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PROLOGUE:

IN SILICO

 

Ifpatterns ofones and zeros were “‘like’’ patterns ofhumanlives and death,

if everything about an individual could be represented in a computerrecord

by a long string of ones and zeros, then what kind of creature would be

represented by a long string of lives and deaths?

Thomas Pynchon



Thecreatures cruise silently, skimming the surface of their world with
the elegance ofice skaters. They move atvarying speeds, some with the
variegated cadenceofvacillation, others with what surely must be firm
purpose. Their bodies—flecks ofcolors that resemble paperairplanes or
pointed confetti—betray their needs. Green ones are hungry. Blue ones
seek mates. Red ones wantto fight.
They see. A so-called neural network bestows on them vision, and

they can perceive the colors of their neighbors and something ofthe
world around them. They know something about their own internal
states and can sense fatigue. They learn. Experience teaches them what
might make them feel better or what might relieve a pressing need.

They reproduce. Twoofthem will mate, their genes will merge, and

the combination determines the characteristics of the offspring. Over a
period of generations, the mechanics of natural selection assert them-

selves, and fitter creatures roam the landscape.

They die, and sometimes before their bodies decay, others oftheir ilk

devourthe corpses. In certain areas, at certain times, cannibal cults arise

in whichthis behavioris the norm. Thecarcasses are nourishing, but not
as muchas the food that can be serendipitously discovered ontheterrain.

The nameofthis ecosystem is PolyWorld,andit is located in the chips
and disk drives of a Silicon Graphics Iris Workstation. Thesole creator
of this realm is a researcher named Larry Yaeger, who works for Apple

Computer. It is a world inside a computer, whose inhabitants are, in

effect, made of mathematics. The creatures have digital DNA. Someof
these creatures are more fit than others, and those are the ones who

eventually reproduce, forging a path that eventually leads to several sorts

of organisms whosuccessfully exploit the peccadilloes of PolyWorld.

‘The species have their own unique behaviors and group dynamics,”
notes Yaeger. One group seems on the edge ofpsychosis—the “‘frenet-
ics,’ who, zipping compulsively through the landscape, constantly de-

sire food and sex and expend energy onlittle else. Then there is “‘the
cannibal cult,” members of which seek their own to mate with, fight
with, and eat. They form grotesque clumps from which they need not
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movein orderto fulfill any of those needs. A third species is the “edge

runner.” Owing to a peculiarity in the landscape—unlike our own

spherical planet, PolyWorld can be programmedto have a distinct end

ofthe world—thereis a benefit in lurking on the brim ofoblivion. Once

a respectable numberoffellow creatures adoptthis behavior,there will

always be an ample supply of conjugal partners, as well as old carcasses

now turned to food.

Yaeger is cautious about sweeping statements; he prