YY Ti2N.
to oJ

z

Since the samples from eachclass are identically distributed, and

since the probability of misclassifying a sample from class 1 iS

the same as misclassifying a sample from class 2,

_ 2 N

6a= VV EETi}!2N = E{Ta};

L=|

APPROX. TEST- SET RESULTS ,=€,

XPECTED DESIGN-SET RESULTS,€4

 

  

 

      

  

  
EXPECTED TEST SET RESULTS

Ey

     
    

5 6 7 8 9

Comparison of true and approximate test set results (6? = 2.0).

where 7;,, represents an arbitrary sample. However,

E{T.} 0+ Pr {Ty = 0} + 1- Pr tT = 13

Pr {arbitrary sample is misclassified }.

To determine the variance of &,, first consider &,’. By defini-

tion

_ > 1 2 N22 N

Ea = gy? 2 de be ETT}

[E{Tj3} + (N — DETTig} + NE{TiTos}

1oy [Pr (A4,;) + (N — 1) Pr (AipAig)

+ N Pr {A;,Aos}],

where A,, is the event that the jth sample from the ith class is

misclassified; Pr (A;,4ip) is the probability that two arbitrary

samples from the sameclass are misclassified; Pr (A;,A2;) is the

probability that two arbitrary samples from different classes are

misclassified. However, if the number of samplesis large, let us
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make the approximations that

Pr (AjpAjg) & Pr (Aip) Pr (Aig)

Py (A,,A>,) & Pr (A;,,) Pr (A325).

Therefore

Ea [6g + QN — NDE? )/2Nll2

and

a2 =: BP - 2 ~ El — S\N.

APPENDIX B

The complete d2rivation of the expected value of the design

set error rate E{&,}, as a function of the feature size (LZ), sample

size per class (N), and the separation (67) is given in Foley [17].
The main steps are presented here. Using the previous notation,

let y,; be the jth sample of the ith class. Each sample from class i

is independent and identically distributed with a L-dimensional
normal distributic 1, denoted by

Vij ~ Dy(Mji,%).

The classificatior. rule R(y) uses the linear discriminant,

=~ 4(f, — fi.) and is given by comparing

[y — (Ay + A,)/2)=7 "(Ay — Ae)

to zero, where fi; is the estimated or sample mean ofclass i.

Since Z is positive definite, there exists an orthogonal transforma-

tion 7 such that

T’XT = A,

where A is a diagonal matrix with diagonal elements /,,---,A,.

Actually the ith column of T is the ith eigenvector of the co-

variance matrix 2 with A; equal to the variance along the ith

eigenvector. Let x = A71!/*7’y and 4, = A7~‘/*7’fi,, then
Xi; ~ D,(4;,,J). A'so the classification rule R(x) may be re-

written in terms of’

[ — (gi + 92)/2)(gi — 42).

It was shown that E{@,} is the probability that an arbitrary

sample is misclass.fied. For concreteness, consider x,,. Then

Gq = Pr {x,, is misclassified }

= Pr {w = [xy, — (fi + 92)/2)(qi — 42) < 0}

0
| Pw) dw.

Consequently, the key to determining E {&,} is the determination

of the probability density p(w). However, it is not necessary to

obtain p(w) explic tly. It is only necessary to obtain the condi-

tional density of «»» given another random variable «. One can

then express the density of w and the probability of error as

pin) |plvw]a)pla) de

da |° |P(w/a)p(a) da dw.

Although p(w)is left in integral form, &,(L,N) can be obtained
explicitly by defini ag the appropriate transformation into polar

coordinates.

Following the procedure just outlined, let

Z, = 2NX11~ — Nitin — Nir,

N
(2N — 1)X11% — M1 jk ~ x X2jk

j=

Ay = Nii, — Nba = (X4 5x — Xojx):

Cu
te

fu
se

w
M
=

'
M
=

Since each x,,, is statistically independent and since linear sums

of statistically independent normal random variables arestill

norimal, (z,,A,) are jointly normal random variables with means

and covariance

(*) _ (von — re) K= (rer — 1) Ny

A, N(x — Max) 2N 2N

Also the conditional distributions can be obtained.

Z| A, ~ ®,[A,4N(N — 1]

Ayzn | Ay ~ Bi [A,?,4N(N — 1)A,7]

Ay ~ ® [NG— 12%),2N ].

Using the definitions of z, and A,, w may be expressed as

L

w= > AyZp:

k=1

Since w | A,,---,A, is a linear sum of statistically independent

normal random variables, w | A is normal with additive means

and variances,i.e.,

L L

wlA ~ @, > A,2,4N(N — 1) y a2| .

k=1 k=1

Let

A,2.
1

M
r

ge

k

Then

0 00

4 = { [ P(w/a)p(a) da dw, (Bi)
—~o J0

where a has a noncentral chi-square density with L degrees of

freedom and parameter of noncentrality

L L

7 = x [Ni — Nox) ]°/2N = (N/2)x (41k — Nox)”

= (N/2)1 — 2)— M2)

= (N/2)(f, — A)'Z" "(Hi — He) = NO?/2

and

p(a) = x,7(N6"/2)

(1/2N) [exp (— N6*/4)]

y (N6*/4)[exp (— a/2N) \(a/2N)'t"/2-}
r=0

(rt Tr + L/2)2rtbl2y- 2,

Substituting for p(a) and p(w/a) in (B1), exchanging the order of

integration and summation (Foley [17] shows that p(w/a)p(a)

is a uniformly convergent series), and applying the transforma-

205



tions

t= —(w — a/(4N(N — 1)a)*/?

y = (a/2N)1?
and

paytr

0 = tan?! (y/t)

it can be shown that

oC

Ea(L,N,6°) = )) [exp (— N6?/4)](NO6?/4)"
r=0

‘T(r + L/2 + Y(IPQ@IL/2 + r)jot

-I(L + 2r, N),

where

I(M,N)
A

[ sin’ —! @ dé
O

IA tan~! V2(N — 1).

In addition /(M,N) mayberecursively written as

I(M,N) = [(M — 2)(M — 1)](M — 2, N)

— 2(0N — D/QN — DEPTL - pVv2N - 17-4,
where

I(1,N) = tan7! J/2(N — 1)

and

1(2,N) = ! _mo .
2 V2N —1

APPENDIX C

For completeness, and to give the reader some appreciation of

their complex nature, expressions given by John [1 | are presented

here.

For the linear discriminant d = &~ (ft, — fi,), and the case
of N samples per class, the expected value of the test set error

rate &, given by John reduces to

_ oO oe) , 2 } 2

6, = eAtay YY At 2 1(5 + L/2,r + L/2), (Cl)
r=0 s=o r! s!

where

A, = (N/8)[1 — (2N 4+ 1971/2 76?

A,.= (N/8)[1 + (2N + 1971/7 }?62

L(p,q) is the incomplete beta function and

x

L(p.q) = [E(p + arecorra) | we= pt! du.
0

The approximation given by John ts

Bx | * (an)-¥? exp (—y?/2) dy, (C2)
—- ©
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where

a= (18)7/?[r+ by) + org30 + 6,)]71?

» 2[r.7 7/91 + b3) — ry7230 + 8,)]

4 9(r, 1/3 _. r,t/3)}

and

Vr; L + 24;

b, UL + 2A,)~2A;.

For one dimension, John gives the exact value for &; as

 

6, = Gla;,)G(az1) + Glay2)G(az2), (C3)

where

Q4,; = ~a@12 = VN/2 6

Ay, = —@,, = —V2N/QN) + 1(6/2)

and

G(x) = |* (any-¥/? exp (— y?/2) dy.
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Estimation of Error Rates in

Discriminant Analysis

PETER A. LACHENBRUCH AND M. Ray MICKEY

University of North Carolina and University of California, Los Angeles

Several methodsof estimating error rates in Discriminant Analysis are evaluated
by sampling methods. Multivariate normal samples are generated on a computer
which have various true probabilities of misclassification for different combinations

of sample sizes and different numbers of parameters. The two methods in most
common use are found to besignificantly poorer than some new methods that are
proposed. |

1. INTRODUCTION

The general two-group discrimination problem may be characterized as

follows: on the basis of measurements alone, an individual must be assigned

to one of two groups. It is assumed that the two groups are the only possible

choices and that an assignment must be made. After the assignment procedure

has been established, it may also be desired to estimate the proportion of

individuals in each group that will be wrongly classified. One approach to the

classification problem has been to form a linear combination of the observations

to form a single number. Then an individualis classified into one or the other

group depending on this number. Weshall consider several meansof estimating

error rates for a given discriminant function.

Suppose thereis an initial sample of n, multivariate observations from group 1

and n, multivariate observations from group 2. The discriminant function

will be constructed from this sample. Let x, = (xy, ++: , 2px)’ denote the

kth sample value of a p-dimensional multivariate column vector k = 1, --- ,

n, +n. = m. The within groups sample covariance between the ith and jth

variables will be denoted by s;; . The mean values from the group samples
are denoted by #, = (4:,, °** , 1) and # = (2, --+ , Bp)’.

Fisher (3) suggested finding a linear combination of observations that would
maximize the difference between groups relative to the standard deviation

within groups. This leads to the choice of discriminant function: S"*(#, — 2)

whereS is the sample covariance matrix. Then classify as group 1 if x/S~*(#,—#.)

is greater than some constant C and as group 2 otherwise.

An alternate way to determine the discriminant function is due to Welch

(11). If the density functions are denoted by f, and f, , the likelihood ratio

criterion leads to the rule: assign an individual to group 1 if f,/f. > k& and
otherwise to group 2. The choice of k depends on the relative costs of mis-
classification, and the proportion of each group in the general population.

 

Received May 1966; revised November 1966.

Reprinted with permission from Technometrics, vol. 10, pp. 1-11, Feb. 1968.
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In this study we assume & = 1. If f, and f. are multivariate normal distribu-

tions with the same covariance matrix 2, but different means pu, and p. , some

algebra shows that the likelihood ratio criterion is equivalent to classifying as

group 1 if D,(x) = 2/2 7"(u, — me) — Blur + we)’“(uy — me). The first part

of this expression is the theoretical analogue of the function suggested by Fisher.

If we knew the population parameters of the distributions, this expression

would be optimal. However, we do not, in general, know them soit is necessary

to estimate them. Thus, the discriminant function we shall be concerned with

is D,(x) = 2'S"*(4, — £2) — 3(4, + #)S'(@, — #). This was denoted by
Anderson (1) as W. We shall let y = #,-+ #,andz = #, — #,,80D,(x) = 2’/S"*z —
14'S"2.

Wewishto estimate the probabilities of misclassification based on the sample

discriminant function, namely P, = P(D,(xz) < 0|G,,4,, , 8S) and P, =
P(D,(x) > 0| G, , # ,  , S). The exact distribution of D,(x) is quite com-
plicated. It has been studied by Wald (10), Anderson (1), Sitgreaves (8), Kabe

(4) and Okamoto (7) among others. If we knew the parameters of the distribu-

tion, the problem would betrivial and reduce to P, = P, = 6(—6/2) where

8° = (uy — pe)/=(uy — we) is Mahalanobis’ distance (6), and ®is the cumulative

normal distribution. This represents a limiting value which we cannot improve

upon, and unfortunately do not know. In this study, we shall evaluate several

estimates of the probability of misclassification for discriminant functions.

Three of these estimates (the D, R, and H methods) have been used regularly;
the other methods were considered in (5).

2. ESTIMATES OF ERROR RATES

Several techniques are currently used to estimate error rates of sample

discriminant functions. None are satisfactory for sample sizes that are small

relative to the number of parameters, although for large samples they are not

too bad. Several new techniques will be suggested and evaluated along with

the older ones.

The techniques may be divided into two classes: those using a sample to

evaluate a given discriminant function, and those using properties of the normal

distribution. The former may be considered empirical methods while the latter

are dependent on the normality of the distribution for their validity.

If the initial samples are sufficiently large, we may choosea subset of observa-

tions from each group, compute a discriminant function from them, and use

the remaining observations to estimate the error probabilities. The number

of errors in each group will be binomially distributed with probabilities P, and

P, . After these estimates have been obtained we may recomputethe discriminant

function using the entire sample. There are several drawbacks to this method.

First, in many applications large samples are not available. This is particularly

true in biomedical uses when the data is usually expensive anddifficult to obtain.

Second, the discriminant function that is evaluated is not the one that is used.

There may be a considerable difference in the performance of the two. Third,

there are problems connected with the size of the holdout sample. If it is large,

a good estimateof the performanceofthe discriminant function will be obtained,
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but that function is likely to be poor. If the holdout sample is small, the dis-

criminant function will be better, but the estimate of its performance will be

highly variable. Finally, this method is quite uneconomical with data. A larger

sample than is necessary to obtain a good discriminant function must be selected

to obtain estimates of performance. For these reasons, we did not evaluate

this method empirically. We shall refer to this method as the H method or

the holdout method. It is an empirical method.

The second commonly used technique will be referred to as the resubstitution

method. C. A. B. Smith suggested that the sample used to compute the dis-

criminant function would be reused to estimate the error.

We may get approximate values of such an error in two ways. First, taking the
distribution of x to be fyzdz in population A, we may get from it the distribution of
Lz (the discriminant function), and from that the probability that Lr < Lo. Un-
happily the integrals needed are frequently not very simple, and, in addition, if we
have taken the wrong form for the distribution f,4, the value of H4 (the error) may be
quite wrong. The other way is to take a sample from population A, and see how
frequently Lz < Ly in this sample. Wehave,in fact, such a sample, namely, the one
which was used in working out the form of the distribution of f4z. However, it is
necessary to keep in mind that if this sample is used to get E,4, the standard error

of Hy, will not have its binomial value ~/E£,(1 — E,)/ng, although it will probably not
be greatly different. (9)

Wehave found this technique to be quite misleading; if the sample used to
compute the discriminant function is not large, this method gives too optimistic
an estimate of the probabilities of misclassification. The main point, it seems,
is not that the estimate does not have the binomial standard error, but that
it can be a badly biased estimate. In further discussion, we shall refer to this
empirical technique as the R method.

The probability of misclassification, P,; , may be written as

(=m + i's)
V2)SUES72)’
 

where ¢ is a standard normaldeviate.

If we replace yu, and = by #, and S (or ue by # and = by S in the case of P,),
we see that for normally distributed variables, the estimate of P, (or P.) is
®(—D/2) where D’ = 2'S~'z is Mahalanobis sample distance. If the degrees
of freedomarelarge, this is a fairly accurate estimate of P, since D? is consistent
for 6°. If the degrees of freedom are not large, this may be badly biased and
give much too favorable an impression of the probability of error. Another
way to derive this estimate is that since P; = 6(—6/2) when the parameters
are known, by estimating the parameters, wu, , u2, and = by 4, , , and S we
should arrive at a reasonable result. This method will be denoted as theD method.

If n, and nz are not large relative to p, it may be desired to use an unbiased
estimate of 5° based on D®. This may be written as

D** = {D* — (m — 2)mp/nin.(m — p — 3)}:(m — p — 8)/(m — 2).
Unfortunately, when this is most useful (when n, , n2 are smallrelative to p and
D* is also small) D** is frequently negative. Instead of using D*’ one may
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construct estimates of 6 using the quantity DS = (m — p — 3)D?/(m — 2)
This merely ignores the constant which is subtracted from D to obtain an

unbiased estimate for 6°. This partially corrects for the bias in D’, is consistent

for 5’, and is not negative for the range of values we are interested in. We shall

denote the estimate P, = @(— V DS/2) as the DS method. It appears to have

some advantages over the D method.

The next method for estimating P, is based on a result of Okamoto (7).

He gave an asymptotic approximation for P, in terms of n, , m2 , p, and 6. The

approximation of P, is obtained by interchanging n, and nz in the expansion for

P, . Thus, this enables us to get different estimates for P,; and P, which we

could not do with the D or DS methods. We may estimate 6° by D’ or DS. In
computational work, we have found this approximation to be poor when 36”is

small and the sample sizes are not large. For large values of D’, this method and

the D method give similar results because the correction terms are proportional

to 1/D. For moderately sized values of D’ (say between 1 and 10) there is
evidence that this method is better than the D method. Weshall refer to this

as the O method if D’ is used and the OS method if DS is used as an estimate
of 8°.
A desirable empirical method would make use of all the observations, as

in the R method, yet not have the disadvantages of serious bias. A procedure

which has the advantages of both the R and the H method is as follows: take

all possible splits of size 1 in one group and the remainder in the other. This
has the effect of successively omitting one observation from the computation of
the discriminant function. The estimates of error obtained are unbiased estimates

of the errorrates for a discriminant function based on n, — 1 and n, observations.

Three questions remain:first, is it feasible? second, how large is the standard

error? and third, how good is the method? This method requires the computation
ofm discriminant functions. Since the computation of each discriminant function

requires a matrix inversion, a method had to be devised which would reduce
the numberof inversions required. Otherwise, for large dimensional problems,

this method would be too time-consuming. The method that was developed
requires only one explicit inversion, namely, the inversion of the sample

covariance matrix based on the entire sample. An identity first given by Bartlett

(2) was used. If B = A + w’, thenB = A™ — (A'w'A™/1 4+ 0'A™u)
where B and A are square nonsingular matrices, and u and v are column vectors.

Let U; = 2; — &, when xz; belongs to the kth group, n, denote the number

of cases in the kth group, a; be U/S~’U; , and let c, = m/((m — 1)(m — 2)).

Then the discriminant function for z; as computed without the sample point z;

is given by

 

D,z;) = = _ ; {2; — gy + U;/2Mm— 1))}SGj@ + (—1)°U,/(m — 1)

where #, , & , and S are computed from the whole sample, and §Gg =

S + (¢,871U;U/S"*/1 — c.a;). (In the derivation it is necessary to note

that the mean of the kth group and S must both be adjusted.) The estimates

of the probabilities of misclassification are then computed by summing the

numberof cases that were misclassified from each group and dividing by the
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number in each group. Thus, the method is feasible. The second question is

difficult to answer exactly. Because there is correlation between D,(x;) and

D,;(x;), 1 ¥ j, the standarderroris not the simple binomial value. A 50 replicate

experiment was performed with various values of n, , nz, p = 10 and 6 such

that the true value P, = P, was .10 or .30. In all cases, the correlation was

quite small (<.01). This method will be denoted as the U method.
Finally, we may consider a method which combines features of an empirical

method and the use of the normal distribution. To use the U method we must

find the value of the discriminant function based on m — 1 observations for

each observation. We propose to take the mean and variance within each

group to estimate P, by @(—D,/sp:) and P, by ®(D2/sp2). This method will
be denoted as the U method. The R method has not been mentioned in this

context because the estimates one would obtain reduce to the D method.

3. THE SAMPLING EXPERIMENTS

We have described eight techniques to estimate error. We attempted to

evaluate seven of them (the H method was not considered for reasons given
above) by sampling experiments. A computer program was written to calculate

the estimates of the error rates by each method. The cutoff point was assumed

to be zero. The probability of error for a discriminant function is invariant

under linear transformations of the variates. Thus, for any multivariate normal

distribution, we can find a transformation so that the covariance matrix of

the new variates is the identity matrix, and the means are the same exceptfor

the first variate. Because the distribution of the discriminant function is inde-

pendent of the covariance matrix and depends only on 6, 7, , n2 , and p, we

used > = J and p, = 0, we = (6, 0, --+ , 0). Since the mean vector for each

group was known, it was possible to determine the exact probability of mis-

classification for each sample discriminent function. This enabled us to compare

the performanceof the various methods of estimation by using generated data.
A total of 288 samples was taken from normal populations. Their true

distances were distributed as in Table 1. The values were combined so that

for each combination of n, , n. , and p, twelve cases were generated, two for

each of the six levels of 6(—6/2) = .05(.05).30. Table 2 gives the distribution
of sample size with respect to p. The ratio of sample sizes was 1:1,1:2,or1:3.

Wewished to determine whether the ratio of sample sizes was of importance
in the performance of the empirical methods.

4. Resutts oF EXPERIMENTS.

For a given discriminant function we denoted the true probability of mis-

classification in the first group as P, , and the estimates given by the various

TABLE 1

Number of Samples (n) at Given Distance 5?
 

 

5? 1.098 1.817 2.836 4.293 6.574 11.482
@(— 5/2) .30 .20 .20 .15 .10 .05

n 48 48 48 48 48 48
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TABLE 2

Samples Sizes and Number of Parameters

 

 

p
( 9 4 8 20

4,4 8,8 8.8 15,15
4,8 8,16 816 15,30

m, Ne 4,12 8,24 8.24 15,45
16,16 20,20 20,20 25,25
16,32 20,40 20,40 25,50

| 16,48 20,60 20,60 25,75

 

methods by P;, , where z is O, OS, D, DS, U, U, or R. Table 3 and Figure 1
give the numbers and the cumulative number of samples whose estimates
of error rate were within the specified distance of the true error rate. The quantity

e is defined as |P, — P,,| for the various values of x. The last eight sections

of Table 3, have been stratified on p and m — p — 1 to represent each value

of the parameters and small versus large numbers of degrees of freedom in
testing 7”. |

TABLE 3

Number of Samples Within Given Error

 
 

  

v<.05 05<e<.10 10<e<.15 .15<e<.20 e>.20 Sample Size

O 97 68 42 28 53 Overall 288
Os 118 81 45 23 21
D 87 52 37 40 72
DS 94 73 50 36 35
U 107 70 48 25 38
U 73 82 62 29 42
R 64 60 46 30 88

O 14 4 4 5 9 p=2 36
Os 8 10 6 6 6
D 14 3 5 9) 9 m—p—1<20
DS 11 8 6 4 7
U 11 8 6 0 11
U 7 6 6 3 14
R 6 8 5 3 14

O 10 7 3 2 2 p=4 24
OS 7 11 2 2 2
D 11 5 4 2 2 m—p—1<20
DS 11 6 4 1 2
U 10 3 5 3 3
U 5 8 6 1 4
R 6 4 8 1 5
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TABLE 3 (continued)

Number of Samples Within Given Error

 

 

 

e<.05 .05<e<.10 10<e<.15 .15<e<.20 e>.20

O 3 7 3 5 6
Os 9 5 4 1 5
D 1 4 7 5 7
DS 6 6 2 3 7
U 7 3 3 2 9
U 5 4 3 6 6
R 2 2 5 6 9

O 4 4 2 4 10
Os 12 4 5 1 2
D 1 0 3 7 13
DS 1 4 8 3 8
U 9 6 6 0 3
U 6 6 5 4 3
R 1 1 3 3 16

O 15 11 8 1 1
Os 16 11 6 2 1
D 17 8 8 2 I
DS 17 8 8 2 1
U 19 8 5 3 1
U 14 9 10 2 1
R 16 8 7 4 1

O 21 15 9 1 2
os 26 9 9 2 2
D 22 15 3 6 2
DS 23 14 7 3 1
Tw 24 12 5 5 2
U 15 15 10 5 3
R 17 16 8 2 5

O 22 9 9 4 4
Os 23 15 5 5 0
D 17 12 5 4 10
DS 18 19 3 7 1
U 16 19 6 4 3
U 9 18 15 3 3
R 13 12 4 7 12

O 8 11 4 6 19

Os 17 16 8 4 3
D 4 5 2 9 28
DS 7 8 12 13 8
U 11 11 12 8 6
U 12 16 7 5 8
R 3 9 6 4 26

Sample Size

24.

24

36

48

48

 

Note that this table is not stratified on 6.
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PERFORMANCE ON COMBINED DATA

300 -

27QO-

240-

2|10-

NUMBER
OF |80-

SAMPLES

|5Q-

l|20-

90-  60 T T T 1

05 AO A5 .20

e=[P)- Pix]
Figure 1

 

Several interesting points were noted in constructing this table. First, P,,

was less than or equal to P,y in almost all cases. This evidently resulted from

re-using the observations to estimate the error. Second, for p = 20, the OS,
U, and U methods were far superior to the others. For small dimensional
problems, the methods were approximately equivalent. The U and U methods

also appeared to be better than the other methods when 6 was small (i.e., P;
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was relatively large) than when 6 was large. The superiority of the OS, U and

U methods lay in the fact that they performed at least as well as the other

methods when the true probability of misclassification was small, and did

better when it was large. The D and O methodsyield similar results for p = 2, 4,

or 8. For p = 20, the O method was somewhat better. A separate comparison

of these two methods was made for equal n, and n. . The result was that the O

method was closer to the true value in thirty-six cases, the D method was

closer in eight cases, and in forty-four cases, there was no difference. The

‘no difference” category is present because if D° or n, and n, are large, the

O method does not adda correction term large enough to affect the value of P, .

The likelihood ratio test that the 36 to 8 split can be accounted for by sampling

variation yielded x” = 21.02, p < .001 with 1 df.
Of the methods based on the normal distribution, the OS and U methods

are the best. Figure 1 shows the cumulative curve of the methods (truncated

at e = .20) over all values of p and m — p — 1. Kolmogorov-Smirnovtests

were applied to all possible pairs of these cumulative distributions and ordered
them as follows:OS U O DS U D R. The underlining indicates no significant

differences (at the .05 level) between methods under a single line. Quality

decreases from left to right. Thus, the two methods in common use at the

present time, the D and R methods, are significantly poorer than any of the

methods we have proposed. If the sample sizes are not large, the D and R

methods are quite poor. If D® or n, and n, are small the OS method is not

recommended because of the difficulties with the Okamoto approximation.
In this case, the U method should be used if approximate normality may be

assumed. If not, then the U method should besatisfactory. Note that whenever

the OS method is ruled out, the O and DS methodsare also ruled out. For

large values of p, the OS, U or U methods should be used. Noneof the other
methods appears to give accurate estimates. Instances where p is large and

m — p — 1 is small arise frequently in biomedical applications in which the

cost of obtaining data is high. Not many observations will be available in

these cases, but p is frequently large.

The holdout, or H, method has not been included in the foregoing comparisons

since the numberof hold-out cases in each group that are incorrect byclassified

is binomially distributed. The ease with which the error rates can be estimated,

by both point and interval estimates, together with the lack of dependence
of the distribution of the estimates upon the form of the population sampled,

form the main attractions of the method. The distributional results apply
only to the discriminant function obtained from the part of the data designated

for analysis, and do not hold for the discriminant function computed from all

of the data. Thus we do not consider the H method to have any inherent

superiority to the U method; the H method has the disadvantage of requiring

larger samples than the other methods. However, in some large sample problems

using real data, estimates of error rates obtained using the H method did not

differ appreciably from those obtained by application of the other methods.

An additional check was made with different data generated in a similar

manner to determine if the ratio of sample sizes made a difference in the per-

formance of the two empirical methods. Table 4 summarizes their behavior
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TABLE 4

Performance of U and R Methods for Various Ratios of Sample Sizes
 

 

 

 

 

 

Ratio e< .05 05 <e < .10 10 <e< .15 15 <e < .20 e > .20

U
1:1 8 3 3 4 3
1:2 8 6 3 1 4

1:3 7 8 1 2 2

R

1:1 2 1 3 2 11
1:2 0 0 1 2 19
1:3 0 1 1 3 15

 

for p = 8, 20,m — p — 1 < 15. For the U method the x’ was 3.01 with 4 df.
For the R method the x’ was 1.02 with 3 df. Neither value wassignificantly
large. Thus, the ratio of sample size did not appear to affect the performance

of the empirical methods.

5. SUMMARY AND RECOMMENDATIONS

Wehavedescribed several methods of estimation of error rates of discriminant

analysis, and have made a comparative evaluation on the basis of a series of

Monte Carlo experiments. No one method is uniformly best for all situations,

although some methods, the D and R, appearto be relatively poor. It is of

someinterest to note that the O method doesfairly well overall. This iis somewhat

surprising since the O method estimates

PF = P{D,(z) <O| Gi} = EPID.) < O1G,,4%,% , 8)) = EP)

and we are trying to estimate P, . However, if we examine Table 3 wefind that

the O method does well in those cases in which p is small and thus D’ may be

expected to be close to 6°. For larger values of p we note that the O methodis

substantially poorer than the S, U or U methods. The OS appears generally

preferable to the O, and the DS to the D method. One of the more commonly

used methods, the R method appeared to be fairly consistently poorer than
the others. For large values of P, the OS, U or U methodsare far superior to

the other methods. If approximate normality can be assumed, the OS and U
methods are good. The U method does not take advantage of the assumption

of approximate normality. If D° is small, or the sample size is small relative

to the number of parameters, the OS method should not be used. In particular,

if D’ is small (say D? < 1.0), the OS method maylead one astray. Forthis

reason, the U method or the U method should be used. Finally, the U method

should be used if normality is questionable (e.g., when a large number of

dichotomies are used as variables) and the sample size is small relative to the
numberof variables.
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On Optimum Recognition Error and Reject Tradeoft

C. K. CHOW, SENIOR MEMBER, IEEE

Abstract—The performance of a pattern recognition system

is characterized by its error and reject tradeoff. This paper describes
an optimum rejection rule and presents a general relation between
the error and reject probabilities and some simple properties of
the tradeoff in the optimum recognition system. The error rate
can be directly evaluated from the reject function. Some practical
implications of the results are discussed. Examples in normal
distributions and uniform distributions are given.

I. INTRODUCTION

HE ERRORrate and thereject rate are commonly

ik to describe the performance level of pattern

recognition systems. A complete description of the

recognition performance is given by the error-reject

tradeoff, i.e., the functional relation of the error rate and

reject rate at all levels. An error or misrecognition occurs

when a pattern from one class is identified as that of a

different class. The error is sometimes referred to as a

substitution error or undetected error. A reject occurs

when the recognition system withholds its recognition

decision, and the pattern is rejected for exceptional hand-

ling, such as rescan or manual inspection.

Because of uncertainties and noise inherent in any

pattern recognition task, errors are generally unavoidable.

The option to reject is introduced to safeguard against

excessive misrecognition; it converts potential misrecogni-

tion into rejection. However, the tradeoff between the

errors and rejects is seldom one for one. Whenever the

Manuscript received March 24, 1969; revised June 2, 1969. Some
results of the paper were described at the IEEE 1968 International
Workshop on Pattern Recognition, Delft, the Netherlands; a
summary of the paper was presented at the 1969 International
Symposium on Information Theory, Ellenville, N. Y.
The author is with the Thomas J. Watson Research Center,

IBM Corporation, Yorktown Heights, N. Y. 10598, and is currently
visiting the Department of Electrical Engineering, Massachusetts
Institute of Technology, Cambridge, Mass. 02139.

reject option is exercised, some would-be correct recogni-

tions are also converted into rejects. We are interested in

the best error-reject tradeoff in the optimum rejection

scheme.

An optimum rejection scheme was derived in [1]. The

error—reject tradeoff curves have been used to describe

and compare the empirical performances of recognition

methods [2] and [8], and they have also been found use-

ful in the actual system design of an optical page reader[4].

However, few theoretical results on the error-reject trade-

off are available.

This paper first describes an optimum rejection rule

and then derives a general relation between the error and

reject probabilities. The error rate can be directly evalu-

ated from the reject function. This result provides a basis

for calculating the error rates from the empirical rejection

curve without actually identifying the errors. Some simple

properties of the optimum tradeoff are presented. Ex-
amples in normal distributions and uniform distributions

are given.

Il. OptiMuM RECOGNITION RULE

A recognition rule is optimum if for a given error rate

(error probability) it minimizes the reject rate (reject

probability). It is known [1] that the optimum rule is to

reject the pattern if the maximum of the a posteriori
probabilities is less than some threshold. More explicitly,

the optimum recognition rule 6 is given as

(a) 6d,|v) =1 (& #0) (1)

i.e., to accept the pattern v for recognition and to identify

it as of the kth pattern class whenever

pF | k) = viFo |) for all 7=1,2,---n,

Reprinted from /EEE Trans. Inform. Theory, vol. \T-16, pp. 41-46, Jan. 1970.
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and

pF lk) >— A 2d pF| 2) (2)

(b) 6(do |v) = 1 (3)
1e., to reject the pattern whenever

max p.F@ |) <A-) DeFol)
where v is the pattern vector, 7 is the numberofclasses,

(pi, De» °**, Da) 18 the a priori probability distribution of
the classes, F(v | 7) is the conditional probability density

for v given the ztclass, d; (¢ # 0) is the decision that v

is identified as o: the zth class while d, is the decision to

reject, and ¢ is a constant between 0 and 1 (0 < ¢ < 1).

The probability «f error, or error rate, is

HO = [ D > (d, | v)p.F( | 4) de (5)

and the probability of reject or reject rate is

RU) == | 6d 0) Do p.FO | a) do 6)

where V is the pattern space. Both the error and reject

rates are implicit functions of the parametert.

The probabilit’ of correct recognition is

C@ = [2 as |pFe | a) do

=: ] — A) — Rd)

and the probability of acceptance (or acceptancerate) is

defined as

(7)

A(t) = Ct) + EQ. (8)

Now let m(v) cenote the random variable

max p;F(v | 1)

Fo (9)

where F'(v) is the absolute probability density

mv) =

FO) = Loko a. (10)

The variable m(u) is the maximum of the a posteriori
probabilities of the classes given the pattern v.

The optimum rule 6 can then berestated as:

1) accept the pattern v whenever

mv) > 1 —t, (2’)

2) reject the pattern v whenever

mv) <1 —t. (4’)
The optimum rule is to reject the pattern v wheneverits
maximum of the a posteriori probabilities m(v) is small

(less than 1 — t). The optimality can be seen byobserving

that m(v) is the conditional probability of correctly

recognizing a given pattern v. A detailed proof is given
in [1].

III. Resection THRESHOLD

The parameter ¢ in the decision rule will be called the

“rejection threshold.” For any fixed value of t (0 < t < 1),

the decision rule 6 partitions the pattern space V into two

disjoint sets (or regions) (V4(t) and V,(t)) where (2)

and (4), respectively, hold, namely:

Va) = Ww | me) 2 (1 — 9}

Ve) = | me) < (1 — dO}.

(11)

(12)

Without loss of generality, it will be assumed that

F(v) is nonzero overthe entire space V, otherwise the set

over which F(v) is zero is first deleted. V, and Vp are

called, respectively, the ‘“‘acceptance region” and the

“reject region”’ of the decision rule. An exampleis depicted

in Fig. 1(a) where the shaded region is Vz and the un-

shaded region is V4.

In terms of these regions, the various probabilities

can be written as

RY) = |Fe) a 6")

A®= |Fea (8")
and

CQ = [max (pF |] do

= |m@yFe) ae (7"

Ei?) = [a 1SpF |) — max [pF | ai} dv

= |, b= moreao. (5")
We shall now present some simple properties of the

rejection threshold ¢.

1) Both the error and reject rates are monotonic in ¢.

2) tis an upper boundof theerrorrate.

3) 21s a differential error-reject tradeoff ratio [see (20)].

A. Monotonicity

It follows immediately from the definitions of (11) and
(12) that for any ¢, and ¢, in (0, 1] if ¢, < t, then

Valh) C Vat)

and

Veli) D Val).

All the integrands in the integrals of (5’) to (8’) are
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V, = UNSHADED
Vp = SHADED

(a) (b)

  

Fig. 1. Reject regions in the pattern space.

 

Fig. 2. Error-reject tradeoff curve.

nonnegative, hence if the domain of integration expands,

the value of the integral increases. More specifically, if

t, < t,, then V(t.) C Va(te) and Ve(t:) D Velte); there-

fore, E(t,) < E(t.) and R(t,) > R(t,). In other words, £

increases and F decreases with increasing ¢. In particular,

when t = 0, H = 0, and whent = 1,A = land R = 0.

Whenevert > 1—1/n, R = 0.

B. An Upper Bound of Error Rate

Weshall now show that

E@) <t.

For any v in V,4(t), we have

m(v) > (1 — 2).

Therefore (5’) gives

E() < FW) dv.
Va(é)

Hence

E(t) < taA@ <1.

IV. Error-REJECT TRADEOFF

A complete description of the performance of recogni-

tion systems is given by the error—reject tradeoff, 1.e., the

functional relation of E and RF at all levels. A typical

tradeoff curve is given in Fig. 2. Since both E and fF of

the optimum recognition systems are monotonic func-

tions of the rejection threshold t, one can compute the

tradeoff E versus R from E(t) and R(é).

IEEE TRANSACTIONS ON INFORMATION THEORY, JANUARY 1970

Weshall now show that the rejection function R()

alone suffices to completely characterize the optimum

recognition performance. In other words, EL can be de-

rived from R(t). The central result is a simple functional

relation between FE and Rf; E(t) is a Stieltjes integral of t

with respect to R(t), namely,

t

ER) = — | i dR(t). (13)
t=0

This relation is valid for all optimum decision rules as

defined in (1)-(4). No explicit forms for the density

functions F(v/7) are required in deriving the integral.

If R(t) is differentiable with respect to ¢, then the above

Stieltjes integral reduces to the ordinary Riemann integral

1

E = | i(R) dR. (14)
R

It is noted that the integral of (14) is not always meaning-

ful; for example, when R(t) is discontinuous (as in the

case of Section VI-B). On the other hand, the Stieltjes

integral of (13) always exists, as R(£) is always bounded,

monotonic, and thus of bounded variation.

Consider a decremental change in the rejection thresh-

old from ¢ to £ — At; the reject region expands from Vz(t)

to Ve(t — At). Let AVz(t) denote the incremental region

Vat — At) — Vet). For any v in AV;(#), it was accepted

at the threshold ¢ and is now rejected at the lower thresh-

old t — At. Equations (2) and (4) now give

(1 — HF) < maxp,F |i) < d — t+ ADFO).

for v € AV2(2). (15)

By integrating the last expression over the incremental

region AV, one obtains

(l1—AR< —-aC <(1—it+ At) AR (16)

where AR and ACare, respectively, the increments in the

rejection rate and correct recognition rate, namely,

AR = F(v) dv
AVR

AC = | max [p,F(v | 7)] dv.
AVR t

Of course, the increment in the error rate is simply

AK = —AR — AC. (17)

By substituting (17) into (16), one has

—tAR < AE < —(t — Af) AR. (18)

One then sums (18) with ¢ steadily decreasing throughout

the range of interest from t to 0 to obtain

—> tAR < Ei) < —DtaR — 2) ALAR

and then lets At tend to zero. As Aé tends to zero, the last

sum of the above expression vanishes and (13) is thus

obtained.
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When R(é) is differentiable, (13) becomes

‘ dR-| 1 at

R(t)

— i(R) dR

E(t)

= idk
R

since R(0) = 1. This relation is depicted in Fig. 3. The

area under the entire rejection curve is the (forced de-

cision) error rae when no rejection is allowed. Through

an integration by parts and as indicated in Fig. 3, (13)

can also be written as

E = | R(d) dt — tR(2). (19)
0

Equation (14) gives

dE

The rejection threshold is the differential error—reject

tradeoff. In particular, the initial slope of the error—reject

curve is —1 + 1/n or greater, while the final slope is 0.

Equation 20 also gives

a’E dta >0..—_-— 21
dk — (21)

The optimura error-reject curve is always concave

upward and the slope increases from — 1 to 0 as & increases

from 0 to.1 (Fig. 2).

V. Resection THRESHOLD oF A MINIMUM-RIsk RULE

It is known [1] that the optimum decision rule given in

(1) to (4) is also a minimum-risk rule if the cost function

is uniform within each class of decisions, 1.e., if no dis-

tinction is macle among the errors, among the rejects,

and amongthe correct recognition. The rejection threshold

is then related 110 the costs as follows:

_W.-W.
~ W.— W.

where W,, W,, and W, are the costs for making anerror,

reject, and correct recognition, respectively. Usually

W,. > W, > W,. The rejection threshold is simply the

normalized cost for the rejection. We can take W, = 0

and W, = 1, and the minimumriskis

i (22)

risk (4) = E(t) + t(R() = |"R(t di (23)

which is also depicted in Fig.3.

VI. EXAMPLES

For numerica.. illustration, two examples are given here.

In these examrp.'es, the pattern vector v is 1-dimensional

and there are two pattern classes with equal a priori

Ra

| E

0 * {

 

   

Fig. 3. Reject curve.

F(v|2) F(v|I)

 
#2 Pi v

Fig. 4. Example in normal distribution.

probability of occurrence, 1e., p1 = po = 3%. The ex-
amples are concerned with the normal distributions and

uniform distributions, respectively.
For two classes, the condition for rejection, namely,

(4), can never be satisfied when ¢ > 4; hence the reject

rate is always zero if the reject threshold ¢ exceeds $. The

effective range of ¢ for problemsof twoclassesis, therefore,

from 0 to 4. With n = 2 and 0 < ¢ < 4 it can bereadily

verified that the condition for rejection (4) 1s equivalent to

 (24)

A. Normal Distributions of Equal Variance

Consider two normal distributions with means p, and

wv, and equal covariance o*, as shown in Fig. 4. Take
Ly, > me. The density function is, 2 = 1 or 2,

1 (v — p,)”ae|S]
With (25) and some algebraic manipulations, (24) can

be transformed to

Fw |1) =

 

(25)

2
o

My — Me

 1b — Ha + m)| < n(t-1), 6)

1e., the optimum rule is to reject whenever the pattern

lies within a certain distance of the midpoint between

the two means. The corresponding error and reject rates

are

K(f) = (a) (27)

R(t) = &(b) — &(a) (28)

where ® is the normal cumulative distribution function,
namely,

1 2

V29 J-«

and the parameters are

B(z) = ely

 

(29)
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a= —3s—-—In (4 — 1] (30a)

1
6 = —3s8 + - In (3 — 1) (30b)

Mi — He
$= 5 (30c)

The parameters is the (normalized) separation between

the means of the distributions and is the only (composite)

parameterof the distributions that R(¢) and E(é) depend
upon. It is straightforward to verify (14) for this ex-

ample. A set of the error, reject, and tradeoff curves,

for s = 1, 2, 3, and 4, is depicted in Fig. 5.

B. Uniform Distributions

Consider two uniform distributions:

; ¢ <F@|1) = { when O<v0< 1 (31a)

0 elsewhere

1 1 5
Fw |2) = ? when 35°57 (1p)

0 elsewhere

as shown in Fig.6.

The reject function R(¢) is simply

3 1R(t) _ ‘i when 0 < L < 3 (32)

O when 3¢<i<1l,

which is discontinuous [Fig. 7(a)], and the integral of (13)

is evaluated to

E() = ‘

which is shown in Fig. 7(b) and the tradeoff can assume

only two values, namely (EZ, R) = (%, 0) or (0, 3) [Fig.

7(c)]. However, if a randomized scheme is used in the

range } < v < 1, R mayvary continuously from 3 to 0

as shown by the dotted line in Fig. 7(c).

when 0S t< 3

3<¢ <1,
(33)

whenOo
|=
s

VIL. Some PRACTICAL IMPLICATIONS

Most of our results on the error—reject tradeoff seem

consistent with our intuition, although the simple integral

relation between the error and reject rates is somewhat

unexpected.

Since the slope of the error—reject tradeoff curve (Fig. 2)

is the value of the rejection threshold, the tradeoff is

most effective initially (i.e., at the low level of rejection)

and it gets more difficult as the error rate is lower. This1s

certainly common in our practical experience; excessive

rejection is generally required to reduce residualerrors.

Practical applications of the present results are in the

areas of system design and performance evaluation of

the recognition systems. The general characteristics of

the error-reject tradeoff curve provide the system de-

IEEE TRANSACTIONS ON INFORMATION THEORY, JANUARY 1970

1.0 

 
E
o
r
R

   
 0.4

0.3

wW 0.2

   

 

(b)

Fig. 5. Normal distributions. (a) Reject and error curves. (b) Trade-
off curve.
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Fig. 7. Uniform distributions. (a) Reject curve. (b) Error curve.
(c) Tradeoff curve.
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signer with a convenient means of verifying the basic

assumption on the underlying probability distributions.

The integral of (13) makes it possible to calculate error

rates and consequently, the tradeoff curve from the em-

pirically observed reject rates. No class identification of

the sample patterns are required in obtaining the em-

pirical rejection curve. Or equivalently, one can just ob-

tain an empirical density function of the maximum of

the a posteriori ;:robabilities, and then calculate the error

and reject rates.

In most recognition tasks, the underlying probability

distributions of the patterns are not completely known

and the design of the recognition systems is generally

based on empirical data. A common design procedure is

to assume, ontlie basis of available (usually limited) a

priori information and the designer’s intuition, some

functional forms of the distributions, to derive the system

structure based on these assumptions, and to adjust the

system parameters by using the empirical data. It is not

always a simple matter to verify the validity of the as-

sumptions on which the system structure is based. How-

ever, one can :lways, though laboriously, obtain the

empirical error-reject tradeoff curve and compute the

theoretical one from the basic assumptions. A comparison

of the empirical a.nd theoretical tradeoff curves can quickly

reveal how well the theoretical model agrees with the

empirical data, and it can serve as a checkpoint for

initiating the process of revising and improving the

theoretical model.

The data used in any meaningful evaluation of a

recognition system are usually large, and it is extremely

costly and time: consuming to detect the recognition

errors. To identify a recognition error additional infor-

mation, usually human inspection, at some stage is re-

quired. On the other hand, the rejection is the explicit

result of a definite decision, and the rejects can be readily

recorded and tallied. Equation (13) provides a simple

means of calculating the error rate from the reject curve

without actually identifying the errors.

VIII. ConcuusIon

A general error and reject tradeoff relation is derived

for the (Bayes) optimum recognition system with an

option to reject. The error probability is a Stieltjes inte-

gral of the rejection threshold with respect to the reject

probability. The error function can be directly evaluated

from the reject function. Hence, the reject function de-

termines the recognition error and reject tradeoff and com-

pletely characterizes the performance of the optimum

recognition system. The error-reject integral provides

a simple means of calculating the error rate from the

empirical reject curve without actually identifying the

recognition errors.
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Estimation of Classification Error
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Abstract—This paper discusses methods of estimating the probability of

error for the Bayes’ classifier which must be designed and tested with a

finite number of classified samples. The expected difference between esti-

mates is discussed. A simplified algorithm to compute the leaving-one-out

method is proposed for multivariate normal distributions wtih unequal co-

variance matrices. The discussion is extended to nonparametric classifiers

by using the Parzen approximation for the density functions. Experimental

results are shown for both parametric and nonparametric cases.

Index Terms——Bayes’ classifier, estimation, finite number of samples,

pattern recognition, probability of error.

I. INTRODUCTION

N MANY classification problems the designer is faced
| with the problem of designing and evaluating the per-

formance of a pattern classifier on the basis of a limited
numberof classified samples. In this paper we assume the
classifier is of the form of the Bayes’ classifier (minimum
probability of error classifier), with incomplete information
available about the distributions to be classified. Since with
a finite number of samples the distributions cannotbeesti-

mated exactly, the resulting classifier design is nonoptimum.

The evaluation of the performance of this classifier, as

measured by the probability of error to be expected when

it is applied to further sampies, is the subject of this paper.
Many of the early evaluations of classifier performance

were obtained by using all available samples to design the
classifier and then using the same samplesto test it. It has
been known for some time that this procedure, which we

denote as the C method, produces unreliable results. This

has led several investigators to search for better methods of

evaluating classifier error rates.
Hills [1] presented the general relationships between

various error estimates and the minimum attainable error,

and pointed out, along with other facts, that the C method
gives an expected error whichis less than thetrueerror.

Highleyman [2] published optimum partitionsof the total
sample set into design and test sets to obtain minimum vari-
ance estimates of the minimum attainable error rate. He
concluded that the test sample size should never be smaller
than the design sample size. As was later pointed out by
Kanal and Chandrasekaran [3], Highleyman’s results are
valid only for a large sample size. Also since notall available

samples are used to build the classifier, one would expect a
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poorer classifier design, and since not all samples are used
in the evaluation of the classifier, one also expects a larger
variancein the estimate of probability of error.
Another important methodis called the leaving-one-out

method (the ZL method) [4]. This gives a nearly unbiased
estimate of the error rate and uses all available samples

effectively. In Section II we discuss this method and general
relations between error rates. The disadvantage of the L
method is that it required the same numberofclassifier
designs as there are samples. In order to eliminate this
difficulty, we provide, in Section III, a simpler computational

procedure for implementing the ZL method for unequal

covariance multivariate normal densities. If NV is the avail-
able number of samples, we find that the difference in the

likelihood ratios produced by the C and L methods decreases
as 1/N while the standard deviation of the estimated likeli-

hood ratio decreases as 1/./N.
All of the previous discussion assumes a parametric ap-

proach to the classification problem. In order to extend the
L and C methods to a nonparametric case, in Section IV
we examine classification using Parzen multidimensional

approximations of the respective density functions.
In Section V, the experimental results are shown for both

parametric and nonparametric cases with eight dimensional
samples.

II. ESTIMATION OF ERRORS

In this section, general relations between various error

estimates are discussed.

Let us consider two distributions in an n-dimensional
vector space.If we classify these two distributions according
to the Bayes’ optimum classifier so as to minimize the prob-

ability of error, the decision rule is given by

p(wi)p(X | a1) > 1 9X Car
L(x, ©) =

p(we)p(X | w) <1 >X E we
(1)

where p(w;) is the a priori probability of class i, p(X|w:) is
the conditional density function of X, assuming class 7, and

X is a column vector with n components. L(X, @) is a func-

tion of a set of parameters ©, which characterize the p(w:)’s

and p(X/w,)’s.

In practice @ is unknown and an estimate ©, is made of

© from a finite number of classified samples. The actual

probability of error that will be realized by (1) will be a

function of the actual parameters of the distributions being

classified. Thus the probability of error &, is a function of

two arguments as follows:

&(O1, 0.) (2)

Reprinted from /EEE Trans. Comput., vol. C-20, pp. 1521-1527, Dec. 1971.
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where

©, Set of parameters used in the design.

©, Set of parameters of the data being classified.

Since the formulation (1) minimizes the probability of

error,

&(0, 0) < &(0’, 9) (3)

where © and ©’ are not equal.
For a particular problem, assumethat the set of true pa-

rameters is @ and that @y is the estimate of © made from a

random selection of N samples from the true distributions.

Thus ©, is a random vector. For anyparticular value of @y,

Oy, the followinz inequalities follow from (3):

&(@, @) < &(@w,9) (4)

&(Ov, Ow) < &(O, Ow). (5)

Since (4) and (5)are true for every realization Oy, it follows

that

g(0, @) < E{8(@y, ®)} (6)
and

E{3(@y, @x)} < E{E&@, Oy)}. (7)
If

E{8(®, @x)} = 8@, ®) (8)
then (6), (7), an«l (8) give [1]

E{s(@y, Oy)} < &(0, 8) < E{8(@w, ®)}. 9)
Equation (8)is,ot true in general. However, it is true when

the estimated densities, obtained by substituting © for the
true parameter (3, are unbiased estimates of the true densi-
ties. The left-hard side of (9) has not been verified in general,
but this behavior is frequently experimentally observed

[2], [3].
An estimate of E{&(@yv, Ov)}, &Own, Ow), is called the

C-method estimate in this paper. This estimate of the prob-

ability of error 1s calculated as follows.

The C Method

1) X1, ---, Xy are randomly selected from the true dis-
tributions to calculate Oy.

2) Calculate CX, Oy) for k= l, 2, cy N.

3) Count the number of X; for which

LCXz, Ow) >1 and X,€ a,

LX, Ow) <1 and X, & We. (10)

To the degre: that the C-method estimate is a goodesti-
mate of &(@y, @y) and for those situations in which (8) holds
we see that (9) indicates this method may be expected to
give an optimistically biased estimate.

Onthe other hand, &(@y, ©)is the estimate in which inde-

pendent sets of samples are used for determining the Bayes’

classifier and testing. The leaving-one-out method gives an

approximately unbiasedestimate ofE{ (Ow, ©)} , &(Ov-1, 9),
utilizing all available samples as effectively as nossible [4].

The L Method

1) Assuming that MW samples Xi, X2,---, Xw are avail-
able, N—1 samples, omitting Xx, are used to calculate

Ova”.

2) Calculate L(X;,, Ov_1™) for K=1, 2, +--+, N.
3) Count the numberof X; for which

L(X;, Ov_1) >1 and X, & Wy

L(Xx, Oy_1) <1 and X;€ a. (11)

The L method makesefficient use of the available samples.
However, the disadvantage of this methodis that designing
N Bayes’classifiers may be too laborious.

In this paper, we propose a method to overcomethis dis-

advantage both for parametric and nonparametric cases.

Ill. THe ZL METHOD FOR NORMAL DISTRIBUTION

In this section, a simple way of implementing the L method
for normal distributions will be proposed, eliminating the
calculation of N Bayes’classifiers.
For normal distributions, the likelihood ratio (1) is con-

veniently written as the log-likelihood ratio

Ux, 0) = — 21n L(X, 0)

= (X — M,)T2r'(X — Mj)

— (X — M,)>,-'"(X — M2)

| 21
| Be |

p(w1)

p (wz)
+ In — 21n

 

(12)

where M, and 2; are the mean vectors and covariance

matrices of w,(i=1, 2). The Bayes’ classifier then is, instead

of (1),

if (Xx, 8) <0

if (Xx, 9) > 0

then X E a

then X E we. (13)

Let Ov ={M;, 2;, f(w;:): (G=1, 2)} be the set of parameters
estimated from the available N classified samples and let
Oy= {Mits Diks PXws): G=1, 2)} be the set of param-

eters estimated from the N—1 samples left when sample X;
is excluded. Assuming that the NV independent samples con-
sist of N; samples from w; and N»2 samples from we, these

parameters are given and related as follows for X;€a;:

 

 

A 1 Ni

M; = >, X; (14)
4 j=l

aA 1 Ni

Ma = x,)- xb
""N;-1 ‘( 2X : .

= M; —-——— (X. — M)) (15)

 

N;-1
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N;po
d

  

 

 

  

=; = D(X; — Mi)(X; — MT (16)
N;-1ja

A ] Ni a “
Li = Ni=2 ; ‘ 2 (X; — Mx)(X; — ta)?

—(Xz — Miu)(Xi — Ma)|

a 1

TTS
- N; Pi pi[8 Foc (Xz — Mi)(Xi — m1"| (17)

p(wi) =a and p(w;) = Mi (18)
N N

. N:-1 . N;
Pr(wi) = Nol and =px(w;) = No’

(#7), for X,€w; (19)

According to (11), in the Z method we haveto calculate

U(X, Oy_1) = (X;, — My)TSu-(XX, — Mx)

— (X, - M,)TS.-\(Xy, — M;)

 

$ a

+ In a ~ 9 n PHD
| me | Pr(w)

Xx EC 1. (20)

A similar expression can be obtained for X,Gu».
As is shown in the Appendix, using (14) through (19),

KX:, Ov_1™) of (20) can be expressed as the deviation from

KX, Ow), which is the estimate ofthe likelihood ratio by the
C method, as follows:

U(X, Ov1®) = UX,, Ov) + g(Ni, d2(X,)),

 

 

 

+ for X; € ow

— for X;, E we (21)

where

g(Ni, d:2(X:))

_ (N2 — 8N; + 1)d2(X)/(Ni — 1) + Nid#(Xy)

(N; — 1)? — Nid?(X;)

+ In ¢i d(X)) + 2In——
(N; — 1) Ni-

+nIn—— > 0 (22)

and

di(X,) = (X, — M)TE71(X, — M). (23)

From (21), (22), and (23) the following three observations

can be made.

1) Whenthe C method is used to calculate the probability
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of error, (X;, Oy) and dXXi= 1, 2) must be computed
for k=1, 2,---, N. Therefore, the computation of the
scalar function of (22) for each k is a negligible load to a
computer in comparison with the computation of IX, Ow)
for each k. Thus, the computation time of both the L and C
methods becomes almost equivalent to the computation
time of the C method alone.

2) As is proved in the Appendix, g(-) of (22) is always
positive no matter what N;, d;(X,) and n are. Therefore,
from (21),

(Xr, Ov) > UX, Ow), Xe.Gur (24)

and

U(Xx, Oy_1®) < U(X, Oy), Xi Ee We. (25)

Accordingto the decision rule of (13), we can concludethat:
if X;, is misclassified by the C method, X;, is also misclassi-
fied by the L method; and there may be some _X,’s that are
correctly classified by the C method but misclassified by the
L method. This conclusion for normal distributions is a
stronger statement than the inequality of (9), because the
inequality of (9) holds only for the expectations of errors
while our conclusion is for individual samples of individual
tests.

3) For N;>1 and d:(X,)/N:<1, a simpler approximation
of (22) can be obtainedasfollows:

 

 

 

j d,? x d;! xX d? xX
g(N;, d:?(X;)) = (Xx) + (Xx) _ (Xx) n+2

N; ~— d;?(X;) N; N;

d(Xi) +n +2~ ( a+ n | on)

Thus we see that the difference in the likelihood-ratio rule
at a particular point decreases as 1/N;. In an effort to com-
pare this difference with the statistical variation of the likeli-
hood ratio, an approximation to the variance of the likeli-
hood ratio at a particular point was obtained. Omitting the

lengthy derivation we show only the result for fixed X,,

E{ [l(X., Ov) — U(X;, )]?}

a
2
— | dy4(X;) + n}

- { dot(X 7Ta, o4( x +n}. (27)

Thus the standard deviation decreases as 1/./N;. This indi-
cates that for large NV; the statistical variation is of more im-

portance than the difference between the Cand L estimates.

ITV. A NONPARAMETRIC APPROACH

In this section, we extend the previous discussions for
normal distributions to a nonparameteric setting, and com-

pare the C and L methods. The nonparametric approach
used here is to use the Parzen approximation to density
functions.
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The Parzen approximation of a density function is

  

given by

1 1 X — X;
Wi; 28pr(X 0) ==EK(T) es)

wherepy(.X | w;) is a random function dueto the selection of

N; samples. Under certain assumptions about the kernel

K(.), it has been shown [6], [8] that

   lim E}/? sup | pw(X | «:) — p(X | a |- 0 (29)
N,> 0

if

py(X | wi) (30)

is uniformly ccntinuous,

lim r(N,) = 0 (31)
N,-®

and

lim N,r(N,)2" = o. (32)
Nj,

In this pape, we use a normal function as the kernel
[8] as

 

 

1 K(— —) = Ne

r(N;)” r(iV;) Q77l24/ =, |

exp [—$N#/"(X — X)?Br(X — X)] (33)
where

r(Ni) = Neel", (34)

In orderto satisfy (31) and (32), a must be in the range

3>a>Q0. (35)

In the C method, we use the following decision rule for a

specified sample: X;

   

Ny Ne W1

— py,(Xx | v1) 2— py, (Xx| we) > XE E ‘ (36)
N N Wo.

Or, using (28) and (33)

Nw ™
VTedD exp [—4N2%/"d,?(Xi, X;)]

1| J=1

_Ne Ne
| : D_ exp [—4N222/"dp?(Xx, X,)]

2o| l=!

. 1

2

where d;*(Xi,

given by
4’;) 18 a distance between X;, and X; and is

d?(Xx, Xj) = (Xa — X5)PD(X — Xj). (38)

In the Z method, for X,€w1, X; 1s removed from the approx-
imation to py(X | w 1), and N, and WN are replaced by Ni—1

and N—1, respectively. Therefore, the left-hand side of (37)
is modified as

(Ni-—1)77 ,%———| (>
j=lVv | 21

-exp { —3(N1 — 1)2#/"d,2(X., X;)}] - |, (39)

For X;,€we, the right-hand side of (44) should be modified

as (39).
The calculation of error for nonparametric cases is labo-

rious mainly because we haveto calculate all pairs of dis-
tances of (38), that is, M(N—1)/2 combinations. However,

there is no difference between the computation times of the

C and L methods, because in the L method di*(X;, X;) is

multiplied by (Ni—1)*2/" instead of by N,’2/" in the C

method before the exponential function is computed.

V. EXPERIMENTAL RESULTS

A. Parametric Approach

An experiment was conducted by using the mean vectors
and covariance matrices for measurements on the letter A
and B, as published by Marill and Green [5]. Eight dimen-
sional samples were generated so as to be normalaccording
to the above parameters. This was done for sample sizes
N,= N2= 100, 200, and 400 for each class. Each time a set

of data was generated, the sample means and covariances, ©
M; and 3,, were calculated and the C and L methods were

applied to calculate the estimates of the probability of error,
E(On, Ov) and E(Oy-1, @). Forty sets of samples were gen-

erated for Ni= N2= 100, 200, and 400 to calculate the experi-

mental means and variances of &(@y, @y) and &(@y, 0)
which are random variables due to the selection of N sam-
ples. The results are shown in Table I.

Wehave shownthat the difference in the estimatedlikeli-
hood ratios decreases approximately as 1/N;. We see from
Table I that the same behavioris present for the difference
in the C and L estimates of error. Wealso note that the stan-
dard deviation of the error estimates decreases approxi-
mately as 1/./N; for the sample sizes indicated.

B. Nonparametric Approach

The nonparametric approach of this paper was applied to
the same data sets as in the parametric example.

First, since no information on the appropriate value for
a could be found except the condition 0.5>a>0 of (35), an

experiment was conducted with 100 samples per class with
a=1/3, 1/5, and 1/7. The results are shown in Table II.

Although there is some.variation in the performance, it does
not appear that the choice of a is of critical importance.

Based on the above information, a was selected as 1/3.
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TABLEI

ESTIMATION OF ERRORS FOR A PARAMETRIC EXAMPLE

 

C Method, &(6y, Ow) L Method, &(@y_1, 8)
 

 

 

Number of Samples Standard Standard MeanDifference
per Class Mean Deviation Mean Deviation Between the C and
Ni =Ne (percent) (percent) (percent) (percent) L Methods

100 1.44 0.8 2.15 1.0 0.71
200 1.56 0.7 2.00 0.7 0.44
400 1.83 0.5 1.97 0.5 0.14

TABLEII

EFFECT OF a@ FOR A NONPARAMETRIC APPROACH (N; = N2 = 100)
 
 

C Method &(6y, Ow) L Method, &(Oy_1, 9)

 

 

a (percent) (percent)

1/3 0.1 2.9
1/5 0.2 2.6
1/7 0.4 2.5

TABLEIII

ESTIMATION OF ERRORS FOR A NONPARAMETRIC EXAMPLE
 

 

C Method, &(@y, @v) L Method, &(@y_1, 8)
 

 

NumberofSamples
per Class Mean Mean
Ni = Ne (percent) (percent)

100 0.1 2.9
200 0.45 2.35
400 0.65 2.2
 

Five sets of samples were generated for each of Mi=
N2= 100, 200 and, 400. The results are shown in TableIII.

C. Discussion of the Experiments

For the original data Marill and Green reported a 2.75
percenterrorrate for the Bayes’ classifier using the C method
to evaluate its performance on 200 samplesper class. This
compares to the 1.56 percent average error and 0.7 percent
standard deviation for 200 samples per class reported in

Table I. Thus the 2.75 percent error rate is less than two
standard deviations away from the mean andis not unrea-

sonable. In addition it is improbable that the original data
exactly fit the normal model.

TablesII and III indicate that the bias introduced by using
the C method to evaluate the nonparametric classifier 1s so
large as to make the estimate oflittle value. The errors by
the nonparametric method appear to be greater than those

by the parametric classifier. This is to be expected since we
use the additional information that the densities are normal
in the parametric case. For nonnormal data the nonpara-
metric classifier may be superior at the cost of greater

computation.
For two classes normally distributed with the known pa-

rameters used in these two experiments, a 1.9 percent error
rate has been reported for the optimum Bayes’classifier [9].
We note that for the two examples presented and for the

sample sizes indicated we have the average of the C and L

estimates bounding the optimum error rate as indicated by
(9). It should be emphasized, however, that the present work

does not in general guarantee (9) since (8) has not been

verified.

VI. SUMMARY

This paper discusses the estimation of the probability of
error to be expected if one uses a classifier constructed by

using estimates calculated from a finite sample set for the
parameters in a Bayes’ optimum classifier. The major results
follow.

1) A simple procedure is given for implementing the L
methodforthe likelihood-ratio rule resulting from the multi-
variate normal assumption.

2) The difference in the likelihood-ratio rule for the C

and L methodsis proportional to 1/N; while the standard
deviation is proportional to 1/./N;. Experimental results
indicate the 1/N,; dependence for the difference in the error

rates and 1/./N; dependence for the standard deviation

of the error rate estimates.
3) A nonparametric version of both C and L methodsis

discussed by using the Parzen approximation to density
functions. The experimental results by this approach are

shown andare foundto be similar to the results obtained by
the parametric approach.

APPENDIX

The proof of (21) consists of three parts: the quadratic
term, the determinant term, and the a priori probability
term in (20).

Quadratic Terms

Werewrite (17) as

A N; — ] A N;

Lik = Li
N;—2 (Ni — 1)(Ni — 2)

(X, — M)(X, — MDT.

  

(40)

The inverse matrix of 2, is
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a N;— 2’
Dik} -(

N;-— 1,

A NX — M; xX — M; Ty1[so4 t— M)(Xe— MY) an
(NV; —1pP- Nidi?(Xx)

where d,?(X;) is given in (23). Then, using (15), the quadratic

term is given by

(Xi— Mx)?SaXe— Mx)

Nn

“G5
N; N;-2

-=)yo)
Nidi*(X:)

(N ;—1)?—Nid;2(X4)

 

 

 
)(X);——M)T3a-(Xi— M;)

   

 [a(X,)+—

= d;?(X;)

(N2?—3N;4- 1)d;2(X.)/(Ni— 1)+Nid:4(X;)

(Vi-—1)2?-—Nd2(Xx)
 (42)

Determinant Terms

Using (40), the determinant of 2, can be calculated as
follows:

al =(=) 8
or N;-3 ‘

 

 

  

 

 

 

-|I— —— 371(X, — M)(Xi — M7). (48ape Ba MIs "|. 48)

Let hx, \2,-°-, An be the eigenvalues of the matrix
3-4X,—M)\X,--M)™. Then the last determinant of

(43)is

- ve 2iU(XE M.)(X, — M,)?
(N; — 1)?

n N;

= 1 —hs). 44
1 ( (N; — 1)? “a

The rank of the matrix (X,—-Mi(X.—M,)" is one. Conse-
quently, the rank of the matrix 2-(X,.-Mi(X.—M))" is
also one. Therefore, the d’s should satisfy the following

conditions:

 

Using these results, (44) becomes

  

       

  

 

 

 

 

 

  

N; - a a
L — ———— 271(X, — M;)(X, — M,)TWe pi Stk MMe ~

=j]-— Ne d2(Xz). (47
(W.—1eP GD

From (43),

A N;-1
In | Sx = In

+] ¢ Ne dX), (48)4+ In — ———-—

(N;- 1)? °

A Priori Probabilities

If we assume X,Cw,, from (18) and (19)

(eo, N;-—1 N; N N;-1

plo) =4 WP No ON,

= Bw, N N;-1 (49)

~ POD TDN,

Also

se) = N; _ N; N

Pie)a NN Wd

=Pw) G #9). (50)

Therefore,

t t Ni —1Delos) p(w) (51)

Prlws) B(w;) N;

Equations (42), (48), and (51) give all terms of (21) and

(22). Thus the proof is completed.

Proof of g(-)>0of (22)

Assuming N,>2,| Za of (43) should be positive because
+4. is a sample covariance matrix and should bea positive
definite matrix. Therefore, the determinant of (47) should

also be positive. That is,

  

i ~ 0, ho=As=-': ==O), (45) N,

and 1 — Ww,— d;?(X;) > 0. (52)

> ¥ = M1 = tr [S;-(X, _ M,)(X, _ M,)7| Thus

; — (X, — MSAK, — Mt) 0 < d2(Xi) < (Ns — 1)9/M. (53)
= d,;?(X;). (46) To find the minimum of g we examine

d{y(Ni,d2(Xi))}  —Ned(Xx) + (QN8 — 8N2 + 2N,)d2(Xi) + (—2N2 + 8Ni — 1)
d\d?(X,)} [(N; — 1)? — Nid,2(X;) |?

—0 (54)

229



which has solution d2(X,)=1/N; satisfying (53). By sub-
stituting 1/N;, and 0 for d;(X;) in (22) it can easily be shown
that

g(N;, 0) > g(Ni, 1/Ni) > 0. (55)

This proves that d2(X,)=1/N; is a minimum and that

g(-)>0for d,(X,) satisfying (53).
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Application of Optimum Error-Reject Functions

KEINOSUKE FUKUNAGAanp DAVID L. KESSELL

Abstract—In an optimum pattern-recognition system the error rate is
determined by the reject function. This correspondence describes how
this property may be exploited to provide quantitative tests of model

validity using unclassified test samples. These tests are basically good-

ness-of-fit tests for a function of the observations. One of these tests is

shown to provide an improved estimate of error in Monte Carlo studies

of complex system. Results are given for normal distributions when

parametersare estimated. In this case error estimates obtained from the

empirical reject rate underestimate the actual error and performance

depends on the ratio of design samples to dimension.

I. INTRODUCTION

Let X be a random n-dimensional pattern vector that must be

classified as belon zing to one of m classes, @,,@,°**,@,_. Allow

the possibility of rejection or withheld classification. Let P,; be

the prior probability of class w,; and p,(X) the conditional prob-

ability density function of X given that it belongs to class w,. For

the mixture density

W(X) = EPipl), (1)

we have that

max {Py P\(X),*+ +PPm(X)}

p(X)

is the conditional orobability of error given X when an observa-

tion is classified using a Bayes’ procedure. Chow [1] has shown

that the optimurn classification-rejection strategy is to reject

whenever

r(x) = 1 - (2) 

r(X) >t (3)

and choose the «lass with maximum a posteriori probability.

otherwise. The probability of rejection, or reject function, is

given by

R(t) Pr {r(X) > ¢}

1 — F(t), (4)

where F(t) is the cumulative distribution function of the random

variable r(X). The error function may be evaluated directly from

the reject functioras

t

E(t) = { y dF(y)
0

= -| y dR(y). (5)
0

Equation (5) emphasizes that R(t) specifies the error function,

because 1 — R(t) is the distribution of the conditional prob-

ability of error r(.¥).

If we assume specific P; and p,(X), an empirical estimate of

the reject functior. (4) may be determined from unclassified data.

Using (5), this provides an empirical error estimate. Chow has
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K. Fukunaga is vith the School of Electrical Engineering, Purdue
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D. Kessell was. with the School of Electrical Engineering, Purdue Uni-
versity, Lafayette, Ir 1. He is now with the Bell Telephone Laboratories,
Inc., Greensboro, N CO.

suggested that the empirical error-reject functions can be com-
pared with the theoretical functions in order to test the validity
of a system model. Asis clear from (4), this is simply a goodness-
of-fit test for the assumed distribution. This correspondence
discusses three methods of making this comparison to ascertain
the correctness of the assumptions. These methods give quan-
titative measures of the effect of a finite amountofdata. (This is
an extension of the authors’ previous work [2], [3].) Using (5)
as an estimate of error probability provides improved Monte
Carlo estimates as compared to the usual error-estimation tech-
niques. Simulation results are given for the case in which
parameters of distributions in the model are estimated.

If. COMPARISON OF EMPIRICAL ESTIMATES WITH THE MODEL

In this section we discuss three specific comparisons of ob-
served and predicted error andreject rates. Each will allow the
rejection of the model at a given significancelevel.

A. A Test Based on the Mean ofr(X)

As indicated in (5), the expected value of r(X) is just the
probability of error with no rejections, which we denote by E.
E is equal to E(t) for t = 1 — 1/m. Given N, independent

identically distributed test samples X,,X),°- ',Xy,, distributed

according to p(X), an unbiased estimate of E is

- 1 Net
E= — X,). 6N, x r(X;) (6)

The variance of the estimate is simply o7(r(X))N,~1. By the
central limit theorem N,!/?(E — E) has approximately the
n(0,o7(r(X))) distribution. For o?(r(X)) unknown, the sample
variance

1 Nt .

s* = — J (r(X) - E)? (7)
N, i=1

converges in probability to *(r(X)), so that the test is to reject

the model whenever

INA/7(E — E)/s| > c,. (8)

The significance level (probability of rejecting the model when

it is valid) is given by

a=1|-=| “eo #12 dz. (9)

The fact that the above test uses unclassified test samples

is an advantage over the usual error-counting technique. This is

usually of great economic importance. Another advantage is

that o*(r(X)) is significantly less than the variance E(1 — E)
associated with the usual error count. To see this consider the

distribution of r(X) that gives the largest variance a7(r(X)) for

a given value of E. This distribution is

 

 

0, t<0O

Fit) = {1 - — E, O<t<1-(/m). (10)

l, “ 1 — (1/m) < ¢.

Now

a*(r(X)) < E? (1-a) + (1b -8) mE
m— | m m-— 1

= E(l — E) — E/m. (11)
Reprinted from /EEE Trans. Inform. Theory, vol. \T-18, pp. 814-817, Nov. 1972.
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Thus the estimate E of (6) gives a reduction in variance ofat

least E/m.

This result may seem paradoxical, since given N, labeled sam-

ples a better estimate may be obtained by ignoring the labels. One

reason is that the frequency-of-error estimate quantizes the error

on a test sample to two values while r(X;) allows the assignment

of a real-valued estimate. There may be an even better estimate

that uses the label information.

The reduction in variance is important in Monte Carlo studies.

In many applications the assumed models become too compli-

cated to solve analytically for the unknown Bayes’ error. In this

case it is common practice to generate pseudorandom vectors

and count the errors. Equation (11) shows that an error estimate

can be obtained moreefficiently by using the estimate of(6).

B. x* Goodness-of-Fit Test

Suppose that X,,X3,°°°,Xy, is a random test sample from the

distribution with density p(X) defined in (1). Suppose further-
more that the P; and p,(X) are known for each class w;. Define

the empirical reject function

Ry(t) = -, (numberof r(X,),r(X2),°°+,r(Xy,) > 1). (2)
t

Comparison of Ry(t) with the predicted R(t) is actually, by (4)

and (12), the comparison of the empirical cumulative distribu-

tion function 1 — Ry,(t) with the predicted distribution function

F(t). Thus the standard y? test is appropriate.

Let {t;, i = 0,:--+,k} be a partition into cells independent of

the data satisfying

O=t <tr: <t = 1—- I1/m. (13)

Define the probabilities

m = R(tj-1) — RQ) (14)

and the random numbers WN; such that

N; = Nr [Rw(ti-) — Rv(to), i= 1,°+°,k. (15)

Then the statistic

Q= x (Nee) (16)
i=1 Nit;

has an approximate chi-square distribution with k — 1 degrees

of freedom. Q “‘large’’ implies a large difference between the

empirical function Ry(t) and the assumed R(t) and calls for the

rejection of the model. Tables of the x’ distribution that give

the significance level and critical values are readily available. A

commonly quoted rule of thumb is to choose the f; such that

each WN,« 7; is greater than five [4].

C. Kolmogorov—Smirnov Test for R(t)

For completeness the application of the well-known Kol-

mogorov—-Smirnov one- and two-sample goodness-of-fit tests

to the present problem should be discussed. Implementation

requires the ordering of all observations so that the empirical

cumulative distribution function (cdf) (12) is specified at each

observation. The one-sample test will test whether the sample

giving the empirical cdf (1 — Ry,(t)) is drawn from a population

with cdf (1 — R(t)), where R(t) is specified at each point the

comparison is made. As mentioned previously there are many

assumptions of P = {P,p,(X),°°+,PmDPm(X)} that imply reject
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functions R(t) that may not be easily computed. However,it.

is usually possible to generate pseudorandom vectors Z1»225°° "5

Zu according to the resulting density p(X). This will yield an

empirical cdf (1 — Ry(t)). The two-sample Kolmogorov-

Smirnov test is a test of whether the empirical samples giving

the respective cdf’s (1 — Ry(t)) and ( — Ry(t)) were drawn

from populations with the same, but unknown cdf. Thus, with-

out computing R(t), the two-sample Kolmogorov—Smirnovtest

gives a test of the assumedstatistical model. For details regarding

the use, definition, and critical values of these tests, the readeris

referred to [5].

D. Comparison and Discussion

Each of the preceding tests provides tests of the validity of the

system model. Each allowsthe rejection of the modelat a specified

significance level. They differ obviously in the complexity of

implementation and almost certainly in power (probability of

rejecting assumptions whenin fact they are false).

The ordering in terms of increasing computational complexity

is Section II-A < Section II-B < Section II-C. Section III-A

requires only the accumulation of a sum and a single comparison,

Section II-B the accumulation of k sums and & comparisons, and

Section II-C the ordering of N, observations and N, comparisons.
With each comparison an evaluation of E(t) or R(t) is required.

The ordering in terms of power is Section III-A < Section

II-B < Section II-C. Section II-A tests only one moment of the

distribution, the mean. Section H-B tests the probability that the

distribution being tested assigns the same probability to each of

the &k intervals as does the assumed distribution. Section II-C

takes a finer look at the distributions, testing the maximum

difference in the empirical and assumed distribution. Of course,

as pointed out above, Section II-A is quite useful in Monte

Carlo studies because of its variance-reducing property.

II. REJECT RULE WITH PARAMETERS ESTIMATED; EFFECT OF Ng

A much more difficult problem in the application of optimum

error-reject rules is that the distributions are not usually com-

pletely known. In somesettings, however, the parametric forms

are known but the parameters are unknown. These unknown

parameters are estimated from a set of N, design samples, i.e.,

a set of N, random vectors of known classification from the

respective classes. Even with this simplifying assumption, we

are not aware of a general solution. Attention here is restricted

to multivariate normal populations. Theoretical results are attain-

able for the two-class multivariate-normal problem where the

covariance matrices are equal. The key parameters are found to

be the Mahalonobis distance squared and the ratio v of the

numberof design samples N, to the dimension n. Simulation for

the two-class multivariate-normal problem with unequal co-

variance matrices showstheeffect of N, to be approximately the

same as in the equal-covariancecase.

A, Equal Covariance Matrices

In this section the mean performance for the two-class equal-

covariance multivariate-normal problem is investigated. When

all parameters are known the condition (3) for rejection of a

random observation X is equivalent to

t < P, p(X) < 1 — t

1—t PpXx) t
  (17)

If the sample means and the sample covariances are unknown,

they may be estimated from N, random vectors from class 1

and N, random vectors from class 2. Substituting the parameter
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CORRESPONDENCE

estimates for the unknown parametersin (17) gives the estimated
rejection condition

—In 1-t <

l

W = [|X — 4M, + M,)/'£-1(M, — M,)

and MLe M), and & are the sample mean vectors and covariance

matrix and X is 11e random observation presented forclassifica-

tion.
Then the mean probability of rejection R(t) and the mean

probability of error E(t) are functions of the probability dis-

tribution of W. Thusthe specification of R(t) and E(t) reduces
to specifying the distribution of W. Unfortunately, no exact

solution that lends itself to computation exists. Okamoto [6], [7]
does provide, however, an asymptotic expansion of the distribu-

tion of W that lends itself to machine computation. He gives the

expansion through all terms of order N,~*. The coefficients are

functions of the dimension and the Mahalonobis distance. This

expansion was used to obtain E(t) versus R(t) for two values of

the actual Mahalonobis squared distance D* defined by

D? = (M, - M,)'x-1(M, — M))

with P, = P, and N,; = N53.

Fig. 1 shows <urves of E versus R for D = 3 and 4, v =

N,/n = 2, 10, an«! 50, and dimension n = 5, 20, and 100, where

N,; = N, = N,. From these curves it can be seen that for a

given D and any dimension n, the mean performance depends

almost entirely on the ratio v. Thus the number of design samples

required for a g ven level of approximation to the optimum

performance depends upon the dimension n. This conclusion

for the whole of the error-reject curves is an extension of the

same conclusion for the error rate with no rejections [8]. As a
rule of thumb it :ppears that v must be 10 or greater for mean

performance reas..nably to approximate the optimum.

 W + In (P,/P>) < In ( - ‘); (18)

where

(19)

(20)

B. Unequal Covaviance Matrices

If the covariar:ce matrices for the two populations are not

equal, the resulting approximate rejection condition is

 —In (<<) < In(P,/P,) + U < In (" ; ‘ , (21)

where

U = 3[(¥ — M,)"h,7'(X — Mz)
— (X ~ My)"E,7'(X — My) + In ((E,4/[Zi)]. 22)

Since the distr:bution of U is not known, simulation exper-

iments were run to compare with the equal-covariance case. For

case I, pseudorar:dom vectors were generated according to two

eight-dimensional normal distributions with unequal mean vec-

tors and covariai:ce matrices reported for measurements on the
letters A and B |9], [10]. Ratios vy = 2, 4, 8, and 50 were used
to determine the sample size for parameter estimation. For each

ratio 25 repetitions were made. To determine the empirical

reject and error count for each repetition, 2000 vectors were

drawn with probibility 0.5 from each class. An estimated error

rate E wascalculated from the empirical reject rate Ry,(t). For

case II the vecte'rs were generated with the same covariance

matrices as used in case I, but with the same mean vector for

both classes. Fig. 2 shows the £ versus R curve for both cases.

The general dependency on the 1atio N,/n = v is present, but
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now a somewhat larger number of design samples is needed for

goodresults. Fig. 3 illustrates, for case II, the behavior observed

for the normal problem in general. With estimated parameters

the error estimate, E drastically underestimates the errors ac-

tually incurred E. This indicates that using the empirical reject

rate to predict error rates can produce very inaccurate resultsif

the model used in the classifier design is inaccurate.
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Nonparametric Bayes Error Estimation Using
Unclassified Samples

KEINOSUKE FUKUNAGA anp DAVID L. KESSELL

Abstract—A new nonparametric method of estimating the Bayes risk
using an unclassified test sample set as well as a classified design sample

set is introduced. The classified design set is used to obtain nonparametric

estimates of the conditional Bayes risk of classification at each point of
the unclassified test set. The average of these risk estimates is the error

estimate. For large numbers of design samples the new error estimate has

less variance than «does an error-count estimate for classified test samples

using the optimum Bayesclassifier.

The first application of the nonparametric method uses k-nearest

neighbor (k-NN) estimates of the posterior probabilities to form the risk

estimate. A large-simple analysis is made of this estimate. The expected

value of this estima.te is shown to be a lower bound on the Bayeserror. A

simple modification provides unbiased estimates of the k-NN classifica-

tion error, thus providing an upper bound on the Bayeserror. The second

application of the method uses Parzen approximation of the density
functions to obtain estimates of the risk and subsequently the Bayeserror.
Results of experirnents on simulated data illustrate the small-sample

behavior.

I. INTRODUCTION

PATTERN recognition system may be viewed as a

A decision rule which transforms measurements into

class assignmerits. The Bayes error (Bayes risk for a 0-1

loss function) 1: the minimum achievable error, where the

minimization i: with respect to all decision rules. The

Bayeserroris < function of the prior probabilities and the

probability density functions of the respective classes. Un-

fortunately, in many applications, the probability density

functions are unknown andtherefore the Bayes error is

unknown.

Since it is suc.1 an important measure of optimum system

performance, s:veral suggestions have been put forth to

provide nonparametric estimates of, or bounds for, the

Bayes error. The best known in the engineering literature

are the A-nearest neighbor (kK-NN) estimated bounds. It

has been suggested [1] that since the asymptotic k-NN
error bounds the Bayes error, the empirical error rate

found by simply counting the errors when the k-NN rule

is used provides good estimated bounds of the Bayeserror.

Properties of the A-NN rules may be found in [2]-[6]. A
second method is to use Parzen nonparametric estimates

[7]-[9] of the unknown density functions to form an
estimated Bayesdecision rule. The estimate is then obtained

directly from an empirical count of the errors made bythis

estimated rule [10], [11].

Manuscript received May 18, 1972; revised January 12, 1973. This
work was supporte:1in part by the National Science Foundation under
Grants GJ-1099 and GJ-35722, and by the Bell Laboratories,
Greensboro, N.C.
K. Fukunaga is with the School of Electrical Engineering, Purdue

University, Lafaye te, Ind. 47907.
D. L. Kessell is with the Bell

N.C. 27420.
Laboratories, Greensboro,

In this paper an alternate approach is introduced. Non-

parametric estimates of the unknown conditional Bayes

risk in classifying a fixed sample are given. These non-

parametric estimates are averaged over each test sample to

provide the error estimate. The test samples may be of

unknownclassification. It is shown that asymptotically the

variance of the resulting estimate is considerably less than

the variance of the error-counting procedures outlined in

the previous paragraph. Theuse of unclassified test samples

may be of great economic importance whenit is difficult to

obtain independentverification of class identity. Chow [12]
first proposed the use of unclassified test samples. Unfor-

tunately he gave no results for the case in which the density

functions are unknown. Fukunaga and Kessell [13] extend
Chow’s work,using unclassified samples to test assumptions

aboutthe class distribution.
The first estimate discussed uses the representation of the

respective classes in the k-NN to the test sample to estimate
the class densities. These are used to form an estimate of

the Bayes conditionalrisk in classifying the test sample. The

risk estimates for all test samples are averaged to obtain

the error estimate. Properties of this estimate are given for

large N,, the number of design samples. The expected value

of this error estimate is a lower bound on the Bayeserror.

Simple modification yields an unbiased estimate of the
k-NN classification error. As k increases, the bounds ap-
proach the Bayes error. The variance of the estimate is

given forall k.

The second estimate introduced uses Parzen estimates of

the class densities at each test sample to estimate the Bayes

conditional risk at the test sample. These estimates are

averaged over the unclassified test samples to provide the

error estimate. Large-sample properties are equivalent to

those of the K-NN procedure. However, for small numbers

of design samples this procedure appears to be superior.

Simulation results are given for a two-dimensional ex-

ample illustrating the theoretical results obtained. These

also provide an indication of the small-sample behavior

of the proposed Bayeserror estimates.

II. r(X) AS AN ERROR ESTIMATE

Since the estimation procedure introduced in this paper

is a nonparametric approximation to the Bayes procedure,

we give the Bayes procedure for reference and to introduce

notation. Let X be a random n-dimensional measurement

vector belonging to one of two classes w, or w,. Let P; be

the prior probabilities of the two classes and p,(X) be the

probability density function of the random vector X

evaluated at X, given that it belongs to class w,. Let the

Reprinted from /EEE Trans. Inform. Theory, vol. |T-19, pp. 434-440, July 1973.
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mixture density be given by

 

P(X) = Pyp(X) + P2pX) (1)

and let

P; p(X )
. = t 2niX ) 7X) (2)

denote the posterior probability, i.e., the conditional prob-

ability of a measurement X belonging to class w;. Then the

Bayes decision is to choose the class with maximum 7,(X).

Thusthe conditional probability of error when is classified

according to the Bayes decision ruleis

r(X) = min {n,(X),n2(X)}. (3)

Taking the expectation with respect to the random vector

X gives the Bayes error

R = E{r(X)}. (4)

Thus, if we know r(X) as a function of X, r(X) has two

significant properties as follows.

1) The Bayes error can be estimated by the sample mean

of r(X;) for N, test samples as

NtRn 1R= > YX) (5)

where the X,’s are drawn from the mixture density p(X) and

the class assignments of the X; are not needed. Since the

X;'s are independent and identically distributed random

vectors, the r(X;)’s are independent and identically dis-

tributed random variables. Therefore, from (4), the estimate

of (5) is unbiased as

E{R} = = x E{r(X)} = R. (6)

2) Since

O< r(x) <4 (7)

gives

r*(X) < 4r(X) (8)
and

E{r*(X)} < 4R (9)
a bound on the variance of r(X), o7(r(X))is

o°(r(X)) = Ef{r*(X)} — R’

<1iR — R’

= R(l — R) — 48. (10)
Thusthe variance of R is given by

2

var [R] = a") (11)
N,

On the other hand, if class identification were available for

the NV, test vectors and an empirical error count were made,

the error count would also give an unbiased estimate R’ of

the Bayes error. The varianceof this estimate is known to be

R(t — R)
var [R’] = N

t

(12)
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Thus we can achieve a reduction in variance of at least

0.5RN,~! by using R. Both estimates are asymptotically

normal when properly normalized.

Unfortunately, in many instances the probability den-

sities p(X) needed to specify the function r(X) are not

known. However, because of the reduction in variance and

effective use of unclassified samples, it is reasonable to

search for nonparametric approximations to r(X), thus

providing improved nonparametric estimates of the Bayes

error. Two such approximations will be discussed in the

remainderof this paper.

III. kK-NN ESTIMATE OF r(X)

Suppose a random design set of N, samples {X;,0;}/2; is

given, where 0, is the true class of X; and the design set is

drawn according to the unknown underlying distributions.

It is then possible to estimate the conditional error at a new

unclassified observation X by investigating the representa-

tion of the respective classes in the kK-NN to X. In this

section we define such estimates, study their asymptotic

properties, and relate them to the errors incurred by the

k-NNclassification rule.

A. 2-NN Estimates

Consider first the 2-NN estimate at a fixed point X. Let
X' and X? bethefirst and second NN to XY and 6! and 6?
their respective classes. Then it is reasonable to assumethat

the unknown conditional risk r(X) is more likely to be

large if 01 4 07 and small if 01 = 07. To bespecific, we
have 2 samples and we make the crude estimate of the

posterior probabilities 4,(X) as

$y for g! = 6 x CQ;

A(X) = 44, ford’ 4 0?
2 for 0! = 6 = w,. (13)

Then the 2-NN estimate of r(X), r,(X), may be taken as

r(X) = min {4,(X),42.(X)}

_ {% for 6’ = @?
«4, for 0! # 07. (14)

Since for fixed X.,

P{r,(X) = 4} = P{0' 4 07|X = X,X! = X!, X? = Xx}

= y(X")go(X*) + o(X*)ny(X7) (15)

and y{X*) > n{X) and 4X7) > n(X) as Ny > [2],
_the conditional expectation of r,(X) is given by

r(X) = E{r,(X) |X = X}

= 9(X)n2(X) |

(16)= r(X)[1 — r(X)].

Now, 0 < r(X) < 0.5, so (16) gives

r(x) < r(X) < 2r,(X). (17)

Thus the conditional expectation of the estimate, using

only two nearest neighbors, bounds the true conditional

error r(X). Equation (17) is somewhat weaker than the
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result in [1] in which nearest-neighbor risks are used to
estimate the Bayes risk. Defining c,(X) to be the conditional

error using the k:-NN classification rule, we observe from

(16) and [2] that

c(X) = 2r,(X). (18)

Taking the expectation over X gives

R, < R < 2R, = C,. (19)

At no point in the previous discussion was the unknown

classification of X’ used. Thus unclassified samples may be

used in estimating the bounds of (19) just as they were

used in Section I). with all statistics known. Specifically, if

X,,X2,°°',Xy, 18 a random unclassified set of test vectors

drawn according to p(X), then

R, = rAxi) (20)

i
m
e—

N,

is an unbiased estimate of R,. Furthermore, 2R, is an

unbiased estimate of C;.

B. General k-NN Estimates

We now extend the preceding estimate to the general

k-NN case. All results are asymptotic as N,; > o and

kNy 1 > 0. Of tie k-NN of a fixed X, k, are from class

w, and k, are from class w,. Then we use the estimate

r(X) = min {41(X),A2(X)}

= min [Fs | =| (21)
k ok

where k, + k, = k. The possible values of r,(X) are

0, i 2 mee Ke k even
k? k’ k

nO) = 1 2 k 1)/2
0, --,- KDR k odd. (22)

kok k

The probability that r,(X) equals the preceding values for

i # k/2 is

P, [nC = =| - x|

= (7) mannco' + (8 |) nearncy! @3)
and fori = k/2

P, {n(X) = A \x=xx} =("Lo) m(X)ngXE. (24)

For k odd the conditional expectation of r,(X) is

r(X) = E{r,(X)|X = x}

(k=1)/2 5 /K | | | |Dy ¢ (i) b.concor! + mene
(25)

and for &k even

r(X) = E{r,(X)|X = X}
_ 1jk k/2 k/2 et i k

2 (,0) nA mA + deg (;)

° [n(X)'n(X)*! + ny(X )*~'n(X)']. (26)

Equations (25) and (26) are summarized in a single form as

[k/2] ; ;no= Y 2 (71> 2) nconcoy
211/27 — 1),

where [a] is the greatest integer less than or equal the
real numbera.

On the other hand, from (16), r(X) can be expressed by

r(X) = - 4V1 = 4r,(X). (28)
Therefore, the MacLaurin series of (28) gives

00 — 2

nx) = Y= (71> 2) loo. (29)
Comparison of (29) with (27) indicates the following.

1) Since all terms of (27) are positive, r,(X) 1s a lower

bound on r(X) and

r(X) = 73(X) < r4(X) = 75(X) < °°

< ro(X) = loee1(X) <0 °°

2) Each term of (27) or its expectation can be evaluated

by

< r(X). (30)

* (OK?) r2'(X) = 1o(X) — ro,-2(X)

or

+ (OE = 2) Bfrt00} = Elta} - Efra220}. BD
The use of r(X), utilizing unclassified samples, was shown

in Section II to provide a reduction in variance in com-

parison to the usual error-counting techniques. By using

the k-NN estimate of r(X) this advantage is retained. The

variance of r,(X),

var {r,(X)}

= E{E{r,2(X)| X}} — Re
(k=1)/2 (7 \2 a

= EL X (5) (7) niet rind) ~ Reoa
5 | (;)mitt] — Recate(SQ) E-f+

~ nan) (24) n,

cna E26

 

(32)
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where we have used the well-knownproperties of binomial

distributions and the fact that (25) and (26) can both be

written as

E{r,(X)|X = X} = ¥(K) ii =ayn
(33)

iii
2 ki

Equation (32) shows the variance-reducing property for the

k-NN estimates of (21) that was seen in (10) for r(X)

knownexactly.

In summary, given test samples X,,X,,°°',Xy, drawn

according to p(X), we use the & nearest design samples to

X, to calculate r,(X;) of (21). Then the sample mean

=— ¥ +(x) (34)
i=

has expectation

Mealy (2i -
E{R,} = 2 -(°

i=1 1 lL —

2) op.*) Bf} BS)

and variance given by (32). From (29), this expected value

is a lower bound on the Bayeserror, R.

C. Estimates of k-NN Error and Approximation of Bayes

Error

It is known that the k-NNclassification procedure gives

the upper bound ofthe Bayeserror. The’ conditional k-NN

error c,(X) is given for k odd [2] by

(kK71)/2 /f .

C(X) = mi(X) x (‘) ny(Xn(x fF?

em) YS (")nvconran. 66
j=(k+1)/2 \J

This can be rewritten in terms of r,(X) as

Cop-(X) = ra(X) + - (*") [1(X )n(X)|*

2k\  ,= rn(X) + 5 (7) 2800. (37)

Thus both r,(X) and c,(X) may be written as polynomials

in r,(X) = n,(X)n,(X). With increasing k, c,(X), and r,(X)

are high-order polynomial approximations to r(X) as

written in (28). Furthermore, c,(X) is a decreasing upper

bound on r(X) and r,(X) is an increasing lower bound.

Representative curves are shownin Fig. 1.

The relationship given by (37) suggests a modification of

the definition of the risk estimate, r,(X), to provide an

unbiased estimate of the conditional k-NN classification

risk. In order to accomplish this, replace (21) by the

modified version

r(X) =a, for min {ky,kj} = i. (38)

From (37) it is clear that the «; should be chosen to add

5 (Ct) toonton
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Fig. 1. r(X), n(X), and c,(X) versus r2(X).

to r,,(X ). Examining (25) and (26), it is easily shown that

this is accomplished by defining the «; as follows:

i

 

 

—, i<k
ry'(X) = 42k , ¢= min {kyk:} (39)

1, i=k

: i<k
2k + 1

r+ i(X) = , ¢=min {ky kp}. (40)
3k + 1

, i=k
4k +2

Then we have the relationship

Cop—(X) = Pay(X) = Pag+(X) (41)

where

roy(X) = Efry,(X) |X = X}. (42)

Thus for unclassified test samples X,,X2,°°*,Xy_.

1 &
Cy-1= » 124(Xj) (43)

N, i=1

is an unbiased estimate of the (2k — 1)-NNclassification

error. Equations (34) and (43) give estimated lower and

upper bounds on the Bayes error using information from

both classified design and unclassified test samples.

In addition to the previous, the curves of Fig. 1 show the

following interesting facts.

1) Equations (28) and (37), or the curves of Fig. 1,

provide a quick comparison of the Bayes risk r(X) and the

nearest neighborrisk c,(X). If the largest ratio between the
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k 1 3 5 7 9 11 13
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Fig. 2. Exjual area criteria; r(X), r2”(X) versus r2(X).

c,-curve and r-curve in Fig. | is B,, then

O(X) < Byr(X) (44)
so that

C, < B,R. (45)

Thus we can obtain a rough bound on therelation of C, to

R. These f,’s are given in TableI. |

2) It has been shown that r,(X) < r(X) and r,’(X)

r(X). An alternative viewpoint is to introduce an estimate

which has conditional expectation approximating r(X)

rather than bounding it. It may be shown that modifying

the last coefficient as

l
—., i<k

ra,(X) = (2k ’ 1 = min {k,,k2} (46)

3, i=k

— i<k
2k + 1 |

ret i(X) = , ~ = min {kk} (47)
k+1a — k

12k: + 6

gives the reasonanle property that

[Inan - roo] ax = 0. (48)
Fig. 2 illustrates the approximation for k = 2. Obviously,

the degree of this ipproximation depends uponthedistribu-

tion of r,. However, the examples we have run show that

the approximatiot is good for reasonable distributions.

3) The Bhattaciaryya bound on R is given by

Bs [Poovn@) dx > R. (49)

Also, /73(X) versus r,(X) is plotted in Fig. 1. Clearly
B = C,, so that the 1-NN expected error is a better bound
on R than is the parametric Bhattacharyya bound.

In summary,for “large” N,, experimental bounds on the
Bayes error R may be obtained by taking the arithmetic
average of the estimated conditional risk r,(X¥) and the
modification r,’(X) over unclassified points, X, drawn from
the unknown mixture density. The upper bound has ex-
pectation equal to the k-NNerror. With increasing k, the
bound becomesarbitrarily tight so that estimates of R may
be obtained. Furthermore, the variance of these estimatesis
shown to be considerably smaller than that obtained by

counting the errors made by the optimum classification

rule on classified samples. Applications of this technique
for finite N, will be shown in Section V.

IV. PARZEN ESTIMATE OF r(X)

In the previous section the posterior probabilities were

estimated by the fraction of representation in the k-NN to

X. An alternative procedure is to use the available design

samples to provide nonparametric estimates of the prob-

ability density functions and the prior probabilities if they

are also unknown. Weuse the multivariate extension of the

Parzen density function estimate.

Given a sequence of independent, identically distributed

random n-dimensional vectors, X,,X,,°**,Xy, from a dis-

tribution with probability density function p(X), the Parzen

estimate ofp(X) is [8]

N _.1 kK (* x; |
NA(NY" i= 1 h(N)
  PMX) = (50)

With proper choice of the weighting function A(N) and

kernel K(-), py(X) tends uniformly in probability to p(X).

Wearbitrarily use the normal kernel as

h(N)
(2n)~"/?N 1/2

VIE

 h(N)7"K (

1/n

2
 exp - (X — X)TI-'(X —- x)|

(51)

where 2 is the sample covariance matrix of the data.

As in the previoussection, the estimate of r(X) is made

from the. N, random labeled design vectors {X,,6,}. Of the

N, vectors, N; are observed from class w;, so the prior

probabilities are estimated by

(52)U
pi.

Ni
The Parzen estimate of the conditional error for any X is
taken as

 

r,(X) _ min {P, py(X),P,py,(X)} .
= = (53)
PiPy(X) + P2py{X)

r,(X) is calculated for each unclassified test observation

and the average is calculated to form the error estimate.

239



IEEE TRANSACTIONS ON INFORMATION THEORY,VOL. IT-19, NO. 4, JULY 1973

For N, test samples, X,,°°+,Xy,, this estimate is given by

- 1
R, = — Y +,(X)). (54)

N, i=1

V. SIMULATION EXPERIMENTS

In order to demonstrate the application of the methods

proposedin this paper, the results of simulation experiments

are now given. The data simulated was two-class, two-

dimensional, equal-covariance normal with a Mahalanobis 14

distance of 2.56. Each class was chosen, both in the design

and test sets, with probability 0.5. Thus the Bayes prob-

 

 

ability of error, R, for this example is 10 percent. He

The primary objective was to demonstrate the conver-

gence of the estimates R, to R with increasing k and to 10

verify the small-variance properties. For each trial, Np = R |

400 design samples and 500 test samples were drawn from Ry

the preceding pooled distribution. The R, of (34), C, of 08

(43), and C,’, the error count estimate using the k-NN
classification rule, were calculated. This was repeated for

10 trials, and the results are shown in Fig. 3. The conver- 06

gence of R, to R is clearly evident. There is fair agreement

between C, and C,’, with both converging to the Bayeserror
R. Thus in this “‘large sample” case the proposed method

provides reasonable bounds for R. The Parzen approxima-

tion R, for this data gives 0.0976 as an average estimate 18

using (51)-(53).

In order to investigate the variance we examine the

sample statistics for a typical trial. For N, = 400 and 16

N, = 500 the sample standard deviation was found to be

as given in Fig. 4. Comparing this with JRG — R) = 0.3

  
Fig. 3. Average R,, C,, C,’ versus k.

 
14

shows a 50 percent reduction in standard deviation. The

sample. standard deviation for the Parzen estimate of r(X)

was 0.18, also showing a large reduction. 12
 

Finally, in order to demonstrate the small-sample charac- 4 6 8 K
teristics of the proposed estimationmethod, the experiment Fig. 4. Standard deviation of r,(X) versus k (typical).

outlined previously was repeated with varying values of N,.

The average results for ten trials for each numberofdesign

samples is shown in Fig. 5. From this we see that the ‘20

Parzen estimate is good even for small samples for this \

data and our choice of A(N) and K(-). No generalrule for C,
choosing A(N) is available and the effect of its choice on ‘1 oo
the result is not known. R, and C, also appear to be quite 8
stable, but for larger k and small N, the expected deteriora- Re ——

tion in performance is observed. For fixed design data the we

variance remains small as given in Fig. 4 even for small Nj. AA
However, for small N, the variation from trial to trial , 05 Re

 

 

becomesappreciable, the standard deviation of R,, R,, and

R, for the 10 trials being, respectively, 0.0205, 0.0287, and
0.0281 for 25 design samples perclass. This, of course, may  
 

co 4 25 50 100 200 400 800
be expected with any estimation procedure. No

VI. SUMMARY Fig. 5. Average C,, R,, Rp versus number of design samples.

A new nonparametric method for Bayes error estimation

has been developed. Classified design samples are required,

as in existing methods, but test samples may be unclassified

samples. This may be of great economic advantage in those

situations in which independent verification of the class
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identity of test samples is impractical or very expensive.

Furthermore, at least asymptotically, the error estimate has

less variance than an error estimate made from an error

count for the (unknown)Bayesclassifier classifying classified

samples. In addition, simulation indicates there may be a

wide class of situations in which this method, using un-

classified samples, performs well even for small numbers of
design samples.
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Independence, Measurement Complexity, and
Classification Performance

B. CHANDRASEKARAN, MEMBER, IEEE, AND ANIL K. JAIN, MEMBER, IEEE

Abstract—lIf f(x) and g(x) are the densities for the N-dimensional

measurement vector x, conditioned on the classes c,; and c,, and if

finite sets of samples from the two classes are available, then a decision

function based on estimates f(x) and g(x) can be used to classify future
observations. In general, however, when the measurement complexity

(the dimensionality N) is increased arbitrarily and the sets of training

samples remain finite, a ‘peaking phenomenon”of the following kind is

observed: classification accuracy improvesatfirst, peaks at a finite value

of N, called the optimum measurement complexity, and starts deteri-

orating thereafter. We derive, for the case of statistically independent

measurements, general conditions under which it can be guaranteed that

the peaking phenomenon will not occur, and the correct classification

probability will keep increasing to value unity as N — oo. Several

applications are considered which together indicate, contrary to general

belief, that independence of measurements alone does not guarantee the

absence of the peaking phenomenon.

I. INTRODUCTION

HE DESIGNERofa statistical pattern classification

system is often faced with the following situation:

finite sets of samples, or paradigms, from the variousclasses

are available along with a set of measurements,or features,
to be computed from the patterns. The designer usually
proceeds by estimating the class-conditional densities of the
measurement vector on the basis of the available samples
and uses these estimatesto arrive at a classification function.
Naive intuition suggests that if the dimensionality of the
measurement vector is increased, then the classification

error rate should generally decrease. In the case where the

added measurements do not contribute in any way to

classification, then the error rate should at least stay the

same. For, after all, is not more information being utilized
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in the design? However, in practice quite often the per-

formance of the classifier based on estimated densities

improvedupto a point, then started deteriorating as further

measurements were added, thus indicating the existence

of an optimal measurement complexity when the number

of training samples is finite. Many recent investigations

[1]-[6] have concerned themselves with explicating this
counter-intuitive experimental observation. Hughes [2]

mathematically demonstrated the existence of this phe-

nomenon in the context of a Bayesian model in which no

specific assumptions are made about the dependence or

lack of it between the measurements. An intuitive notion

of the role played by measurement dependence can be

obtained by recalling that, in the case of normal distri-

butions, the estimated covariance matrix becomessingular

if the dimensionality is greater than the numberof samples.

Since the decision function involves inverting the covariance

matrix, clearly the dimensionality ought to be kept smaller

than the sample size. Nevertheless, if the measurements are

knownto be independent, this problem doesnotarise, since

only the diagonal elements of the covariance matrix need

to be estimated. Thus, in the general problem, the increased

structure in the model resulting from the assumption of

independence might be expected to lead to qualitatively

different results. Indeed, in [5] the following result is
obtained. Let the measurements be independent and of

binary quantization (x;=0 or 1). The parameters

Pr (x; = 1 |c,) = p; and Pr (x; = 1|c,) = q; are un-

known andare to be estimated from samples of the two

classes. If one assumes an a priori distribution on these

parameters and thus sets up the optimal Bayesian decision

function, then it can be shownthat P..,, the meanprobability

of correct classification, monotonically increases with N,

the number of measurements, until as N — oo perfect

classification is obtained. For practical purposes, this result

implies that for this model at any rate the number of

independent measurements can be increased without fear

that at some point the performance will start deteriorating.

Reprinted from /EEE Trans. Syst., Man, Cybern., vol. SMC-5, pp. 240-244, Mar. 1975.
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It is not clear, however, how far this qualitative conclusion
can be extended if the underlying model is not Bayesian.

In this paper weconsider the following general question:
If the measurements are independent, what are the most
general conditions under which, as the dimensionality is
increased, the classification accuracy will keep improving
steadily? For reasons mentioned earlier, we do not wish to

confine ourselves to Bayesian estimates of unknown

parameters, as was done in [2] and [5]. This assumption,
by requiring knowledge of a priori distributions, restricts

the scope of possible applications. As a comparison bench

mark,it is useful to considerfirst the case corresponding to

infinite sample sets, i.e., known class-conditional density

functions.

Il. INFINITE SAMPLE SETS

Let fy(x) and g(x) be the class-conditional densities of

the classes c, and .,, respectively, where N is the dimension-

ality of the measiirement vector x. Assuming equal prior

probabilities for the classes, the probability of correct

recognition based on optimal Bayes decision rule is given by

 

 

P., = - Pr flogms<0|xe|

+ Pr {log~ > 0|xecx}]. (1)

It is known [7] “hat if fy and gy are density functions
defining different probability distributions with the same

range, then for every NV

E(log fr(x)) > E,(log gy(x)),

where E, denotes the expectation with respect to the

f-distribution. Paralleling the proof in [7] in connection
with the consistency of the likelihood estimates,let

N

SilX4, °° * Xn) = I] Filx;)

N

JilX1,°°*>Xy) = I gAx;)

and further assume that for all i and almostall €

FLO) # GCC).

Then it can be shown that

E, [log ‘"| = 0(N)

(2)

 

and

a? {log jiJ = O(N).

Therefore, for largN, log (fy(x)/gy(x)) is a random variable

of which the expected value E, is large relative to its stan-
dard deviation. ““his implies that as N — oo, fy > gy

with an f-probability that approaches unity and gy > fy

with a g-probability that approaches unity, and thus perfect

discrimination is «chieved under condition (2). This result

can be summaried informally as follows. When the

densities are kno'vn, as long as each measurement con-

tributes something towardsclassification, then as more and

more of them are included, the probability of correct

classification keeps increasing steadily towards an asymp-

totic value of unity.

If. Finire SAMPLE SETS

With a slight change in notation from the previoussection,
let

N

f(x) = I fx) 9) = TT aed) (3)

be the two class-conditional densities. Let f, and @;,

1 = 1,---,N, be some estimates off; and g;, the class prior

probabilities be equal, and the decision function be

I} fix) =

otherwise c,

N
iff(x) = x) = I] §(x;), then c,;

(4)

Consider x € c,. Then

Pr {f(x) > g@) | xe cy}

r {¥ dog fix) — tog a(x) = 01x ec}.
Let x; be the set of samples from c;, x = x, U X,, and V the

quantity

N . 1/2
(> var,, log f; + var,, log 6, ,
i=4

The preceding probability becomes

 

 

Pr (> (log f, — log §,) — E.(d (log fi — log 9)))
V

> —E.(log fi = log 9))] ,| 6)
7 V  

where the summations are from one to N. Observe that

f and g are random quantities, and the expected values

and the variances are with respect to the sample sets. Denote

the random quantity on the left side of the inequality by Z.

Then, by the central limit theorem, Z is normally dis-

tributed with zero mean and unit variance, for sufficiently

large N.' Thus

 

lim Pr (f(x) = g(x)| x € cy)

= jim (Pr (z > EQ (log i — los fi) xe c1)] .
 

1 To be rigorous, we haveto verify that the conditions of the central
limit theorem hold, which cannot be done until the f; and the g; are
specified more fully. However, it can be verified that the conditions are
satisfied for the applications considered in the next section. Most
textbooks on probability theory give sufficient conditions of varying
degrees of complexity. The following conditions of Lindberg are given
in [11]. Let X,, k = 1,..., be mutually independent variables, and let
Wy, = E(X,), o? = var(X,), and s,? = o,7 +---+ 6,7. Then the
central limit theorem holds whenever, for every « = 0, the truncated
variables U;, defined by U, = Xx — py if |X; _ | < &Sn, U, = 0

otherwise, satisfy the conditions s, — 00 and

1/s.2 3° E(U2) > 1.
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Fig. 1. Permissible region for p; and q;, Section IV-A: m = 1.

Then for the probability of correct classification for class

c, to approach unity as N — oo, we show in the Appendix

that it is necessary and sufficient that

N

lim E,2.,E, ¥ (log f, — log g;) = oo. (6a)
i=lN>o@

Similarly, for class c,, the probability of correct classification

approaches unity as N —> oo,if and only if

N

lim Execs Y (log Gi ~ log f;) = ©. (6b)
i=1Noo

We thus have two compact conditions to test whether the

dimensionality can be arbitrarily increased. As a result itis,

now possible to consider a wide class of problems without

starting from first principles every time. A few remarks on

the interpretation of (6a) and (6b) are in order. Notice that

the form of the conditions is similar to those in the infinite

sample case, except for the addition of the expectation

operator over the samples. The left side of the equations

can be viewed as distance measures. This viewpoint has

been explored in a recent paper by the authors [10]. In the
next section we present several examples in which the

preceding conditions are used to derive results some of

which are rather surprising.

IV. APPLICATIONS

Example A.

The first example will generalize the result in [5] by
direct application of the conditions derived in the previous

section. A perusal of [5] will reveal how much complex
analysis has been saved, while at the same time obtaining

generalizations that were previously intractable.

Let the measurements be independent, of binary quan-

tization (x; = 0 or 1), and let p; and g;, i = 1,:--,N, be

Pr (x; = 1|c,) and Pr (x; = 1|c,), respectively. Let m

be the numberof training samples available from eachclass,

and let s; and r; be the numbers of times x; takes the value

one for the two classes in the set of training samples.

Following [5] we adopt a Bayesian model. Let the a priori

densities on p; and q,, for all 7, be uniform in the interval

[0,1]. The Bayesian estimates for the parameters are

a s; +1

Pin +2

r, +1

m+2. ”)
di =

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, MARCH 1975

 

   

 

O 0.2 0.4 0.6 08 1.0

Fig. 2. Permissible region for p; and g;, Section IV-B: m = 2.

Since we are interested here in the mean recognition ac-

curacy, we need another expectation operator FE to stand

for averaging over the priors on p; and q;. Equation (6a)

now becomes

lim FE, ..,Es y log [6;"(1 — p)'*]
No

— log [471 — 9))'*] = o.
Now

EE, c,Ex log [pC a pi)’™]

= E,E[p; log p; + (1 — p) log (1 — p)]

. , Si m— Si ; +1
» {| (”) pe*1(1 — p)"-* log*— dp,

m+ 2

 

sj;=0 0

1

+ { (”) pil — pj)" *** log (1 _ 7 ;) ap
0 \S; mt+2

— s; + 1 s; +1
  2 2g ,

s=0 (m + 1)(m + 2) m+ 2

In a similar mannerit can be shown that

1 r; +1
log .

m+ | m+ 2

  EE. ecEs log [4(1 — 4)'~*] = dL

Thus (6a) is equivalent to

y (28: +1) |
1) og+ > 0

m+ 2 2m +sj=0

which can be checked bystraightforward manipulation to

be true. Equation (6b) can also be showntobesatisfied in a

similar manner. This is a generalization of the result in [5]
to arbitrary m.

The application of the conditions can handle further

generalizations. We will consider two that yield somewhat

surprising results. The result in the previous paragraph

concerns only the average performance over a variety of

problems and furthermore,is a consequence ofthe fact that

E[\|p; — 9;|] > 0. However, what about the performance
in an individual problem, even though the estimates are

Bayesian for the assumed uniform a priori’s? In order to

highlight some new phenomena that occur, we consider

two cases, m = | and m = 2. Wewill use the conditions

without the E operator, since we will be concerned with
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performance over individual problems and not average

performance.

For m = 1, (6a) and (6b) are equivalent to demanding

that

N

lira (p; — 4:)(2p; — 1) = ©
N->.o i=1

N

lim » (q; — p24; — 1) = ©
N-> 0 i=1

when the estimates are as in (7). The interesting point to

note here is that it is not sufficient that |p; — q,| > 0, for

alli. As N — oo, it is necessary that infinitely oftenwe have

either p; > 4 and q; <4 or p; < 4 and q; > 4. The

permissible regions for p; and q; are shaded in Fig. 1. For

m = 2, the necessary and sufficient conditions for perfect

classification with estimates as in (7) are

lim )) (p; — a)LGp; + 4) log 3
N-> ©

— (p; + 4g) log 4 — log %] = 00

and a similar equation with p; and q; reversed. This leads

to an equivalen: condition that infinitely often, for each /,

Pp; # g; and the values of p; and q; must lie in the shaded

region in Fig. 2. As m becomes larger the regions not per-

mitted become «smaller and smaller. However, as long as m

remainsfinite, ilp,; and g, do notinfinitely often take values

in the corresporiding permissible region, P,,, > 4,as.N > oo.

It is worth noting that qualitatively similar phenomena

will occur if ether a priori densities are assumed and

corresponding Bayesian estimates of the parameters are

used in the decision function.

The foregoing application involved Bayesian estimates.

In many practical applications maximum likelihood

estimates are quite often preferred both for simplicity and

because a pricri densities on unknown parameters are

difficult to obtain. Thus we next consider the use of max-

imum likelihood estimates of the parameters p; and q;. The

conditions (6a) and (6b) can be used, but wetake a slightly

different approach. Consider x such that all the x; are one

for simplicity. Then the decision rule based on maximum

likelihood estimate is

Spotty > ryt ry => Cy; otherwise cy.

We have arbitrarily assigned c, for the case 5,°°'Sy =

r,°*¢ fy. The cesult that follows is valid for the other

assignment alsc. It is easy to see that Pr (s; = 0) # 0 and

Pr (r; = 0) # (), for any finite m, as long as p; # 1 and

gq; # 1. Now

Pr (s, °°" Sy = 11 °°" Ty)

> Pr (s,°°* Sy = 0) Pr(r,-+* ry = 9)

I (1 — Pr(s; 4 0))\(1 — Pr (7; # 9)).
i= |

It follows that

lint Pr(s,-'*Sy =, °** ry) = 1
N10

since Pr (s; # 0) and Pr (r; # 0) are both strictly less than

one, except when p, and q; are unity. Thus the probability

of correct classification for this x and similarly for all the

other x goes to 4 as N > oo.It is true, however, as N

increases, performance improvesatfirst, and when it peaks

before falling off, both the measurement complexity (i.e.,

the dimensionality of the pattern vector) at which the

peak occurs and the correct classification probability at

that point increase as m increases.

Note that in the Bayesian estimate case, as m increases,

the region in which p; and q; can lie becomeslessrestrictive.

On the other hand, in the maximum likelihood estimate

case, as m increases, the optimum measurement complexity

Nopt 18 increased, butforall finite m, N,,, remains finite.

Example B.

In this example we consider independent measurements

that are continuous and normally distributed. Specifically,

fx) = N(0,1) and g(x) = WM(¢,1), where W(u,07) is
the normal density with mean u and variance o7. Let 0; and

@,; be the maximum likelihood estimates based on m, and

m, samples, respectively. It is well known that 6, ~

(0,,1/m,) and @, ~ (¢;1/m,). Equations (6a) and (6b)
become

N

tim ExeeEs ( ¥ (x — 8)? - ( ~ 69°)
N00 i=1

and a similar equation with c, in place of c, and 0; and ¢;

reversed. Equivalently, the conditions are

tim ¥ {(, - 6)? + — - | = ©
N-> 0 My mM,

. , 2 1 1lim ¥10,-¢)2+—-—}=0. (8)
N->o M4 Moy

If m, = m,, it is clear that, even with finite number of

samples, as long as 0; and @;differ infinitely often, perfect

classification is achieved as N > oo. That is, independence

assures that optimum measurement complexity for finite m

is infinite. However, if m, # my, then even if 0; 4 9,, for

every i, it can happen that limy.,, P., = %, if it is not true

that (0; — ¢,;)? > |1/m, — 1/m,| infinitely often.
It is possible to interpret the preceding result in a sur-

prising manner. Consider the case where (0; — p;)* > 0

but #|1/m, — 1/m,| sufficiently often. It appears that by

discarding excess samples from the class more often

represented in the samples, (8) can be satisfied, and perfect

classification as N — oo can be restored. This is certainly

counter-intuitive. However, a Montecarlo simulation [8]
confirms the correctness of the result by exhibiting a curve

in which expected performance increases and then drops

off for an unequal number of samples.

It is instructive to examine what is happening somewhat

more closely. It can be readily shown that if suitable a

priori densities are assumed on 6; and ¢; and the corres-

ponding Bayesian decision function is used, then perform-

ance averaged over the problem space generated by the

a priori densities keeps improving monotonically with N,

similar to the case of binary measurementsdiscussed in the
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earlier example. The problem is that maximum likelihood

estimate-based decision functions do not have this property

of optimality in the sense of minimum probability oferror.

Furthermore, while Bayesian estimate-based decision

functions use estimates of density functions that auto-

matically incorporate a weighting factor taking into account

different sample sizes, the decision function that results

from substituting maximum likelihood estimates for

parameters in the Bayes decision function does not havethis

weighting. It appears that it is indeed possible to weight the

density function estimates such that the paradoxical behavior

under discussion does notarise. This is a subject of current

investigation.

V. CONCLUDING REMARKS

In the problem of the relationship between classification

accuracy and the dimensionality of the measurement

vector in the context of a finite set of learning samples,

previous results raised the hope that independence of

measurements might guarantee that the optimal dimen-

sionality would be infinite, i.e., extra measurements could

be added without fear that performance would peak at a

finite dimensionality and deteriorate thereafter and that

this phenomenon of peaking could be relegated to the case

of dependent measurements. We have derived a set of

conditions which, by making it possible to investigate a

variety of cases in a relatively efficient manner, show that

this hope (e.g., [9, p. 77]) is overoptimistic. That is, there
exist numerous circumstances in which independence of

measurements is not sufficient to make the optimum

measurement complexity infinite.

APPENDIX

In this appendix, we give some of the details of the
derivation of (6a). Equation (6b) can be derived in a similar
manner. For ease of handling as well as to emphasize its
dependence on x, denote the quantity

EY log f; — log 9;)
V

by T(x). Then the correct recognition probability for a
particular x € c, can be represented by v(—T(x)), where

JEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, MARCH 1975

v(u) stands for

— | exp [—4(u' — u)*] du’.
J2n u

Note that v(w) has the property lim;_.,. v(—7T) = 1. Since

x is a vector of independent random variables, 71s a sum of

random variables. The ith term of the sum has the expected

value

ExecE(log f,; a log Gi) A T;

and a variance, which it is sufficient for our purposes to

represent by V,’. Again, by the application of the central

limit theorem, 7(x) is normally distributed with mean

> T; and variance >\V,’. The probability of correct
recognition —1, if and only if T(x) > oo. It can be seen

that Pr (T(x) > 00) = J, if and only if ¥* T; > o, and
the V,’ are sufficiently well behaved. Hence the condition

(6a).
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Abstract—This paper attempts to lay bare the underlying ideas used in
various pattern classification algorithms reported in the literature. It is

shownthat these algorithms can be classified according to the type of input
information required and that the techniques of estimation, decision, and

optimization theory cn be used to effectively derive known as well as new

results.

I. INTRODUCTION

ATTERNclassification or recognition covers an ex-

Preemes brcad spectrum of problems. Most of us are

only concerned with one or two of these at any given

time. For example, there is the engineering aspect of the

pattern classificasion problem, which is mainly concerned

with the implem#ntation and design of actual recognition

devices. At the other extreme, there is the artificial intelli-

gence aspect of the problem, which is concerned with the

philosophical question of learning and intelligence. It is

bothstimulating and controversial [19], [38]. Similarly, the

study of recognilion mechanisms in biological systems is

another accepted field of study [20].

In this paper, we shall not touch on any of the above-

mentioned areas.' Our survey will be concentrated on

what might be culled the analytical aspects of the pattern

classification problem. By this we meanthat the problem is

viewed as one oj making decisions under uncertainty and

the mathematicai techniques of decision, estimation, and

optimization theory are brought to bear on the problem.

These techniques. are familiar tools to modern control engi-

neers. One purpuse of this paper is to point out pattern

classification as « potential area of research and develop-

ment for workers in automatic control. Conversely, the

results in pattern classification are useful or potentially

useful in control system design where a great deal of uncer-

tainty is involved. Various papers in adaptive and learning
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version of a talk giver by Y. C. Hoat the 10th Anniversary Seminar of the
Statistics Dept., Harvard University, April, 1967. It was made possible
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University, by the U. S. Army Research Office, the USAFOSR,and the
USONRunder Joint Services Electronics Program Contracts N00014-67-

A-0298-0006, -0005, and -0008 and by NASA Grant NGR 22-007-068.
This paper was invited for publication in the IEEE TRANSACTIONS ON

AUTOMATIC CONTRO!., where it appears this month.It is also printed here
because of its wide ititerest to readers of the PROCEEDINGS.—The Editor.

The authors are with the Division of Engineering and Applied Physics,

Harvard University, Cambridge, Mass.

1 A survey ofall lifferent aspects of pattern recognition was recently

done by Nagy [41].

control represent attempts in this direction. However, we

shall not engage in adetailed survey of this aspect of the

problem.’
Asit is usually understood, there are two fundamental

problemsassociated with this aspect of pattern classifica-

tion.

1) Characterization Problem: Given a pattern,signal, or

waveform, before any decision can be made concerning

the pattern, it is often convenient as well as necessary to

convert the pattern, signal, or waveform into a set of

features or attributes that characterize the pattern under

consideration. These features are usually denoted by the

real variables x,,°-°-:, xX, and the vector x is called the

pattern vector. If we represent the original scanned pattern

or sampled waveform as a vector z, then the characteriza-

tion or feature selection problem can be simply but vaguely

stated as finding a mapfrom z to x, L.e.,

xX = (2) (1)

such that x adequately characterizes the original z for pur-

posesofclassification but the dimension ofx is much smaller

than that ofz.

2) Abstraction and Generalization Problem: Oncea set of

features has been selected, and certain data concerning the

patterns and their features are given,the next problem 1s the

determination of a decision function of thesefeatures based

on the data given suchthat

>0 xeclass H!
2)3

<0 xeclass H®. (2)
f(x) =

The problem of abstracting the necessary information from

the given data to produce the decision function f(x)* is

called abstraction. It is often convenient but not absolutely

necessary to process the given data sequentially or itera-

tively in order to determine f(x). This iterative procedure for

calculating f(x) is knownastraining procedure, adaptation,

or learning.” Once a decision function f(x) has been found,

* Werefer readers to Sklansky’s survey article for this aspect of the
problem [53].

3 In the main, we shall restrict ourselves to two-class problems. In

Section IX, we shall discuss the extension to multiclass problems.

* Sometimes /(x) is also referred to as a decision surface in m-dimen-
sional x space. |

> In the context of this paper, these words simply represent entrenched

terminology. No philosophical or metamathematical meaning should be
attached to them.

Reprinted from Proc. /EEE, vol. 56, pp. 2101-2114, Dec. 1968.
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the generalizationproblem attemptsto assess the goodness of

the f(x) through the determination of various error proba-

bilities. Fundamental to this assessment is the knowledge

(given or calculated) of the quantity P(H'/x) = 1— P(H®/x).

In fact, the generalization problem can be viewed simply as

that of the determination of P(H*/x).
The distinction between problems 1) and 2), of course,is

not always clear cut, nor can their solutions always be

separately considered. For example, how well the character-

ization problem is solved clearly affects the success of an

abstraction algorithm and the ability of the resultant deci-

sion function to generalize. In fact, it is generally recognized

that problem 1) is really the principal problem in pattern

recognition.

The present paper is devoted to a survey of the various

algorithms for the solution of the abstraction problem of

pattern classification only. Without minimizing their

importance, the characterization and generalization prob-

lemswill be discussed only to the extent that they are related

to the abstraction problem.

Il. TYPES OF AVAILABLE OR ASSUMED DATA

The various abstraction algorithms to be discussed re-

quire or assume different types of available data. In this

section, we shall list these and establish a common nota-

tion to be used in the rest of the paper.

Thereare two pattern classes, H' and H®. The probability

of occurrence of patterns from the ith class is denoted by

P(#’). If this probability is not explicitly given, then we shall

assume‘it to be equal to 4, 1.e., both classes occur equally

often. The pattern vectors will be denoted by x with the

understanding that the components x; are features deter-

mined as a result of the solution of the characterization

problem. Four types ofdata concerning x will be considered.

1) Functional Form.of the Conditional Density p(x/H', 0):

By this we mean that the form of the conditional density

functions of x for both classes is given to within the speci-

fication of a set of parameters 0. For example, it may be

given that the pattern vectors from both classes are Gaus-

sianly distributed with unknown meanandcovariances.

2) Parameters ofp(x/H', 0): By this it is meant that the
values of the parameters @ are also known.

3) Sample Patterns with Known Classification: As part of

the given data for the abstraction problem, one is often

supplied with a set of training sample patterns of known

classification. We denote the twosets

{x1(1), x1(2),--+, x2(n4)}

{x(1), x°(2),°++, x°(no)} x°(No).

In this case we have twosets of n, and ny samplesfor classes

H' and H°, respectively. For notational compactness, the

two sets are often joined to make a matrix, each row

of which is a sample pattern from one of the two classes

as shown below:

> x*(n)

I|
>
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rod xt? |

4 xt?

A= - 1 - hn, (n, + no)x (1 + m) matrix.

1—x(1)7

L=1 =x%(ng)? 
Thefirst column of ones and minusonesis. used to indicate

the knownclassification of the patterns.

4) Samples of UnknownClassification : In so-called prob-

lems of “training without a teacher,” sample patterns of

unknownclassification are given. In this case they are

simply indicated as

y(n) = {x(1), x(2),°+-, x()}.

In connection with data types 3) and 4),it is always assumed

that the samples are independently chosen. The order of

appearanceof these patternsis of no significance.

Depending on the combinations of data types 1}4) that

are supplied, different abstraction algorithms result. The

following sections will classify and discuss the various
algorithms on the basis of these available data and the

natural mathematical techniques used in each case.

II. CAsE A—DATA TYPES 1) AND 2) ARE GIVEN

When the conditional density functions p(x/H', 6),
including the values of 6 are given, the problem reducesto

that of simple hypothesis testing in statistics. The basic

quantity of interest here is the likelihood ratio defined as

_ p(x/H')

~ -p(x/H®)

A decision function formed by comparing L(x) against a

threshold value y,i.e.,

J(x) = L(x) — 0, (4)

 L(x) (3)

.is known tobe optimal for the following variety of criteria

depending on the specific value of y (see, for example,

Selin [52], ch. 2).
1) Neyman-Pearson Criterion: Let X!*{x|f(x)>0},

X°A {x| f(x) <0}, and let

a a | p(x/H®)dx = error probability of type 1 (5)
x!

BA | p(x/H')dx = error probability of type 2. (6)
x?
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Ifwe select the value of7 in (4) to yield a fixed value of«, then
the decision function f(x) has the property that it minimizes
the value of # as compared to any other f(x) yielding the
same or smaller «. |

2) Bayes Criterion: If the prior probabilities of occur-
rence of the two classes P(H’) as well as the cost of wrong
decisions C, and C, for the two error types are given, then
selecting

_ P(A°YC,

will minimize the average risk of making wrongdecisions.

3) Minimax Criterion: If the prior probabilities P(H")are

unknown,then we may wish to choose the value of 7 so as

to minimize the average risk against the worst value of

P(H’). This is given implicitly by

Cia = Cp. (8)

Special Case of te Gaussian p(x/H', 0)

In the case. when p(x/H', 0) are Gaussian, the likelihood

ratio can be explicitly written in terms of the means p, and

covariances &,, i=0, 1. Since the logarithm function is

monotone,it is also customary to write f(x)=In L(x)—In y,

and we have
|

F(x) = 5 [le = m)"Bo "ee — Ho) = (& = MPEP— Hy]

1, Bd ”
2 |Z. |

1e., the optimal decision functions are quadratic. If we

furthermore assume that 2, = X,)=2X,then (9) simplifies to a

linear decision function :°

— Iny,

f(x) = x7Z7*(u, — Wo) + constant term a0)

[> 07x + do.

In communication terminology, we let components of x

represent the sucessive samples of an input waveform that

may be a knownsignalplus noise or noise only. The com-

ponents of « are then the impulse response ofa linear dis-

crete ‘“‘matchedfilter’’ whose output at a given time is the

value of the decision function f(x). This is the solution to

the problem of d:tecting the presence of a knownsignalin

Gaussian noise.

A linear decision function of the type of (10) also arises

naturally in other pattern classification approaches to be

described later. heir ease of implementation is a major

factor of their poy:ularity. In fact, one is often led to consider

only the determination of the best linear decision function

based on the given input data. For the Gaussian case dis-

cussed here, this question has been resolved by Anderson

and Bahadur[6]

© The « here is not .o be confused with the a of (5).

Other Optimal Quadratic f(x)

A quadratic f(x) of the type of (9) is actually optimal’ for
the moregeneraltype of distributions than Gaussian. Some
of these generalizations have been studied by Cooper[12],
[13]. Consider the case where p(x/H’')is given by

p(x/H’) = A,|z; ~hl(x — uj)X; *(x — 1)|

where h is a function integrable in m-space and monotone,
1.€., h(a) decreases monotonically for increasing a, 0<a< 0,

and A; is a constant adjusted to insure |p(x/H')dx=1.It
can be shownthat yw; and Z; are the mean and covariance

matrices, respectively, of p(x/H') and that the class encom-

passes a wide range of distributions including the normal,

Laplace, and rectangular distributions. In the special case,

when the determinants |Z,|=|Z,|, then the f(x) is the
optimal separating surface for spherical normal, Pearson

II, and Pearson VII types of distributions[12].

 (11)

Sequential Decision Procedures

In manyclassification problems,the features or attributes

of a samplepattern, x;, are received sequentially in a natural

way, e.g., the x,’s are the sampled value of a waveform in

time. In other cases, it may be advantageousto arrange to

examinethefeatures in decreasing orderof significance with

the hope that a classification can be reliably made without

having to go throughall the features of a pattern most of the

time. In either case, one is led to the consideration of

sequential decision functions.

The main tool used here is the sequential probability

ratio test (SPRT) developed by Wald [59]. This is a natural

extension of(3). Let

x,/H")

x,/H°)
x) = P&nOP W(x,

Instead of a binary choice of decisions after j features, we

use the following analogof(4):

 L(x) = L(x1,°°° (12)

  

L(x) — n4 = 0 x eH!

L(x) — ng < 0 x € H® (13)

Ng < L,(x) <1, Observe the next feature x,,,.

It is well knownthatif we set

1—-p p
= = 14NA x Np i_s (14)

where « and f are the misclassification probabilities defined

in (5) and (6), then the decision function of (13) has the

property that amongall sequential tests with the same speci-

fied « and f this SPRT will require the smallest numberof

features to reach a classification decision, on the average.®

Computationally, the main problem in the use of SPRT

is the recursive evaluation of the likelihood function. In

T Tn the sense of the Bayescriterion with equal cost of misclassification.

8 This statementis true to within the accuracy of the so-called ‘excess
over boundary” represented by L(x)—n, or Lj(x)—ng [59].
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general, for real-time application one would like a formula

of the type

L+(x) = L,(x) x (term involving x;+1 only) (15)

or

In [L,.4(x)] = In[L,(x)] + In [x;,, term].

This turns out to be possible if the x; belong to a fairly

general class of Gaussian sequences. In particular,let

(15a)

Vj =@® Yj-1 + Wj-1

where H is the measurement matrix and vj and w; are inde-

pendent white Gaussian sequences with

E[(w,; — W,)(W; — wi)”| = 0;0;;,

i.e., the features are noise-corrupted linear combinations

of the state of a vector Gauss-Markov sequence. Then a

set of finite-dimensional sufficient statistics of the features

exists in the form of conditional mean and covariances of

the state y, (), P,), that is,

(17)
E(w,) = Ww,

D(X;/X1,° °° Xja4 H') <=> p(x,/9, P,, H’'). (18)

These statistics can be recursively updated in terms of the:

Kalmanfilter, well known in control theory [30].
The relationship (18) and the observation

P(X;, Xj-p' "> x,/H')

(19)
= P(x;/X1, "XG, A')p(x,, mrt, Xx; ,/H')

immediately leads to (15). This powerful technique ap-

parently has not been greatly exploited in detection theory

and to an even lesser extent in the pattern classification

literature.

Fu and his associates have studied various aspects of

sequential methods as applied to pattern recognition. Fu

and Chen [24] considered the reordering of the unobserved
features so as to next observe the feature containing most

significant information about the pattern. A_ straight-

forward SPRTis then applied to the features selected. For a

SPRT with two parallel stopping boundariesas in (13) one

can easily compute the average numberof features required

for a decision. This, however, does not guarantee that the

decision process will terminate in every case. In practice

it may notbe possible to observe more than a finite number

of features. Fu and Chien [11], [25] have suggested using
a time-varying stopping boundaryto assure a termination

in a finite time.

Consider the features x,, x,,°°°,X, approximated by a

continuous time function x(t). Our two hypotheses now

involve determining x(t) as samples from one of the two

stochastic processes H® or H’. Again the likelihood ratio

can be formed and a continuous analog of a SPRT used for

decision purposes:
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p [x(t)/H* |

p [x(t)/H°|

The modified SPRTis stated by the following inequalities:

ng(t) < LLx(t)] < n4(0) (21)

where n,(t) and 1,(t) are nondecreasing and nonincreasing

functions of time, respectively. The decision is made as to

class H® or H! whenleft or right inequality is violated. By
making 7,(t) and 7,(t) functions of observation time, it is

possible to insure that a decision is reached in finite time.

The expected time of reaching a decision and the proba-

bilities of error, of course, will be different from the usual

SPRT. But they may be calculated and controlled in

advance.

By arbitrarily assuming the form for the stopping bound-

ary with undetermined parameters, an optimal modi-

fied SPRT with respect to the “assumed structure can

be designed. Ifwe know the costs of continuing the observa-

tions and the cost of making a wrong decision using

available information at every instant, the idea of dynamic

programming can be used to arrive at thebest stopping

boundary, using the standard idea of backward sweep and

the principle of optimality. In a practical situation, this

mayresult in excessively large amounts of data that cannot

be handled.

Summarizing, we may say that Case A is characterized by

direct application of decision-theoretic ideas to pattern

recognition. Because of the assumed availability of prior

data, usually no iteration is involved in the determination

of the decision function or separating surface.

L[x(t)] = (20)

IV. CasE B—DATA TyPEs 1) AND 3) ARE GIVEN

Whenthe functional form of conditional density function

p(x/H", 9) is given but @ are unknown parameters, the
obvious modification involves the use of the given sample

patterns with known classification to estimate these

parameters before performing hypothesis testing. The

basic quantity of intereststill is the likelihood ratio, which is

now defined as

_ P(x/x"() x"), A") 9 PO/x'(n), HY)
p(x/x°(1)- ~~ x°(n), H°) — p(x/x9(n), H®)

We maywrite

 L(x) (22)

p(x/x(n), H') = |pov H')p(6/x(n), H')d0. (23)

Assuming that the computation of (23) is straightforward,

though it may be laborious, the determination of the condi-

tional density p(6/y'(n) H') becomesthe principal problem.
Wehave, by Bayes’rule,

p[x'(n)/0, x(n — 1)]

plx'(n)/0, x(n — 1)|p[O/x'(n — 1)]d0

‘plO/x'(n — 1)]

 p[0/x‘(n)| = i
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_ P(x'(n)/9)

|p(x'(n)6)p[8/x'(n — 1)]d0

 pLa/xin—1)] (24)

where the simplification in the second step comes about due

to the assumed conditional independence of the sample

patterns.” We have also dropped the explicit dependence of

p|6/xz'(n)| in H' for notational simplicity. It is understood
that (24) has to be carried out for eachclass.

Equation (24) 1s a recursive computational procedure

that is often referred to as “learning with a teacher.” The

computational feusibility of (24) depends critically on the

existence of a fixed-dimensional sufficient statistic for the
relevant prior ar.d posterior density functions. In other

words, one would like to be able to compute recursively a

vector 6! with the property that

p(6/6:) => p[@/x'(n)].

Then instead of doing recursion on functions, which is the

case for (24), one is only concerned with updating set of

numbers 6‘. Prior and posterior density functions that

satisfy this requirement are called conjugate or reproducing

pairs. They have been extensively studied by Raiffa and

Schlaifer [49] and Spragins [55], [57]. It can be shown
that in the limit cf an infinite number of learning samples,

the reproducing dinsities have the property that

lim 9, > 0
n-o

(25)

(26)

in someappropriate sense. Thus, this learning scheme used

with any of the decision functions of Case A is at least

asymptotically op:imal and in the limit producesresults as

good asif 8 were known.In fact, if one interprets the « and B

as average error j:robabilities with

A0 p(x/0, H°)p(8/x°(n), H®)d0

 

JX}

(27)

p(x/0, H*)p(6/x"(n), H')de
xo

i
 

then optimality for a finite numberof learning samples can

also be claimed. In general, however, the relationship be-

tween system performance and this learning scheme for

finite samples is only qualitative and has not been investi-

gated thoroughly. Putting it less precisely, we have the

question : Given the optimal decision function as a function

of 6 and the best estimate of 0, does the overall optimal

decision function simply involve the replacementof @ byits

estimate?

Special Case of Gaussian p(x/H', 0)

Consider the case where p(x/H', 0) is N(6', x), = given, and

let p(0') be N(0', F'). An easy way to treat this problem is to

consider

° By conditional independence we mean p(x'(n)/0)=p[x'(n)/0,
xi(n—1), °° +, x*()].

x =O +0 (28)

where vis N(O, x). Then p(6'/y'(n)) is Gaussian with mean

G and covariance P, where

O, = O,-1 + PE; (x'(n) — 64-4),
P, = Py-1 P,,— 4(Pa-1 + x) *P,-4,

me °

i_. pio=

Po = P.

(29)

(30)

This reduces p(x/y', H') to a Gaussian distribution with
mean @' and covariance P,+ =. The numbers 6! and P, con-

stitute a set of finite-dimensional sufficient statistics for

y'(n). If & is the same for the two categories, we have the

linear decision function as

f(x) = ax + a

a? = (P, + XZ)*(0} — 89).
Note that (29) and (30) are a special case of the Kalman

filter mentionedin (16) and (17) (with ®=0 and w,=0). This

was first worked out independently by Abramson and

Braverman[1].
IfX is also unknown, then the conjugate density is Gauss-

Wishart (Keehn [33]). If 2; are known but different or
if 6’ are time varying and can be represented by a Gauss-

Markovprocess, then the theory of the Kalmanfilter can

again be directly used to develop decision functions (or,

equivalently, estimates for 6’) that tracks the variations.
It should be pointed out that convergence of the estimates

of 0 using reproducing densities as suggested by (24) and

(29) ignores the problem of round-off errors in the com-

putations associated with these equations. In practical

calculations using computers with finite word length there

will be a steady-state estimation error depending on the

size of the round-off error. This fact is well known to control

engineers using the Kalman-Bucyfilter of (29) and (30). In

the context of pattern classification Cover [14] has dis-
cussed this problem and suggested some alternate ap-

proaches.

Special Case of Discrete Distribution

In the discussion so far, the learning of L(x) [from

(22)-(24)] and the determination off(x) [from (4)] are two

separate problems. In certain simplified cases it is possible

to devise a learning procedure for f(x) directly. Sklansky

[54] has considered the classification of a sequence of in-

dependent binary signals transmitted over a noisy channel.

Let x(j) be the channel outputs; we consider a decision
function

Kx) =x — 0. (31)

If the distribution of x as well as the choice of y valuesis

discrete, then for a given procedure of changing y values

after each wrong decision, the probabilities of 4 at the vari-
ous permissible values form a Markov chain. The property

and convergence of this Markov chain can bestraight-

forwardly calculated once the transition probabilities (1.e.,

the learning procedures) are given. From this, the error

probabilities of f(x) follow.
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The performance of a schemeof this type depends to a

large extent on the type of updating for 7. Kaplan and

Sklansky [31] have analyzed the properties of Markov

chains resulting from some typical learning procedures

specified on an intuitive basis.

V. CASE C—DATA TYPES 1) AND 4) ARE GIVEN

In this case, the given set of sample patterns will be used

again to learn the parameters 9. But now thegiven learning

samples are unclassified, bringing in additional uncertainty

Appropriately, this type of learningis often called “learning

without a teacher.’ In 1962 Daly [16] suggested a scheme
that works in this case, but the computation grows ex-

ponentially. Later Fralick suggested a bounded scheme

(21], [22], that was further extended by Patrick and

Hancock [46].

The basic ideas in Section IV still apply here. We may

rewrite (24) as

p(x(n)/O, x(n — 1))
p(x(n)/x(n — 1))
 p(/x(n)) =
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Fig. 1.

Class 1
P(H' Ly pry!loss 0 (H'/x) ap(x/H') P(H )

 
Fig. 2.

As n—oo all three schemes will show similar learning be-

havior, and the learning behavior of 1) and 2) will be the
same even forfinite n.

 

p(8/y(n — 1))

_ P{x(n)/O, x(n — 1), H°}P(H®) + ptx(n)/0, x(n — 1), Ht}P(A)
(32)

 

p(x(n)/y(n — 1), H°)P(H®) + p(x(n)/x(n — 1), H*)P(A")

The only difference occurs in the way we compute the

ratio between prior and posterior density. The added term

essentially represents a form of hedging.

Heuristically, we can see the effect as follows. Consider the

case where only class 1 contains the unknown parameter@.

Now the multiplying factor on the right-handside of (32) is in

the form (C + A)/(C + B) where C = p[x(n)/y(n— 1),H°|P(H®),

A=p[x(n)/(n—1), 0, H'}P(H*), and B=p[x(n)/x(n-1),
H*|P(H"). For the case where x(n) actually came from
class 1, we generally will have the density function of A and

B and A+C and B+C appearas in Fig. 1. Since the con-

vergence of (32) dependson the “‘peakness”’ of the multiply-

ing factor, this tends to indicate that the processof learning

will be slower in the case of “‘learning without a teacher.”

Essentially, we are paying for the uncertainty about the

classification of learning samplesin terms of slowerlearning.

Viewed in this light, the difference between learning with

or without a teacher is conceptually minimal. Another

example illustrates this point. Consider the classification

problem shownin Fig.2.

Suppose

1) A set of samples y(n) was taken, correct classification

was attached to these, and a schemeof Section IV was

used.

2) A set of samples y(n) was taken, classifications were

assigned according to the probability P(H'/x), and a

schemeof Section IV wasused.

3) Aset of samples y(n) was taken and a schemeofSectior1

V was used.

p(O/x(n — 1)).

 

Computationally, (32) is much more difficult than its

counterpart, (24). With the presence of the additional terms

the reproducing propertyislost.

Interpretation of (32) also requires some care. Since

learning samplesare unclassified, (32) cannot be carried out

separately for each class in general. Let 0 represent the un-

known parameters in both classes, 61 and 6°. If, in addition,
we assume p(0!, 6°/y(n)) = p(61/y(n))p(0°/y(n)), then we can
separate (32) as:

Dd, P(x(n)/O5, x(n — 1), H’)p(H’)
p(6'/x(n))= 

» p(x(n)/x(n — 1), H’)p(H’) (33)

p(8'/x(n — 1)
i= 0,1.

Furthermore, we can usually write p(x(n)/6', y(n—1), H’)

=p(x(n)/y(n—1), H’), 74i. Equation (33) is essentially
Fralick’s scheme. Note that if p(6'/y(n)) is identical for

i=0, 1 and P(H®)= P(#"), then no learning can takeplace.

In the work of Patrick and Hancock [46] the independence

assumption of 0° and @? is not made and computation must
take place via the single equation (32) with the resultant

added complexity. The only simplification is to note that

p(x(n)/6, x(n a I, H’)= p(x(n)/6", x(n— 1), H’) for j=9, 1.

The main advantage of learning without a teacher results

from the fact that when actual processing ofdata is in prog-

ress (after initial learning from the sample patterns with
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classification) learning can still continue and eventually a

machine learnin; this way may do much better than a

machine thatis trained only byinitial learning with classified

samples.

Very little computational result has been reported in the

literature [56] although our society seems to abound with

real-life examples of “learning without a teacher” or even

“learning in spite of the teacher.”’

VI. Cas: D—DaTA TYPE 3) GIVEN ONLY

(DETERMINISTIC METHODS)

The previous three sections dealt with algorithms that

require knowledge of the structural forms of the underlying

distributionsoftlie pattern classes. Criticism has often been

raised that in pra-stice information concerning data type 1)

is seldom available. This has prompted development of

algorithms for the construction of decision functions that

do not require |). Basically, the idea is to find an f(x)

that works well it least on the given samples of known

classification.
Two implicit assumptionsof this approachareasfollows.

1) A sufficient number of samples from both classes is

available to constitute two representative groups.

2) The charac‘eristic problem (1.e., x=@(z)) has been

solved usin;a sufficiently rich class of @(z)’s so thatit

is only necessary to examinetheclass of linearf(x) to

solve the at'straction problem.

Assumption 2) is often justified on the basis of the Weier-

strass approxima“ion theorem. However, this merely trans-

fers the difficulty to the characterization problem since one

is still faced with the problem offinding a class of complete

o(z)’s that can efficiently represent the pattern. Further-

more, relatively little work has been done on defining the

adjectives “‘sufficient,” “representative,” and “efficient.”

The works of Cover [14], Nilsson [44], Allais [4], and

Watanabe [60] bear on this aspect of the problem. Weshall

discuss them sepi:.rately later.

Accepting assumptions1) and 2), one can nowrestate the

problem of abstraction moresuccinctly. Let there be a total

of N patterns given (n, in class H', my in H°, no +n,=N)
and considerthe §inear decision function

(34)

The problem of Jetermining an f(x) that classifies all the

given patterns correctly is equivalent to the problem of

finding a solution to the vector inequality

f(x) = a'x + Qo.

Aw > 0 (35)
where

Ae = + --208| } = 1,---,n,;class 1 samples 36)
|} -1 -x (@)}] fi= 1,--*,N9; class 0 samples

_ %w= <2 | (37) 

A commonprocedure for solving linear inequalities is to

transform the problem into an optimization problem, the

solution of which also guarantees a solution for (35). For

example, consider

min J(w) = min || |Aw| — Aw ||?. (38)

The solution for (35), if it exists, must correspond to the

minimum of (38), which is zero. If we try a gradient descent

procedure for minimizing (38), then we are led immediately

to

wi + 1)
oJ

wij) + Pa
w=w(j)

39wi) + pAT[Aw(i)| — Aw(j)]; ”p>0

or!9

wi + 1) = w(j) + p d x(i)[|x(i)"w()| — x7()w()]. (39a)

Algorithmsof the type of (39) are often referred to as many

pattern adaptationin thesensethatall given pattern samples

are used in oneiteration of the weighting vector w. The cor-

responding single pattern adaptation of(39)is

wii + 1) = wij) + px(i)([xGi)"w)] — x(i)"wG)). (40)

For p=2, (40) is simply the well-known perceptron al-

gorithm (Novikoff [45]) which was originally developed
on the simple idea of reward and punishment and which is

knownto converge in a finite numberofsteps.

The idea of viewing a learning algorithm as an iterative

and deterministic optimization procedure for some cri-

terion function can be used to interpret other algorithms

and to discover new ones. In fact, our ability to create new

algorithms is only limited by our ability to find meaningful

newcriteria. Table I identifies a set of algorithmsas gradient

proceduresfor a correspondingset of criterion functions.

The Generalization Question

Oneofthe basic problemsofthe algorithmsof this type is

the question of generalization. In the absence of any prob-

abilisitic information, the only result along this line seems

to be the important result of Cover [14]. Cover showsthat
in general the number of samples N mustbe at least equal

to or larger than twice the number ofattributes m for the

algorithm ofthis case to yield meaningful results. Ifwe allow

ourselves the luxury of Gaussian x;, then Allais demon-

strates a more explicit relationship between N, m, and the

LMSalgorithm of Table I [4]. Another interesting property
of the LMSalgorithm is pointed out by Groner [27]. It
turns out that the w= {ao, a} which minimizes || Aw—Bo]|?
can also be expressed as

1° Tn (39a), we have abused ournotationto let x(i) represent the vector

sa.x(i)
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TABLE I*

Authors Algorithms

Widrow-Hoff [61 ]t wij + 1) = pAt(Aw() — Bo)
Agmon-Mays[2], [36]

Wong-Eisenberg [62 ]t

Ho-Kashyap [29] wi + 1) = wi) + pSAT[Aw() — BU)

wi + 1) = wf) + pA*[|AwG) — Bol — (AWG) — Bo)
Aw(j + 1) = Aw(j) + pA(ATA) *A™[Bo — sgn (Aw())]

Criterion J(w)

J(w) = ||Aw — Boll*, Bo = [1 1,-7.1]
J(w) = ||(Aw ~ Bo) ~ |Aw ~~ Bol I7, BS = [1, I, ms 1]

J(w, B) = ||Aw — BIl?, B > 0
BG + 1) = BU) + [((AwG) — BG) + |AwG) — BOI]
where p and S are chosento insure

[p?SATAS — 2pS] <0

* For a more detailed table see [17].

+ Solution of this algorithm is not equivalent to the solution of Aw > 0.
+ This algorithm is different from the Ho-Kashyapalgorithm with S=(A"A) ~“' only in the sense that By is constanthere.

a = (X35 + LP) "(us — we) (41)

Qo = (uy + we(Zp + XP)(usy + pe)

where

u’ = sample meanofclass H!
2, = sample covariance ofclass H'.

Furthermore, the a in (41) also maximizes the Mahalanobis

distance criterion [5]

_ Lats — as)?
a'(X; + X°)a
 (42)

which has the simple interpretation of maximizing inter-

class distance and minimizing total dispersion of the pro-

jections of the patterns onto the decision surface f(x).

Fquation (41) can be further generalized. Peterson and

Mattson [48] have shownthatfor a linear decision function
of the type of (32) and a criterion function J which depends

only on sample means and covariances of the two classes,

the optimal a is given via

a= (k,Z5 + koZ})” (us — up) (43)

where ky and k, are constants that can be determined. !!
While these connections of the linear decision function

and the statistical parameters of the sample patterns are

interesting, they do not completely answer the generaliza-

tion question in termsof the error probabilities a and B of
(5) and (6).

A recent important result of Cover and Hart [15] is an

exception to this point. They showthat ifwe classify a sam-

ple by the classification of its nearest (according to some

distance measure) neighboring sample of knownclassifica-

tion (an extremely simple-minded approach), the proba-

bility of such a decision for large number of samples is
bounded from above by twice the optimal Bayes error

probabilities of Section HI [criterion 2)] where all the under-

lying probabilities are known. This tends to suggest that

the schemes described in this section, which are more

sophisticated than the nearest neighbor algorithm, should

also have similar bounds on error. Communications with
experimental workersin the field tend to confirm this. This

** The validity of (43) is, of course, still good if we replace sample
means and covariances by true means and covariances.

nearest neighbor decision function is originally due to

Fix and Hodges [23].

Two otherstatistical techniques commonly used in data

analysis called “‘jacknife” and “‘leaving-one-out” [39] may

be useful in shedding further light on this question. The

latter technique consists of successively solving a series of

optimization problems, each time leaving out a different

sample pattern. Variationin the solutions of these problems

will then indirectly provide a quantitative answer to the

adequateness of assumption 1). This approach apparently

has not been exploited in the usual pattern classification

literature.

The Characterization Problem

Although we conveniently avoided the question of how

to choose a mapping @:z-—>x, the question is nevertheless an

important one. There do not seem to be many generally

applicable schemes which possess noteworthy properties

that are independent of the particular type of recognition

problemsin question. An important result due to Watanabe

[60] does, however, fill the requirement. Consider the
(sample) covariance matrices of each class £,, and Zo and

the linear combination

2X = P(H')z,, + P(H°)Z,. (44)

Let the dimension (z)=p, which is usually very large com-
pared to the desired dimension for x, m. Let the vectors
t,,t,,°°*,¢, be the normalized eigenvectors ofX ordered ac-
cording to 4,(Z)>A,(Z)> --- > A,(2). The ¢; form a basis in
p-space.'* We maywrite

p

ZzZ=> y Xl; with Xx; = z"t,.

i=1
(45)

The magnitude of x; or, more accurately, P(H')(x!)

+ P(H°)(x?)? £e, can be considered as a good measure of
the extent to which the coordinate vector t, is useful. in

representing the membersofthe twoclasses. It turns out in

this setup that the following properties are true.

1) The t; coordinate system hasthe least square approxi-
mation property: °

‘? They constitute the Karhunen-Loeve coordinate system.
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BPH! — y xjt;)? + P(H®)(z° — y sto?
i=1 i=1

= min ByPU! - y x;Si)° (46)
m

+ P(H*)(z° —- > ssi| for all m.
i=1

2) The t; coordinate system minimizes the entropy func-

tion

Dp

S(t) = -— ¥ ene, (47)
i=1

among all possible coordinate systems, where e; are as de-

fined above. Prcperties 1) and 2) imply that there exists a

natural [according to (46) and (47)] characterization of the

attributesin terr:is of the large eigenvectors of the composite

covariance mat:ix of the problem. This phenomenon is
related to the method of factor analysis and weshall en-

counter it again in Section VIII.

Extension to Nowlinearf(x)

Once the approachfor the linear case is clear, the exten-

sion to the nonlinear case is conceptually straightforward.

Instead of linea’ inequalities, we deal with nonlinear in-

equalities or piecewise linear [44] inequalities. Various es-

tablished or ad hoc techniques in nonlinear programming

can be brought to bear on the abstraction problem [34],

[35], [51].

Arkadevand|3raverman [7] have suggested an algorithm

that tries to arrive at a piecewise linear f(x) from the given

set of classified »:. The algorithm proceeds to find the best

hyperplaneto separate the given samples. As more samples

comeand this planefails to classify them, more hyperplanes

are connected to it until all given samples are correctly

classified. Finally, all redundant portions of the planes are

deleted, giving a piecewise linear f(x).

VII. CasE E—DaTA TYPE 3) ONLY GIVEN

(STOCHASTIC METHODS)

The algorithms described in Section VI, with the excep-

tion of the nearest neighbor algorithm, despite their sim-

plicity and practical usefulness, suffer one general draw-

back in terms of relating the decision functions obtained to

a quantitative evaluation of its generalization capabilities.

Since the latter «juestion is best answered in terms of error

probabilities, or equivalently the knowledge of P(H'‘/x),

some probabilistic structure will have to be put back into

the formulation of the problem, implicitly or explicitly.

One approach: to this problem is to consider that P(H'/x)

as a functionof »: can be expanded ina series. Let us consider

f(x) & P\H'/x) — P(H°/x)  2P(H'/x) —1

(48)
(

" a;;(x)

€

AN
— £

j=: OJ=

where @;(x) is some class of complete (possibly ortho-
normal) functions which one conveniently assumes to be
given as a result of solving the characterization problem.
For every. given sample pattern, there correspondsa ¢[x(i)]
or @(i). The problem is then simply reduced to the determi-

ation of the parameters a, ofa function f(x) when the values

of the function are measured at randomly selected points.

This is essentially the approach taken by Aizerman, Braver-

man, and Rozonoer[3], Tsypkin [58], Blaydon and Ho[9],
Kashyap and Blaydon [32], Patterson, Wagner, and Wo-

mack [47], and Nicolic and Fu [43].!3 Define a classifica-
tion variable ¢[ x(i)] by

| 1 x(i)eH!
Loti] = |_| “pen

One may visualize C(i) as a noisy measurementof the value

of the function f(x) at the sample point(pattern) C(i):

(49)

Ci) = f[o@] + of) (50)
where v(i) are independent random variables with.

E[v@i)] = [1 — f@]P[A'/x)]

+ [—1— f(i][1 — P(A*/x(i)] (51)

= 2/1 — P(H'/x(i))]P(A‘/x(i))

— 2P(H*/x(i))(1 — P(H*/x(i)| = 0.

Now consider the minimization of the regression function

J = min Ef— «7||7} (52)

which in view of (50) and (51) can be shownto be equivalent

to

J* = min E{|| f(x) — «"@||7}. (53)

Thus, if one finds a finite-dimensional « that minimizes J

in (52), then one has also found the optimal mean square

approximation to f(x). A well-known method for minimiza-

tion of regression functions is via stochastic approximation

using the given noisy sample values of the function. We

have

ali +1) = afi) + POPOL— TOO] 54)
with

Ypi=0; YpwM<o. 9)
With mild assumptions on @, the algorithm of (54) is known

to converge with probability 1 to «* where

a* = arg min E{|[C — «"6|]7}. (56)

Hence,

a* = arg min E{|| f(x) — «7¢||*}.

‘> These methodsarealso called ‘“‘potential function” methods [7] in

the Russian literature.
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This constitutes a learning scheme with a teacher whichis

asymptotically optimal in a mean square sense with respect

to the classification probabilities. Another wayof visualiz-

ing (54) is to note that

ac — algl?
dm (i)

PLE) — «"(DOW] =

and (54) is simply the stochastic analog of the gradient

method for minimization. In fact, if one considers instead

ai + 1) = afi) + pSPHLEH — «"DOD] (54a)

where

S 4 [E(¢¢7)]7!
one has the analog of the second-order descent method,

which generally converges faster. Since S in (57) is not

given in general, one may substitute instead

(57)

Le ag | ow ey:S(i) = |; Y uN 4 iP(i (58)
j=l

Not surprisingly, the recursive computation of P(i) is

governed by

Pi + 1) = P(i) — PWP(){OH)POW + 13> *OW)PI);

P(i) =I (59)

which is a special case of (56). Furthermore, «(i+ 1) from

(54) has the property that

i+]

a(i + 1) = arg min 2 [CU) — ad(/)]?.

In other words,it is also the solution of the LMSalgorithm

of Section VI. Using the method of stochastic approxima-

tion, one can show[9] that (54a) also converges with proba-
bility 1 to a*, thus furnishing additionalrationalization for
the LMSalgorithm.

Of course,the criterion of (52) is not the only onethat can

be used in this approach. A table similar to Table I of Sec-

tion VI can be constructed. For details see [17].
In practice, the convergence of most stochastic approxi-

mation methodsis notoriously slow. Sometimes they appear

not to convergeatall. Largely, this is due to the problem of

round-off error mentioned in Section IV. Thus, until real

(not academic) success stories have been reported, the

practicality of the above scheme is not overwhelmingly
strong.

The choice of the base function set @ has also been so

far left open. A particular approachto the problem has been

suggested by Brick [10]. Instead ofexpanding f(x) ina series,

p(x/H') may be expandedin a series of orthonormalfunc-

tions, the normalized hermite functions. Brick has shown

that these coefficients appear as some ensemble average

that, given certain apriori information, can be precomputed.

In the case of ergodic processes, however, these ensemble

averages can be replaced by time averages and can beeasily

determined experimentally, given a set of classified samples
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for initial learning. Furthermore, if the system parameters

are known to change gradually, a bootstrap updating of

these coefficients is possible during the run, improving

continuously on the “learned”’ coefficients. -
The main advantage of this schemeis the possibility of

implementationin circuit form for ergodic processes, where

the coefficients appear only as amplifier gains that can be

easily preadjusted or changed automatically. The numberof

terms to be used in the expansion depends, however, on

the complexity of the form of p(x/H'). In practical situa-

tions the implementation may not be feasible for any

moderately complex system.

VII. Case F—DatTa TyPE 4) GIVEN ONLY

This is the extreme case in pattern classification where

minimal information is available for the design off(x). Not

much has been reported in the literature about the ap-

proachesfor this case, which are often heuristic or experi-

mental, justified only by the fact that they work in some

sense according to the author. Conceptually the problem

can be resolved in either one of two ways.

Method I

The first method consists of reintroducing, explicitly or

implicitly, some criterion of separation onto the set of un-

Classified sample patterns. This is used in conjunction with

the same algorithms of Case D (Section VI) in a bootstrap

fashion, 1.e., one uses the result of classification at one itera-

tion to producetheclassified learning sample for the learn-

ing cycle. For example, a bootstrap algorithm results if we

try to rewrite (52) as

J = min E{||a7@ — sgn (a7)||7}. (60)

Miller [37] has examined this criterion function for a

linear f(x), 1.e., where ¢ is only x. For this case J becomes

J’ = min E{|a™x — sgn (a7x)||?} (60a)

and an algorithm parallel to (54) may be given as

a(k + 1) = a(k) — 2p(k)[a*(k)x(k) (61)

— sgn {a7(k)x(k)}|x(k)

with

e oO

» plk) = 0; » p(k) < 0.
k=1 k=1

Miller found that the J’ surface, in general, has saddle points

and local minima. In the case of Gaussian distributions

with the same covariance matrix and p, = — Up, the J’ sur-

face has two local minima with the same minimum value

andthe algorithm of (61) converges to one of the two minima

with probability 1. However, in this case the value of « at

one minimum is the negative of the value at the other.

Asthe decision takes place according to «x 20, the decision

surface using either value merely results in the relabeling of

the classes.

It should be pointed out that if this externally imposed
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criterion of separation happens to resemble the natural

criterion of separation, then all is well. For instance, con-

sider the two-dimensional example shown in Fig. 3 where

the actual identity of the sample points is unknownto the

classifier. One can nevertheless require that a separating

plane (linear decision function) be constructed with the

normal « coinciding with the direction of the maximal
eigenvector of the covariance matrix of the sample points,

thatis:

a parallel to the maximal eigenvector of (A7A) (62)

where

| x"(1)

A= (63)

x"(N) |  
If this eigenvector direction is determined via the usual

iterative power method, then one has derived a learning

scheme that works. However,it is equally obvious that had

the two classes teen distributed as in Fig. 4 the learning
scheme would hive failed. This approach actually forms

the essence of a very successful bootstrap self-correction

scheme by Nagy nd Shelton [42] for character recognition

andis closely related to the method of principal components

in factor analysis.

A slightly different approach to introducing a criterion

has been taken by Rogers and Tanimoto [50]. A distance
measure d;, for x; and x; may be defined as

d;, = g(X;, X;). (64)

Assuming there are only two classes, we define a homogene-

ity function for cach class. The function has d;;, the inter-

pair distances of the various sample patterns, as its argu-

ments. The assigiument of a given sample pattern to a par-

ticular class changes the value of the homogeneity func-

tion of that class. The criterion of classification is that the

two homogenei:y functions have minimal difference in

their value. Analtically we may visualize this as follows.

Let

Uy(d1,d13,°"", d,- 1,n> n)

5 dn—1.n> n)

be the homogene:ty functions involved.7 is a parameterthat

assigns the usage ofa particular d,; to the evaluationof up or

u,.‘* Classification then involves the choice of 7 such that

the difference u, -- up is minimized.

This scheme can very easily be generalized to a multi-

class case where the numberofclasses is not known apriori.

Weshall encounter it again in this light in Section IX.

Uo(d12, 443," °

14 For example,Rogers and Tanimoto successively include more and

more d,; in the evaluation of uy or u, until they exceed a certain value.
The assumption her: is that each class should be homogeneously similar.
If for a given 4, u,>'>Up, then some memberofclass 1 should be class 0

and vice versa.
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The above examples can all be viewed as special cases in

which the algorithm attempts to separate the given unknown

samples into distinct clusters in feature space. The mostre-

cent survey of clustering techniques was doneby Ball [8].

Method 2

Attempt a more orless brute force computation of the

learning equation (32) in Section V. The pertinent proba-

bility density functions are approximated by histograms

using the given data. Patrick and Hancock claim con-

vergence of this computational procedure [46]. However,

little or no actual experiences have been reported. Due to

the lack of sufficient statistics and the large amountof data

usually required for histograms to yield good approxima-

tions, the feasibility of such a scheme remains to be demon-

strated.

LX. MULTICLASS PROBLEM

So far we have concerned ourselves only with two-class

problems. A few words about multiclass problems are in

order.

In a multiclass problem we have to decide to which ofm

classes H', H?, H°,---, H™ the given pattern vector x

belongs. For problems having a probabilistic structure,

i.e., from Cases A, B, C, and E, the extension to a multi-

class case is straightforward. Instead of considering the

likelihood ratio formed by the two conditional probabilities

and testing it against a threshold for a two-class case, we

maydirectly considerp(x/H') or P(H'/x) andpickthe largest
of these.1*> This procedure is optimal in the sense that it
minimizes the error probability.

More generally, we may define a set of decision functions

f(x) and take decisions as x belonging to H' if

fix) > fix) for all j ¥ i; (65)

15 »(x/H") minimizes error probability only ifp(H") are equal.
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for the problems of Cases A, B, C, and E

f'(x) = p(x/H') or P(H'/x).

In the case of deterministic algorithms (nonprobabilistic

structure) the extension to multiclass problems is not as

natural. A multiclass problem is usually reduced to a col-

lection of two-class problems. This reduction depends on

the separability that exists in the multiclass problem and

may be of three types, as follows.

1) Each class may be separable from all the rest by a

single decision surface. Then we may take the decision
according to

(66)

if x € H'

otherwise.

> 0foe
This reduces the multiclass problem to m—1 two-class
problems.

2) Each class may be separable from each otherclass.
Now we have m(m—1)/2 two-class problems and as many
decision functions such that

f(x) , , - .” given that x belongs to H' or H’. (67)

The unknownx isclassified as H!only if }®

f(x)>0 forall 4i.

3) There exist m f(x) such that x belongs to H’only if

fix) > fix) forallj #i. (68)

Note that this is a special case of 2) as we may define

S'%x) = fix) — f(x) forall) #i. (69)

In Cases A, B, C, and E, as we notedearlier, f'(x) of (68)
are the conditional probabilities. For deterministic Case D,
a criterion of separation is introduced. For example, one
may consider the inverse of distance criterion, which is the
extension of the “nearest neighbor” approachto this case.
The way we maytry to reduce a multiclass problem to a set

of two-class problems dependson the individual problem.
It should be pointed out that if we are not restricting f(x)
to be of a particular form (linear or quadratic, etc.) then
the distinction of these three typesis artificial, as we can
always find suitable f'(x) to use with any of the desired
three types.

Though wehave presentedall the algorithmsas they are
applicable to two-class problems, they have often been ex-
tended to the multiclass case. The number ofclasses is
assumed knownin all these schemes. One exception is the
paper by Rogers and Tanimoto [50] mentioned under
Case F. The procedure they use is independent of the
knowledge of the number ofclasses. By computing an
auxiliary indexof “‘typicality,”’ they permit the procedure to
adjust itself to produce automatically the numberofclasses
that will satisfy a homogeneitycriterion.

“© Someirrelevant results will be obtained in the process from the
cases where x coming from H*, ki, jis beingtried.
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X. CONCLUSION

Based on the above survey and analysis, a few remarks

(perhaps controversial) seem in order.

1) Roughly speaking, classification algorithms can be

broadly divided into two groups: probabilistically based

and nonprobabilistically based. The former group, com-

prising Cases A—-C, enjoys the obvious advantage of being

easily able to assess the generalization ability of the results.

On the other hand,it is often difficult to justify the avail-

ability of the assumed data. The latter group, representing

Cases D-F,is just the reverse. By being morerealistic on

input data requirements, it makes precise quantitative

evaluation of performance much more involved and
difficult, although it seems reasonable to assumethatas our
analytical ability advancesthis difficulty will gradually ease.
The main learning tool for the first group is the recursive
application of the Bayes rule, while that of the latter is the
iterative solution of an optimization criterion. Both tech-
niques are fundamental to stochastic and deterministic
control theory.It is expected that further cross-fertilization
will take place between these twofields.

2) Characterization remains as a major open problem.
3) Relatively little experimentation with these algorithms

has been carried out with real-life classification problems
compared to the number of proposed approaches. Thisis
not so mucha generalcriticism of the papers but a comment
on the difficulties of obtaining real data. An often over-
looked and unappreciated problem is that of collecting,
converting, and generating enough samples of x(i) from
original data in real problems.'’ Enormousdata processing
time or specially designed data processing machines are
needed. In fact, it is the authors’ belief that this often rep-
resents the major cost of a pattern classification project.
Oncethis is done, the solution of the abstraction problem
tends to be straightforward.

In this paper we have attempted

a

classification of the
various pattern classification techniques that have been
reported in the literature. The purpose has been to try to
lay bare the underlying statistical and mathematica] prin-
ciples used in the developmentof these algorithms. Only
when sucha classification is complete can meaningful com-
parisons among the numerous approaches be made.
Furthermore, deficiencies as well as advantages of the
various schemes hopefully can be made obvious, and
progressof thefield as a whole can be speeded up.
A complete coverage of the literature in this field is

neither possible nor desirable. It is nevertheless believed
that ourclassification is reasonably complete and workable
and future approaches can be fitted into this framework,
i.€., Our scheme possesses the generalization property.
There are many other papers that have appeared in the

‘” We quote from the next-to-last paragraph of [40]: ‘“‘We feel that
larger and higher-quality data sets are needed for work aimed at achieving
useful results. Such data sets may contain hundreds, or even thousands, of
samples in each class. We know, for example, that investigators at SRI
and IBM haveused datasets containing over ten thousand samples, and we
expect that even larger data sets will be collected.”
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literature. We leave it as an exercise for the readerto find

their case classifications. The authors welcome additions

to their bibliogré.phy for the various cases and apologize in

advance for any unintended omissions.
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DISCRIMINATORY ANALYSIS

NONPARAMETRIC DISCRIMINATION: CONSISTENCY PROPERTIES

EVELYN FIX, Ph. D.
J. L. HODGES, JR., Ph. D.

University of California
Berkeley, California

lL. Introduction

The discrimination problem (two population case) may be defined as

follows: a random variable Z, of observed value z, is distributed over

some space (say, p=-dimensional) either according to distribution F, or

according to distribution G. The problem is to decide, on the basis of

Z y which of the two distributions 2 hase

The problem may be classified in various ways into subproblems.

Qe pertinent method of classification is according to the amount of

information assumed to be available about F and G. We may distinguish

three: stares:

(i) F and G are completely known

(ii) F and G are known except for the values of one or more
parameters

(iii) F and G are completely unknown, except possibly for assump-

tions about existence of densities, etc.

Subproblem (i) has been, in a sense, completely solved. The

soluion is implicit in the Neyman-Pearson Lermal 1], and was made

explicit by Welch [2] e We may without loss of generality assume the

exissence of density functions, say f and g, corresponding to F and G,

since F and G are absolutely continuous with respect toF +G iff

and z are know, the discrimination should depend only on

_

f (2) .
>

Z

Amn aopropriate (positive) constant ¢ is chosen, and the following rule

e

is ooserved:

Reprinted with per‘iission from USAF School of Aviation Medicine, Randolph AFB, TX, Project 21-49-004, Rep. 4, Feb. 1959; first published

Feb, 1951.
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If £2) » cy we decide in favor of F
g (2

If f 2 < Cy we decide in favor of G
g (2

if £ (2) = c, the decision may be made in an arbitrary manner.
g sz

These procedures are known to have optimum properties with regard to

control of probability of misclassification (probability of wrong

decision). We shall refer to this as the "Likelihood ratio procedure,"

and denote it by L(c).

For simplicity, we shall assume throughout the paper that the

borderline case f(z) = cg(z) can be neglected. Formally, we postulate

that

P{ £(Z2) = cg(z)} = 0

regardless of whether Z comes from F or G. Since the Classification is

arbitrary when f(z) = cg(z), it hardly seems worth while to introduce

complications into the methods to allow for it. However, it is not

difficult to extend our methods to take care of the Situation which

arises when

Pf f(Z) = cg(Z) } > Oo

The choice of c depends on considerations relating to the relative

importance of the two possible errors: saying Z is distributed according

to G when in fact it is distributed according to F, and conversely. Two

choices of c have been widely advocated:

(a) Take c #1

(b) Choose ¢ so that the two probabilities of error are equal.

Choice (a) has been called "logical" 3 choice (b) yields the minimax

procedure. in this paper we shall not concern ourselves with the
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choice of c, but shall assume that a given positive c is a datum of

the problem.

The usual approach to subproblem (ii) is as follows. We assume

there are available samples from the two distributions, say

> x3 e@ @ ey x, sample from F

YG» tbs © © ey a sample from Ge

We assume further that F and G are known in form: that is, that we

know them except for the values of some real parameters, which may be

denoted collectively by @. We may denote the distributions correspond-

9? 36

the its and Y's to estimate @, by, say, 3, and then to proceed as under

ing to a given @ by F « The procedure currently employed is to use

(1), using the distributions Fg, Gg as though they were known to be

correcte

The most familiar example of this process is the linear

discriminant function [3] e There, it is (tacitly) assumed that F and

G are p-variate normal distributions having the same (unknown )

covariance matrix, and unknown expectation vectors. The two expecta-=

tion vectors and the covariance matrix are estimated from the samples,

and the likelihood ratio procedure is then employed, using the esti-

matei valves as though they were known to be correct.

Not much is known about the desirability of the usual method of

attack on (ii). We give in Section 3 a theorem concerning asymptotic

nroverties of the method. Undoubtedly, this procedure is reasonable

orovided the assumed parametric form is correct. But the validity of

the <sé of the linear discriminant function with data obviously not

wey ee y 7 : : a : ~*~ ’ “ ; v AS “ REF “s ry P9784 “ yt 2 « :

tora. ep. i° aermal, with ooviously umequai covariance matrices has
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been of general concern. Presumably, very bad results may ensue if a

procedure is used, based on certain assumptions about parametric form,

when those assumptions are not even approximately correct.

There seems to be a need for discrimination procedures whose

validity does not require the amount of knowledge implied by the

normality assumption, the homoscedastic assumption, or any .assumotion

of parametric form. The present paper is, as far as the authors are

aware, the first one to attack subproblem (iii): can reasonable

discrimination procedures be found which will work even if no para~

metric form can be assumed?

It is not to be expected that any procedure can be guaranteed to

give good results without any restriction whatsoever on the distribu-}

tions F and G. To clarify this point, we need to state a precise

meaning for "good results." This is done in Section 2y with the

introduction of the concept of "consistency." We then proceed in

Section h to prove, under weak restrictions on the densities f and Bs.

the consistency of a class of nonparametric procedures there proposed.

A modification of these procedures is then considered in Section Oe

It may be noted that all of the methods and results of this paper

can be extended without difficulty to the situation in which there are

more than two vopulations to be discriminated,

The authors are engaged in further work along the lines here

laid down. Specifically, some sampling experiments are being conduct=

ed, intended to throw some light on the performance of the procedures

for moderate sample sizes; and asymptotic properties of a class of

sequential nonparametric discriminatory procedures is being investi-
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gated. It is intended to prepare further reports setting forth the

resilts.

2e The notion of consistency.

In setting out to define an optimum property in statistical

inference, it is useful to have in mind the limit of excellence beyond

which it is not possible to go. The procedures L(c) described in

Section 1 provide such a limit in the case of nonparametric discrimina-=

tions we cannot, with any nonparametric classification procedure, expect

to co better than the best which is possible when the densities then-

selves are assumed to be known. This fact is intuitively obvious, but

if desired an exact proof is easily given. When f and g are known, Z

is sufficient for the classification, with respect to

(Zs KyXoseeesdsVyYogece, YJ)» and we may (by using randomization)

exactly duplicate (with a procedure based on Z) the performance

characteristic of any procedure based on (Z5X)X,,y 000 shu YysVoseeesX,)o

Thus, no nonparametric procedure can have probabilities of error

less than those of a likelihood ratio procedure. On the other hand,

we shall propose in Sections 4 and 5 classes of (sequences of)

nonparametric procedures which, in the limit as m and n tend to

infinity, have the same probabilities of error as the procedures L(c).

We may therefore reasonably say that our procedures are consistent

with the likelihood ratio procedures,

There are two different notions of consistency for sequences of

statistical decision functions, and it may be worth while to distinguish

them, Suppose that the decision space is finite (as is the case in

discriminatory analysis when there are finitely many populations). Let

the possible decisions be denoted by 55; J; eae, J... Now suppose
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we are considering two sequences of decision functions, say (A| and

{A}. How should we define the notion that these two sequences

tend to agree with each other, or be consistent with each other, as

n—po@? On the one hand, we might require that in the limit there

should be close agreement between the probabilities of decision; or.

the other hand we might require that in the limit there be high

probability of agreement of decision. The former requirement relates

to the performance characteristics of the decision functions; the

latter requirement relates to the decision functions themselves. We

have then two definitions:

Definition 1. We. shall say that the sequences (A} and (AY
n n 

are consistent in the sense of performance characteristics if, whatever

be the true distributions, and whatever be &€> 0, there exists a number

N such that whenever m>N and no>N,

P{A' = §}- PLA= Cf
m i

<&

 

for every decision 5,

‘!t

Definition 2, We shall say that the sequences {/\ } and {Ls }
ener Nn nN

are consistent in the sense of decision functions if, whatever be the

true distributions, and whatever be @ > 0, there exists 2 number N

such that whenever m > N and on > N,

t "t

P { LN = LN i >l- €&,

m n

We observe that consistency in the second sense implies that in

{ 1?

the first, since P( ZN a LN ) is not less than each of the quantities
m n
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P( ZN = § and A z §)z PLN = $) - PCA" -$§).
1 1

The definitions are not equivalent however, as the following trivial

example shows, If ZN and /\" each denotes (for any m,n) the process

of choosing between two alternatives S, and 3. by tossing a coin, then

P(ZN' = ZN") = 5, while

r( f\' = g =P( Ar = C)= 5 fori=1, 2.

Inasmuch as it is customary to evaluate decision functions solely

in terms of their performance characteristics, Definition 1 is the

more tatural, However all proofs of consistency given in this paper

proviie consistency in the stronger sense of the second definition, and

conseyjuently we shall adopt it.

since our procedures are based on two samples, we must consider a

double limit process as both m and n tend to infinity. To avoid

difficulties which would otherwise arise in Section 5, we shall assume

throujhout that m and n approach infinity at the same speed.

Precisely, we assume = and is are both bounded away from O as

nym —-> co. Whenever we write "m,n —>o" this restriction should

ve understood, Our restriction has the effect of reducing the limiting

vrocess from a double to a single one.

in the sequel we shall be comparing certain discriminatory

proceiures with procedures of the type L(c). It is convenient to

intro luce:

4} of discriminatory procedures,
mm

a

yeftinition 3. <A sequence AN

“7
Z.

; 7”

nd cn sampleo
)

io C
s c
t o
r

©
}
| u
wny Lin pineovegn12%: ’ P F and Y_,¥m icrom F and Ciogateeal
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from G, is said to be consistent with L(c) if, whatever be the

distributions F and G, regardless of whether Z is distributed

according to F or according to G, and whatever be & > 0, we can

assure

P ja n and L(c) yield the same classification of z}>1 - €
m 2

rrovided only that m and n are sufficiently large.

We may also define a corresponding notion of uniform consistency.

If, in Definition 3, the bound on probability of agreement can be

assured for all F and G with a single size specification on m

and n, we say thatfA. is uniformly consistent with L(c).
3

3. Consistency for the parametric case.

We shall now demonstrate that the analogy of the notion of

consistency just introduced with the like-named notion in point

estimation, is more than formal. Consider the problem of parametric

discrimination (subproblem (ii)) of Section l,.

We shall from time to time have occasion to consider probabili-

ties computed under the assumption that Z is distributed according

to F, or according to G. It is convenient to let PL and Po

denote probabilities computed under these respective assumptions.

Let SY and & be classes of densities parametrized by

parameters denoted collectively by O. Let there be a notion of

convergence introduced in the space @ of parameter values. oSuppose

A

there is given a sequence j On } of estimates for 0, o , being a
3 3

function of Xs Xaseees x and Yo Tiseees i
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-heorem 1. If

 

(a) the estimates { o n} are_consistent,
3
 

 

(b) for every 9, £.(2) and Eg(z) are continuous

functions of @ for every 2 exceptperhaps for 2 €é 4g. where
 

P, (29) = 0, i#=1, 2, then the sequence of discrimination procedures

A
{ Lmgr (©) f obtained by applying the likelihood ratio principle with

critical value c O to fA da> to thn (z) an nn (z) is

consistent with L(c). 

Proof. The idea of the proof is very simple: Since C.,n

 

A
is corsistent, 0, yn Will probably be near 6 if m and n are

3

large. But since fy and 8g are continuous, this means that f4Omyn

will };robably be near Eg» and cea will probably be near CB, .
m,n

3

Therefore, it is not likely to make much difference whether we compare

Ey ard CE, or fe and cea le

m,n m,n

fix cc >0,€ >0, and © € @. Find § > 0 so small that

1
APf | £4(2) - ca, (2) | S}<5 €, i-1, 2. (This is possible

since Pf |£,(2) - cg(Z)| = uv} is the cumulative function of the

3
random. variable | £9(Z) - og,(2) and hence is continuous on the right

and by assumption takes on the value O when u= 0). We now assume

that 2 does not lie in Zo: thus excluding an event of zero probabil-

ity. Since f(z) is a continuous function of 9 forall 2z ,» we can

associate with every z a quantity Q2 > O such that
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| f(z) - f(z) | < 5 whenever | 8 - 9|< YI, (2).

A like function No(2) arises if f is replaced by cg. Let

= h thatY (2) =min [yp,(2), Np(2)} and find YN > 0 such the

L .
PC (Z)< N2) < | & i=l, 2.

Using finally the consistency of the estimates, choose M and

N large enough so that whenever m >» M and n > N,

P { | Bn - 9 | > ") } < 7 €. Combining the above, a disagreement

A

between L(c) and L| nbc) will arise with probability less than &.
2

Remarks, (1) The dependence of the discontinuity sets Za on

@ is important. Were we to demand the stronger property that ft)

Bg(z) be continuous in 9 for all 282, Z a fixed set,

P,(Z) = 0, i= 1, 2, we should exclude many cases which are included

under the theorem as given.

(2) Two notions of convergence in @) are involved: that with

respect to which the estimates are consistent, and that with respect

to which the densities are continuous. These need not be the same,

provided the former implies the latter.

(3) If uniformity is added to the hypotheses of theorem 1, it

may also be added to the conclusions. Specifically, if the estimates

o n are uniformly consistent, if the densities f and g are
3

uniformly continuous functions of 9, uniformly in z, and if the

§ of the proof of theorem 1 may be fixed independently of 9,

then that proof goes through for ail 9 using the same value of &,

Aw

We can then conclude the uniform consistency of 3L _(c)é@.
m,n
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4. Nonparametric discrimination and its consistency.

Let us next consider the discrimination problem of the third kind

delineated in Section 1. We admit the possibility that the densities

f for X and g for Y may be any in certain classes #and¥ of

densities which are too large to be characterized by a finite number of

parameters. Thus, t and F may consist of all uniformly continuous

densities, or of all continuous densities, or of all densities continuous

Save at most at countably many points. Can we have any discrimination

procedi.res which are reasonable to use when so little is assumed about

the poyulations being ciscriminated?

Recall that, once c has been selected and Z has been observed

to have the value 2z, the only information needed to carry out the

procedure L(c) are the two real numbers f(z) and g(z). In the

procedure OF we employed the estimate for 9 as a means of

obtaining estimates for f(z) and E,(z). In the nonparametric case

there .s no 9 to be estimated, but we may instead proceed to estimate

the numbers f(z) and g(z) directly. Once estimates have been

obtained, we may apply the procedure L(c), using these estimates

insteal of f(z) and g(z). We shall designate such procedures by

L#*(c, - @), where f and @ are the estimates for f and g.

Before considering the problem of estimating the censities,

let us note the properties which such estimates should have if we are

A A
to be xble to prove the consistency of L*(c, f, g) with L(c).

 

 

 

| “ A . .
Theorem 2, If f(z) and g _(z) are consistent estimates
=== — m,n — mn

for f(z) and g(z) for all 2 except possibly 2z €& Z 2 where
3

f \ * ”~ e

P.(Z. } =O, i=l, 2, then T (c, f, 2) is consistent with
2 fyi — m,n

L(c).
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The proof follows lines similar to that of theorem 1, and will be

omitted,

Our problem is now to find consistent estimates for f(z) and

g(z). We shall for brevity consider f(z) only, as analogous remarks

apply to g(z). We fix 2, since the argument is the same for each

value. Our basic idea is this: the proportion of the m X's which

fall in a stated (small) neighborhood of z may be used to estimate

the X-probability in that neighborhood. The ratio of this estimated

probability to the measure of the neighborhood is then an estimate

of the average value of f(x) near z. This is in turn an estimate of

f(z) itself if we make some assumption about the smoothness of f.

To obtain consistency, we may let the neighborhood shrink down to gz

as m—p00, so that the average of f(x) over the neighborhood will

approach f(z); but we will take care to have the neighborhood shrink

slowly enough so that the proportion of the X's therein will have

a positive expectation. This will assure that the proportion of X's

in the neighborhood is a consistent estimate of the probability.

It is obvious that we cannot hope to estimate f(z) from

Xj Koyeces X, unless some continuity assumption is made. For,

otherwise we could alter f(z) arbitrarily without in any way

changing the distribution of X> Knsece » and thus without changing

the distribution of any sequence of estimates based on Xs Ko geee e

Now let jh denote Lebeague measure in our (p-dimensional) sample

space, and let |x - y| denote the (Euclidean) distance between points

x and y of this space,

ed

Lemma 3. If f(x) is continuous at x= z, and ithA pis a
—— a Tm

sequence of sets such that
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lim sup | z-d | = OQ,
m —> dé

 

and lim m AS A) =, andif M is the number of X,,X,,eoes%,

} is a consistent estimate for 

  

which Lie in A? then oy ¢A

f(z).

 

 

P(A)
Froof, Observe that WBwy —> f(z) asm —>»o. If

f(z) » o,mP( A) —>om. Since AS LA) QO, P( A) >

M ys 62)
A, P °
 and we conclude STAT) >?| Combining 7

m

ag to be shown. If f(z) = 0, E M _ pA.) 0as W o be shown mat D x) ACBw) —>

and the Markoff lemma completes the proof,

 

We have in lemma 3 a class of estimates, any of which, by virtue of

theorem 2, will provide consistent discrimination of any (nonparametric)

classes .F and& whose members are continuous (except possibly for a

set of values of zero measure).

5. Alternative procedures.

. M NWhi.le the procedures L* Cy of the last
( mM | A ,) nM x)

section provide consistent discrimination, the question of their

  

applicability when m and n are not large remains open. (Like

critic'.sm may of course be applied to any asymptotic theorem.) We shall

in the present section suggest some alternative estimates for f(z) and

g(z), which seem on intuitive grounds more likely to give good results

than tne estimates proposed before, The former estimates are the natural
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snes when thinking of the simclicity of consistency proofs, but need not

be desirable in practice.

The main practical difficulty in using the former estimates lies

in the choice sf the regions {A$ _ (and the corresponding regions

for Bg, say}_/L}). if these regions are made too small, the numbers

M and N of sample points falling into them will be too small, so

that the proportions z and 7 will not be accurate estimates for

the corzesponding srobabilities PCA m? PCA): On the other

nand, _t the regions are made too iarge, these probabilities will not

be gooa aporoximations for (2) w( A) and g(z) u (JL). We are

between twin perils and must steer a middle course. We might, for

examole, decide the smallest values of M and N_ we could tolerate,

and choose JI and JL. just big enough to include the chosen number

of points. But to do so alters the probabilistic properties; now

M and N= are fixed andZ\ and /\_are random. Are the results of

lemma 3 still valid?

“sven if they are we may still be in difficulties. It may happen

that near 2 there are numerous X's, but few Y's; but by going a

tittle further we find the situation reversed. The indication is

cleariy for T, , ut if we take separate A andJL the estimated f

and g may be close. To avoic this difficulty the following idea is

sugested: Unoose a number xk, and take in the neighoorhood of gz

a Single region, as containing a totai of k points of either. 5
ThyQ

semple. intuitively this orocedure seems sound, sut since M+N = k

we neve introduced denenuence of our éstinates and further altered the

orobabliistic orcoertiese. The question which now arises is whether or
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not estimates for f(z) and g(z) based on M and N, when so

determined, are still consistent.

As a first step in answering these questions, observe that

we may by means of a preliminary transformation reduce our space

from p dimensions to one. Let e (x,y) denote a non-negative

real valued function of pairs (x,y; of points in the sample

space. Suppose e is so constructed that when x,———> x,

e (x,, x) ——-5 0, and suppose further that for each 2, except

perhaps for z € Zp where P, (Zp g) =O, i«l, 2, @ (X,z)
9 9g

and @ (X,2) are random variables possessing densities, say

f(x) and g(x), continuous and not both O at 0. (These

 

properties are satisfied, for example, by e (x,y) = Py } x-y )e

We now replace the problem of deciding whether f(z) or cg(z)

is the larger, by the problem of deciding whether f,(0) or

eg,(0) is larger; and further replace the samples Ky pXp50005%,

and Y,,¥.,...,%, by @ (X52), CP (X52) seers e (Xn?) and

P (Y,,2), P (Tas2)se0+5 O(Lqs2); respectively. We may now, with-

out real loss of generality, assume that f and g are densities

of non-negative univariate random variables, and that z= 0.

Theoreg 4. Let X and Y non-negative. Let f and

g be positive and continuous at 0. Let k(m,n) be a positive-

intezer-valued function such that k(msn)— Oo, d k(m,yn) ——> 0,

and + k(mjn) ——}0, as m and n——»o. (This tendency being

restricted so that a is bounded away from O and mw). Define

U=k*" smallest value of combined samples of X's and Y's,

M = number of X's & U,

number of Y's U.> tt
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Then a is a consistent estimate for f(0) and

sistent estimate for

Proof. Fix —€ > 0

 

k(m,n) by k, (m,n) + k., (m,n) = k(m,n)

g(0).

kj (m,n)
 Define v(m,n) = af(O) (i+$2 and w(m,n)

Observe v(m,n) = wits and w/(m,n)

Define

Using the continuity

q >0 so small that

  

number of

number of

number of

number of

X's <v(m,n),

X's < w(m,n),

Y's <v(m,n),

Y's < w(m,n).

and Ss > O. Define

21-49-004, No. 4

N igs a con-

 

nu

k, (m,n) and

k, (m,n) mf (0)
and kyUi,n) = neo) °

- ky (m,n)
mf(O)(1-$2°

ky(m,n)
 

ng(0) (1-9)?

and positiveness of f and g at 0, find

when 0 =x 4,| a - 1 | < S’ana

Find m, n, such that when m>m,_ and

and make these restrictions,

f (x) dx and hence

Observe

mf (0) v(m,n)(1- § ) <E(M,ny) < mf(0)- v(m,n)(14+$ ).
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Simi-arly observe

mf(O) w(m,n) (1- - ) < E(M™ ) ¢€ mf(0) w(m,n) (1+ S)
m,n

ng(0) v(mn)(1- § ) < EQM) << ng(o) v(m,n)(1+ $)

Wng(0) w(mjn)(l- § ) ¢ BQ.) € ng(0) w(myn)(1+ §)
4

Vv k, (m,n) , k, (m,n)Thus, BMa Z oe ; EOnl > Py?

B(Ny ,) << eye a(n.) > Aetna),
lt § ; m,n - §

The random variables involved are binomials, whose expectations

tend to oo, but more slowly than the numbers of trials, as

myn-—» oo. Therefore, if we take mn+ Ay large enough, we can assure

P (0 < (m,n) >1-€

P (x, < Ko(m,n)) Sl1l- €

P (“4 > X(m,n)} >l1- €°

r
d

N
e y 1 \

m
mW(x > k,(n,n)

as soon as mM > M, and n> ny» which restriction we now make,

Comtining, using the fact that U will exceed v(m,n) if

VvVv
Mort Nan < k(m,n), we have

P (u > v(m,n) >1-2 &,

P (y ¢ w(m,n)} > 1-26.
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The event U > v(m,n) implies the event that all X's ¢ v(mn)

are among the first k X's and Y's and hence the event

votuw’ SM, Therefore, P(M =M) 2P (0 > v(m,n) } > 1-2 &
Mn m,n

Similarly, P(M” , 2M) >1- 28. Restricting m> M3, Le Na,
“9

we can further assure

P (S? mf(0) v(m,n)(1- ¢ ) > 1-€,

P (N24 mf (o) w(m,n) (1+ S ) > 1- &€,

Combining,

Mie 2).
P (5-< £(0) wmn)(1t+f)*7)71-3¢ ,

p G > £(0) v(mn)(QQ-§ )J>1-3e .

Hence P } (0). wemne (OC )%< Fy < elu), Ee (14S ) *f >a ~ 106,

. V l- , . M ,Since wma) Het the conclusion Fy >? f(U) is at hand,

N
A similar argument shows =n —> ¢(0).

p

A situation in which one of the densities is O at O can

be dealt with by a corresponding but simpler argument which we

omit. The effect of theorem 4 is to assure us of satisfactory large

sample results if we employ procedures of the following kind:

choose x, a positive integer which is large but small compared

vO the sample sizes. Specify a metric in the sample space, for example

ordinary Euclidean distance, Pool the two samples and find, of the

values in tre pooled samples which are nearest to Z, the number M

278



21-49-04, No. 4

whic are X's. Let N = k-M be the number which are Y's,

Proceed with the likelihood ratio discrimination, using however S
h
s

in place of f(z) and a in place of g(z). That is, assign toN
I

F aif and only if

r
s
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DISCRIMINATORY ANALYSIS

Nonparametric Discrimination: Small Sample Performance

EVELYN FIX, Ph.D.
J.L. HODGES, Jr., Ph.D.

University of California, Berkeley

l. Introduction
 

 

In an earlier paper [1] concerned with the problemof

nonparametric discrimination, the present authors proposed

several classes of nonparametric discrimination procedures

and proved that these procedures have asymptotic optimum

properties for large samples. The ideas and results of [1]

are briefly summarized in section 2 for the convenience of

the reader,

The present paper is concerned with the performance of

some of these procedures where the samples are small. While

the large sample optimum properties given in [1] are general,

the investigation of small sample properties is necessarily

special since small sample performance depends greatly upon

a number of variables connected with the underlying distri-

butions assumed. We have examined in detail certain special

cases which seemed of interest and have tried to give some

indication of the performance in others, The scope of the

present study is given in section 3. The results obtained

are presented in the remaining sections,

A related paper, "Nonparametric Liseriminaticn: Con-
Sistency Properties," was published as Report No. 4 of this
Dbrotect, February issl,

Reprinted from USAF School of Aviation Medicine, Randolph AFB, TX,Project 21-49-004, Rep. 11, Aug. 1952.
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2. Aclass of nonparametric discriminators and their large

sample properties

nN the present section we summarize some of the ideas

and results of [1]. Let Xj, Xo, °***, X_ be a sample from

the p~variate distribution F and let Yj, Yo, °°*, Y, be

& sample from the p-variate distribution G. We do not sup-

pose that F and G are known, nor even that their para-

metric form is known. Let 2Z be an observation known to be

either from F or from G; our problem is to decide which.

To this end, define in the p-dimensional space a notion of

"distance," in terms of which the m+n observations in the

combined samples can be ranked according to their "nearness"

to Z The general idea of the discrimination procedures of

[1] is that 2Z should be assigned to F if most of the

nearby observations are X's; otherwise 2Z% should be assigned

to G. To simplify matters, suppose the sample sizes are

equal (m =n), and select an odd integer k. A specific pro-

cedure of the general class is obtained by assigning Z to

that distribution from which came the majority of the k

nearest observation.

in [2], 1t was showm that several classes of these non-

parametric discriminators have asymptotically optimum per-

formarice as m and n_ tend to infinity, in the sense that

the probabilities of misclassification,

P) = P{Z is assigned to G|Z came from FP},

P,= P{Z is assigned to F|Z came from G},
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and, as m and n_ tend to infinity, to the theoretical mini-

mum values which they cculd have even if F and G were

completely known. The results do not require any restrictive

assumptions on the form of F and G, or on the definition

of nearness which is used.

3. Scope of the present study
 

 

The optimum large sample property mentioned above, to-

gether with the applicational simplicity of the procedures,

suggests that nonparametric discriminators may be useful al-

ternatives to the commonly employed linear discriminant

function. The latter is a reasonable procedure if (i) F

and G are prvariate normal distributions and (ii) F and

G have the same covariance matrix. Many users and also po-

tential users of the linear discriminant function have been

disturbed by the apparent and often considerable failure to

setisfy conditions (i) and/or (ii) in cases where the pro-

cedure has been applied. In the absence of knowledge of the

performance of the linear discriminant function under other

conditions than (i) and/or (ii), such uneasiness leads to an

inverest in methods whose theoretical justification is free

of tnese rest:ictions.

It would not be reasonable, however, to propose an al-

ternative to the linear discriminant function solely on the

basis of asymptotic properties. In particular, it is neces-

sary to ask how much discriminating power is lost through

the use of a nonparametric procedure when samples are small
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and when assumptions (1) and (11) are valid so that the

Linear discriminant function is appropriate. The answer to

this question requires a comparison of the probabilities of

error, P, and Po, Which result when the linear discrimi-

nant function is used with the corresponding probabilities

Py and P5 obtained when some alternative discriminating

procedure is used,

The number of parameters on which these probabilities of

error seem to depend is considerable: (i) the dimensionality

p of the observation space (that is, the number of measure-

p(p+1)=ments made on each individual), (ii) the parameters

of the common covariance matrix, (i111) the 2p coordinates

of the two vector expectations and, finally, (iv) the specifi-

eation of the distance function used in the nonparametric pro-

cedures to order the sample observations according to their

nearness to Z.

We may note that the distance function does not need to

be a metric although any metric will serve. All that is re-

quirec. is that, of two points u and v, the distance func~

tion sp2cify which is closer to a point 2. Geometrically,

this amounts to establishing for each point z a systemof

loci, each locus consisting of those points at the same dis-

tance from 2Z, For example, if we use Euclidean distance,

the loci are just the surfaces of p-dimensional hyperspheres

centered at Zz AS a second example, consider the distance

defined by
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p

A(x, 2) = max |x, * 24|-
{=1]

Here the locus of points at a given distance from 2 consists

of the surface of a hypercube, centered at z, with faces

parallel to the coordinate hyperplanes. The distance

A(x, z) has the advantage of being easily computed. It

is, incidentally, a metric.

We now observe that the problem can be substantially

reduced by considering linear transformations on the obser-

vation space. First, it is always possible by such a trans-

formation to insure that F and G will have the identity

covariance matrix; that is, that the p transformed measure-

ments are independent in each population, and that each

measurement has unit variance. Second, we can put the expec~-

tation vector of F at the origin and the expectation vector

of G on the positive first axis. Thus, only two parameters

are required to specify the transformed populations, nemely,

p and A where

A = E(first coordinate of Y)

= distance between the means of the trans-

formed populations.

It is well known that Py and Po for the linear discrimi-

nant function are unchanged by this transformaticn. Thus, in

so far as the linear discriminant function is concerned, there

is no loss of generality.
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What about the nonparametric procedures? Associated with

each z and each distance from z, there was a locus of pointa

in the original space. We may consider the transformed loci,

in the new space, as providing a transformed distance funce

tion. Since the totality of possible distance functions in

the original space is mapped one-one into the totality in the

new space, our transformation loses no generality for the non-

parametric procedure either. Therefore, it is sufficient to

consider the transformed populations with the two parameters,

p and A.

It is clear that the totality of possible distance func-

tions forms a very large class; in fact, it is not even a

parametric class. It is also easy to see that the values of

Py and Po will depend very heavily upon the distance func-

tion used. For example, if we use

S(x, z) = [x5 - Zo |

as distance (remembering that in the transformed populations

the expectation vector of F is at the origin and the expec-

tation vector of G- is on the positive first axis), we

would have no discriminating power at all and P, = Ps = 1/2.

At ths other extreme,

t

9 (xX, 2) = [x4 - z,|

would give quite good discrimination, even with small samples

(see section ,), In using the nonparametric discriminators
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proposed here, the judgment of the statistician as to the

relative importance of the various measurements is of great

consequence. Ina sense, the linear discriminant function

makes great demands on the populations being discriminated

but asks of the statistician only a routine (though lengthy)

computation-"while the nonparametric discriminators which ask

little or nothing of the populations demand considerable judg-

ment on the part of the statistician. of course, this is not

a clear cut distinction since, for instance, with the linear

discrimination function, judgment is needed to decide whether

or not assumptions (i) and (ii) are sufficiently true in the

case under consideration to permit its use,

We are now able to define the scope of the present study.

Throughout the entire paper we assume that the sizes of the

samples taken from each population are equal, m =n. Most of

the computations have been made using Zy (defined in section

3) as distance function. Also a great part of the work has

dealt with the case where Z is assigned to that population

from which came the individual of the pcoled samples who most

closely resembles Z, that is, k = 1. The values of Py = Po,

when AA is used as distance function, are given in sections

hind S for p= 1 and 2; A= 1, 2, 3; n=, c, 3, Lu, 5,

10, 20, 50 and o; k=1. ‘In aoction 6, values of k > 1

have been considered. Section 7 has a discussion of the ef~-

fect of distance function alternative to és 6 A brief in-

vestigation for p > 3 is reported in section 8.
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Unfortunately, we are unable to say how the values of

P; = Po obtained here compare with those of the linear

discriminant function, since the latter is not yet tabled. A

preliminary survey indicated that an adequate treatment of

the performance characteristic of the linear discriminant

function would require a large computational program. The re-

sult would be of great value and interest but was beyond our

means at this time. We have given the results in the uni-

variate case (section 1.) where it is easily obtained,

4, wWnivariate case
 

When p =1, the obvious and natural distance function

is ordinary Euclidean distance which in this case coincides

with Z\. The linear discriminant function is also greatly

simplified, since no matrix computation enters. One simply

computes the arithmetic mean of the sample means,

X+yY
2]
 3

and assigns Z to that population whose sample mean lies on

the side of (X + Y)/2 as does 2% itself. In this case the

probabilities of error of the linear discriminant function

are easily computed and this we now proceed to do.

From the symmetry of the problem it is clear that P) =

P5, 80 it suffices to compute Py; that is, we assume that

Z is distributed according to F. As shown in section 3,

we lwse no generality by putting E(x) = 0, E(Y) = A > 0,

oF = of, = 1. Introduce the new variables
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U=Y°-X, V=X+Y¥- 2

n n

where nX = >. X4, nY = >. Y,;- Since, as is well known,

=] i=l

Y-X and X+Y¥ are independent, we see that U and V

are independent normal random variables, with

2
E(u) =A, oc, = 2/n, E(V) =A, o = lh +4 2/n.

Furthermore, an error is committed by the linear discriminant

function if and only if

 

 

(i) z>2i- and Y>xXx

or

(44) z<%i- and ¥<X.

Thus, an error occurs if and only if Uv < 0. Therefore, it

follows that for the linear discriminant function, when p = 1,

 (4.1) Py =Po = (2 - O(- ee) o(- *) + O(- We) ha - o(- aml

 

where

x ; . > n°

o(x) = e du.

V21
=0O

The limiting value for n=o is @(- A/2) since with infi-

nite samples the population means become surely knowr and Py

just the probability that 2% exceeds 2/2. Table I gives

the values of Py = Po for various values of n and A. The
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results are pictured graphically in figures 1 and 2,

Let us now consider nonparametric discriminators. The

simplest of these procedures is the one corresponding to kx]

which consists in assigning Z to that population from which

came the sample individual nearest to Z%. This "rule of near-

est neighbor" has considerable elementary intuitive appeal and

Table I

Probability of error, linear discriminant function,
univariate normal distributions

 

 

 

 

 

7 n A=1 A= 2 A= 3

1 ohi75 ©2532 ©1235

2 «3821 ~1999 60910

3 © 3611 ~1819 0826

4 «3472 017k 0787

5 ° 3376 01707 20763

10 63175 016.6 0716

20 ° 3110 21616 0692

50 » 309), 21599 0678

00 © 3085 «1587 . 0668  
n= size of sample taken from each population

A= distance between the means of the two populations

Probability of error = P{Z is assigned to G|/Z came from F}

= P{Z 1s assigned to F|Z came from G}

(see formula l.1)
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probably corresponds to practice in many situations. For

example, it is possible that much medical diagnosis is influ-

enced by the doctor's recollection of the subsequent history

of an earlier patient whose symptoms resemble in some way

 

 

 

th

Se A=

er

A=2

re

—~- A=XSJS 
 

0 L Qt ff fo gg tty | | Lf ty py

1 2 J S 10 20 630 50 100

(Iu
Figure 1

Probability of error Py of the

for two univariate normal distributions with distance between

means = “A.

linear discriminant function

n = size of sample from each population.
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those of the current patient. At any rate it seemed advisable

to begin computations with the simplest procedure, that is, to

begin with the computation of the probability P, that the

nearest nelghbor to Z is one of the Y's, given that Z hss

che distribution of an X.

 
0 | Z 3 ae

Figure 2

Probanility of error P, of the linear discriminant function

for two univariate normal distributions with distance between

the msans = As plotted as a function of A. n = size of

Sample from each population.
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Our technique for performing this computation 1s as fol-

lows. Suppose it is given that Z =z, and let Py (z) denote

the conditional probability that the nearest of the 2n sample

observations to Z isa Y, given that Z=2. Then

 

90 - 5 2°

(4.2)  P, = E[P,(2)] = te P,(z) dz.
ae er

=0O0

The calculation of Pj (2) is quite straight forward. Let

(1.3) Ho(§) =P{Ilx -2| <3}

=P{z-$ <x<2+$ }

= (2 +9) - Oz - 8),

while

(hol) K.(8) = P{ly - 2] < 3}

Piz -A -§ <yrA<4-A+e § }

(2 -A+G) - biz -A-S).,

The-event, "the nearest sample value to z isa Y" may be

classified into the n exclusive events, "the nearest sample

value to z2 is Y¥4y", i=1, 2, °**, ne By symmetry these

nm events are equiprobable. The event, "the nearest sample

value to z is Y," may be broken down according to the

distance from 2 to Yj. Thus,
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(4.5) Py(z) =n j fl -u( 8) Lh - x5i dk ( $ ).
0

Formulae (1.2) and (4.5) are the basis of all our compu-

tations for the "nearest neighbor rule," no matter what the

value cf p. If p>il, H,(8) and K,($) are not, of

course, given by the explicit formulae (1.3) and (4.4). Their

definition is analogous if one replaces pP{|x - z] <§ } by

P{the distance of X from z< $} in (4.3) and similarly

Pijy - z] < 3} by P{the distance of Y from z< $} in

(Lu). The specific evaluation depends then upon the distance

function used.

Aside from the case p=1, n=1, which is given ex-

plicitly by formula (l..1) with n=1, the bulk of the compu-

tation was carried out by straightforward numerical integration.

For pe=l, >

(2-4 8)° _ (2-7 an-d)
1 2 2

e + e ag .
vo

 
 

 aK ( 3) =

The values of H,(8), K,(3) and ak,(%) were taken from

tables [2] and [3]. In the calculation of P,(z) the fine-

ness of the mesh and the quadrature rule used depended to

some extent on the location of z. After the values of P, (2)

had been obtained, a finz1 uuvadrature (l.2) was effected to

obtain the value of Pj. The results given in table II were

computei in this war.
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The computations that led to the values recorded in table

II are quite heavy. This is especlally true in the bivariate

case, p = 2, with which we began computations, Therefore a

search for a simple and sufficiently accurate approximate

method was instituted. Of the numerous approximate formulae

tried, the following was the most successful. Let 9 denote

the distance from 2 at which the nearest sample value lies.

The conditional value of P,(z), given 3, may be seen to be

dk,( 3 )

1.6) pT et 8 (2,9)ito = gq Zs» °

\ dKe( 8 ) dHz( 3 )

1-K,(5) | T-HAC§)

 

 

It is notable that a(z, 2) is independent of n. The idea

of the approximation is that P,(z) may be replaced by its

conditional value, q(z, $*) where 9% is in some reason-

able sense an average value of $ . In order that aq(z,$ )

be an adequate replacement for P,(z), it is clear that 5*

will be a monotonic decreasing function of n. The function

of 5* which served best was arrived at by treating the

n observations from each poerulation as a pooled sample cf

size 2n. An average value of §$ wes thought to be cone

which would make the probability that at least one of the

combined sample values would fall within the prescribed 5

distance of 2 equal to the probability that a sample valus

would fall outside this prescribed distance, The value of
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%
,} for a given n was then chosen to satisfy the follow-

ing equations

 

{1-H,( $")} + {1-K,( §*)}
te a en -

{1-H,( 8 )} + {1-K,( $°)} 2

2

 (4.7) il ®

It was found easier to solve the above equation for the value

of n, say n™, corresponding to a given value of § . Then,

if q(z, ®9 ) is regarded as a function of n’, the value of

a(z,%) corresponding to a given n can be found by interpo-

lation, using Aitken's method. Table II was extended to larger

values of n in this way and the results are shovm in table

IIvA. Figure 3 is based on the combined data of tables II and

IIvA.

The approximation by means of (l.6) and (4.7) was developed

specifically for the bivariate case and it appears to be a better

approximation for small n under these conditions than in the

univariate case. Time permitted us to make only a limited search

for an approximation which would be more satisfactory for the

univariate normal distributions. It may be of some interest to

give the first terms of the expansion of (4.5). We are in-

debted to Mr. T. A. Jeeves of this Laboratory for bringing this

expansion to ourattention. In this connection, see [l] and

[5].
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Table IT

Probability of error, nonparametric discriminator

with k =1, univariate normal distribution
 

 

  

n Azl A=z=2 A=3

1 0175 02532 01235

2 1086 02364 108)

3 0.052 ¢ 2307 21036

My 1032 . 2280 oLOL

Table II-A
Approximate probability of error, nonparametric discriminator

with k= 1, univariate normal distribution
 

 

 

n Az=1 A=2 A = 3

My 03 2226 ~102

5 01 0225 2100

10 © 399 © 223 .098

20 » 398 6 22h 098

50 © 398 0225 .098

00 ° 398 0225 2098  
n = size of sample from each population

A = distance between the means of the two populations

k = odd integer such that Z is assigned to that population from

which came the majority of the k nearest observations--

k = 1 is the "rule of nearest neighbor."

Probability of error = P{Z is assigned to G|Z came from F}

= P{Z is assigned to G/IZ came from G}

(see formulae 4.2 - 4.5)

Distance function = A (x,2z) = |x -2|
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>

5 F

ee

4 -

A=1

wud om ~—

cP A=2

-—~—_

a | ~ ee

A= 3

¢ Std tp ttt
1 2 J 5 10 20 30 50 100

1%

Figure 3

Probability of error Ps of the nonparametric discriminator,

with (Vas distance function,for two univariate normal dis-

tributions with distance between means = a. n = size of

sample from each population. k = 1, the rule of nearest

neighbor. --- indicates the optimum likelihood ratio

procedure.
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dK, (0)

dH, (0 )+dK, (0)
 Py (2) =

1 GH, (0)dK, (0) [aH (0)-dK,(0)]
 

 
 

 

8 [aH,(0)+aK,(0)]°

3 . 31 aK, (0)dH,(0)-aK,(0)d7H, (0)
+.

n@ (dH, (0)#dK,(0)]> dH, (0)+dK, (0)

| 2. A). dH, (0)aK, (0) [dH (0)-aK,(0)] [(dx,(0)) an, (0)aK, (0)+(dK, (0) )*
2

(dH, (0)+aK,(0)] 3

+ o(n™?),

The limiting value for n-»o may be approached in another

way. When n is large, § will be small, so that in the limit,

dK, (0) g(z)Py(2) will simply be a(240) = soaToy = Heyealey?
 
 

where f and g are the density functions corresponding to

F and G, respectively. This argument is quite general: for

 
 

large n,

CO

w g(Z) _ f(z)g(z)
PLE g(Z)+f(Z)] — f(z )+g(z) az.

“CO

Simple application of Schwartz's inequality shows the lat-

ter integral to be at most 1/2. We can thus assert that,
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whatever be thepopulations being discriminated, the "rule

of nearest neighbor" will have in the limit, as m=n-—->o,

equal probabilities of error at most 1/2. While this remark

is of no practical interest, it is theoretically interesting

because the "optimum" maximum likelihood rule, “assign Z

to that population with the larger density at 2," possesses

no such nontrivial general bound on the individual probabili-

ties of error.

“he easiest and most vivid method of comparinz the figures

of tables I, II and II-A is graphically. Therefore, in figure

1, the probabilities of misclassification for paired values

of A are plotted against n while figure 5 shows the same

values plotted this time against A for selected values of

n. I: seems needless to discuss the graphs at length since

in any practical case the experimenter must make up his mind

whether or not the simplicity of operation given by the non-

parametric discriminator makes up for the loss of efficiency.

In the univariate case the question seems somewhat pointless

since the linear discriminant function is easy to compute

and also it is little work to derive its performance charac”

teristic. The univariate investigation was undertaken for

the sake of completeness of presentation and because it pro-

vides a simple case on which to illustrate the use on non-

paramstric discriminators,

Yext to the "rule of nearest neighbor," the simplest

nonparametric discriminator is obtained by setting k = 3

and using the "rule of two out of three," that is, assign
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to that population from which came the majority of the

nearest three observations in the pooled samples. For finite

n, the problem of misclassification reduces to the following.

 

 

 

 

 

  
 

.5

PF

tk

A=1

SJE

2 A=2

1e
A= 3

0 | | Li tp i. j Lode ft tf

1 ge 3 5 10 20 36 50 100

Fi.,<ure }, m

Comparison of the probability of error PS as a function

of n for the linear discriminant funetion and the non-~

parametric discriminator, distance function =A, k=l,

for two normal univariate populations with distance between

means = A. n = size of sample from each population.
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Let Xi» Xo» X4 denote the values obtained from F and Yu;

Yos t3 the values from G. Then the conditional probability

that two of the three values nearest to Z% will be yYts

given that Z belongs to F and Z=z is

  

J

Pp NX

\

i \

4\- \

\
‘N

N

\

gr \
\ ,

N
.*

2 \
‘

N

\

\

Lr ‘\

NX
\
™ ~ mal

J mee
0 i | ! I

0 L 2 3 Xr 4

Figure 5

Comperison of the probavility of error Ps as a function of

A , the distance between the means for the linear discrimi-

nant function and the nonparametric discrimnator, distance

function = A, k =1, for two normal univariate populations

n = size of sample from each population. n=1 is identical

for both. --- indicates the nonparametric procedure.
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pi?) (2) = 6P{all Y's and X, are nearer to z than X5 while

X3 is farther from z than X5}

+ 18P{Y,, Yo, X, are nearer z than X, while x
1 3

and ¥3 are farther from z than Xp}

OO

-6 | eS) (5) DB - HS) an,(5)
0

OO

+18 \ (3) H(3) B-#(S))R-«,(3)] and).
O

Then, as before,

py?) = wfph?’(2)].

(3)
PiAs n—o, may be shown (the argument is similar

to the one used when n—»oo, k = 1) to approach

0O

2
p63) _ [e(z)]° + 3fetz)]° fiz)3
 f(z) dz.

(F(z) + e(z)]-

forIt is noteworthy that as n—»oo, the value of py?)

fixed values of k, however small, are independent of the

dimensionality p of the sample space,

From this formula, the middle column of table III was

computed. Corresponding results from tables I and II-A are

repeated for comparison. As shown in [1], as n—»oo and
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k—»o. (more slowly, however, than n), the linear dis-

criminant function and the nonparametric discriminators have

a common limiting behavior, shown in line three of table III.

Thus, for A = 2, peH=dl, and large n, the "rule of two out

of three" has a 19.2 per cent chance of misclassification as

against 15.9 per cent for the optimum, Figure 6 illustrates

these results graphically.

Table III

Limiting probabilities of error as n—yOO,

for the p-variate normal distribution
 

 

 

 

  

“4 k=1 k = 3 k = 0

0 500 «500 500

1 2398 . 368 » 309

2 0225 0192 0159

3 2098 080 ~ 067

y 03 .027 023

5 . 009 .007 .006

n= size of sample from each population a

s: Gistance between the means of the transformed

populations

k = odd integer such that Z is assigned to that

population from which ad caine the majority of

the k nearest observations.

Probability of error = P{Z is assigned to G|Z came from F}

= p{Z is assigned to F|Z came from G}.

Ths probability of error for n large is independent of Pp.
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5. Bivariate normal distribution

 

For p = 2, we have employed methods analogous to those

described in section 1, to obtain the probabilities of error

for the nonparametric discriminators with k=l; A=1, 2, 33

 
= ~~

nn “SS
“SZ

|

4

 
Figure 6 A

Limiting, probabilities of error Py as ny the size of

sample from each population, —»oo, for two p-variate

normal distributions. Distance function = {\, k =

number of nearest individuals on wnich the nonparametric

procedure is based.
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and n= 1, 2, 3, 4, 5, 10, 20, 50, 00. ‘The results are sun-

marized in table IV. All finite values of n>kh were obtain-

ed by the approximate method discussed in the last section. A

comparison of the values obtained by numerical integration

with those given by the approximation are shown in table IV7A.

To enable the reader to get a clearer picture of the

change in probabilities of misclassification with a change in

A, figure 7 shows the values of table IV plotted against A.

Unfortunately we do not have available the comparable

figures for the linear discriminant function. However, as a

measure of the efficiency of the nonparametric discriminators

we have included the optimum limiting behavior to which both

the nonparametric discriminator and the linear discriminant

function tend.

>

6. k= 3 for the univariate and bivariate normal distributions
 

 

As k is increased the computations become much more la-

borious, so much so that the actual numerical integrations were

carried out in only a very few instances for the "two out of

three rule." The following method may, however, be used to

> an .

estimate the effect of k = 3 Het us consider an al terna~

ative discriminator which we shail denote as (r, ni’, kt). Sup-s

pose k=rk! and n=prpnt, partition the en sample values

at random into r sets of <czrn' each and for each set observe

the population-orrorigin of the majority of the k'! obser-

vations nesrest to Z% Assign # toe that sopulation whose

elements are in the majority for 9a majority of the r_ sets,

It is easy to show thet this discriminator will determins the
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Table IV

Probabilities of error, nonparametric discriminators,

k = 1, bivariate normal distribution

 

 

 

 
 

n A = ] A= 2 A = 3

1 e 35 e 2 0157

2 “133 "585 0135

0423 259 0125
r 120 0252 «120
5 0417 «250 0117

10 e411 e2ho o10
20 "106 023 ~10
50 e402 0230 2100
00 - 398 0225 098

Table IV-A

Comparison of the values obtained by numerical integration

with those obtained by the approximate method

 

 

 

numerical a
n A integration approximation

1 1 eee 4370
1 2 Stes ~2951
2 2 .2 22 ecfel
if 2 025 ©2012

1 3 e1572 ~1560 
 

n = size of sample from each population

A = distance between the means of the transformed populations

Probability of error = P{Z is assigned to F|Z came from G}

= P{Z is assigned to G|Z came from F}

k = odd integer such that Z is assigned to that population

from which came the majority of the k nearest obser-

vations. k=1 is "nearest neighbor rule."

Distance function = 4 = max {Ix, - 2,1, [x5 - 25]}
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5

P,

oo

A =i

3k —

2 t A=2

i on on
A=383

0 4 oe| L I cer eee beefiamalamanl

1 2 J 5S 10 20 30 50 100

(ve

Figure 7

Prooabilityv of error P of the nonparametric discrimi-
1

netor with A as distance function, for two bivariate

nornal distributions with distance between means = A °

n = size of sample from each population. k =1, the

rule of nearest neighbor. --- indicates the optimum

likelihood ratio procedure.
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Assignment of Z on the basis of observations less close to

Z than would be the case if we employed the ordinary dis-

criminator using the k closest of the entire sample of én.

Hence it is intuitive that the probabilities of error of

(r, nt, kt) will exceed those of the usual rule (n,k). We

do not know a proof of this, however,

The computation of P, for (r, n', kt) once Py has

been obtained for (n!, kt) is relatively easy. For fixed

Zz, the r sets can be regarded as r independent trials

each with constant probability P3(z) for (n't, k') of suc-

cess (success is here defined as the event that Z will be

misclassified), The values of Pj(z) for (r, nt, k!) can

then be found from the tables of the binomial distribution [6].

Tables V and VI give the results for the univariate and

bivariate normal distributions, respectively. The first line

in table VI has the values calculated for the two out of three

rule. The second line gives the probability of error when a

sample of three observations from each population is considered

as a set of three independent trials and the individual Z is

assigned to that population in which the majority of the trials

placed him. One notices that while the corresponding proba-

bilities in the two lines are extremely close the figures bear

out onets intuition mentioned above. The tables have been ar-

ranged so that comparison between different uses of the same .

total number of individuals in the sample will be convenient

and an idea of the most erfective discriminator (r, n't, k!)

can be obtained, The same results are illustrated graphically

in figures 8 and 9.
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Table V

Probabilities of error, nonparametric discriminator,

univariate normal distribution

 

 

 

 

 

n Yr nt k! A=1 A=2

3 1 3 1 LOS © 231

3 3 1 1 385 e203

9 9 1 1 ° 345 0173

LO 1 10 1 ¢ 399 0223

29 29 1 1 o 32h 16)

50 1 50 1 © 398 0225

n = total size of sample from each population

r ‘= number of sets in the partition of the total sample

n' = size of each of the r sets; n=n'r

k! =] = rule of nearest neighbor

A = distance between the means of the transformed

populations

Probability of error = P{Z is assigned to G]Z came from FP}

P{Z is assigned to F]Z came from G}

A.Distance function =
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Table VI

Probabilities of error, nonparametric discriminator,

bivariate normal distribution

  

 

 

nooP nt kt Az1 Az=2 A = 3

3 1 3 3 08 6238 ~110

3 3 1 1 h.08 0 239 0112

15 1 15 1 ~.08* 236"

15 3 5 1 © 286 ~207

15 5 1 0375 ~198

15 15 1 353" 188%

5 5 1 1 0 391 2218 096

12 3 1 389 6209 ~090

29 29 1 1 » 332 018)

30 3 10 1 © 379 6201 083

150 3 50 1 371 0195 .077
 

n = total size of sample from each population

r = number of sets in the partition of the total sample

nt = size of each of the r sets; n=ntr

kt =] = rule of nearest neighbor

k!' = 3 = rule of two out of three

a I distance between the means of the transformed populations

Probability of error = P{Z is assigned to G|Z came from F}

= P{Z is assigned to F|Z came from G}

Distance function = A.

3%

The starred values were read from graphs
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5

F,

;- {> 1

kK =1

{* =4

a oe
~— A =

 

 

=2- K =4oe

A =2

Ju =m

| { | | | | | |

1 2 J S 10 20 30 50 100

 
Figure 8

Probability of error Piof the nonparametric discriminatoy,

distance function = A, fortwo bivariate normal populations

with distance between means = A. n = size of sample from

each population. k = k' =1l1 andre=z=#lfork=1; re=n

for k' =1. --- indicates the optimum procedure.
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_. sare[ k-2
2 I—-

Az2
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Figure 9

Probability of error p of the nonparametric discriminator,
1

distance function = Q , for two bivariate normal distri-

butions, r=1 with k'=1 and r=n with kt=1,
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7e Alternative distance functions for the normal bivariate
 

distribution
 

The dependence of P,; on the distance function was empha-

sized in section 3. The numerical results which are given in

this section are intended to show the magnitude of the effect

on P, of certain moderate changes in the distance function,

During the computations which are reported in section 5,

we noticed that the value of P,(0,0), the conditional proba-

bility of error given that Z is at the origin ( the ex-

pected position of 2Z), was remarkably consistent with the

value cf Py. Since we felt that it would be more worthwhile

to survey a larger area of problems than to concentrate on

the complete answer to one, we decided to make use of the fact

noted above and to recalculate the values of P3(0,0) for

various distance functions. In table VII, the values of

P,(0,0) and P, are given, together with the difference

P7 - P3}(0,0). The fourth column gives and approximation for

P, obtained by adding a crude correction term to P,(0,0),

namely,

iL 5 - P,(0,0)

3 A /2 ,
 

o5 being the value of P,(A/2, x5). It is our belief that

the order of the magnitude of the change in Py with the

change of distance function will be shown by the effect of the

distance function on P,(0,0).
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Table VII

Comparison of the probabilities of error P, with the

 

 

 

   
 

conditional probability of error P1(0,0) given that

Z is at the origin. Nonparametric discriminator,

normal pevariate distribution, p=1, ¢, k =1, 3.

A=l1, p=d, k=l A=2, p=e, k=l)

n P, P(0,0) D Py P, P,(0,0) D Py

1 435 2392 eOWmh Oh .292 86.18% 6108S, 289
2 29 5 385)—Ct—i‘«CA (eCA 220900189 2Si«wd1210S—s—=Fe2T

23 383) OWs—“‘iéiwdI W259) Si«wd10~—S—s«w2
r e420 326, 382-—i—‘«w38~—S iwi| «W252 W142 W110 ~—S—«w 261
5 oH17 362381i 036~—S—(iBO 625000 w13902—Sts—i«isdTLLC ;$si«C«i«wés 28

10 11 ©=6.379—S-«w032~—St—ié«CWCWBO CW 2HKO 2=C1302=S—i«wWd110——s‘=*"»n2'53
20 06 836.37 2027 ~3=—o60 6234026125 2St—i«w2109~Sts—«w' 250
50 02 5 37 o2h .4S59 .230 .121 #&2«.210 0247
00 2398 =©=.378 «=.020)~—Cli«wSS «222502=Ctéi«w«z2119—Ss—«“<*1 o2h6

A=1, p=2, k=3 A=2, p=2, k= 3

3 08 §=.339 «6 069tt—‘=—tWWKG «2238 6088S Ci«wWd150 Sw 225

A=3, pz=2, k=l1 A=1, pe=l, k=1

1 0157 =. 0512S iw 1106S 151 08) Sw 365 Siw53S SS
2 2135 .027 .108 .132 09) |=. 365 *O3 “tee
? 125 3=6.02h 6102S 130 '|:«~W0 2367 3=.038~—i56

120 .021 .09 212 e103 «6308 ~=S035~—Stsé«CSWYSG
5 -117.— .019”S—s‘=«w' 0D) 012 o4Ol .369 86.032 ~—Sw6

10

|

6109 .015 09) .123

|

.399 .373 .026 «458
20 .10 0013, «O91 «121

«|

«2398

)~=

6 375)—Sss«iw 023Sts«wWB
50

|

.100 .,012 .088 .120

|

.308 .376 .021 8.59
00 2098 .011 .087 .120

|

.398 .378 .020~ .ks59
A=3, p=2, k= |

3 110 .007 4.103 #.117

A=2 p=, k=l] A= 3, p=l1, k

1 0253 145 .108 .263 .12 20 0090),
2 "336 0125 .112 «.250 .10 *Oi8 080 "13
A 0231

~—S

iw 11 e112

0

6 2h6

|

«610k

)=S

015g 08N—s=8g 123
! 228 .11 elll .2hh 6101) 023) 088 S121
5 0225 =6.115 =, 10 e243 .09 0912 6 087)~S—«W 120

10 022 o115  ~=.10 eel 209 0O1l .087 =. 120
20 022 e116 e108 e Mi 2998 eOll 087 ~120
50 -225 .119 1.105 .oh 0098 .011 .088 #£.120
Oo 0225 2.119 +.106 .2h6 .098 .011 4.087 .120

D= Py ~ Pi(0,0)

nw 2[.5 -
Py = P, (0,0) + [65 Py(0,01]

| 3
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In selecting the alternative distances, we had in mind

that, in general, we were dealing with a transformed space

and were interested in the effect on the probability of

error if “AV itself were used as a distance function in the

original space. The distance functions chosen are as fol-

lows. The definition of A is repeated for the sake of

completeness,

N(1) A [(x,,%5),(2,,25)] = max {|x, - z,],1x, - 25[}-

The locus of points at a given distance from z is a square,

centered at z, with sides parallel to the axes.

 

2 ye
(ii) A, [(%1>%5)(245%)] = Vix - 24) + (x. - Ze

Thus A, is ordinary Euclidean distance (perhaps a more

natural distance function than “A ). The locus of points at

a given distance from z is a circle centered at 2.

(ii1) A, U(x,559 (245%2)] = max {|x, ~ ZI, 3|x., ~ Z5 |}.

The locus of points at a given distance from 2 is a recm~

tangle centered at, z2 whose sides are parallel to the axes

and in the ratio of one to three,

(iv) A ,[(x)5%2)s(2422%2)] = max (31x, - 21,1" ~ 22!)

The locus of points at a given distance from z2 is a rec~

tangie centered at 2 with sides parallel to the axes and in

the ratio of three to one.
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Distance functions A > and A 3 are the transforms

if the original distributions is independent normal bivariate

but the variances of the two measurements are unequal.

(v) Distance functions denoted ty A ( p =a). The

locus of points is a square centered at z but whose sides

are not parallel to the axes. The values of P are a=

.25, 50, .75. This is the transform of A if the original

distribution is joint normal bivariate with the two variates

having unit variances and covariance = Ps

The comparison of values of P,(0,0) for the various

distance functions is given in table VIII and in figure 10.

It will be seen that for all practical purposes it makes no

difference whether 4 or A, (Euclidean distance) is used,

However, the effect of the other distance functions is mark-

ed. This bears out the statement made previously that a

burden is placed upon the statistician for selecting the ap-

propriate distance function,

5. p = 2 for the p-variate normal distribution
 

This section is an attempt to give an indication of the

influence that an increase in p, the number of dimensions of

the sample space, will produce on the probability of misclassi-

fication. We have again computed only “he conditional proba-

bility P,(0) for 2 at the origin. Two alternative dis-

tance functions were used, namely,
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Table VIII

Probabilities of error, nonparametric discriminator,

normal bivariate distribution, k= 1,

 

An Px(0,0) Py Py(0,0) Py Py(0,0) B, P,(0,0) Fy
 

L 2 2392) 4435 6.389) 63

2 i. .18) .292 1.18) .289 6.383 4he2 6416) 6.22
2 2  .300 5e9 © 300 a ie “oe?
2 3 625 0259 25 ©33002=— 6 123Sts«s 207
2 it. ,22 252 22 0317 eo 122—SCti«‘«@s 2206

3 dt .051 #.157 +.053 .152

A=A(p=0) Alp=.25) O(e=50) Alp =.75)

2 ek4 18h, +292 0179S (iw 286—(‘<iCSSCOCiWwTTCCOid37~—SCtiw 258
2? .159 .269 86.152 6.268 8.129) «©6.6253)Cl«w O8kti«iw‘2
§ = LUI 259~=C iw 1H0'ti‘«‘“GO C«CIS CC 062 «.208
i and 3282 2133 lass fio2 2236 Iolig 199

A = distance between the means of the transformed populations

n = size of sample from each population

k = |. = nearest neighbor rule

P1(0,0) = conditional probability that for 2 at the origin,

Z Will be misclassified

P) = probability of misclassification

n

P, = rough estimate of PP}. The figures to be compared are

the P, (0,0)

Distance functions Z\'s are as defined in the preceding

paragraphs
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Pp

A [(xy, 2%, 2190892, 1) ~ To Ix, " 25 |

and

 

2
A (xyy eee e%),(24098422,)) = 2 (xy By)

and the computations were carried out for n=1, k=l.

The results are shown in table IX and figure ll. As one

would expect the results depend rather heavily on the dimen-

n
v

 

 

   
 

=3
m= 4

0 — j j } L } j

1 z 3 4 0 25 50 75

w Se

Figure 10

Prooability of error P of nonparametric discriminator for
1

two bivariate normal distributions with distance between the

means equal to e for various distance function. n2=k =1.
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Table IX

Conditional probabilities P1(0,0) of error given that

Zis at the origin, nonparametric discriminator, normal
pevariate distribution, n=1, k=1

 

 

Az] Az=2 Az 3

2 . 36° .18 .18 .053
: fa +226 1238 O83

® oe ®@ eLO

10 288 See °
 

sionality of the space when n is fixed. Admittedly, this

is a most cursory glance at the situation for p dimensions.

The fact that the figures refer to n=1, k= 1, means of

course that the figures have no practical value. Neverthe~

less, we decided to include them since it seemed that the

behavior in this simplest case might provide some indication

of what might be expected as the dimensionality p is in-

creased.

9. Conelusion
 

 

The choice betweenparametric and nonparametric rules

will in any given situation depend upon (i) the strength of

the statisticiants belief in his parametric model, (ii) the

loss he would suffer by using the nonparametric rule if in

fact the parametric form is correct and (iil) the loss he

woult, suffer by using the parametric rule if the actual den~

sities depart from the parametric form assumed, In fa], it

was uscertained that if the sample size increasesand at the
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same time the number of nearest neighbors on which the non-

parametric procedures base its decision is increased but

more slowly than the sample size, then in the limit the

probabilities of error will be those of the optimum likeli-

hood ratio rule whatever the population densities, However,

 

 
 

PB

-F F

A=1

SF
A=2

er

A=3
ir oo

0 j } | | l | l i \

0 2 4 6 8 10

Figure 11

Probability of error PS of nonparametric discriminator,

distance function =4, for two p-variate distributions

with distance between the means =A > neil, kel.
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the matter of greatest practical interest is the performance

of the rules when the samples are small,

In this paper, we have been concerned with (ii) for the

special case of greatest interest, the linear discriminant

function, We succeeded in finding the probabilities of mis-

classification for some nonparametric procedures. However,

the ccmputation of the performance characteristic of the

linear discriminant function proved to be too lengthy. It

would be of extreme value, especially when one thinks of the

wide wse to which the linear discriminant function is put if

its probabilities of misclassification in representative situ-

ations would be tabulated.

Jn summary, let us indicate the nature of the situations

in which a nonparametric discriminator may be preferable to

the linear discriminant function, and conversely. If the

populations to be discriminated are well known, and have been

investigated to establish that the normal distribution gives

a good fit and that the variances and correlations do not

change much when the means are changed, and if the classifi-~

cation to be made warrants the labor of matrix inversion,

then the linear discriminant function should certainly be

used. If on the other hand, the populations are either not

well Imown, or are known not to be approximately rormal, or

to have very different covariance matrices; or if the discrimi~

nation is one in which small decreases in probability of error

are not worth extensive computations, then the simple non-

paramatric rule, perhaps with k = 3, seems to have the edge.
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THE USE OF MULTIPLE MEASUREMENTS IN
TAXONOMIC PROBLEMS

By R. A. FISHER,Sc.D., F.R.S.

I. DISCRIMINANT FUNCTIONS

Wuewn two or more populations have been measured in several characters, 2, ..., 2,,

special interest attaches to certain linear functions of the measurements by which the

populations are best discriminated. At the author’s suggestion use has already been made

of this fact in craniometry (a) by Mr E. S. Martin, who has applied the principle to the

sex (differences in measurements of the mandible, and (6) by Miss Mildred Barnard, who

showed how to obtain from a series of dated series the particular compoundof cranial

measurements showing mostdistinctly a progressive or secular trend. In the present paper

the application of the same principle will be illustrated on a taxonomic problem; some

questions connected with the precision of the processes employed will also be discussed.

Il. ARITHMETICAL PROCEDURE

Table I shows measurements of the flowers of fifty plants each of the two species Irss

setosa and I. versicolor, found growing together in the same colony and measured by

Dr I!. Anderson, to whom I am indebted for the use of the data. Four flower measure-

ments are given. Weshall first consider the question: Whatlinear function of the four

measurements X =),+ AgVg t+ Agvy+ AgX%

will maximize the ratio of the difference between the specific means to the standard

deviations within species? The observed means and their differences are shown in TableIT.

Wemayrepresent the differences by d,, where p= 1, 2, 3 or 4 for the four measurements.

The sums of squares and products of deviations from the specific means are shown in

Table III. Since fifty plants of each species were used these sums contain 98 degrees

of freedom. We may represent these sums of squares or products by S,,, where p and ¢

take independently the values 1, 2, 3 and 4.

Then for any linear function, X, of the measurements, as defined above, the difference

between the means of X in the two speciesis

D =), dy + Agdy + Agdg+Ah,

while the variance of X within species is proportional to

4 4

S= 5 BAAS»:
p=lgq=1

The particular linear function which best discriminates the two species will be one for

Reprinted with permission from Ann. Eugenics, vol. 7, pp. 179-188, 1936.
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MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS

Table Il. Observed means for two species and their difference (cm.)

 

 

    

Versicolor Setosa Difference (Vv —S)

Sepal length (2) 5-936 5006 0-930
Sepal width(9) 2-770 3-428 — (0-658
Petal length (.r3) 4-260 1-462 2-798
Petal width (x4) 1-326 (0-246 1-080 
 

Table TIL. Srams of squares and products of four measurements, within species (cm.?)

 

 

     

Sepal length Sepal width Petal length Petal width

Sepal length 19-1434 9-0356 09-7634 32304
Sepal width 9-0356 11-8658 4-§232 2-4746
Petal length 9-7634 4-6232 12-2978 3°8794
Petal width 32304 2-4746 38794 2-4604

 
 
which the ratio D2/Sis greatest, by variation of the four coefficients 4,, A,, Az and A,

independently. This gives for each A

cD cS)

 

D
— 28 — — =(),| Say P aay

1 aS Sep
or DOAD eX’

where it may be noticed that S/D is a factor constant for the four unknowncoefficients

Consequently, the coefficients required are proportional to the solutions of the equations

Si Ay + SyaAq + Sigds + SigAg= Gh,

Siod, + SopAg t+ SagAg + So4 Aq = de |

SygAy + Sigg Ag + Sigg + Szgq = 43;

Sekastse

If. in turn, unityis substituted for each of the differences and zero for the others, the

solutions obtained constitute the matrix of multipliers reciprocal to the matrix of S;

re (1)

numerically we find:

Table IV. Matrix of multipliers reciprocal to the sums of squares and products

within spectes (cm.—*)

 

 

    

Sepal length Sepal width | Petal length Petal width

Sepal length Q-1187161 — 0-0668666 | —0-0816158 ()-0396350

Sepal width — 0-(1568666 (:1452736 0-0334101 — 0-1107529
Petal length —(0-0816158 0-0334101 0:2193614 —2720206

Petal width 0:0396350 — (1107529 — (2720206 0-8945506 
 

‘These values may be denoted by s,, for values of p and q from 1 to 4.
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Multiplying the columns of the matrix in Table [IV by the observed differences, we have

the solutions of the equation (1) in the form

A= —0-03811511, A,= —0-1839075,  Ag= +0:2221044, Ay= + 0:3147370,

so that, if we choose to take the coefficient of sepal length to be unity, the compound

measurement requiredis

X=, + 5-9037.r, — 7-1299.25 — 10-1036a4.

If in this expression we substitute the values observedin sefosa plants, the mean, as found

from the values in Table I, is

5-006 + (3-428) (5-9037) — (1-462) (7-1299) — (0-246) (10-1036) = 12-3345 em.;

for versicolor, on the contrary, we have

5-936 + (2-770) (59037) — (4-260) (7-1299) — (1-326) (10-1036) = — 21-4815 em.

The difference between the average values of the compound measurements being thus
33-816 cm.

The distinctness of the metrical characters of the two species may now be gauged by
comparing this difference between the average values with its standarderror. Using the
values of Table III, with the coefticients of our compound, we have

19-1434 + (9-0356) (5-9037) — (9-7634) (7-1299) — (3-2394) (10-1036) = — 29-8508,
9-0356 + (11-8658) (5-9037) — (4-6232) (7-1299) — (2-4746) (10-1036) = 21-1224,
9-7634 + (4-6232) (5-9037) — (12-2978) (7-1299) — (3-8794) (10-1036) = — 89-8206.
3-2394 + (2-4746) (5-9037) — (3-8794) (7-1299) — (2-4604) (10-1036) = — 34-6699,

andfinally,

— 29-8508 + (21-1224) (5-9037) + (89-8206) (7-1299) + (34-6699) (10-1036) = 1085-5522.
The average variance of the two species in respect ofthe compound measurements may
be estimated by dividing this value (1085-55522) by 95; the variance of the difference
between two meansoffifty plants each, by dividing again by 25. For single plants the
variance is 11-4269, so that the mean difference, 33-816 cm., between a pair of plants of
different species has a standarddeviation of 4-781 cm. For means of fifty the same average
difference has the standarderror 0-6761 em., or only about one-fiftieth of its value.

III. INTERPRETATION

The ratio of the difference between the means of the chosen compound measurement
to its standarderror in individual plants is of interest also in relation to the probability
of misclassification, if the specific nature were judged wholly from the measurements.
Forreasonsto be discussed later we shall estimate the varianceof a single plant by dividing
1085-5522 by 95, giving 11-4269 cm.? for the variance, and 3-3804 cm. for the standard
deviation. Supposing that a plant is misclassified, if its deviation in the right direction
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exceeds half the difference, 33-816 cm., between the species, the ratio to the standard as

estimated is 5-0018.

The table of the normal distribution (Statestical Methods, Table II) shows that a ratio

489164 is exceeded five times in a million, and 5-32672 only once in two million trials.

By logarithmicinterpolation the frequency appropriate to a ratio 5-0018 is about 2-79 per

-million. If the variances of the two species are unequal, this frequency is somewhat

overestimated by this method, since we ought to divide the specific difference in proportion

to the two standard deviations, and for constant sum of variances the sum of the standard

deviations is greatest when they are equal. We may, therefore, at once conclude that if

the measurements are nearly normally distributed the probability of misclassification,

using the compound movement only is less than three per million.

The sameratiois of interest from another aspect. If the chosen compound X is analysed

in respect to its variation within and between species, the sum of squares between species

must; be 25/22. Numerically we have, therefore,

Table V. Analysis of variance of the chosen compound X,

between and within species
 

Degrees of t

um of
freedom Sum Squares
 

 

Between species 4 28588-05
Within species 95 1085-55

Total 99 29673-60    
 

Of the total only 3-6583 per cent. is within species, and 96-3417 per cent. between species.

The compoundhas been chosen to maximize the latter percentage. Since, in addition to

the specific means, we have used three adjustable ratios, the variation within species

must contain only 95 degrees of freedom.

Ii making upthe variate X, we have multiplied the original values of A by — 32-1018

in order to give to the measurement sepal length the coefficient unity. Had we used the

original values, the analysis of Table V would have appeared as:

Table VI. Analysis of variance of the crude compound X,

between and unthin species
 

 

 

Degrees of Sumof
freedom squares

Between species 4 27-74160 = 25D?

Within species 95 1-05341 = D=S

Total 99 28-79501 ° D(1+25D)       
Cn multiplying equations (1) by A,, A,, A; and A, and adding, it appears that

S = YAd = D,the specific difference in the crude compound X. Theproportion (3-6 per cent.)

of the sum of squares within species could therefore have been found simply as 1/(1+ 25D).

EUGENICS VII, I 13
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IV. THE ANALOGY OF PARTIAL REGRESSION

The analysis of Table VI suggests an analogy of some interest. If to each plant were

assigned a value of a variate y, the same for all members of each species, the analysis of

variance of y, between the portions accountable by linear regression on the measurements

Hy. se6, 44, and the residual variation after fitting such a regression, would be identical

with Table VI, if y were given appropriate equal and opposite values for the two species.

In general, with different numbers of representatives of the two species, n, and n,, if

the values of y assigned were Me and 7.

Ny+Ns Ny + Ng’

differing by unity, the right-hand sides of the equations for the regression coefficients,
corresponding to equation (1), would have been

NN»

Nytng ®’

where d,, is the difference between the means of the two species in any one of the measure-
ments. The typical coefficient of the left-hand side would be

Transferring the additional fractions to the right-hand side, we should have equations
identical with (1), save that the right-hand sides are now

"2 4a (ydtm oI ENA),
where J’ stands for a solution of the new equations; hence

N= -"1"2. (1 _ ytd) d,
aN,

multiply these equations by d and add, so that

Ud="2 yAd (1 ENA),
N+ Ng

or (1—E)'d) (.4ee =a} =1,
Ny + Ng

, r,7 oIand so in our example 1—2XA'd= 1425D"

The analysis of variance ofy is, therefore,

Table VII. Analysis of variance of a variate y determined exclusively by the species
 

 

  

Degrees of Sum of
freedom squares

Regression 4 | 24-0854 25?D/1+25D
Remainder 95 0-9146 25/1+25D

Total 99 25-0000     
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The total S (y?) is clearly in generala ; the portion ascribable to regressionis
1t

2MMe syG— 252D

My + Ne ~ 1425D°
In this method of presentation the appropriate allocation of the degrees of freedom
is evident. |
The multiple correlation of y with the measurements 1, +++, %q 18 given by

R? = 25D/14+ 25D.

V. TEST OF SIGNIFICANCE

It is now clear in what mannerthe specific difference may be tested fcr significance, so
as to allow for the fact that a variate has been chosen so as to maximisethe distinctness of
the species. The regression of y on the four measurements is given 4 degrees of freedom,
and (the residual variation 95; the value of z calculated from the sums of squares in any
one of Tables V, VI or VII is 3-2183 or

s (log 95 — log 4+ log 25 + log D),
a very significant value for the number of degrees of freedom used.

VI. APPLICATIONS TO THE THEORY OF ALLOPOLYPLOIDY

W': may now consider one of the extensions of this procedure which are available when
samples have been taken from more than two populations. The sample of the third species
given in Table I, [ris virginica,differs from the two other samples in not being taken from
the sume natural colony as they were—a circumstance which might considerably disturb
both the mean values and their variabilities. It is of interest in association with I. setosa
andi. versicolor in that Randoph (1934) has ascertained and Anderson has confirmed that,
whereas I. setosa is a ‘‘diploid”’ species with 38 chromosomes,I. virginicais “tetraploid ”’,
with 70, and J. versicolor, which is intermediate in three measurements, though not in

sepal breadth, is hexaploid. He has suggested the interesting possibility that I. versicolor
is a polyploid hybrid of the two other species. We shall, therefore, consider whether, when
we use the linear compoundof the four measurements most appropriate for discriminating
three such species, the mean value for J. versicolor takes an intermediate value, and, if so,

whether it differs twice as much from I. setosa as from J. virginica, as might be expected,

if theeffects of genes are simply additive, in a hybrid between a diploidand a tetraploid
specics.

If a third value lies two-thirds of the way from one value to another, the three deviations
from their comnion mean must be in the ratio +: 1:—5. To obtain values corresponding
with the differences between the two species we may, therefore, form linear compounds of
their mean measurements, using these numerical coefficients. The results are shown in
Table VIII where, for example, the value 7-258 cm. for sepal length is four times the mean

13-2
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sepal length for J. virginica plus once the mean sepal length for /. versicolor minus five

times the value for /. sefosa.
Table VIII

 

Means s pa

Iris virginica, Fitty plants

 

   

6-588 14-8128 $5944 14-8612 24056

2-974 4-544 53-0062 3-4976 2-3338

5-552 . 14-8612 34076 14-9248 92-3024

2-026 2-4056 23338 92-3024 3-6962

 

Iris versicolor, Fifty plants

 

   
 

    
 

 

5-936 iB0552 | 417400 89620 92-7332
2-770 41740 48250) 4-054) 2-0190
4-260) $9620) 4-0500 10-8200 3820

1-326 2°7332 2-O190 35820 1-9162

(ris setosa, Fifty plants

3°006 6-O882 48616 0-8014 00-5062

3°428 48616 70408 ()-5732 0-4556

1-462 08014 0-5732 1-4778 0-2974
()-246 0:5062 0°4556 0-2074 ()-5442

4ri 4 ve — Sse

7:258 482-2650 190-2244 266-7762 53-8778

— 2-474 199-2244 262-3842 74:3416 50:°7408
19-158 266-7762 74-3416 286-5618 49-2054
8-200 53°8778 50-7498 49-2054 74-6604       
 

Since the values for the sums of squares and products of deviations from the means

within eachof the three species are somewhatdifferent, we may make an appropriate matrix

corresponding with our chosen linear compound by multiplying the values for /. virginica

by 16, those for J. versicolor by one andthose for /. setosa by 25, and adding the values

for the three species, as shown in Table VIII. The values so obtained will correspond with

the matrix of sums of squares and products within species when only two populations

have been sampled.

Using the rows of the matrix as the coefficients of four unknownsin an equationwith

our chosen compound of the mean measurements,e.g.

482-2650A, + 199-2244), + 266-7762A, + 53°8778A, = 7°258,

we find solutions which, when multiplied by 100, are

Coefficient of sepal length —3-308998

sepal breadth — 2-759132

8-866048

9-392551

petal length

petal breadth

defining the compound measurementrequired.
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It is now easy to find the means and variances of this compound measurementin the
three species. These are shownin the table below (Table IX):

Table 1X
 

 

    

Mean Sumof Mean Standard
squares square deviation

I. virginica 38-24827 923-7958 18-8530 4-342
I. versicolor 22-03888 873-5119 17-8268 4-222
I. setosa — 1075042 202-8958 99775 2-444

}  
From this table it can be seen that, whereas the difference between /. setosa andI. versi-

color, 33-69 of our units, is so great compared with the standard deviations that no
appreciable overlapping of values can occur, the difference between J. virginica and
I. versicolor, 15-31 units, is less than four times the standard deviation of each species.
Tie differences do seem, however, to be remarkablyclosely in the ratio 2: 1. Compared

with this standard, 7. virginica would appear to have exerted a slightly preponderant

influence. The departure from expectation is, however, small, and we have the material

for making at least an approximate test ofsignificance.

If the differences between the means were exactly in the ratio 2:1, then the linear

function formed by adding the means with coefficients in the ratio 2 :—3 : 1 would be zero.

Actually it has the value 3-07052. The sampling variance of this compound is found

by multiplying the variances of the three species by 4, 9 and 1, adding them together

and dividing by 50, since each meanis based on fifty plants. This gives 48365 for the

varisnce and 2-199 for the standard error. Thus on this test the discrepancy, 3-071, is

certainly not significant, though it somewhat exceeds its standard error.

In theory the test of significance is not wholly exact, since in estimating the sampling

variance of each species we have divided the sumof squares of deviations from the mean

by 49, as though these deviations hadinall 147 degrees of freedom. Actually three degrees

of freedom have been absorbedin adjusting the coefficients of the linear compound so as

to discriminate the species as distinctly as possible. Had we divided by 48 instead of by

49 the standard error would have beenraised by a trifle to the value 2-231, which would

not have affected the interpretation of the data. This change, however, would certainly

have: been an over-correction, since it is the variances of the extreme species J. virginica.

and I. setosa which are most reduced in the choice of the compound measurement, while

that of 7. versicolor contributes the greater part of the sampling error in the test of

significance.

The diagram, Fig. 1, shows the actual distributions of the compound measurement

adopted in the individuals of the three species measured. It will be noticed, as was

anticipated above, that there is some overlap of the distributions of J. virginica and
I. versicolor, so that a certain diagnosis of these two species could not be based solely on
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these four measurements of a single flower taken on a plant growing wild. [t is not,

however, impossible that in culture the measurements alone should afford a more complete

discrimination.

Means and two-third:I fhe_

 

 

    
 

 

 

             

4 Tris versicolor

rT)

Tris setosa . oe
Iris virginica

\ T i ! | \ \ \ \ \ '
-20 -15 -—10 -5 0 5 10 16 20 25 30 35 40 45 50 55

Fig. 1. Frequency histograms of the discriminating linear function, for three species of Iris.
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Nearest Neighbor Pattern Classification

T. M. COVER, MEMBER, IEEE, AND P. E. HART, MEMBER, IEEE

Abstract—The nearest neighbor decision rule assigns to an un-
classified sample p:int the classification of the nearest of a set of
previously classified points. This rule is independent of the under-
lying joint distribution on the sample points andtheir classifications,

and hencethe prob:.bility of error R of such a rule must be at least
as great as the Bayes probability of error R*—the minimum prob-
ability of error over all decision rules taking underlying probability

structure into account. However, in a large sample analysis, we will

show in the M-category case that R* < R < R*(2 — MR*/(M—1)),
where these bounds. are the tightest possible, for all suitably smooth
underlying distributions. Thus for any number of categories, the
probability of error of the nearest neighbor rule is bounded above
by twice the Bayes ;robability of error. In this sense, it may be said

that half the classi{:cation information in an infinite sample set is
contained in the nearest neighbor.

I. INTRODUCTION

N THE CLASSIFICATION problem there are two

extremes of knowledge which the statistician may

possess. Eitirer he may have complete statistical
knowledge of tk: underlying joint distribution of the
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alif,

observation x and the true category 6, or he may have
no knowledge of the underlying distribution except that
which can be inferred from samples. In the first extreme,
a standard Bayes analysis will yield an optimal decision
procedure and the corresponding minimum (Bayes) prob-
ability of error of classification R*. In the other extreme,
a decision to classify x into category @ is allowed to depend
only on a collection of n correctly classified samples
(21, 01), (2, 92), +++ , (tn, O,), and the decision procedure
is by no meansclear. This problem is in the domain of
nonparametric statistics and no optimal classification
procedure exists with respect to all underlying statistics.

If it is assumed that the classified samples (z;, 6;) are
independently identically distributed according to the dis-
tribution of (x, 6), certain heuristic arguments may be
made about good decision procedures. For example,it is
reasonable to assume that observations which are close
together (in some appropriate metric) will have the same
classification, or at least will have almost the same
posterior probability distributions on their respective
classifications. Thus to classify the unknown sample x
we may wish to weight the evidence of the nearby z,’s
most heavily. Perhaps the simplest nonparametric decision
procedure of this form is the nearest neighbor (NN) rule,
which classifies x in the category of its nearest neighbor.
Surprisingly, it will be shown that, in the large sample
case, this simple rule has a probability of error which

Reprinted from /EEE Trans. Inform. Theory, vol. IT-13, pp. 21-27, Jan. 1967.

333



IEEE TRANSACTIONS ON INFORMATION THEORY

is less than twice the Bayes probability of error, and

hence is less than twice the probability of error of any

other decision rule, nonparametric or otherwise, based on

the infinite sampleset.

The first formulation of a rule of the nearest neighbor

type and primary previous contribution to the analysis

of its properties, appears to have been made by Fix and

Hodges[1] and [2]. They investigated a rule which might

be called the k,-nearest neighbor rule. It assigns to an

unclassified point the class most heavily represented among

its k, nearest neighbors. Fix and Hodges established the

consistency of this rule for sequences k, — © such that

k,,/n —> 0. In reference [2], they investigate numerically

the small sample performance of the k,-NN rule under

the assumption of normalstatistics.

The NN rule has been used by Johns[3] as an example

of an empirical Bayes rule. Kanal [4], Sebestyen [5]
(who calls it the proximity algorithm), and Nilsson [6]

have mentioned the intuitive appeal of the NN rule and

suggested its use in the pattern recognition problem.

Loftsgaarden and Quesenberry [7] have shown that a

simple modification of the k,-NN rule gives a consistent

estimate of a probability density function. In the above

mentioned papers, no analytical results in the nonpara-

metric case were obtained either for the finite sample

size problem or for the finite numberof nearest neighbors

problem.

In this paper weshall show that, for any number n of

samples, the single-NN rule has strictly lower probability

of error than any other k,-NN rule against certain classes

of distributions, and henceis admissible amongthe k,-NN

rules. We will then establish the extent to which ‘‘samples

which are close together have categories which are close

together’? and use this to compare in Section VI the

probability of error of the NN-rule with the minimum

possible probability of error.

Il. Tue NEAREST NEIGHBOR RULE

A set of n pairs (a, 02), °° , (@a, 9,) 18 given, where
the z,’s take values in a metric space X upon which is

defined a metric d, and the 6,’s take values in the set

{1, 2, --- , M}. Each @; is considered to be the index

of the category to which the 2th individual belongs, and
each x, is the outcome of the set of measurements made

upon that individual. For brevity, we shall frequently
say “x; belongs to 0,’ when we mean precisely that the

ith individual, upon which measurements xz; have been

observed, belongs to category 4;.

A new pair (2, @) is given, where only the measurement

x is observable by the statistician, and it is desired to

estimate 6 by utilizing the information contained in the

set of correctly classified points. Weshall call

x, ® {X1, La, "°°" y Ln }

a nearest neighbor to x if

min d(x;, x) = d(ai,x) t= 1,2, °°: ,n. (1)

JANUARY

The nearest neighborrule decides x belongs to the category

9’ of its nearest’ neighbor z/. A mistake is made if 67 = 0.

Notice that the NN rule utilizes only the classification

of the nearest neighbor. The n — 1 remaining classifica-

tions 6; are ignored.

III. ADMISSIBILITY OF NEAREST NEIGHBOR RULE

If the numberof samples is large it makes good sense

to use, instead of the single nearest neighbor, the majority

vote of the nearest k neighbors. We wish k to be large

in order to minimize the probability of a non-Bayes

decision for the unclassified point x, but we wish k to be

small (in proportion to the number of samples) in order
that the points be close enough to x to give an accurate

estimate of the posterior probabilities of the true class

of x.
The purpose of this section is to show that, among

the class of k-NN rules, the single nearest neighbor rule
(1-NN) is admissible. That is, for the n-sample problem,

there exists no k-NN rule, k ¥ 1, which has lower prob-

ability of error against all distributions. We shall show

that the single NN rule is undominated by exhibiting

a simple distribution for which it has strictly lower prob-

ability of error P,. The example to be given comes from

the family of distributions for which simple decision

boundaries provide complete separation of the samples

into their respective categories. Fortunately, one ex-

ample will serve for all n.
Consider the two category problem in which the prior

probabilities 7, = m2. = 34, and the conditional density

f, is uniform on the unit disk D, centered at (—8, 0),

and the conditional density f, is uniform on the unit

disk D, centered at (3, 0) as shown in Fig. 1. In the

n-sample problem, the probability that 7 individuals come

from category 1, and hence have measurements lying in

D,, 1s ($)"(). Without loss of generality, assume that the

unclassified x lies in category 1. Then the NN rule will

makea classification error only if the nearest neighbor 2’

belongs to category 2, and thus, necessarily, lies in Ds.
But, from inspection of the distance relationships, if the

nearest neighbor to x is in D2, then each of the x; must lie

in D,. Thus the probability P,(1; n) of error of the NN

rule in this case is precisely (4)”—the probability that

Xi, U2, -** , @ all he in D.. Let k = 2k, + 1. Then the

k-NN rule makes an error if ky or fewer points lie in D,.

This occurs with probability

Paks) =" Y(*): Q)
Thus in this example, the 1-NN rule has strictly lower

P, than does any k-NN rule, k ¥ 1, and hence is ad-
missible in that class. Indeed

1 In case of ties for the nearest neighbor, the rule may be modified
to decide the most popular category among the ties. However, in
those cases in which ties occur with nonzero probability, our results
are trivially true.
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PAkjn) T 4 in &k,

P.Akjyn) | 0 in no,

forany n, (3)

forany k >0,

and

PAkijn) 0, if O< i <Sa< 1, forall na.

In general, then, the 1-NN rule is strictly better
than the k ~ 1-NN rule in those cases where the
supports of the «lensities f,, f2, --- , fa are such that each
in-class distance \s greater than any between-class distance.

3 0,

 

Fig. 1. Admissibility of nearest neighbor rule.

IV. Bayes PRocEDURE

In this section we shall present the simplest version

of the Bayes decision procedure for minimizing the prob-

ability of error in classifying a given observation x into

one of M categories. All the statistics will be assumed

known. Bear in. mind, however, that the NN rule is

nonparametric, or distribution free, in the sense that it

does not depend on any assumptions about the under-
lying statistics for its application. The Bayes risk serves

merely as a refsrence—the limit of excellence beyond

which it is not possible to go.

Let x denote the measurements on an individual and

X the sample spice of possible values of x. We shall refer

to x as the observation. On the basis of x a decision must

be made about the membership of the individual in one

of M specified categories.

For the purpo:es of defining the Bayes risk, we assume

fi(v), fo(x), -++ , fac(z), probability densities at x with

respect to a o-finite measure v, such that an individual

in category 7 gives rise to an observation xz according

to density f;. Let Z(z, 7) be the loss incurred by assigning

an individual fro:n category 7 to category j.

Let m, m2, °** . 1, 7: > 0, >. 7: = 1, be the prior prob-

abilities of the J," categories. The conditional probability

q.(z) of an individual with measurements z belonging

to category 7 is, by the Bayes theorem,

A nifi
1 OT (4)

Thus the random variable x transforms the prior prob-

ability vector 7» into the posterior probability vector #(z).

If the statistician decides to place an individual with

measurements x nto category 7, the conditionalloss is

r(x) = 2. A(x)L(t, j). (5)

COVER AND HART: NEAREST NEIGHBOR PATTERN CLASSIFICATION

For a given x the conditional loss is minimum when the
individual is assigned to the category 7 for which r;(zx) is
lowest. Minimizing the conditional expected loss ob-
viously minimizes the unconditional expected loss. Thus
the minimizing decision rule 5*, called the Bayes decision
rule with respect to 7, is given by deciding the category j
for which 7; is lowest. Using 6*, the conditional Bayes
risk r*(z) is

M

r*(z) = min (S Ai(a)Le, i} (6)
7 t=1

and the resulting overall minimum expected risk R*,
called the Bayesrisk, is given by

R* = Er*(x), (7)
where the expectation is with respect to the compound
density

fla) = 3 nfo. (8)

V. CONVERGENCE oF NEAREST NEIGHBORS

Most of the properties of the NN rules hinge on the
assumption that the conditional distributions of 6’ and 6
approach one another when x,.— zx. In order to put
bounds on the NNrisk for as wide a class of underlying
statistics as possible, it will be necessary to determine
the weakest possible conditions on the statistics which
guarantee the above convergence.

Lemma (Convergence of the Nearest Neighbor)

Let x and 2x,, x2, --- be independent identically dis-
tributed random variables taking values in a separable

metric space X. Let x/ denote the nearest neighbor to x

from the set {%,, %2, ++ , tq}. Then 2’ — x with prob-.
ability one.

Remark: In particular, 7! — x with probability one
for any probability measure in Euclidean n-space. We
prove the lemma in this generality in order to include
in its coverage such standard pathological candidates for

counterexamples as the Cantor ternary distribution func-_
tion defined on X therealline.

Since the convergence of the nearest neighbor to z is
independent of the metric, the bounds on the risks of
the NN rule will be independent of the metric on X.

Proof: Let S,(r) be the sphere {# « X: d(x, 2) < r} of
radius r centered at x, where d is the metric defined on X.

Considerfirst a point x « X having the property that
every sphere S,(r), 7 > 0, has nonzero probability measure.
Then, for any 6 > 0,

Pt min
K=1,2,¢¢8,

d(x, 4) 2 8} = 1 — P(S,(8))"0 9)

and therefore, since d(z,, x) is monotonically decreasing
in k, the nearest neighbor to x converges to x with prob-
ability one.
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It remains to argue that the random variable z has

this property with probability one. We shall do so by

proving that the set N of points failing to have this

property has probability measure zero. Accordingly, let

N be the set of all x for which there exists some 7, suffi-

ciently small that P(S.(r.)) = 9.

By the definition of the separability of X, there exists

a countable dense subset A of X. For each x e N there

exists, by the denseness of A, a, inA for whicha,e S,(7r,/3).

Thus, there exists a small sphere S,,(7,/2) whichis strictly

contained in the original sphere S,(r,) and which contains

x. Thus P(S,,(r,/2)) = 0. Then the possibly uncountable

set N is contained in the countable union (by the count-

ability of A) of spheres \U),..1 S.,(r,). Since N is contained

in the countable union of sets of measure zero, P(N) = 0,

as was to be shown.

VI. NesaREsST NEIGHBOR PROBABILITY OF ERROR

Let x’ ¢ {x,, %2, -*: , t,} be the nearest neighbor to

x and let 6’ be the category to which the individual having

measurement x’ belongs. If 6 is indeed the category of z,

theNN rule incursloss L(6, 67). If (x, 0), (41, 01), °** 5 (&ny On)

are random variables, we define the n-sample NN risk

R(n) by the expectation

R(n) = E|L(8, 4,)] (10)

and the (large sample) NN risk R by

R = lim R(n). (11)
NOD

Throughout this discussion we shall assume that the

pairs (x, 0), (41, 6:), --+ , (%,, 9,) are independent identi-

cally distributed random variables in X X 90. Of course,
except in trivial cases, there will be some dependence
between the elements x;, 6; of each pair.

Weshall first consider the M = 2 category problem

with probability of error criterion given by the 0 — 1

loss matrix

L = 5 J |

1 0=
(12)

where Z counts an error whenever a mistakein classifica-

tion is made. The following theorem is the principal result

of this discussion.

Theorem

Let X be a separable metric space. Let f, and f, be

such that, with probability one, x is either 1) a continuity

point of f, and f., or 2) a point of nonzero probahility

measure. Then the NN risk R (probability of error) has

the bounds

R* <R < 2kR*(1 — &*).

These boundsare as tight as possible.

Remarks: In particular, the hypotheses of the theorem

are satisfied for probability densities which consist of any

(13)

v4
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mixture of 6-functions and piecewise continuous density

functions on Euclidean d-space. Observe that 0 < A* <

R < 2R*(1 — R*) < 4;s0 R* = Oif and only if k = 0,

and R* = 4 if and only if R = 4. Thus in the extreme

cases of complete certainty and complete uncertainty the

NN probability of error equals the Bayes probability

of error. Conditions for equality of R and R* for other

values of R* will be developed in the proof.

Proof: Let us condition on the random variables z and

x’ in the n-sample NN problem. The conditional NN risk

r(x, x’) is then given, upon using the conditional in-

dependenceof 6 and @’, by

r(v, xt) = E[L(6, 6) |x, a] = P.f6 ¥ 6 | a, 2}
= P.{@=1|x}P,{0, = 2 | xf}

+ P.{6 = 2|a}P,{6, = 1| 2%}
where the expectation is taken over @ and 0’. By the

development of (4) the above may be written as

r(x, xh) = filx) Fela) + fho(x) ila). (15)

Wewish first to show that r(a, x4) converges to the

random variable 24,(x)#2(x) with probability one.

We have not required that f,, f. be continuous at the

points x of nonzero probability measure v(x), because

these points may betrivially taken into accountas follows.

Let v(a) > 0; then

(14)

P, {a ¥ xi} = (1 — v(m)” > 0. (16)

Since x/, once equalling x, equals x, thereafter,

r(x, Ln) —> 24, (Xe) fo(Xo) (17)

with probability one.

For the remaining points, the hypothesized continuity
of f; and f, 1s needed. Here x is a continuity point of fy,

and f, with conditional probability one (conditioned on

x such that v(x) = 0). Then, since # is continuous in

f, and f., x is a continuity point of 4 with probability one.

By the lemma, x/ converges to the random variable x

with probability one. Hence, with probability one,

(En) > A(z) (18)

and, from (15), with probability one,

r(x, tn) > r(x) = 24,(x)#2(2), (19)

wherer(x) is the limit of the n-sample conditional NNrisk.

As shownin (6) the conditional Bayesrisk is

= min {7:(z),1 — #(@)}.

Now, by the symmetry of r* in #;, we may write

r(x) = 24(z) h(x) = 2) — f,(2))

= 2r*(x)(1 — r*(a)). (21)
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Thus as a by-product of the proof, we have shown in
the large sample case, that with probability one a randomly
chosen x will be correctly classified with probability
2r*(x)(1 — r*(x)). For the overall NN risk R, we have,
by definition,

Rk = lim E[r(z, 2/)] (22)

where the expeciation is taken over x and x’. Now L,
and hence r, is bonded by one; so appizving the dominated
convergence theo."em, .

& = Elim r(a, z/)]. (23)

The limit, from (19) and (21), yields

fi = E[r(x)]

= f[24,(x)f2(a)]

= E[2r*(@)(1 — r*(2))). (24)

Since the Bayes «isk R* is the expectation of r*, we have

R= 2R*( — R*) — 2 Var r*(z). (25)

Hence

Rk < 2kR*d — R*), (26)

with equality iff Var r* = 0, which holds iff r* = R*
with probability one. Investigating this condition we find

that for R = 2R*(1 — R*) it is necessary and sufficient

that

mii (x) ]—— = I*/1 — R*) or (1 — R*)/R*mafy(2) /( ) ( )/

for almost every :: (with respect to the probability meas-

ure v).

Rewriting (24), we have

(27)

R= Elr*(z) + r*(@)(1 — 2r*(2))]
= R* + Elr*(x)Q — 2r*(z))]

> R*
(28)

with equality if and only if r*(7~)(1 — 2r*(x)) = 0 almost

everywhere (with respect to v). Thus the lower bound

R = R* is achievedif and only if r* equals 0 or 4 almost

everywhere and Hr* = R*, Examples of probability

distributions achieving the upper and lower bounds will

be given at the end of this section following the extension

to M categories.

Consider now the M-category problem with the prob-

ability of error cri:erion given bytheloss functionL (7, 7) =0,

for? = j, and L(, 7) = 1, for 7 ¥ 7. The substitution

trick of (21) can no longer be used when M ¥ 2.

Theorem (Extension of Theorem 1 to M # 2)

Let X be a sey arable metric space. Let f,, fo, -:: , fx

be probability deasities with respect to some probability

COVER AND HART: NEAREST NEIGHBOR PATTERN CLASSIFICATION

measure v such that, with probability one, x is either
1) a continuity point of fi, fz, --- , fu, or 2) a point
of nonzero probability measure. Then the NN probability
of error R has the bounds

M ‘)
mw —i")1

 

R*<R< e(2 — (29)

These bounds are as tight as possible.
Proof: Since x} — x with probability one, the posterior

probability vector #(x4) — 4(x) with probability one.
The conditional n-sample NN risk r(x, x’) is

r(x, %n) = E[L(6, 6) | x, a] = a Ai(z)Ai(tx) (80)

which converges with probability one to the large sample

conditional risk r(x) defined by

M

rz) = 2) 4@)Ai@ =1-]
7=1

Aj(2). (31)

The conditional Bayes risk r*(x), obtained by selecting,

for a given x, the maximum 4,(x), say 4,(z), is given by

 

MQ) =1— max (A@}=1- 4@). G2)
By the Cauchy-Schwarz inequality

at) S#@ >|Sac |}
=[1-4@P=@@). 63)

Adding (IM — 1)42(z) to each side,

OM — 1) YH) > (*@)? + AL — Dae

-@y+@-Da-r@) Gs
or

Ye 2 FO +a-m@y es)
Substituting (35) into (31),

re) < 2rk(a) — AE (rey). (36)

Taking expectations, aud using the dominated convergence

theorem as before,

M

M-—1

 

 R = 2R* — Var r* (2). (37)
M*)2(R*) FF 1

Hence

 

a)*, D> 2R<R (2 Vol R (38)

with equality if and only if Var r*(x) = 0. Of course,

Var r* = 0 implies r*(z) = R* with probability one.
ee

2
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The upper bound is attained for the no-information

experiment fi = f2 = ‘': = fu, with 7, = 1 — R*,

and yn; = R*/(M — 1);17 = 2, --- , M. The lower bound

R = R* is attained, for example, when 7; = 1/M, 7 =

1,2,---, Jl, and

Mk*

M-—-1

(39)

 

 on oq _ia= lh O<e<5 pz ortsrsitl

LO, elsewhere.

VII. EXAMPLE

Let the real valued random variable x have triangular

densities f; and f, with prior probabilities 7, = m2 = 3,
as shown in Fig. 2. The density f = aif: + nef, on x Is

uniform on [0, 1], thus facilitating calculation of the dis-

tribution of the nearest neighbor 7’.

f (x)=]gbn2 -2x

2\

   oO x

Fig. 2. Triangle densities for example.

The probability of error for this example in the n-sample

single NN case is

Rn) = Elmnfie)fean) + mnefe(a)fi@r)]

= A[xd — x) +d — ajay]. (40)

Upon performing a lengthy but straightforward cal-

culation, we obtain

] ]

37 @+t Dm +2)
 R(n) = (41)

Thus

R= lim R(n) = Ff.
NCO

(42)

The NNrisk F is to be compared to the Bayesrisk

R* = [ min Ue nf2} dv

1

= | min {2,1 — x} dx = §. (438)
0

Exhibiting corresponding terms we have

R* <R < 2kR*q1 — R*)

or

53 53. (44)

In this example we have found an exact expression

for the NN risk R(n) for any finite sample size. Observe
that R(1) = 4, in agreement with simpler considerations,

and that R(n) convergesto its limit approximately as 1/n’.

VIII. Tot k-NN Rute

From Section V it is also possible to conclude that the

kth nearest neighbor to x converges to x with probability

one as the sample size n increases with k fixed. Since each

of the nearest neighbors casts conditionally independent

votes as to the category of x, we may conclude, in the

2-category case for odd k, that the conditional k-NN

risk 7,(a) is given in the limit (with probability one) as n

increases, by

(k—-1)/2

nz) = ie) 2 (“aaa = A(x)

k

a
g=(k+1)/2

+ — #(@)) “awa — Aa)". (48)

Note that the conditional NNrisks r,(x) are monotonically

decreasing in k (to min {4,(x), 1 — 4,(x)}), as we might

suspect. Thus the least upper bounds on the uncondi-

tional NN risks R, will also be monotonically decreasing

in k (to R*).

Observe that in (45) r, is symmetric in 4, and 1 — 4.

Thus 7, may be expressed solely in terms of r* = min

{#1, 1 — #,} in the form

px(r*)

2enaa
7=0

a =

I

k

D
7=(k+1)/2

+ (1 =r") (Hora — ry (46)
Now let p,(r*) be defined to be the least concave function

greater than p,(r*). Then

Th = p(r*) < p,(r*), (47)

and, by Jensen’s inequality,

Ry, = Er, = HKp,(r*) < Ep,(r*) < p(Hr*) = p(R*). (48)

So p,(R*) is an upper bound on the large sample k-NN

risk R,. It may further be shown, for any R*, that p,(R*)
is the least upper bound on R, by demonstrating simple

statistics which achieve it. Hence we have the bounds
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R* < R, < p(R*) < p-a(R*) < ---

< p(h*) = 2k*(1 — R*) (49)

where the upper and lower bounds on R, are as tight

as: possible.

IX. CONCLUSIONS

The single NN rule has been shown to be admissible

among the class of k,-NN rules for the n-sample case

for any n. It has been shown that the NN probability

of error R, in the M-category classification problem, 1s
bounded below by the Bayes probability of error R* and
above by R*(2 — MR*/(M — 1)). Thusany otherdecision

rule based on theinfinite data set can cut the probability

of error by at most one half. In this sense, half of the

available information in an infinite collection of classifiec

samples is contained in the nearest neighbor.
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The Condensed Nearest Neighbor Rule

The purpose of this note is to introduce the condensed nearest
neighbor decision rule (CNN rule) and to pose some unsolved
theoretical questions which it raises. The CNN rule, one of a class
of ad hoe decision rules which have appeared in theliterature in
the past few years, was motivated by statistical considerations
pertaining to the nearest neighbor decision rule (NN rule). We
briefly review the NN rule and then describe the CNNrule.
The NN rulelJ-(4] assigns an unclassified sample to the same

class as the nearest of n stored, correctly classified samples. In other
words, given a collection of n reference points, each classified by

some external source, a new point is assigned to the same class as
its nearest neighbor. The most interesting theoretical property of
the NN rule is that under very mild regularity assumptions on the
underlying statistics, for any metric, and for a variety of loss func-
tions, the large-sample risk incurred is less than twice the Bayes
risk. (The Bayes decision rule achieves minimum risk but requires

complete knowledge of the underlying statistics.) From a practical
point of view, however, the NN rule is not a prime candidate for
many applications because of the storage requirements it imposes.
The CNNrule is suggested as a rule which retains the basic approach
of the NN rule without imposing such stringent storage requirements.

Before describing the CNN rule wefirst define the notion of a
consistent subset of a sample set. This is a subset which, when used
as a stored reference set for the NN rule, correctly classifies all of the
remaining points in the sample set. A minimal consistent subset is a
consistent subset with a minimum numberof elements. Every set
has a consistent subset, since every set is trivially a consistent sub-

set of itself. Obviously, every finite set has a minimal consistent
subset, although the minimum size is not, in general, achieved
uniquely. The CNN rule uses the following algorithm to determine
a consistent subset of the original sample set. In general, however,
the algorithm will not find a minimal consistent subset. We assume
that the original sample set is arranged in some order; then weset
up bins called sToRE and GRABBAG and proceed as follows.

Manuscript received November 24, 1966; revised October 5, 1967.

1) Thefirst sample is placed in STORE.
2) The second sample is classified by the NN rule, using as a

reference set the current contents of srorE. (Since sTorE has only
one point, the classification is trivial at this stage.) If the second
sample is classified correctly it is placed in GRABBAG; otherwise it

is placed in STORE.
3) Proceeding inductively, the 7th sample is classified by the

current contents of store. If classified correctly it is placed in
GRABBAG; otherwise it is placed in sTORE.

4) After one pass through the original sample set, the procedure

continues to loop through GRABBAG until termination, which can
occur in one of two ways:

a) The GRaBBAGis exhausted, with all its members now trans-
ferred to STORE (in which case, the consistent subset found
is the entire original set), or

b) One complete pass is made through GRABBAG with no
transfers to stors. (If this happens, all subsequent passes
through GRABBAG will result in no transfers, since the
underlying decision surface has not been changed.)

5) The final contents of sToRE are used as reference points for
the NN rule; the contents of GRABBAG are discarded.

Qualitatively, the rule behaves as follows: If the Bayes risk is
small, i.e., if the underlying densities of the various classes have
small overlap, then the algorithm will tend to pick out points near
the (perhaps fuzzy) boundary between the classes. Typically,
points deeply imbedded within a class will not be transferred to
STORE, since they will be correctly classified. If the Bayes risk is
high, then sTorRE will contain essentially all the points in theoriginal
sample set, and no important reduction in sample size will have
been achieved. No theoretical properties of the CNN rule have been
established.
The CNN rule has been tried on a numberof problems, both real

and artificial. In order to investigate the behavior of the rule when

the classes are (essentially) disjoint—the case in which the CNN
rule is of greatest interest—several experiments similar to the

following were run. The underlying probability structure for a
two-class problem was assumed to consist of two probability den-
sities, each a uniform distribution on the supports shown in Fig. 1.
The set of all vectors with integer components lying within each

Reprinted from /EEE Trans. Inform. Theory, vol. |\T-14, pp. 515-516, May 1968.
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Fig. 2. Se:nples selected and induced decision surface.

support was taken to simulate a random sampling from each
population. The 482 points thus obtained were ordered by a random
mechanism and processed using the algorithm described above.

The algorithm ter:ainated after four interations through GRABBAG,
at which time storm contained 40 samples. Fig. 2 shows thefinal

40 samples and the lecision surface induced by the NN rule using
these 40 samples as « stored referenceset.

Since all samples had integer-valued components, ties occurred
with nonzero probability, and these were broken arbitrarily. This
accounts for the fact that occasionally the decision surface lies
properly within one or the other of the supports rather than between
them. The points must deeply imbedded within each class were the
first two points in the random ordering.

A morerealistic experiment was performed using data supplied
by Nagy of IBM.[5] This data consisted of approximately 12 000
96-dimensional binary vectors drawn from 25 different statistical
populations. (The data represent upper-case typewritten characters,
excluding “I,” typed with nine different styles of fonts.) The
12 000 samples were divided into a training set and a testing set of
approximately equal size, and the CNN algorithm was used on the
training set. The algorithm terminated after four iterations through
GRABBAG, at which time sToRE contained 197 of the original 6295
samples. An error rate of 1.28 percent was obtained on the indepen-
dent test set. This was somewhat disappointing in view of the fact
that a numberof simpler classifiers (the ternary reference classi-
fier,[5] linear machine,!*] and piecewise-linear machinel‘l), using
considerably less computer time, achieved error rates on the order

of 0.3-0.5 percent.[7].[8] It was also a little surprising, since (neces-
sarily) the 197 stored points correctly classified all the 6295 samples
in the training set.

These and similar experiments have persuaded us that the CNN
rule offers interesting possibilities, but that a great deal more work
of both a theoretical and experimental nature will be needed be-—
fore the rule is thoroughly understood. For example, under suitably
restrictive assumptions on the underlyingstatistics:

1) What is the expected numberof iterations before termination?
2) What is the expected reduction in the size of the stored sample

set?

3) What is the expected increase in CNN risk over NN risk for
a sample set of given size?

In view of the desirable theoretical properties of the k-NN
rule, [4] [2]—the rule that makes a decision on the basis of votes cast
by each of the k nearest neighbors—wepose a final obvious question
which should, perhaps, be answered experimentally. How would
the CNN rule perform if the vote of, say, the three nearest neighbors
was substituted for the decision of the single nearest neighbor
everywherein the algorithm?

Pretrer EK. Hart

Applied Physics Lab.

Stanford Research Institute

Menlo Park, Calif. 94025
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An Algorithm for Finding Nearest Neighbors

JEROME H. FRIEDMAN, FOREST BASKETT, anp
LEONARD J. SHUSTEK

Abstract—An algorithm that finds the k nearest neighbors of a
point, from a sample of size N in a d-dimensional space, with an

expected numberof distance calculations

Elna] S 17)?(CkaP (d/2) }/4(2N) 1-0/4)

is described, its properties examined, and the validity of the estimate
verified with simulated data.

Index Terms—Best match, nearest neighbors, nonparametric
discrimination, searching, sorting.

INTRODUCTION

Nearest-neighbor techniques have been shown to be important

nonparametric procedures for multivariate density estimation and
pattern classification [1 }-[6]. For classification, a sample of proto-
type feature vectors is drawn from each category, correctly labeled

by an external source. For each test point to be classified, the set of
k closest prototype points (feature vectors) is found and the test

point is assigned to that category having the largest representation
in this set. For density estimation, the volume, V(k), containing

the closest k points to each of the N samplepoints, is used to esti-

mate the local sparsity 5 (inverse density) by $s = NV(k)/k — 1.
The application of these techniques has been severely limited by

the computational resources required for finding the nearest neigh-
bors. The feature vectors for the complete set of samples must be
stored, and the distances to them calculated for each classification
or density estimation. Several modifications to the k-nearest-neighbor

rule have been suggested that are computationally more tractable

but whose statistical properties are unknown [7], [8]. The con-

densed nearest-neighbor rule [9] mitigates both the storage and:

Manuscript received June 24, 1974; revised February 7, 1975. This

work was supported in part by the U. S. Atomic Energy Commission

under Contract AT (043)515.

J. H. Friedman is with Stanford Linear Accelerator Center, Stanford,

Calif. 94305.

F. Baskett and L. J. Shustek are with the Computer Science Depart-

ment, Stanford University, Stanford, Calif.

processing requirements by choosing a subset of the prototype

vectors such that the nearest-neighbor rule correctly classifies all of

the original prototypes.

Fisher and Patrick [10] suggest a preprocessing schemefor reduc-

ing the computational requirements of nearest-neighbor classifica-
tions when the test sample is much larger than the prototype set.
For this case, it is worthwhile to use considerable computation

preprocessing the prototypes so that processing can be reduced for

each test sample. Their technique orders the prototypes so that

each point tends to be far away from its predecessors in the ordered
list. By examining these prototype points in this order andhaving

precalculated distances between prototypes, the triangle inequality

can be applied to eliminate distance calculations from the test

vector to many of the prototypes. (All of the prototypes must be
examined, however.) The algorithm is examined only for k = 1 in

two dimensions where for bivariate normal data a median number
of approximately 58 distance calculations is required for 1000 proto-

types, after preprocessing.
This correspondence describes a straightforward preprocessing

technique for reducing the computation required for finding the k

nearest neighbors to a point from a sample of size N in a d-dimen-
sional space. This procedure can be profitably applied to both density
estimation and classification, even when the number of test points
is considerably smaller than the number of prototypes. This pre-
processing requires no distance calculations. (It can, however, re-
quire up to dN loge N comparisons.) The distance function (dis-

similarity measure) is not required to satisfy the triangle inequality.

With a Euclidean distance measure! the average number of proto-
types that need be examined is bounded by

Elna] < x?(kdV (d/2) }/4(2N) 1-0/9), (1)

after preprocessing.
For the case of bivariate normal data with d = 2, k = 1, and

N = 1000, (1) predicts an average of 36 distance calculations,

whereas simulations have shown that 24 are actually required. The
performance of the algorithm is compared to (1), with simulated

data for several values of k, d, N, and underlying density distribu-
tions of the prototype sample points.

BASIC PROCEDURE

The preprocessing for this algorithm consists basically of ordering
the prototype points on the values of one of the coordinates. For

1 Similar formulas for other distance measures are discussed below.

Reprinted from /EEE Trans. Comput., vol. C-24, pp. 1000-1006, Oct. 1975.
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Fig. 1. Illustration of the basic procedure for the nearest neighbor

(kK = 1) in two dimensions.

each test point, the prototypes are examined in the order of their
projected distance from the test point on the sorted coordinate.

Whenthis projecte:1 distance becomeslarger than the distance (in

the full dimensionality) to the k closest point of those prototypes

already examined, no more prototypes need be considered; the k

closest prototypes of the examined points are those for the complete
set. Fig. 1 illustrate:s this procedure for the nearest neighbor (k = 1)

in two dimensions.
A simple calculstion gives an approximation to the expected

number of prototypes that need be examined before the above
stopping criterion is met. For simplicity, consider N prototypes
uniformly distribuied in a d-dimensional unit hypercube and a
Euclidean distance measure. Assumealso that N is large enough so

that effects due to the boundaries are not important. For this case,
the volume v of a «/-dimensional sphere, centered at the test point

and containing exectly k-prototypes, is a random variable distrib-

uted according to « beta distribution

My 1

 

 

= — k-1(1 — y)N-* dp, 0<v<1. (2p(v) dv (k-Diw—b!’ (1 v)"* dv <v<l. (2)

The radius of this : phere, given by

dV(d/2) |
ra =a | (3)

is also a random viriable. Let

fa = [2n4!2/aT (d/2) WA.
Then v = (fara)? ald the distribution for ra becomes

Nid
p(ra) dra = se (fara)*[1 — (Sara)?]X-* dra. (4)

(k —1)'(N —k)!

The stopping criterion is met when the projected distance from the

test point to a prototype along the sorted coordinate is greater than
rg. This projected distance is uniformly distributed. The expected
fraction of prototypes, then, that must be examined is just twice
the expected value of ra given by (4).? Various other statistics, such
as the variance, median, and percentiles, can also be calculated from
(4). These calculations must be done numerically since the integrals

cannot be evaluated analytically.
A close upper bound? on E[ra] can be derived from (2) and (3) by

 
1/d

Etre] $f =a mea] , (5)
where from (2),

Ev] = Nod: (6)

The upper bound on the expected fraction of prototypes that must

be examinedis then 274, and the upper bound on the expected number
of prototypes E[na] is 2raN. Combining theseresults,

dV(d/2) k  |4

2nr42 N+1

Simplifying this expression and approximating N + 1 by N, one has
the result shown in (1). The variance of na is similarly approxi-

mated by

Elna] < fa = 2| (7)

k(N—k+1) /? (8)

(N + 1)?(N + 2)
 

ey

2742
Elina — E (na) - <s 4 (

2 Prototypes must be examined for a projected distance rq both above

and below the test point position.
3 Taking the dth root of the average rather than the average of the

dth root will cause a slight overestimation that decreases with increasing

d. For d = 2, this overestimation is around 10 percent, while ford = 8

it is 6 percent.
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so that the coefficient of variation

Eling — E(na) }? }?

E*{na]

~ becomes (to the same approximation)

N—k + 1 1/(2d)

k(N + 2)

C'(na) -|

C(na) S (9)

Other statistics of the distribution can be similarly calculated.
These calculations all presuppose a uniform distribution of the

prototype sample. This is seldom the case in application. However,
as discussed below underthe full procedure, a uniform distribution
of prototypes represents a worst case for the performance of the

algorithm, so that the preceding calculations can serve as upper
bounds for the performance in the more generalcases.

FULL PROCEDURE

The nonuniformity of the axis projections can be used to advan-
tage to increase the efficiency of the algorithm.For a given expected
radius E[ra], the points that need to be considered on the average
are those that lie in the interval Ar ~ 2E[ra], centered at the pro-

jected test point. That projection axis, for which the number of
such prototypes is least, should be chosen for maximum efficiency.
If the points are ordered only along one coordinate in the preprocess-
ing (basic procedure), then the one with the smallest average pro-
jected density (largest spread) should be chosen. In thefull proce-

dure, the points are ordered on several orall of the coordinates and
the one with the smallest local projected density in the neighborhood
of the test point is chosen.
For each test point, the local projected sparsity on each axis is

estimated as

s; = | Xs; 4n/2 —_ Xip; —n/2 | (10)

where X;; is the ith coordinate of the jth ordered prototype and p;
is the position of the test point in the 7th projection (n is discussed
below). The prototype ordering on that particular coordinate for

which s; is maximum is chosen.

The number of prototypes n over which the sparsity is averaged

on each projection should correspondto a distance of about 2E[rq].
For a uniform distribution, this is given approximately by (5). The

number of prototypes within this interval (again for a uniform
distribution) is E[na], given by (1). For nonuniform distributions,
both E[rg] and the various projected E[[na]’s will be different. Since
the density distribution of the prototypes is usually unknown, a
reasonable approximationis to use the uniform distribution results,‘
that is n = Elna], as given by (1).

Prototypes are examined in order of their increasing projected
distance from the test point until the stopping condition

di? S (Xin, — X11)? (11)

is met for some point J. Here d;? is the distance squared to the kth
nearest prototype of those examined up to that point. The current
list of k closest prototypes is then correct for the entire sample.
The expected number of prototype points Efun[na] that need to

be considered when applying this full procedure of choosing the
optimum ordering coordinate individually for each test point can

be calculated using arguments and assumptions similar to those
that led to (1). Theresult is

d

Eraulna] ~ ECCI s;)*/4/max {s;}]E[na]
i=1 1Si<d

(12)

4 Simulation results indicate that the performance of the algorithm is

very insensitive to the choice of n.
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wherethes,’s are the local projected sparsities on each of the coordi-
nates near each test point, and E[[nqg] isthe expected numberif all
projected sparsities were the same. For uniformly distributed proto-

types, E[na] is given by (1) and thes,’s are distributed normally

about their average values.
Actual values for Efuu[a] are difficult to calculate, but (12) can

be used to gain insight into the effect of employing the full proce-
dure. For example, if the spread of one of the coordinates is a factor
of R larger, on the average, than the others which all have approxi-

mately equal spread, then (12) gives

1
Etaulna] ~ =—; Elna].anal (13)

Equation (12) clearly shows that the full procedure will always
increase the efficiency of the algorithm and be most effective when

the variation of the prototype density is greatest.

GENERAL DISSIMILARITY MEASURES

Although the abovediscussion has centered on the Euclidean dis-

tance

d

d(XmXn) = [D, (Kim — Xin)?}?
=]

(14)

as a measure of dissimilarity between feature vectors, nowherein the

general procedure is it required. In fact, the triangle inequality is
not required. This technique can be applied with any dissimilarity

measure

da

d(Xm,Xn) = gL Dy fi(Xim,Xin) J
t=1

(15)

as long as the functions f and g satisfy the basic properties of sym-
metry

f(x,y) = fly,x) (16a)

and monotonicity

g(x) > gly); fr>y

ifef-yr>un

F(z,z) = f(x,y), (16b)
orifz<y<z.

The performance of the algorithm does depend upon the dissimi-

larity measure and, in particular, the result contained in (1) applies

only to the Euclidean metric. The dependence on k and N containea
in (1) is the same for any Minkowski p metric

d

d(Xm,Xn) = (>. | Xim — Xin |P}"?,
t=]

(p 2 1) (17)

since for these distance measures the volume of a d-dimensional
“‘sphere’’ grows with radius r as v « r4, Because of their computa-
tional advantage, the two most often used Minkowski metrics,
besides the Euclidean metric (p = 2), are the city-block or taxi-
cab distance (p = 1) and the maximum coordinate distance,
A(Xm,Xn) = maxisi<a {| Xim — Xin |} (p = ©). Upper bounds on
the average number of distance calculations E[nz], analogous to
(1), can be derived in a similar manner for these distance measures.

The results are

Ex[na] S$ (ka!)veNIUl), —(p

E[na] SRN, (p

1) (la)

co), (1b)

SIMULATION EXPERIMENTS

In order to gain insight into the performance of the algorithm
and compareit to the upper bound predicted by (1), several simula-

tion experiments were performed. For each simulation, N +1
random d-dimensional points were drawu from the appropriate
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prototype sample size N. The solid line represents the predictions

of (1).
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for finding the nearest neighbor with uniform (L.]) and normal (O)

density distributions for 100 and 1000 prototypes as a function of

dimensionality d. The solid lines represent the predictions of (1).

probability density function. The number of distance calculations
required to find the: k nearest neighbors to each point, using the full
procedure (sorting: on all coordinates), was determined and then

averaged over all of the points. This procedure was then repeated
ten times with different random points from the same probability
density function. ‘I'he average of these ten trials was then taken as
the result of the experiment, and the statistical uncertainty was
taken to be 1/(10)1/? times the standard deviation about the mean
for the ten trials. These uncertainties were all less than 1 percent

and for the larger :amples were around 0.1 percent.
These simulatio: results are presented in Figs. 2-5. The variation

with N,k,d, under!ying distribution, and distance measure of the
relative efficiency of this algorithm to the brute force method (cal-

culating distances to all of the prototypes) is compared to the
upper bound predit ted by (1) (solid lines). Fig. 2 shows the depend-

ence on N (d = 2,.¢ = 1) for several underlying distributions. These
distributions are u:iiform on the unit square, bivariate normal with

unit dispersion ma‘rix, and bivariate Cauchy
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represent the predictions of (1).
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this method to the brute force method,for finding the nearest neighbor

(k = 1, N = 1000, uniform distribution) for several Minkowski p

metrics, p = 1(©), p =2 (O), p = © ((J). Thesolid lines repre-
sent the predictions of (1), (la), and (1b).

Fig. 3 shows the dependence on k (d = 2, n = 100 and 1000) for

uniform and normaldata. Fig. 4 shows the dependence on d (k = 1,

N = 100 and 1000) again, for both uniformly and normally distrib-

uted data. Fig. 5 shows the dependence on d (k = 1, N = 1000,

uniform distribution) for several different Minkowski p metrics,

namely p = 1 (city block distance), p = 2 (Euclidean distance),

and p = © (maximum coordinate distance).

DISCUSSION

These simulation experiments show that (1), (1a), and (1b) do,

indeed, provide a close upper bound ‘on the average numberof dis-
tance calculations required by the algorithm to find nearest neigh-

bors. Although these formulas always slightly overestimate the
actual number, they quite accurately reflect the variation with N,

k, d, and p. As predicted by (12), the number of distance calcula-

tions tends to diminishfor increasing density variation of the sample’
points. It is interesting to note that for d = 2 and k =1, this
algorithm requires a smaller average numberof distance calculations
for 10000 prototypes than does the brute force method for 100

prototypes.
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The relative efficiency of this algorithm (as compared with the
brute force method) decreases slightly with increasing k and more
rapidly with increasing dimensionality d. In eight dimensions for
1000 prototypes (k = 1) the average numberof distance evaluations
is reduced by approximately 40 percent. Although not dramatic,

this is still quite profitable in terms of the preprocessing require-
ments.

As indicated by (1), (1a), and (1b) and verified in Fig. 5, the

growth of E[na] with dimensionality depends strongly on the choice

of the distance measure. For Minkowski p metrics, it is easy to show
that E,[na] grows more slowly with d for increasing p. Theresults
of (1b) and Fig. 5 indicate that if a distance measure is chosen on
the basis of rapid calculation, the maximum coordinate distance
(p = o~) is the natural choice since it also minimizes the number

of distance calculations, especially for high dimensionality.

A crude calculation gives a rough idea of how manytest points

N; are required (in terms of the numberof prototypes Np, k, and d)
for the preprocessing procedure to be profitable. The preprocessing
requires approximately dN, logs N» compares, memory fetches, and

stores. Each distance calculation requires around d multiplies, sub-
tractions, additions, and memory fetches. Assuming all of these
operations require equal computation, then the preprocessing re-

quires about 3dN, log N, operations, while it saves approximately

4dN.(N, — El[na]) operations. Thus, for the procedure to be profit-
able

4dNi(N, — Elna]) > 3dN, log Nz

or crudely®

N, loge Np
Ni >No ~ .

1 "Ny — Elna]
(19)

E(na]is given approximately by (1) (Euclidean metric). For d = 2,

k = 1, and 1000 prototypes, No is around 10, whereas for d = 8,
k = 1, and 1000 prototypes, one has No ~ 25.

Although these results are quite crude, it is clear that the number
of test points need not be large, compared to the number of proto-
types, before the algorithm can be profitably applied. For density
estimation, where NV; = N, = N,the procedureis profitable so long
as No/N is small compared to one.

The only adjustable parameter in this algorithm is the number of
projection coordinates m on which the data are sorted. This param-
eter can range in value from one (basic procedure) to d (full proce-
dure). The value chosen for this parameter is governed principally
by the amount of memory available. This algorithm requires mN
additional memory locations, and for m = d, doubles the memory
over that required by the brute force method. If less than the full
procedure is employed, then those axes with the largest spread
should be chosen. Arguments similar to those that lead to (13) can
be used to estimate the efficiency for this case. For the case where
all coordinates have approximately equal spread, (12) can be used
to show that the increase in efficiency, as additional sorted coordi-
nates are added, is proportional to 1/m. Results of simulations (not
shown) verify this dependence.

The tendency toward decreasing relative efficiency with increas-
ing dimensionality cannot be mitigated by requiring the distance
measure to satisfy the triangle inequality

A (XmXn) > | d(Xm,X2) — d(X1,Xn) |. (20)

In this case distance calculations can be avoided for those proto-
types x, for which

A(Xi,Xk) < | d(Xe,X1) — d(xi,xn) | (21)

6 This calculation is extremely dependent on the specific computer

upon which the algorithm is implemented, and the results of (19) should
be regarded as only a crude estimate.

a
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where x; is the test point, x; is the kth nearest prototype of those

already examined and x;is a prototype for which d(x;,x1) and d(x1,Xn)
have already been evaluated (and saved). The use of (21) will be

most effective when the dispersion of interpoint distances in the
prototype sample is greatest. In this case, d(x:,x,) will tend to be

small whereas d(x:,x1) and d(x1,X,) will quite often be dissimilar,

making the right-hand side on (21) large. Since distance varies as
the dth root of the volume, the distance variation will decrease with

increasing dimensionality for a given density variation.
For a uniform density distribution in a d-dimensional space, the

coefficient of variation of the interpoint distance is

 

   
   

   

NEAREST NEIGHBOR (k=1)

1,00 E- =
- 0 N=100 4

8 - Oo N=1000 “

E 0.50 F 7
< E 4

YY a 4

LiJ

= r 6h 7
=

>

O 0.10 a
O - 4

005+ 5

} 3 4 5 6 7 8 Q

d

DIMENSI@NALITY
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force method for finding the nearest neighbor for 100 and 1000 nor-

mally distributed prototypes, as a function of the dimensionality d.

The solid lines represent the predictions of (1).

ra? (22)

which decreases as 1/d for increasing d. Thus, the usefulness of the

triangle inequality is affected by the ‘curse of dimensionality’ in
the same manneras the algorithm discussed above.
The performance of this algorithm has been discussed in termsof

the numberof prototypes that need to be examined and distances
calculated. This measure has the advantage of being independent
of the specific implementation of the algorithm and the computer
upon whichit is executed. It has the disadvantage that it does not

measure the additional ‘overhead’? computation that may be
present in the algorithm. The brute force method spends nearly
all of its time performing distance calculations and has very little

such overhead. The method discussed here introduces additional
computation exclusive of the distance calculations. Fig. 6 indicates
that this overhead computation is not excessive. Shown in Fig. 6 is
the ratio of actual running timesof this algorithm to the brute force
method® for the same situations presented in Fig. 4. Comparisonsof
correspondingresults in these two figures show that the performance
of this algorithm, as reflected in number of distance calculations,
closely corresponds to its actual performance when implemented
on a computer.’

2) __ 9 fl/2

[eavet] = [did +2)2

6 These ratios were obtained by executing both algorithms on an

IBM 370/168 computer. Both algorithms were coded in Fortran IV

and compiled with the IBM Fortran H compiler at optimization level
two.

™ The largest discrepancies occur for low dimensionality where dis-

tance calculations are relatively inexpensive. For higher dimensionalities,

the correspondence becomescloser.
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CONCLUSION

A simple algorithm has been presented for finding nearest neigh-

bors with computation proportional to k*/4N1-/® and preprocessing
proportional to dN log N. The algorithm can be used with a general
class of dissimilarity measures, not just those that satisfy the triangle

inequality. The algorithm takes advantage oflocal variations in

the structure of the data to increase efficiency. Formulas that
enable one to calculate a close upper bound on the expected per-

formance for common metrics have been derived. Simulation experi-
ments have been presented thatillustrate the degree to which these
formulas bound tk.2 actual performance.
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A Classifier Design Technique for Discrete Variable

Pattern Recognition Problems

JAMES C. STOFFEL, MEMBER, IEEE

Abstract—This paper presents a new computerized technique to
aid the designers of pattern classifiers when the measurement
variables are discrete and the values form a simple nominal scale

(no inherent metric). A theory of ‘prime events’? which applies to
patterns with measurements of this type is presented. A procedure
for applying the theory of ‘“‘prime events” and an analysis of the
‘prime event estimates”’ is given. To manifest additional charac-

teristics of this technique, an example optical character recognition
(OCR)application is discussed.

Index Terms—Classification, discrete variables, interactive pat-
tern recognition, nonparametric pattern recognition, n-tuple selec-
tion, optical character recognition (OCR), pattern recognition,
prime events.

I. INTRODUCTION

HE DESIGNof automatic classification devices often

relies on one or a number of mathematical procedures

which manifest the statistical structure of samples from

the classes to be discriminated. Such mathematical proce-
dures have been effectively incorporated in interactive

computer environments (see Kanal [1 ]). There exist few
mathematical techniques, however, to deal with patterns

whose measurement variables have discrete, type-II val-

ues. The following will describe the unique characteristics
of discrete type-II variables, the difficulties in dealing
with these variables in pattern-recognition problems, and

a new theoretical and practical procedure to handle such

variables.

II. TYPES OF VARIABLES

In a classical manner, a pattern will be represented

hereafter as a vector, v =[vv2-++vqg]. The elements »; in
the vector represent the values of specific measurements,

and the dimension of the vector d corresponds to the

number of measurements used to represent the pattern.

The measurement variables will be divided into three
categories. Following the definitions of Sammon [2], the
categories will be labeled continuous, discrete, type-I, and
discrete, type-II.

The continuous category is composed of variables which

may take on any value in a prescribed range of the real

line.
The second typeof variable is defined as discrete, type-I.

Manuscript received March 6, 1973; revised September 24, 1973.
This work was supported in part by a research grant to Syracuse
University from the Rome Air Development Center, Rome, N. Y.
The authoris with the Research Laboratories Department,

Xerox Corporfation, Rochester, N. Y. 14644.

This group will include those variables which take on

only discrete values, but which represent samples from

some underlying continuum. An example of these discrete,

type-I variables is age. Although it is typically given as

integer years, the measurement value is a sample from a

quantized continuum,timesince birth.
A variable in the third category, called discrete, type-

II, may take on discrete values, but there is no apparently

significant ranking of these values. An example of such a

variable is the blood type of a sample. The possible values

are: A, AB, O, etc. These values are discrete and repre-

sent a nominal, rather than an ordinal scale.

For cases when the measurement variables are discrete,

type-II, significant practical difficulties may arise in the

design of accurate classifiers. It is characteristic of the

discrete, type-II variables that a change of a single vari-

able value, from one level to another, may represent a

significant change in the measured item. For example,

two specimens which have identical measurementvalues,

with the exception of blood type, may havesignificantly

different responses to certain pathogens.

Unlike the continuous category there is no incremental

variation in the discrete, type-II variable values which

will leave the pattern effectively unaltered. Due to this

factor and the lack of an inherent ordering principle for

the variable values,it is difficult to describe the probability

distribution of the measurement vectors by a simple para-

metric model. If a generally applicable model existed with

relatively few parameters, the designer might confidently

estimate the parameters of the distribution and then

approximate an optimal discriminate rule such as Bayes’

(Kanal [3}).
As an example, consider the case when the measure-

ment vector has a finite dimension and each variable takes

on a finite number of values. From statistical point of

view, it would appear useful to estimate the probabilities

of each of the possible measurement vectors. For this

‘multinomial model” (Foley [4]), assume that all meas-

urements are binary valued and that the measurement

vector has dimension ten. These conditions imply that

there are 1024 parameters, probabilities for the measure-

ment vectors, to estimate. Since a numberof these param-
eters will be less than one one-thousandth, a large number

of samples of each class must be obtained to guarantee

confidence in these estimates. Foley [4] implies that 3072

to 4096 samples per class should be utilized to yield

confidence in the classifier design. Such large sample sets

are often unobtainable, however.

Reprinted from /EEE Trans. Comput., vol. C-23, pp. 428-441, Apr. 1974.
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Augmenting thestatistical tools which aid the practical

classifier designer are procedures which are based on

“geometric principles.”’ Rather than estimate statistical
parameters, a designer may begin to treat the set of pos-

sible measurement vectors as members of a vector space,

wherein he seeks a relatively simple discriminate rule to

be specified in terms of a metric for that space. Exemplars

of this approach are ‘nearest neighbors” classification

rules (Fix, Hodges [5]), and Fisher’s Linear Discriminant
(Fisher [6], Sammon [7]).
For measurement vectors with discrete, type-II vari-

ables, however, the Euclidean metric is not generally

applicable as a similarity measure (Hills [8]). Further-

more, the arbitrary nature of the nominal scale makes

alternate metrics difficult to derive (Lance, Williams [9]).
The geometric principles which lead to useful design tools

for classification tasks with continuous variable measure-

ment vectors are not generally applicable to the cases

with discrete, type-II variables.

III. APPROACHES TO HANDLING DISCRETE
VARIABLES

This paper attempts to present a general “‘tool’’ to

assist the classificr designer in extracting classificatory |

information from data with discrete, type-II variables.

This technique,lilxe all other in pattern recognition, will

not solve every classification problem; however, it will

add to the desigrier’s ability to handle discrete variable

data. Theinitiative for the work reported here was the

work done in the «evelopment of a “discrete variable sub-
system” for ouPals, by Sammon [10]. It is the author’s
belief that the analytical techniques developed in this

paper are best suived to an interactive environment such

as described by Kanal[1].
Various approaches have been taken to deal with the

difficulties of disc:-ete, type-II variables as cited above.

Linhart [11] and ‘Cochran and Hopkins [12] were among
the first to publish the inherent difficulties in handling
classification problems with discrete, type-II variables. A
numberof others 1ave utilized a variety of techniques in

an attempt to overcome the difficulties with variables of

this category.

Viewing the problem statistically, a numberofrestric-
tions have been imposed on thc general multinomial
model of the probability distribution of the measurement
vectors. If one assumes that the variables are mutually

independent, then there are only d parameters to estimate

for measurement v:2ctors of dimension d with binary-valued

variables. Regarding this as too restrictive, one might

assume the “latent class” model of Lazarsfeld [13] to

represent a class of measurement vectors. This model

would represent the class as a summation of subclasses,

each of which hss variables which are mutually inde-

pendent. If there -were s subclasses, then one would have

to estimate s X ‘d+ 1) parameters for measurement

vectors of dimension d whose measurements were binary

valued. Investigatons of the parameter estimation of this

model have been carried out, by Anderson [14] and

McHugh [15]; however, this is not a generally applicable
model.

Another restricted model which has been proposed is

the “logit’’ model. For this model, the logarithm of the
probability distribution of the measurement vectors is

represented as follows:

va) } = A + Dd (—1)"a;
c=]

log {P(v1,02, +> (1)

where v; € {0,1} and a; are constants. Schaefer [16]
utilized this model for binary-valued measurement vari-

ables, which are by definition discrete, type-II. (A gen-

eralization of this model and additional details may be

found in Good [17], Gilbert [18], and Cox [19].) This
model, as well as the restricted models given above, repre-

sents assumptions about the classes being dealt with. For

practical applications these various assumptions must be

justified before the models becomeof value.

An alternate technique which has been employed is to

develop a finite series expansion for the general multi-
nomial probability distribution. By a judicious choice of

the basis set, a concise description of the total probability
distribution may be possible if problem information con-

strains some coefficients to zero. Examples of this approach
are Bahadur [20], Abend et al. [21], and Chow [22],
[23]. This approach hasyielded limited results.
A variety of “geometric” techniques have also been

applied to the discrete, type-II variable classifier design
task. The “‘near neighbor’’ concept of Fix and Hodges [5]
was applied unsuccessfully by Hills [8] to discriminate
discrete, type-II data. Gilbert [18] examined the applica-
bility of Fisher’s linear discriminant to the classification
of a restricted class of measurement vectors with binary

variables. Furthermore, numerous similarity metrics have

been proposed and applied to classification tasks. Among

these are the “matching metric” of Sokal and Sneath
[24], the “hierarchical” clustering metrics of Lance and
Williams [9], and a “probabilistic” metric defined by
Goodall [25].

Still another alternative for dealing with discrete, type-
IT variablesis to transform them into continuousvariables.

Examples of such transformations may be found in

Sammon [2]. |
The above techniques have not been valueless, but

there remains a need for a general approach to extracting

classificatory information from the sample data. An ap-
proach which makes few a priori decisions about the data

is ‘‘measurement selection.” This technique attempts to
eliminate from the measurement vector variables which

contribute little or nothing to the classificationaccuracy.
Hills [8], for example, selects the “best’’ subset of meas-

urement variable by estimating the information diver-

gence, Fortier and Solomon [26] incorporate the product
moment correlations of the variables in a figure-of-merit
selection algorithm, and McQuitty [27] applies a cluster-
ing algorithm. These procedures tend to beineffective or

349



to require exhaustive, impractical corrputation for dis-

crete, type-II variable data. Some theoretical justifica-

tion for the lack of positive results in this area may be

found in Elashoff et al. [28] and Toussaint [29].

IV. PRIME EVENTS

A newtheoretical point of view is presented in this

section which deals with discrete, type-II variable meas-

urement vectors. The theory is generally applicable to

this type of data; i.e., no a priorz decisions about the form

of the underlying probability distributions are required.

A pattern is available to a classifier designer in the

form of a d-dimensional vector, v = (04,¥2,+**,Ug), the

measurement vector. The set of possible measurement

vectors is thus comprised of vectors whose elementslie in

the range of the measurement functions associated with

each element in the vector. The set of possible measure-

ment vectors formsa set of events in a sample space.

An event in the sample space described above is com-

pletely specified by a d-dimensional vector. The term,

event, will be utilized hereafter to denote a measurement

vector in which a subset. of the d elements have specified

values. The remaining elements are unspecified and will

be represented by a ‘‘—’ in the vector. Hence, event

é; = (1,2,5) represents the state that measurements one,

two, and three take on values 1, 2, and 5, respectively.

Furthermore, event e. = (1,2,—) is defined to represent

the state that measurements one and two take on values

1 and 2, respectively. Measurement three is not specified.

One of the significant characteristics of an event is its

ability to ‘‘cover”’ other events. An event e; will be said

to cover an event é if and only if every element of é

which has a specified value equals the value of the corre-

sponding item in e.. Furthermore, if an element in é; 1s

not specified, then any value or a “not specified” value

mayexist for the corresponding elementof és.

To exemplify the covering principle, examinethe follow-

ing events:

a = (2,—,—)

€ = (2,1,0)

= (2,2,—).

Using the above definition, one may see that event ¢é

covers é: and e3. However, é: does not cover é&or é3, and

e3; does not cover é; OF é».

Due to the covering capacity of an event, one may note

that an event partitions the set of possible measurement

vectors into two subsets. One subset comprises the meas-

urement vectors which are covered by the event, and the

other subset contains all measurement vectors not covered

by the event. The above principle is easily incorporated

in the design of a classifier. For each class, a collection of

events which will henceforth be termed the definitionset

is assigned. The classification rule is, then, to assign a

measurement vector to the class whose definition set

contained an event which covered the measurementvec-
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tor. If the measurementvectoris not covered by a member

of any definition set, then it is rejected.
To implement the simple classification procedure de-

scribed above, a number of major questions must be

answered. First of all, what events should theoretically

be contained within the definition sets of each class? The

number of possible events is typically quite large. For

example, a ten-dimensional measurement vector with

binary-valued elements will have 3! events which must

be considered in making up a definition set. Further, the

sets of events may overlap one another in varying degrees,

and various percentages of the one or more classes may

be covered by one event. Hence, there are potentially

complex. tradeoffs in the error rates for various sets of

events used as a definition set.

Second, for a specific classification problem, how does

one generate the theoretically ideal events as defined by

the answer to question one?

Finally, how does sample information from a practical

design problem becomeincorporated in the design of defi-

nition sets for each class?

The remainderof this section will be devoted to answer-

ing the first question; the next section will deal with

questions two and three. Therefore, the immediate goal

is to ascertain just what events should be contained within

the definition set of a particular class.

Two types of errors are of concern when using events

to discriminate between classes. Type-I errors will be

defined as the occurrence of a measurement vector from

class C; which is covered by an event in the definition set

of class C;, for 1 # 7. Type-II errors will be defined as

the occurrence of a measurement vector from class C;

which is not covered by an event in thedefinition set for

class C';. It is not always possible to reduce the occurrence

of errors to zero, since classes may overlap. The optimality

criterion whichis utilized, therefore, is the minimization

of the average probability of error.

Anothercriterion is placed on the theoretically optimal

solution. This secondcriterion states that the set of events

which comprise the definition set for each class must be

minimal in number. Among other things, this criterion

introduces the practical consideration of storage for a

classification algorithm.

The first criterion for the optimal definition set may be

met by Bayes’ rule, Kanal [3]. For the case under con-

sideration, the rule states that the minimum average

probability of error is obtained when theclassifier assigns

a measurement vector to the class which yields the largest

a posteriort probability. Using the notation p(u|C;) for
the conditional probability of measurement vector v, given

class C'; as a source and p(C;) as the probability of occur-

rence of a vector from class C;, then the optimal rule

assigns to class C; a sample v whenever p(v|C;)p(C;) =

p(v|C;)p(C;,) forall 7.
From the above, one may deduce that a definition set

comprised of a measurement vectors which the aboverule
has assigned to a specific class would satisfy criterion one.

However, criterion two may not be satisfied by the col-
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lection of measurement vectors. Hence, the optimal set
of events is not immediately obtained.

A particular set of events will be shown to be a sufficient
collection from which an optimal definition set may be

selected. The members of this set are labeled “prime

events.”’ A prime event is defined as an event which covers

only those measurement vectors which a Bayes’ Rule

would assign to wne class; furthermore, a prime event may

not be covered ky another prime event.

The fact that the optimal definition sets may be com-

posed of events from the set of prime events may be

easily proved by contradiction. Under the assumption

that the optimal design set includes a nonprime event e;,

it follows that e; must either be covered by a prime event

€p, and thus e, mayreplace e; in the design set, or e; covers

measurement vectors assigned by Bayes’ Rule to more

than one class. The second alternative is not possible,

since the optima! definition set will not contradict Bayes’

Rule; therefore, the prime events form a sufficient set.

In order to clarify the ideas expressed above, an exam-

ple will be given utilizing the set of three-dimensional
binary-valued measurement vectors. The example is that

of a two-class problem plus reject class, and the class

conditional probibilities for the measurement vectors are

given below. The example shows the assignment of the

measurement vectors and the prime events associated

with the problern. The optimal design sets for each class

are then listed.

 

 

Example 1

Measurement vecto"s  p(v; | C1) p(v; | C2) piv; | R)

000 0 0 0.25
001 0 0 0.25
010 0.4 0.2 0
O11 0.4 0.2 0
100 0.1 0.3 0
101 0.1 0.2 0
110 0 0.1 0
111 0 0 0.50
 

Assume that the probability of each class is 0.45; namely,

p(Ci) = p(C.) == 0.45 and p(R) = 0.10. The decision

rule described al:ove may be rewritten as follows.

Assign v; to ecliuss C; whenever

p(vil C;)p(C;) = pv; | Cx) (Cz)

for C;,Ck € {Ci,€%,f}.

Utilizing this rule, the measurement vectors will be

assigned in the following fashion:

Class C,; = {(0,1,0), (0,1,1)}

Class C, = {(1,0,0), (1,0,1), (1,1,0)}

Reject = { (0,0,0), (0,0,1), (1,1,1)};

the prime events for class C,: {(0,1—)}, for class C2:

{(1,0,—), (1,—,0)}; the chosen optimal design sets are:

{ (0,1,—)}

(1,0,—), (1,—,0) }.

yt
idj =

42

Example 1 is intentionally simple and does not reflect
some of the more complex characteristics of prime events
and definition sets. There is a potentially large number
of prime events which maybe associated with a particular

classification problem. The numberof these prime events

may be as large as the number of measurement vectors

which they cover. The magnitude of their number and

their characteristics are, furthermore, problem-dependent
facts.

The potential variability in the numberof prime events

and their complex covering properties results in definition

sets of various sizes and (problem-dependent) character-

istics. In addition, the definition sets for a particular

classification problem are not unique, even though they

may be composed of only prime events.

The suggested procedure for designing a classifier re-

quires that one first generate the prime events for the

specific problem at hand. The next step is to select a

minimal size set of prime events to makeup thedefinition

sets. These procedures are discussed in the nextsection.

V. GENERATION OF EVENTS

The next question to be dealt with is the method of
creating the optimal design set for a specific class. In what

follows, a procedure will be given which is capable of

creating all of the prime events associated with a specified

set of measurement vectors. A procedure for selecting the

final design set will then be described.

It is intended that the generation procedure be per-

formed for each class to yield the optimal set of events

for that class. Thus, for a six-class problem six sets of

events will be generated. The reject class then becomes

the remainder of the set of measurement vectors which

are not covered by any of the six sets of events.

As throughout the discussion of prime events, the pro-

cedure described below will make use of the knowledge

of the class conditional probabilities of the measurement

vectors, along with the probabilities of occurrence of the

classes. These quantities must be estimated in most prac-

tical cases.

The first step in the generation procedure is to form

two lists of measurement vectors, L and NL. List L 1s

comprised of all the measurement vectors which the

Bayes’ decision rule would assign to the chosen class. List
NL is comprised of all the measurement vectors which

are not assigned to the chosen class.

The procedure of generating prime events uses the list

L to create new events and forms a new list, LP, of

potential prime events. The creation of new lists continues

until no new events are generated.

New eventsare created from list L by combininga pair

of events in thelist. The combining process for two events

in Lis performed usingthe lattice binary operation “‘join’”’

for each variable. To make clear this procedure, the op-

eration of combiningvariables will first be dealt with.

The result of combining variables may be expressed as

a binary operation with a simple rule. If the two variable

values differ, then the result is a “don’t care” value. If
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the variables are the same, the resultant variable has that

same value. When combining a ‘don’t care” value with

anything, the result is a “don’t care” value. For ternary-

valued variables, the table below will demonstrate the

combination rules described above:
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where ‘‘—”’ signifies a ‘“‘don’t care.”

Now, to combine two events in LT which have ternary-

valued variables, the above operation will be applied

‘“‘pointwise’’ to each variable. The combination of the

following two events will help clarify this concept:

(2,—,1) + (2,1,0) = (2,—,—).

In this way, any two events derived from the same meas-

urement space may be combined to form a new event.

Theprocess of combining events will henceforth be termed

“merging.”

The procedure for generating the set of prime events

begins by merging all pairs of events in the list L. Each

new event, the result of merging two events in JL,is

checked to see if it covers any members of NL. If it does

cover a member of NL, then the event will not be a prime

event nor will any event which covers this new event.

This follows from the restriction that a prime event may

not cover measurement vectors which a Bayes’ decision

strategy would assign to two different classes. The new

event 1s then disregarded.
On the other hand, if the result of merging two events

in L does not cover any memberof NL, then this event

will be a potential prime event, andit is stored in list LP.

All new events generated from L are checked and only

those new events which are truly potential prime events

are stored in LP. Also added to LP is any event in L

which did not yield a potential prime event when it was
merged with any of the other events in L.

The procedure formsall pairwise mergersin list L and

adds to list LP those new events which only cover meas-

urement vectors assigned to a specific class. The list LP

will also include those events from L which did not yield

a potential prime event upon merging with any of the

events in L.

The list LP is next treated as list L and the merging
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process is repeatedas before. Each pair of events in LP is

merged and a check is performed to see if the new event

is a potential prime event.

This formation of new lists continues until list Z equals

list LP. This occurs when no merger of a pair of events in
L yields an event which is a potential prime event and1s

different from each memberof L.

An example of the generation procedure will be given

below to help clarify the specific details of the algorithm.

The example problem is a two-class problem with three-

dimensional ternary-valued variables. The procedure will

be applied to derive the set of prime events associated

with one of the classes, C1.

Let the set of measurement vectors which a Bayes’

decision rule would assign to class C; be as follows:

{ (2,0,0), (2,1,0), (2,2,0), (2,0,1)}. The remaining meas-

urement vectors will be either in class C2 or a reject class.

The algorithm begins by forminglist L.

Inst L

1: (2,0,0)

2: (2,1,0)

3: (2,2,0)

4; (2,0,1)

Indices have been assigned to each measurement vector

so that they may be referenced more easily, i.e., e: A

(2,0,0).
Next, one merges events e; and es:

(2,0,0) + (2,1,0) = (2,—,0) A ey.

This event is checked against the list NZ with the result
that no memberofthat list is covered by event e2. Thus,

x. 1s placed in list LP.

The events é; and e; are then merged:

(2,0,0) + (2,2,0) = (2,—,0) = 13.

Since the event e:3 is already in LP, no further processing
is required.

The remaining combinationsyield:

éiu D (2,0,—)

€o3 ZB (2,—,0)

eos 2 (2,—,—)

é34 A (2,—,—).

The events eé14, 24, 34 are not retained, since they cover

members of NL. Event é3 is already stored on LP and

henceis disregarded.
Event e, is next added to list LP since it merged with

no member of EL to yield a potential prime event.

LP = {(2,—,0), (2,0,1)}.

Checking LP and L,one will find them different. There-

fore, LP becomeslist L and a new emptylist is introduced

as LP:
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List L List LP

2 (2,—,0) (Null).

04 (2,0,1)

Repeating the merging process:

(2,—,0) + (2,0,1) = (2,—,—) Zz ej04.

Event é12, covers elements of list NZ and thereforeis dis-
regarded.
No further mergers are possible in list Z, and thus ei

and e, are added «0 LP:

IP = {2,—,0), (2,0,1)}.

Checking LP end L, it will be seen that they are iden-

tical, and thus the procedure stops. The set of prime events

for class Ci is in both lists, L and LP.

It can be shownthat the above procedure will generate
all, and only, the prime events for a specific classification

problem. To manifest that the procedure will generate all

of the prime even's, this fact will be negated and a contra-

diction will be shown to follow. Pursuing this method,
let there exist some prime event e, which is not generated

by the procedure: described above. Event ep covers a set

of measurement vectors which by Bayes’ rule will be

classified as belonging to one class. Thus a pair or any

subset of these vectors, when merged, will yield an event

which is covered by e, and hence covers no member of

another class. The generative procedure described above

discards only those mergers which cover measurement

vectors of two or more classes. Hence, the mergers of

measurement vectors which are covered by é, will be re-

tained. Successive, exhaustive, pairwise merging of the

retained events which are covered by e, will eventually

generate event ¢,. as it represents the mergerof all meas-

urement vectors ‘vhich it covers. But this contradicts the

assumption that there exists a prime event which 1s not

generated by the above procedure.

To show that only prime events are generated via the

above procedure, a proof by contradiction will also suffice.

Assume that an «vent e, is generated but that e, is not a

prime event. There are two restrictions of prime events
which e, may hve violated. First of all, e, may cover

measurement vectors from two or moreclasses. This may

be ruled out sinve the above generative procedure does

not retain event: as potential prime events for a specific

class if that event also covers measurement vectors of

another class, members of NL. The second prime event

restriction is that a prime event may not be covered by

another prime event. Event e, may not be covered by

some prime even’: €,, however, since the generative proce-

dure would atteript to merge en and e, and yield event é,,
which would be retained. Event e, would not remain with

the final list of prime events which was shown above to

be complete. Tiierefore, the assumption that event én

exists is false, snd the generative procedure has been
shown to yield only prime events.

The final theoretical step in the creation of the optimal

definition sets for the classes of a specific problem is the

selection of the minimum size set of the generated prime

events. The measurement vectors which a definition set

must cover are the same vectors which were placed in

list Z to generate the prime events. The goalis, therefore,

to select a minimal-size cover for these measurement

vectors.

One method of selecting the minimal-size coveringis to

exhaustively examine the power set of the set of prime

events. One could then select from this set the smallest

set of prime events which covered the required measure-

ment vectors. Alternate procedures for selecting this

minimal-size cover may be found in the procedures de-

veloped to “minimize Boolean functions,” Prather [30 ].
For a theoretical analysis, the existence of some procedure

is sufficient. Thus, the problem of selecting a minimal

coverwill be considered answered until the practical appli-

cation of this theory is discussed in the next section.

The Prime-Event-Generation (PEG) algorithm will

operate to minimize a function of the discrete variables.

Algorithms which minimize the “‘cost”’ of a Boolean func-

tion, e.g., Prather [30], yield similar results. Both proce-
dures generate coversfor a set of discrete points. However,

the PEG algorithm will operate on other than binary-

valued variables, with various mixes of multivalued vari-

ables, and with more than the three classes of points,

“trues,” “falses,” and ‘‘don’t cares,’”’ which define Boolean

functions.
This section has provided theoretical answers to the

questions of what events should beutilized in a classifier

and how these events maybe generated and selected. The

next section will deal with the practical classifier design
task and the application of the theory of prime events

to it.

VI. APPLICATION OF PRIME EVENT THEORY

The following is the proposed method for dealing with

design problems wherein the probabilities of the measure-

ment vectors are not known. When one is not aware of

the class conditional probabilities of the measurement

vectors, optimal design procedures may only be estimated.

The set of prime events will serve as a goal for the design

methods described below. However, only sample informa-
tion will be utilized in the procedure.
The proposed method of dealing with sample informa-

tion is to form estimates of the true prime events for the

particular classes. The mechanism for creating these esti-
mates is to incorporate samples of the classes as the

assigned measurement vectors were incorporated in the

prime-event-generation algorithm described in the previ-

ous section. To obtain the prime events associated with
a class C, one places the samples from class C in list L

and the samples from all other classes in list NL. The

prime-event-generation algorithm then proceeds, as de-
scribed above, to merge the samples in list Z and to add
potential prime events (truly estimates) to list LP. Pro-

ceeding as previously described, the generation algorithm

will halt when list ZL equals list LP.
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The task of extracting the minimalsize cover as a defi-
nition set is also encumberedbythe practicality of dealing

only with estimates of prime events. For practical classi-

fiers, it is economically advantageous to store as few
prime event estimates as possible. However,the selection

of the smallest set which simultaneously covers the set of

samples of that specific class is not guaranteed to yield
the best classifier accuracy; it may, in fact, degrade the
performance over that of a larger set. Thus, the selection
of the definition set may incorporate a tradeoff in the

number of prime event estimates and their ability to

cover all, and only, the measurement vectors which

Bayes’ rule would assign to that class. When the number

of prime event estimates is large, a cover-selection al-

gorithm such as given by Prather [30] may be incorpo-
rated. If but a few estimates are generated, it may be
practical to includeall of them in the definition set. This

decision is often dependent on problem constraints which

are specific to the design tasks; hence, no rule is given
here. An example-selection procedure is described in the

design application presented in Section VII.

Two newfacilities are added to the fundamental prime-
event-generation procedure to increaseits flexibility when
dealing with sample information. Thefirst facility is a
threshold, 64, which is utilized when checking if an event
covers a memberof list NZ. An event will be treated as
though it did not cover a member of NL if the event
truly covered less than or equal to 64 percent of list NL.

The normalsetting of 64 is 0. It may be raised to other
percentage values, however. This flexibility may prove
helpful when a measurement vector occurs as a sample
in two different classes. If sufficient numbers of samples
are available to confidently estimate the Bayes’ rule for
classifying such measurement vectors, they may simply
be removed from classes other than the properly assigned
class. The generation procedure may then proceed as
before. However, if insufficient confidence is established
with the available samples, then threshold 64 may be
raised above 0.

The second facility which is added to the fundamental
generation algorithm is a threshold, 63. An event will be
considered to cover a measurement vector in list NL if
the numberof specified variables in the event which differ
from those of the measurement vectoris less than 6p.

To exemplify the use of 6, assume that vector (2, 1,0,1,0)
is in list NL. If 43 is set at the normal value 1, then the
event (2,—,1,—,0) will be considered, as described in the
previous section, not to cover the measurement vector.
However,if 62 is raised to 2, then the event will be treated
as though it covers the measurement vector, since only
one specified variable in the event differs in value from
that of the measurement vector.

Both 64 and 62 are utilized to compensate for the finite
sample sizes in practical problems. Byraising 64 above0,
one is not forced to make decisions based on a small
number of samples in a very large measurement space.
The variable 6g is utilized to provide greater confidence
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that a generated event will not cover samples of a class
represented in list NL. An increase in 63 from 1 to 2 will

compensate for the absence of a sample in NZ which is
different in only one variable value from a sample pres-

ently in NL. In this way one may compensate for some

deficiencies in the samples on list NL.

The methodof incorporating samples in the basic prime-
event-generation algorithm provides a mechanism for

extracting the classificatory information from the discrete,
type-II variable data. This algorithm with the added

flexibilities provided by 64 and @3 is defined as the Prime-

Event-Generation algorithm (PEG) andit represents the

fundamental analytic mechanism which is presented as a

classifier design tool.

The important qualities of the prime-event-estimation
procedures are noted below. An example application of
these proceduresis discussed in the section which follows.
The first notable characteristic of the prime-event-

estimation procedure is its generality. The technique
makes no a priort decisions about the form of the under-
lying probability distributions for the measurement vec-

tors. The PEGalgorithm is a tool for extracting from the

samplesof the classes that “structural” information which
will make possible the discrimination of these classes,
regardless of the underlying probability distributions asso-
ciated with each class.

A second characteristic of the PEG procedure which
should be noted concerns the statistical confidence of
estimated parameters. As noted earlier, for discrete, type-
II variable classifier design tasks, the numberof possible
measurement vectors is often too large in number to
obtain confident estimates of their probabilities of occur-
rence using practical sample sizes. The merging process
of the PEG algorithm yields events which may have a
numberof variables not specified in value. These events
may truly be considered as members of the subspace de-
fined by the variables which are specified. Hence, there
will be less possible variation in that subspace and greater
confidence maybeplaced in an estimate of the probability
of the event occurring than in the estimate of measurement
vectors.

To exemplify the above concept, assume there exists
a two-class recognition problem with ten-dimensional,
binary-valued measurementvectors. If one treats the vec-
tors as a positional binary number, then the measurement
vectors may be denoted by a decimal numberin the range
from 0 to 1024. Using this notation, let the samples of
class Cbe the set {0,1,2,+-+,255}, and let the samples of
class Cbe the set {256,257,--+,767} (see Fig. 1).

For the example described above, one mayestimate the
probabilities for each of the possible measurement vectors.
However,thereis at most one sample of any ofthe possible
measurement vectors. Also, the greatest difference in the
number of samples of a specific measurement vector for
the two classes is one. Furthermore, there are only 768
samples with which to estimate the 2048 class-conditional
probabilities of the measurement vectors. Little statistical
confidence may be placed in these estimates.
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On the other hand, one may note that all samples in

class C have the first two measurements equal to 0.

Furthermore, cliss C, samples have measurements one

and two equal to the two-tuple (0,1) or (1,0). A dis-

criminatory everit for class C; could thus be (0,0,—,—,—,
—,—,—,—,—_) and a pair for class C. could be (0,1,

Sy1-) and (1,0,——,—_,—,—,——,) ,

All of these events cover 256 samples each, and greater
confidence mayhe placed in estimating an accurateclassi-
fication rule for these events than for the measurement

vectors considered above.
A third point to note about the PEG procedureis that

it extracts from the samples the within-class similarities

which simultaneously discriminate the specific classes

from one another. The prime-event estimates simultane-

ously fit a specitic class and discriminate this class from

the other classes. Classifier design tools which simul-
taneously perform these two functions are rare. Often a

procedure relies «trictly on its facility to discriminate the

samples, e.g., Ho-Kashyap [31 |. The application of such a

procedure requir:s care (see Foley [4] and Cover [32]).
Furthermore, th: possibility of a reject class is annulled.

On the other }.and, there are procedures which concen-

trate on fitting each class with some description; then,
classification becomes a matter of determining the best

description for a sample from theset of class descriptions.

However, a useful description for classification will empha-

size the features) which are different in separate classes,

and not merely describe a class in some least mean-square

error sense (see ‘fukanga [33]). The prime-event-genera-
tion procedure providesfitting information, but by defini-
tion the events hve the ability to discriminate the classes.

Another major point which should be emphasized1s the

ability of the FEG algorithm to detect high-order sta-
tistical structure without requiring exhaustive searches.

For manypractical classification problems, the dimension

of the measurement vector is such that only first- and

second-order sta‘iistics are examined. Higherorderstatis-

tical analysis would be too time consuming. The example

below will help manifest the ability of the PEG procedure

to enable higherorder statistical analysis.

Assume that a two-class discrimination problem had

fifty-dimensional, binary-valued measurement vectors. Let

the probabilities for measurements ten, twenty, and thirty,

when treated as a three-tuple, be:

 

 

v’ = (V19 V2 050) P(v' | C1) P(v’ | C2)

0 v O i. 0
0 0 1 0 ry
0 it O 0 i
0 Il 1] i 0
1 0 O 0 +
1 \) 1 i 0
1 L 0 4 0
1 L 1 0 i

 

Finally, assume that all other measurements havea fifty

percent probabiity of being a 1 for both classes.

Class Cy Samples Class Cy Samples

Vo : (0,0,0,0,0,0,0,0,0,0) Vo56: (0,1,0,0,0,0,0,0,0,0)
v1; + (0,0,0,0,0,0,0,0,0,1) Vo57: (0,1,0,0,0,0,0,0,0, 1)
vy» + (0,0,0,0,0,0,0,0,1,0) Vo5gi (0,1,0,0,0,0,0,0,1,0)

Vo55: (0,0,1,1,1,1,1,1,1,1)

v767? (1, 0,1,1,1,1,1,1,1,1)

Fig. 1. Sample measurement vectors for class C; and class C2.

The two classes above have identical first- and second-

order statistics. Hence, discrimination techniques which

rely on such statistics will be useless. Furthermore, there

are 1225 second-order statistics for this problem. Exam-

ination of this many parameters and incorporation of

these in a classifier may be expensive in terms of time

and storage.

On the other hand, the PEG procedure will be able to

extract from samples of the classes, the significant third-

order events. (The order of an event is defined as the

numéer of specified variables.) Specifically, as the number

of samples growsin size, the PEG procedure will generate

the following events with a probability approaching one.

 

Events for Class C;

 

 

 

Measurement
Number 1,2,+++,9,10,11,+++,19,20,21, ++ +,29,30,31,+++,50

ey: (--es--—- Q - - 0-- — 0 —eee —)
€2: (-—*«e-— Q - - 1--. —- 0 -—eee -)
€3: (-—— eee — 1 _ ~— 0 -— © — 1 _ e -)

C4: (-— eee — 1 — _ ] — © —_ 0 — @ e -)

Events for Class C2
Measurement
Number 1,2,8,°*+,9,10,11,+++,19,20,21,+ + +,29,30,31,+++,950

es (-—- - 0 -- - 0 - - i- —)
€6 (-- - 0 -- — 1 —eee — 1 —- -)
€7 (-- - 1l-- —- 0 —ere- —-O - -)
es (-- —~ 1 —eee —- 1 — —- 1 —eee -)
 

Not only will the events shown above provide accurate

classification information for classes Ci and C2, the events

represent components of a classifier which are economical

with respect to the storage which they require.
Another point should be made about statistics which

are greater than second order. High-order events may
exist which accurately characterize different classes. It
maybescientifically helpful not only to discriminate such
classes, but also to specify what the different class char-
acteristics are. Such information with regard to disease
classes, for example, may point toward better knowledge

of causes or cures. Prime events may manifest such charac-
teristics.
The theory of prime events and the PEG procedurefor

generating estimates of prime events are offered as the

basis for a classifier design tool. The effectiveness of this
approach depends upon the problem being dealt with and

the particular samples which are obtained. Operational

characteristics, such as computation time, storage, and
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accuracy, need to be stated in termsof the characteristics

of a particular problem. Hence, an example of the applica-

tion of the prime event theory will be described briefly in

the next section to show additional practical details.

VII. EXAMPLE APPLICATION

The example application of the theory of prime events

discussed here is the design of a classifier for optical

character recognition (OCR). The characters are the

numerals, 0 through 9, which are printed by a computer-

output line printer. The numerals are represented by a

12 X 8 binary array; Fig. 2 shows samples of these nu-

merals. There are relatively large variations in the charac-
ters, as may be seen in Fig. 2, and these characters are not

membersof a font specifically designed for OCR.
The example OCR task was to discriminate the ten

classes of numerals discussed above. Furthermore, prac-

tical constraints of time and storage were imposed on

this design task. Using a specific processor architecture,

the classifier was restricted to be a stored-program al-

gorithm which would require no more than 8K bytes of

memory. The speed of classification was constrained to

classify 500 characters per second.

The aboveclassifier design task, one of a large variety

of practical recognition problems which have discrete,
type-II variables, was selected as an example because a

large group of readers could understand and interpret the

results, statistically and visually, without a great deal of

interpretation by the author. This design task was a non-

trivial multiclass recognition problem which had extremely

large dimensional-measurement vectors. The unique fea-

tures of the prime-event approach, as discussed in the

last section, might therefore be manifest.

The sample characters were represented as 96-dimen-
sional binary-valued vectors. An event, therefore, may be
viewed as a 96-dimensional ternary-valued vector, and a
set of events, the, definition set was selected for each
class. The methodofclassification was to assign a sample
character to the class whose definition set contained. the
event which covered the sample character.
The practical time and storage constraints described

aboveinhibited straightforward application of prime-event
theory. Time is required to compute whether an event
covers a sample character and, naturally, the even..s in
the definition sets must be stored in theclassifier. To meet
the practical constraints in this problem, it was judged
that, at most, three events could be stored for each defini-

tion set.

Another practical complication of the example problem
was that only a finite set of sample numerals was avail-

able, thus inhibiting exhaustive statistical analysis. One
hundred samples of each numeral were made available for
design purposes.

An initial application of the PEG algorithm for the

class of 8’s, with parameters 64 and 6g set to O and 1,

respectively, yielded one prime-event estimate. Testing

this event on samples outside of the design set revealed

that over 1 percent of the new8’s were not covered by the
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Fig. 2. Sample OCR characters represented as 12 X 8 binary

arrays.

generated prime event. The uncovered samples of 8’s,

however, had a small numberof variables (less than five)

which differed from the specified variables in the prime-

event estimate.

Based on the above results, the concept of covering

was expanded to include a measure termed the covering

distance. The covering distance from an event to a sample

is defined as the numberof variable values in the measure-

ment vector which differ from the corresponding specified

variables in the event. The rule for classifying a sample

was altered to incorporate this principle. The covering

distance to each prime-event estimate was computed, and

the sample was assigned to the class whose definition set

contained the event with the smallest covering distance.

If the smallest covering distance was greater than five,

the sample wasrejected.

For the classification procedure stated above, it was

determined that 22 events could be stored and incor-

porated in the software classification algorithm. The goal

thus became one of selecting the best 22 events which

had covering-distance properties enabling classification

accuracy on the order of one substitution error or one

rejection of a completed, humanly recognizable character

in 10 000 samples. The method for meeting this goal was

to increase @g when generating prime-event estimates.
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(Parameter 64 was maintained at zero throughout the
design.) This resulted in prime events which had covering
distances of larger magnitudes to the samples of other
classes. This also resulted in larger numbers of prime
events being generated.
The large numbers of prime events generated by the

PEG algorithm had to be further examined ‘to select a
definition set. To overcome this design difficulty, a single-
list mode of the PEG algorithm, PEG1, which is described
in Appendix A, was employed. This procedure generates
a subset of the: prime-event estimates generated by the

PEG algorithm and this subset is guaranteed to coverall
samples initially placed in list L. In this way, the definition
sets for the ten classes were selected. In Fig. 3, the defini-

tion sets which were automatically generated are shown.

Table I shows the values of 62 which wereutilized when the
definition sets were generated. The results of testing this

classifier on, rcughly, 9000 samples, which were inde-

pendent of the «lesign samples, are as follows.

The number of ‘valid’? samples which were correctly

classified was 85355. The number of misclassified samples

was 0. A number of samples which represented electronic

malfunctions, noise, etc. appeared in the test data; these

were defined b:y the designer as reject characters. All

eleven of these were correctly rejected by theclassifier.
No valid characters were rejected.

VIII. ANALYSIS

The procedur2 of incorporating ‘‘masks’’ or ‘‘n-tuples”’

in an OCRclassifier is not a novel technique (see Nagy

[34], Bowman |35]). However, the method of determin-
ing the specific 1-tuples to be incorporated is new. Histor-

ically, the n-tuples which were generated were random

selections of vuriables from a select set of variables.

Membership in this select set was based upon the fact

that maximum-likelihood first-order statistical estimates
for a variable value of 0 or 1 exceeded some threshold. The

frequency of occurrence of the selected n-tuple within the

set of design samples was not known. The estimates of

the number7 ol variables to be specified in the mask was

typically based on first-order statistics (Bowman [35]).

Furthermore, if two or more n-tuples could be utilized in

a classifier, the random selection procedure, alluded to

above, provides. little assistance in selecting two or more

complementary representations of a class.

The method «.f generating prime-event estimates yields

n-tuple masks which have guaranteed characteristics, dif-
ferent from those generated by the random-selection

procedure. The prime-event estimates reflect the inter-

dependence of the variables and do not rely solely on

first-order statistics. Furthermore, the prime-event esti-

mates represent distinct ‘‘modes”’ of the samplesofa class.

The frequency >f occurrence of the events may beesti-

mated by the percentage of the class samples which the

event covers; th.s value is available in the PEG]algorithm

and wasprintec. out with each generated event. Further-
more, through t:he use of a selection procedure such as the
PEG1 method. multiple masks may be selected which
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Fig. 3. Automatically generated prime-event estimates arranged
as 12 X 8 arrays and depicting the ten definition sets. A “‘.”
indicates an unspecified value.

 
 

 

TABLE I

VALUES OF 6g USED FOR GENERATING Fach DEFINITION SET

Character OB

zero 10
one il
two 9
three 10
four 10
five 8
S1x 9
seven 10
eight 9
nine 9
 

have complementary covering capabilities. These repre-

sent superior “‘fitting properties” of the prime events over

the random n-tuple masks. It should also be noted that

the prime-event estimates have specific discriminatory

properties as defined by parameter 6, in the generation
algorithm. Such properties are neither known nor exam-

ined by the random n-tuple selection methods.

Another property of prime events which may be demon-

strated visually is their ability to denote the subclasses or

the modes of the statistical structure. Evidence of this

property was obtained during the classifier design task;

but to provide clearer proof of this property, the classes

were combined so that only two classes remained. Class Ci
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was defined to contain numerals 0 through 4 and class C%,

numerals 5 through 9. Samples of classes C, and C; were

placed in list Z and NJ, respectively, of the PEGI algo-

rithm. The algorithm then generated the prime-eventesti-
mates, which are shownin Fig. 4, while parameters 64 and

63 were set to 0 and 14, respectively. The structure of the

numerals 5 through 9 may beseen in the different prime

events. Furthermore, some of the prime events in Fig. 4

represent subclasses which are composed of pairs of

numerals which have similar graphical representations in

areas of the 12 X 8 array. These pairs of numerals have

thus created new subclasses with specific graphical

structure.

The above example is intended to manifest the method

of applying the theory of prime events and the unique

properties of the prime-event estimates. The details of

the example, the 12 X 8 array representation of a charac-

ter, the accuracy of classification, the number of samples

utilized, and the potential of this method of OCR, are

not at issue here. The OCR classifier design task gives

evidence of howthe theory of prime events may be applied

and of what the results might be.

No special section on caveats for potential users of

prime-event theory was included above. It should be

understood that all computerized procedures which op-

erate on samples to provide classificatory information

require processor time and storage, and that these are

functions of the types of samples which are utilized. It is

appropriate to note here, however, that the PEG algo-

rithm demanded magnitudes of storage and time which

were exponentially related to the number of OCR samples

incorporated in the above example. This was in contrast

to the PEGI algorithm, which had an approximately

linear demand for time and storage as the number of

incorporated samples was varied. The PEGI algorithm

was selected for the OCR classifier design task, and it

required less than 60 seconds and 110 000 bytes of storage

for any generationof a class definition set. (The algorithm

was written in Fortran and run on an IBM 370/155.)

IX. CONCLUSION

The problems of designing a classifier for discrete,
type-II, variable-measurement vectors have been exam-

ined above. The theory of prime events was introduced,

and a procedure of generating prime-event estimates was

proposed as a tool to aid the classifier designer. An exam-

ple classifier design task, using a prime-event-generation

procedure, was reviewed and the results were examined

visually and statistically. This paper introduces a new

method of dealing with sample data and provides a new

theoretical viewpoint from which to view theclassificatory

information which has been defined in terms of prime

events.

APPENDIX

The following is a deseription of an additional mode of
operation which has been provided for the basic prime
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event generation algorithm. For some design tasks, a gen-

eration procedure which is less exhaustive and faster than

the basic prime event generation algorithm may be useful.

The PEGalgorithm will yield all events which will satisfy
the properties of a prime event with respect to the initial

lists, L and NL, of samples. The resultant set of estimates

of prime events may be ‘‘overly complete,” “too large,”’

or ‘“‘too time consuming”’ to create for some problems. The

next design task is to select a practical size set of the

resultant events which one estimates will cover all of the

chosen class. This also may prove too time consuming for

someclassification problems.
To cope with these difficulties, it is possible to run the

PEG algorithm in a single list mode. In this mode, the
successive generation of lists is eliminated. Only lists Z

and NZ will be incorporated. Furthermore, this mode of

operation will perform the selection of a sufficient set of

events to cover the initial list L. This will eliminate the

task of comparing cevers made up of events generated

by PEG.

The following discussion will include a description of

the PEGIalgorithm, an example of its operation, and a

flow chart of the specific operations in the algorithm. It

will be instructive to include the example with the de-

scription of the procedure.

The algorithm begins byplacing samples of one class in

list L and the remaining samples in list NL. As an exam-

ple, let class C, be made up of the following set of four-

dimensional, binary-valued vectors. Class C2, and hence

list NZ, will be all remaining vectors from the set of

four-dimensional binary-valued vectors.
 

 

L PF TF NL

1: (1 0 1 O) 0 0 (remaining measure-
ment vectors)

2; 7 0 1 1) 0 0
3: ( 1 0 O) 0 0
4; © 1 1 O) 0 0
5: (1 0 0 1) 0 0
6: (1 0 O 0) 0 0
 

PF and TFare vectors of dimension thesize of list L and
they are initialized to zero.

The basic operations of merging events and checking

their ability to cover list NL are retained. The algorithm

begins by merging thefirst pair of samples in list L. Let

this be labeled event ey:

C12 as (1,0,1,0) + (1,0,1,1) = (1,0,1,—).

This event is then checkedto see if it covers any mem-

ber of NL. As shown above, there are two flag vectors,

the “temporary flag,’ TF, and the “permanentflag,’”’ PF,

which are initialized to zero. These are utilized to keep

track of those membersof list LZ which are, or have been,

covered by an event previously generated. Event eé» covers

no member of NZ and thus “temporary flags’ TF (1)

and TF (2) are set to 1. If the event ey. did cover some

members of NL, then the flags would remain 0.

The next step in the algorithm would be to merge é1

358



STOFFEL: VARIABLE PATTERN RECOGNITION PROBLEMS
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Fig. 4, Automatically generated definition set for the class made
up of numerals 5 through 9. A “‘.”’ indicates an unspecified value.

and measurement, vector 3:

€123 a (1,0. 1,—) + (1,1,0,0) = (1,—,—,—)..

Checkinglist \’L shows that vector (1,1,0,1) is in NL,

and thus é123 will not be a retained event since it covers a

vector in NL.

Next, form the event éi4 as above. This too covers

some event in Ni. and is thus not retained. Event e195 is

then formed: é15 := (1,0,—,—). This event covers nothing

in NL and hence flag TF (5) is set to 1.

Continuing downlist LZ, the algorithm notes that meas-

urement vector 6 is covered by éyws. Thus flag TF (6) is

set to 1.

The algorithm nowproceeds to the top of list Z in an

attempt to merg: additional vectors. Vector 1 was the

“start vector’ and therefore this ‘‘pass’’ terminates. The

permanent flag wector is then updated by forming the

pointwidelogical ‘‘or’”’ of the entries in TF and PF. The

event é15 18 storecl, as one of the selected events,in list E,

and 7F is reset to all 0’s. Henceforth, PEG1 will make

two ‘‘passes” threugh the samples.

The above provedure is now restarted with one of the

measurement veci.ors not covered thus far. Theflag PF (3)

is 0 and thus vector 3 becomesthe ‘‘restart vector.’ The

first step is to merge vector 3 with another vector which

is not covered thus far. The flag vectors at this point are

as follows:

123 45 6
PF: (1100121)
Ti: (0 000 0 0).

From PFonecan see that vector 4 is uncovered. Forming,

during the first ‘‘pass,” es, A (1,1,0,0) + (0,1,1,0) =

(—,1,—,0), and checking NL, one notes that (1,1,1,0)

is in NL and thus covered by es. The event é34 1s dis-

regarded and the algorithm then searches PF for another

uncovered vector. If it found one, the result of its merger

with vector 3 would be checked to determineif it covered

some vector in NL. If no vectors in NL were covered, the

search for another 0 in PF would begin again. If the new

event covered something in NL, then the event would be

disregarded. However, no other 0 was found in PF. The

algorithm now attempts to merge vector 3 with any vector

in L, not just the uncovered ones. This is referred to as

the second ‘‘pass.”’

The event e3;, is formed and checked against NL. Suc-

cessfully covering an element in NL,this event is ignored.

Event és is formed and covers no event in NL. However,

merging any additional events with es. will yield an event

which covers something in NL. Thus, event ese is added

to the list E, PF(3) is set to 1, and the next uncovered

vector is selected as a restart vector. Two passes are

always performedonthelist L when generating a potential

primeevent.
The restart vector is vector 4. Finding no other un-

covered measurement vectors, the algorithm proceeds to

attempt merging vector 4 with all other elementsoflist L.

Each merger covers something in NZ. Theresult is that

vector 4 must be retained in F# as the only “potential

prime event” covering vector 4. PF'(4) is then set to 1.

The algorithm now searches for another uncovered sam-

ple in ZL. All entries in PF are 1, however. When this

occurs, the algorithm halts. The set # then contains a

subset of the estimated prime events which may be gen-

erated by PEG. The resultant set is a sufficient set to

cover all the design samples in list L.

The details of the PEGI algorithm may be obtained

from the flow graph of Fig. 5. List L initially contains
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Fig. 5. Flow graph of the PEGI algorithm.

the samples from the chosen class, and list NZ will con-

tain the samples from the other classes. The variable

PASS serves to indicate whetherthe algorithm is attempt-

ing a merger with the as yet uncovered samples, Pass = I,

or the covered samples, pass = 2. Variable 1sTaRT is the

index of the memberof list L where PEGI begins its

search for mergers. Also, in the PEGI procedure, as with

the PEG algorithm, the definition of ‘cover’ is poten-
tially expandable throughthe incorporation of parameters

64 and @z, as described previously in Section VI. The

purpose of the checking which is performed in Box A is

to reduce the amount of redundant merging and checking

in the two-pass algorithm.

It should be noted that PEGIwill generate a subset of

those events generated by PEG. A sufficient set to cover

List L is generated, and this subset may be the same as

that generated by PEG.
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THE ANALYSIS OF CELL IMAGES*

Judith M.S. Prewitt and Mortimer L. Mendelsohn
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Philadelphia, Pennsylvania

Introduction

Automation of the acquisition and interpretation of data in microscopy has

been a focus of biomedical research for almost a decade. In spite of many

serious attempts, mechanical perception of microscopic fields with a reli-

ability that would inspire routine application still eludes us.

Manyfacetsof the problem appear to be well within the grasp of present-

day technology. Thus, available histochemical techniques makeit possible to

preparebiological materials so that morphological integrity is preserved, key

constituents are stained stoichiometrically, and the specimens are favorably

dispersed for effective imaging one by one. Scanning microscopes now have

the requisite sensitivity, resolution, and stability to sample such objects and
make photometric measurements over a wide range of magnifications and

wavelengths within the visible and near-visible spectrum. Furthermore,
modernlarge capacity, high speed data facilities at last provide the ability to

manipulate the hitherto unmanageable quantities of optical information con-

tained within all but the simplest images.

Withthe basic materials for achieving automation via mensuration finally

at hand, attention has been turned toward generating and evaluating methods

for extracting meaning from quantitative optical informaticn. Definitive con-

cepts for image structuring and imagecharacterization haveyet to be realized,

to be given satisfactory operational definitions, and to be assembled within a

machine-oriented perceptual framework.” Criteria for effective and efficient

discrimination and interpretation of images must be evolved. It would be a

serious mistake to presuppose that mechanical perception must mimic the

human’s perceptual apparatus in organizing images as complexes of picture

elements. Likewise it would be serious to ignore traditional descriptive mor-

phology and established taxonomies. In steering a middle course, the explora-

tion of many complementary approaches andthe introduction of numeric

methodswhichfully utilize measurements of light intensity of optical density

seemed to us to hold the most promise for augmenting and explicating the

existing, largely verbal tradition of microscopic morphology.

To realize these objectives, we have designed a system with three basic

components: 1) a sensor which rigorously and effectively scans microscopic

fields and converts the optical information into digital form; 2) human ana-

lysts who contribute heuristics, devise image processing methods and en-

*This work was supported by Contract PH 43-62-432 from the Diagnostic Research
Branch, National Cancer Institute, Bethesda, Maryland, and by Research Career Award
5-K6-CA-18, 540 from the National CancerInstitute.

Reprinted with permission from Ann. N.Y. Acad. Sci., vol. 128, pp. 1035-1053, Jan. 31, 1966.
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sembles of discrimination criteria, program and supervise the other

components, systematically set standards, and select and prepare the material

to be studied; and 3) a large general purpose digital computer which assimi-

lates the enormous volumes of quantitative optical information and renders

the machineinterpretation of images. Preprocessing of the optical information

by the sensor is kept to a minimum, and the quantity and quality of the

optical information transmitted to the computer approachesthe theoretical

limit imposed by the microscope itself. Thus, the heuristic and algorithmic

aspects of imageprocessing can interact withoutrestraints forced by the hard-

ware, and facile and free interplay is encouraged between the analyst and

the computer.’°

Methods and General Principles

As a pilot study in image characterization and discrimination, we have

selected the normal human peripheral blood smear and have concentrated

our attention on a small sample of typical membersof four easily distinguished

classes of leukocytes. An example of each of the four leukocyte types is
shown in FIGURE1. Thecells were prepared by a flotation technique which
eliminated the red cells.” They were then air-dried rapidly and stained
with gallocyanin chrome alum and naphthol yellow S. Discrimination of
these four leukocytes is an easily-enough learned task for even a layman,
although monocyte-lymphocyte ambiguities are sometimes hard to resolve.
To a machine, however, they represent a complex unsolved discrimination
problem.

The CYDACscanning and recording cytophotometer used as the sensor
in this study consists of a flying spot microscope, a digital converter, and
a magnetic tape recorder... The scanner uses a cathode ray tube to sweep
a blue-green spotof light througha rectilinearraster. Entering the microscope
through the eyepiece, the focused spot of light is reduced to 0.3 micron
diameter in the plane of a mounted specimen. The optical density of the
specimen is measured along lines spaced 0.25 microns apart, with the interval
between successive samples on oneline also fixed at 0.25 microns.’” These
measurements of optical density can span a 256-level gray scale. A 50 x 50
micronfield is sensed and represented on magnetic tape as 40,000 eight-bit
optical density measurements.

On reading a CYDACtape,the digital computer receives a primary
representation of the scanned field as a matrix of optical density values in
which spatial and gray-scale relationships are preserved. A set of graded
alphanumeric symbols simulating a 32-level gray scale can be used to recon-
stitute CYDAC scans on the high-speed printer.” Such computer reconsti-
tutions of the images of human bloodcells, originally scanned by CYDAC
at 256 gray levels, retain sufficient information for ready morphological
discrimination by eye. As we shall show below, the primary representations
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FIGURE3.(cont.)

themselves contain sufficient information for morphological discrirainations

by machine.

The analysis of digitized images involves five principal phases:

1. delineation of figure and ground;

2. description of images by numeric and non-numeric parameters, and by

relational descriptors;

3. determination of the range of variation and the discriminatory power

of these parameters anddescriptors;
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FIGURE 4. Boundary determinations. The same procedure has been followed as in

FIGURE 3, and again the images should be compared to the photomicrographs in
FIGURE 1. Note that four gray levels were used for the eosinophil in an attempt to
delineate the denser regions of cytoplasmic granules in addition to the cell and nuclear-
cytoplasmic boundaries.

4. development of appropriate decision functions and taxonomiesforclas-

sification; and

identification of unknown specimens.

Delineation of figure and ground in its simplest form involves the dissec-

tion of entities from surroundings, and as such, constitutes an operational

definition of ‘‘objects of interest.’”’ Depending on the material being studied

and the aims cf the investigation, the delineation or depth of dissection

can also extend to detail within the cbject of interest. The need to formally
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identify substructure varies considerably with the method of analysis being

used. For example, discrimination of leukocytes in the present study can

be accomplished by somesets of parameters only after specific identification

of the nucleus and cytoplasm of the cell; other parameters in the present
study accomplished the same end, yet required no more than the distinction

between cell and background.
Choosing a specific set of parameters for describing an image is equivalent

to entertaining a composite hypothesis about the relevance of (i) a corres-

pondingset of features of the image,(ii) constructs which purport to abstract

these features, and (iii) implementations which purport to give reproducible

and reliable measures of these features. Parameter collections which include
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partially redundant as well as independent elements will be needed for

reliable discrimination. The chosen parameters must have certain invariance

qualities, including relative insensitivity to orientation and position of spec-

imensin thefield of view, to distortions of scanning and sampling, to noise,

and to inconsequential variations inherent in biological materials or secondary

to artifacts of preparation.

It is our basic premise that pattern classes and subclasses of images can

be ascertained and explicated from the behavior of relevant parameters.

Assigning each numeric parameter of an image to a coordinate axis in a

multidimensional property or parameter space, the image can be represented

as a single vector, the components of which are the actual values of the
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FIGURE 5. A one-dimensional representation of mean optical density. The dots
indicate the individual cell measurements and the bars represent the means + two
standard deviations for each cell type. Mean optical density has a replicate coefficient
of variation of 1.27 per cent, but in spite of this dimensional stability it does not
discriminate effectively among thecell types.

parameters. In principle, the more alike two imagesare, the closer together

their vectors wiil lie in the property space. The vectors of images within the

same pattern classes should therefore cluster into neighborhoods within the

parameter space. These neighborhoodsareinitially identified by studying

exemplars of a population, and their margins remain fluid in response to

cumulative experience with the population. Neighborhoods can be defined

and analyzed by means of metrics, statistical computations, or clustering

procedures.“ Once one has someinsight into the nature of the property space,
the analysis of an individual image consists of a pattern detection phase in

which the parameters are extracted and represented vectorially, and a pattern
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FIGURE6. A one-dimensional representation of nuclear-cytoplasmic contrast. This
parameter expresses the distance between the right-hand peaks of the optical density
frequency distribution. The neutrophils generate a neighborhood that does not overlap
with those of the other cell types. With the parameters we have studied so far, the
neutrophil is by far the easiest cell type to distinguish. None of the parameters by
itself distinguishesall four cell types.
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TABLE 1

THIRTY-FIVE PARAMETERS OF THE OPTICAL DENSITY FREQUENCY DISTRIBUTION
WHICH RELATE TO LEUKOCYTE DISCRIMINATION

 

Kind of range of

 

 

 

 

 

 

 

    

    

variation for Typel Parameter Key to cell types’ Discrimination?
four cell types 1234 Results

I skewness of nuclear L,M,N,E
1 o.d. distribution
2 kurtosis of nuclear L,M,N,E
3 o.d. distribution
4 nuclear o.d. range: L,M,N,E

cell o.d. range
cytoplasmic o.d. range: L,M,N,E

cell o.d. range

II nuclear-cytoplasmic
1 2. contrast, measure l NLME N/L,M,E

3 nuclear-cytoplasmic
4 contrast, measure 2 NLME N/L,M,E

skewness of cytoplasmic
o.d. distribution NLME N/L,M,E

cytoplasmic integrated
O.d. ELMN E/L,M,N

mean oO.d. ratio, nucleus:
cytoplasm NLME N/L,M,E

nuclear area MLNE M/L,N,E
kurtosis of cytoplasmic

o.d. distribution NLME N/L,M,E
o.d. mode for cell NLME N/L,M,E
std. deviation of cell

O.d. NLME N/L,M,E
std. deviation of nuclear

o.d. NLME N/L,M,E
coef. of variation of

cell o.d. NLME N/L,M,E —
coef. of variation of

. cytoplasm o.d. NLME N/L,M,E

II
1 2 nuclear integrated o.d. MNLE M/N,L,E;L/E

3. GF o.d. mode for cytoplasm NLME N/L,M,E;M/E

III
1 3 skewness of cell o.d. LMNE L,M/N,E
2 4 distribution

cell integrated o.d. ME L,N/M,E   Sa
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IV
1 cell mean o.d. MLEN L,E/N
2 4 nuclear mean o.d. LNEM N,E/M
3 area ratio, nucleus:

cytoplasm LNEM N,E/M
integrated o.d. ratio,
nucleus:cytoplasm LMNE M,N/E

cell area NMEL M,E/L
o.d. mode for cell MNEL N,E/L
o.d. mode for cytoplasm MNEL N,E/L
kurtosis of cell o.d.

distribution NLME L,M/E
std. deviation of cyto-

plasmic o.d. LNEM N,E/M

IV
1 frequencies ratio for
2 3 4 o.d. modes,

nucleus :cytoplasm LMNE M/N/E
nuclear o.d. mode LMNE M/N/E
frequency at nuclear o.d.

mode EMLN M/N/L

1 IV coef. of variation of
2 nuclear o.d. LMNE N/E
3 4

1 2 IV cytoplasmic mean o.d. LNEM E/N,M; L/N
3 4 cytoplasmic area MELN L/E,N; M/E      
 
 

Legen4 (1)

(2)

(3)

Type of discrimination achieved:
I. No discrimination of the four leukocyte types.

II. Discrimination of one cell type from the other three types.
III. Discrimination of two cell types from the other two types.

IV. Partial discrimination.

Cell types:
L lymphocyte M monocyte

Discrimination results:
X,Y/Z indicates that types X and Y were not distinguished from each

N neutrophil

other, but both were distinguished from type Z.

E eosinophil
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identification phase in which the image is assigned to the established neigh-
borhoodin or nearest to whichits associated property vectorfalls.

To implementthese ideas, a flexible collection of mixed language programs
is being evolved. Preference is given to using problem-oriented languages
and pure procedures which facilitate fluent computer-scientist communica-
tion. Initial programswere written in Automath and Argusfor the Honeywell
800, but with the addition of a one-half inch tape facility to CYDAC,
current work is being done in Fortran II/IV and MAP for the IBM 7040
data processor. The programsfor picture analysis will be serviced by auxiliary
prografns which prepare CYDACdata for processing, maintaina library of
cell images, monitor picture generation by CYDAC,andfollow picture manip-

ulation and transformation in the course of computer analysis. An artificial
image generator, which produces simple combinations and superpositions
of “gray-tone” convex picture elements is available for testing algorithms
and debugging. Finally, rules for adjustingthe level of resolution in stored
images andthelevelof detail in the analysis will be incorporated.

Applications to Blood Cells

The salient anatomic features of blood cells suggest that delineation

should involve the dissection of the image into background, cytoplasm, and

nucleus as a minimum, with the possibility that demarcation of granules,

chromatin, and nucleoli will also be required. The boundaries between these

compartments of the image appearto be regions of abrupt change in average

optical density. However, it is not clear to the eye how consistent the optical
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FIGURE 7. A two-dimensional representation of a pair of parameters. The labeled
lines depict the results for each parameter in one-space, and the dots and 95 per cent
confidence rectangles represent the interaction of the parameters in two-space. This is,
one of four combinations giving quadriparitite discrimination with only two parameters.
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FIGURE8. A decision space in two-dimensions. The data points are the same as in
FIGURE 7, and the dotted lines now indicate a possible orthogonal division of the
parameter space into four diagnostic quadrants.

density differences for specific structures are, not only in different cell images,

but from one part of the samecell imageto another.

Delineation of figure and ground can be accomplished satisfactorily by

several independent approaches which use either thresholding or spatial dif-

ferentiation. Thresholding presupposes the relative constancy of optical den-

sity over an object of interest, and a discernible difference in optical density

between figure and ground. Differentiation methods presume that optical

density changes most rapidly in the vicinity of the margins of principal

cell structures; thus they seek maximal brightness gradients in the image.

Ourearliest results with blood cell images indicated that preset thresholds

(i.e., fixed thresholds defined by experience and supplied to the analysis

programs) would not effect an adequate separation of nucleus and cytoplasm.

A maximal gradient-seeking routine, although successful, required a sub-

stantial amountof processing time for each cell image. For the present study,

a novel method of implicit spatial differentiation which uses data-generated

relative thresholds was devised, and proved to be both satisfactory and

efficient for defining boundaries. This method, the frequency distribution

method,is described in detail elsewhere.”

The frequency distribution method combines gradient-maximizing and

thresholding by identifying those gray levels which are embedded in steep

gradients. Scan elements on a steep gradient of optical density will contribute

sparsely to the frequency of occurrence of optical density values spanning

the gradient. At least in the case of blood cells, these transitional points

can be identified as local minima in a frequency histogram of the optical

density values of the entire image. In a field containing an intact leukocyte,

the local minimum with the lowest optical density corresponds to the cyto-

plasmic boundary and provides a threshold optical density value which is
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FIGURE 9. Three independent pairs of parameters. In each case the overlapping
rectangles indicate incomplete discrimination with just two parameters.

effectively an upper bound for background elements and a lower bound for

cell elements. The local minimum with the highest optical density defines the

nuclear boundary and dividesthe cell into cytoplasmic and nuclear elements.

FIGURE 2 gives an optical density frequency distribution for each type of

leukocyte in this study. FIGURE 3 depicts the application of the method to

a monocyte, and FIGURE 44 illustrates pictorially the effectiveness of the

method in the three other types of cells. Over 50 cells have been processed

by this method, and as in the examples shown, the computer-selected

boundaries have always agreed closely with the boundaries selected by a
morphologist.

The optical density frequency distributions from celis of the same type

are strikingly superimposable, but as indicated in FIGURE2, the distributions

are qualitatively different for the four different cell types. These differences

in shape reflect differences in the quantity, variability, and contrast of

absorbing material in the cells. To give two examples, the skewness of the
optical density distribution of the neutrophil is indicative of a large low-

density cytoplasm and a small dark nucleus. And the separation of secondary

peaks in all of the distributions is a measure of nuclear-cytoplasmic contrast.

This separation is greater for neutrophils than for eosinophils, confirming the

readily visible difference in internal contrast between thesecell types.
The absence of explicit topological information in the optical density
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frequency distribution is compensated for by the relation between local

minimaandprincipal geographic boundaries, and these distributions represent

an extremely efficient condensation of the data, preserving many important

morphological features of the image, yet reducing the amount of data by

roughly fifteenfold. Taking advantageof the internal organization of informa-

tion in a blood cell image, a wide variety of parameters can be calculated

from the optical density frequency distributions without retaining the scanned

image in computer memory. Thus both the hardware and software require-

ments for the analysis are materially simplified. At present, approximately

90 parameters can be extracted from an optical density frequency distribution

by the programsavailable in the CYDAC system, and this processing requires

no more than six seconds per image or roughly the same time required to

perform andrecordtheoriginal scan.

A selection of 35 available parameters of the optical density frequency

distribution which are pertinent to distinguishing the four types of leukocytes

appear in TABLE 1, along with notations of their relevance as judged from

the results obtained with the 22 leukocytes included in this study. The

stability of the measures has been assessed by a replication experiment using

one monocyte and one neutrophil. This experiment included three identical

 

  

 
ue 79

FIGURE 10. A three-dimensional representation of a triplet of parameters. The
rectangles of FIGURE 9 have been projected into three-dimensions, revealing non-

overlapping parallelepipeds. Twenty other triplets giving quadripartite discrimination

have been foundso far.
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scans with the cell in the center of the field of view, and four other scans
with the cell rotated or displaced away from the center. Using these scans,
coefficients of variation ranging from 0.1 to 9 per cent were obtained for

various membersof the parameterset, the higher values being associated with

measures having mean values approachingzero.

For each of the four cell types, means and standard deviations of the

available measurements were calculated for every parameter. Neighborhoods

for particular cell types were established along the coordinate axis for each

parameterby setting the neighborhood boundaries at two standard deviations

on both sides of the mean. Discrimination was defined as a non-overlapping

of neighborhoods, and within the limits imposed by the small statistical

samples, the results should therefore apply to at least 95 per cent of the

population of each cell group. This procedure is depicted in one-space for

two representative parameters in FIGURES 5 and 6. In FIGURE 5, the mean

optical density of the cell gives overlapping neighborhoods and nodiscrimina-

tions (as defined above) among the four cell types. Nuclear-cytoplasmic

contrast, depicted in FIGURE6, is an example of one of the 14 parameters

that permitted the discrimination of a single cell type. No single parameter

gave quadripartite discrimination.

Taking the parameters in pairs and analyzing the data in two-space,

complete discrimination of all four cell types was accomplished by four

independent combinations. An example of one of these combinations, skew-

ness of the optical density distribution and integrated optical density of the

whole cell, is shown in FIGURE 7. Along each of the parameter axes, the cell

images fall into two rather than four categories; in two-space however, there

are four discrete pattern neighborhoods. With two decision lines parallel to

the parameter axes as in FIGURE 8, this two-dimensional parameter space

can be divided into quadrants representing the four cell types. In this par-

ticular case-it is of interest that the two parameters, skewness and integrated

optical density, are properties of the total cell and do not require delineation

of the nuclear-cytoplasmic boundary.

FIGURE9 shows95 percent confidence rectangles for three independent

pairings of the parameters, nuclear area, cytoplasmic area, and nuclear-

cytoplasmic contrast. In each of the two-dimensional property-spaces, there

is overlapping of some rectangles, indicating that no two of these parameters

gives total discrimination. When the parameters are considered collectively

in a three-dimensional property space, the four cell types have associated

non-overlapping 95 per cent confidence parallelepipeds (FIGURE 10). The

three-dimensional analogy to the use of orthogonal separating lines in two-

dimensional space is shown in FIGURE 11. Orthogonal planes have now

divided the three-space into compartments which effect a quadripartite dis-

crimination of the parallelepipeds representing the neighborhoods for each

cell type. Twenty-one independenttriplets of the available parameters have

been foundto give total discrimination as in FIGURES10 and 11.
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FIGURE 11. A decision space in three-dimensions. This represents the same data as

FIGURE 10, but the direction of the axes has been reversed and three decision planes
now separate the four parallelepipeds. It is impossible to depict the effect of additional
dimensions, but the increasing discriminatory power as the argument goes from one to

two to three dimensions can be carried into multi-dimensional space by appropriate
analytic methods.

Discussion

With enlargement of the blood cell sample and the inclusion of hard-to-

identify specimens, and with the examination of more complex biological

systems, the need to make the method of analysis more sophisticated would

hardly be surprising. Elaboration of the method is probable along two dif-

ferent lines: (1) extending the kinds of image-characterizing parameters used

in analysis, and (2) employing a more complex parameter space and decision-

making procedure.

The parameters described in this report were derived exclusively from

the optical density frequency distribution, and as such they do not exploit

obvious topological features such as nuclear shape and number of nuclear

lobes. Additional procedures involving shape descriptors, analytical moments,

and measures of fine texture are in various stages of development. These

require the availability of the primary scan data during the course of an

analysis, but they are well within the capacity and performance characteristics

of current computers.

As more and morecells are subjected to analysis, the ranges of variation

of numeric parameters may turn out to overlap to such a degree that no two

or three parameters would give effective discrimination. In addition, dis-
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crimination procedures using linear and orthogonal partitions of the property
space may be inappropriate. Higher dimensional property spaces, partially

redundant parameters, and nonorthogonal as well as nonlinear discrimination

might then be required to xealize adequate classification and identification.

Summary

The CYDAC System has been designed to explore the extent to which

mechanical perception can complement human perception in the domain of

microscopic diagnosis, not merely in performing lesser tasks, but in stimulat-

ing fundamental new insights in cytomorphology. Emphasis has been put on:

(1) finely discriminated gray-scale information taken at high optical resolu-

tion, (2) the use of optical density frequency distributions of images to

perform the preliminary organization of quantitative optical information,

and (3) the extraction and evaluation of large collections of potential image-

characterizing parameters within a decision-theoretic framework. Using these

methods, four major types of blood cells have been distinguished by applying

simple combinationsof criteria to a limited and carefully selected population.

This preliminary success encourages us to try the method on larger and more

inclusive populations, but future research alonewill tell whether this approach

will yield the discriminatory power to master the normal blood smear and

to go beyondit.
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Digital Image-Processing Activities in Remote Sensing

for Earth Resources

GEORGE NAGY, SENIOR MEMBER, IEEE

Abstract—The United States space program is in the throes of a
major shift in emphasis from exploration of the moon and nearby
planets to the applicition of remote sensing technology toward in-

creased scientific understanding and economic exploitation of the
earth itself. Over on2 hundred potential applications have already
been identified. Since data from the unmanned Earth Resources
Technology Satellites: and the manned Earth Resources Observation
Satellites are not y:t available, the experimentation required to

realize the ambitious: goals of these projects is carried out through

approximation of the expected characteristics of the data by means of

images derived from. weather satellite vidicon and spin-scan cam-

eras, Gemini and Apcllo photographs, and the comprehensive sensor
complement of the N.ASA earth resources observationaircraft.

The extensive and varied work currently underway is reviewed

in terms of the specisl purpose scan and display equipment andeffi-
cient data manipulation routines required for high-resolution images;

the essential role of iateractive processing; the application of super-

vised classification methods to crop and timberforecasts, geological

exploration, and hyd.rological surveys; the need for nonsupervised

classification techniques for video compaction and for moreefficient

utilization of ground-control samples; and the outstandingproblem

of mapping accurately the collected data on a standard coordinate

system. .

An attempt is made to identify among the welter of “promising ”

results areas of tangible achievement as well aslikely bottlenecks,

and to assess the contribution to be expected of digital image-process-

ing methods in both operational and experimental utilization of the

forthcoming torrent «f data.

I. INTRODUCTION

|vase OBJECTof this survey is to give an account of

experimental developments in digital image processing

prompted ty the major environmental remote sensing

endeavors current.y underway, such as the already opera-

tional weather satellite program of the National Oceano-

graphic and Atm spheric Agency (NOAA), the projected

Earth Resources Technology Satellite (ERTS) and Skylab

experiments, the NASA Earth Resources Aircraft Program

(ERAP), and the Department of the Interior’s Earth Re-

sources Observation System (EROS).

Sources of Injormation: The most comprehensive and

readily accessible source of material in this area is the seven

volumes publishedso far of the Proceedingsof the International

Symposium on Renote Sensing of Environment, held annually

under the auspices of the Center for Remote Sensing Infor-

mation and Analwsis of the University of Michigan.

Other useful sources of information are the NASA-MSC

Annual Earth Resources Program Reviews, the Proceedings

of the Princeton ‘Iniversity Conference on Aerospace Methods

for Revealing and Evaluating Earth's Resources, the publica-

tions of the Amercan Society of Photogrammetry and of the

Society of . Photo-Optical Instrumentation Engineers, the

Journal of Applivd Meteorology, the Proceedings of the [EEE

Manuscript received January 31, 1972; revised June 30, 1972.

The author was with IBM Thomas J. Watson Research Center,

Yorktown Heights, 'J.Y. 10598. He is now with the Department of Com-

puter Science, University of Nebraska, Lincoln, Neb. 68508.

(pertinent special issues in April 1969 and in July 1972), the
IEEE Transactions on Computers and the IEEE Transactions

on Man, Machines, and Cybernetics, the Journals of Remote

Sensing of Environment and of Pattern Recognition, and the

proceedings of several symposia and workshops on picture

processing and on pattern and target recognition. Previous

introductory and surveyarticles include Shay [185], Colwell

and Lent [37], Leeseet al. [120], Park [167], Dornbach [48],
and George [67].

_ As is the case with most emerging fields of research, the
assiduous reader is likely to encounter considerable re-

dundancy, with many experiments republished without
change in the electrical engineering and computerliterature,

in the publications dealing with aerial photography and

photogrammetry, in the various “subject matter” journals

(agronomy, meteorology, geophysics), in the pattern recogni-

tion press, and in the increasing number of collections de-

voted exclusively to remotesensing.

A depository of relevant published material, government

agency reports, and accounts of contractual investigations is

maintained by NASAat the Earth Resources Research Data

Facility at the Manned Spaceflight Center in Houston, Texas

(Zeitler and Bratton [223]). The Facility also maintains a

file of most of the photographs obtained by the NASAsatel-

lites and earth observation aircraft, and by other cooper-

ating agencies, institutions, and organizations. Provisions

are made for convenient browsing through both the printed

material and the vast amounts of photography. The Center

publishes Mission Summary Reports and detailed Screening

and Indexing Reports of each data-collection operation and

acts in principle as a clearinghouse for the exchange of such

material. All-of its holdings are cataloged by subject, location,

and author, but in its periodically published computer com-

piled Index [155]; documents cannot, unfortunately, be lo-

cated by either authoror title. An annotatedlist of references

to the literature is, however, also available [154].

For background information, the book Remote Sensing,

embodying the report of the Committee on Remote Sensing

for Agricultural Purposes appointed by the National Academy

of Sciences, is recommended as much for its comprehensive

coverage (the chapters on “Imaging with Photographic

Sensors,” “Imaging with Nonphotographic Sensors,” “Appli-

cations,” and “Research Needs,” are particularly interesting)

as for the quality of its photographic illustrations [161].

The reports of the other Committeesare also available [185].

The International Geographic Union is compiling a survey

of current work, including a list of participating scientists,

in geographic data sensing and processing. The long-range

plans of the United States, as presented to the Committee on

Science and Astronautics of the U. S. House of Representa-

tives, are set forth in [197], [38], and [60].
Contents of the Paper: Although much of the current ac-

Reprinted from Proc. /EEE, vol. 60, pp. 1177-1 200, Oct. 1972.
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tivity is sponsored by NASA, mostof the early work in remote

sensing was initiated by military intelligence requirements;

in particular, the development of imaging sensors was greatly

accelerated by the deployment of high-altitude photorecon-

naissance aircraft and surveillance satellites. Very little in-

formation is, however, available in the open literature about

the actual utilization of the collected imagery. The few pub-

lished experiments for instance, in the Proceedings of the

Symposium on Automatic Photo Interpretation (Cheng et al.

[31]), deal almost exclusively with idealized target recognition

or terrain classification situations far removed from pre-

sumed operational requirements. In view of the scarcity of

up-to-date information, this aspect of remote sensing will be

discussed here only in passing despite its evident bearing and

influence even on strictly scientific and economic applications.

Weshall also largely avoid peripheral application of digital

computersto the collection or preparation of pictorial material

intended only for conventional visual utilization, as in the

calculation of projective coefficients in photogrammetry or

the simulation of accelerated transmission methods inde-

pendent of the two-dimensional nature of the imagery. Nor

shall we be concerned with statistical computations arising

from manually derived measurements, as in models of forest

growth and riparian formations based onaerial photographs,

or in keys and taxonomies using essentially one-dimensional

densitometric cross sections or manual planimetry.

Omitted too is a description of the important and interest-

ing Sideways Looking Airborne Radar all-weather sensors.

Such equipment will not be included in the forthcoming

satellite experiments. Its potential role in remote sensing is

discussed by Simonett [187], Hovis [94], and Zelenka [224].
The diffuse and unstructured nature of terrestrial scenes

does notlenditself readily to elegant mathematical modeling

techniques and tidy approximations; an empirical approach

is well-nigh unavoidable. The first ERTS vehicle is not, how-
ever, expected to be launched until the second half of 1972,

and the Skylab project is scheduled for 1973, hence, prepara-
tory experimentation must be based on other material. Al-
though noneof the currently available sources of imageryap-
proximates closely the expected characteristics of ERTS and
Skylab, some reflect analogous problems, and several are of
interest on their own merits as large scale data-collection sys-
tems. These sensor systems, including both spaceborne and
airborne platforms, are described in Section II.

A large portion of the overall experimental effort has been
devoted to developing meansfor entering the imagery into a
computer, for storing and retrieving it, and for visual monitor-
ing—both of the hardware available for scanning and display-
ing high-resolution imagery, and of the software packages
necessary for efficient manipulation of large amounts of two-
dimensional (and often multiband) imagery in widely dis-
parate formats. These matters are discussed in Section III.

Section IV is devoted to image registration, the difficult
problem of superimposing two different pictures of the same
area in such a way that matching elements are brought into

one-to-one correspondence. This problem arises in preparing
color composites from images obtained simultaneously

through separate detectors mounted on the sameplatform,in

constructing mosaics from consecutive overlapping pictures

from a single sensor, in obtaining a chronological record of the

variations taking place in the course of a day or a year, and in

comparing aspects of the scenery observed through diverse

sensor systems. The most general objective here consists of

mapping the images onto a set of standard map coordinates.
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Section V is concerned with the application of automatic

classification techniques to the imagery. The major problem

is the boundless variability of the observed appearance of

every class of interest, due to variations inherent in the fea-

tures under observation as well as in atmospheric properties

and in illumination. The difficulty of defining representative

training classes under these circumstances has led to renewed

experimentation with adaptive systems and unsupervised

learning algorithms. From another point of view, the classifi-

cation of observations into previously undefined classes is an
efficient form of data compression, an objective of importance

in its own right in view of the quantity of data to be collected.

By way of conclusion, we attemptto gauge the progressac-

complished thusfar in terms of whatstill remains to be doneif

automatic digital image processingis to play a significant part

in the worthwhile utilization of the remote sensing products

about to become widely available.

The remainder of this Introduction lists some of the pro-

posed applications for ERTS and Skylab, outlines the func-

tional specifications for the image collection systems designed

for these platforms, and describes the central data processing

facility intended to accelerate widespread utilization of the

ERTSimage products.

A. Objects of the United States Remote Sensing Program

It is too early to tell whether expectations in dozensof spe-

cific application areas are unduly optimistic [185], [38], [60].
Certainly, few applications have emerged to date where

satellite surveillance has been conclusively demonstrated to

have an economic edge over alternative methods; it is only

through the combined benefits accruing from many projects
that this undertaking may be eventually justified.

Typical examples of proposed applications are crop inven-
tory and forecasting, including blight detection, in agriculture
[61], [169]; pasture management in animal husbandry
[97], [32]; watershed management and snow coverage mea-
surement in hydrology [135], [22]; ice floe detection and
tracking in oceanography [93], [196]; demarcation of linea-
ments and other geographic and geomorphological features in
geology and in cartography [219], [59]; and demographic
modeling [209].

Muchof the digital image processing development work to
date has been directed at removing the multifarious distor-
tions expected in the imagery and in mappingthe results on a
standard reference frame with respect to the earth. This
process is a prerequisite not only to most automatic classifi-
cation tasks but also to much of the conventional visual photo-
interpretation studies of the sort already successfully under-
taken with the Apollo and Gemini photographs [37].

The pattern recognition aspects of the environmental
satellite applications are largely confined to terrain classifica-
tion based on either spectral characteristics or on textural dis-
tinctions. Object or target recognition as such is of minor im-
portance since few unknownobjects of interest are discernible
even at the originally postulated 300 ft per line-pair resolu-
tion of the ERTS-A imaging sensors.

B. Plans for ERTS and Skylab

The ERTSsatellites will be launched in a 496-nmi 90-min
near-polar (99°) sun-synchronousorbit. The total payloadis
about 400 Ib.

The two separate imaging sensor systems on ERTS-A (the

first of the two Earth Resources Technology Satellites) con-

sist 1) of three high-resolution boresighted return-beam vidi-
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cons sensitive to blue-green, yellow-red, and deep-red solar

infrared regions of the spectrum, and 2) of an oscillating-

mirror transverse-sweep electromechanical multispectral

scanner with four channels assigned to blue-green, orange,

red, and reflective infrared (IR) bands. ERTS-B will carry a

fifth MSS channel in the thermal infrared.

The target of the vidicon tubes is exposed for a period of
12 ms/frame; the readout takes 5 s. This design represents a

compromise between the requirements of minimal motion
smear, sufficient illumination for acceptable signal-to-noise

ratio, and low bandwidth for transmission or recording. In the
oscillating-mirror scanner high signal-to-noise ratio is pre-

served through the use of multiple detectors for each band.

The field of view of both types of sensors will sweep out a
100-nmi swath of the surface of the earth, repeating the full
coverage every 18 days—with 10-percent overlap between

adjacent frames. E'very 100-nmi square will thus correspond to

seven overlapping frames consisting of approximately 3500 by

3500 picture elements for each vidicon and 3000 by 3000 ele-

mentsfor each channel of the mirror scanner, digitized at 64

levels of intensity.

The resolutior. on the ground will be at best 160m/line-
pair for low-contrast targets in the vidicon system and 200 m/

line-pair in the mirror scanner [126], [159], [160], [12]. A
comparison of the various resolution figures quoted for the

Gemini/Apollo photography and for the ERTS/Skylab
sensors, and morepessimistic estimates of the resolving power

of the ERTS sensors, can be found in [34].
The pictures will be either transmitted directly to receiv-

ing stations at Fairbanks, Alaska, Mojave, Calif., and Rosman,

N. C., if within range, or temporarily stored on video tape.

The vidicon dat: will then be transmitted in frequency-

modulated form i:. an analog mode while the scanner informa-

tion is first digitized and then transmitted by pulse-code

modultation (PCM) [67]. Canadian plans to capture and uti-

lize the data are clescribed in [198].

The center location .of each picture will be determined

within one half mile from the ephemeris and attitude informa-

tion provided in the master tracking tapes which will also be

made available t:: the public.

The sources oc? geometric and photometric distortion and

the calibration systems provided for both sensors are de-

scribed in some detail in Section IV, where digital implemen-

tation of corrective measures is considered. We note here only

that estimates for digital processing on an IBM360/67 com-

puter of a single set of seven ERTS imagesranges from 2 min

for geometric dis:ortion correction only to 136 min for com-

plete precision processing including photometric correction

[217].
The Skylab program will utilize a combined version of the

Apollo command. and-service module and a Saturn third stage

with a total vehicle weight of 130000 Ib in a low (250-nm1)

orbit permitting observation of the earth between latitudes

50° N and 50° S.
The major ir;aging systems of the Skylab EREP (Earth

Resources Experimental Package) consist of a 13-band multi-

spectral scanner covering the ranges 0.4-2.3 uw and 10-12 uy,

and of six 70-mr:. cartographic cameras having suitable film—

filter combinatiois for four bands between 0.4 and 0.9 pw. The

instantaneous field of view of the multispectral scanner will

be 80 m2 with a 78-km swath. The low-contrast resolution of

the camera system will be 30 m line-pair with a 163-km? sur-

face coverage. 4 number of nonimaging sensors, such as a

lower resolution infrared spectrometer, microwave radiom-

eter/scatterometer altimeter, will also be on board, as well

as an optical telescope [215], [168].
The multispectral data will be recorded on board in PCM

on 20 000 BPI 28-track tape and returned with the undevel-

oped film at the end of each manned period of Skylab.

C. Throughput Requirements

Only the relatively well-defined processing load of the cen-
tralized NASA facility for the ERTS imagery will be consid-

ered here, since it is clear that the quantity of data required

for each application ranges from the occasional frame for

urban planning [165], to the vast quantities needed for

global food supply forecasts [71]. The expected requirements

of the user community are discussed in somedetail in [72]
and [146]. The coverage extended for the North American
continent is of the order of

3000 nmi X 3000 nmi(area)

100 nmiX 100 nmi(framesize) X 18 days (period)
 = 50 sets

of seven pictures per day. Each set of pictures contains ap-

proximately 108 bits of data, thus each day’s output is the

equivalent of 125 reels of 1600 bit/in magnetic tape. This

estimate neglects the effects of cloud cover, which is discussed

in [190] and [68].
At the NASA Data Processing Facility all of the imagery

will be geometrically corrected to within at most 0.5 nmi in

linearity and at most 1 nmiin location, and distributed in the

form of 70-mm annotated black-and-white transparenciespre-

pared by means of a computer-controlled electronic-beam

recorder. In addition, about 5 percent of the images will

undergo precision processing designed to reduce registration

and location errors with both sensors to within 200 ft (to

allow the preparation of color composites), and to reduce

photometric degradation to under 1 percent of the overall

range. All of the precision-processed data, 5 percent of the

raw MSS data, and 1 percent of the raw RBV data will be

made available on standard digital tape [220], [217], [138].

The current plan is to use the ephemeris and tracking data

for the bulk processing and analog cross correlation against

film chips of easily observable landmarks for the precision

processing [138].
This is, of course, only the beginning; the subcontinent

represents but 15 percent of the total area of the globe. While

nations other than the U. S. and Canada may eventually

obtain the data by direct transmission from the satellite [62],

much of the original demand will be funneled through the

NASA facility. The initial capacity of the photographic

laboratories is to be 300 000 black-and-white and 10 000 color

prints or transparencies per week; it is clear that the major

emphasis is not on the digital products.

I]. CHARACTERISTICS OF THE DATA CURRENTLY
AVAILABLE FOR EXPERIMENTATION

At the initial stages of an image-processing experiment, the

actual content of the pictorial data under investigation 1s

sometimes less important than its format, resolution, distor-

tion, and grey-tone characteristics, and its relation to other

pictorial coverage of the same area. Fortunately, a large

variety of data, much of it already digitized, is available to

the tenacious investigator, and the supplyis being replenished

perhapsfaster than it can be turned to profitable use.

The sources covered in this section include the vastcollec-

tion of the National Environmental Satellite Center, the

photography from the Gemini and Apollo missions, and both
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Fig. 1. ESSA-9 mosaic of North America. Traces of the reconstruction
from the separate video frames are evident from the fiducial marks.
The deviation of the overlay from the true coast lines shows a regis-
tration error carried into the mapping program. A programmingerror,
sincé corrected, maybe seen in the checkerboard in NWcorner. Note
gray wedge and annotation.

photographic and multispectral coverage of over two hundred
specially selected test sites obtained by the NASA earth
observation fleet.

A. Weather Satellites

Data have been obtained so far from 25 individualsatel-
lites beginning in 1959 with Vanguard and Explorer and con-
tinuing in the early 1960’s with the ten satellites of the TIROS
series and later with the Environmental Survey Satellites
(ESSA) of the Tiros Operational Satellite System. The current
operational series (ITOS) has been delayed because of the pre-
mature failure of ITOS-A. Data have also been collected by
the Applications Technology Satellites in high geosynchro- *
nous orbits and by the experimental Nimbusseries.

At present the major meteorological function of these Sys-
tems is to provide worldwide cloud and wind-vector informa-
tion for both manual and automated forecasting services, but
extensians to other atmospheric characteristics are also under-:
way [222], [41]. The newer satellites provide, for instance,
accurate sea-level temperatures in cloud-free regions [123],
[174], cloud-height distributions (through the combination of
infrared sensor information with ground-based National
Meteorological.Center pressure and temperature observations
[47]}, and somewhatless accurate altitude-temperature and
humidity profiles (based on the differential spectral absorp-
tion characteristics of the atmosphere). Other applications
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are mapping snow andice boundaries and observation of sea

state [135]. In addition, over 4000 storm advisories have been
issued as a result of satellite observed disturbances.«[120].

The individual frames of Advanced Vidicon Camera Sys-

tem video, obtained from the latest operational polar-orbiting

satellites, contain approximately 800 by 800 points at a reso-

lution varying from 1.5 mi at the subsatellite point to 3.0 mi

at the edges. The video is quantized to 64 levels of grey, with

nine fiducial marks (intended to allow removal of geometric

camera distortion), appearing in black on white. The overlap

between successive frames is about 50 percent in the direction

of the orbit and about 30 percent laterally at the equator;

each frame covers about 1700 by 1700 nmi [23]. The two-
channel Scanning Radiometer operates at about half the reso-

lution of the AVCS.[29].

Digital mosaics are available on a daily basis in either Uni-

versal Transverse Mercator or Polar Stereographic projec-

tions (Fig. 1). Each ‘“‘chip’’ contains 1920 by 2238 points digi-.

tized at 16 levels, covering an area of about 3000 by 3000 mi?.

Multiday composites including average, minimum, and max-

imum brightness charts for snow, ice, and preeipitation

studies, are also issued periodically. The positional accuracy

of any individual point is usually good to within 10 mi. On the

high-quality facsimile output provided by the National Envi-

ronmental Satellite Service geodesic gridlines and coastlines
are superimposed on the video to facilitate orientation, but
the only extraneous signals in the actual digital data are the

fiducial marks from the vidicon camera [26], [24].
The geosynchronous ATS’s are equipped with telescopic

spin-scan cloud cameras which take advantage of the spin of
the satellite itself ta. provide one direction of motion. The sig-
nal from these sensors can be monitored withrelatively simple
equipment; currently over 600 receiving stations throughout
the world take advantage of the wide-angle coverage provided
of the Atlantic and Pacific Oceans (Fig. 2). The average alti-
tude is of the order of 20 000 mi, but the high angular resolu-
tion of the spin-scan cameraallows grounddefinition compar-
able to thatuof the ITOSvidicons. Each frame consists of
approximately 2000 by 2000 points. The maximum repetition
rate is one frame every 24 min [28].

The Nimbussatellites are used mainly for experimentation
with instrumentation to be eventually included-in operational
systems. NimbusIII, for instance, launched in 1969, carries
a triad of vidicon cameras,a high-resolution infrared radiom-
eter, an infrared spectrometer, an ultraviolet monitor, an
image dissector camera system, and an interrogation, record-
ing, and location system for data~collection from terrestrial
experimental platforms.

At present, the imagery from the various satellites is
archived at the original resolution only in graphic form, but
‘the last few days’ coverage is usually available from the
National Environmental Satellite Service Center at Suitland,
Md., on digital magnetic tape. Medium-scale archival data
tapes going back to January 1962 are maintained by the
National Weather Record Center in Asheville, N. C. [23].

An excellent summaryof the history, status, and prospects
of meteorological satellites data processing, including an
extensive bibliography, is contained in [120] and updated
in [41]:

B. Gemini and A pollo Photography

Most of the 2000 photographscollected on the six Gemini
missions between 1964 and1968 were obtained with hand-held
cameras. The astronauts appear to have favored high-oblique
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(b)

Fig. 2, ATS image. Raw video and Mercator projection of the Pacific

Ocean from the f.-st ATS. These illustrations were obtained through
the courtesy of t:.e National Environmental Satellite Center.

shots, with consic.erable variation in the scale and orientation

of photographs o! the same area [151].

For registration experiments, three Gemini photographsof

Cape Kennedy obtained within a three-year interval are quite

suitable. Two of these photographs are almost at the same

scale and show |:ttle foreshortening, while the third is an

oblique view extending clear across Florida [10].
In addition to hand-held cameras, some of the Apollo mis-

sions were equipped with a bank of four boresighted 70-mm

Hasselblad cameras. The SO-65 project on the Apollo-9, in

particular, was designed to assess the capabilities and limita-

tions of multiband photography in a variety of applications.

The satellite phctography was carefully coordinated with

aerial photography from almost a dozenaircraft flying at alti-

tudes ranging fron 3000 to 60 0000 ft, with airborne multi-

spectral scanner coverage, and with the simultaneouscollec-

   Fig. 3. Digitized Apollo photograph. This photograph of central Arizona

was digitized at a resolution corresponding to 4200 lines on a drum

scanner and was then recorded on film using the same device. The

fiducial marks were introduced in the digital data for testing certain

reseau detection algorithms [10], [11].

tion of terrain information (“ground truth”) from several

test sites [152].
For agricultural purposes, the most popular test site ap-

pears to be the Imperial Valley of California. Extensive cover-

age is available for this area, with overlapping frames both in

the same orbit of the Apollo-9 and in successive orbits several

days apart. Each photo-quadruplet consists of three black-

and-white negatives in the green, red, and infrared, and of a

false-color composite including all three of these bands. The

scale of the vertical photography is about 1:1 500 000 [153].

The photographs are obtainable in the form of third-

generation prints, negatives, or 35-mm slides from the Tech-

nology Application Center of the University of New Mexico.

Several dozen photographs, including some of the Imperial

Valley and Cape Kennedy pictures mentioned above, have

been digitized by Fairchild Camera and Instrument Corpora-

tion, Optronics International, Inc., and IBM (among others),

at a resolution corresponding to 4000 lines/frame (Fig. 3).

The quality of the pictures giveslittle justification for higher

resolution [5].

C. High-Altitude Photography

The MSC Earth Resources Aircraft Program operates

half-a-dozen specially equipped airplanes gathering data over

some 250 NASA designated test sites [48]. The particular
missions flown are decided largely on the advice of 200 or so

principal investigators of diverse affiliations appointed for
specific research tasks involving remote sensing. About

500 000 framesare collected annually, and are available from

NASA “by special request.”

Detailed descriptive material is available for each mission,

including flight log summaries, charts showing flight lines,

lists of camera characteristics (some missions fly as many as

a dozen different cameras (see Fig. 4), film and filter combi-
nations, roll and frame numbers, and plots of the earth loca-
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MISSION DATE Sept. 29, 1969

SENSOR Hass. 1] Hess. 2 Hass. 3 Hass. 4] Hass. 5

FILM 3400 50368 $0180 S0368 50368

FILTER 2A 1G 2A 2A

ROLL NO, 1 1 l 2

LINE . FRAMES| FRAMES FRAMES

2 33 006 Ol OL ol
05 05

06 06 06
i 64

 a

Fig. 4. NASA-ERAP documentation. Example of photographic cover-

age plot and corresponding plot for a high-altitude flight of the

Earth Resources Observation Program (excerpted from NASA-MSC

Screening and Indexing Report, Mission 123, Houston, Tex., July
1970).

tion of selected frames. For simulation of future satellite data,

the most suitable imagery is probably that obtained by the

60 000-ft ceiling RB-57 twin jet reconnaissance aircraft and

by the recently acquired “ERTS-simulator” U-2’s equipped

with four multiband cameras (red, green, pan-IR, color-IR)

with 40-mm lenses imaging the earth at only twice the reso-

lution of the expected ERTS coverage.

Several of the aircraft are equipped with line scanners of

various types. Such instruments will be described in the next

section.

D. Atrborne A\Lultispectral Scanners

In instruments of this type, onescan direction is provided

by the forward motion of the aircraft and the other by the

rotation or oscillation of a prism or mirror (Fig. 5). Emitted or

reflected radiation from the ground is imaged onto an array

of detectors sensitive to various bands in the spectrum; the

recorded output is an array of multidimensional vectors where

each vector represents a specific position on the ground and

each componentcorresponds to a spectral channel [92].

Scanners in operation today have anywhere from one to

twenty-four spectral channels of varying bandwidths; cover

all or part of the spectrum from the ultraviolet to the thermal

infrared; offer a spatial resolution of 2 mrad down to about

0.1 rad; and differ widely with respect to calibration sources,

attitude control and tracking accuracy, and methodof record-

ing the information. In general, most of the instruments can

be flown in various configurtions in conjunction with other

sensors including photographic cameras, nonimaging probes,

and radar [126].

Most of the published work is based on data obtained by
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Fig. 5. Multispectral data collection. Schematic diagram showing how

the light reflected or radiated from the ground is decomposedintoits

spectral components, converted into an electric signal, and recorded

on board in analog form for subsequent digitization.

meansof the scanners mounted on an unpressurized (10 000-ft

ceiling) C-47 aircraft operated for NASA by the Universityof

Michigan. Since 1966, over 150 missions have been completed,

with such varied purposes as the study of soil distribution,

arctic ice, bark attack on ponderosa pine, water depth, sink-

hole-prone conditions, water-fowl habitats, urban features,

and most recently and extensively, corn blight. Only a small

fraction of the collected information has been automatically

analyzed; the remainder is printed out in analog form for

visual examination [148].

Digitized data from.one of the Michigan flights are typi-

cally in the form of an array of 12-dimensional vectors (there

are additional channels available but due to separate mounts

they are not all in spatial register), with 220 samples perpen-

dicular to the flight direction and up to several thousand sam-

ples along the flight line. Ground resolution at 5000-ft flight

altitude is of the orderof 60ft.

Several calibration sources are viewed and recorded during

the period that neither surface of the rotating axe-blade mirror

is looking at the ground. These sources include lampsfiltered

to match the solar spectrum as closely as possible, black-body

thermal references, and background illumination collected

through a diffuser [112], [124].

After the flight, the analogsignal recorded on FMtapeis
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digitized, correct:d for roll angle, unskewed, and normalized

with respect to the calibration signals. Noise bursts, out-of-

sync conditions, «nd other anomalies are detected by elabo-

rate preprocessing programs which also provide appropriate

coordinate labels sor subsequentidentification with respect to

photographs or other sources of independent terrain infor-

mation.

Michigan is currently testing the new M7 scanner which is

designed for recor ling wavelengths from 0.34 to 12 uw [39]. In

addition, NASA is testing a 24-channel scanner on a C-130

Hercules (30 000-ft) aircraft equipped with an elaborate
automatic data a:inotation system for facilitating earth loca-

tion of the imagery [111], [221], [218], [69]. Other scanners
with a smaller number of channels and less flexible arrange-

ments are flown on smaller aircraft (such as Bendix’s Beech-

craft, and Colora:io State’s Aerocommander) for special mis-

sions.

The design of a 625-line color television system intended

for airborne service is described in [142].

III]. IMAGE-PROCESSING SYSTEMS

Although the availability of a large general-purpose digital

computeris a valuable asset for experimentation with process-

ing techniques, special hardware is required for converting the

raw data into ccmputer-readable form, for monitoring the

results of the processing operation and for entering ground

truth or other ancillary data pertaining to observed features

of the image.

Many experimenters feel that parallel processors must also

be available for performing the calculations at the speed

necessary to eva uate the results on a significant enough

variety of image-y. With conventional processors a large

amount of programming work of a rather stultifying nature is

required to decom pose two-dimensional arrays containing up

to 10’ bytes into fragmentsof a size suitable for manipulation

within the constraints imposed by core size, sequential tape

access, blocked disk formats, and, possibly, multiprogrammed

operating systems, and to reconstitute these arrays after

transformations which may involve changes in the relations

between,as well 23 within, the segments. Somealternatives to

sequential digital processing are discussed by Preston else-

where in this issue.

The large initial investment necessary to begin coming to

grips with the more interesting problems offered by rea/ data

(as opposed to mathematical abstractions or shreds of hand-

picked and selected imagery) accounts for the domination of

this area of research by a fewrelatively large institutions, as

reflected in the bibliography accompanying this paper.

It is not, as mentioned before, indispensable for each insti-

tution to provide meansfor digitizing the raw data. In prin-

ciple, this is a one-time operation. In practice, however,it is a

very ticklish proc2dure, and shortcomings maybe discovered

only after considerable experience with the digitized imagery.

For this reason, inany experimenters believe it necessary to

develop their own scanners and other analog-to-digital con-

version equipmerit, a challenge usually outlasting their purse

and patience.

The equipment required for precision conversion of multt-

spectral FM recc.-dings and directly captured weather satel-

lite pictures is so specialized that it will not be described here.

Some of the cal:bration and synchronization problems en-

countered are described in [148] and [28]. Optical scanners
suitable for diverse applications are, however, commercially

available and wil be briefly discussed.

There is no question that adequate grey-tone output must
be conveniently available for experimentation, but opinion
seems divided as to whether a television-type screen display
with some interactive capability or a high-quality hardcopy
output is preferable. A common compromise is a low-resolu-
tion CRT display with higher resolution (because flicker-free
operation is not required) Polaroid recording capability.

Otherless easily defined aspects of processing Jarge pictures
discussed in this section are the operating systemsand utility

programsnecessary for any sort of coherent experimentation,

special processors for anticipated quantity production, and

the role of man—machineinteraction in both experimental and

operational systems.

Some examples of digital-computer-oriented remote sens-

ing facilities, and of the equipment they contain are as fol-

lows:!

NOAA's National Environmental Satellite Center at

Suitland, Md.: three CDC 6600’s, CDC 160A, two ERM

6130’s and 6050’s, CDC 924, three 5000 by 5000 element

Muirhead recorders, Link 35-mm archival microfilm unit [28],

[29];

NASA-MSC’s complex for the analysis of multispectral

recordings and photography: 160 by 111 digital color display,

closed-circuit television display, Xerox hardcopy output,

Grafacon tablet, keypack, analog tape drives, IBM 360/44

processor [56], [58];

Caltech’s JPL operation: film-scanner, CRT display, FM

tape conversion, facsimile hardcopy, IBM 360/75 [18], [162]:

University of Michigan multispectral facility: SPARC

analog computer, drum scanner, analog film recorder, CRT

display, FMtape conversion, CDC 3600 [131];

‘Purdue University’s Laboratory for Applications of

Remote Sensing: 577 by 768 element flicker-free 16-level dig-

ital TV display, light pen, continuous image motion, selective

Polaroid or negative hardcopy without obstruction of display,

FM tape conversion, IBM 360/67 [116], [117], [203];
University of Kansas KANDIDATS (Kansas Digital

Image Data System) and IDECS (Image Discrimination,

Enhancement, and Combination System): three flying-spot

scanners for transparencies (25 mm to 3 by 4in) and a vidicon

camera controlled by a PDP 15/20, electronic congruencing

unit (rotation, translation, and change of scale), 20 by 20 ele-

ment linear processor and level selector, 24-channel digital

disk storage, monochrome and color displays with built-in

crosshatch generator, film output, GE-635 computer [77];
Computing Science Center of the University of Mary-

land: flying-spot film scanner, drum scanner/recorder,. CRT

display, vidicon, Univac 1108 [171];
University of Southern California Image Processing

Laboratory: IER 1000 by 1000 element flying-spot color

scanner and display, Muirhead rotating-drum color scanner

and recorder, digital color television and display, Adage vec-

tor display with joystick and light pen, IBM 360/44, IBM

370/155, and HP 2100 computers connected to ARPA net

[173];
Perkin-Elmer’s Sampled Image Laboratories: drum

scanner/recorder, flying-spot scanner, high-resolution travel-

ing-stage microscope image-plane scanner, CRT and storage

tube displays, precision plotting table, linked IBM 360/67,

XDS 930, H-516, and Varian 620-i computers [212]:

1 Some of this information, obtained through personal communica-

tion, is more recent than the reterences would indicate.
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IBM Research Division’s facility at Yorktown Heights:

film scanner, CRT output, image dissector, digital color TV

display, graphic tablets, 360/91, 360/67, and 1800 computer

net [85].

Another group of facilities is dedicated primarily to auto-

matic photointerpretation, with only fragmentary informa-

tion available about the work. Examples of this group are as

follows:

McDonnell Douglas Astronautics: a compact vidicon

scanner with 70-mm film scanner and a minicomputer, and a
larger interactive system with a 1024-line (nominal) image

dissector, scan converter, rear-projection viewer, 16-level

digital TV display, alphanumeric display, joystick, XDS 930

computer [104], [105];

SOCRATES (Scope’s Own Conditioned-Reflex Auto-

matic Trainable Electronic System), a 20 by 20 photodiode

and threshold logic array, the successor to Conflex I [164],
[211];

SARF, General Motors’ phoenix-like interactive Signa-

ture Analysis Research Facility [192];
MULTIVAC, Hughes Research Laboratories’ 10 by 10

element binary array processor [8];

Litton Industries’ Automatic Target Recognition Device,

a hybrid system with a programmable CRT scanner, Recomp

II process control computer, and interactive operation [205];

Cornell Aeronautical Laboratories’ adaptive image pro-

cessing operation using 35/70-mm CRT scanner, storage

scope output, PDP-9, IBM 360/65and 370/165 [134], [143];
ASTRID,Ohio State’s Automatic Recognition and Ter-

rain Identification Device, a hybrid computer system oriented

toward processing line segments [163].

A good review of image enhancementfacilities for remote
sensing throughout the country is available in [37]. Among

the systems discussed are the following: the NASA-USDA
Forestry Remote Sensing Laboratory Optical Color Combiner

at Berkeley, Calif.; the University of Kansas IDECS system:

the two-band 1000-line Philco-Ford Image-Tone Enhance-
ment System; and the Long Island University Multispectral

Camera-Viewer. Abroad, we know of sustained activity only
at the Institute for Information Processing and Transmission
of Karlsruhe University [106], [89], [107], though some
earlier European work is described in [21].

A. Optical Scanners

Since the data most closely resembling the expected ERTS
and Skylab imageryin terms of resolution are available in the
form of photography, optical scanners are necessary to trans-
late the grey-tone (or color) information into computer-
readable code.

CRT flying-spot scanners and television cameras (image

dissectors or vidicons) are the most inexpensive and fastest
devices available, but beyond a degree of resolution corre-
sponding to about 500 by 500 picture elements quantized at

16 levels of intensity, the nonlinearities introduced by such
scanners tend to exceed the degradation and distortion pres-
ent in the photographyitself. Owing to the nonuniform sensi-
tivity, scanning the pictures section by section introduces
even graver problems in juxtaposing adjacentsections.

Mechanical-drum and flatbed microdensitometers (50 000

dollars and up)are easily capable of the accuracy required.for

almost any typeof photography, with even the less expensive

digitizers (15 000 dollars) producing 2000 by 2000 arrays with
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up to eight bits of grey-scale quantization. Owing to the nar-

row spectral range of the source of illumination and matching

detector configuration, most of these machines cannot be

readily converted to color work. For this purpose, one must

turn to scanners specially designed for the simultaneous pro-

duction of color-separation plates in the printing industry,

suitably modified by the addition of an analog-to-digital

interface. The low speed of operation of:such scanners (of the

order of 4 s/scan-line) generally requires off-line operation or

an elaborate interrupt structure [141], [210], [171], [212].
Due to the lower contrast of opaque prints, positive or

negative transparencies constitute the preferred medium for

scanning. Because of multiple surface reflections. transparen-

cies cannot be scanned with a reflection scanner by simply

providing a uniform reflective background. Drum scanners

designed for film have either a glass drum or someself-sup-

porting arrangement with edge guides.

B. Grey-Tone Output Devices

Many flying-spot scanners and drum microdensitometers

can be modified to operate in a write mode. This is a partic-

ularly convenient arrangement since the format conversion

problems are altogether eliminated, and compatible resolu-

tion and sensitivity characteristics are guaranteed. The only

drawback is that closely controlled wet processing withatten-

dant time delay is usually required for consistent grey-tone

reproduction. Film recorders may also be used with Ozalid

foil overlays to produce high-quality color transparencies

[130].
Facsimile recorders are less expensive and can provide 16

levels of grey on a 4000 by 4000 array (Fig. 2). Program-

mable flying-spot recorders with special character masks,

such as the widely used Datagraphics 4020, provide about 500

by 500 distinct elements, but elaborate programmingis neces-

sary, with frequent recalibration, to:secure even eight reason-

ably uniformly distributed intensity levels on either paper or
film. Spatial resolution may, however, be traded off for grey-
scale resolution by resorting to halftone techniques [79],
[183].

Although all of these devices are generally used in a fixed-
raster mode of operation, control of the beam deflection in an
electron-beam recorder being developed by CBS Laboratories
is the intended mechanism for thecorrection of “bulk-pro-
cessed” video tapes at the NASA-ERTSData Processing
Facility [138]. This is an essentially analog system under con-
trol of an XDS Sigma 3 digital computer. A laser-beam
recorder with a 10- spot over a 20 by 20scm area has been
developed at ITEK Corporation [125].

Line-printer overstrike programsare still useful for quick
. turn around, particularly with elongated formats such as that
of the Michigan MSS. Thevisual qualities of this form of out-
put are greatly improved by judicious use of watercolors and

transparent overlays; modifications intended for on-line

terminal use are, however, agonizingly slow. Isometric, per-

spective, and isodensity Calcompplots offer another alterna-

tive for the impecuniousinvestigator.

Television-type grey-scale displays are generally refreshed

either from a high-speed core buffer or from a digital video

disk. A single-line buffer is sufficient to fill the video disk, but

a full-frame buffer (typically 520 by 600 bytes or picture ele-

ments) renders it much easier to change only parts of a pic-

ture without regenerating the entire frame.

Color displays needthree times as much buffer storage as

black-and-white pictures, but offer no particular difficulty if
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registered color seyarations are available in digital form. The.

calibration procedures necessary to produce color composites

from multiband photography (filtered black-and-white expo-

sures) are discussed in [19].
It is possible to circumvent the need for an image buffer by

resorting to the now available grey-scale storage scope. Such

a device requires « much simpler interface than a refreshed

system, but the saving is to someextentillusory since mostof

the cost resides i1 the programming system necessary to

select, retrieve, edit, and otherwise manipulate the displayed

pictures.

Without a sophisticated programming system, the display

can be used only t> show the coarsest changes in the picture

or as a conversation piece with Jay visitors. For meaningful

experimentation, 't is desirable to be able to show two or

more versions of the same picture simultaneously, to form

overlays, to label specified features, to display intensity

histograms and other computed functions, to vary the density

modulation to bring into prominence regions of different in-

tensity or to compensate for the amplitude nonlinearities of

both the data collection system and the display itself, and to

to perform many >ther more specific functions quickly and

effortlessly.

Just how good :1 display must be to prove useful is a moot

point and dependslargely on the ingenuity of the user in cast-

ing the relevant information in a form compatible with the

available display capabilities. So far, there is insufficient evi-

dence to evaluate, in realistic terms, the contribution of dis-

play systemsto the development of specific image-processing

algorithms.

C. Operating Subs:istems and Utility Programs

As already me:.tioned in several different connections, the

major part of the programming effort required to cope effec-

tively with large image arrays (four orders of magnitude

larger than binary character arrays and about two orders of

magnitude larger than most biomedical pictures) must be

devoted to conceptually trivial matters such as: the decom-

position and recorstitution of pictures; edge effects; efficient

packing and unpacking routines for the various modesof

point representation; variations in the basic byte and word

sizes between diff;rent machines; aspect-ratio and other for-

mat changes among scanner, analog-to-digital converter, in-

ternal processor, and output devices; tape and disk com-

patibility; storage-protect and filing devices to ensure the

preservation of va uable “originals” without undue accumula-

tion of intermediate results; diagnostic routines permitting

inspection of the actual valuesof relatively small segments at

given image coorclinate locations; left-right, up-down, black-

white confusions; and myriad other frustrating details.

To avoid having to reprogram all these ancillary routines

for each new function to be performed on the pictures, it is

desirable to set ud a procedure-oriented language or system

within the framevork of which new programs can bereadily

incorporated. Suc1a system may provide the necessary inter-

face with the special-purpose hardware, allow access to a

library of subroutines, supervise extensive runs in the batch

mode on large computers, and offer special image-oriented

debugging and diagnostic facilities in a time-shared mode of

operation [125], |85].

Since most functions to be performed on a picture are

local operations i1 the sense that the values of only a small

subset of all the picture elements need be known in orderto

compute the value of an element in the output picture, the

provision of a generalized storage policy is essential for the

efficient performance of arbitrary window operations. For

instance a window of size 7Xm may take n disk accessesif
the image is stored line by line. A worst case example is a

horizontal edge-finding operation on an image stored by

vertical scans. With large images in such cases it is usually

worth rewriting the array in an appropriate format before

proceeding with the calculation; flexible means for accom-

plishing the reshuffling must be a part of any image-processing

system worthy of the name unless an entire image can be

accommodated in the fast random-access memory. A valuable

discussion of the computational aspects of two-dimensional
linear operations on very large arrays (up to 4000 by 4000

elements) is presented in [99].
Among the best known image-processing systems are the

various versions of PAX developed in conjunction with the

Iliac III, and later rewritten for the CDC 3600, IBM 7094

and System/360, and also for the Univac 1108. In PAX,

images are treated as stacks of two-dimensional] binary ar-

rays. Arithmetic operations on integer-valued image elements

are replaced by logical operations performed in parallel on

the corresponding components (suchas the 2° level) of several

picture elements. Planes are defined in multiples of the word

size of the machine, but aside from a few suchrestrictions,

PAX II is conveniently imbedded in Fortran IV, with the

debugging facilities of the latter available in defining new

subroutines. Both a conversational mode and batch demand

processing have been implemented at the Computing Center

of the University of Maryland. The major subroutines are

designed for the definition of planes, masks, and windows,

logical functions of one or more planes or windows, neighbor-

hood operations, area and edge determination, preparation of

mosaics, tracing of connectivity, creation of specific geometric

figures such ascircles and disks, distance measurements, grey-

scale overprint, grey-scale histograms and normalization,

superimposition of grids, noise generation, moment-of-inertia

operations, translation, rotation and reflections, and include

as well a number of basic “macro” operations intended to

facilitate expansion of the program library [149], [170], [30],

[101], [102].

Other examples of comprehensive programming systems

described in the literature are Purdue’s LARSYSAA [116],

[202], [203], General Motors’ SARF [192], and the Univer-

sity of Kansas KANDIDATS [76]. Such systems are gen-

erally difficult to evaluate because the publication of interest-

ing research results developed with the system (as opposed to

contrived examples) tends to lag indefinitely behind the sys-

tem description. Furthermore, very seldom is there any indi-

cation of the breakdown between-the amountof effort ex-

pended in the development of the system and the time re-

quired to conduct given experiments.

D. Special-Purpose Digital and Hybrid Systems

Ata time of continually waning interest in special-purpose

processors for pattern recognition, there are two main argu-

ments for their use in remote sensing. Thefirst is the inability

of even the largest digital computers to cope with element-by-

element classification at a speed approachingthe rate of. col-

lection of the data; an airborne MSStypically spews out 10°

samples/h while the 360/44 can ingest only about 10° bytes/h

on a ten-class problem [133]. The second argument is based

on the need for on-board processing owing to the excessive

bandwidth requirements for transmitting data from a space-

borne platform.
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An example of a hybrid classification system is the SPARC

machine at the Infrared and Optics Laboratory of the Uni-

versity of Michigan [130]. SPARC has 48 analog multipliers

operating in parallel, and performs quadratic maximum-likeli-

hood decisions on 12-component vectors at the rate of one

every 10 us.

Because of the difficulty of calibrating the machine, re-

quiring manual setting of the potentiometers corresponding

to the entries in up to four previously computed 12 X12 class-

covariance matrices, exact duplication of results 1s almost

impossible and the machineis therefore of marginal utility in

strictly experimental investigations. A successor featuring

direct digital control and an interactive display capabilityis

on the drawing boards [132], [133].
The proposed NASA-ERTS data processing facility

makes use of optical correlation techniques against chips

containing easily identihable landmarks for registering the

data, and special digital hardware for point-by-point correc-

tion of vignetting in the vidicons and other systematic errors

[71], [138].
So far, no on-board satellite image processor has been in-

stalled, but a feasibility study based on several hundred

photographs of clouds and diverse lunar terrain features con-

cludes that an acceptable classification rate can be at-

tained [45].

Another study, using photographs of six “typical” terrain

features, proposes a simple adaptive processor based on

coarsely quantized average intensity levels, spatial deriva-

tives, and bandpass spatial filter output [100]. Electrooptical

preprocessing techniques using image intensifier tubes are

described in [83].

The highly circumscribed test material used in these ex-

periments leaves some doubt as to their relevance to the out-

put of currently available spaceborne sensors.

In spite of the commercial availability of relatively inex-

pensive FFT hardware and Jong shift-register correlators,
there appears to have been no attempt so far to apply these

devices to digital image processing for remote sensing.

EL. Interactive Processing

Interactive processing in remote sensing does not neces-
sarily imply the kind of lively dialogue between man and ma-
chine envisioned by early proponents of conversational sy s-
tems and alreadyrealized to some extent in computer-aided
design and informationretrieval, and in certain areas of pat-
tern recognition (see paper by Kanal elsewhere in this issue).

The prime objective of on-line access to the imageryis to

provide an alternative to laborious and error-prone off-line
identification, by row and column counts on printouts or
interpolation from measurements on hardcopy output, of
features which are easily identifiable by eye yet difficult to
describe algorithmically without ambiguity. Examples of

such features are landmarks—such as mountains, promon-

tories, and confluences of rivers—for use in accurate registra-
tion of photographs, and the demarcation of field boundaries
for crop-identification studies based on multispectral re-

cordings.

_Even a system without immediate visual feedback, such

as a graphic tablet on which a facsimile rendition of the digi-

tized image can be overlaid, is considerably superior to keying

in the measured coordinate values. One step better is the dis-

placement of a cursor on the display under control of a tablet,

joystick, or mouse. The ideal is direct light-pen interaction,

but this is not easy to implement on a high-resolution digital
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display. For really accurate work, a zoom option on the dis-

play is necessary for accurate location of the features of

interest, but the amount of computation required is prohibi-

tive in terms of response time [84].
A thoroughly tested system for locating nonimaging sensor

data in relation to a closed-circuit television display of simul-

taneously obtained photographyis described in [55] and

[58]. The accuracy of the computer-generated overlays is

shown to be better than 0.5° by reference to salient land-

marks [54].

There has also been discussion of on-line design of spatial

filters, decision boundaries, and compression algorithms.

Here again, however, the waiting time between results is

lengthy, and the operator must transmit so little information

to the machine—typically just a few parameter values—that

batch processing with high-quality hardcopyoutputis prefer-

able in manyinstances. With multiprogrammed systems, the

difference between on-line and off-line operation tendsto blur

in any case, with the distinction sometimes reduced to

whether one enters the necessary commandsat a terminal in

the office or at a nearby remote job entry station.

Another possible desideratum is a display browsing mode,

allowing inspection of large quantities of images. Here also,

however, reams of hardcopy output, with on-line operation,

if any, confined to pictures of interest, maybe preferable.

It would thus appear that the most appropriate applica-

tions of interactive concepts, in the context of remote sensing,

are 1) the debugging of program logic, where small imagear-

rays maybe used to keep the response time within acceptable

limits, and 2) the entry of large quantities of positional in-

formation, where practically no computation is required and

no viable off-line alternativesexist.

IV. IMAGE RESTORATION AND REGISTRATION

The need for exact (element-by-element) superimposition

cf two images of the same scene upon one anotherarises in the

preparation of color composites, chronological observations,

and sensor-to-sensor comparisons. The spatial, temporal, and

spectral aspects of image congruence are discussed in [3].

Here we shall attempt to categorize the types of differences
which may be encountered between twopictures of the same
scene on the basis of the processing requirements necessary
to produce a useful combinedversion. Onlydigital techniques
are presented; the advantages and disadvantages of optical
techniques are discussed elsewhere in this issue by Preston,
and in [165], [166].

Geometric distortions in electronically scanned imagery are
due to changes in the attitude and altitude of the sensor, to
nonlinearities and noise in the scan-deflection system, and to
aberrations of the optical system.

Photometric degradation (occasionally also referred to as
“distortion,” with questionable propriety) arises due to modu-
lation transfer-function defects including motion blur, non-
linear amplitude response, shading and vignetting, and chan-

nel noise.

The atmospheric effects of scattering and diffraction, and
Variations in the illumination, also degrade the picture, but

these effects are in a sense part of the scene and cannot be

entirely eliminated without ancillary observations.

Once the pictures to be matched have been corrected for

these sources of error, resulting in the digital equivalent of

perfect orthophotos, the relative location of the pictures must

still be determined before objective point-by-point: compari-

sons can be performed. In reality, this is a chicken-or-egg
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problem,since the pictures cannot be fully corrected without

locating a referenc2: image, but the location cannot be deter-

mined accurately without the corrections.

Tracking and «phemeris data usually provide a first ap-
proximation to th: position of the sensor at the time of ex-
posure, but for exact registration more accurate localization

is required. In operator-aided systems, such as the operational

NESC mapping p:ogram, the landmarks are located by eye.

while in fully automatic systems some correlation processis

usually employed. A compromise is preliminary location of

the landmarks by the operator, with the final “tuning” carried

out by computer |191] in a manner analogous to the widely

used track measure ment programs for bubble-chamber photo-

graphs, described by Strand elsewhere in this issue.

A major difficu ty in multispectral correlation or matched

filtering of perfectly corrected images is the existence of tone

reversals, or negative correlations, between spectral bands. This

phenomenon, however, constitutes the very essence of most

of the spectral discrimination techniques described in Sec-

tion V.

Many of the current image restoration and enhancement

techniques are int:nded to facilitate the task of visual inter-

pretation. These matters are discussed in detail in the July
1972 special issue cf the Proceedings of the IEEE, and in [96].

Difficulties arise »ecause the transformations required to

reveal or emphasize one set of features may,in fact, degrade

features desirable for another purpose, yet such techniques

have consistently produced visually startling results in Mars

images [176]. An excellent discussion of the necessary com-

promisesis offerec| by Billingsley [20].

A. Mathematical Formulation

The registration problem is cumbersome to state mathe-

matically in its entire generality, but the following formula-

tion may help in understanding the work currently in prog-

ress.

The scene under observation is considered to be a two-

dimensional inten:ity distribution f(x, y). The recorded image

is another (digitized) two-dimensional distribution g(u, v).

The image is rela:ed to the “true” scene f(x, y) through an

unknowntransfor nation T:

g(u,v) = T(f(%, y)).

Thus in order to recover the original information from the

recorded observat ons, we must first determine the nature of

the transformation 7, and then execute the inverse operation

T~! on the image.

When indeper Jent information is available about 7, such

as calibration dati on distortion and degradation, or a model

of atmospheric effects, or attitude data concerning the angle

of view, then the two operations may be separated.

Often, however, only indirect information about T is

available, usually in the form of another image or a mapof the

scene in question. In this case, our goal must be to transform

one of the pictures in such a manner that the result looks as

much as possible like the other picture. The measure of sim-

ilarity is seldom stated explicitly, since even if the two pictures

are obtained simultaneously, the details perceptible to the

two sensors may e markedlydifferent. Thus for instance, in

registering photczraphs of the same scene obtained simul-

taneously throug: different color filters we would want shore-

lines and rivers, ut not the intensity levels, to correspond.

On the other haid, if the photographs are obtained years

apart with the pi rpose of observing the erosion of the shore-

line or the shift in drainage patterns, then we must expect

changes in the location of such features. Seasonal variations
also give rise to problemsof this type.

In some studies it is assumed that except for the effect of

some well-defined transformation of interest, the image of a

given scene is produced either by the addition of indepen-

dently distributed Gaussian white noise, or by multiplication

by exponentially distributed noise. While these assumptions

lead to the expected two-dimensional generalization of the

familiar formulas of detection, estimation and identification

theory, they bear little relation to the observed deviations in

many situations of practical interest.

The case of known (or derivable) T is sometimes known

as image restoration, as opposed to the classical registration

problem where J must be obtained by repeated comparison

of the processed image with some standard or prototype. This

dichotomy fails, however, when the parameters of T are ob-

tained by visual location of outstanding landmarks followed

by automatic computation of the corrected image.

B. Single-Point Photometric Corrections

To make any headwayon either problem, at least the

form of the unknowntransformation must be known. We can

then parametrize the transformations andwrite g(x, ¥y)

= T.(f(x, y)) to indicate that the true value (grey level) of a

point with coordinates (x, y) depends only on the observed

value at (x, y). The componentsof ¢ specify the regions where

a given correction factor is applicable.

Examples of such degradation are the vignetting due to

the reduced amount of light reaching the periphery of the

image plane in the sensor, and the shading due to sun-angle

in the TIROS and ESSA vidicon data. Since the combined

degradation is quite nonlinear with respect to both intensity

and position, the appropriate correction factors are prestored

for selected intensity levels on a 54 by 54 referencelattice,

and the individual values in the 850 by 850 element picture

are interpolated by cubic fit. Camera warmup time through

each orbit, as well as the sawtooth effect owing to the non-

uniformly reciprocating fqcal-plane shutter, are taken into

account, but contamination by the residual images on the

photocathode is neglected. The final output is claimed to be

photometrically accurate (or at least consistent) within 5

percent, which is sufficient for the production of acceptable

montages for visual inspection [26], [24].

If the preflight calibration does not yield a sufficiently

accurate description of the response of the post-launch system,

as was the case with the early Mariner pictures, then the cor-:

rection may be based on the average grey-scale distribution

of many pictures on the assumption thatthe true distribution

is essentially uniform [156].

Spectral calibration of digitized aerial color photography

can be performed on the basis of the measured reflectance

characteristics of large ground calibration panels [52].

Single-point photometric corrections have also been ex-

tensively applied to airborne multispectral imagery. A com-

prehensive discussion of the various factors contributing to

variations in the output of the multispectral scanner, includ-

ing the crucial non-Lambertian reflectance characteristics of

vegetative ground cover, is contained in [112]. This study

also offers an experimental evaluation of various normaliza-

tion methods based on relative spectral intensities, and a

formula for eliminating channel errors resulting in “unlikely”

observations. A followup study [113] describes interactive
techniques based on visual examination of certain amplitude
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averages. Good examples of the importance of amplitude pre-

processing in extending the range of multispectral recognition

are shown in [88], [188].
A more theoretical approach to automatic derivation of

the complicated relaticn between sun-angle and look-angle is

presented in [43] and an analysis of scattering phenomenain

different layers of the atmosphere in [172].

C. \Julttpoint Photometric Correction

This class of operations may be symbolized as

g(x,y) = Te(f(n(x, y)))

where 7(x, }) denotes a netghborhood of the point (x, y). In the

simplest case, the corrected value at (x, y) depends on the

observations at two adjacent points:

g(x, y) — T(f(x 1, y), f(s, y)).

Such linear filtering operations (the properties of the filter are
characterized by c) are commonin correcting for motion blur

(the convolution of the true video with a rectangular pulse

corresponding to the length of the exposure), for loss of resolu-

tion due to modulation transfer function (MTF) rolloff, for

periodic system noise, and for scan-line noise [18], [156],

[179], [157], [50], [10], [217], [184], [177].
The desired filtering operation may be performed directly

in the space domain as a local operation [179], [10], [11],

[156], with typical operators ranging from 3 by 3 neighbor-
hoods for motion blur to 21 by 41 elements for more com-

plex sources of low-frequency noise, by convolution with

the fast Fourier transform [80], [50], [2], [186], or through
optical techniques [96]. In processing speed the local Op-
erators showan advantage as long as only very-high-frequency
uffects are considered and they are also less prone to grid
effects in the final results [184], [7]. Optical processing has
not yet been used on an operational basis on nonphotographic
imagery, principally because of the difficulty of interfacing
the digital and optical operations [95].

D. Geometric Distortion

Geometric distortion affects only the position rather than
the magnitude of the grey-scale values. Thus

f(u, v) = f(T(x, 9)
where T¢ is a transformation of the coordinates.

If the transformation is linear, the parameter vector con-
tains only the six components necessary to specify the trans-
formation, ie., c=(A, B, C, D, E, F) where

Ax + By4-C

= Dx+ Ey+ F

f(u,t) = f(Ax + By + C, Dx + Ey + F).

Important subcases are pure translation (A =E=1,
B=D=0), pure rotation (C= F=0, 427+ B?=D24F2= 1), and
change of scale (4/B=D/E, C= F=0). From an operational
point of view, the transformation is specified by the origina]
and final location of three noncollinear points. In executing a
linear transformation on the computer,it is sufficient to per-
form the computations for a small segment of the image in
high-speed storage, and transform the remainder, segment by
segment, by successive table lookup operations. Aside from
the saving in high-speed storage requirements, this technique
results in approximately .a tenfold decrease in computation
over direct implementation of the transformation.
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Along the same lines, a projective transformation 1s speci-

fied by eight parameters, which maybe derived from the loca-

tion of four pairs of picture elements. The execution of this

transformation is, however, more complicated, since the rela-

tive displacement of the picture elements is not uniform
throughout the frame.

It is important to note that owing to the quantization of

the coordinate axes, the actual computation of the corrected

image is usually performed in reverse-in the sense that the

program proceeds by determining the antecedent of each ele-

ment or set of elements in the new image. Were the trans-

formation performed directly, one would be faced with the

possibility of the occurrence of gaps in the case of dilations

and the superposition of several elements in the case of con-

tractions. Since the computed coordinates of the antecedents

do not in general fall on actual grid points, it is customary to

adopt a nearest neighbor rule for selecting the appropriate

element, though local averages are sometimes used instead.

Translation, rotation, and perspective transformations

occurin practice owing to changes in the position and attitude

of the sensor platform, while scale changes are frequently

required by format considerations in input-output. The most

bothersomedistortions cannot, however, be described in such

a simple form. Properties of the transduceritself, such as pin-

cushion distortion, barreling, optical aberrations, and noise

in the deflection electronics are best characterized by their

effect on a calibration grid scanned either prior to launching

or during the course of operation. In addition, fiducial marks

are usually etched on the faceplate of the camera in order to

provide i situ registration marks.

The expected sources of distortion in ERTS-A RBV
imagery are discussed in quantitative terms in [136] with
particular reference to correction by means of analog tech-
niques such as optical projection and rectification, line-scan
modulation, orthophoto correlation, and analytically (digital
computer) controlled transformation of incremental: areas.
Because of the nonuniformity of the distortions over the en-
tire format, and the possibility of tone reversals from object
to object in the spectral bands, only the last system is ac-
corded much chanceof success.

The precise measurement of the location of the 81 (9x9
array) fiducial marks (also called reseau marks) on the face-
plate as well as on the output image of a numberof return-
beam vidicons destined for the ERTS-Asatellite is described
in detail in [137]. It is shown that to provide a frame of
reference for eventual correction of the imagery to within
one-half resolution element, the vidicon parameters must be
established to the accuracy shownin TableJ.

The detection of the fiducial marks in the ERTS vidicon
images, with experiments on simulated pictures derived from
digitized Apollo photographs,is described in [11], [16], [129].
The basic technique is “shadowcasting” of the intensity dis-
tributions on the x and y axes of the picture. This is shown to
correspond, for the selected fiducial-mark geometry, to
matched-filter detection.

The actual correction, by interpolation between the grid
coordinates of the distortion on extraterrestrial images, is
reported in [156], on TIROS vidicon data in [26], and on
ATS spin-scan cloud-camerapictures in [28]. The correction
of geometrical distortions may be efficiently combined with
the production of rectified orthophotos (equivalent toa 90°
angle of view) [156] and with the generation of standard
cartographic products such as Mercator and Polar Stereo-
graphic projections [27], [23], [29].
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TABLE I

CALIBRATION REQUIREMENTS FOR PARAMETERS OF THE RETURN-BEAM.
VIDICON FOR ERTS-A

(from [137])

considered as projections of Y; and Y» onto the n2-dimensional
subspaces spanned by the coordinates corresponding to the
elements in the two subimages. Reasonable choices for the

 
 

Calibration

 

Parameter System Accuracy Accuracy

Reseau coordinates + 10 um + 3 um
Lens:

Focal length +270 um

—980 um +20 wm
Principal point + 65 um + 5 ym
Radial distortion + 30 um + 5 wm

Electronic distortion +750 um? + Sum
(about 125 TVL of 6 um each)

+7.0X 1074 rad

(about 2.4 ft)

Orientation between

cameras
+1.51075 rad
(about 3 in)

9 Recent data indicate that the 750-um value may be too high. How.

ever, the complete R13V-transmission-EBR system has not been tested
yet.

 

A fast algorithm suitable for digital computers equipped

with MOVE BYTE-STRING instructions has been reported in

[217], [10], [11]. This algorithm is intended for the correction
of small distortions, such as those due to the camera charac-

teristics, and is based on the fact that relatively large groups

of adjacent picture elements retain their spatial relationship

in the corrected picture. The program computes the maximum

number of adjacent elements that may be moved together

without exceeding: a preset error (typically one coordinate

increment). Experimental results [17], [129] show that the
boundaries between such groups are not visually detectable.

Whenthe imagery is intended mainly for visual use rather

than for further cc mputer processing, the technique of “grid-

ding” offers an expedient alternative to mapping [27]. With
this method the picture elements are left in their original loca-

tion and the posit.onal information is inserted by the super-

position of latitud:: and longitude coordinates over the image.
Since only the locations of selected image points need be com-

puted for this purpose, the method is quite rapid and is

extensively used with the specially modified output devices of

the National Env ronmental Satellite Center.

E. Automatic Determination of Anchor Points

Finding corresponding points in two pictures of the same

scene can be accom: plished by correlating a “window function”

from one picture with selected portions of the other picture.

If the two images differ only by a shift or translation, then

only a two-dimensonal search is involved. If, however, a rota-

tion and a changeof scale are also necessary, then the time

required for exhaustive search exceedsall practicable bounds.

Once one winc.ow function has been adequately matched,

the location of the maximum valueof the correlation function

usually gives a good idea of where the search for the next

window function should be centered, even if the transforma-

tion is not quite linear.

In termsof our earlier formulation, we are trying to evalu-

ate the parameter vector ¢ under the assumption that both

f(x, y) and g(x, y) are available and that parameters repre-

sentative of the e1tire image can be derived by establishing

the correspondence of selected subimages. This usually in-

volves maximization of a ‘similarity function subject to the

constraints impos:d by the postulated transformation.

The similarity function to be maximized may take on sev-

eral forms. If, for nstance, we take two m Xm images Y, and

Y, considered as vectors in an m?-dimensional space, then an

nXn window function V; and the trial segment V. may be

similarity function are as follows

1) Vi- Ve

2) Vi: V,

YY;

3) Vi- Ve .

Vil + | Ve  

The first of these functions suffers from the defect that false
maxima maybe obtained by positioning the window function
over some high-intensity region of the target picture. Nor-
malizing the entire image 2) does not circumvent this diffi-
culty completely. Alternative 3) is thus usually chosen, repre-

senting the angle between the window function and thetrial

segment considered as vectors, in spite of the fact that this

procedure requires renormalization of the trial segment -for

each displacement.

A good account of the problems encountered in an experi-

mental investigation of this problem, viewed as “one of deter-

mining the location of matching context points in multiple
images and alteration of the geometric relationship of the

images such that the registration of context points is en-

hanced,” is given in [3], [4]. Both 14-channel multispectral
images obtained one month apart and digitized Apollo-9

photographs were tested. Window functions ranging in size

from 4 by 4 to 24 by 24 picture elements and located at the

vertices of a grid were used to obtain least squares estimates

of a “generalized spatial distance” incorporating the transla-

tional, rotational, and scale parameters of the required trans-

formation. The information derived at each vertex was used

to center the search space at the next vertex at the mostlikely

values of the parameters. The actual correlation function was

the correlation coefficient?

SVfitetsjtit sels)
 o(k, 1) = —— —
~ UHPG+RI+FtDD SY C7
t=1 j=1 wel j=l

where the image f is of size m Xm; the windowisof size n Xn;

s=(m—n)/2; and k and/ range from —s tos.

The average values were previously subtracted from f and

g to yield zero-mean functions; $(&, /) is then bounded by —1

and +1. In order to circumvent the problem of tone reversals,

experiments were also conducted on gradient enhancement
techniques designed to extract significant edge information

from the images, but this is of less value than might be ex-

pected, owing to the noisy nature of the data. The computa-

tion was carried out by means of FFT routines, which are

shownto yield an average improvementof an order of magni-

tude in speed over the direct method. The displacements

determined by the program are of the order of 2-3 elements
in the multispectral data and 10 elements in the photographs;

safeguards are included to reject maxima obtained undercer-

tainsuspect .circumstances (for instance on patches of uni-
form intensity).

2 The formulais given in this form in [4]; the more customary formula-

tion has a square root in the denominator.

393



 

(a) (b)

  
(c) (d)

Fig. 6. ITOS-1 registration experiment. A 32 by 32 window function

(c) extracted from the top left corner of picture #1 (b) is tried in

every possible position of the search area (a) by means of the sequen-

tial similarity detection algorithm. The position of the best match

determined bythe algorithm is shown in (d), where the window func-

tion is inserted into the search area. Note the discontinuities due to

the change incloud coverage between the times of exposure of the two
pictures.

Similar work has been reported on a pair of black-and-

white Gemini photographs of Cape Kennedy,obtained thirty

months apart, and on a SO 65 color-separation triplet [10].

On the black-and-white pictures, windows of size 16 by 16

and 32 by 32 elements gave fairly consistent results, but on
the SO-65 IR-red, and IR-green pairs, 128 by 128 elements
were necessary even with preprocessing by means of an edge-
enhancement technique using the coefficient of dispersion or
mean-to-variance ratio over 3X3 subregions. These experi-
ments were carried out on a terminal-based system in a time-
shared environment.

Impressive savings in processing time can be demonstrated
on the basis of the observation that when two windowsdo not
match, the cumulative distance function rises on the average
much more rapidly with each pair of picture elements ex-
amined than when the windows do match [13]. The class of
sequential similarity detection algorithms, as the method is
called, was analyzed on the assumption that the deviation
between two pictures in register is exponentially and inde-
pendently distributed, and optimal stopping rules were de-
rived under various conditions. The numberof operationsre-
quired was tabulated accordingto the size of the search space
and the size of the window.It is shown, for example, that for a
search area of dimensions 2048 by 2048 and a windowsize of
256 by 256 elements (much larger than in the experiments
actually carried out), the direct method would require about
10'* operations, the FFT, 10!° operations, and the best of the
sequential algorithms, 2X10" operations. The test vehicle in
this instance consisted of pairs of ITOS AVCS frames ob-
tained two days apart over the Baja California and Gulf
Coast regions (Fig. 6).

Another shortcut for. multiple template matching, based

on prior selection af “rare” configurations, is compared to the
conventional systematic search in [147].
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F. Cloud \Lotion

An interesting twist on the registration problem occurs

when the camera remains stationary and the sceneshifts. This

is precisely the case in attempting to determine wind-velocity

vectors from changes in the location of cloud masses in the

30-min intervals between successive readouts from the geo-

stationary ATS spin-scan cloud cameras.

An excellent account of the importance of this problem

in the context of the Global Atmospheric Research Program,

which requires wind-velocity measurements accurate to

within 3 knots, is presented in [191]. An interactive computer

facility (WINDCO) for tracing cloud motion by means of

32 by 32 element FFT correlation on a Univac 1108 computer

is also described. A highlight of this paper is the thorough

treatment of the computations necessary to determine the

satellite orbit and attitude from least squares approximations

of the measured location of landmarks appearing in the pic-

tures. It is shown that the parameters necessary for mapping

operations can be determined to an accuracy superior to the

resolution of the individual picture elements.

Correlation techniques using the FFT were also applied

to 64 by 64 element windows extracted from preprocessed

(i.e., projected on standard map coordinates) versions of the

large ATS pictures by Leese and his colleagues. They report

an approximately twentyfold improvement overdirect calcu-

lation of the lagged product. The metric selected was the cor-

relation coefficient; the observed peak value was usually

about 0.7. The results are claimed to be comparable to or

better than visually obtained values when only a single layer

of clouds is present or when the wind velocity is constant with

altitude. The major source of inaccuracy, in addition to the

gradual deformation of the cloud masses, is the occurrence of

relative mapping errors between the twopictures [121], [122].

Essentially similar results were obtained with a binary

matching technique operating on edge configurations ex-

tracted from ATScloud pictures quantized to only twolevels.
This method is a factor of two or more faster than the FFT
method, but is also unable to cepe with multilayer cloud pat-
terns drifting in different directions. The human observer,
however, haslittle difficulty in separating such motion com-
ponents on the basis of accelerated “loop movies” showing
twenty or more successive exposures [121].

Yet another sustained attemptat generating wind-velocity
maps from ATSpictures is taking place at the Stanford Re-
search Institute. In this work the bright points (clouds). are
aggregated by means of a clustering algorithm, and the
ground location is determined through successively finer-
grained cross correlation against preselected 20 by 20 element
templates. At the last stage a directed-search technique is
used, as if the cross-correlation function were monotonic, but
the results are checked by means of several independently
chosen starting points. The major remaining difficulties are
said to be connected with changes in sun angle [73], [53].

G. Parallax Afeasurements

The determination of parallax from stereo photographs
differs from the problems just discussed in that the displace-

ment function may vary quite rapidly from point to point;

therefore, the use of window functions based on uniform dis-

placements is inappropriate..

Good results in estimating parallax on a single digitized

low-altitude stereo pair were obtained with the assumptions

that the difference in the grey levels of correspondingtrial

pairs of points in the two pictures is a zero-mean Gaussian
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process and that “he departure of the displacement function
from its average v alue over a small neighborhoodis also of the
same form. Since :n this formulation the grey-level difference
distribution is conditional upon the parallax, for which the
Gaussian continuity condition gives an a priori distribution,
Bayes’ rule may be invoked to estimate the a posteriori de-
pendence of the parallax on the observed video distribution.

The computat:on of the altitude contour lines from the
parallax information is a straightforward problem in analytic
geometry. Some results of applying the complete procedure
to the estimation of forest-tree heights are shownin [9].

It should be noted that there exist automatic and semi-

automatic photogrammetric. image-correlating devices (stereo-
plotters) which r:cognize corresponding subsections on a

stereopair of photographs and simultaneously transform and

print one of the images in an orthographic projection or gen-

erate altrtude con:our lines. Several types of equipment are

available, with el:ctronic (scanned) or direct optical image

transfer, digital or mechanical implementation of the projec-
tive parameters, manual or automatic correlation, and on-line

or off-line printout [207], [98]. These sophisticated and ex-
pensive precision 11struments are not, however, considered to
be sufficiently ada stable to cope with the types of distortion

expected from the varioussatellite sensors [136].

V. “CLASSIFICATION TECHNIQUES

Experimental work in automatic classification through

remote sensing may be neatly dichotomized according to

whether the primary features consist of spectral or spatial

characteristics. Examples of the former are largely based on

the output of the Michigan multispectral scanner, while ex-

‘amples of the latter include aerial photographs, high-resolu-

tion photographs «.f the moon, and satellite cloud pictures.

The reason w::y the expected development of methods

based on both spatial and spectral characteristics has not yet

taken place to any significant degreeis that the spatial resolu-

tion of the airborne multispectral scanner is too low to allow

discrimination of most objects of interest. With multiband

aerial photograph,,, on the other hand, automatic registration

techniques have not yet come far enough along to permit the

preparation of digital color composites in sufficient numbers

for significant experimentation.

The typical classification experiment in either domain is

open to criticism on several counts. The data, collected in a

single region unde: favorable conditions by airborne or space-

borne sensors, ar: examined in their entirety by the expert-

menter, who decic.2s which areas are most representative of

the region as a whole. The samples from these areas are as-

sembled to form the training set, which is characterized by

ground-truth infco-mation delineating certain categories of

interest. A statistical categorizer or decision box is constructed

on the basis of the statistical parameters extracted from the

training set.

The classification performanceis evaluated on another por-

tion of the data (the test set), also carefully selected to enhance

the probability of correct classification, where the location and

extent of the diffe-ent types of cover is known to the experi-

menter. If the error rate is unacceptably high, then offending

portions of the tes: set maybe included in the training set for

another iteration :hrough the whole cycle!

The details of the various experiments differ with respect

to the source of data, the method of labeling the training and

test sets, the num!/:er and nature of the classes to be identified,

the degree of stat: stical sophistication of the categorizer, and

the method of evaluating the results, but the general scheme
of classifying samples of the test set according to their sim-
ilarity to the training set remains the same.

Since it is impossible to review in detail the many dozen
pattern-recognition experiments reported in the literature,
we shall confine our attention to a few tasks which have been
the object of sustained efforts and will examine other con-
tributions in termsof their deviation from the specimentasks.
Rather than offer a description of each classification problem,
method of collecting the data, and decision algorithm, we shall
concentrate on the experimental procedure, the manner of

evaluating the results, and the validity of the derived infer-

ences. For background, the reader cannot do better than turn

to the excellent discussion of these matters in relation to con-

ventional photointerpretation in [36], which includes many

fine examples drawn from Gemini pictures and coordinated

low-altitude oblique aerial photography.

A. Crop Recognition

In the United States, the recognition of crop species by

means of multispectral stgnatures, or distinctive spectral char-

acteristics, has been extensively studied since 1966 with a

view to providing timely information for fertilization prac-

tices, blight control, harvesting schedules, and yield forecasts

[61], [90], [124]. There has been muchdiscussion of the im-

portance of systematic coverage throughout the growing sea-

son [167], [195], but most of the experiments reported use
only data collected in a single day.

Almostall of the earlier work.in automatic classification is

based on data collected by the Michigan scannerat altitudes

ranging from 3000 to 10 000 ft in intensively farmed areas of

the Midwest, though a numberof missions werealso flown in

the Imperial Valley agricultural test site of southern Cali-

fornia in conjunction with the Apollo-9 experiments. Asa rule

only the twelve bands spanning the visible and near-IR range

of the spectrum are used, because the other channels of the

Michigan scanner do not produce data in register with the

first twelve channels and cannot be readily transformed into

the same spatial coordinate system [25].
Ground truth is generally obtained either through ground

surveys or by means of color, IR, and black-and-white pho-

tography obtained during the overflights. The performance

of skilled photointerpreters using the various types of imagery

has been mostrecently evaluated in [14], with still valid ideas

on the most appropriate roles for manual and automatic tech-

niques discussed in [35] and [118].
Mostof the classification experiments were performed by

investigators associated with the Infrared and Optics Labora-

tory of the University of Michigan and with the Laboratory

for Applications of Remote Sensing of Purdue University.

The primary instruments for experimentation were a CDC

3600 at Michigan and IBM 360/44 and 360/67 computers at

Purdue. A number of results were also obtained with the

Michigan SPARC analog processor.

Extensive programming systems were developed at both

installations to allow data editing, data normalization, inspec-

tion of statistical attributes of spectral distributions, selection

of spectral bands, derivation of categorizer parameters, execu-

tion of classification procedures, and evaluation of results

[115], [202], [112], [148], [87]. Both organizations take pride
in the accessibility and ease of assimilation of their software

packagesas attested, for instance, in [206] and [208].

The ground swath covered in each flight by the Michigan

scanner is normally twice as wide as the flight altitude. i.e.,
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1 to 2 mi, with the flight lines varying in length from 2 to

20 mi. With a few notable exceptions [838], however, notall

of the data collected are run through the training and classifi-

cation algorithms, and even whenall of the data are actually

classified, the determination of the accuracy of classification

over the entire region is usually hampered by the difficulty of

entering into the computer the complete ground-truth de-

scription.

The specific fields chosen for training and for classification

are usually selected for uniform appearance and for nearness

to the centerline of the swath since recognition tends to be

worse at oblique look-angles [113]. Sometimes thecentral

portions of certain fields are chosen for the training set, with

the remainder of the field used for checking the “generaliza-

tion” capability of the categorizer [63].

The training areas are frequently augmented by including

areas where “preliminary” classification runs show poorrecog-

nition rates [202], [131]. In view of the variability of widely
spaced samples, this procedure usually requires the specifica-

tion of several subclasses for each category of interest [131],
[113]. Automatic mode determination by meansof clustering
algorithms has also been attempted with fair success [201],

[63], [6]. [65], [66].
The ratio of the size of the training set to the size of the

test set has been steadily decreasing as it is discovered that in

multispectral recognition the quantity of samples collected

in any given field is much less important than the judicious

inclusion of small “representative” regions along, and par-

ticularly across, the flight line. Though excellent results have

been obtained under favorable conditions over large areas up

to 90 mi awayfrom thetraining fields, even these experiments

show that the experimenter must ever be on the alert to

change the configuration of training and test fields should

an inopportune fluff of cloud intrude on the original experi-

mental design [88].
Much effort has been devoted to the selection of suitable

subsets of the spectral channels in order to increase through-

put. Amongthe feature selection methodstested are principal

component analysis, divergence, and minimax pairwise linear

discriminants. All reports agree that four to six channels per-

form as well as the full set of ten or twelve (and sometimes

better, owing to the use of suboptimal classifiers), but, as
expected, the best subset varies from application to applica-

tion. Linear combinations of channels have also been used,

with similar results, but the necessary computation can be

justified only for problems involving a large numberof cate-

gories [116], [117], [140], [64]-[66].
Theoretical attempts to relate the laboratory-observed

spectral characteristics of plants to remote observations

through the atmosphereare discussed in [51] and[91].
Michigan and Purdue seem to agree that quadratic deci-

sion boundaries derived from the maximum likelihood ratio

based on Gaussian assumptions constitute the preferred

method of classification. Almost all of the experiments dis-

cussed in this section madeuse of this technique, thoughlinear

decisions, sequential tree logic, potential functions, and near-

est neighbor classification have been shown to yield very
similar results, at least on small samples [193], [63], [158],

[65], [66]. The quadratic decision rule is to choose the class
(or subclass) 2 which exhibits the largest value

g(x) = (x — M,)?K,(x — M;) + C;

where x is a multispectral measurementvector; M; is the class

mean vector estimated from the training samples; K; is the
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class covariance matrix; and C; is a constant related to the

a priori probability of class1.

This decision function can be computed rather rapidly

(0.3 ms per six-dimensional sample, eight classes, on an IBM

360/44) by making use of table lookup and sequential search

procedures [57].
One meansof improving the recognition results achieved

by such methods is “per-field” classification, where the ind1-
vidual sample vectors are replaced by the average values of

the spectral components in each field. Not only does this ease

the computational requirements, but it also reduces the con-
tribution to the error rate of weedy patches,irrigation ditches,

and otherirregularities [6], [14], [65]. Efforts are underway
to develop automatic methods for deriving the field boun-

daries in order to give real meaning to these per-field figures,

but while the majority of the boundary segments may be

readily obtained by “local operators,” linking them up in the
desired topological configuration is a difficult matter [4],

[213], [214].
Recognition results range from 90 to 98 percent on a

single crop (wheat) versus “background” [131], [88], through

91 percent on eight classes in the sameflight line, dropping to

65 percent with only fourclasses across flight lines [63], to 30

percent on really difficult-to-distinguish crops with training

and test samples selected from differentfields [70].
In comparing the classification performance of a given

system to how well one might be expected to do by chance

alone, the a priort probabilities which are obtained from the
ground truth associated with the training set should be taken

into account. On the above four-class problem, for instance,

almost half the samples were drawn from soybeans, hence

one would reach approximately 50-percent correct recognition

without any reference at all to the multispectral information.

Crop-recognition experiments have also been conducted on

digitized samples of color and color-IR photography. These

ex periments are based on sample sizes ranging from minuscule

to small: 59 samples used for a comparison of several different

recognition algorithms [193]; a few hundred samples from

carefully chosen densitometric transects (single scans) with

six classes (including “low-reflectance,”. “medium-reflec-

tance,” and “high-reflectance” water!), and no differentiation

between training and test data [175]; 6000 pixels of training

data from 60 000-ft RB-57 multiband and multiemulsion

photography, divided into four classes (corn, soybeans, pas-

ture, and trees) with 95-percent accuracy [87]; seven fields

from a dissector-digitized photograph (81-percent accuracy

on dry cotton, 33-percent accuracy on wet cotton) [70];

and 50 000 samples (about 1 percent of one frame) of auto-

matically digitized Apollo SO-65 photography[127], [5], [6].

Recognition rates on the latter material range from 30 to 70

percent, with about 3 percent of the carefully selected speci-

men areas used for training, and therest for test. In compar-

ing the results on satellite data to the performance obtained

by airborne sensors on similar tasks, it must be observed that

the photographs were scanned at a resolution corresponding

to about 200 ft on the ground, and no photometric calibration

was attempted.

The largest series of experiments to date are the Summer

1971 corn-blight surveys flown by the Michigan (and other)

aircraft and divided up for processing between Michigan and

Purdue. Strong United States Department of Agriculture

(USDA) logistic support for these experiments was presum-

ably based on the promising results obtained in August and

Septemberof 1970 [128], [14]. At the time of writing no pub-
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lished information was available on the 1971 experiments, but

the results will be eventually released by the Corn Blight

Information Cente: in Washington, D. C.

B. Terrain Classification Based on Spectral Characteristics

The entry of ground-truth information for crop classifica-

tion, difficult as it is, is a relatively straightforward matter

compared to the problems encountered in other types of ter-

rain classification, »ecause the geometry of cultivated fields

tends to be quite s.mple, and it can be safely assumed that

each field corresponds to one crop type or to a standard

mixture.

In the absence of similar simplifying features in other

problem areas there has been no attempt so far to enter

ground-truth infortnation into the computer with a view to

objective quantita:ive evaluation of the results. Instead,

classification maps are generated which are visually compared

to mapsoraerial p:.otographs of the area. The results of such

comparisons are invariably “promising.”

Amongapplicazions which have been tackled so far with

the help of the Mic nigan scanner are: the location of areas of

potential sink-hole activity in Florida [130], [33]; a beauti-
fully illustrated anid ecologically captivating study of hydro-

biological features within the Everglades [110]; and soils
mapping in Indiara (where difficulties were encountered in

attempting to exteid the classification to samples located 4

km from the training set) [114], [206]. In addition, there have
been innumerable other projects where prints of the unpro-

cessed MSS outpu', or simple thresholded versions thereof,

have so far prover sufficient for the purpose at hand, but

where automatic processing may be eventually required asre-

search findings are translated into operational requirements.

Terrain classification has also been attempted by means

of digitized aerial photographs. Here also the difficulty of

preparing detailed ground-truth maps for the entire area

under investigatio:. presents an insurmountable obstacle to

quantitative evaluation of the results. In one study, for ex-

ample, the investiators had to resort to marking isolated

patches containing “marked vegetative zonationor relatively

homogeneous stands of a dominantspecies” with 18-in plastic

strips which were jliscernible in the photographs. This par-

ticular experimen: is also distinguished by conscientious

spectral calibratior. by meansof large colored panels displayed

on the ground at flight time and subsequently scanned with

the remainderof tle imagery [52].

For some other applications of interest, and some novel

insights, the readet may consult [40], [109].

C. Shape Detection

The major methodological difference between research

aimed at automati 1g the production of land usage maps and

research concerned with the classification and recognition of

objects on the basis of their geometrical properties (including

texture) is an inev.table consequence of the relative scarcity

of objects of interest. In multispectral crop classification,for

instance. every decision results in a positive contribution, but

if we are looking for houses, roads, tornadoes, or eagle’s nests,

then many more f£ctures will have to be examined to obtain

statistically significant results [78].
To gain some idea of the preliminary (and often unre-

ported) manipulat on necessary to obtain acceptable results

in this area, we shall examine in somedetail a rather extensive

feasibility study iritended to explore alternative designs for a

satellite-based recognition system. Various aspects of this

study have been reported in outside publications [44], [45],

[103], [46], but most of the information presented hereis

obtained from an internal contract report [49].
The picturesoriginally selected by the contracting agency,

as representative of the material the satellite-borneclassifier

would encounter, consisted of 311 black-and-white prints

containing 198 lunar features, such as craters, rimas, and

rilles, and 323 Nimbus cloud samples of various types.

One hundred and 47 of the better prints were selected for

digitization on the basis of visual examination. In the cloud

pictures, fiducial marks and certain “long black lines” were

eliminated by means of a water-color retouching kit. The

prints were then rotated by the experimenters to align the sha-

dow directions to reduce variation due to changes in the solar

illumination. The resolution of the slow-scan television cam-

era used to convert the pictures to an intermediate analog tape

wasset by the operator on each pattern in such a way that the

maximum size variation was kept below 1.5:1. The resolution

wasthen further reduced by averaging to 50 by 50 pictureele-

ments for the lunar patterns, and 75 by 75 elements for the

clouds. The dynamic range wasalso individually adjusted by

the operator to let each pattern “fill” the 3-bit digital grey scale.

A file of 1000 training samples and 200 test samples was

produced for both moonscapes andcloudsby a digital editing

process consisting of replicating individual patterns by means

of translations of up to 15 percent of the effective frame size

and rotationsof up to 15°. To avoid letting “difficult” patterns

predominate, not all patterns were replicated the same num-

ber of times. Due care was taken, however, to avoid including

replicas of the same pattern in both the training and test set.

Each pattern was characterized by the output of property

filters consisting either of intuitively designed measurements

or of features derived by statistical means. Eight different

classification schemes, gleaned from a literature search result-

ing in 167 titles, were tried on a subsetof the data, but none of

the eight methods (forced adaptive learning, “error correc-

tion,” Madaline, another piecewise-linear method, mean-

square errorcriterion, “iterative design,” Bayes weights, and

direct estimation of the distributions) proved notably superior

to the others. Of greatest benefit to accurate classification, it

turned out, was the “reduced aperture” technique, whereby

insignificant portions of the picture are eliminated prior to the

feature-extraction stage! The best combination of features,

decision methods, and reduced aperture consistently achieved

better than 90-percent correct classification on a half-dozen

different ways of grouping the patterns into classes.

Experiments were also conducted on pattern segmentation.

The data for these tests consisted of side-by-side montagesof

cloud patterns which had been correctly classified in isolated

form. In this way it was possible to demonstrate that the tn-

put to the decision units on successive segments generally

gives a reliable indication of the location of the boundary be-

tween the different cloud types (at least as long as the pro-

gression of segmentsis limited to the direction perpendicular

to the boundary)!

Hardware configurations were evaluated for parallel/

analog, sequential/hybrid, and sequential/digital methods of

implementation. While all three configurations: were. capable

of meeting the desired real-time operation criterion under the

particular choice of assumptions, the last design showed a

definite advantage in termsof wezght.

Studies in a similar vein, but with more emphasis on

parallel methods of implementation, have been conductedfor

several years by Hawkins and his colleagues [81 ]-[83]. The
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objects of interest here, extracted from aerial photographs,

are orchards, oiltank farms, woods, railroad yards, roads, and

lakes. The photographs were scanned with a flying-spot

scanner under program control (PDP-7), with examples of

various local feature-extraction operations, such as matched

filters, gradient detection, contrast enhancement, and thresh-

olding demonstrated by means of electrooptical techniques.

Another point of view altogether, but surprisingly similar

conclusions regarding the feature-extraction stage, are repre-

sented by the M.I.T. pilot study of a semiautonomous Mars

Rover. The input to this low-resolution system is provided by

a stereo television system under control of a PDP-9, but the

output, following a hierarchical multilayer model of the verte-

brate visual subsystem, remains in the realm of conjecture

[200].
A good description of the application of Golay rotation-

invariant hexagonal-neighborhood logic to both local and

global feature extraction, including measurements of object

diameter, area, perimeter, curvature, and particle counts, is

given in [108]. Experimental results are presented on two

500 by 500 arrays extracted from aerial photographs.

Diverse analog and digital methods for implementing tex-

ture measurements are considered in [204]. Haralick in a

very thorough series of experiments, has classified 54 scenes

(each } by 4 inch in area) from 1:20000 scale photographsinto

9 classes on the basis of the statistical dependence of the grey

levels in adjoining picture elements. He compared theresults

obtained (average 70 percent correct) to those of five trained

photointerpreters using the entire 9 by 9 in photograph (81

percent correct) [76].

An early experiment to detect broken and continuous

cloud cover in Tiros imagery on the basis of texture is reported

in [178]. Local operators containing 5 by 5 picture elements

were used for purely textural characteristics, with 15 by 15

element operators for distinction based onsize and elongation.

A follow-up study introduces additional criteria such as

amount of edge per unit area and number of grey-level ex-

trema per unit area [181], [182].

A good review of cloud-cover work, emphasizing the

difference between classifying a given segment and producing

a cloud map, can be found in [199]. This paper also presents

newheuristic algorithms for delineating cloudy regions.

D. Nonsupervised Classification

Nonsupervtsed learning or cluster seeking are names applied

to methods of data analysis where only the observed values

are used explicitly to group samples according to some in-

trinsic measure of similarity. It is true that closer examination

inevitably reveals that some additional information, such as

the expected numberof groups and somesuitable metric, was

used by the experimenter to achieve the desired results, but

the nature of the ground-truth information associated with

the samples enters the algorithm only in a circuitous manner.

In remote-sensing experiments this approach has been

used 1) to aJleviate the problem of multimodal probability

distributions in supervised classification methods, 2) to cir-

cumvent the need for a priorz selection of training samples, 3)

to extract the boundaries between homogeneousregions in

multispectral arrays, and 4) to condense the amountof infor-

mation stored or transmitted.

Experiments showing the application of nonparametric

clustering techniques to discover the “natural constituents”

of the distributions characterizing the various terrain classes

are described in [63] and [65] on multispectral scanner obser-
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vations and in [5], [6], [87] on digitized multiband photo-
graphs. We learn, for example, that mode estimation yields a

good approximation to the mean values of the spectral com-

ponents in individual fields, or that seven different subclasses

of “bare soil” were found in a certain batch of data, but there

is not sufficient information presented to determine how much

clustering reduces the error rate in comparison to using a

single quadratic boundary perclass, or alternatively, whether

clustering permits the substitution of simpler boundary equa-

tions. In each of the papers mentioned the clustering proce-

dure is conducted on an even smaller number of samples than.

the main supervised classification experiments, because the

algorithms used so far tend to be very complicated and time-

consuming, frequently involving repeated merging and parti-

tioning of the tentative cluster assignments.

When the clustering technique is used on all of the avail-

able observations without any regard to the class descriptions,

then it may be considered equivalent to a stratified or two-

stage sampling design insuring the efficient collection of the

ground-truth information [119], [1]. In other words, the
classifier is allowed to designate the appropriateareas for the

collection of class-identifying information on the basis of the
data itself, rather than on a priori considerations. The neces-

sary ground truth may then be collected after the analysis

rather than before, reducing the risk that the areas sampled

may not be typical of significant portions of the data. One of

the few complete experiments testing this idea is described in
[193], but the test data unfortunately contained only a few

dozen digitized samples. A somewhat larger experiment on

nine classes extracted from aerial color photographs by means

of a trichromatic microdensitometer is reported in [189];
here the clustering was performed by inspection on two-di-

mensional projections of the three-dimensional measurement

space pending the completion of suitable programmed al-

gorithms. Finally, 2500 samples of high-altitude photography
wereclassified by clustering in [87], but since the study was

oriented toward other objectives, these results were not

evaluated in detail.

The extraction of boundary information for registration or

other purposes is even more difficult on noisy multispectral

data than on black-and-white images. A comparison of

gradient techniques with clustering is reported in [214], with

both methods applied to congruencing data obtained at

different times in [4]. A related problem is the conversion of
gray-scale imagery to binary arrays by thresholding; here a

clustering technique oriented towards the joint occurrence of

certain gray-level values in adjacent picture elements has been

shown to yield better results than thresholds based on the

intensity histogram alone [180].

Both iterative and single-pass clustering algorithms have

been thoroughly investigated by Haralick and his colleagues

for the purpose of discovering data structures in remote-sens-

ing observations that may reduce storage and transmission

requirements for such data. The single-pass algorithms, tried

on 80X80 microdensitometric samples of three-band aerial

photography, are based on a chaining technique operating in

either the image space or in the measurementspace [74]. The

iterative technique depends on preliminary mapping of the

data in a high-dimensional binary space and adjusting the

coefhicients of prototype vectors to minimize the least square

deviation; it proved relatively unsuccessful in reaching an

acceptable error rate in compacting 27 000 twelve-dimen-

sional multispectral observations of Yellowstone National

Park [75]. An exhaustive experimental. investigation of vari-
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ous aspects of the performance of the iterative clustering
algorithm onfive d stributions (three arbitrary, and two ten-
uously connected with remote observations) is described at
length in [46], and a theoretical analysis of the same family of
algorithmsis preserted in [42].

VI. CONCLUSIONS

It would appear that few of the results demonstrated to

date warrant our sanguine expectations regarding automatic

processing of the oitput of the first generation of earth re-

sources survey satellites. Even making allowances for the

ever-accelerating mirch of science, some of the current prepa-

rations are uncomfortably reminiscent of the early attempts

at automatic translation and “universal” pattern recognition.
The first grouncis for scepticism concern the question of

instrumentation. Is it really possible to measure consistently

the reflectance of 4000 by 4000 distinct picture elements with

satellite-borne vidizon cameras and multispectral sensors

when meticulously tuned electronic scanning equipment (as

opposed to mechanical microdensitometers) in image process-

ing laboratories throughout the country yield only about one

quarter as many usable points? The Michigan scanner has an

effective transverse resolution of 220 lines (though the optical

system is nearly fiv:: times as good), the ITOS camera system

has barely 800 lines ; improvements in this area have not,his-

torically, taken ord2r-of-magnitude jumps. Even if specifica-

tions are met, how tnuch can welearn from 200 by 200-ft pic-
ture elements?

In regard to the crucial question of automatic registration,

very little can be said until the accuracy of the satellite atti-

tude and ephemeris information and the magnitude of the

geometric and phctometric degradation are firmly estab-

lished. It should be noted, however, that so far no completely

automatic techniques have been developed evenfor theregis-

tration of weather satellite imagery, where far greater errors

could be tolerated. Although it is frequently implied that the
major obstacle to the implementation of digital registration
methods based on correlation is the inordinate amount of

computation required, none of the work performed to date

indicates that the required accuracy could be attained at any

cost.

Many of our tre-ubles can, of course, be attributed to the

Jack of representative raw data. Whatever will be the signifi-

cant characteristics of the ERTS and Skylab coverage,it is

safe to predict that it will bear little resemblance to the digi-

tized photographs z.nd low-altitude multispectral observations

which are currently available for experimentation. The

weather satellite pictures, which are in many ways most

representative, are 10t nearly detailed enough for most of the

suggested earth resources applications. Although there have

been attempts at simulating the scale and resolution of the

expected data [15], these simulations did not include some of

the essential featur:s of the electronic data-collection systems,

and were,in any case, largely ignored by the image-processing

community.

A related source of frustration is due to ourfailure to take

advantage of the economies of scale resulting from large well-

coordinated efforts The tendency seems to be for each re-

search group to atrempt to build its own “complete” image-

processing system .ndependently of what may be available

elsewhere. Since such an undertaking exceeds the resources of

most laboratories, a small. part of the overall problem is

selected for specia! attention, with the remainder treated in

cursory fashion wi:hout regard for previous work on the sub-

ject. If, for instance, the selected topic is feature extraction,
then the feature extraction algorithms are exercised with
minimal preprocessing and normalization of the data, and
without any attemptat relating the performance achieved to
the mannerin whichtheresults are to be utilized. Yet chances
are that, as in any large programmingeffort, the “interface”
problems will in the end dwarf the contributions necessary to
develop the individual modules.

Leaving aside for the momentthe essential but so far trem-

ulous infrastructure in image registration and restoration, we

come to the more glamorous aspects of automatic dataclassi-

fication. Without further insistence on the manysins in ex-

perimental design (i.e., lack of separate training and testsets,

and failure to select the test data independently of the training
data), and on the widespread and arrantdisregard for the sta-

tistical rules of inference governing small-sample behavior, we

shall take at face value the 60-, 75-, and 90-percent recognition

rates achieved on favorable test sites on a half-dozen carefully

selected terrain categories or crop species. Studies of the error

rates tolerable in various applications would leavelittle doubt

that such performancelevels, though perhaps nottotally use-

less, can be reached far more economically by means of other

than satellitic surveillance, but seldom in the pattern-recogni-

tion literature is there any reference to the minimum accepta-

ble classification rates. |
Perhaps an absolute standard is too much to ask. Yet, with

only a handful of major test sites under study for automatic
classification, are there any published comparisonsof relative

recognition rates obtained by different investigators under

similar circumstances? The same photographs and printouts

appear in publication after publication, but a sufficient num-

ber of conditions are changed in each study to render al] com-

parison meaningless.

Significant progress in this area cannot be expected until
sophisticated interactive systems are developed for entering

ground-truth information directly in the reference frame of

the digitized images. This, in turn, requires high-resolution

gray-scale display devices, with attendant software facilities

for pinpointing landmarks and outlining boundaries, imple-

menting projective and other transformations, preparing mo-

saics, comparing the images with digitized maps, seria] photo-

graphs and other prestored information, and in general, easing

the burden of programming the sundry necessary details.

These observations are not meant to imply that digital

methods will not play an importantrole in processing the tor-

rent of data that will soon be released by the surveysatellites.

It is likely, however, that the computer will for a time con-

tinue to be relegated to such relatively unexciting tasks as

format conversion, “cosmetic” transformations, merging the

image stream and the ephemeris and attitude information,

correction of systematic distortions, keeping track of the dis-

tribution list and other bookkeeping chores, while interpreta-

tion of the images is left to the ultimate user. The prototype

operation is likely to be modeled on that of the successful and

efficient National Environmental Satellite Center, where over

one hundred frames are smoothly processed and assembled

daily, with dozens of computer products distributed on a

routine basis to the four corners of the globe.

The situation is more encouraging with regard to data col-

lected by relatively low-flying aircraft. Here the scattering

effects of the atmosphere are not quite so debilitating, the

sensor configuration can be optimized for specific objectives,

the flights can, in principle, be timed for the best combination

of Hlumination and terrain conditions, and_ bore-sighted
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cameras and navigational subsystems can be used to ensure

adequate ground location of the electronic images. The yield

of usable pictures should then be sufficiently high to allow

fairly sophisticated automatic analysis of the data in selected

applications. An example of a plausible if modest candidate for

digital processing is the bispectral airborne forest-fire detec-

tion system described in [86].

In spite of the manydifficulties, the long-range objective

must of course remain the eventual combination of spaceborne

and airborne sensor systems with conventional ground obser-

vations in a grand design for a worldwide hierarchical data-

collection system enabling more rational] utilization of our

planet’s plentiful but by no means unlimited natural resources.

We conclude with a plea for more cohesive exploitation of

the talent and funds already committed, increased exchange

of data sets in a readily usable form, more collaboration and

standardization in image-processing software, formulation of

realistic goals, and persistence.
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Digital Analysis of the Electroencephalogram, the Blood

Pressure Wave, and the Electrocardiogram
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Abstract—The ele:troencephalogram (EEG), the blood pressure

wave, and the electrovardiogram (ECG), produce patterns that the

eye of the physiciari has empirically correlated with important
aspects of health. Disital computer techniques for the recognition

of these patterns are made particularly difficult by the realities of

pattern context sensitivity, frequent signal artifact, real-time opera-
tion, finite storage lirnitations, and reasonable: cost. Evaluations of
these techniques are handicapped by the absence of absolute
standards, the wide signal variability associated with pathologic
states, and the sheer :aechanics of comparison with humananalysis.

Computeranalysis of the EEG has been directed toward monitor-
ing sleep and certair: pathologic states, leaving the more difficult
problemof diagnosis to the trained neurologist. Automatic pattern
recognition of the blood pressure wave has been implemented with
straightforward techniques for diagnostic use in the cardiac catheteri-
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zation laboratory and for monitoring in the intensive care unit.
Computer analysis of the ECG has been directed toward morpho-
logical and rhythm diagnosis, having great potential utility in
clinical heart stations, and toward rhythm monitoring, a most

practical application arising in coronary intensive care units.
Promising systems are emerging, but years of evaluation and

adjustment will be necessary to meet the need for both accuracy

and economy.

I. INTRODUCTION

[Pitsrcenturies have used patternsto aid in patient care
for centuries—patterns of symptoms, patterns ofcells,

tissues or organs and, morerecently, patterns of physio-

logical signals. Many of the techniques we have cometo ex-

pect to find in digital pattern recognition are useful in each of

these three classes of problems.:The first class forms patterns

only in the mind of the diagnostician and computer aids to

this process have been reviewed by Ledley [1]. The second
class may be described as patterns of biomedical images[2].

In this review we concentrate on the final class, physio-

logical signals, displayed against time and yielding familiar

patterns to the skilled eye of the physician or nurse. Simpler

in many respects than two-dimensional biomedical images,

the classic form of these patterns consists of a single-valued

function of time plotted with stylus or pen on chart paper

Reprinted from Proc. /EEE, vol. 60, pp. 1137-1164, Oct. 1972.
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moving at a constant speed. We will concentrate here on sig-

nals that have been available to and scrutinized by the clini-

cian for many decades with the result that a rich body of em-

pirical correlations have been developed between the health

of the patient and the patterns formed bythesignals.

Wewill examine in some detail work that has been done in

automatic pattern recognition for the electroencephalogram

(EEG), the blood pressure wave, and the electrocardiogram

(ECG), the three most frequently used physiological signals

for patient monitoring and diagnosis. Although our major

emphasis will be on digital techniques, occasional considera-

tion of analog and hybrid techniques will be included. Pat-
terns formed by the recording of these three signals have been

well studied by physicians, and the correlations with disease

states are often surprisingly sophisticated and definitive. For

all three signals, however, other clinical signs and symptoms

must be integrated by the physician along with the pattern-

recognition results before a final judgment or diagnosis is

justified. The signals are at best indirect indicators of the

answers sought by the physician. Signal artifact, bizarre
clinical circumstances, multiple pathologies, and the lack of

a unique relation between signal and pathology can each

serve to foil even the most sophisticated attempts at pro-

grammed decision making based on pattern recognition.

These same factors frequently confuse the clinician when he

must use the physiological signals alone for his decision.

Usually he has the advantage of a substantially larger base of

information, parts of which are difficult to obtain in coded
form. |

The analysis of a clinically useful physiological signal often

needs to be accomplished within minutes and rarely can be

delayed by more than a day. A 1-min record should not take

hours to process. Hundreds of samples per second are com-

mon for these signals so that computing-time requirements

must be carefully examined. This torrent of data can quickly

fill any reasonably sized buffer memory, forcing a serious

study of storage requirements. These difficult requirements

often come into conflict with the need for economy. To be

clinically useful, a digital pattern-recognition system must

have an expectation that it will soon be less expensive than

will be available alternatives. Surprisingly, several systems

are on the threshold of meeting this trio of requirements in-

volving time, storage, and economy.

II. THE ELECTROENCEPHALOGRAM

A. The Mechanism of Generation

The electrical activity of the brain manifests itself on the

surface of the scalp in minute electrical potential differences

(typically 50 uV). Since the pioneering work of Berger [3] in

1924, neurologists have used tracings of these EEG potentials

to aid in the evaluation of brain function and morerecently to

provide means for the assessment of psychotropic drugs.

Intracellular recordings of neural activity from exposed cor-

tex reveal a multitude of local electrical generators within

nerve cells and nerve fibers. In contrast to the waveforms ob-

served in the nerve fibers, the signals recorded from the scalp

reflect graded rather than all-or-none signals, are two or three

orders of magnitude lower in amplitude and exhibit a power

spectrum with negligible rather than substantial energy

above 25 Hz. The cortical sources can be viewed as an as-

sembly of dipoles embedded in a conducting medium sur-

rounded by the less conductive skull. Simulations of their

aggregate neural activity [4] explain many but notall as-
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Fig. 1. Typical multitrace EEG of a normal waking adult. Note the

predominance of alpha rhythm in the posterior part of the head. From

Brazier [9].
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pects of the surface recordings. Although the nerve fibers
themselves and supporting glial cells have been implicated,

recent reports [5|-[7] indicate that spontaneous neural

activity producing graded waveforms at synapses can ac-

count for most of the normal EEG as seen on the scalp. The

all-or-none responses of the nerve fibers probably produce

only local effects generally not seen in the EEG.

B. Analysis of EEG Patterns

Clinical practice for diagnostic EEG’s utilizes pairs of

electrodesfixed to the scalp at standard locations [8] to pro-
duce eight or more simultaneoustracings (Fig. 1). The identi-

fication of EEG patterns that correlate with clinical prob-

lems 1s carried out on a routine basis by neurologists through

examination of tracings like those of Fig. 1. During the past

40 years of clinical study a surprising variety of correlations

have been described [9], [10]—brain infections, cerebro-
vascular lesions, trauma, epilepsy, certain congenital brain

defects, and barbiturate poisoning. Most of these clinical

states require evidence in addition to the EEG, butits diag-

nostic usefulness is well established because it is atraumatic
and noninvasive. The EEG is also useful as a monitoring

technique [11] although use is by no means as widespread as
in diagnosis. With careful interpretation of thetracings, de-

tection is possible of brain ischemia, coma, death, and the

return of brain function after cardiac arrest or barbiturate

poisoning. The stages of sleep as reflected in the EEG were

first classified by Loomis [12] and subsequently applied to a

wide variety of research including psychotropic drug evalua-

tion, mental disease, dreaming, and the effects of space

flight. Response patterns in the EEG evoked bv sensory

stimuli have been observed [13] and subsequently used in
research in perception [14].

All four classes ot EEG analysis—diagnosis, monitoring,

sleep staging, and evoked responses—have, in recent years,

been approached with automatic pattern-recognition tech-

niques. Most work has been done with sleep staging and
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Fig. 2. Three-trace EI’G records, each about 20 s long for sleep stages 1,

2, 3, and 4 (see Tab.e I) for a single normal subject. The stage 1 trac-

ings show some vertex sharp waves, but otherwise relatively low volt-

age, 2—7-Hz activity. The stage 2 tracings show mixed-frequency

activity with ampli:ude generally greater than stage 1. The K complex

in the center of the record is preceded by a sleep spindle. Other more

brief sleep spindle; may be seen elsewhere in the record. The

underline in thestz.ze 3 tracings shows the occurrence of delta waves

exceeding 75 wV for about a quarter of the time. In the stage 4 tracings

the delta waves oc :upy about three quarters of the time. Adapted

from Rechtschaffere¢ al. [17].

evoked responses, fields in which the applications have been

primarily to resear:h rather than to clinical use.

1) Automatic Kecognition of Sleep Stages: Most investi-

gators use a scheme similar to that proposed by Dement and

Kleitman [15] whe identified six distinct EEG states—wak-
ing (W), four sleep stages (1, 2, 3, 4) indicating increasing

depth of sleep, and a special sleep stage whose EEG pattern

is similar to sleep stage 1, but characterized by rapid eye

movement (REM’, and often associated with dreaming.

Unambiguous dete:tion of REM sleep requires recording of

the electrooculogram (EOG) in addition to the EEG. Some

investigators also -ecord muscle activity (EMG), typically

at the chin. These EEG states showdifferences in both the

time domain (Fig. ‘!) and the frequency domain (Fig.3).

The first step in human scoring of sleep stages is carried

out by examinatior of 20-s or 30-s epochs and estimating the
location of peaks 11 the spectrum through the measurement

of the average period of prominent rhythmic waves. These

periodic componen:s of the EEG maybe assigned to several

frequency bands whose boundaries are traditional rather than

standardized: delt: (1-4 Hz), theta (4-8 Hz), alpha (8-12

Hz), sigma (12-14 Hz), and beta (14-35 Hz). Variability of 1

Hz in the specification of these boundaries is common, and

someinvestigators may ignore or coalesce one or two of the

bands. One particular band, sigma (12-14 Hz), is particularly

characteristic of sleep and the human scorer looks for “sleep

spindles,” rhythmic bursts in this band consisting of mul-

tiple cycles, 5 to 2() or more in number, which appear super-

imposed on a low-.. oltage mixed-frequency EEG background.  
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Fig. 3. Autospectra of sleep stages 1, 2, 3, and 4 for a single normal

subject at a resolution of 0.208 Hz. From Hordet al. [23].

TABLEI

CHARACTERISTICS OF EEG IN VARIOUS SLEEP STAGES

Stage Description of EEG

Ww Alpha and/or low-voltage® mixed-frequencyactivity for more

than 50 percent of the time.

REM? Relatively low-voltage,? mixed-frequency activity and rapid

eye movements.

1 Relatively low-voltage 2—7-Hz activity with an occasional

vertex sharp wave not exceeding 200 pV.

2 Sleep spindles and K complexes superimposed on relatively

low-voltage mixed-frequencyactivity.

3 Delta waves exceeding 75 uV for 20 to 50 percent of the time;

low-voltage intervening activity with occasional spindles.

4 Delta waves exceeding 75 wV for greater than 50 percent of

the time.
 

® Wakefulness.

b Rapid eye movement.
© Low voltage is characterized by no rhythmic activity above 10 nV

and no activity above 20 pV.

d Relatively low voltage is greater than low voltage, but does not

exceed 75 uwV.

The human scorer also recognizes certain aperiodic patterns

called vertex sharp waves and K complexes [16]. A K com-
plex is a well-delineated negative sharp wave immediately

followed by a positive component. This biphasic wave should

have a total duration 0.5 to 1.0 s and be seen simultaneously

in several leads. The human scorer combinesthis information

with an estimate of the frequency of the rhythmic bursts and

the presence or absence of REM toarrive at a classification

into one of six stages (W, REM,1, 2, 3, 4) [17]. Table I ab-

breviates and summarizes one statement of these criteria.

Minor variations exist from laboratory to laboratory, par-

ticularly with regard to sleep stage 3.

The task of manually scoring sleep records is time-con-

suming(a record of a single subject’s sleep during a single 8-h

session covers about 300 m of chart paper). Analysis of

enough records to produce statistically significant results
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may well involve kilometers of EEG recordings. As a result

many attempts have been madeto develop automatic meth-

ods for the classification of EEG sleep records.

Amplitude analysis, introduced by Drohocki [18], has

been applied to sleep by Agnew et al. [19]. The method pro-

vides a continuous cumulative measurement of the area un-

der the rectified EEG for the interval analyzed. The result

correlates well with sleep stages 1, 3, and 4. Stage 2 and REM

sleep require additional information to be separated from the

former three. A similar technique using only components of

the EEG within a 2-6-Hz band has been described [20].
Frequency analysis, introduced by Grass and Gibbs [21]

and applied by Knott et al. [22] to sleep, required human in-

terpretation of the resulting spectrogram. Hordet al. [23] and

Walter et al. [24] confirmed the shift to lower frequencies
with increasing depth of sleep. The use of these spectral

changesto classify automatically the stages of sleep has been

pursued by Lubin ef al. [25], Larsen and Walter [26], [27],
and Ruspini [28]. Evaluation of these automatic techniques
revealed the delta frequency band as the most useful dis-

criminant, with alpha and sigma bands next in importance.

Using linear discriminant analysis and by considering only

certain pairs of transitions between stages, Lubin ef al. [25]

were able to achieve performance on a test set that ranged

from no better than chance for transitions between stages 3

and 4 and between stages 1 and REM,to performance com-

parable to human scoring (96-percent agreement) for transi-

tions between stages 1 and 2 and between stages 2 and REM.
They conclude that other aperiodic events (spindles, K com-

plexes, REM bursts) will have to be added to frequency
analysis to bring the performance of any automatic system

close to that of humanscorers.

Larsen and Walter [26], [27] show by use of a two-stage
multivariate discriminant analysis with quadratic boundaries

some improvementin performancefor stages 2, 3, and 4, but

the basic problem with an analysis based solely on frequency-

domain techniques remains unchanged. Fig. 4 shows the

overlapping clusters resulting from their single stage process-

ing.

Period analysts, introduced by Burch and his co-workers

[29], [30], utilizes only zero-crossing information in the EEG
and its first and second derivatives. Motivated by the intelli-

gibility of infinitely clipped speech as demonstrated by
Licklider [31], Burch shows that period analysis contains
much of the same information as does frequency analysis,
but has the advantage of computational simplicity. Although

more like the process carried out by the humanscorer thanis

frequency analysis, period analysis can be at variance with

the human within episodes of substantial baseline excursions

during which baseline crossings may be completely absent.

Fink et al. [32] and Itil et al. [33], [34] have used period
analysis as the basis of several digital computer programs
whichclassify all-night sleep records of the EEG. They have
ignored the zero crossing of the second derivative of the EEG
and classified the observed periods into several categories

for both the EEG andits derivative. Percentage agreement
with humanscorers [33] ranges from 55 to 74 percent, some-
what less than the best results from frequency analysis.

Roessler e¢ al. [35] describe a similar scheme which agrees
with humanscoring for 69 percent of the epochs studied.

Lessard andhis co-workers [36], [37] use period analysis

along with amplitude analysis to extract some 50 featuresin

each 1-min interval of a night’s EEG record. A multivariate
linear discriminant analysis was performed reducing the
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Fig. 4. A plot of EEG sleep data after frequency analysis, quadratic

preprocessing, and transformation into a discriminant space of 2
dimensions. Asterisks indicate group means, and daggers indicate

overlap of points. Waking points are indicated by opencircles, stage 1

by open squares, REM byclosed circles, stage 2 by closed squares,
stage 3 by open triangles, and stage 4 by closed triangles. Broken lines

represent translated and rotated axes in the discriminant space. From

Larsen and Walter [27].

number of useful features to 23. On a single subject, 85-per-

cent agreement with humanscoring was obtained, but it was
observed that other aperiodic events must be included to
achieve scores across subjects that are comparable to human

scoring. Noting that delta activity contained the most reli-
able information about the sleep stage, this group has also

described a system that plots the amount of this slow-wave

activity in 1-min intervals [38]. Legewie and Probst [39]
have also combined period and amplitude analysis.

Other time-domain analyses having computational ad-

vantages like period analysis have been reported. Hjorth

[40] computes the variance of the EEG andits first and sec-
ond derivatives. These three variances along with certain

ratios of the variances are used for automatic sleep staging.
Haar functions [41] as a method to recognize sleep stages
have been proposed by Bishop et al. [42]. These functions are
orthonormal, and the calculation of the coefficients for a

Haar-function expansion of the EEG on the interval an-
alyzed (0.8 s) required very few multiplications. Preliminary
results on a training set using a moving-window approach

appear promising, but it is hard to see advantages over fre-

quency analysis beyond computational simplicity.

Heuristic methods using features extracted by frequency or

period analysis and by the recognition of certain events in
the time domain are a promising approach to automatic

classification of sleep records [43]—[47]. Techniques to de-
tect specific significant events in the sleep EEG have been
reported: REM bursts [48], [49]; sleep spindles [50]; alpha
bursts [51], and K complexes [52]. A variety of analog and
digital techniques have been used for these devices, but no

careful evaluations have yet been reported.

Frost [45] describes a system that makesuse of the de-
crease in average frequency of the EEG with the progression
from W throughstages 1, 2, 3, and 4. Hysteresis ‘is incorpo-
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TABLEII

COMPARISON OF HUMAN AND ANALYZER SLEEP-SCORING RESULTS

(After Smith [47 ])
 

 

 

Automatic

Human W 1 2 3 4

W 4498 64 43 11 1

79.05% 11.27% 7.57% 1.94% 0.18%

1 39 1519 226 28 2

2.15% 83.74% 12.46% 1.54% 0.11%

2 23 74 2688 268 35

0.742%, 2.40% 87.05% 8.68% 1.13%

3 2 0 68 216 160

0.459% 0.00% 15.25% 48.43% 35.87%

4 0 1 4 84 874

0.009%. 0.10% 0.42% 8.72% 90.76%

 

® Number of minutes scored in each category.

ated to prevent rapid fluctuations between stages. Separate
sections of the system detect motion artifact from an ac-

celerometer signal and REM from a combination of the EEG

and the EOGsignals. The outputs from these latter two sec-
tions are used to override the classifications based on average
frequency.

Another system with a heuristic approach is reported by

Smith [47]. It uses analog bandpass filters to detect alpha,

sigma, delta, and a-tifact in the EEG record. Digital logic
combines the outputs of these filters to automatically classify

the sleep stage. Re:ults of a performance evaluation of the

system are shownir. Table II, but a K-complex detector [52]
and a REM detector [48] developed by Smith and his co-
workers were not yet: incorporated into the system at the time

of the study.

2) Automatic Diignosis and Monttoring: Even though 40

years of study of ths EEG have produced manyclinical cor-

relations, systemati: development of automatic techniques

for diagnosis and monitoring of EEG records has not yet be-
gun. A few exploratory studies have been reported, but no

evaluations, even cf a preliminary nature, have appeared.

Expectations for the application of computers to EEG have

been high [53]-[55], but most work has focused on EEG

signal processing thit seeks to produce a transformation of

the input data reveling information not seen in the original

tracing.
Diagnosis of the EEG as carried out by the electroen-

cephalographer correlates information in each of the eight

or more tracings, uses pattern recognition of both periodic

and aperiodic waves and applies contextual cues that can be

distributed over several minutes of the record. In addition

to bursts of alpha activity, the human EEGreaderlooksfor

a variety of patterns such as the “spike-dome discharge,” an

alternating occurrence of a sharp wave with a duration of

about 1/15 s, and a :lower wave with duration of about 1/3 s.

This pair of waves c:.n be repeated from 2-15 times.

Farley et al. [51) developed a program for the recognition
of alpha bursts. Avter filtering they identified successive
peaks and valleys in the record. If the amplitude of the wave
between peak and valley exceeded a threshold, and if the

interval between successive waves fell in the alpha range, a

string of candidate waves was identified. Strings exceeding a

fixed length (typically five waves) were recognized as alpha

bursts (Fig. 5). Features extracted from a record were the

total alpha activity and the total numberof bursts, allowing

classification of the ‘SEG’s of several subjects and identifica-

tion of the state of c »nsciousness of a single subject.

Leaderet al. [56] began work on the much more ambitious
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Fig. 5. Automatic recognition of alpha bursts indicated by the raised
portions of the dashed line at the bottom of the panels. (a) A rhythmic

burst is marked. (b) The interval between bursts is unmarked. (c), (d)

Irregular bursts are marked.(e), (f) Two irregular regions not qualify-

ing as alpha bursts are shown. The dots abovethe tracing show com-

puter identified peaks and valleys along with midpoints between the

peaks and valleys. From Farley e¢ al. [51].

task of pattern recognition in the clinical EEG. Using feature

extraction techniques-similar to Farley [51], they counted

wavesin an array of 128 categories (8 amplitude ranges by 16

frequency bands) during successive 4-s epochs. By testing

against a set of 13 clinical pattern descriptions, each such
epoch wasclassified. No evaluation data were presented.

Monitoring of the EEG by automatic techniques during
anesthesia is described in a preliminary report [57] which in-
cludes a few interesting results using an autoregressive anal-
ysis for the classification of various states of consciousness.

Bickford et al. [58] describe a computer system which

eliminates electrocardiographic artifact from the EEG. This

technique is particularly relevant in the determination of
brain death when the amplitude of the EEG becomes vanish-

ingly small. The signal recorded from the swalp is averaged,

triggered by the QRS complex of the ECG recorded from

chest leads. The resultant average reveals the ECGas seen

on the scalp. This waveform can then be subtracted from

successive epochs of the scalp record to yield the uncontam-

inated EEG. Recognition of the states of coma or brain death
are made by comparisonof the rectified average EEG voltage

with three threshold voltages.

Other studies [59], [60] indicate that distinguishing .
states of consciousness within patients is possible, but that
separation of states across patients is moredifficult.

3) Evoked Responses: Davis [13] showed that sensory
stimuli could evoke a responseat the scalp of man. Although
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the evoked response componentof the EEGis almost always

obscured by spontaneous activity, a number of instruments

have been described [61]-[64] that reveal the evoked re-

sponse by averaging together the portions of the EEGrecord

that follow each of a sequence of-stimuli. Extraction of the

median rather than the average response has also been sug-

gested [65]. These new instruments and techniques have

spawned an enormous numberof investigations [14], [66],

[67], but we confine ourselves here to the specific problem of

pattern recognition.

Mostinvestigators.interested in automatic pattern recog-

nition for evoked responses tested the EEG record against

two hypotheses H» or H;. For example the test might seek to

determine which of two stimuli was presented or in which of

two states of consciousness was the subject. Each response

or group of responses containing » sampled data points can

be viewed as a point in n-dimensional feature space. Classifi-

cation of a response into Ho or H, has been achieved by linear

discriminant analysis [68], the multivariate analog of Stu-
dent’s ¢ test [69], [70], principal component analysis [71],

[72], step-wise discriminant analysis [73], [74], correlograms

[75], [76], the sequential probability ratio test of Wald [68],

and sequential decision theory [77].
In general, some training mechanism has been used to

discriminate EEG patterns not readily classified by eye.

Recourse to clinically familiar evoked response patterns has

not been made,partly because of the individual and temporal

variability in evoked responses and partly because evoked
response techniques have had a relatively short period of

clinical use. Derbyshire [76], however, uses a pattern or

“template” which correspondsto the classic negative-positive-

negative late auditory evoked response. Correlogramsof this

template with the EEG (Fig. 6) show an evoked response to
a single presentation of the word “raisin.” Variability is great

between listeners, however, with somelisteners’ correlograms

yielding results only slightly better than chance.

C. Discusston

The applications of automatic pattern recognition of the

EEG can be divided into two categories: 1) attempts to ex-

tract information not seen by the clinician in the EEG prin-

cipally through multivariate statistical techniques and 2) at-

tempts to emulate the clinician’s pattern recognition through

heuristic techniques.

Frequently the statistical techniques assume the EEG is

stationary, ergodic, and derived from a Gaussian process. In

evoked response studies it is also assumed that the EEGis

formed from a linear combination of response and ongoing

activity. Careful confirmation of these assumptionsis lacking.

An important problem for these techniquesis their validation

[78]. Randomly selected, but distinct, training and test sets

have been used, but difficulties may arise even when such a

validation is carefully done. For example, hidden bias in the

selection of both the training and test sets may invalidate

the results for apparently similar sets drawn from the popula-

tion at large.
Statistical techniques have to date involved much com-

putation and relatively little data (only kilometers of EEG

tracings rather than hundreds of kilometers). Thus it has

been possible to handle artifact by humanediting of records.

Any scheme which eventually must operate in an unattended

fashion needs a means to detect and react appropriately to

artifact in the record. None of the statistical techniques re-

ported have yet attendedto this problem.

PROCEEDINGS OF THE IEEE, OCTOBER 1972

IP

peWIT

 

EEG GN4 +10. b

250 M SEC

+ Cc

CROSS -COR

"RAISIN"
-1.0

t
TIME O

Fig. 6. Cross-correlogram method for the detection of an evoked

response. a, the raw EEG trace from one listener in an evoked

response study is shown (surface negative upward). A template b is

set so it starts at the time of maximum crosscorrelation, 15 ms after

time zero. The cross correlogram is shown, c, where the vertical line

gives the possible range of cross correlation from —1.0 to +1.0.

From Derbyshire et al. [76].

The heuristic techniques do not require assumptions about

stochastic models of the EEG, but they do lean heavilyon ac-

cumulated clinical experience. Unfortunately, the reading of

EEG’s is a highly developed skill without clear and uniform

standards and algorithms. Electroencephalographers trained

in one department of neurology use pattern-recognition al-

gorithms sometimesdifferent from algorithms used by those

trained elsewhere. Theclinical diagnosis of patients will likely

turn out the same because crucial differences between schools

or preceptors are generally recognized and eliminated and

because the diagnosis dependsonly partially on EEGfindings.

However, these different algorithms if translated directly

into an automatic system may result in a quite different EEG

analysis on certain patients. Only with integration of other

modifying clinical data can the two algorithmsbe rationalized.

Even without the consideration of the different pattern-

recognition algorithms used, the heuristic techniques suffer

from the imperfect correlation of clinical observation with

disease. Rarely are there but two hypotheses, Ho and Mh, and

rarely can they be tested incontrovertibly. Rather there exist

a variety of disease entities, graded in extent and confounded

by individual variability. Surgery or autopsy is not, in gen-

eral, available to resolve uncertainties. Modeling the diag-

nostician’s behavior in reading EEG’s, for all the difficulties

of his situation, has at least the virtue of familiarity and im-

mediate utility.

Only in sleep research have automatic techniques devel-

oped sufficiently for performance evaluations to have been

accomplished. Here the heuristic techniques appear to be on

the threshold of effective operation. In diagnosis only a few

of the first steps have been taken; conversely, some monitor-

ing applications, profiting by experience in sleep research,

may moveto clinical usefulness relatively quickly. Progress

toward pattern recognition in evoked response work is ham-

pered by response variability and the lack of sufficient expe-

rience to provide a rich catalog of patterns along with their

clinical correlates.

Ill. THe BLoop PRESSURE WAVE

A. The Mechanism of Generation

For routine use and in commonoffice practice the indirect

method of arterial blood pressure measurement via sphyg-
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momanometer is preferred. For the critically ill, direct ob-
servation of the arterial blood pressure wave by meansof a
pressure transducer connected to a flexible tube (catheter)
inserted into an artery is frequently essential, but bears some
added hazard.

Of most interest from a pattern-recognition viewpoint is
the central arterial pressure (Fig. 7). The waveform correlates
closely with dynamic events taking place in the heart and
arterial system during a cardiac cycle. In Fig. 7(a) a normal
waveform is shown wherethe pressure minima correspond to

the end of one carciac cycle and the beginning of the next.

The rapid upstroke indicates the contraction of the muscular
walls of the left ventricle of the heart, forcing blood into the

aorta and the distensible trunk of the arterial tree. During

systole, the ejection phase of the cardiac cycle, the blood pres-

sure rises to a peak and then falls as the ventricle relaxes until

the pressure appliec. by the compliant aorta and the central
arterial system exceeds that applied by the ventricle. The
aortic valve of the heart closes, marking the end of the sys-

tolic phase of the curdiac cycle. The dicrotic notch identifies
this event in the pressure wave. The central arterial pressure
sometimesrises sligitly for a momentthenfalls as the trunk
of the arterial tree « ontracts elastically continuing to perfuse

the peripheral circ: lation during the diastolic phase of the
cardiac cycle. The i:nportant events for an automatic system

to identify in the blood pressure wave are 1) the end-diastolic
pressure marking the transition from one cardiac cycle to the

next, 2) the peak-systolic pressure, and 3) the dicrotic notch, a

characteristic inflec:ion in the pressure wave following peak
systole and at a substantially lower pressure.

Fig. 7(b), (c), and (d) shows some abnormal shapesof the
arterial pressure wa ve as reported in a popular text [79], but
the three impertant: points in each arestill easily identifiable.
Contrast the wavelorms obtained under monitoring condi-

tions shownin Fig. 8. Peak systole is still unambiguous, but
end diastole and the dicrotic notch require a more sophisti-

cated interpretation.

The blood press ire wave measured more peripherally in

the arterial system has much in common with the central

arterial pressure. Some smoothing and delay of the waveform

occurs, but the basi: characteristics remain substantially un-

changed for normal circulation even in blood vessels a frac-

tion of a millimeter in diameter. Pulsations also appear in the

venous system, but they are much smaller in amplitude and

result from pressur: changes transmitted upstream from the

atria or transmural] from nearbyarteries.

B. Monitoring of th: Arterial Pressure Wave

For thecritically ill patient, the importance of the direct
measurementof the arterial pressure wave has been accepted

for decades. Analog techniques have been used to display the

arterial pressure wave and to record the diastolic, mean, and

systolic pressures. ]::ven so, the sphygmomanometerhasalso

been used regularly as a check; an independentcalibration,

and a secondary device in the event of failure of the direct

measurement system. Computer techniques in monitoring

the arterial pressure: of critically ill patients were introduced

by Warneret al. [8%], [81]. They also estimated cardiac out-

put (liters per minute) from measurements on the central

arterial pressure wave [82], [83]. This method, which has
been critically revizwed and modified by others [84]-[87]

requires the locatio1 of the dicrotic notch as well as end di-

astole and peaksystole.

In monitoring a plications, artifact detection is essential.
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Fig. 7. Some shapes of the central arterial pressure wave. (a) Normal.

(b) Aortic stenosis. (c) Arteriosclerosis. (d) Aortic insufficiency. From

Burton [79].
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Fig. 8. Central arterial pressure waves observed from a variety

of patients in a surgical intensive-care unit.

With blood pressure signals the most prevalent artifact is
caused by manipulation of the patient or.his catheter by the

nurse. Because of their unpredictable nature, no automatic

sensing of such artifacts appears to be completely reliable.
A procedure suggested by Strand [83] may be an alter-

native to artifact sensing when each beat need not be an-

alyzed. In monitoring pulmonary artery pressure he syn-

chronized the record of a cardiac cycle by means of the ECG,

stored a dozen or so cardiac cycles, and selected the median

of all'recorded pressures at each instant of the cardiac cycle.

This technique reduces variation in measured results caused
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TABLE III

ALGORITHM FOR LOCATION OF DICROTIC NOTCH

(After Stauffer [95 ])
 

 

Arterial Pressure Sampled Every 10 ms
 

Establish beginning of search range 8 samples after peak systole. Set

trial notch to this sample.

2) Establish end of search range 25 samples after peak systole or 8

samples before next end diastole, whichever comesfirst.

3) Consider the samples from the sixth before to the sixth after the trial

notch. Weight them as follows: 1, 0, 1, 0, 1, —1, —4, —1, 1, 0, 1, 0, 1.

4) Sum the weighted samples and modify by adding 1 mmHgfor each
sample from peak systole to the trial notch.

5) Save modified weighted sum, advancetrial notch 1 sample, test for

end of search range, and if not done go backto 3).

6) Reset trial notch to 4 samples before first sample with maximum

modified weighted sum.

Consider 3 samples centered on trial notch. Weight them 1, —2, 1 and

calculate second difference.

Save second difference, advance trial notch 1 sample, test for limit at

4 samples beyond sample with maximum modified weighted sum, and

if limit is not yet reached go backto 7).

Set final notch to first sample with maximum second difference.

1

—

7

“
’

8

—

9

N
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by respiration, occasional arrhythmias, occasional mislocation

of temporal reference points, or brief artifact. A somewhat

similar approach is used by Harrison and Miller [89] in their

catheterization laboratory system.

The formation of clots at the catheter tip can cause severe

loss of high-frequency response of the system and consequent
mismeasurement of waveforms. A constant very slow infusion

of heparinized saline through the catheter to reduce thefor-

mation of such clots is used by several groups as an alterna-
tive to schemes which sense the loss of high-frequency com-

ponents in the signal and thereupon automatically advise the

nurse to flush the catheter.

C. Cardiac Catheterization Laboratory

The measurement of pressure waveforms in the chambers

of the heart and its surrounding vessels has become an im-

portant and increasingly popular diagnostic procedure during

the past decade. The associated computations often require

as much time as the procedureitself and, consequently, sev-

eral groups [89]—[96] have developed computer systems for

the real-time analysis of hemodynamic data from the cardiac

catheterization laboratory. Most of these systems makeuse of

pattern-recognition techniques like those required for moni-

toring.

Only Harrison et al. [97] have reported an evaluation of

their system’s performance. While overall results appear

quite useful—correlations with human measurements are

above 0.9—the measurement of the end-diastolic pressure in

the left ventricle was reported to be occasionally seriously in

error (for example, 38 mmHg by computer against 20 mmHg

by cardiologist). Efforts to eliminate this deficiency are under-

way.

D. Automatic Recognition of the Dicrotic Notch

Illustrative of the kind of pattern-recognition task en-
countered with the blood pressure waveis the identification

of the dicrotic notch. Usually straightforward, but occasion-
ally quite difficult, this recognition task can mislead the un-

wary. Several groups have developed algorithms for the loca-

tion of the notch. Two basic approaches have been used: 1)

linear digital filters [95], [98], [99] and 2) an interpolating
preprocessor [100]. An example of the former approach from

Stauffer [95] is described in Table III. Note that two searches
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Fig. 9. Central arterial pressure waves (upper trace) and as preprocessed

by Aztec (lower trace). In this example the dicrotic notch is identified

by searching for the first extremum following the peak-systolic pres-

sure. After DeBakey and Glaeser [100].

are conducted, the first a gross search for the notch and the
second a more local search. In the first search a term linearly

related to the time after peak systole is added to bias the
search somewhat toward late smaller inflections. The search
range is limited to avoid spuriousinflections near peak systole

often encountered in aortic stenosis (Fig. 7(b)) and to avoid

fluctuations late in diastole caused by inertial componentsin
the responseof the circulatory system [101].

Pryor [98] uses a single weighted sum for location of both
the notch and the onset of systole. Starmer [99] calculates a
five-sample weighted sum (—2, —1, 0, 1, 2) that turns out to
be the slope of least squares parabolic fit to that region of the
signal. He looks for a maximum second derivative by sub-

tracting adjacent slope estimates and identifies that maximum
with the dicrotic notch. Using the occurrence of the QRS as

observed on an ECG channel Starmeris able to calculate the
preejection period as well as the onset of systole, the onsetof

diastole, and the ejection time. The use of the ORS to identify
the region most likely to contain the onset of ejection in the
pressure wave decreases the algorithm’s exposure to noise
during the major portion of diastole.

DeBakey and Glaeser [100] use the Aztec preprocessor

described by Cox et al. [102] to initiate their search for the
Important points in the central arterial pressure wave. This

scheme codes the waveform as a series of flat sections and

slopes (Fig. 9). The dicrotic notch is located by proceeding

forward in the search range until two consecutive flat sections,
or a single flat section that is an extremum,or a flat section

followed by a slope whose xmplitude-is less than 8 mmHgis

found. |

E. Discussion

The blood pressure wave is more highly structured than

the EEG and even possibly the ECG. However, there are

fewer clinically significant patterns, and the work on auto-

matic analysis has centered on the recognition of certain im-
portant events and the measurement of a few features re-

lated to these events. Digital pattern-recognition techniques

have been used in both monitoring and catheterization lab-
oratory applications.

Acceptance by physicians of these digital techniques in

the monitoring setting will probably come with the adventof
an economical system. Analog monitors usually measure the
absolute maximum pressure, as well as the absolute minimum

pressure over several beats. Alternating strong and weak

contractions (pulsus alternans) yield an indicated pulse pres-

sure that may be substantially larger than it should be. The

measurement error by sphygmomanometer may also be

412



COX ef al.: DIGITAL ANALYSIS OF CERTAIN FUNCTIONS

serious for pulsus a ternans or very low diastolic pressures.

With good transducer and catheter responses and effective

artifact sensing the performance of an automatic pressure:

monitoring system should easily exceed that from an analog

monitor or a sphygn omanometer.

On the other hand, performance of an automatic analysis

system in the cardizc catheterization laboratory may be in-

ferior to the trained eye of the cardiologist for some time to

come. Here in contrast to the: monitoring application, the

automatic system has a much more demanding objective.

Many abnormal pr:ssure waves are encountered and even

infrequent measurer:ent errors could cause serious diagnostic

mistakes. Transduce’s and catheter systems may differ some-

what from laboratory to laboratory altering waveforms

enough to cause marginal performance of certain pattern-

recognition algorith:as. Perhaps a semiautomated procedure

will be developed tc query the cardiologist whenever ques-

tionable patterns ar encountered. In any case, general ac-

ceptance in the catleterization laboratory may be slow un-

less the cardiologist :an verify the accuracy of all-automatic

pattern:recognition.

IV. THE ELECTROCARDIOGRAM

A. The Mechanism cf Generation

Mechanical evens of the cardiac cycle are initiated and

synchronized by electrical events. This relationship is ex-

ploited in empiricall) determining the anatomical and physio-

logical condition of the heart. Although all myocardialcells

possess a dual electrical and mechanical nature, specialized

tissue groups have great influence on the sequence of activa-

tion. A discussion cf anatomical studies of the conduction

system [103], [104 and the electrophysiology of cardiac
tissue [105], [106] is beyond the scopeof this review.

Cells of the sinoa :rial node in the right atrium are astable

and normally posses: the shortest natural period of all poten-

tially astable groups of cells, thus pacing the heart’s rhythmic

electrical activity. 3y virtue of its strategic location, the
atrioventricular node controls impulse passage between the

atria and ventricles. Finally, the rapidly conducting Purkinje

system spreads excization to the ventricular masses much

faster than conduction through working muscle tissue. The

normal spread of ventricular depolarization has been ex-

tensively studied [1.7], [108]. Less is known of the normal
repolarization process, although indications are that repolar-

ization is not propagited [109], [110].
Eachcell’s contri sution to the electrical field at a distance

can be represented bv a current dipole [111]. Body tissues are

linear, isotropic in the bulk medium,andresistive, but with

conductivities that vary with the tissue type [112]. The dis-

tribution of current «lipoles in a volume conductor, thetorso,

gives rise to the surface ECG,fluctuating potential differences

(typically 1 mV) measured between points on the torso. Re-

construction of the a:tual sources cannot be determined from

these surface measurements [113]. Biophysical models of
ventricular sources ind principal component analysis indi-

cate only about ten independent equivalent cardiac gen-

erators with surface contributions greater than the noise level

[114]—[117].
Abnormalities of activation may be localized or wide-

spread. Thus impuls2 propagation around a necrotic muscle

segment may only perturb the overall sequence. In another

instance, abnormality of a specialized conduction system

structure may total y change the activation pattern. The

exact consequences «f most abnormal conditionson the elec-

oo

i(b) fi
(a) “Lead I, patient lying on the left side.” (b) “The same person

with thesame lead, lying on the right side.” This figure was one of
manyillustrating Einthoven’s systematic investigation into the effects

of respiration, body position, and heart rate on the ECG’s of 10

healthy subjects. From Einthovenet al. [121].

 
Fig. 10.

trical sources are not known. Instead, a wide variety of em-

pirical data relates patterns in the surface ECG directlyto

the condition of the heart. To aid visualization of these rela-

tionships, a simple heart model consisting of a single spatial

dipole (3 independent orthogonal generators) is usually em-

ployed. Two recent reviews [118], [119] on electrocardiog-
raphy maybereferred to for additional information.

B. Analysis of ECG Patterns

The gross patterns or waves readily observable in the sur-

face ECG were given-an arbitrary designation by Einthoven

[120]. Fig. 10 shows the P wave and the QRS complex, now
associated with the spread of depolarization in the atria and
ventricles, respectively, and the T wave associated with

ventricular recovery. The electrocardiographer studies the

timing and shape of these patterns, inferring activity in

pacemaker and conduction-system structures. Conventional

ECG waves may overlap each other in time, making unam-

biguous measurements impossible, even in the multiple-lead

ECG. The human handles this problem by scanning the raw

waveform repeatedly, performing feature extraction and

classification in parallel.

Diagnostic statements concerning operation of the heart

as evidenced by the ECG are divided into two classes: 1)

Morphological statements are primarily based on ECG wave
shapes and attempt to describe the state of working muscle

masses. 2) Rhythm statements are primarily concerned with

the site and rate of cardiac pacemakers and the propagation

of impulses through the specialized conduction system. The

actual ECG diagnostic process is quite complicated, having
an iterative trial-and-error nature with uncertain convergence

properties.

ECG pattern-recognition efforts usually follow the con-

ventional two-step approach of feature extraction and sub-

sequentclassification. Feature extraction involves detection of

ECG waves, delimitation of wave boundaries, description of

wave morphology, and measurement of interwave intervals.
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Fig. 11. ORS height (maximum amplitude minus minimum amplitude) and offset (the mean of the maximum and minimum amplitudes) are just two

features that may beselected for classification purposes. Twenty randomly selected heart station ECG’s having normal measurements show lead

II QRS complexes(circles, illustrative waveforms to the right) intermingling with those of lead III (crosses, waveformsto theleft) in the height-
offset plane.

Classification techniques have been quite diverse, individual

methods favoring either heuristic logic or more formal sta-

tistical methods. The basic extraction andclassification pro-

cedures are often similar in morphological and rhythm anal-

ysis. Practical differences in the application of these two

modes of analysis, however, make separate discussions ap-

propriate.

The first step in feature extraction for most digital sys-
tems for automatic ECG analysis is to detect a ORS complex,

usually via some suitably defined derivative function. Search

procedures of varying complexity, generally initiated by ORS

detection, are used for P and T detection. Specific detection

algorithms for other waves such as flutter, fibrillation, and

artificial pacemakerspikesarerare.

Delimitation of wave boundaries constitutes a difficult

feature-extraction problem. Even so, most systems deter-

mine QRS boundaries and algorithm complexities range from
a one-pass forward scan to multiple-pass scans both backward

.and forward. Generalized algorithms to recognize the com-

plexities of an abnormal wave have difficulty in excluding

small amounts of artifact or portionsof a different proximal

wave.

Descriptions of wave morphologyfall into two classes: 1)

time-ordered (sampled data, first difference, extrema, seg-

ment sequences, etc.) and 2) time-independent (envelope

measures such as duration, amplitude, and polarity, also area,

maximum derivative, etc.). A time-ordered morphology de-

scription may result in a feature space with a variable num-

ber of dimensions. The location of a complex in this space
can be quite sensitive to the location of its fiducial mark.

Time-independent measures generally have fixed dimensions

and are less sensitive to fiducial-mark location, but usually
do not allow unique reconstruction. Measurement of inter-

wave intervals is dependent on wave detection and delimita-

tion capabilities. The relative time of successive QRS com-

plexes is variously measured as the interval between ORS de-
tection points or R-wave peaks (RR) or as the interval be-

tween initial ORS boundaries (QQ). |

Although patterns clearly associated with cardiac events

appear in the ECG,classification of the ECG is difficult for

two reasons: 1) measurement at a distance obscures cardiac

processes (see Section IV-A above) and 2) complex variabili-

ties are inherent in the phenomena. This variability has long

been knownbutis often overlooked. Fig. 10 showsthestriking

change Einthoven [121] observed in the QRS of a subject
who merely changed position. Fig. 11 shows the wide intra-

class variability of two features of the normal ECG. The

manifestation of a cardiac event may vary with the location

of the recording site, as well. A wave morphology, bizarre at

one location, can simultaneously appear quite normal at an-

other asin Fig. 12.

Inconsistency of the human observer adds another form

of variability to the problem of ECG analysis. In a study in

which 125 ECG’s were analyzed twice by nine experienced

interpreters, the results were consistent on the average in just

73 percent of the cases [122]. Machine processing using ob-
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(a) (b)

Fig. 12. PVC morphologies may bear a striking resemblance to the

normally conducted QRS complex in anysingle lead, even to indis-

tinguishability [174]. From 10 randomly selected-heart station ECG’s

showing PVC’s in the Frank leads, these 3 records were chosen as

showing PVC’s (e:icircled) bearing the strongest similarity to the

immediately precec ing normal QRS complexes. (a) X lead. (b) Y lead.

(c) Z lead. Their manifestations in simultaneously recorded leads

immediately above and below demonstrate their true bizarre nature

and lengthened co: duction time.

(c)

jective measurement and classification criteria may provide

more nearly reproilucible analysis [123]. For example, com-

puter measuremer.t can reduce variation in the P and ORS

durations, in the QT interval, and in the values of wave

amplitudes in the QRS compared to visual determinations

[124]. Beat-to-be:t changes in the ECG itself cannot be

eliminated, of couse. The minimum variation from beat to

beat in a given fea:ure, however, establishes a practical lower

bound on measure:nent accuracy [125].

ECG features are obtained clinically by recording from

electrodes placed it specified anatomical locations. A com-

bination of two o: more potential sensing electrodes, which

may be interconnected with an appropriate weighting net-

work is known as 1 lead. Lead systems, as practical entities,

have evolved empirically and as the result of biophysical

analysis. They usually represent a compromise which at-

tempts to maximize the information content without being

redundant and to minimize the number of electrodes, thus

reducing application time or interference with the patient.

The minimum nu:nber of electrodes required to reconstruct

all the potentials »n the torso surface has been investigated

by Barr and co-vorkers [126]. They selected 10 ECGiso-

potential maps in 45 pediatric patients. Using principal com-

ponent analysis and a minimum mean-square estimation

method, 24 properly placed electrodes were found to be neces-

sary to accurately reconstruct maps determined from record-

ings at 150 sites.

A single lead, just two electrodes, has been the common

choice for rhythm. monitoring, originally designed to warn of

extreme arrhythmias in coronary care units. Observation of

the single-lead E(CG is certainly sufficient for diagnosis of

ventricular fibrill:.tion or standstill. For this reason, single-

lead ECG rhythmanalysis became a commonpractice, often

being performed l:y nurses and other trained personnel in the

temporary absence of a skilled electrocardiographer. In the

course of this intensive observation it soon became apparent

that even a single lead revealed a wide variety of other rhythm

disturbances. As indicated in Fig. 12, however, a multiple-

lead ECG may be preferred and is sometimes required for

consistent diagnosis.

The most commonly utilized multiple-lead system is the

conventional 12-lead set. Either it or one of the 3-lead cor-

rected orthogonal systems which give the components of an

equivalent cardiac dipole is the usual choice for morpho-

logical analysis. The choice is limited, at present, because the

accumulation of sufficient criteria to reliably characterize a

lead system is a very difficult, lengthy, and exacting process.

The 12-lead set uses 9 electrodes and consists of 3 limb

leads [120], [127], 3 augmented limb leads [128], and 6 pre-
cordial leads [129]. Among the vectorcardiographic (VCG)
configurations are the 7-electrode Frank system [130], the
14-electrode SVEC III system [131], the 7-electrode Helm
system [132], and the 11-electrode axial system [133].

Unfortunately, criteria for one VCG system may not apply

to another because lead systems derived using different model

assumptions are not generally interchangeable [134], [135].

Even thoughspecific criteria may differ, the information con-

tent of VCG and conventional ECG leads appearsto be sub-

stantially the same [136], [137]. Thus the four-to-one data

reduction possible with orthogonal systems gives them an im-

portant advantage for automatic analysis. Because both con-

ventional ECG and VCG leads are incomplete, the more

familiar ECG leads maystill be preferable [138]. In a direct

comparison of diagnostic accuracy by ten cardiographers,

analysis of scalar ECG’s gave 54-percent correct diseaseclassi-

fication while VCG analysis was only 49-percent correct

[139].
The best extraction and classification procedures may fail

if the necessary features are not adequately emphasized or

are not presentat all in the input stream. Information that is

present in a lead system but which is not manifest can be

brought out by an appropriate transformation. Batchlor and

co-workers [140] have successfully determinedlead directions

derived from VCG’s which optimally separate normals from

patients with left or right ventricular hypertrophy (LVH,

RVH). One measurementin a single lead for LVH and one in

another for RVH equaled the diagnostic performanceof eight

features from twelve leads. Kelly and co-workers [141] have

proposed a linear lead transformation that minimized the

mean-square error between a patient’s VCG and

a

standard

VCG. This technique assumes the primary differences be-

tween diagnostic classes will be nonlinear.

Multiple-dipole and multipole-source descriptions have

been investigated as refinements of the simple dipole model in

order to extract more information from the torso ECG’s. Holt,

Barnard, and Lynn [142], recorded ECG’s from a 126-elec-

trode grid to determine a 12-dipole cardiac model. The ven-

tricles and septum were segmented into 12 regions, each rep-

resented by a dipole fixed in location and orientation and

constrained to be nonnegative. These dipoles performed better

than either the 12 scalar or 3 vector leads in diagnosing left

ventricular hypertrophy. The strength of local cardiac activity

can also be examined with aimed leads [143] constructed from

multipole coefficients. A multipole expansion containing di-

pole and quadrupole terms has provedsuccessful in extracting

the significant features of torso maps from a single subject

[144]. Trost [145] developed a reliable, 17-electrode, dipole

plus quadrupole lead system and usedit to investigate aimed
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leads and other transforms in 50 normal and 9 abnormal sub-

jects. Although the VCG transforms and nondipolar lead sys-

tems are not yet clinically important, they represent valid

logical ways to expand the ECG information available for

morphologicalclassification.

C. Automatic \lorphological Analysis

This section reflects the usual two-step pattern-recogni-

tion procedure. Under Feature Extraction, we describe data

acquisition, digital preprocessing, and wave-measurement

methods. Classification Techniques are divided into heuristic
and statistical methods.

1) Feature Extraction: Clearly, the characteristics of the

ECG acquisition system affect the values determined by any

subsequent measurement routine. Although almost all ma-

chine processing is now done digitally, special analog prepro-

cessing steps suchas identification of critical slope changesor

generation of fiducial marks for averaging have been used

[146], [147]. The recommendations of the Committee on
Electrocardiographyof the American Heart Association [148]

suggest a conversion rate of 500 samples/s with a 9-bit pre-

cision. In practice, rates from 200 to 1000 samples/s have been

utilized with 8-bit to 12-bit precision [149]. Digital smoothing
is often employed to reduce noise which could confuse the

feature-extraction routines. As a result, the upper frequency

limit for most systems is well below 100 Hz.

Digital preprocessing: One or more newfunctions may be
derived from weighted sums of the sampled values to aid in

feature extraction. Smoothingis often done digitally because

it can be better controlled and more easily implemented than

with an equivalent analog filter [150]. Averaging of the sig-

nals from successive cardiac cycles to improve the signal-to-

noise ratio is usually employed only if the artifact problem is

severe, for example, as is the case with exercise ECG’s. Differ-

entiating the ECG yields the basic information used for ORS

detection. The derivative is also important in delimiting wave

boundaries.

Although the three basic mathematical formulations of the

digital filter problem (convolution, recursion, and g trans-

forms) lead to specific implementation forms, the simplest, a

weighted sum, has usually been chosen for smoothing in ECG

analysis. The weighting function must be symmetrical to

avoid the introduction of a phase shift relative to the original

sampled data. Uniform weighting yields a running average

[151], [152]. Steinberg et al. [153] and Stark et al. [154]
smoothed the ECG by using a least squareserrorcriterion to

fit the sampled data with a parabola whose value at the center

sample replaces that sample. Stallmann and Pipberger [155]

and Macfarlane [156] employed cosine weights for smoothing,

with values chosen to yield a null at the powerline frequency.

An approximation to an idealfilter using weights derived from

a truncated (sin «)/x function is described by Pryor [157].
Fig. 13 compares the frequency response of these four filter

types.

The digitized ECG signal can be differentiated one scalar

lead at a time. Alternatively, the spatial velocity, the deriva-

tive of the equivalent cardiac dipole or of a pseudovector

composed of arbitrary leads, may be obtained. The first-differ-

ence method is commonly utilized, but because of its asym-

metric nature, it introduces a phase shift with respect to the

sampled data, possibly contributing to errors in wave-bound-
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ary delimitation. The coefficient of the linear term in the least

squares parabola also estimates the derivative. Both first-

difference and parabola techniques provide additional smooth-

ing to reduce the sensitivity of the derivative to high-fre-

quencynoise. A factorof sin (2rf/r)/(27f/r), where f is the fre-
quency of interest and r the sampling rate, relates the deriva-

tive to the first difference. Smoothing is even greater for the
parabolic method, involving a factor that includes higher

multiples of (f/r).

Wave measurement: After the QRS complex is located,
wave boundaries are determined, and a baseline is found.

Whereasscalar leads sampled sequentially must be processed

independently, simultaneous sampling permits direct tem-

poral comparison of critical points. This comparison, possible

for most systems using VCGleads, may provide an important

aid in wave delimitation. The measured quantities include:

peak and instantaneous amplitudes, durations, interwavein-
tervals, areas, and spatial angles of the cardiac dipole. Values

from several beats may be compared and selected measure-

ments averaged. The procedure is straightforward for a quiet

stylized waveform suchas the one depicted in Fig. 14(a). Pro-

grams quickly become very complex as they are adapted to

handle real signals (Fig. 14(b)).

A scalar-lead program with more than 10 000 instructions

was developed by Caceres and co-workers [153], [158],
[159] at the Medical Systems Development Laboratory

(MSDL). Using a parabolic filter and derivative method, the

most negative derivatives in a 5-s record locate the downslope

of the R waves. Tests are included to eliminate P or T waves,

ectopic beats, and other arrhythmias from the set of accept-

able R waves. Fixed intervals after the downslope of the R and

before its peak are searched for minima to define S and Q,

respectively. The derivative is used to determine the ORS

onset and end while the P onset fixes the baseline. Processing

of the P and T wavesis similar. The end-of-P routine, for

example, has 47 steps, each of which either specifies a test or

makes a comparison followed by a branch to the appropriate

subsequentstep in the routine. An evaluation of measurements

in 200 single-lead records using a version of this program

showed computed and visually determined wave durations

agreed within 20 ms in about 90 percent of the cases except
for ST and T (30 ms) and QT (50 ms) [160]. Wave amplitude
agreement within 100 wV occurred in about 90 percent of the

cases. Milliken and Wartak [161]-[163] have modified the
MSDLroutines, characterizing wave detection and delimita-

tion rules in decision tables and using a histogram to deter-

mine the baseline. A similarly structured digital measurement

system, which relies on analog preprocessing for ORS detec-

tion and P, QRS, and T delimitation has been reported by

Kimura [152]. Wortzmanet al. [146] describe a 12-lead pro-
gram in which measurements are made on a templateinitially

constructed from the first beat analyzed, then refined by sub-

sequent beats. Compared to visual determination the differ-

ences for both PR intervals and ORS durations were within

15 ms and for QT intervals, within 35 ms in about 90 percent

of 143 cases.

Pipberger pioneered the analysis of VCG leads, simultane-

ously sampling 6 s of the Frank leads [155], [164]—[167] and

using the first-difference spatial velocity to detect the ORS

and establish a fiducial mark. The QRS boundaries are then

found by moving backward and forward from the fiducial
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Fig. 13. Frequencyresp: nse of 4 types of digital smoothing used with ECGdata. Thefive-point running average for data converted at 300 samples/s
was chosen to go to ero at 60 Hz. The least-squares parabola responseis calculated using the weights given in [153], but at one-half the sampling

rate. The response c' the cosine weighted averageis described in [155], and the truncated sin x/x weights are tabulated in [157]. Those curves that

do not extend to 20!) Hz are terminated at the folding frequency.

 

    

   
  (b) |

Fig. 14. (a) Some of the features extracted from the ECGare indicated on a waveform distorted in amplitude and timeforillustrative purposes. Fea-

tures designated are the point of minimum derivative (Rmin), peak amplitudes (Rp, etc.), wave durations (Ra, etc.), and several interwave intervals

(RR, etc.). The ver:ical arrows correspond to instantaneous values, usually time-normalized over a wave or complex. The numberof instantaneous

values selected as features is usually greater over the QRS than for the P or T waves. Waveareas, the crosshatched regions, are also commonly

calculated wavefez :ures. (b) The difficulties of obtaining these features in practice are suggested by the deviations from the stylized waveform in

(a), which occur fot real ECG’s (b), shown here sampled at 500 samples/s and with a different time scale than in (a).
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mark until the spatial velocity falls below a variable threshold.

After P and T delimitation, the various waves are described

with more than 300 features including wave amplitudes and

durations, time-normalized vectors, polar vectors, eigenvec-

tors, wave integrals, and amplituderatios. In a test of the sys-

tem on 106 records, the agreement between computed and

visually determined values was within 25 ms for about 90 per-

cent of the PR intervals and ORS durations and also for about

80 percent of the P-wave durations and QT intervals [155].

Wave amplitudes and durations are determined for X, Y,

and Z leads by Arvedson [168] with a system that plots the

sampled data for any interval in which the waves are not

recognized by the computer. The results of cross correlation

with a template are used by van Bemmel and co-workers

[169] to delimit waves in a 30-s record of X, Y, and Z leads—

one of the longest records analyzed. Stark and co-workers

[170], [154] describe P, ORS, and T complexes of SVEC III
and Frank leads by amplitude-normalized voltages at time-

normalized instants, after delimiting procedures based on the

spatial magnitude and velocity.

A number of other investigators have also analyzed the
Frank leads. Nomura and co-workers [151] use a derivative

of the X lead to detect the QRS. Tests of magnitudes and the

spatial velocity in fixed intervals specified the onset of P and

QO and the end of P, S, and T to within 10 msof visual values

in about 90 out of 100 cases. The waves are represented by

critical point amplitudes and baseline intercepts. About 30

features related to the intervals, amplitudes, and durations

of waves are determined by Yasui et al. [171], [172]. The
procedure sets a fiducial mark in the QRS corresponding to

the maximum sum of the absolute value of the X, Y, and Z

derivatives. Weaver and co-workers [150] use the spatial
velocity to detect the R wave and the PR and ST segments.

Beginning with rough estimates, the wave onsets and ends are

then fixed at points at which normalized moveable window

integrals on the spatial magnitude exceed a threshold. In a

study by Pryor [173], after R detection, a threshold is deter-

mined for each lead equal to 1/6 the maximum difference in

that lead. The ORS limits are set where five successive 3-point

differences are belowthreshold in all three leads. The output

of this program provides durations, amplitudes, intervals, in-

tegrals, and ratios of the various waves.

Several systems have been designed to handle both 3-lead

and 12-lead sets. Parts of programs developed at Mt. Sinai
Hospital and the Mayo Clinic have been incorporated into

two expandedversions, so that each can analyze both conven-

tional and vector leads [174]. Bonner and Pordy [175]—[177]

produced a system at Mt. Sinai to record standard and Frank

leads in five sets of three simultaneous leads to yield both 12-

lead and VCG diagnostics. See Section IV-D1) for some de-
tails of the feature extraction portion of this program. Smith

and Hyde [178]-[180] at the Mayo Clinic record 10 s of both
Frank lead and 12-lead data using up to six simultaneousin-

put channels. A time difference function which uniformly

weights points 10 and 15 ms oneither side of the sample of in-
terest is the key criterion in the delimiting process. A com-

parison of visual and computer determination of P duration

and PR interval in 248 cases showed a mean difference of

14.8 and 11.9 ms, respectively. A program for analyzing vec-

tor leads and 12-lead sets processed in four pseudo-orthogonal

groups has been described by Macfarlane [156]. The spatial

velocity and its equivalent is used to specify approximate
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wave onset and end with a 3-mV/s and 1.5-mV/s threshold

for ORS and T,respectively. P delimitation is related to the

maximum spatial velocity in the interval before the QRS. A

panel of cardiologists found the maximum incidence of clini-

cally significant wave duration errors to be 3.4 percent.

Someof the difficulties in the wave-extraction process can

be avoided by transforming the ECGto anotherfeature space.

Of course, the ORS first must be detected to provide the origi-

nal fiducial mark. The measurement routine becomes just the

calculation of a set of features describing the new representa-

tion. Cady and co-workers [181] expressed the ECG as a
Fourier series. The dimensionality of the feature space, how-
ever, is reduced mostefficiently by eigenvector analysis. The

resulting orthogonal vectors are known variously as intrinsic

components [182], principal factors [117], and elements in a

Karhunen—Loéve expansion [183]. Representation in terms

of these orthogonal vectors requires diagonalizing a correla-

tion matrix derived from the ECG waveform. Young and

Huggins [116], who investigated intrinsic components,

elected to use six pairs of matched orthonormal exponentials

as basis functions because they are easier to compute.

2) Classification Techniques: The diagnostic category into

which a particular ECG morphology falls can be determined
in a variety of ways. The simplest approach is to match the
waveform to set of templates using an appropriate similarity

criterion [150]. Where large variations occur within the pat-

terns of a given category, such asis the case in electrocardiog-

raphy, the choice of template and matching criterion are ex-

tremely difficult [184]. Consequently, features which are pre-
sumably invariant within a given disease categoryare selected

for classification. There are two basic approaches that deal

with extracted features. The most obvious approach is to

automate theclinica] procedure used by a cardiologist. In this

approach binary decisions which test the wave measurements

against established criteria lead to appropriate categories

[185]. Most heart-station programs are constructed in this

way. The object is to approximate the performance of a

cardiologist, so that he only has to verify the computerfind-

ings. In an alternate approach, statistical decision methods

are applied with the aim of improving diagnostic accuracy

beyond that possible for an unassisted cardiologist.

Binary dectston trees: A heuristic linear discriminant func-
tion implements the comparison of measurements andcriteria

at the node of a decision tree in most heart-station programs.

These discriminant functions are not unique as can be seen in

Table IV. Criteria are shown for just one condition, left ven-

tricular hypertrophy. Programsalso differ in the numberof

possible diagnostic categories, in the number of paths to a

given category, and in the interaction between paths.

Table V shows partial results of evaluations of several

heart-station programs. Percent agreement gives the per-

centage of correct classifications in all categories and naturally

depends on the numberof possible categories. The false-posi-

tive percentage is the rate at which normal ECG’sareclassi-

fied as abnormal. The false-negative rate gives the percentage

of abnormals classified as normal. In all but one case the pro-

grams use a heuristic approach with the “correct” classifica-
tion determined by one or more cardiologists, often after re-

viewing the computerfindings. The Veteran’s Administration

(VA) program [167] utilizes a statistical approach with selec-

tion of records for a given category made independently of the

ECG,i.e., based entirely on medical history, physical exami-
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TABLE IV

EXAMPLES OF CRITERIA COMPATIBLE WITH LEFT-VENTRICULAR HYPERTROPHY

 
 

After Weihreret al. [159] After Pordyet al. [176]
 

eliminate left bundle branch block eliminate left bundle branch block

 

and and
(Rp in II) >1.5 mV ) (Rp in Vs or Ve) >2.7 mV )

or or |
12 Lead (Rpina VL)>1.0mV (Qp or Sp in V1) +(Rpin Vs or Ve) > 3.5 mV

or or
(Sp in Vi) +(Rp in V5 or Ve) >3.5 mV (Rpina VL)>1.3mV

or or
(Sp in Vi or Vo) +(Rpin Vs or Ve) >4.6 mV (Rp in I) +(Sp in III) >2.6 mV

(consistent with LVH) and
age> 30 years

After Nomura et al. [197] After Pryor et al. [173]

QRS¢<126 ms QRS¢@<120 ms

and and
(Sp/Rp in X)<0.4 (Sp/Rp in Z)<7

and and

VCG (Rpin X)>1.7mV | (integral over first 40 ms of QRS in Y) > — 500
or and

(Rp in X)<1.7mV \ (integral over first 40 ms of ORS in X) > —500
and and

(\(Rp in X)+ (Spin Z)>2.5 mV)J (Rp in X)+(Spin Z)>3.5 mV
 

Note: Assumptions have been made to make the notation consistent with Fig. 14.

TABLE V

SCREENING RESULTS OF SELECTED HEART-STATION EVALUATIONS
 
 

 

Normals True False Abnormals True False
Date Agree- (Negative) Nega- Posi- (Positive) Posi- Nega-
of  Refer- ment Numberof tive tive Numberof tive tive

Source of Progratn Source of Records Test ence Leads (%) Records (%) (%) Records (%) (%)

Medical Systems George Washington
Development Laboratory University Hospital 1966 [186] ECG 73 148 72 28 598 99.2 0.8

Medical Systems
Development Laboratory Hartford Hospital 1967 [190] ECG 87 113 100 0 253 81 19

Medical Systems
Development Laboratory Hartford Hospital 1967 [191] ECG 78 276 80 20 52 67 33

Medical Systems George Washington
Development Laboratory University Hospital 1968 [187] ECG 81 178 97.3 2.2 469 96.6 3.4

MSDLand Queen’s University
Queen’s University Teaching Hospital 1969 [194] ECG 82 112 86 14 88

MSDLand Hotel Diev Hospital and

Queen’s University Kingston General Hospital 1970 [193] ECG 85 762 90 10 1257 96 4

Mt. Sinai Hospital Mt. Sinai Hospital 1967 [176] ECG 91 996 91 9 1064 94 6

Mayo Clinic University of Washington
and Group Health Hospitals 1970 [198] VCG 74 289 75 25 84 76 24

Latter-day Latter-day
Saints Hospital Saints Hospital 1969 [173] VCG 95 195 99 1 92 91 9

Osaka Center for Osaka Center for
Adult Diseases Adult Diseases 1966 [197] VCG 82 100 80 20 105 84 16

Iowa Methodist Hos:,ital Iowa Methodist Hospital 1967 [196] I, II, V2 1708 99.7 0.3 3090 91 9

Mt. Sinai Hospital l’Hospital VCG 81 105 83 17

and MayoClinic Brugmann 1970 [199] ECG 85 432 91.5 8.5 1303

Mt. Sinai Hospital l’Hospital VCG 67 2589 78 22 603 95.6 4.4

and Mayo Clinic Brugmann 1971 [200] ECG 89 1487 95 5 5334

Mt. Sinai Hospital CHU Bretonneau ECG 85 73 93 7 427 83 17

and MayoClinic a Tours 1971 [201] ECG+VCG_ 87 73 427

Royal Infirmary Royal Infirmary VCG 81 205 73 27 419 85 15

Glasgow Glasgow 1971 [202] ECG 82 205 73 27 419 86 14

VA Research Center VA Hospitals 1971 [167] VCG 74 597 90 10 2005 89 11
 

nations, and labo:‘atory and autopsy data.

The first comprehensive work implementing a binary de-

cision tree was beyun at MSDL[186]. This program has been
tested at heart stations [186], [187], used for mass screening
[188], [189], evaluated remotely from a community hospital

[190], and applied to records taken in routine physicals [191].

Milliken and Wartak [192]~[194] adapted the MSDLpro-
gram, systematizing the classification process in decision
tables similar to the ones they used for wave measurement

rules. Conventional lead interpretation has been investigated
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hy Staples and co-workers using manually extracted features
[195]. They have also compared a 3-lead screening system to

12-lead findings [196]. In a 3-lead program developed by

Nomura and co-workers [197] tentative diagnoses are made
based on measurements of the P— PQ, ORS, and ST—T com-

plexes considered separately, and are then combined for a

final diagnosis. Pryor and co-workers [173] considered several

other interpretation schemes, including the use of predictive

filters, before deciding on a methodsimilar to a cardiologist’s
heuristic procedure. The Mayo Clinic [178] and Mt. Sinai
Hospital [176] systems are the only ones in addition to the
MSDL program which have been evaluated by investigators

other than the developers [198]—-[201]. Although thetests of
the Mt. Sinai program revealed greater errors for VCG than

for 12-lead analysis, Macfarlane [202] found no substantial

difference. Variations in the evaluation results of Table V re-

flect, for a given system, its evolution, differing interpretation

standards, transition from training set to test set, and varied

populations.

Statistical methods possess the capability of simultaneously

handling more factors than can be managed by humans. Since

they can also be constructed to maximize the likelinood of cor-

rect classification, they may have greater diagnostic power

than present heuristic techniques. An important consideration

in optimizing the decision making processis the selection of

features which best separate measurements from patients be-

longing to different disease categories. Von der Groeben [203]

addressed the problem of adequately determining decision

regions for 12-lead and VCG measurements. Mucciardi and

Gose [204] examinedstatistical, information theoretic, and

sequential techniquesfor selecting significant features from a

set of measured quantities. They found a weighted sum of 1)

the probability of error when used alone and 2) the average of

correlation coefficients with the other features the best of

seven heuristically chosen methods.

A set of measurements, presumably of significant features,

can be optimally classified using a Bayes decision rule. The

decision rule in its simplest form permits, with the use of

Bayes’s theorem,calculation of the probability that a given

measurement belongs to each of the disease categories. Kimura

et al. [205] and Wartak [206] applied Bayes’s theorem to

electrocardiographic data. Kimura used a 47-dimensional

2-level space so that the a priori probabilities for all possible

measurements could be tabulated. Wartak calculated prob-

abilities at new measurement points by assuming normal

distributions for the clusters. Distributions with finely quan-

tized features are not used because the sample population

would have to be enormousforstatistical convergence. Yasui

and associates [172] describe a decision tree in which branch-
ing is done on thebasis of joint probabilities calculated as the

product of individual wave-amplitude and wave-duration

probabilities, each assumed to be normally distributed inde-

pendent random variables.

Multivariate normal distributions were assumed to char-

acterize 12 wave features in a study by Rikli and co-workers

[207]. The statistical significance of differences between fea-
ture means, variances, and correlation coefficients was deter-

mined for normals and two disease states—hypertension and

aortic insufficiency. Pipberger and co-workers applied a Bayes

rule to multivariate normal distributions [164], [166], [208]

to generate linear discriminant functions for a data base that

now contains more than 20 000 patient records. With the use

of this technique, optimal features were sought in the diagno-
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sis of ventricular hypertrophy [209], ventricular conduction

defects [210], pulmonary emphysema [211], and myocardial

infarction [212]. In each case over 300 features were con-

sidered. The best individual features were selected using vari-

ous simple statistical procedures. For a set of about 30 fea-

tures the best discriminators were then chosen by multivariate

analysis. These discriminators included both clinically familiar

features and instantaneous vectors. The investigators suggest

that to obtain reproducible results the number of features
should be less than the square root of the number of members

in each cluster. Multivariate analysis did as well as, or 1m-

proved significantly upon, previous reports with empirical

criteria. For example, in a study on 1002 myocardial infarc-

tion cases, discriminant-function classification was 84-percent

correct with a 6-percent false-positive rate [212]. The 12-lead

classification scheme known as the Minnesota Code [213]
was only 49-percent correct for the samefalse-positive rate.

Linear discriminant functions have been constructed in a

variety of other ways. Young and Huggins [214] determined
a diagnostic matrix to relate exponential basis functionsrep-

resenting ECG’s to a feature vector useful in establishing the

subject’s membership in a disease category. Cady [181] em-

ployed a stepwise search to construct a linear discriminant

function in which the Fourier coefficient of the ECG that
minimized theerror in estimating patient status was added at

each step. Later, Cady [215] calculated discriminant mul-

tipliers for R-wave and T-wave amplitudes to separate pa-

tients with left ventricular strain, myocardial infarction, and

coronary insufficiency using a technique based on characteriz-
ing cluster envelopes with ellipsoidal boundaries. Another

form of linear discriminantis the correlation or matched filter

technique which extracts a single feature of the ECG,its

cross-correlation coefficient with a reference waveform. The

dimensionality of the measurement space has usually been

fixed by time-normalizing the waveforms. Balm [216] applied
a correlation technique to the QR portion of lead I (left to

right arm) records to screen normals from four disease cate-

gories.

Correlation techniques are usually easy to implement, and

in addition the reference waveform or matched filter can be

made adaptive. Stark and co-workers [170], [217], [218],
[154] have shown that this approach compares favorably to

the classification done by humans. A waveform in the training

set is added to a particular filter if the cross-correlation coeffi-

client exceeds a threshold. The threshold level determines the

numberof different filters required to classify all the ECG’s

In a given population. A similar learning procedure was de-

scribed by Sanoet al. [219] who utilized adaptive linear dis-
criminant functions at the nodes of a decision tree.

Multivariate transformations can be used to appropriately

weight discriminants to emphasize both the separation of dif-

ferent categories and the clustering of measurements from a

given category [220]. In some cases, however, it may be neces-

sary to describe the surface-separating clusters in more detail

than that provided by the hyperplane representing a linear

discriminant function. McFee and Baule [221] compute the
squared distance from measurement point to cluster center, a

quadratic discriminant function, assuming independent nor-

mal distributions. Specht [222] has demonstrated a general

polynomial discviminant technique which makes no assump-

tion about the cluster distributions. Rather, they are esti-

mated by a sum of exponentials. Coefficients of the poly-

nomials representing the separating boundaries can bedeter-
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Fig. 15. A flowchart of the gross rhythm-analysis logic for individual leads in an ECGdiagnostic system orders tests by reliability for basic rhythms

and complicatiny irregularities. Diagnoses for individual leads are then logically combinedto select 1 of 27 basic rhythm statements and 1 or more

of 21 suffix statements concerning ectopic beats and other basic rhythm disturbances. From Bonner and Schwetman [226].

mined adaptivel\. Using a Bayes decision rule, any decision

strategy from hy)erplane separation to nearest neighborselec-

tion can be impl2mented depending on the smoothness with

which the actua! distributions are estimated. For smoothing

which is chosen 1: give highest correct diagnosis in separating

normals and abnormals for a 246-case training set, the poly-

nomial contained 27 linear terms, 2 squared terms, and a con-

stant [223].

D. Automatic Riiythm Analysts

Cardiac rhyt1m terms, confined primarily to the domain

of the electrocardiographer slightly over a decade ago, now

enjoy widespread familiarity in the medical and biomedical

community. In particular, the premature ventricular contrac-

tion (PVC), bizarre and elephantine in its appearance in the

ECGand variously known as a ventricular premature beat or

extrasystole, ha: achieved notoriety as a harbinger of ven-

tricular fibrillation [224].

Interest in the manifestations of extrasystoles and other

cardiac arrhythraias is not recent with published references

dating to the 6th century B. C. [225]. The first ECG tracings

of arrhythmias were shown by Einthoven in his initial pub-

lication [120]. }fe also described the first instance of ECG

rhythm monitoring in this paper, detecting and reporting

PVC’s by remot2 telephoneline.

1) Heart-Staiion Rhythm Diagnosis: Arrhythmiaclassifica-

tion logic is found in varying degrees in digital computer ECG

diagnostic systens [146], [154], [159], [174], [226]-[230].
Rhythm analysis advantages enjoyed by these systems are

1) access to multiple and sometimes simultaneous ECGleads,

2) signal quality; control by human for each record, and 3)

absence of real-time processing constraints. A significant dis-

advantage is the limited record length analyzed, typically a

few secondsperlead.

The available literature indicates that progress in auto-

matic rhythm analysis has lagged morphological analysis. In

those efforts going beyond simple rhythm screening,logic-tree

rhythm classification has been used, following textbook cri-

teria, but often neglecting the many exceptionsto. the rules.

Although evaluations have been rare, present rhythm classi-

fication potential appears strongly limited by the scope and

quality of the extracted features.

Advanced work on rhythm diagnosis for the 12-lead ECG

plus two additional 20-s rhythm leads has been described by

Bonner and Schwetman [226]. In the flowchart of Fig. 15, the

P-train test clusters together PP intervals and then tests the

representative interval for each cluster to determine whether a

significant “P-train interval” exists. In the absence of an

obvious P-train interval, extensive logic is included to ac-

count for P waves which are possibly buried in QRS complexes

or T waves. ORS complexes are clustered by comparing ampli-

tudes and durations of their subcomplexes. The relative mor-

phology of each QRS having been typed, clusters of adjacent

pairs of QRS complexes are formed, based on morphology and

QQ interval. A variety of other feature clusterings are made

during traversal of the classification logic tree, many taking

into account potential errors in the extracted feature data.

A detailed description of the feature extraction logic for

this system has also been given [175]. A hardware pre-
processor [231] was used to flag points in the 400 samples/s

data stream for which the signal derivative passes from one

zone to another. A digital “fine tuning” adjustment of the
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locations of these points was then performed. Several adja-
cent straight-line sections of the waveform described by these

points were then grouped together into simple upright,

inverted, or tilted V or U shapes. These overlapping shapes

were scanned repeatedly to detect and measure conventional

ECG waves, including atrial flutter wave activity, but not

including artificial pacemakerspikes.

An explanation by the authors of the reasoning behind

much of this logic points out some of the wave-feature extrac-

tion problems which are universally encountered. In a given

lead, the sloping segments of bizarre ORS complexes maybe

much more gradual than the steepest slope of the “dominant”

ORS, causing problems in differentiating all steep 7 waves

from all ORS complexes. In determining the onset of a ORS,

a portion of a nearby P mayresemble a slurred beginning of

the QRS. In comparing wave shapes for similarity, the

results maybe in error because the wave boundaries or other

fiducial marks were measured inconsistently. Context-

sensitive algorithms and measurements previously madeon

other leads were used by Bonner to help resolve these and

other ambiguoussituations [175].
In an evaluation [176] of the performance of the system

containing this logic, basic rhythm statements and extra

statements regarding ectopic beats were considered sepa-

rately. For basic rhythm, in approximately 2000 cases of

sinus rhythm, only 1 percent were falsely labeled abnormal.

Of 70 cases of atrial fibrillation or of atrial flutter, only 6

percent were missed completely, but over 50 percent of 22

other abnormal rhythms were missed completely. The false-

positive rate for ectopic-beat statements was higher than for

basic rhythm, occurring in 7 percent of 1777 records not

requiring them. Of 283 records requiring ectopic-beat state-

ments, only 6 percent had none, but some ectopic beats were

mislabeled as to type. More specifically, PVC statements were

correctly given in 81 percent of the 133 cases requiring them

and falsely given in approximately 2.5 percent of 1927 cases

not requiring them.

2) Automatic ECG Rhythm \onitoring: Of all signals used

for continuous monitoring of patient status, the ECG is most

commonly employed. Hardware instruments providing com-

putation of average ventricular heart rate with extremes

leading to activation of high-rate or low-rate alarms have

enjoyed widespread usage in hospitals for several decades. In

the early 1960's, the first coronary care units (CCU’s) were

established using these instruments to aid immediate detec-

tion of ventricular fibrillation and other catastrophic ar-

rhythmias in patients recovering from myocardial infarction.

As CCU’s proliferated, evidence accumulated that cata-

strophic arrhythmias were often preceded by lesser premoni-

tory arrhythmias, and the emphasis of CCU treatmentshifted

from resuscitation to aggressive prophylactic therapy [224].

For most of today’s CCU patients, monitoring of their ECG

rhythm is performed byintensive visual observation of oscil-

loscope tracings augmented by automatic heart-rate alarms,

a situation virtually unchanged from a decade ago.

Automatic rhythm analysis of long segments of ECG

records poses special problems in addition to the inherent

complexities of ECG rhythm patterns. Economic considera-

tions cannot be neglected. While a cost of one dollar for a 20-s

heart-station rhythm diagnosis may not be unreasonable, a

cost of only one cent for monitoring each of the 4320 20-s

rhythm strips of a single CCU patient in a single day is im-

practical. A complicating factor is that one may expect at
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best only infrequent human quality control of the input

waveforms. In addition, continuous real-time analysis re-

quires special techniques to stay abreast of thedata.

Interwave interval clustering may be used to extract more

information than is utilized by monitors of average or in-

stantaneous ventricular heart rate. For example, the RR-

interval histogram demonstrates patterns which may be

visually correlated with different arrhythmias, and serial

observation allows detection of rhythm changes [232], [233].
Gersch et al. [234] transformed RR-interval sequences into a
three-symbol (short, regular, long) Markov chain sequence

and successfully applied an automatic classification proce-

dure for six arrhythmia classes in the training set of 35 cases

of 100 beats each. Working with 189 records of 30 s each,

Haisty et al. [235] recently investigated linear discriminant-

function analysis of RR intervals. Utilizing the temporal

locations of P-wave and R-wave peaks as measured by a hu-
manobserver on 112 records of 60 beats each, Whipple and

co-workers [236], [237] investigated digital computer logic
for arrhythmia classification based on a “smoothed” RR-

interval histogram. They concluded from an evaluation of the
results that further development using wave-morphology

information was necessary.

Most absolute measures of ECG wave morphology have

little intrinsic value in single-lead rhythm monitoring.
Duration of the QRS is probably the most important absolute

measure since the spread of depolarization from an ectopic

ventricular focus is usually slower than for a normally con-

ducted beat. The apparent QRS duration, however, may be

erroneously lengthened by noise which mimics small Q or S

waves. The presence of AV bundle branch block or other

intraventricular conduction defects also results in wide

“normal” beats. Moreover, the QRS of a PVC may appear

narrow because its initial or terminal portions are isoelectric.

Nevertheless, relative comparisons of duration and other

QRS morphology measures are used by the human.

A commercially available hybrid device utilizing ORS

duration for rhythm monitoring has been described in some

detail by Horth [238]. Three parallel processors provide ORS

occurrence detection, ORS width measurement, and artifact

detection. Manualinitiation of a “stored normal” sequence

tailors the feature-extraction characteristics to the patient’s

ECG at that time. In this case, thresholds for ORS detection

and delimitation are set automatically, and a reference ORS

width is measured. Moreover, manual switches allow the

user to tailor device operation as an “ectopic beat” detector,

selecting combinations of widened beats (ORS width at least

12 ms greater than the reference) and premature beats (RR

interval at least 20 percent less than a running average) for

data logging, alarm generation, and strip-chart presentation.

Manual tailoring of monitoring device operation to the

patient is traditional and seen in varying degrees in most

arrhythmia monitoring efforts. The degree to which device

performance is dependent on operator performance thus

becomes an important consideration in system evaluation,

especially if frequent manual intervention is required. This

may be a major reason for the lack of published performance

data on simple heart-rate monitors. Whether the situation
will recur for more sophisticated rhythm monitoring appa-

ratus is an open question.

A variety of other hybrid devices measuring more than

RR interval have been described as suitable for ECG rhythm

monitoring. One compares the duration of each subwave of
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the ORS toa manually selected threshold for purposes of PVC

detection [239]. The width of the R and the area inscribed by
the ORST were also utilized [240]. Another device utilized a
measure of QRS duration and polarity [241]. Detection of

PVC’s via measurement of T amplitude [242] and circuitry
to sense ventricular fibrillation waves [243] have also been
reported. Kezdi and co-workers [244], [245] haveillustrated
operation of a device for counting premature atrial contrac-

tions and premati.re ventricular contractions based on mea-
sures of QRS width, polarity (direction of the initial QRS

deflection), and height (maximum amplitude of the rectified
differentiated signil). Another ectopic-beat detector has been

described [246], |247] in which the morphology of the pa-
tient’s normal QF.S complex is continually updated, but no

details have been given. In a commercial ectopic-beat detec-
tor described by Harris et al. [248]—[253], utilizing wave-
forms consisting cf products of the ECG signal and its de-

rivative, each OF'S complex is automatically classified into

one of eight morpology states corresponding to eight proto-

typic ORS types (.2, Rs, 7S, Q, Qr, gR, broad R, broad Q). All
morphologystates. corresponding to the patient’s normal QRS

are established du:'ing a 15-s learning period.
A different app-oach to wave morphology comparison was

taken by Feezoret 11. [254], [255] who constructed and tested
a matched filter for. a prototype PVC waveform (QRS and T).
Its usage as a preprocessor in a digital computer system has

also been describe 1 [256], [257]. A real-time filter matched
to a prototype normal QRS complex for lead II has also been

implemented [258 |. Finally, a hybrid device for more complex

rhythm diagnosis [259], [260] and other digital computer

efforts utilizing hardware feature extraction [261], [262],

have also been attempted.
Most computer scientists investigating ECG rhythm

monitoring have seen unwilling to rely on analog or hybrid

preprocessors for anything more than simple filtering, pre-

ferring to retain a gorithmic control over QRS detection and

all other logic ass.ciated with feature extraction and classifi-

cation. While simple rhythm-monitoring techniques have

used a reference interval and wave morphology for com-

parison purposes, recent trends are toward automatic multiple

clusterings of intervals and morphologies.

An early effort of this sort directed toward continuous

ECG rhythm ana ysis of tape-recorded data sampled at 125

samples/s and uilizing the “stored normal” concept for

classification of (RS morphology was performed by Lynch

and Barnett [263]. A measure of the distance between the

sample vectors fo: the reference and subsequent test waves

was compared tc a threshold to differentiate normal QRS

complexes from those having a “significantly different shape.”

A logic-tree diagriosis was performed to identify some supra-

ventricular and ventricular arrhythmias, and a summary was

printed at regular intervals. An on-line display allowed a

knowledgeable operator to monitor the computer’s operation

and to rapidly alzer crucial controls.

With respect t) more automatic operation, an attempt was

made to monitor <he single-lead ECG with elements of a diag-

nostic system operating intermittently at 500 samples/'s

[264], [265]. Approximately 4-s segments of ECG were ac-

quired and then analyzed by computer in 2 s. Summary

diagnoses were producedat 90-s intervals describing technical

problems, rhythnis, and wave morphology changes. -Examples

of computer output showrelatively nonspecific rhythm

diagnosis: “Atypizal QRSor artifact, ... rule out premature

contractions.” Dissatisfaction with arrhythmia classification

accuracy was evident [264]. Future plans were strongly

oriented toward statistical analysis of the extracted feature

data, hoping to quantify clinically significant changes.

Monitoring extracted features of the cardiac cycle has

also been done by Haywood and co-workers [266|-[269].

For their system, operating continuously on 240 samples/s

data, the RR interval and four features of each wave (wave

height, wave onset, peak, and termination times) in a

P-QRS-—Tcycle are measured, and 10-percent variations from

the reference values are reported. Reference values are ob-

tained on startup by averaging eight cycles whose lengths

pass a test for outliers. Recent reports on this work indicate

additional comparisons for QRS width and adjacent RR
intervals [270], [271].

A more circumscribed problem, detection of ectopic
beats, has been pursued by Feldman and co-workers [272 |-
[275]. In this work, extensive development of feature ex-
traction logic is bypassed in favor of a computationally

demanding morphology-classification technique. A 300-ms

segment of 200 samples/s data centered on the QRS detec-

tion point is compared with a stored normal QRS by com-

puting the cross-correlation coefficient. A threshold value for

differentiating normals and abnormals is set to the smaller of

0.875 or 2p;—1, where p; is a running average of the coeff-

cient. Beats classed abnormal are also correlated with the

first beat which was premature and followed by a compensa-

tory pause. The computer operator is allowed selection of

ventricular premature beat classification criteria, as well as

R-detection thresholds and several other program parameters.

For monitoring post-surgical intensive care patients, Lewis

and associates [276], [277] worked with ECG data at 60

samples/s, measuring QRS duration and RR interval for

consecutive sets of 50 ORS complexes to produce some 23

different rhythm statements. Their plans, however, were to

increase the sampling rate to obtain better resolution on the

extracted features. In recent work by Cady [278] on 100

samples/s data, QRS morphology comparison is also based

on the distance between sample vectors. The QRS detection

logic is more selective, looking for a V-shapedsignal in which

the derivative exceeds both a positive and a negative thresh-

old within 150 ms. Program output is oriented toward re-

porting on excessive change in RR or PR intervals or in the

ORS shape. Other investigators have pursued PVC detection

with methods for comparing QRS morphology. In a recent

report by Geddes and Warner [279], the shape of a reference

normal ORS complex is coded as a 160-ms sequence of deriva-

tives quantized to three levels. For subsequent QRS com-

plexes, segments of 120-ms duration are compared to the

reference by computing a distance function. To allow for

jitter in the QRS detection point, the test signal is shifted

20 ms to the left and right of the ORS detection point in 5-ms

increments, and the minimum distance is chosen. In another

recent paper by Gerlings ef al. [280], ORS morphology is

described by the minimum value of the first derivative and

the total time duration during which the derivative is below

a threshold level. A sampling rate of 500 samples/s was

chosen to provide good resolution.

The cross-correlation coefficient has become a popular

technique for stored normal QRS morphology comparison

[281 |~[283]; it currently forms the basis for development of

a number of commercial monitoring systems. Young and

Kohn [281] utilize a 300-ms segment of 200 samples/s data,
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Fig. 16. The cross-correlation coefficient is shown for pairs of ORS
complexes in approximately 200 ms of context at 500 samples/s.

Waveforms selected for comparison are plotted along vertical and

horizontal axes. The direction of increasing time is indicated in (a).
The corresponding X—Y scatter plots show loop-like patterns familiar

to the vector-cardiographer. (a) The straight-line scatter plot for a

waveform time-aligned on itself has unity coefficient. (b) A 4-ms time

shift causes a drop to 0.9. (c) Two adjacent normal beats. (d) Multi-

focal PVC beats were time-aligned at the point of maximum co-
efficient.

as did Feldman and co-workers [275], for comparison with
a stored normal ORS, but do not state the threshold value

used although they indicate a broad-band separating normals

and abnormals. Abnormal waves are further correlated with

up to seven stored PVC references. Kempneret al. [282] have
used the cross-correlation coefficient with other measures of

QRS morphology (QRS width, R and S amplitudes, absolute

QRS area) in a Fortran analysis program. This effort also

used a sampling rate of 200 samples/s, but no further details

concerning usage of the coefficient were given. Another group

[283] has recently illustrated beat-to-beat variations in the
cross-correlation coefficient, using analog QRS detection for

waveform synchronization.

Some insight to the workings of this classic statistical
measure in comparing waveformsdigitized with a time
resolution of 2 ms is provided by Fig. 16. A slight time skew
between identical waveforms reduces the cross-correlation

coefficient below unity and is accompanied by a changein the

straight-line scatter plot of Fig. 16(a) to the kidney-shaped

loop of Fig. 16(b). For the similar, but not identical beats of
Fig. 16(c), any algorithmic misalignment would cause a
further decrease in their coefficient from the peak value of
0.938 shown here. In Fig. 16(d), two different PVC’s from a
single record form a more complex loop than that of Fig.

16(b), although a difference of only 0.011 is seen in their

cross-correlation coefficients.

Several current efforts have devoted much work to

feature extraction. Rey et al. [284], [285] have used Fortran

to work with an approximation to the spatial velocity wave-

form for the X, Y, and Z leads of the Frank system. This

group has concentrated on P-wave detection algorithms,

although QRS and T detection and delimitation are also

performed on the data sampled at 100 samples/s. Continuous

ECG rhythm monitoring using 500 samples/s data for ORS

measurementshas been thegoalof an effort by Whiteman and

co-workers [286]. Complex algorithms for detection and
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delimitation of P and T waves on digitally preprocessed data
at 125 samples/s are also under development, the effort

devoted to P-wave searches probably exceeding any previous

work on single rhythm leads.

To gain additional appreciation for the potential com-
plexity of automatic rhythm monitoring, one mayturn to

work performed by Bonner [287]|-[289]. During a two-year
developmental effort, some 20K of machine-language instruc-

tions were packaged into a multiple-patient rhythm monitor-

ing system. The overall approach is similar to his previously
described work in ECG rhythm diagnosis. A preprocessing
algorithm, operating on a smoothed derivative, is used to

select specific samples from the original 240 samples/s data.

Feature extraction, while somewhat simpler than for the

diagnostic program, includes detection, delimitation, and

description of all ECG waves including artificial pacemaker

spikes and ventricular fibrillation waves. QRS waves are

clustered into permanent “reference complex” or temporary

“candidate complex” groups. Reference complex groups are
labeled normal or PVC. Candidate complex groups having

five membersare either admitted as a new reference group or

discarded as being artifactual or of unknown etiology. In

order to handle a larger number of patients, preprocessed

data are collected for 6 min and analysis is then performed,

causing a gap in the monitoring, although continuous moni-

toring for “catastrophic events” was later added. At the

present stage of development, an elaborate setup procedure

is required. Work on this system has been dormantin recent

times and equipmentis expensive, but many of the concepts

involved are possibly indicative of the future in ECG rhythm
monitoring.

A highly structured approach to continuous ECG rhythm

monitoring was initiated some seven years ago at the Wash-

ington University School of Medicine. In initial work on 500

samples/s data, computing time and data storage require-

ments were found to increase rapidly with algorithm com-

plexity, especially as longer contextual segments of sampled

data were included. Moreover, the hundreds of sampled data

points contained in even short contextual segments prevented

convenient visualization of the detailed operation of a par-

ticular algorithm on a particular waveform. The severity of

these problems could have been reduced somewhat by de-

creasing the sampling rate but it seemed advisable to consider
a different approach which might have somegeneral applica-

bility to later work.

Accordingly, a method of transforming the sampled ECG

data to some other more compact waveform representation

was sought. The result was a data compression scheme

termed Aztec [102], producing a sequence of flat lines and

sloping segments caricaturing the original ECG at a rate of

approximately 25 elements/s. Algorithms for scanning the
Aztec data for QRS feature extraction appeared practical and,
most importantly, the operation of these procedures could be

readily visualized. The Aztec algorithm becamethefirst of a

series of processing stages, each stage transforming data from

the preceding stage by reducing redundancy to produce a

reduced-data-rate output stream [290]. The second process-

ing stage, termed Primitive, provided detection, delimitation,
and description of ECG waves. The third-stage processor,
Cycle, grouped together waves of similar shape as shown in

Fig. 17 and provided efficient coding of interwave intervals.

Finally, the task of the fourth-stage processor, Sequence, was

production of rhythm analysis terms familiar to the clinician.
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Fig. 17. The Argus cyc> processor catalogs every ORS described by 4 morphology measures (duration, height, area, offset) in 1 of 16 dynamic families

of similar complexe:; enclosed by 4-dimensional boxes. This snapshot of a patient’s ECG families also shows typical members by waveform and

number(base eight) in the area-offset plane. A normal morphology label had propagated to each family in the cluster 0, 1, 2, 4, 6, and 10, having

a total of 463 memb=rs. Of these, 42 early members had been classed borderline during the families’ evolutions. PVC’s from 2 or more foci form the

heads of 2 additions! clusters tailing into the normals. Of 52 beats in these clusters, 51 were classed abnormal, the single member of family 17 hav-

ing been classed bo: derline. After Nolle and Clark [295].

These processing :tages utilized the resources of a single

general purpose dizital computer on a regularly scheduled

priority basis [291].

The outgrowth of this project has been a system termed

Argus (Arrhythmia Guard System) which has been in round-

the-clock clinical operation at the Barnes Hospital Coronary
Care Unit since Ncvember of 1969. Argus’s external appear-

ance to the nurse and clinician is quite simple at present; auto-

matic identification of PVC’s in the presence of other rhythm

complications for a1y two selected patients in the CCU, with
trend-data displays and ECG paper writeout verification on

PVC bursts which may be premonitory indicators [292],

[293]. The present Argus system utilizes two small prototype

patient computers but is amenable to a variety of modern

hardware arranger.ents to monitor multiple patients [294].

The hierarchy of cascaded data transformation stages al-

lowed orderly evolution and documentation of relatively

compact algorithms [102], [290], [295], [296], but progress
in producing clinically familiar rhythm terms has been slow,

reflecting a quite conservative but apparently realistic view

of the need for extracted data of high quality.

A beat-by-beat evaluation of Argus’s performance in de-

tection of PVC’s has been performed by Oliver et al. [297].
Following a rigidly defined protocol, records of 34 patients

having an average PVC rate of almost one out of every

twelve beats were studied, and approximately 50 000 beats

were analyzed independently by one of two cardiologists and

correlated with the computer analysis. The overall results of

this study are shov7n in Table VI. Referring to the intersec-

tion of the cardiologists’ PVC column and Argus’s PVC row
78 percent of the 4010,total PVC’s were so labeled by Argus.
Other rows intersecting this column show the fate of the

remaining 22 percent. Only 38 normals(less than 0.1 percent)

were falsely called PVC’s, but 122 falsely detected QRS

complexes were also called PVC’s.

E. Discussion

The ECG constitutes a data base of extraordinary ac-

cessibility and size. Correspondingly, efforts in ECG pattern

recognition are now so widespread that no single review can

hope to provide a comprehensive picture. A detailed review

of research aspects has been recently provided by McFee and

Baule [118].
In this review, work on development of practical ECG

analysis systems has been separated into morphological and

rhythm analysis. Work has been further subdivided into fea-
ture extraction and subsequentclassification. Finally, tech-

niques have often been characterized as heuristic or statistical

in nature, especially for classification. Such distinctions are

somewhatartificial.

A good deal of underlying structure is imposed by de-

tailed knowledge of excitation and conduction processes

within the heart, causing a natural separation of ECG waves

having a relatively large signal-to-noise ratio into P, QRS,

and T waves. Identification and measurementof these waves

has been viewed as feature extraction, a gross simplification

for the complex records sometimes encountered. A wealth of

material-has related the form of these waves to the condition
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TABLE VI

DETAILED SUMMARY OF ARGUS’S PERFORMANCE

(After Oliver et al. [297 ])

 
 

Cardiologists’ Classifications
 

 

Aberrantly Conducted Beat Premature ORS

Questionable Beat Ventricular Falsely Argus’s

Argus’s Classifications Normal ORS Ventricular Escape Beat Contraction Detected Totals

Significant artifact detected 2985— 6.6% 35— 7.7% 168— 4.2% NAGt 3188

ORS not detected 17— 0.04% 20— 4.4% 213— 5.3% NA? 250

Normal ORS morphology 38 595— 85.1% 24— 5.3% 50— 1.2% 0O— 0% 38 669

Borderline ORS morphology—non-PVC 3646— 8.0% 114— 25.2% 298— 7.4% 18— 13% 4076

Abnormal ORS morphology—non-PVC 83— 0.18% 158— 34.9% 152— 3.8% 3— 2% 396

Abnormal or borderline morphology—PVC 38— 0.08% 102— 22.5% 3129— 78.0% 122— 85% 3391

Cardiologists’ totals 45 364—100% 453—100% 4010—100% 143—100%

 

® Not applicable.

of the working muscle masses. Association of these forms

with epidemiological groups is termed morphological analysis,

a useful but not usually conclusive tool in medical diagnosis.

Finally, a large number of temporal aberrancies in surface

waves have become associated with events in smaller tissue

groups producing no measurable surface waves. Matching

these known aberrancies with the observed wave sequences

of an individual’s ECG has become a discipline termed

rhythm analysis, seemingly a prerequisite to morphological

analysis.

All automatic ECG analysis systemsare at least partially

heuristic in nature, especially with regard to sensing P, QRS,

and 7. Subsequent feature extraction steps, while primarily

heuristic, may also use more formal mathematical techniques.

Rhythms can only be inferred from the extracted features,

usually with empirical criteria adjusted to their information

content. Subsequent morphological classifications, whether

empirical or statistical, seem quite at the mercy of the earlier

stages.

Work on ECG pattern recognition has not suffered from

a lack of ideas. Periodic evaluation, crucial to productive

development, is frequently more difficult than development.

Perturbations in program logic are easily made. Their conse-

quences are measured with difficulty. Documented data bases

in a form suitable for further work are scarce, despite the

wealth of raw ECG’s. Investigations of classification tech-

niques are thus frequently started from scratch.

Despite profuse publications, algorithms have not circu-

lated well. Sterile flow-chartings and logicallistings givelittle
insight to the problems being solved. Examples are helpful,

evaluations are crucial. Feature-extraction algorithms have

been described in some detail here, giving occasional glimpses

of the underlying motivations. Extensive repetition of the

textbook type of classification logic was avoided. Statistical

classification methods, lending themselves to concise descrip-

tion, were enumerated more thoroughly.

Extensive evaluations of morphological analysis systems

are now appearing with increasing frequency. Evaluations of

rhythm analysis have been rare. In addition to the two cited

in detail [176], [297], other special-purpose tests have been
made for heart station rhythm diagnosis [190], [194], [198],

[199], [201], [227], [230], and for rhythm monitoring [239],

[275], [285], [286], [298]-[300]. Because of the differing
jata bases and methods, direct comparisons of results are not

usually possible. Indications are that much moreeffort is now

being given to the problem of evaluation.

At present, the number of man years devoted to morpho-

logical analysis is probably an order of magnitude greater

than for rhythm analysis and monitoring. In both areas, how-

ever, some efforts have recently formed the basis of commer-

cial systems. This suggests that automated ECG analysis 1s

on the verge of becoming an accepted medical tool. The next

several years may thus be crucial for answering questions with

facts.

V. CONCLUSION

This review has examined the pattern-recognition tech-
niques used for the analysis of the EEG, the blood pressure
wave, and the ECG.All three signals present difficulties in
the clinical setting in spite of the apparent simplicity of the

task when assessed on the basis of textbook waveforms. Limi-

1ations on computing time and memory space are obvious

difficulties for these high data-rate signals, but less obvious

are the serious problems associated with artifact, context

sensitivity, and performance evaluation.

Artifacts may arise from powerline interference, muscle

potentials, and movement (both voluntary and as a result of

manipulation of the patient by a nurse or physician). Careful

attention to electrodes, transducers, and signal conditioners

can generally eliminate most of the effects of the powerlines.

The other sources of artifact are less predictable and conse-

quently more difficult to manage. On occasion the recognition

of artifact requires the best efforts of highly trained human

observers. How many episodesof artifact have masqueraded

as real phenomena can never be known. At present the ex-

pedients of human editing of records, automatic elimination

of suspicious portions of a record, or automatic multitrace

comparisons may havetosuffice.

A difficulty faced with all signals of physiological origin,

but encountered acutely with the ECG,is context sensitivitv.

A pattern often can be classified in more than one way ac-

cording to the context in which it is embedded. A million bits

of input data may be required to establish the context of a

pattern described by only a few hundredbits. Serious practical

problems arise if the epoch under study is lengthened in an

attempt to establish patterns of sufficiently long duration to

contain most contextual clues. One such practical problem

concerns the lack of a method to partition a continuous record

into independent epochs. Another concerns the computing

time and storage requirements associated with patterns ana-

lyzed most conveniently only in a space of many dimensions.

Performance evaluation of an automatic pattern-recogni-

tion system for physiological signals is essential for its im-

provement and acceptance byclinicians. Early in its develop-
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ment a system’s performance can be evaluated by quite
informal techniques. Enoughgrosserrors are distressingly ob-
vious to keep the developers happily occupied. As the system
approaches clinica usefulness, an improvement in one at-
tribute of performance may only be obtained at the expense
of the safety margins for other attributes. Only a carefully
controlled performance evaluation on a sufficiently large test
set can determine whether the most recent “improvement”
should be retained

Few of the systems reported in the literature have under-

gone performance evaluations. Many arestill in an early

stage. Others shou'd be evaluated, but the difficulties sur-

roundingthe task ft ave been a deterrent. Even so, a few evalu-

ations have been accomplished and they were reported in some

detail here because of the importance of any evaluative infor-

mation to a critical review.

The performance evaluation of automated pattern-recog-

nition systems for physiological signals shares with all medical

trials a host of problems. Frequently, there are no convenient

absolute standards ‘or theclassification of patterns according
to the pathological state of the patient. In some special cases

autopsy or surgery an give definitive answers, but even then
classification can be blurred by the concurrence of more than

one disease. Selecticn of a test set with completely unambigu-

ous classifications riay not give a representative evaluation

since the strict criteria imposed on the test set may force

selection of a biased subset of the population on which the sys-

tem is to be used.

The test set must be of adequate size. The variability of

patterns in normal yatients is often surprising and the increase

in variability can be manyfold when a wide spectrum of

pathological states ire included in the set. The test set should

include typical arti’‘act—not so severe and ubiquitous as to

reward unduly systems biased toward artifact, but sufficient

to penalize systems overly sensitive to artifact. The combina-

tions of many nortnal and abnormal patterns with a wide

variety of forms of artifact increases the size of the test set

dramatically.

The results of performance evaluations can often be mis-

leading. For a valid comparison between two studies, both

clinical and technicil circumstances must be the same, a goal

difficult to achieve. The amount of humaninteraction with a

system needs to be quantified and controlled. Clearly, an

evaluation of a system that takes advantage of continuous

human adjustment cannot be compared directly with the

evaluation of one tat operates unattended. Finally, an im-

proved methodfor :eporting results is required to emphasize

the difference between errors that occur randomly throughout

all patients and those that occur consistently within a single

patient’s record or 'vithin a single disease category.

Such considerati »ns lead to concern about the convergence

of performance eva. uations that are too broadly conceived.

Will each new mem der of the test set reveal new phenomena

in the system’s performance? How many membersare needed

before one can have confidence that few surprises await the

user? Perhaps only ‘vhen performance evaluations are limited

to a specific clinical 2nvironment can they be expected to con-

verge to useful resulrs. In any case, the time has passed for the

presentation of new unevaJuated approaches. Difficult as it

may be, performanc2 evaluation is the next major task for the

developers of pattern-recognition systems that are to be ap-

plied to the EEG, tie blood pressure wave, and the ECG.

With the above list of problems and concerns the reader

can be justifiably wary of unqualified claims of success. Judg-

ing by early signs of clinical acceptance, however, several sys-
tems appear to be on the threshold of success in specific ap-
plications. They seem to share the commonattribute that
they have evolved within a clinical setting where theory has
given way to pragmatism and where the system emulates
human pattern recognition based on many decades of medical
experience. Perhaps, in the future, the more systematic ap-
proaches suggested by theory will bear fruit as we learn the
strengths and weaknessesof the present pragmatic approaches
through careful objective performance evaluations.
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|. Introduction

The man in the street, when discussing Character Recognition, used to be able
to get by with friendly phrases like “Best Match” and “Feature.” 1:2 Due to the
influence of Pattern Recognition Theory, however, it is now the rule to be able
to spell “Hyperplane Dichotomies” and ‘Piecewise Linear Discriminant Func-
tion.”2,.3,4 Techniques using complex optical transformations are also becoming
practical.2 It is the intent of this paper to describe a few of these different philoso-
phies in terms which are hopefully common to most of the ideas. This is done by
introducing the concept of “stage analysis.” Peripheral problems such as character
separation, paper handling, control, applications, etc., will be given only scant
attention.

Stage analysis is a way of classifying character recognition machinery with a
minimum of reference to the specific components used. Viewed as a black box,
the job of all such machines is to convert a set of data having a high information
content into a character name having a much lower information content. If this is
accomplished by a single level of decision, the machine is called a “one stage”
reader. In many readers, however, intermediate decisions are made before the
final decision; each one of these decision levels terminates a “stage.” Although
the stage conceptis related to the idea of a “layer,” as used in Pattern Recogni-
tion theory, it is believed that a classification of Character Recognition machinery
has not previously been attempted in these terms.

What is character recognition? Character recognition is the conversion into
digital codes of any well known group of patterns commonly used for human
communication. These include:

a. Those stylized fonts which are humanly readable.
b. Non-stylized machine imprinted fonts such as ordinary typewriter fonts,

high speed printer, bookkeeping fonts.

c. Hand printed numeric and alpha-numeric sets which have good
Spacing between characters.

d. Cursive script.
e. Ideographs (Chinese).

Note that this collection of conversions which we call character recognition
does not include mark sensing, at one end of the scale, nor does it include the
recognition of all types of generalized patterns and pictures at the other end of the
scale.

The usefulness of character recognition machines in our society can be summed
up in one phrase: it lets computers snuggle up a little closer to human beings. In

the early stages of computer development the only way for humans to enter pro-
grams or data into a computer was to have a human read the information in what-
ever form it was and strike keys on a machine which immediately translated the
key stroke into a digital code. The best known of these machines is the key punch.
Another well known method is to punchholesin a paper tape.

In contrast, the major attractiveness of character recognition is that it is entirely

compatible with the way humans communicate among themselves. Why is com-
patibility good? Because humans produce better accuracy, better verification, and
better flexibility using a single language than using a double language. Also, a

document may have to be read both by humans and machines; humans do not
easily read machine language.

A brief note on the organization of this paper. Section Il presents the concept
of stage analysis in some detail; imaginary machines are designed and discussed
in order to illustrate the types of decisions. This is in preparation for Section III,
in which a list is presented of the more outstanding and interesting character
recognition machines, organized by the number of stages. In Section IV we
speculate on the possible significance of the number of stages as a function of the
difficulty of the task to be performed.
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ll. Central Recognition
Philosophy as
Classified By Stage
Analysis

In the following paragraphs we will

discuss the mannerin which stagesare

defined, and then go onto give illus-
trative examples of one, two, and three

stage machines.
A stage consists in general of an

“image” (may be in optical, magnetic,

or electronic form), one or more opera-
tions upon that image, and a decision.

This is illustrated in Figure 1. A single

stage machine, for example, may have
an optical image operated upon by

being passed through transparent tem-
plates which are moreor less complete
pictures of the characters to be rec-

ognized. The decision is made on the

basis of which template is matched

best by the unknown image. A two
stage machine is one in which inter-

mediate decisions are made at the
first stage, a new image is formed, a
new operation is performed, and a
final decision is made on the basis of
this last operation. Similarly, a three

stage machine is one in which there

are three decision levels.
The discovery of the decision point

is the critical task in stage analysis.

Wedefine a decision as a logical point
at which a group of data is given a
new name. If many decisions are made

independently of each other, and have
approximately the same degree of

complexity, this is defined as a single
decision level. The information content

is always reduced by making a deci-
sion. To find whether the information
content has been reduced, test for

reversibility.
By way ofillustrating the stage con-

cept, let us generate three machines

which may or may not exist today.
Figure 2 is a diagrammatic representa-

tion of a single stage machine.In this
machine the initial image is to be an

optical image of the whole character.

This optical image is projected through
photographs of the various character

shapes which are to be recognized.
These optical masks, or templates,

form the operator. The operation is
simply area correlation. The result of

this correlation is detected by a photo-

cell whichis sensitive to the total light
of the image modified by the photo-

graphic masks. The final decision is
made by choosing the character tem-

plate which best fits the unknown
image. The essential feature to be

noted here is that no decisions are

madeintermediateto the final decision.
A typical two stage machineisillu-

strated in Figure 3. Here, we again
start off with an optical image, but in
this case we will have an intermediate
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FIGURE 3. A Simplified Example of a Two Stage Reading Machine.

decision level as well as the final deci-

sion level. For this illustration we have
chosen the first operator to be a
column of discrete photocells across

which the optical image has been

transported horizontally. Decisions are

made at appropriate time intervals as
to whether the small unitary area seen
by each photocell should be called
black or white. (More complex deci-
sions based on various normalizing  

processes are possible here). The sec-

ond stage image of this imaginary ma-
chine is a point set of binary values
representing the black and white com-
ponents of the original image. Image

storage is provided by a shift register,
which has particular utility for handl-
ing vertical mis-registration, as we
shall discuss in later paragraphs.
Shifting can be considered to be a
second stage operator. The other sec-
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FIGURE 4. An Example of a Three Stage

Reading Mach:'1e.

ond stage operator is a set of resistor
matrices. The final decision is made

by choosing which resistor matrix best
matches the unknowncharacter. Such

a decision method is «nown as a “best

match” and also as : “minimum dis-
tance categorizer.”

Figure 4 illustrate: a three stage
machine. Let us assun‘e that the image
is again optical and :s scanned by a

column of photocells, the decision be-
ing simply whether each unitary point

is black or white. The result of the
first stage is to produce a second
stage image which is again a point
set representing the whole character.
The operators of the second stage do
not perform transformations on the
character as a whole as it would in
the two stage machine; instead the
operator will be so designed as to
separate certain tyes of features
which are parts of the characters.
Typical second stage operators would

be resistor matrices clesigned to sepa-
rate a left vertical bar, a high hori-
zontal bar, a middle horizontal bar,
and a low horizontal bar. Second
stage decisions choose one of these
preprogrammed features to represent

groups of unitary points in each of
many appropriate areus. The result of
the second stage is a third stage
image which consists of a set of fea-
tures. This may again be stored in a

shift register, but more commonly it
will be stored in flip flops. The third
stage operator in ou: imaginary ma-
chine is shown as a logic tree. Note
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FIGURE5. Fourier Transform Character Recognition Machine.

that “AND” gates are separated into
a logical operator and a quantizer.

The quantizer represents the decision
level. Such a decision methodis often
called “absolute’’ as opposed to the

best match.

These three examples of hypothetical

machines should be taken as merely
tutorial. In general, there are no theor-

ems which describe how many stages
are desirable. In practice it turns out
that extra stages are added to take
care of vertical registration, to in-
crease speed, or to reduce the number

of character templates required.
Before advancing to our description

of present day machinesit is advisable
to briefly discuss the problem of
“vertical registration.” Rough position-
ing of characters within the field of the  
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sensors is usually accomplished by

paper motion or mechanical motion of

mirrors (except when a flying spot
CRT is used). Fine positioning is not
needed with the holographic or the

Fourier methods, as degcribed in Sec-

tion III. Most template matching ma-
chines, however, provide specific

equipment to ensure that the image

will pass through nearly perfect regis-
tration at sometime.For a single stage
machine such asillustrated in Figure

2, vertical registration can be accom-
plished by moving the templates me-
chanically with respect to unknown
characters. In Figure 3 (the two stage
machine) registration is accomplished
by using the shift register to rapidly
move the second stage image through
all possible vertical positions.



lll. Machine Descriptions
In this section we will attempt to

turn the tables on reading machines

by categorizing the categorizers. The
most important material is contained

in Tables 1, 2, and 3, while the text

is mainly commentary.

A. One Stage Machines
Table No. 1 illustrates only a few

machines chosen from the very large
number of possible machines which  

use a single stage of recognition. The
first entry in this table is called a
photographic mask machine. In this

case the initial image is an entire

image of the character in an optical |
form. This image is focused on a plane

of a series of photographic masks,

whichis the first (and only) operator.

The final decision is accomplished by
measuring the area correlation be-

tween the unknown image and the
photographic masks and choosing the  

best correlation. Such machines were

among the very earliest built by the

pioneersin this field. Vertical registra-

tion is accomplished by having the

image move mechanically with respect
to the templates or vice-versa. The

templates can either be presented for
correlation serially (for example, they

may be mounted inside a rotating
drum) or they may be presented in
parallel, a beam splitter being used
to make multiple images. There are

 

TABLE 1. SINGLE STAGE CHARACTER RECOGNITION

NAME TYPE OF INITIAL IMAGE

Photographic Mask Reader Optical

Bar Code Reader for Optical
COC5 Font (GE #DRD200)

MICR (Single Head) (GE, Magnetic
NCR, Lundy)

Fourier Transform Reader Optical
(Must be derived
from transparency)

Optical
(Must be derived
rom transparency)

Hologram Reader

FIRST (AND
OPERATORS FINAL) DECISION

Photographic Masks
Perform Area Correlation. transmitted light.

Best Match chooses least

a
h . Narrow slit, long

axis vertical.
Photocell.
Timing Gates.w

n
w
h . Single narrow magnetic

head, long axis vertical.
. Image stored in
delay line.

. Resistor summing network
from delay line taps.

&
W
N

Fourier transform mask
at focal point of lens
performs area correlation
on transform of unknown.

Decides either narrow
white space or wide white
space between bars.

Best Match.

Best Match chooses least
transmitted light.

Holograms
(Autocorrelation)

Look for bright spots.

MACHINES

REMARKS

Slow, cheap, registration by mechanical
motion. Not used commercially.
Font: Any single numeric set.

Font: COC5 only. .
The wide-narrow decisions come serially
and become the BCD output code. Numerics
+ 1 symbol. See Figure 7. May shortly
become a high volume commercial machine.
High Speed. Vert. Reg.: inherent.

High volume commercial. Highly stylized
font, E13b, hard to print. Numerics + 4
symbols. See Figure 7.
High Speed. Vert. Reg.: inherent.

Not used commercially. Coherent light
required. Registration independent.

Not used commercially. Coherent light
required. Registration independent.

 

TABLE 2. TWO STAGE CHARACTER RECOGNITION MACHINES
TYPE OF
INITIAL FIRST STAGE

NAME IMAGE OPERATORS

Control Data Optical 1. High speed mirror.
915 Page 2. Row of photocells.
Reader 3. Timing Gates.

Farrington Optical 1. Rotating Mechanical
Credit Card Scanner.
Reader 2. Photocell.

3. Timing Gates.
4. Integrators for

selected areas.

Multiple Magnetic 1. Column of 30
Head MICR magnetic heads in
IBM 341419 contact with paper.

2. Timing Gates.

Control Data Optical 1. Column of photo-
Ft. Monmouth cells.
Multi-font 2. Timing Gates.
Reader,
AN/FST-6

Adaptive Either Optical Any General
Machine or Magnetic Scanner
sing

Dichetomies

Adaptive
Machine
Using
‘“‘Piece-
wise Linear’
Dichotomies

Either Optical Any General
or Magnetic Scanner

FIRST STAGE
DECISIONS

Black or white
decision on each
point.

Outputs of
integrators are
quantized.

Black or white
decision on each
point.

Black or white
decision on each
point.

Break up analog
image into dis-
crete points.
Output may be
either analog or
digital.

Break up analog
image into dis-
crete points.
Output may be
either analog or
digital.

SECOND STAGE SECOND STAGE FINAL
IMAGE OPERATORS DECISION REMARKS

5 wide by 18 high, 1. Shift Register Best Font: USASI-A (64 char.)
set of binary points 2. Resistor Matrices Match. Medium Speed. Commercial
stored in shift (one per character). product.
register. Stored Vert. Reg.: High Speed
image represents Mirror +- Shift Register.
whole character.

Set of flip-flops, Logic Tree. Absolute. Font: 7B (Numeric only).
each representing a Vertical Registration
feature such as Left accomplished by Mechanical
Vertical Bar, Top Scanner, which scans in
Horiz. Bar, etc. Vertical Direction, in

cooperation with triggered
timing circuits.
Medium speed.
Commercial product.

Set of binary points 1. Shift Register. Absolute. Font: E13b (Numeric -+- 4)
stored in shift 2. Logic Tree. Some High Speed.
register. alternate paths Vert. Reg.: Extra heads

allowed. above and below char. +-
shift register. Commercial
product.

25 wideby 60 high. 1. Shift Register. Best Resembles ‘‘piece-wise linear’
Set of binary points 2. Resistor matrices Match. machine.
stored in shift (One character per Fonts: 12 pitch Elite, U.C.
register. matrix.) . + L.C., 10 pitch Pica, U.C.

3. Similar categories L.C., USASI-A. Total of 200
from various fonts characters. Medium speed.
are ‘‘OR”’ gated at Vert. Reg.: Extra photocells
input to comparator. above and below char. -+-

Shift Register. Only one
machine built.

Set of ‘‘d”’ Resistor Matrices. | 1. Minimum if TLU method is used
measurements Each matrix defines a Distance there are only P
representing hyperplane in d Categorizer. matrices, where 2? —
apointin “a” dimensional space. (Best R categories.
dimensional two modes are Match). Not used commercially
space. possible — see text. 2. Threshold

Logic Units
(TLU).

Set of d Piecewise Linear Minimum Resembles Rabinow
measurements Discriminant Distance Ft. Monmouth Multi-
representing Functions (Multiple Categorizer. font Reader.
a point in d resistor matrices Multiple Not used commercially
dimensional space. per category). Each matrices

matrix may represent representing
a “‘dirty’’ prototype
point or it may
represent a clean
prototype from a
different font, same
category.
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boundaries of
one category
are ‘“‘OR’’
gated at input
to comparator.
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TABLE 3. THREE STAGE CHARACTER RECOGNITION MACHINES

 

 

   

 

  

TYPE OF FIRST FIRST SECOND SECOND SECOND THIRD
INITIAL STAGE STAGE STAGE STAGE STAGE STAGE STAGE FINAL

NAME IMAGE OPERATORS DECISIONS IMAGE OPERATORS DECISIONS IMAGE OPERATORS DECISION REMARKS

IBM 1287 Optical Flying Spot Setof Set of 1. Smoothing. Quantizin Closed Loo Shift
Hand print CRT performs decisions sequential 2. Circuits to of the trace Word (Base. Register cet product.Number small spiral about whether measurements measure angle in 45° 8) describing probably Match. Hand printed
Reader motions to or nota line on the X and trace angle. increments. angular drives numerals + afollow out- was touched. Y deflections changes resistor few selected

line of which resulted around templates. alpha char-
character. from following periphery of acters.

the character character. Vert. Reg.
outline. drops out.

Medium Speed.

Control Data Optical Any raster Black or 30 x 30 set Line Line Image of Logi
Optical scan. white decision of binary Trackers. beginnings, Features. gic Tree. Ansolute. ModelNand
Watchbird oneach — points. endings, printed
Hand Print unitary point. splits, and numerals.
Number joints. Vert. Reg.
Reader drops out.

IBM 1975 Optical CRT + norm- Black or 650 bit com- Logic Recognizes 100 bit Reference Best
Omni-Font alization in white decision plete image Operators features. feature vectors are Match. than200alpha
Reader height, gray oneach — stored in describe vector. in ternary numeric fonts.

level, stroke unitary point. shift many form. Only one
width. register. features. machinebuilt.

Vert. reg.:
Shift Register

‘‘N” Tuple Optical Any general Breakup Set of ‘‘d’’ ‘*¥” dicho- Y Threshold Set of ‘“‘Y’’ “‘R”’ dicho- Minimum With N=—6,
Adaptive scanner. analog image measurements tomies each Logic Units. binary tomies, Distance Y=6, R=50,
Machine into discrete representing with ‘‘N” Each TLU is measurements (trainable categorizer this machine

points. Output a pointin ‘‘d’’ weights (can independent. representing weights). chooses one works quite
may be either dimensional be random, a point in Y out of R well
analog or space. fixed, or dimensional categories.
digital. trainable). space.

usually both “asse:tion masks” and

“negation masks,” the assertion mask CHARACTERS ON DISC WITH HOLOGRAM
being transparent .n the area where PIESRE oo MASKS

the black character is expected to be,

and the negation mask being trans-
parent in the area ivhere white is ex-

pected to be. The correlation is ob- LENS | MOTOR
tained by summing the output of the
assertion photocell together with the Levs

inverted output of tlle negation photo-
cell — for a perfect match no light is coueresy [OP

transmitted to the «assertion photocell LIGHT Luo» POINT
. . . . SOURCE. DETECTOR

and a maximum anount of light is
transmitted to the negation photocell.
The next entry ir Table 1 discusses

a machine which weshall call a ver-
tical bar code reader. This type of
machine dependsabhsolutely on having
a very stylized fon: for its operation
and cannot read ordinary typewritten
characters at all. There are two major aFeeFeFee

fonts for which this nachineis philoso-
phically suited — the European CMC7

(alphanumeric) anc the U.S. COCS5
(numeric only). The character is made
up of vertical bars. ‘The space between

these bars are either wide or narrow
and form a code. .'.n example of the

COC5 is shown in Figure 7. The
initial image for these machines is
optical and there aie three operators:
1) a narrow slit with its long axis

vertical, 2) a photecell, and 3) a set

of timing gates. The job of the decision

maker is to decide vyhether each space
is wide or narrow. “hese wide-narrow

decisions are madeserially (but inde-
pendently) and become the output
code directly. Note that the machine
is a single stage inachine, since no
further reduction o/ information needs
to be made on this code. The major
advantage of this type of machineis
that the reading lozic is inexpensive,

but the font appearince is esthetically  
  

FIGURE6. Holographic Character Recognition Machine.

poor. Such fonts are also difficult to

print.

The next single stage reader to be
considered is the magnetic ink char-
acter reader (MICR) which uses a
single head. Used for banking applica-
tions, machines of this type are cur-
rently in commercial production by
GE, NCR, and Lundy; the number

produced probably exceeds 700. The
font is “E13b,”’ which is composed of
10 highly stylized numerals and 4 sym-
bols. This font is illustrated in Figure
7. This machine is a single stage
reader, since it only has a single level
of decision. The initial image is, of
course, magnetic, and it must therefore

be scanned by a magnetic head in con-
tact with the paper. This magnetic
head can be considered to be the
first operator. It is a single narrow  
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magnetic head, with its long axis

vertical. Its output is proportional
to the rate of change of the magnetic

flux passing the gap; the signal is zero
volts while traversing a horizontal line
and rises suddenly to a maximum

when crossing a vertical column of
magnetic ink. Since the headis taller

than the character the output will be

independent of the vertical position of

the character. Note that this is a
valuable way of reducing the informa-
tion content without making any de-

cisions — after the scanning no knowl-
edge remains about the position of any

black marks relative to each other in
any vertical slice. Signals are tempo-

rarily stored in an electro-magnetic de-
lay line, and this may be considered
to be a form of temporary image reg-

ister. A set of summing matrices are



attached to various taps on this delay

line, and these summing matrices can

be considered to be another operator.

The final (and only) decision is made

by comparing the outputs of the sum-
ming matrices and choosing that ma-
trix which produces the best match.

Another example of a single stage

reader is the Fourier transform ma-

chine? shown schematically in Figure

5. Although this is by no means com-

mercially developed it represents an
interesting concept. The intial image
is optical and the operators are photo-
graphic masks. Coherent, or nearly

coherent, light must be used. Unlike

the photographic mask machine ex-

plained above, the pattern on the

mask is not the normal picture of a
character. Rather, it is more like the

picture of a diffraction pattern caused
by the character shape. In the read-
ing machine these photographs of the

Fourier transforms are placed at the
principal focus of the optical system

rather than being placed in the plane
of the real image, as is done in the
simple photographic mask machine.
Viewing the correlation between the

Fourier transform of the initial image
and the Fourier transform templatesis
a photocell or set of photocells. The

simple magnitude of light is a measure

of the correlation, and the minimum
represents best correlation. The deci-
sion as to which template fits best is

again done on a best match basis. The
most novel characteristic of this type
of machine is that the output is, to

the first order, independent of the
registration of the character with re-
spect to the fixed position of the

mask. There are, however, difficulties
arising from the fact that the trans-

forms are invariant under 180° rota-
tion of the character. Since the phase

relationships of the light must be
preserved, the unknown. character

must be presented to the readerin the
form of a transparency.

The hologram reading machine-

uses optical transforms of an even

more sophisticated nature. It is illus-

trated in Figure 6. Again, this type
of machine is not in commercial use,

but the principles involved are of
extreme interest. A hologram is a
photograph which captures on film

not only the amplitude but also the

phase of the light which passes

through a given plane. In making the
hologram, this phase information is

captured by “beating” a referencelight

source against the modulated image,
and a kind of interference pattern is

thus formed. In the reading machine,
a cross correlation is performed be-
tween a modulated image of the un-
known character and the hologram.

A good correlation between the un-
knowntransparency and the hologram  

is evidenced by a single point of light

in the image plane which the photo-

multiplier looks at, and this plane

must therefore be scanned. The deci-

sion involves choosing which one of
the points of light is most cleanly de-
fined. As in the Fourier machine, the

unknown character must be in the

form of a transparency.

B. Two Stage Character
Recognition Machines

The first example shown of a two
stage character recognition machine is

the Control Data® 915 Page Reader.
Figure 8 showsan overall view of the

915, and Figure 9 shows a diagram of

the optical scanning system. Theinitial

image here is a complete optical image
of the character. The line scanning

mirror merely provides rough posi-
tioning. There are three operations
carried out on the image before the
first decision. The first operation is

performed by a high speed mirror,
oscillating at 3750 Hertz. This mirror

transports the optical image up and

down past a horizontal row of six
photocells which constitute the sec-
ond operator. Only five of these photo-
cells are used for character scanning.

A third operation is performed by
timing gates. The first level decision
is made as to whether each one of
these photocells is seeing a black or

white point. The output of each one
of these photocells is quantized 54

times in one vertical half-sweep. These

decisions are timed to be 6 mils apart
vertically (referenced to the actual

character size) and the photocells are
spaced about 14 mils apart horizontal-

ly. This ends the first stage. The sec-
ond stage starts with an image of the

character formed by the binary deci-
sions developed from the first stage.
This image is stored in a shift register

which shifts. vertically downwards
when the mirror is traveling upwards,
and upwards when the mirror is
traveling down. This shift register has
5 columns, each 18 stages high. Each

shift register column is driven by only
one photocell. Note that the numberof

elements scanned vertically by the

photocells is more than three times
as manyasthe shift register has room

for. The result is that (while the mirror
is going down) the image of a char-
acter is shifted up through the shift
register and disappears off the top of

the register. During the next half-cycle

the image is again presented to the
row of photocells and is shifted down-

wards through the shift register. The
second level operator is a set of resis-
tor matrices, of which there is one
matrix per character. These matrices
are driven by elements of the shift
register, with points which are sup-

posed to be black being implemented
with a pure resistor. Especially im-  

portant points which are supposedto

be white are implemented by a

diode in series with a resistor.

The reason a diode is used hereis

that we don’t want the presence of
white to help the correlation voltage,
but black should hurt the correlation.

Within the resistor matrix for one

character many shift register elements

are not connected to the matrix at all;

these represent ‘don’t care” points.
The final decision is made by choosing

the best match. The great advantage
of two stage machines over onestage
machines is that the templates which

are used for final recognition can be

driven in parallel without having to

build complex optical devices for

image splitting. The combination of

high speed mirror and shift register
provide theability to handle characters

which are mis-registered in the vertical
direction as much as plus or minus a
full character height.

Next, in Table 2, is the Farrington

Credit Card Reader, which was prob-

ably the first commercially successful
character reader. It is a rare example
of a two stage ‘feature’ machine. It

reads Farrington 7B, a numeric font

used on Esso, Shell, Sunoco and many
other credit cards. Operating on the

optical image are four distinct mech-
anisms: 1) a rotating mechanical

disk scanner, 2) a photocell, 3) timing

gates, and 4) integrators for selected

areas. The paper moves horizontally

in the direction of the line of char-
acters, while the disk scans vertically.

A timing sequence, started by the
recognition of a character being pres-
ent, generates gating signals which
distribute the video into the appropri-

ate integrator circuits. These _inte-
grators store “black” over many scans
for areas such as the Left Vertical Bar,

Top Bar, etc. The first stage decisions
are performed by quantizers looking
at the integrators. The second stage
image merely stores these decisions
for later use by the logic tree. Deci-

sion is the ‘Absolute’ mode.

The third entry in Table 2 is the
IBM 1419 multiple head magnetic ink
character reader. Operating on_ the
magnetic image is a column of about

33 magnetic heads in contact with the
paper. The paper (normally a_ bank
check) is traveling in the horizontal
direction — i.e., in the direction parallel
to the line of characters. The first

decision level is a series of biack-white
decisions for each magnetic head. This
completes the first stage. The second
stage begins with a shift register which

catches the image of the character
presented by the first stage. This
register is approximately 15 elements
wide by 33 elements high, the char-
acter being nominally 11. elements

high. The image is shifted horizontally
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at a rate equal to the paper motion,

and super-imposed upon this is the
vertical shifting necessary to move the
character image through all possible
positions of vertical registration. The
second stage operator is a pure logic

tree which does not use resistor mat-

rices. Enough alternate logic paths

are provided, however, so that many
somewhat ‘noisy’ versions of the

characters are allowed to be recog-

nized. The final decision is therefore

of the so-called absolute type, and is

not a best match. The font read by this

machine is E13b which has been

standardized for wse in the American

banking industry. It is to be expected

that the IBM 141¢ machine should be

able to read characters which are
‘“noiser” than single stage readers

can, since much more information has

been picked up from the magnetic

image.

The fourth entry in Table 2 is the
Control Data Multifont Reader built

for Fort Monmouth. This machine was

built specifically for a message entry
system to be usecl in various military

communications centers. It reads the

following sets of characters: Upper
and lower case 1:: pitch elite, upper

and lower case 10 pitch pica, and the

USASI-A font. Tle optical image is

scanned by a colurnn of 100 photocells

disposed in the vertical direction.
These are placed at 3.5 mil intervals.

The decision at thefirst stage is simply
to determine whether each unitary

point is to be calied black or white.
The second image is a set of binary
elements contained in a shift register

25 wide x 64 higk.. The output of the

photocells is switched so that the

average vertical p sition of the char-
acters falls in the center of the 64

high shift register. Three operations
are performed o1 this image, the
first of which is the vertical position-

ing accomplished hy running the shift

register in the vertical direction. The
second is the oprration of a set of
resistor matrices, of which there is
One matrix per cl.aracter style. There
are over 200 resistor matrices in the
Fort Monmouth michine. In this multi-

font categorizer, a third operation is
performed — the outputs of resistor
matrices representing similar  char-

acters are OR-galed together before
being presented t: the minimum dis-

tance categorizer. That is to say, the
matrix which represents the capital
elite “A” is OR-gated with the matrix

which represents the capital pica ‘“‘A”
and with the matr.x which represents

the USASI “A.” Similarly, all the
capital ‘‘B’s” will be OR gated together,
etc. Therefore, only the best correla-
tion for each character namedis pre-
sented to the comarator for categor-
ization. This is sometimes called a
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FIGURE 7. Several Varieties of Stylized Font

“best of best match.” The OR-gate
used here is merely several diodes

with their cathodes tied together; its
function is to put the highest voltage

from any of several sources on to a
single wire. Note that it does not
represent another stage in our sys-

tematic description of reading ma-
chines, since no decision was made

by employing the OR-gate. Informa-

tion content is reduced, however,since

the operation is not reversible. Where
the font type is known ahead oftime,
the unused resistor matrices for the

other fonts can be gated off, and
somewhat morereliable decisions ac-
crue to this mode of operation. The
technique of OR gating several oper-
ators into a single category resembles
somewhat the “piece-wise linear” ma-
chine which is described in Entry 6 of

Table 2.
Turning now to more exotic ideas,

we will next consider machines which
are capable of categorizing much more
general patterns than the preceding
entries in the list. They are also ca-
pable of “learning” or ‘adaptation.”
This more generalfield is called ‘“Pat-
tern Recognition,” and is, at present,
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characterized by a very large amount

of mathematical theory but not a whole
lot of practice. To be sure, a number
of the proposals have been evaluated
on computers but unless there is a
good deal of work behind closed doors,
it is a good guess that generalized pat-
tern recognition machines are still

very much in the realm of theory. It
seems certainly fair to say that no
generalized pattern recognition ma-

chines have been applied to commer-
cial endeavors.
The Fifth Entry in Table 2 is the

“Adaptive Machine Using Hyperplane
Dichotomies.” A hyperplane dichotomy
may be implemented by resistor

matrix, for the purposes of this dis-
cussion. An adaptive machine will |

normally be able to change the weights
of the resistors during the training

program or during normal operation.

The initial image can be either optical

or magnetic and any suitable scanner
can be used. A typical first decision
would be simply to quantize the image

into a set of discrete points. The values

of light recorded for each of these
points maybe either a binary number
or they maybe recorded as continuous



shades of grey. This decision level

terminates the first stage. The second

stage image is then stored in some

form of register. In mathematical terms

this image is described as a set of
‘“‘d” measurements representing a point
in “d” dimensional space. In other

words, instead of viewing this second
stage image as a representation of a

character in two dimensions, the at-
tack here is to consider that each of

the discrete measurements made by

the first operator in the first stage is
an independent degree of freedom.

The second stage operator can be a
set of resistor matrices, each matrix

defining a hyperplane in ‘‘d” dimen-
sional space. Either one of two modes

can be used at this point. A close anal-
ogy to commercial character readers
(See, for example, the Control Data

915) is obtained if ‘“‘R” resistor mat-

rices are used, where R is the number

of categories to be separated. A mini-

mum distance categorizer (best match)

selects the appropriate output code.

The other mode is to use only “P”

resistor matrices, where 2” = R. In

this case, decisions are made by

“Threshold Logic Units” (TLU), each

Ty |tiéd

 

decision being binary and independent

of the others.
The next entry in Table 2 is an

“Adaptive Machine Using Piece-wise
Linear Dichotomies.” This is a ma-

chine quite similar in philosophy to
the previous adaptive machine de-

scribed except that it is more power-

ful. This extra “power” may be ob-

tained by describing more than one

prototype point for each decision

category. Philosophically, this also re-

sembles the Control Data Fort Mon-
mouth Multifont Reader. Using the

more precise language of pattern

recognition theory, the Piecewise
Linear Machine uses a set of discrim-

inant functions each of which is the
maximum of a group of subsidiary dis-

criminant functions. The initial image
will be an optical image; any general

scanner may be used, and thefirst

decision will be simply to break up the

analog image into a set of discrete

points. The values of these discrete

points, which are measurements of

the amount of light falling on a par-

ticular part of the image, may be

either two-valued or continuous. This

decision level terminates the first
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stage. The image which starts the

second stage is exactly as in the
preceding machine: a set of ‘d”

measurements representing a point in
‘‘d” dimensional space. The Piecewise
Linear Machine diverges at this point,
however, from the simple hyperplane

machine. In the hyperplane machine
there was just one ‘“d” dimensional

dichotomy used to perform’ each

separation. In this machine several
descriptions of prototypes from each

category can be used, and the mini-

mum distance within each category
is OR-gated to the final comparator.

In other words, we may have a ma-
chine which is trying to read three

different shapes of A and three dif-

ferent shapes of B, etc. A prototype

matrix can be used for each of these
different shapes. This is particularly

valuable when an average description

might fall within the boundaries of
some other category entirely. If there

are “R” categories, only ‘R” wires

will go into the comparator andthis

will select the winner from among

these “R” wires. The training of these

adaptive machines is a subject beyond

the scope of this paper, but it is well

treated in the references.
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C. Three Stage Character
Recognition Machines

Table 3 lists a few examples of ma-
chines using three levels of decision.

The first is the IEM 1287, which can
read carefully hand printed numerals

with only the constraint that the char-

acters shall be printed inside a box.

It is a highly successful commercial

machine. The scanner is a cathode
ray tube which tracks the outline of a
character until the beam returns to

its starting point. Smoothing and
quantizing circuit: operate on the

deflection voltages to produce the
third stage image. This image is com-

pared with stored templates to pro-

duce a final decision.

Item 2 in Table 3 is a laboratory

machine for readiny handprinted num-

bers which differs considerably from

the IBM 1287. A cclumn of photocells
operates on the optical image and

produces a second stage image of
unitary points. This is operated upon

by line trackers and decisions are

made about features such as line be-

ginnings, endings, splits, and joints.
These form a third image, which is
operated upon by a Logic Tree. The

final decision is al:solute.
The IBM 1975 O-nni-Font Readeris

an extremely powerful machine which

was constructed jor the purpose of
reading the quart2rly reports made

by corporations to the Social Security
Administration. Th:s equipment recog-
nizes an enormousvariety of fonts —

exactly how man; is not known —
and seems to do an excellent job, so
long as the quality of characters is
reasonably good. ‘I'he organization of

this machine in terms of decision
levels follows fairly well the philoso-
phy shown in Fgure 4, with the

major exception that normalization
is used extensively A pre-scan is used

with this machine to locate the char-
acters and to develop some of the
normalization factcrs, but we will not
consider this pre-:can as part of the
character recognition. The first oper-

ator is a flying spct cathode ray tube.
The CRT, having once located the

character, applies a raster scan to the
character, but decisions as to whether

a point should be called black or white
are influenced by the black density of
its neighbors, a complex decision

operator being used for this. The sec-
ond image stage is a 650 bit binary

image stored in a shift register. This

imagestill has the same general shape
as the original chiuracter. A series of
measurements which relate to fea-
tures are performe:«! by logic operators,
and decisions transform the 650 bit
image into a third stage image of 100
bits. This binary word is called a
feature vector. The feature vector no
longer has the s:me dimensions as  
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a real character. This third stage image

is operated upon by a complex library

of decision rules which produces a

final decision.
The last reader to be discussed is

the “N” Tuple Adaptive Machine. The
organization, in the broad outline of
Table 3, shows many similiarities to
the IBM 1975. Critical points of dif-
ference exist in the second and third

stage operators, however, In the Omni-
Font reader the second stage feature
detectors are very carefully chosen to

pick up particular types of line seg-
ments. On the other hand, a random

choice of non-parametric points is
often used in the ‘‘N” Tuple philoso-
phy. At the third stage, the operators
are chosen in both machines after
much study of training data, but it is
strongly significant that the study is

done by people for the IBM 1975 and

by computer program for the ‘“N”
Tuple. The “‘N” Tuple Machine, oper-

ating as a program within a computer
and using the parameters listed in
Table III, has demonstrated ability to

read the imprints from Addressograph

plates quite well.

IV. Conclusion
This brief discussion has concen-

trated on pointing out some of the
significant similarities and differences
between central recognition philoso-
phies. One point, in particular, stands
out: the number of stages used seems
to be proportional to the complexity
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of the character recognition problem.
This is not suggested by any present

theory, and its treatment would be a

valuable advance.
Machines with more than three

stages have been proposed, and it
seems likely that the reading of cur-
sive script will be first accomplished
by using a large number of decision
levels.
Many important machines were

omitted from discussion. The major
reason for these omissions is_ that

detailed knowledge of commercial
machines is often not available. In

addition, this situation has probably
caused errors in the descriptions
which were attempted.
Thanks are due to Mr. James D.Hill,

of the Rabinow Laboratory of Control

Data Corporation for his many valu-
able suggestions.
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Design of a Linguistic Statistical Decoder for
the Recognition of Continuous Speech

FREDERICK JELINEK, FELLOW, IEEE, LALIT R. BAHL, MEMBER, IEEE, AND ROBERT L. MERCER

Abstract—Most current attempts at automatic speech recognition
are formulated in an artificial intelligence framework. In this paper we

approach the problem from an information-theoretic point of view. We

describe the overall structure of a linguistic statistical decoder (LSD)for

the recognition of continuous speech. The input to the decoderis a string

of phonetic symbols estimated by an acoustic processor (AP). For each

phonetic string, the decoder finds the most likely input sentence. The

decoder consists of four major subparts: 1) a statistical model of the

language being recognized; 2) a phonemic dictionary and statistical

phonological rules characterizing the speaker; 3) a phonetic matching

algorithm that computes the similarity between phonetic strings, using
the performancecharacteristics of the AP; 4) a word level search control.

The details of each of the subparts and their interaction during the
decoding process are discussed.

I. INTRODUCTION

OST CURRENT attempts at automatic speech

M recognition are formulated in an artificial intel-

ligence framework. A mini-universe of discourse is selected

(e.g., repair of faucets [1], geophysical inquiry [2], or chess

playing [3]) and described syntactically and semantically.
This description deterministically limits the permissible set

of utterances. A complex interaction of acoustic, syntactic,

and semantic processors then directs the search for the

spoken sentence. The search is often based on confidence,

fit, and frequency metrics derived in an ad hoc intuitive

manner.

In this paper we describe the structure of a linguistic

statistical decoder (LSD) that will be implemented by the

Speech Processing Group of the IBM Thomas J. Watson

Research Center. It constitutes an attempt to model

statistically various aspects of speech production and

recognition and to use decision procedures familiar in the

field of information transmission in order to recognize and

transcribe speech. A statistics-based system was previously

implemented by Dixon and Tappert [4], [5] at IBM,
Raleigh, N.C.; this serves as the starting point for the

efforts here.

Four problems of particular interest to information

theorists will be introduced. None of these problems has

received adequate analytic treatment in theliterature. First,

we must decode in a system in which the codewordsare not

under the control of the system designer. The information

sequence is a sentence, and the corresponding transmitted

codeword is the phonetic representation of the sentence,

Manuscript received March 29, 1974.
F. Jelinek and R. L. Mercer are with the Computer Sciences Depart-

ment, IBM Thomas J. Watson Research Center, Yorktown Heights,
NY.

L. R. Bahl is with the Computer Sciences Department, IBM Thomas
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which is completely determined by the phonology of the

language and the speaker. Second, there is a probabilistic

relationship between the information sequence and the

codeword that is transmitted. This is due to the fact that

even a single speaker can pronounce the same sentence in

many different ways. Third, the number of symbols in a

codeword is a random variable, since word lengths and

sentence lengths are variable. Finally, the recognition

channel commits insertion and deletion errors in addition

to the usual substitution errors. The insertion and deletion

errors are due to imperfect segmentation, and the sub-

stitution errors are due to imperfect classification.

Fig. 1 is a block diagram of the speech recognition system.

The acoustic processor (AP) uses signal processing and

pattern recognition techniques to extract phonetic infor-

mation from the acoustic signal. In the AP that we will

consider here, this phonetic information is in the form of a

phonetic string. In general, the AP may provide more

detailed information and may even provide probabilistic

information. The linguistic decoder then uses the structure

of the language—its vocabulary, phonological rules, syntax,

and semantics—to produce an orthographic transcription

of the phonetic string.

The aim of this work is to recognize carefully spoken

utterances that are produced in a relatively noiseless environ-

ment. The utterances are drawn from a corpus, which at

present consists of two million words of patent applications

in the field of laser technology. The vocabulary is roughly

10 000 words. We use this corpus to construct a statistical

model of the language, andthis is used by the LSD during

the decoding process. The details of this model are discussed

in Section IV. Sections II and III describe the speaker and

AP models and the estimation of probabilities for them.

In Sections V and VI we explain the principles and the

implementation of the LSD. Section VII deals with some

refinements of the model and decoder.

II. Front END MODEL

Fig. 2 is a diagram of the speaker-AP model, which will

be referred to as the front end. It consists of three parts—

an essentially phonemic dictionary, a set of phonological

rules that models the speaker, and a noisy channel that

models the AP. The front end accepts orthographic text as

input and produces as output a string of symbols from a

phonetic alphabet A = (@;,a,,°°*,Qx).

The phonemic dictionary and phonological rules are

described in detail by Cohen and Mercer[6]. The phonemic
dictionary contains a set of phonemic base forms for each

word of the vocabulary. Each of these represents a basic

pronunciation of the word from which a number of other

Reprinted from /EEE Trans. Inform. Theory, vol. |T-21, pp. 250-256, May 1975.
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ECH |ACOUSTIC LINGUISTIC
SPEAKER PROCESSOR DECODER

ORTHOGRAPHIC
REPRESENTATION

   
  
         

Fig. 1. Block diagram of speech recognition system.

  PHONETIC

 
        

TEXT |PHONEMI: PHONOLOGICAL NOISY STRING
DICTIONARY RULES CHANNEL

}*-————- - SPEAKER————+ ACOUSTIC
PROCESSOR

Fig. 2’. Block diagram of front end model.

pronunciations are to be derived by the application of the

phonological rules. For example, the word library has at

least three phonemic base forms: /la'‘breri/, /la‘brori/,

/la*beri/.

The phonological rules account for variations in pro-

nunciation due 10 surrounding words, differences in dialect

and idiolect, rate of speech, etc. A typical phonological rule

has the form « -> B/y __ 6, where « and f are strings over

the phonetic alphabet A, and y and 6 are sets of such strings

that define the context in which the rule can be applied. All

rules are optional and apply on a single left-to-right pass

through the base-form string.

The phonemic dictionary and the phonological rules

comprise the sjeaker model in the following way. Given

the string of words corresponding to a complete utterance,

base forms for each of the words are selected with speaker-

dependent probabilities. The phonological rules then apply

to the base-form string with further speaker-dependent

probabilities. Conceptually, this process generates all the

possible pronunciations with associated probabilities. These

are conveniently represented by a directed graph with a

single starting rode and a single ending node[7], such that
any path through this graph traces out a possible pro-

nunciation, with its associated probability obtained by

forming the product of the probabilities on the branches.

The actual application of the phonological rules to a

base-form string is a very time-consuming process. Except

for rules that operate across word boundaries, the rules are

preapplied to the base forms to obtain a directed-graph

representation of each word. To accountfor the rules that

do involve word boundaries, the graphs have multiple

starting and ending nodes that are labeled with the con-

ditions that must be met by the preceding and following

words, respectively. As an example, Fig. 3 shows the

directed-graph lexical entries for apprentice and sorcerer

and the resulting directed graph for apprentice sorcerer when

preceded and followed by silence. Nodes that arise from

application of the same set of phonological rules have the

same probability distribution on their outgoing transitions.

Those nodes in the graph through whichall paths must pass

are called confluent nodes. The phonology is such that,

except for a few very short words, each directed-graph

lexical entry ha: at least one confluent node.

The AP mode]is intended to account for the segmentation

and classificaticn errors that occur during the signal pro-

cessing and pattern recognition process. The output

alphabet of the AP is denoted by B = (0,,°--,b,). Because

| K palatal consonants >)
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Fig. 3. Directed-graph lexical entries for apprentice and sorcerer and
resultant graph for apprentice sorcerer.

 

Fig. 4. Simple example of channel model for AP.

of segmentation errors, the channel model must handle

insertion and deletion errors as well as substitution errors.

Models for such channels are discussed in detail by Bahl

and Jelinek [8]. A simple example of such a modelis one
in which we associate with each input symbol a,¢€A a

probabilistic finite-state machine F(a,) that generates the

possible outputs for the input a,. Fig. 4 shows the state

transition diagram of such a machine, which hasinitial

state S, and final state S,. Associated with states S, and S,

are probability distributions on their outgoing transitions,

and associated with each transition is an output produced

by that transition. Sometransitions, called null transitions,

have no associated output. These are drawn in dotted lines

and labeled with a ¢ in the state transition diagram. In the

example of Fig. 4, the null transition from state S, to state

S, represents a deletion, the remaining transitions from

S, to S; represent substitutions, the paths from S, to S,

via S, produce two outputs and, therefore, represent

insertions. To accurately reflect the types of errors made by

the AP, it may be necessary that the machines F(-) be

associated not with single symbols from A but with strings

of symbols from A. It may, of course, also be necessary to

consider machines with more than threestates.

Both the directed-graph lexical entries and the prob-

abilistic finite-state machines F(-) are Markovchains. Given

a word sequence W, ,, = W1,W2,°**,Wm, We Can construct a

composite Markov chain that generates all of the possible

front end sequences for W, ,, by first concatenating the

directed-graph lexical entries for the words wW,,W2,°°°;Wmy

and then embedding in each transition the finite-state

machine F(-) associated with the label of that transition.

bly3



III. ESTIMATION OF PROBABILITIES FOR FRONT END MODEL

To carry out the decoding process, we must know 1) the

probabilities of the transitions in each directed-graph lexical

entrv, and 2) the probabilities of the transitions in each of

the probabilistic finite-state machines F(-). One way of

determining these probabilities is to transcribe by hand a

large amount of speech data for each speaker. Regarding

this transcription as the true input of the AP, one can in

principle estimate the probabilities associated with the

machines F(-) by comparison with the actual AP output

for the same utterance. One could also estimate the prob-

abilities associated with the directed-graph lexical entries

by determining which path in the directed graph of the

utterance is identical to the transcription. The amount of

speech that must be transcribed to make reliable deter-

minations in this manner is very large. Since hand trans-

cription of speech is a very slow and expensive process, this

makes the approach an unattractive one. Furthermore,

different transcribers often produce different transcriptions

for the same utterance, which leads us to question the

consistency of this approach.

We now propose a method for estimating probabilities

that does not involve hand transcription. Baum, Petrie,

Soules, and Weiss [9] have described an iterative method
for obtaining the maximum-likelihood estimate of the

parameters of a Markov chain, given a sample of the output

generated by the chain. Each iteration can be carried out

by using the algorithm of Bahl, Cocke, Jelinek, and Raviv

[10]. This method can be applied to the problem. We
proceed as follows. Text is read by the speaker and pro-

cessed by the AP, which produces a phonetic string. The

composite Markovchain for this text is constructed by the

method described in the previous section. The manner in

which this chain is constructed places constraints on the

probabilities associated with its transitions. For example,

each subchain corresponding to a particular machine F(a,)

must have the same probabilities. The method of Baumet al.

may be applied to obtain maximum-likelihood estimates of

the probabilities on the composite Markov chain. The

probabilities associated with each subchain F(a,) can then

be obtained by combining the probabilities associated with

each occurrenceof this subchain in the composite chain. This

method requires some initial crude estimates of the prob-

abilities, which can be obtained by examining a small

amountofdata.

Although the probabilities for the phonemic dictionary

and phonological rule models will certainly be speaker

dependent, those for the AP model will be much less so

because the APitself is trained to the individual speaker.

Once probabilities have been estimated for many different

speakers, it will be relatively easy to estimate probabilities

for a new speaker by choosing as an initial estimate those

of the known speaker whois dialectally most similar.

IV. LANGUAGE MODEL

The aim of any speech recognition system is to deter-

mine for an acoustic signal A and a language L that

sequence of words We L which maximizes the a posteriori

probability Pr {W | A;L}. Now Pr {W| A;L} = Pr{W|L}-

IEEE TRANSACTIONS ON INFORMATION THEORY, MAY 1975

Pr {A | W;L}/Pr {A | L}. The front end model provides us

with Pr {A | W;L}, and it is the function of the language

model (LM) to provide us with Pr {W|L}. The term

Pr {A | L} in the denominator is independent of W and,

therefore, need not be known.

We employ a probabilistic finite-state model to define the

language L andprovide us with the probabilities Pr {W | L}.

The probabilities associated with the model will be derived

from the laser patent corpus. It should be noted that the

decoding procedure is in no way dependenton thefinite-

state nature of the LM; it asks only for the probabilities

Pr {W | L}, caring nothing about howthey are obtained.

Weare well aware of the opinion held by linguists that

finite-state models cannot account for the performance or

competenceof speakers of a natural language. The following

arguments can be advanced in favorof finite-state models.

Current linguistic research and even many speech recog-

nition efforts are primarily concerned with semantic

interpretation, while the aim here is simply transcription.

Weknowofno syntactic-semantic theory thatis sufficiently

developed to support a real corpusas large as ours. Further-

more, most of the arguments against finite-state models

have been directed at word n-gram models in which the

possible state transitions are determined by observing the

(n + 1)-grams that occur. For finite-state models in which

the states are not word n-grams and in which the state

transitions are determined by moresophisticated techniques,

these criticisms are unfounded. No research into the

adequacy of more generalfinite-state models has been done.

With the availability of large computers, this appears to be

an opportune moment to make such an investigation.

Finally, one more advantage is that while there are many

efficient computational techniques known for finite-state

models, few techniques are available for models of any

other type.

The states of the model are vectors of the form S=

(w_4,° ° "WpS_45° ° “5S p,C_4,° ° ",C_m)s where, W_4,° ° *,W__,

are the k most recent words, s_,,-:+,s_, are the parts of

speech of the /(>k) most recent words, and c_,,°*°,C—m

are the representatives of the m content classes (defined

later) immediately preceding word w_,. The purpose of

including the most recent parts of speech in the states of the

model is to makeuse of local grammaticality, while the pur-

pose of the content classes is to use some information about

long-range semantic content. As an example, consider the

sentence: The future of America depends on the availability

of cheap energy. Using D for determiner, N for noun, P for

preposition, V for verb, and A for adjective, the correspond-

ing part-of-speech sequence is DNPNVPDNPAN. If we

assume that the only words that belong to content classes

are future and depend, then for k = 1,1 = 2, m = 1, the

resulting state sequence would be (¢,¢,¢,¢), (The,D,¢,¢),

(future,N,D,¢), (of,P,N,future(V)), (America,N,P,future

(N)), (depends,V,N,future(V)), (on,P,V,depend(V)),---,

(-,-,V,depend(V)), where So = (¢,¢,¢,@) is the initial

state and (-,-,N,depend(V)) is a terminal state. Associated

with a transition from state S; to S; is a word andits part

of speech and the probability of that transition, which is

denoted by P(S, | S;).

Lely
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We propose to obtain the transition probabilities by
Statistical analysis of the corpus. Thus it is necessary to

label the corpus with parts of speech and to determinefor

it an appropriate set of content classes. Currently we are

using a classification system of 29 parts of speech that have

been obtained by conglomeration of the 133 parts of speech

used by the Harvard Multiple-Path Syntactic Analyzer for

English [12]. The part-of-speech labeling of the corpusis
carried out by a probabilistic algorithm described elsewhere

[13]. The algorithm agrees with human labeling roughly

98 percent of the time.

In the state description we have included the k most

recent words explicitly. However, some words have sig-

nificant statistica] influence over a range of text; such words

are called content: words. Only adjectives, adverbs, nouns,

and verbs are considered as possible content words. Since

content words are of interest for their long-range effect,

grammatical inflection due to number, tense, etc., is con-

sidered unimportant. Content wordsare, therefore, divided

into equivalence classes called content classes, and one

memberof a class acts as a representative of that class.

For example,light (verb) represents the class {light (verb),

lighted (verb), lighting (verb), lights (verb), lit (verb)}, while

light (noun) representsthe class {light (noun), lights (noun)}.

Not all adjectives, adverbs, verbs, and nouns have long-

range statistical influence. We have adopted the following

procedure to determine those which do. After the text has

been labeled with parts of speech, each of the potential

content words is replaced by its representative. For each

pair of representatives we determine the number of times

they occur together within a specified span. If for any

representative th: co-occurrence statistics are significantly

different from the average, then the class it represents is

taken as a content class.

Once the text is labeled and the content classes deter-

mined, one may «stimate the probabilities of transitions by

determining the state sequence for the text and counting

the transitions that actually occur. In estimating the

probabilities, transitions that have never occurred should

not necessarily ise assigned zero probabilities. We are

investigating several ways of estimating the probabilities of

such transitions.

‘V. DECODING PRINCIPLES

We now consider the decoding of the AP output on a

sentence-by-sente:nce basis. Given the AP output Y, y =

Vi»¥20°**sYn» We wish to find that sequence of LM state

transitions Soy = SoS1,°°°,Sy% such that Pr {Spoy}°

Pr {Y, y | So,w} is maximized. State So must be a sentence

initial state and state S,, a sentence final state in the LM.

Corresponding to any state sequence So ,, = So.515°°*>Sms

there is a uniqiie word sequence W, ,, = W1,W2,°°*,Wm

determined by threstate transitions. The probability that the

LM assigns to ‘9, is denoted by P(S,,,) = P(S; | So) °

P(S2 | Sy)° +++ + POS | Si—1)-

Let G(Sq,,,) be the graph embodyingall possible phonetic

realizations of the word sequence W, ,,-, when followed

by w,,, which provides the necessary phonological right

context. Let g le a particular path through the graph

(denoted by ge G(Sy,,,)), and let u(g) be the probability

associated with g as determined by the speaker model.

Nowfor a given front end output Y, , = )1,¥2,°°*,¥, and

a state sequence Sp ,,, we define the conditional probability

Q(Y1.n1 So.) to be the probability that input W, ,,-1

(when followed by w,,) produces the output Y, ,. Clearly,

A¥in| Som = » Pr {Yin | g}uCg). (1)
geG(So,m

Let Q(Y, y | Som) denote the (NV + 1)-vector

{O(o | So m)s ON 1 | So m)> OY, 2 | So m)s mets

O(Y1| So,m)}-

Anefficient method for computing Q(- | -) is given in Bahl

and Jelinek [8].
Weassign to Sp,, the likelihood L(So,,,) given by

L(So,m) = P(So,m) X OYi» | Som)

° Pr {Y¥,4 1,N | YsWm12Wm>Smf- (2)

The term P(So,,,) is, of course, the a priori probability of

the state sequence So. Pr {Ynein | YisnWm—-1%mSm} 1S

the probability that the remainder of the output sequence

Y,+1:n iS produced by w,, (w,,-, merely provides the

necessary left context) followed by some sequence of words

ending in a period that can be produced from state S,,.

Since we cannot know exactly how much of the output

sequence Y,y is accounted for by input W,,,,-,, it is

necessary to sum overall possible values of n in (2). It

should be noted that whereas P(So,,,) involves the first m

words, Q(Y, ,, | Som) uses only the first m — 1 words, with

w,, providing the right context for the directed-graph lexicon

(DGL). Assuming that the pronunciation of the final word

(which must be sentence terminal punctuation) is complete

silence, the likelihood of (2) for a complete sentence So4

becomes P(Soy)° Pr{Y¥1,~ | So.w}, which is exactly what

weare trying to maximize. In fact,

Pr {Y,4 LN | Yi,Wm—1Vmm}

= Y Pr {Y¥,4 1,N> [= i | Ys nsWm—12WmsSm}

where J is a random variable whose value is the sentence

length. When S,, is a terminal state, the only contribution

to the sum is that for J = m, and thus Pr {Y,41.” | Yio

Wn—1>WnrSmt Teduces to 6,y (Kronecker delta).

In practice, the probabilities Pr {Y,, 41.0 | Y1.nsWm—12Wm-Sm}

cannot be obtained exactly, but we can make a reasonable

approximation by neglecting the dependence of Y,,4;,y on

Wn—1> Wm> Sm Lt is possible to make a simple Markov model

for the AP output and estimate its parameters by direct

observation. Such a modelwill provide us with probabilities

Pr {Y,,41.y | Y1,,}, which we use instead of Pr {Y,41,n |
YiwWm—12>WmSm} in (2). With this approximation, the

likelihood function is, of course, no longer exact for

incomplete sentences.

The LSD usesthe stack algorithm of sequential decoding

[14], [15] to find the most likely state sequence correspond-

ing to a given front end output Y, y. Each partially decoded

sequence Sp ,,, is represented in the stack by an entry of the
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form (So »3L(So,,)). Entries in the stack are arranged in

descending order of their likelihoods. We define the

successors of an entry (So,,;L(So,,)) to be the entries

(Som+1 = So,m>Sm+13L(So,m+1)) aNd (Som) = Sojm-19Sm3
L(So.m')), Where S,,+, is chosen such that P(S,.41 |S.) =

max, {P(S|S,,)}, and S,,’ is chosen such that P(S,,’ | S,,-1) =

max, {P(S| S,,-1)| P(S| S,,-1) < P(S,, | Sin—1)}. We assume

that no two transitions out of S,,_, have identical prob-

abilities. If they do, then the usual minor adjustment must

be madein the definition of S,,’. Occasionally no S,,’ exists,

in which case there is only one successor.

Decoding proceedsas follows.

0) Initialize the stack to contain the single entry

(So 13P0S0,1)° Pr{Y1,n}), where So ; = So,S, is chosen

such that P(S, | So) = max, P(S | So).

1) Let (So.m3L(So.)) denote the entry at the top of the

stack, 1.e., the one having maximum likelihood.If S,,

is a final state, then we stop and accept W,,, corre-

sponding to Sy, as the most likely input. Otherwise,

we replace (So;L(So,n)) by its successors, reorder

the stack, and repeat step 1.

VI. DECODER IMPLEMENTATION

The decoding algorithm of the previoussection is feasible

only if an efficient technique can be devised for evaluating

the likelihoods L(So,,,). The probabilities P(Sp ,,) are easily

obtained from the LM using the recursion P(S),,) =

P(Som—1) * P(Sin| Sm—1)- The probabilities Pr {Y,44.] Yin

Wn-1»Wm»Sm} have been approximated by Pr{Y,44."1 Yin};

which need to be computed only once for the output

sequence Y, y. This leaves the evaluation of the probabilities

Q(Y,.y | Som). An algorithm for computing these prob-

abilities is discussed in [8]. The complexity of the calculation
is roughly proportional to the product of the number of

nodes in G(S,,,,) and N, the number of symbols in the

output sequence. When computing Q(Y, y | Som+1) and

Q(Y1.» | So.m’), it is not necessary to deal with the complete

graphs for G(Som+1) and G(So,,,/) but only with the parts

that differ from G(S),,,). Let us denote by G*(Sy,,,) the

subgraph of G(S,_,,) up to the rightmost confluent node and

by O*(Y,,, | So.) the probabilities

O*(Y,, | Som) = y Pr {Y,, | g\u(g),

geG*(So,m

The probabilities Q*(Y, y|So,,) are obtained as a by-

product of the computation of Q(Y, y | So,,). To compute
the probabilities Q(Y, y | Som+1) and Q(¥;.y | Som’), one

need only know Q*(Y; y | So,,,) and those portions of the

graphs G(So+1) and G(S),,,') that differ from G*(Sp,,,).

Therefore, we store the vector Q*(¥,y|So,,) with the

stack entry for Sg ,,.

Fig. 5 is a block diagram of the LSD. The decoding pro-

cess is controlled by the word level search controller

(WLSC), which maintains the likelihood stack. Each entry

in the stack contains the path Sp ,,, the likelihood L(Sp,,,)

the probability P(S>,,), and the vector Q*(Y, 7 | So.m)-
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Fig. 5. Block diagram of LSD.

One iteration in the decoding process is as follows. The

WLSClocates the path Sp ,, having the highest likelihood.

The successors of So, must now be determined. To do so
the WLSCsendsthelast three states of path Sp, to the LM.

The LM determinesS,,,, and the probability P(S,,., | S,,)

and returns this information to the WLSC. Simultaneously

the LM sends the wordtriplet w,,— 1,WnsWm4+ 1 Corresponding

to the state sequence Sp,+; to the DGL. The DGL uses

these to determine the rightmost confluent node R of

G(So,m) and G*(Som+1), Which is that part of G(So.m+1)
that lies to the right of R. The phonology is such that in

virtually all cases R can be determined from w,,_, and w,,.

At most, the DGL will need to know w,,_.,, which could be

provided by the WLSC through the LM if desired. The

DGLsends G*(So,,4:) to the matching algorithm. The
matcher also receives Q*(Y, y | So,,) from the WLSC and

computes Q(Y1.y | Som+i1) and Q*(¥1,y | Som+1), both of
which it returns to the WLSC. The WLSCcan now com-

plete the entry for So,,,;, and insert it in the stack. The

procedure for computing the entry for the other successor

Som 18 similar. The WLSC terminates the decoding process

when the top of the stack corresponds to a complete

sentence.

The LM that we have described generates word and part

of speech pairs, and consequently the decoder finds the

most likely sequence of words and parts of speech for a

given utterance. The likelihood of a word sequence can be

obtained by summing upthe likelihoods of all the state

sequences that give rise to that word sequence. The decoder

could then operate on these likelihoods to find the most

likely word sequence. Webelieve, however, that the loss of

performance caused by using state sequence likelihoods

rather than word sequencelikelihoods will be negligible.

VII. REFINEMENTS

One possible shortcoming of the LM is that it does not

take advantage of any phonetic similarity between different

words. The LM can be modified in the manner shown in

Fig. 6. Fig. 6(a) shows a portion of the state transition

diagram of the LM. All the transitions indicated have
words whose phonetic representation starts with the

phonetic sequence corresponding to non. The phonetic

representations of nonsense and nonsensical agree even

further as do those of nonagenarian (N) and nonagenarian

(A). Fig. 6(b) shows a portion of a modified transition

diagram that produces the same words with the same
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Fig. 6. Modification ofLM state transition diagram to take advantage

of phonetic similarity.

probabilities as |*ig. 6(a), but takes advantage of the

phonetic similarit'' of the words. The advantages of such a

modification are twofold. First, the time used in computing

Q(Y;.y | So,m) is reduced because we need to compute these

for non only once and use them for any word that starts

with non. Seconc, the actual order of search may be

altered beneficially, e.g., in Fig. 6(a), the transition So,S¢

will be investigated before either of the transitions S»o,S4
or So,Ss, while in Fig. 6(b) S7,S (which is a combination

of So,S, and So,S'; in Fig. 6(a)) is investigated before S,,S¢

(which corresponcis to So,S¢ in Fig. 6(a)).

Although we hive described the decoding algorithm as

replacing the top stack entry with its successors, it may be

better to consider replacing the top several entries with their

successors simultsneously. Furthermore, it may be worth-

while to construct more than two successors for each stack

entry.

Anotherpossib:e modification to the decoding algorithm

would be to allow a two-waysearch, 1.e., a search in which

we decode the received utterance simultaneously in the

forward and the reverse directions. To construct a reverse

decoder we mus! of course build a reverse LM which

produces the sentences for the language in reverse order.

This reverse model can be easily obtained for anyfinite-state

machine by reversing the arrows in the state transition

diagram and replacing the probability P(S;|S,) by

"P(S; | S;) = P(S, | S;) + P(S;))/P(S;), where P(S;) is the

probability that a path through thestate transition diagram

will include S;. Tlie initial states of the reverse machineare

the final states ofthe original machine and vice versa. The

forward machine: defined by P(S,|5;) and the reverse

machine defined sy "P(S;| S;) are then isomorphic under

sequencereversal. We will use a left superscript r to indicate

quantities related to the reverse model. A state sequence

"\Sm,,m mm the reverse machine correspondsto the transitions

Sm, — Sm,+1 < °°* <— Sy, where Sy, is a final state. The

speaker and channel models are similarly reversible, since

they too are finite state. Once the reverse models have been

obtained, a reverse decoder that decodes from the end of

the received sequence Y, y can be implemented in exactly

the same manneras the forward decoder of Sections V and

VI. We can combine the forward and reverse decoders to

give us a two-way decoder. This decoder would have two

stacks, one for the forward paths and one for the reverse,

and we would extend the top stack entry that has the

greater likelihood. When extending a forward path, we

would not only construct the two successors discussed in

Section V, but also those successors that connect this

forward path to a reverse path. Let So,,,, be a forward path

and "S,,,.4 be a reverse path and let us assumethat the

transition S,,, — S,,, 1s possible in the LM. Then we would

construct the successor So ,,, = So,m,Sm, and determine the
likelihood for the complete path So4 = So.m,SmzSm2,M

from the entries for So _,,, and'"S,,,4. The a priori probability

of the complete path is given by

P(So,mz)* PCSing,a) (3)
P(Sin9)

The probability Pr {Y, y | So,4} is obtained as

Pr {Yin | Som}

= 2, Pr {Yin | Wim2} Pr {Yn+ in|Wis + im} (4)

P(Som) =
 

where W,,,, and 'W,,,41,4 are the word sequences corre-

sponding to S,,,, and "S,,,4. The probabilities on the right

side of (4) are, of course, easily obtained by extending

O*(Y,.y | Som) and "O*(¥i.|"Sin.,m), Tespectively. The

likelihood of the complete path Sp4 is obtained by multiply-

ing P(So.y) and Pr {Y,,y | So,1}, which have been obtained

from (3) and (4). Similarly when extending a reverse path,

we would try to connect to partial forward paths.

It would, of course, require considerable computation to

check which partial reverse paths are connectable to a

forward path being extended. A simple heuristic technique

for limiting the search is as follows. For any So», let

Nmax(Som) be that value of n (presumed unique) which

maximizes Pr {Y, ,| Som}. Then Mpax(So,m) 18 the most

likely right boundary for So,,,. Similarly, we can define

Nmax('Sm.m) to be the most likely left boundary for 'S,,x.

When trying to connect Sy ,,, to "S,,,.4, we check if Muax

('Sins.m) — Mmax(So.m,) < @ where e is a small integer. If

this condition is not met, we do not try to connect the two

paths. To facilitate in checking this condition, we can keep
foreachn = 0,1,---,N, a list of all forward paths Sp,,, such

that n,,., (So,,) = v. Similar lists can be kept for reverse

paths. To decide if So,,,, should be connected to any reverse

path, we consider only those reverse entries that are in the

reverse pathlists for A,,4,(S0,m) + n’,n' < e. The basic idea

here is that 7,,,,(So,»,) gives us the mostlikely right boundary

for So,,, and we should try to connect S),,, only to those

reverse paths that have a likely left boundary close to
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Nmax(So.m). At any time we need only save one complete

path—i.e., the one with the highest likelihood—andifits

likelihood is higher than the partial paths in both stacks,

decoding is terminated.
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Application of Pattern Recognition to Steady-
State Security Evaluation in a Power System

CHOK K. PANG, ANTTI J. KOIVO, AnD AHMED H. EL-ABIAD

Abstract—Power system operation is outlined and system security is

defined. The need for security evaluation in power system operationis

discussed, and the ev.aluation is presented as a pattern recognition prob-

lem. A suitable straizhtforward and quick procedure is used to select a

small numberof vari:bles as features from a large set of variables which

are normally available in power systems. Comparison is made on the

security classification performances of a number of different types ot

classifiers. The training of classifiers is carried out by a search algorithm

which seeks to minimize the number of classification errors.: The pro-

cedure to determine the security functions (classifiers) is illustrated by an

example, and simulstion results on the steady-state security of the

CIGRE 225-kV syst«m show that the pattern recognition approach to

security evaluation i; encouraging. Some uses of security functions in

the control and operation of power systems are outlined. The effect of

manyof these uses cannot be achieved as easily by other existing methods.

Finally, some of the problems associated with the application of pattern

recognition to power system security evaluation are discussed.

I. INTRODUCTION

RESENT-D.AY power systems are large and complex.

With the cur:ent rise in the demandofelectrical energy,

powersystemswill continue to grow both in size and com-

plexity. Also, our dependence onelectricity is so great that

it is essential to have uninterrupted supply of electrical

powerwithin set limits of frequency and voltage levels. Due

to economic reasons and uncertainties in the forecast of

loads and the cornpletion date of new facilities, power sup-

ply reliability does not attain the 100-percent level. The

building of extra high voltage (EHV)tie lines has resulted

in further propagation of the effects of disturbances. Con-

sequently, the burden on system operators to ensure that

all customers ate satisfied has increased tremendously.

Therefore it becomes a necessity to develop methods for

effective control and operation of power systems [1], [2].
A quick security evaluation of power system performance

using real time data will aid the operation of the system. In

fact, the operators will be able to detect conditions which

maylead to possible failures or deteriorations of the quality

of the power suy»ply before they actually occur. The eval-

uation will forewarn the operators that the system is in-

secure under csrtain conditions and that appropriate

precautions and/or actions should be taken quickly.

Manuscript received January 22, 1973; revised June 15, 1973. This
work was supportec| by the NSF under grant GK-16245. This paperis
part of a dissertatioa by C. K. Pang submitted to Purdue University,
Lafayette, Ind., in partial fulfillment of the requirements for the
Ph.D. degree.

C. K. Pang is wit:1 Power Technologies, Inc., Schenectady, N.Y.
. J. Koivo and A. H. El-Abiad are with the School of Electrical
neering, Purdu:: University, Lafayette, Ind. 47907.

Security evaluation using computer simulation on current

system status has been recently proposed [3], [4]. Essen-
tially, load flow and transient stability studies are performed

from time to time. This usually involves rather long com-

puter time, and the results generated are voluminous.

Pattern recognition technique can be used to overcome

the shortcomings of computer simulation in security eval-

uation. In pattern recognition the main bulk of the simula-

tion is done off-line. Using the off-line results, security

evaluation could be carried out in a very short time [4], [5].
This paper gives an outline of power system operation

and presents the evaluation of system security as a pattern

recognition problem. Thelatter involves the determination

of security functions which describe the security of a power

system, and these functions depend on certain current

measurement or data. A pattern recognition approach to

steady-state security evaluation for the CIGRE 225-kV

system (Appendix) is described. Though fast repetitive load

flows [4] and distribution factors [6] programs are capable
of evaluating steady-state security quickly, they do not

possess the samepotentiality of pattern recognition in many

of the uses which are discussedin the later part of the paper.

At present transient stability programs demand far too

much computing time to be of use in on-line evaluation of

transient security [4], and hybrid simulation [7] might be
an alternate solution to this problem. In view of the neg-

ligible computing requirement once security functions have

been determined, the superiority of pattern recognition

approach maybeexploited in this area. Encouragingresults

have been reported on the application of pattern recognition

to transient security evaluation [4], [8]. However, the
approach described herein has been shown to give much

better classification performance, and to be moresuitable

for use in power systems [19] than those in [4] and [8].
Though only results on steady-state security are presented,

it may be stressed that the same procedure can be used for

transient or dynamic security when propertraining sets are

available. But problems such as excess computing effort

required to generate the necessary training sets and the

choice of variables as features could present additional

difficulties for the application of pattern recognition to

transient or dynamic security.

Il. POWER SYSTEM OPERATION

The primary aim of a powersystem is to provide adequate

uninterrupted supply of powerof certain quality to meetall

the demands of the customers. To achieve this aim, the

operation of power system involves many interrelated

Reprinted from /EEE Trans. Syst., Man, Cybern., vol. SMC-3, pp. 622-631, Nov. 1973.
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studies [9], [10]. These include the following:

load flow studies

stability studies

fault analysis

economic dispatch

unit commitment

maintenance planning

spinning and reserve requirement

load-frequency control

load forecasting.

A power system network comprises a numberof nodesor

buses which are linked by branches or lines. Connected to

some buses are generating units, while to some other buses

are the loads. Components such as transformers and con-

densers may also be found at some of the buses. Poweris

transferred from bus to bus through the connecting lines.

The powerflowis strictly governed by the electric network

equations. The flow pattern depends mainly on the load and

the generation distributions and the network configuration.

The amount of power generated by each unit is constrained

by its capacity. The powerflowing in each line is limited by

its rating, and so is that handled by each transformer. For

system security purposes, constraints may be imposed on

the bus voltage angle across the lines. Voltage levels are to

be within acceptable range. All the preceding conditions

may be expressed in the following mathematical equalities

and inequalities [9]:

N

j=l

N

QG; — QL; = J; Y VY; sin (6; — oF — 0;;) (2)
j=1

PGmnaxi 2 PG; = PGmin i (3)

OGmmaxi = QG; 2 OGmnin j (4)

Vinax i 2 V; = Vinin i (5)

a; 2 |d,;| = 10; djl,

i= 1,2,--°.N, j=iti,---,N (6)

where

PG; real power generation at bus i

PL; real power demandat bus i

OG; reactive power generation at bus i

OL; reactive power demandat bus i

V; voltage magnitude of bus i

0; voltage angle of bus i

Yij magnitude of (i,j) element in bus admittance

matrix

OF angle of (i,j) element in bus admittance matrix

Vinaxi maximum voltage magnitudeat busi
Vinin i minimum voltage magnitude at bus

PGnax , ™aximum real powergeneration at bus i

PGini |§™inimum real power generation at bus i

QOG.nax; Maximum reactive power generation at bus i
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minimum reactive power generation at bus 7

maximum voltage angle between bus / and bus/.
OGnin i

aii

The equalities and inequalities (1)-(6) may be expressed in

a more compact form [11]:

(7)

(8)

where wu is a set of independent variables and x is a set of

dependentvariables.

g(x,u) = 0

h(x,u) < 0

A. Normal Operating State

Whenall the equality and inequality constraints, g(x,u) =

0 and A(x,u) < 0, are satisfied, the power system is said to

be in the normal operating state. Under this condition all

the demandsare metat the specified frequency and voltages,

and all the system components are loaded within acceptable

limits. For economic reasonsthe operating costat this state

is minimized. Much fuel cost savings are obtained through

economic dispatch and unit commitment of the available

generators.

It is the aim of the operators to maintain the system in the

normal operating state under foreseeable circumstances.

Controls chosen by the operator to achieve this aim are

thus preventive in nature. Such controls are termed

preventive controls.

B. Emergency Operating State

Whenall equality constraints g(x,u) = 0 are satisfied and

a subset of the inequality constraints A(x,u) < 0 is violated,

the power system is said to be in the emergency operating

state. This could come about when some componentsare

overloaded or when the specified quality of the supply

cannot be maintained.It is also possible that the system is
in the process of losing synchronism.

Under the preceding circumstances, the system will con-

tinue to deteriorate if no control actions are taken. The

supply to some customers may have to be curtailed as a

measure to save the system from falling apart. Control is

needed to bring the system to a state such that the whole set

of inequality constraints is satisfied. At the same time,

maximum demand should be metso as to cause minimum

inconvenience to the customers. Actions taken constitute

the emergency control.

C. Restorative Operating State

Whena subset of the equality constraints g(x,u) = 0 is

violated and all the inequality constraints A(x,u) < 0 are

satisfied, the power system is said to bein the restorative

operating state. This normally occurs after an emergency

during which the supply to some customers has been

curtailed.

Now,the control objective is to restore all the supply and

return the system to the normal operating state in minimum

time. All controls designed to achieve this end come under

the namerestorative control.
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Ill. System SECURITY

In practice it is not sufficient just to maintain a system in

the normal operating state. Under certain conditions, the

occurrence of some disturbances may cause the system to

go into an emergency such as the overloading of lines and

violation of voltige limits. In this framework, the security

of a system will next be defined. A set of most probable

disturbances (contingencies) is first specified. This set of

disturbances ma}, consist of the following:

a single line out

a loss of a generator

sudden loss of a load

sudden change: of flow in aninter-tie

a three-phase fault in the system

loss of lines on the same right-of-way.

Suppose that 1 power system in the normal operating

state is subjectec. to the set of disturbances, one at a time.

If for every single disturbance in the specified set, the system

remains in the riormal operating state, then the system is

said to be secure. Otherwise, it is insecure.

It is apparent that the larger the set of disturbances the

more stringent is the security standard. The membersofthe

set of disturbanc:s will depend on the system involved and

the standard of security required. We maycall the secure

normal operatin;. state the preferred state and the insecure

normal operating state the alert state. A power system

should therefore 2e maintainedat the preferred state as long

as possible. Shculd the system go into the alert state,

actions like shifting of generation and changing of trans-

former tappings may haveto be taken to bring the system

to the preferred state. Such control actions constitute the

security controls.

Power system security may be divided into three modes,

namely: 1) stead'’-state security which deals with the steady-

state condition of a system; 2) transient security which

concerns the transient stability of a system whenit is sub-

jected to a disturbance [12]; and 3) dynamicsecurity which
pertains to the svstem responses of the order of a few min-

utes [13]. Only studies on the first one will be presented
herein. However, they can be applied to transient and

dynamic securitizs in the same fashion.

IV. SECURITY EVALUATION AS A PATTERN RECOGNITION

PROBLEM

In order to provide satisfactory service to all customers

at all times, it is essential for the power system to be secure

under all circuristances. The conditions of the environ-

ment, like the weather and the load demand by customers,

are always chaning, hence the state of the power system 1s

never static. Therefore some kind of security evaluation or

analysis must be carried out from time to time to check if

the system is secure or not. An on-line evaluation will

reveal to the op: rators whether control is needed to ensure

system security. For off-line purposes, security evaluation

could aid in many planning and operating routines which

may be very vitil to the security of the system. These 1n-

clude unit commitment, maintenance of components,

economic dispatch, and addition of new componentsor any

general system expansion.

Any incorrect information could lead to wrong actions

which may result in breakdown of components andinter-

ruption of supply to customers. Many power system

phenomena happen so fast that both the decisions and

actions have to be made quickly. Economic factors are

always present in any venture. Until such time when a power

system can be fully automated, human operators will be

involved in the maintenance of system security. Owing to

forced and scheduled outages of components plus the

continual rise in the demand of power, the system is sub-

jected to frequent changes. In view of the preceding facts,

any security evaluation scheme should possess certain

characteristics. The scheme should be

accurate

consistent

quick

easy to implement

adaptable to system changes

of reasonable cost

able to provide results which can beeasily interpreted.

In order to be able to have accurate and consistent

evaluation of the security of power systems, the measure-

ments of the various variables obtained must be accurate.

In general, these measurements are not very accurate and

have varying degree of accuracy. The inaccuracy could be

due to the presence of noise in the measuring devices and

communication channels. Sometimes malfunctioning of

equipment components could give rise to grave errors in

the measurements. However, the effects of noise can be

reduced and the accuracy of the measurements improved

with the use of stateestimation. Such applications of state

estimation to power systems have been proposed recently

[14]-[16]. In fact, commercial state estimation programs
are presently available to the utility companies. Henceitis

reasonable to assume that accurate measurements of vari-

ables are available for security evaluation purposes and

other aspects of power system operation. Such an assump-

tion is madein this paper.

Someof the questions that will be encounteredin security

evaluation are as follows.

Is a normal operation state of a power system an alert

or a preferred state?

If the system is in an alert state, what modeof insecurity

is it?

Does a disturbance result in insecurity?

Will a certain type of insecurity occur when a system is

subjected to specified disturbances?

It is clear that each question will have two or more

answers. In cases where there are more than two answers,

the questions can be broken up andrephrasedso that each

question will have two answers.

From the preceding, it may be desirable to have an

indicator for each mode ofsecurity discussed in the previous

section. The indicator could be represented by one or more
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decision criteria which can be specified by mathematical

functions. These shall be termed security functions herein.

Security functions for each of the disturbances may be found

also. These will point out if a particular disturbance would

result in insecurity. Security functions showing the type of

insecurity, such as violation of voltage limits and overload

of components, may be useful in helping to decide the

controls to be initiated. This series of security functions

will invariably assist the operators to maintain a power

system in the preferred state.

In the pattern recognition terminology, the preceding

security functions areclassifiers or discriminating functions.

Classifiers can be designed to provide the answers to the

many questions that will be encountered in security evalua-

tion. Some of these questions have beenlisted already. It

can be seen that two-class classifiers will be suitable for use

in security evaluation purposes. Each set of measurements

describing a state of the power system is termed a pattern.

There are many measurements available and some of them

are bus voltage magnitudes and angles, power generation

and load at individual buses, power losses, and the flow of

powerin each transmissionline.

Pattern recognition has a number of attractive features

for use in security evaluation. The major bulk of the studies

involves the determination of the weights associated with

each security function or classifier, and this can be done

off-line. Once the weights have been obtained, information

of the current state of the power system is used to compute

the value of the function which is a measure of the security.

Normally, this computational requirementis very little and

hence such approachis suitable for on-line security evalua-

tion. If security functions with the capability of giving

acceptablepercentage of correct classification can be found,

it can be seen that the pattern recognition approach to

security evaluation could meet most of the requirements

listed earlier in this section. In addition, by having the
security functions as added constraints to economic dispatch

and scheduling programs, the power system is then re-

stricted to operate in the secure state most of the time. From

the preceding one can conclude that pattern recognition

approachto security evaluation is promising. The following

section describes such an approach for the CIGRE 225-kV

system. The description of the system is given in the

Appendix.

V. NUMERICAL EXAMPLE

The application of pattern recognition to security evalua-

tion of a powersystemis illustrated below. The description

of the power system used in this work isprovided in the

Appendix. Only studies on the steady state security for the

system will be presented (herein, “‘the system’’ will mean the

CIGRE 225-kV system). As mentioned before, the studies

can be applied to transient and dynamicsecurities in the

same fashion.

A. Steady-State Security

Ten single-line outages (one at a time) form the set of

disturbances to be tested for the steady-state security in the
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system. Outages on twoofthe thirteen lines are not included

in the disturbance set as they will cause the system to break

up into two separate systems, and hence complicate the

problem. Studies show that in most of the load flows for

the outage of line 3-9, feasible solutions cannot be found,

so line 3-9 outage is not included as a memberin theset of

disturbances. This could be due to the low limits imposed

on certain lines; in practice such a condition will not be

encountered in a well-designed system. Hence only ten

single-line outages are considered instead of the possible

thirteen.

For a given normaloperatingstate (a pattern), ten outage

load flows are made. The total generation cost to meet the

load is minimized and the penalty method [17] is used in
the optimal load flow solution. If the system remains in the

normal operating state for all the ten single-line outages

(i.e., a feasible solution is obtained for each of the ten

outage load flows), then the pattern is a secure pattern

(preferred state), otherwise it is an insecure pattern (alert

state).

B. Training Set

Having defined the steady-state security in the previous

section, the next step is to generate a training set. The

system loads are examined. Out of the given 168 hourly

loads (for a week), 35 are chosen such that the rest can be

regarded as small deviations from these loads. This is done

by assigning levels to the load at individual buses and

studying the combinations of these load levels for each of

the 168 h. The total active load of the system varies from

675 to 2030 MW. Thetotal system load is broken into five

ranges, namely: 1) 600 to 900 MW;; 2) 900 to 1200 MW;;

3) 1200 to 1500 MW;; 4) 1500 to 1800 MW;; and 5) 1800 to

2100 MW.For each range, six sets of unit commitment are

selected with spinning reserve varying from 5 to 20 percent

of the maximum load. This is to reflect on the different

schedule of units that may be encountered in practice. The

preceding choice of loads and unit commitments should be

able to ensure a good representation of the actual range of

operating conditions.

To simplify the optimal load flow problem, an equivalent

quadratic cost function for each generating bus is computed

using the given quadratic cost functions of the committed

units at that bus. Optimal load flows which minimize the

total generation cost are performed for the 210 cases (35

loads x 6 unit commitments). It is found that 179 cases

give feasible solutions (i.e., the system operation is in the

normal state). The other 31 cases do not have feasible

solutions andare of nointerest in this study. The preceding

179 cases or patterns makeupthetraining set for the study

of steady-state security.

Ten outage load flows (one for each of the single-line

outages in the disturbance set) are made on each of the

patterns in the training set to determineif it belongs to the

secure or the insecure class. Load flow results show that

75 patterns are secure and the other 104 patterns insecure.

(This large proportion of insecure patterns may be ex-

plained by the low limits imposed on someline flows and
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the arbitrary choice of unit commitments.) Table I gives

the outcome of th: outage load flows.

Some patterns in the training set can be obtained from

planning studies. [n certain utility companies where con-

tingency evaluatioris are performed during system operation,

additional patterns are available for inclusion in the training

set. These will hel» to reduce the amountofeffort required

in off-line studies io generate the trainingset.

It must be stressed that the training set obtained should

be representative of the whole range of the system operating

conditions. This 1s an important requirement. Otherwise,

the classifiers determined may notbe able to classify future

patterns correctly. In most pattern recognition problems the

preceding requirement is verified. This is normally done by

generating many (raining sets randomly andtesting their

corresponding resulting classifiers for consistent classifica-

tion results. When generating the training set, care has been

taken to ensure tht such requirementis satisfied, henceits

verification is not very essential. Furthermore, the cost in

generating the training set for the determination of security

functions may be substantial, and thus should be kept to a

minimum whenever possible.

C. Features Selection

Foreach of the patterns in the training set, the following

variables are considered:

V voltag: magnitude at a bus

6 voltag: angle at a bus

PG active ower generation at a bus

OG reactivi2 power generation at a bus

PL active oad at a bus

OL reactiv> load at a bus

Pross total ative powerloss in the system

Qross total reactive power loss in the system

PGRA PG,,, — PG

PGRB PG — PGhuin

QGRA OGmax ~ QG

QOGRB QG ~~ OGmnin

where

PGmax maximum active power generation at a bus
PG,.;, Minimum active power generation at a bus

OG... maximum reactive power generation at a bus

QOG,,;, minimum reactive power generation at a bus.

Also included are the sums of some of the aforementioned

variables; they are: >} PG, > OG, > PL, >} OL, >) PGRA,

> PGRB, ¥ OGKA, and © OGRB. Neglecting thosetrivial

variables at certiuin buses (such as zero load and zero

generation), ther: are altogether 85 variables. Thus each

pattern will hav: 85 components. Variables such as in-

dividual line flows and bus injection powers may be in-

cluded if requirei. It is felt that 85 variables should be

sufficient for the ;tudy at this stage. Power systems with a

few hundred buses are commonin practice. Therefore the

numberofvariates that are available is very large for these

systems.

TABLE I
OUTAGE LOAD FLOW RESULTS FOR TRAINING SET
 

 

Number of Cases
 

Line Outage

 

Feasible Infeasible

Line 1-3 156 23

Line 1-4 104 75

Line 2-3 144 35

Line 2-10 155 24

Line 3-4 147 32

Line 4-6 166 13

Line 4-9 175 4

Line 4-10 135 44

Line 6-8 138 41

Line 8-9 173 6

 

It can be seen that the numberof variables obtainable for

a pattern can be very large in power system security evalua-

tion. For transient and dynamic securities this number would

be even larger as additional variables may have to be in-

cluded. Thereforeit is desirable to determine a small number

of features from the large set of variables for classification

purposes. Normally feature extraction involves the use of

all the components of the pattern vector and mathematical

formulation, such as the Karhunen—Loéve expansion. Thus

each of the features obtained is a function of the com-

ponents of the pattern vector; as a special case the features

form a subset of the components of such a vector. This is

more relevant and suitable to power system purposesasit

will restrict the numberof variables that need to be obtained

accurately.
The following F function is used as a criterion in the

selection of a variable as feature:

— |m, ~ m,|
F (9)

o, + 6;

where

m, mean ofthe variable in the secure class
m, mean of the variable in the insecure class

. variance of the variable in the secure class
i
2

7 variance of the variable in the insecure class.qa
9

This function provides a measure ofthe classification errors

that could arise when the variable is used as the only

feature. The larger the value of F, the lesser would be the

classification errors. Hence variables to be used as features

should have high values of F. The preceding function is

invariant as far as any scaling is concerned. This is par-

ticularly an advantage as the valuesof certain variables

could differ by a few orders.

Feature extraction begins with the computation of the F

values for all the components (variables) of the pattern

vectors in the training set. The variable with the largest F

is selected as the first feature; without loss of generality,

let this variable be x,. When selecting other features,

redundant information has to be noted asit is unnecessary.

Hence the correlation coefficients between x, and each of

the rest of the variables are determined. A simple procedure
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is to discard all variables which are highly correlated to x,

(say, with correlation coefficient greater than 0.9) thereby

removing most of the redundant information. Now, from

the remaining variables, the one with the largest F value is

selected as the second feature, say x,. The preceding pro-

cedure is repeated until the required numberof features has

been reached, or the F values of the remaining variables are

small. It can be seen that this process is straightforward,

quick, and suitable for power system problems in view of

the very large number of variables available. The features

selected and their respective F values are given in Table II.

D. Training Procedure

Having selected the features (z,,Z,°°°,Z,,), the next step

is to determine the decision function, or classifier; in this

case it is the security function. This is achieved using the

training set. A simple security function is a linear (first

order) function of the features as follows:

S(z) = @ + ¥ oz; = zo" (10)
i=1

where Z = (2;,22,°°*,Zm1) and @ = (@1,@2,°**,@,,Wo),

and the superscript JT denotes the transpose of a vector or

matrix. The weighting coefficients or weights (w,,@,,°°-,

Wm») are determined such that S(z) > 0 if z is a secure

pattern and S(z) < 0if z is an insecure pattern.
In addition to the aforementioned linear function, more

sophisticated functions can be used. One is of multiple

function which may be composed of a number of linear

functions. Its classification procedure is one of the

following.

1) The pattern z is secure if S,z) > 0, for all i =

1,2,-*-,p, where each S,(z) is a linear function of z, and p

1S Some integer. Otherwise, z is insecure.

2) The pattern z is insecure if Sz) < 0, for all i =

1,2,-*-,p, where each S,(z) is a linear function of z, and p

is some integer. Otherwise, z is secure.

The weights are determined bya training algorithm used

in the solution of linear inequalities [18]. This training
procedure, termed the optimal search herein, seeks to min-

imize the numberofclassification errors iteratively. In the

studies it has been found to be desirable to have higher
percentage of correct classification than those obtained by

the first-order functions. Hence second-orderfunctions (11)

have also been studied:

M
e

M
:

S(z) = @ + WZ; + Y) ;;2;2Z;- (11)
im1 joi1i 1

By considering the product terms z,z, as individual features

the function becomesa first-order one, and the training can

be done in the same manner.
In some cases it may be desirable to introduce a bias on

the classifiers. Biasing affects the frequency of occurrence

of the following two types of errors:

1) false alarm: secure pattern is classed as insecure

2) false dismissal: insecurepattern is classed as secure.
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TABLEII
FEATURES FOR STEADY-STATE SECURITY
 

 

 

Features F-Values

by 0.74

PLOSS 0.62

QGRB, 0.61

V3 0.57

Vi0 0.57

QG 0.57

 

A bias in favor of insecure patterns will tend to reduce the

number of false dismissals while a bias favoring the secure

patterns will decrease the false alarm errors. It can be seen

that false dismissals should be kept to a minimum in power

system security evaluation. Either one of the preceding

types of biasing can be included in the optimal search

method. Also, the degree of biasing can be adjusted without

muchdifficulty. Classifiers or security functions with a bias

are determined using the optimal search method. The per-

formance of the classifiers obtained are presented and

discussed in the following section.

E. Simulation Results and Discussionsfor Steady-State

Security

Theclassifiers (security functions) obtained from training

are first checked by using them to classify the 179 patterns

in the training set. Next, a test set of patterns is generated in

the manner to be described later. This test set is used to

determine the performance of the classifiers. Herein, the

kind ofclassifier used in each case is denoted by a numeral

preceding an alphabet. The numeral denotes the number of

functions. The alphabet f indicates first-order functions

and s second order. For example, a 2f classifier is made up

of two first-order functions while a ls one is made up of

one second-order function.

Classification of Patterns in the Training Set:

Table III contains the results of classification of patterns

in the training set by various classifiers and using the

features in Table II. It can be seen that second-order

classifiers always have less classification errors than first-

order ones. Also, the use of two-function classifiers gives

higher percentage of correct classification than those with

one function only. The effects of biasing in favor of a class

of patterns during training are clearly shown in Table III.

It can be seen that the numberoffalse alarms (secure pattern

classified incorrectly) or false dismissals (insecure patterns

classed as secure) can be greatly reduced (if necessary, to

zero for the patterns in the training set) by biasing the

classifier properly. The results with over 90-percent correct

classification are definitely encouraging.

One way to aid the operator in the choice of control

actions when a system goesinto the alert state is to identify

the disturbances which would cause the system to go into

an emergency. Thus single-disturbance classifiers are

obtained for each member of the disturbance set. Such
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TABLE III
STEADY-STATE SECURITY CLASSIFICATION RESULTS ON TRAINING SET

+ +
Classifier 1f ls 2£ 2s 4f* 4s*®* 4€£ 4s

Number of Secure 3 4 4 6 0 1 31 ll

Misclassed Insecure 24 8 12. 1 14 2 2 0

Patterns Total 27 12 16 7 14 3 33 tl

 

 

Percent Correct 78.2 93.3 91.1 96.1 92.2 98.3 81.6 93.9

*
Bias on classifier - jsiecure:insecure = 10:1

+

Bias on classifier - ::ecure:insecure = 1:10

TABLE IV
STEADY-STATE SECURITY CLASSIFICATION RESULTS ON TRAINING SET

FOR SINGLE-DISTURBANCE CLASSIFIERS
 

 

Percent Correct Classification
 

 

Disturbance lst Order Fn. 2nd Order Fn.

Line 1-3 out 97.2 98.9

Line 1-4 out 87.1 93.3

Line 2-3 out 95.0 96.6

Line 2-10 out 94.4 98.9

Line 3-4 out 96.6 98.2

Line 4-6 out 94.4 _ 96.6

Line 4-10 out 97.2 98.2

Line 6-8 out 97.2 97.9

 

classifiers will indicate if a pattern will remain in the normal

operating state should a particular disturbance occur. Table

I showsthat line 4—) and line 8-9 result in very few cases of

insecurity, so there is no great need to have classifiers for

these two disturbances. In cases where they do, one or more

other line outages <lso result in insecurity. For each of the

other eight disturbances, feature extraction and training

are carried out in the manner described earlier. A set of six

features are obtained for each disturbance. Theresults of

classifying the patterns in the training set using the weighting

vectors determined are given in Table IV.

It can be seen that for each of the eight disturbances, the

classification results are good and encouraging, over 90
percent being correct in most cases. In fact, single second-

orderclassifiers have correct classification close to 100 per-

cent in all cases except one with 93.3 percent. The results

of first- and second-order single-function classifiers are also

compared. On the average, a second-order function pro-

duces only about half as many misclassified patterns as a

first-order function. |

Classification of (Patterns in the Test Set:

A test set of patterns is generated in the following manner.

Thirteen loads are :hosen from the 168 hourly loads (for a

week) with none of them the same as the 35 loads selected

to generate the trai1ing set. These 13 loads cover about the

same range as th: weekly system load. Additional unit

commitments are selected in the same manner described

TABLE V
OUTAGE LOAD FLOW RESULTS FOR TEST SET
 

 

Number of Cases
 

 

 

Line Outage Feasible Infeasible

Line 1-3 79 11

Line 1-4 55 35

Line 2-3 78 12

Line 2-10 78 12

Line 3-4 74 16

Line 4-6 83 7

Line 4-10 68 22

Line 6-8 70 20

TABLE VI
STEADY-STATE SECURITY CLASSIFICATION RESULTS ON TEST SET FOR

DIFFERENT CLASSIFIERS
 

 

Percent Correct Classification

2nd Order Fn.

 

Purpose of Classifier lst Order Fn.
 

Security 84.4 87.8

Line 1-3 out 96.7 92.2

Line 1-4 out 77.8 84.4

Line 2-3 out 95.6 92.2

Line 2-10 out 91.1 87.8

Line 3-4 out 94.4 88.9

Line 4-6 out 86.7 84.4

Line 4-10 out 87.8 91.1

Line 6-8 out 96.7 95.6

 

earlier. Using the 13 loads and all the unit commitments

(including those obtained for the training set), the test set

of 90 patterns is generated following the procedure used in

generating the training set. Forty of these patterns are

secure while the other 50 are insecure. The results of the

individual outage load flows are given in Table V.

Theclassifiers obtained in the training process (by means
of the optimal search) are used to classify the patterns in

the test set. Using single-function classifiers and the features

determined, the classification results are shown in Table VI.

All cases except one have over 80-percent correct classifica-

tion; in fact, half of them exceed 90 percent. A final studyis

madeby including the test set in the training set to form a

larger training set with 269 (90 + 179) patterns. One

hundred fifteen of these are secure while 154 are insecure.

It can be seen that this new trainingset is a better representa-

tion of the range of the system operating condition than the

previous one. Hencethe new classifiers obtained by the use
of new training set should give better classification results

than those before. The weights for the new classifiers can

be determined by the optimal search method using the old

weights as the initial values. Table VII showstheclassifica-

tion results using classifiers newly determined by optimal

search to classify patterns in the new training set. All but

two cases have over 90-percent correct classification. In

fact, most of them are greater than 95 percent with many

nearing 100 percent. For all but two cases, second-order
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TABLE VII
STEADY-STATE SECURITY CLASSIFICATION RESULTS ON NEW TRAINING

SET FOR DIFFERENT CLASSIFIERS
 

 

Percent Correct Classification
 

 

Purpose of Classifier lf 2f ls 2s

Security 87.7 90.7 91.8 95.5

Line 1-3 out 98.1 98.5 97.4 98.5

Line 1-4 out 87.0 90.7 92.6 93.3

Line 2-3 out 94.8 94.8 96.3 97.4

Line 2-10 out 94.4 96.3 97.8 98.9

Line 3-4 out 97.0 97.0 97.8 98.9

Line 4-6 out 95.2 96.3 97.0 97.4

Line 4-10 out 96.7 97.0 97.8 98.5

Line 6-8 out 97.8 97.8 97.8 98.5

 

function classifiers have less errors than their corresponding

first-order function classifiers. Also two-piece-function clas-

sifiers always improvethe correctclassification of the single-

function counterparts.

The preceding simulation results indicate that the pro-

cedure of determining the classifiers for steady-state security

evaluation on actual systemsis promising. In the following

section some uses of the classifiers or security functions in

power system operations are discussed.

VI. ADDITIONAL USES OF SECURITY FUNCTIONS

The simulation results on the CIGRE 225-kV system in

the preceding section show that high accuracy (small errors
in classification) security functions are realizable using pat-
tern recognition. What is of interest at this point is how
applicable these security functions are in the operation of
power systems. Possible uses of security functions include:

1) monitoring of system security

2) secure economic dispatch

3) identification of potential causes of insecurity
4) determination of precontingency corrective actions
5) scheduling of units for secure operation.

As pointed out in [19], distribution factors and computer
simulation can be used in areas (1) and (3). The distribution
factors method is restricted to steady-state security only.
Furthermore, these two methods cannot be used explicitly
for areas (2), (4), and (5). In this section the applications of
security functions to the preceding five areaswill be outlined _
and discussed [19].

A. Monitoring of System Security

The measurements or values of the features at any time

instant are obtained and the values of the security functions

are computed. This will indicate if the system is secure or

not. Since the computation involves only a number of

multiplications and additions, computing time required is

very short. Also the storage requirement for the weighting

coefficients is very small. Hence security functions are

suitable for on-line evaluation of system security.

Monitoring the values of the security functions provides a

warning to the operators wheneverthe system goes into an
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alert state [1]. This will help the operators to ensure con-
tinual supply of electrical powerto all customersat specified

standards without overloading system components.

B. Identification of Potential Causes of Insecurity

Identifying the would-be causes of insecurity is a step

towards finding the proper corrective actions to maintain

the system in the preferred normal state. When the values of

the security functions indicate that the system is insecure

(alert state), the values of the individual disturbance security

functions are computed. These values will point out which

disturbances, if they occur, would result in the system

going into an emergency.

Once the would-be causes of insecurity are known,

relevant simulation studies could be performed to determine

the best strategy to divert possible emergencies.

C. Determination of Precontingency Corrective Actions

Whena system is in an alert state, corrective actions are

needed to bring the system to the preferred normalstate.

The actions can be found by performing an optimal load

flow with the necessary security functions as added con-

straints. If a feasible solution is found, then the necessary

actions are obtained. If no feasible solution is found, two

alternatives may be taken. Oneis to increase the generating

capacity and/or import power until a feasible solution is

obtained in the optimal load flow. The other is to run an

optimal load flow with minimum load sheddingas objective

function instead of minimum operating cost.

D. Secure Economic Dispatch

Most economic dispatch studies do not include the

security of a system. In cases where they do,security is only

implied by more stringent constraints on certain variables
[20].

Secure economic dispatch has been proposed recently

[21], and the formulation of this approach is also given in

[19]. This involves a regular optimal load flow with added
constraints which reflect on the effects of outages or con-

tingencies. Linear programming formulation for this method

has been reported elsewhere [22]. It must be pointed out
that the added constraints cannot take into accounttransient

or dynamicsecurity. It is felt that such a methodis a brute

force one and maynot be applicable for large systems.

Reference [23] describes an ac optimal load flow con-

strained by dc flows. This method has no assurance that

the voltages will be acceptable should a disturbance occur.

As in the case of [21], the proposed methodis applicable
to only steady-state security.

By adding the security functions to the constraints in an

on-line optimal load flow, preferred normal operating

(secure) states are dispatched. This does not cause appre-

ciable increase in the computational requirement for an

optimal load flow. The use of security functions is superior

to the methods of [21] and [23] in that less computer
memory and computing time are required [19]. This is due
to the fact that the numberofsecurity functions to be used

as added constraints is very much smaller than the number
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of additional constraints required by the other methodsfor

secure economic dispatch.

E. Scheduling of Unitsfor Secure Operation

Unit schedules or commitments which are capable of

providing secure operation of a power system will result in

less corrective actions to maintain a system in the preferred

operating state. Such schedules can be obtained by using

security functions 1s added constraints in the optimal load

flow studies when ‘electing the units to be put on line. This

approach can be implemented and is discussed in the

following section. Another possible approach is to have

security functions with features which reflect on the distribu-

tion of generation ,eserves in the system. Such an approach

could be formulated into a linear programming problem.

It provides a quick check which ensures that units to be

scheduled would brable to provide secure system operation.

This approach i: discussed in [19, appendix], where

the scheduling is formulated as a mixed-integer linear

programmingprol:lem.

VII. CONCLUSIONS AND DISCUSSIONS

The presentation of power system security evaluation as

a pattern recognition problem has been given. Despite the

relatively simple approach being used, the preceding

numerical example showsthat security functions(classifiers)

with the capability of giving high percentage of correct

classification are rvalizable. Some uses of security functions

in power system operation have been outlined and the

effect of many of these uses cannot be achievedaseasily by

other existing methods.

It may be poin:ed out at this juncture that the sample

study assumed that the system is operated under the base

configuration (i.e., all the lines and generators are in-

service). This is not always true in practice as scheduled

maintenance and ‘orced outages of components (lines and

generators) will result in configurations which are different

from the base case. One possible solution is to have a set of

security functions for each likely configuration. Another

way is to include patterns with different configurations in

the training set. However, both would require the generation

of large numbers of training patterns and the computing

effort could be toc) demanding even thoughthis is doneoff-

line. Hencein the case of transient security such requirement

may prohibit the use of pattern recognition. Power systems

with several huniireds of buses are not uncommon and,

therefore, the dimensionality of the problem could increase

many folds in actual systems.

For certain planning routines such as unit commitment

and maintenance of system components, it is desirable to

consider the stochastic nature in the forecasting of loads.

Hencestatistical attern recognition approach will be pre-

ferred to the deterministic one presented herein. However,

there are many problems associated with a statistical

approach. Generlly, the forecast loads can be assumedto

be normally distributed. But other variables such as voltage

magnitude and angles are coupled to the loads through

highly nonlinear equations (power equations). Further-
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Fig. 1. CIGRE 225-kV system.

TABLE VIII
LINE PARAMETERS

Bus i Bus j R(ohm) X (ohm) wC/2(mho) Max|6,,|*

1 3 5.0 24.5 .0002 6.0
1 4 5.0 24.5 -0001 6.0
2 3 22.8 62.6 -0002 14.0
2 10 8.25 32.3 -0003 8.5
3 4 6.0 39.5 -0003 7.0
3 9 5.75 28.0 -0002 10.5
4 5 2.0 10.0 .0002 5.0
4 6 3.75 24.75 .0001 6.0
4 9 24.7 97.0 -0002 15.0
4 10 8.25 33.0 .0003 8.5
6 8 9.5 31.8 .0002 8.5
7 8 6.0 39.5 .0003 7.0
8 9 24.7 97.0 -0002 15.0

 

*
Maximum voltage angle across line i-j in degrees.

more, the allocation of power generation amongst the

individual generating buses is an independent process.

Another problem is that the frequency of occurrence of

alert state in a well-designed system is very small compared

to that of preferred state. It is the alert state which is of

most concern to the system operators.

The electric power industry forms an integral and im-

portant part of the nation’s life and progress, and has been

largely neglected by those working in the pattern recognition

area. It is hoped that this paper will generate greater interest

in the investigation of various pattern recognition techniques

for possible uses in power systems and certain problemsthat

would be encountered, someof these problems having been

discussed previously and elsewhere [19].

APPENDIX

CIGRE 225-kKV SYSTEM

The CIGRE 225-kV system is shownin Fig. 1. It has 10

buses and 13 lines. There are 7 generating buses, and the

loads are located at 7 of the buses. Each generating bus has

two to five generating units. For a generating unit, its quad-

ratic cost coefficients and powergeneration limits are given.

One hundred sixty-eight hourly loads (for a week) are

available. The total active load ranges from 675 to 2030 MW.

The line parameters and the upperlimit of the voltage angle

across each line are shown in Table VIII. The upper and

lower limits on the voltage magnitude of any bus are 240

and 205 kV,respectively.

457



REFERENCES

[1] A. H. El-Abiad, ‘“‘New directions in power systemsreliability and
security,’ presented at the Third Southeastern Symp. System
Theory, Georgia Institute of Technology, Atlanta, Apr. 1971.

[2] T. E. Dy Liacco, ‘‘The emerging conceptof security control,’ in
Proc. Purdue 1970 Symp. Power Systems, Purdue Univ., Lafayette,
Ind., May 1970.

[3] S. Hayashi et al., ‘“‘Power system security assessing by digital
computer simulation-basis control,”’ presented at the PICA Conf.,
Denver, Colo., May 18-21, 1969.

[4] ‘‘Bulk power security assessment,” IBM Research Div., San Jose,
Calif., Final Tech. Rep. for Edison Electric Institute, Nov. 1970.

[5] C. K. Pang, “Security assessment in power systems,” in Proc.
Midwest Power Symp., Univ. Michigan, Ann Arbor, Oct. 21-22,
1971.

[6] H. D. Limmer, ‘“‘Techniques and applications of security calcula-
tions applied to dispatching computers,” in Third Power Systems
Computation Conf. Proc., Paper STY4, Rome, June 1969.

[7] L. H. Michaels, ‘“‘The AC/hybrid power system simulator andits
role in system security,” JEEE Trans. Power App. Syst., vol.
PAS-91, pp. 128-136, Jan./Feb. 1972.

[8] ‘On-line stability analysis study,” North American Rockwell
Information Systems Co., Anaheim, Calif., Tech. Rep. for Edison
Electric Institute, Oct. 1970.

[9] G. W. Stagg and A. H. El-Abiad, Computer Methods in Power
System Analysis. New York: McGraw-Hill, 1968.

[10] J. R. Neuenswander, Modern Power Systems. Scranton: Inter-
national Text., 1971.

[11] F. J. Jaimes, ‘““Optimal power flows,’’ Ph.D. dissertation, Purdue
Univ., Lafayette, Ind., June 1971.

[12] E. W. Kimbark, Power System Stability, vol. 1.
Wiley, 1948.

New York:

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, NOVEMBER 1973

[13] K. N. Stanton, ““Dynamic energy balance studies for simulation
of power-frequency transients,’ IEEE Trans. Power App. Syst.,
vol. PAS-91, pp. 110-117, Jan./Feb. 1972.

[14] R. E. Larson et al., “State estimation in power systems: parts I
and II,”’ JEEE Trans. Power App. Syst., vol. PAS-89, pp. 345-363,
Mar. 1970.

[15] F. C. Schweppe ef al., ‘‘Power system static state estimation:
parts I, II, and IIJ,’”” ZEEE Trans. Power App. Syst., vol. PAS-89,
pp. 120-135, Jan. 1970.

[16] F. D. Galiana and E. Handschin, “‘Combined network and power
station dynamic state estimation,’ in 4th Power Systems
Computation Conf. Proc., Paper 3.3/4, Grenoble, Sept. 1972.

[17] A. E. Bryson and Y. C. Ho, Applied Optimal Control. Waltham,
Mass.: Blaisdell, 1969.

[18] P. H. Mengert, “Solution of linear inequalities,” JEEE Trans.
Comput., vol. C-19, pp. 124-131, Feb. 1970.

[19] C. K. Pang, ‘“‘Studies on security evaluation by pattern recognition
and unit commitment by dynamic programming in power sys-
tems,’’ School Elec. Eng., Purdue Univ., Lafayette, Ind., Tech.
Rep. TR-EE-73-3, Jan. 1973.
A. Thanikachalam and J. R. Tudor, “Optimal rescheduling of
power for system reliability,” ZEEE Trans. Power App. Syst.,
vol. PAS-90, pp. 2186-2192, Sept./Oct. 1971.
J. Peschon et al., “‘A generalized approach for determining op-
timal solutions to problemsinvolving system security and savings,”
Systems Control, Inc., Palo Alto, Calif., Final Rep. for Edison
Electric Institute, July 1970.
J. C. Kaltenbach and L. P. Hajdu, “Optimal corrective re-
scheduling for power system security,” JEEE Trans. Power App.
Syst., vol. PAS-90, pp. 843-851, Mar./Apr. 1971.
B. Cory and P. Henser, “Economic dispatch with security using
nonlinear programming,” in 4th Power Systems Computation
Conf. Proc., Paper 2.1/5, Grenoble, Sept. 1972.

[20]

[21]

[22]

[23]

 

458



A

Abend,K., 151

Agrawala, A. K., 247

Arthur, R. M., 405

Bahl, L. R., 442

Baskett F., 342

Bellmar, R., 49

Cc

Chandrasekaran, B., 151, 155, 192, 242

Chow, (. K., 27, 218

Cover, *. M., 333

Cox, J. R., Jr., 405

E

El-Abiad, A. H., 449

Elasho“f, J. D., 139

Elasho"f, R. M., 139

F

Fisher, R. A., 323

Fix, E., 261, 280

Foley, ). H., 130, 198

Friedman, J. H., 175, 342

Fukuniga, K., 108, 224, 231, 235

G

Goldman, G. E., 139

Gose, |:.. E., 115

H

Halle, [A., 44

Harley. T. J., Jr., 75, 151

Hart, P. E., 333, 340

Ho, Y. C., 247

Hodge:, J. L., Jr., 261, 280

Holt, #.. W., 433

Hughe:, G. F., 142, 151

J

Jain, AA. K., 242

Jelinek, F., 442

Author Index

K

Kac, M., 56

Kain, R. Y., 160

Kalaba, R., 49

Kanal, L. N., 1, 59, 75, 192

Kessell, D. L., 224, 231, 235

Koivo, A. J., 449

Koontz, W. L. G., 108

L

Lachenbruch, P. A., 207

M

Mendelsohn, M. L., 362

Mercer, R. L., 442

Mickey, M. R., 207

Mucciardi, A. N., 115

N

Nagy, G., 124, 381
Nolle, F. M., 405

P

Pang, C. K., 449

Preston, K., Jr., 92

Prewitt, J. M. S., 362

R

Randall, N. C., 75

Rosenblatt, F., 35

S

Sammon,J. W., Jr., 130, 162, 166

Shustek, L. J., 342

Stevens, K, 44

Stoffel, J. C., 348

T

Toussaint, G. T., 184

Tukey, J. W., 175

Z

Zadeh, L., 49

 

459



A

Abstraction and generalization

associated with pattern classification, 49

Aerial reconnaissance

imagery, 75

Air Force

application of pattern classification, 280

Algorithms

for finding nearest neighbor, 342

for grouping data, 108

for multivariate data, 166

pattern classification, 247

projection pursuit for data analysis, 175

Allopolyploidy, 323

Analog computers

use for pattern recognition, 92

Automatic control

use of pattern classification, 247

Automatic imagery screening, 75

Automatic pattern recognition, 1, 348, 405

Automatic speech recognition, 442

B

Bayesclassifiers, 224

Bayes error estimation

using unclassified samples, 235

Bayes probability of error, 333

Bibliographies

estimation of misclassification, 184

remote sensing for earth resources, 381

use of pattern recognition for biomedical applications, 405

Binary patterns

feature extraction, 124

Binary pulses, 56

Biomedical images, 405

Blood cells

images, 362

recognition, viii

Blood pressure waves

digital analysis, 405

C

Cell images

analysis, 362

Character recognition machines, 433

Character separation, 433

Chromosomespread detection, 92

CIGRE 225-kV power system, 449

Classification errors, 224

Classification procedures, 280

Clustering, 124, 166, 175

Computer-aided design

of pattern classifiers, 348

Condensed nearest neighbordecision rule, 340

Continuous speech

recognition, 442

Craniometry, 323

Cytophotometers, 362

D

Data analysis

projection pursuit algorithm, 175

460

Subject Index

Data grouping, 108

Data structure analysis, 166

Decision functions, 27, 242

Decision making, 115

Decision rules, 333, 340

Decision theory

application, 27

Decoders

for speech recognition, 442

Diagnostics, 405

Dichotomousvariables, 139

Digital computers

use for pattern recognition, 92

Digital image processing, 381

Digital pattern recognition, 92

Dimensionality reductions, 162, 166, 175, 192

Discriminant analysis, 207, 261, 280

Discriminant vectors, 130

Discrimination, viii, 139, 162, 207, 323, 342

of images, 362

E

Earth resources

analysis, 92

remote sensing, 381

Electrocardiograms, 115

digital analysis, 405

Electroencephalograms

digital analysis, 405

Error correction

applied to signal detection, 56

Error probability, 333

Error rates, 198, 218, 231

estimation, 207

minimum, 27

Error-reject functions, 231

Error estimation, 1, 207, 224, 231, 235

Estimation

of classification error, 224

of error rates, 207

of misclassification, 184

Events generation, 348

F

Feature extraction, viii, 1, 115, 130

automatic, 124

Feature selection, 130

Feature size, 198

Fingerprint identification, 92

Flowers

measurements, 323

Fuzzy sets, 49

G

Gaussian data

grouping, 108

Geometric features, 124

Grouping

of data, 108

Image characterization and discrimination, 362



image processing

digital, 381

Interactive pattern analysis and classification, 59

Interactive pattern recognition, 348

K

Karhunen-Loeve transforms, 130

L

Land use

analysis, 92

Language mocials, 442

Learning and learning machines, 56, 59

Linguistic statistical decoders

for speechrecognition, 442

M

Machine pattetn recognition, viil

Mapping, 166, 175

Mean accuracy, 155, 160

of statistical pattern recognizers, 142, 151

Mean recognition accuracy, 155

Measurement tomplexity

of pattern c!.assification, 242

Microscopy, 352

Misclassificatiin

bibliography, 184

Models

of language, 442

of speech recognition, 44

Morphology, ::62, 405

Multidimensianal scaling, 166, 175

Multiple measurements

use in taxor: »mic problems, 323

Multivariable cata

algorithms, |66

analysis, 11, 130, 162, 166, 175

grouping, 118

Multivariate r »rmal distribution and samples, 207, 224, 280

N

NASAprojects, 381

Nearest neighbors, 333, 340, 342

Nonlinear mapping

for data stri.cture analysis, 166

Nonparametric classifiers, 224

Nonparametric discrimination, 342

consistency properties, 261

small sample performance, 280

Nonparametric estimates, 235

Oo

On-line pattern analysis and recognition, 162

Optical character recognition, viii, 348

Optimal discriminant plane, 162

Optimum pattern recognition

using decision functions, 27

Optimum rec: dgnition error, 218

Pp

Pattern analysis, 59, 162

Pattern classes, 160

Pattern discrimination, 35

Pattern class’ ‘ication andclassifiers, 49, 75, 142, 160, 247

accuracy, 2/42, 280

algorithms, 247

461

application for Air Force, 280

choice of variables, 139

computer-aided design, 348

decision making, 247

design, 192, 198, 348

discrimination and discriminants, 162, 261, 280

error probability, 333

error rates, 198

errors, 224

graphic systems, 162

interactive, 59

measurement complexity, 242

nearest neighbors, 333, 340

statistical, 192, 242

use in automatic control, 247

Pattern recognition and recognizers, 142, 160

analog versus digital techniques, 92

applications, 1,27, 405, 449

automatic, 1, 348, 405, 442

bibliographic references,vili, 1

books,1

design methodology,1

digital versus analog techniques, 92

dimensionality, 1, 130

discrete variables, 348

error-free, 27

errors, 218, 231

expected risk, 27

interactive, 348

journals, 1

machine, viii

mapping, 166, 175

mean accuracy, 142, 151, 155, 160

mean recognition probability, 160

measurements, 155

nonparametric, 175, 224, 235, 348

on-line systems, 162

optimum, 27, 218, 231

properties, 115

reject tradeoff, 218

sample size, 155

statistical methods, 1, 142, 151

subsets choice, 115

survey of period 1968-1974, 1

two-class type, 130

Perception simulation, 35

Perceptrons, 35

Perceptual learning, 35

Phonemeidentification, 44

Power systems

security evaluation, 449

Prime events theory, 348

Probability

of misclassification, 184

Projection pursuit algorithm

for exploratory data analysis, 175

R

Radarsignal processing, 92

Reading machines, 433

Recognition

of speech, 44, 442

Recognition machines

characters, 433

Recognition models

of speech, 44

Reconnaissance imagery, 75

Reject rate, 218, 231

Remote sensing

for earth resources, 381



Risk estimates, 235

S

Sample size, 1, 155, 192, 198

Satellites

NASAprojects, 381

Security evaluation

in powersystems, 449

Segmentation problem, 44

Signal detection, 56

Signal processing

radar, 92

speech, 44

Space programs, 381

Speech production, 44

Speech recognition, viii, 44, 442

Statistical pattern recognizers, 142, 160

comments, 151

Subsets choosing

of pattern recognition, 115

System security

definition, 449

T

Tactical reconnaissance, 75

Target detection, 75

Taxonomic problems

use of multiple measurements, 323

Ternary features, 124

Threshold detectors

operating on noisy binary pulses, 56

V

Vectorcardiograms, 115

WwW

Word recognition, 92

 

462



Editor's Biography

Ashok K. Agrawala (S‘67-M’70-SM’76) was born in Meerut, India, on June 28, 1943. He re-

ceived the B.Sc. degree from Agra University, Agra, India, in 1960, the B.E. degree in electrical

technology and the M.E. degree in applied electronics and servomechanisms, both with distinc-

tion, from the Indian Institute of Science, Bangalore, in 1963 and 1965, respectively, and the

A.M. and Ph.D. degrees in applied mathematics from Harvard University, Cambridge, MA,in

1970. His graduate work at Harvard was done under a Gordon McKay Fellowship.

Erom 1968 to 1970 he was with the Applied Research Groupof the Electronic Data Process-

ing Division, Honeywell, Inc., Waltham, MA. During this period he was involved in various as-

pects of the design of computersystems. From 1970 to 1971 he was with the Optical Character

Recognition Product Development Groupof Honeywell Information Systems, Minneapolis, MN.

In 1971 he joined the Computer Science Faculty of the University of Maryland, College Park.

He has been actively involved in teaching and research in computer systems, simulation and mod-

eling, performance evaluation, pattern recognition, and interactive systems. He is the authorof

many papersin thesefields.

Dr. Agrawala is a memberof Sigma Xi, the Association for Computing Machinery, and the

Pattern Recognition Society.

   

  

   

 

463


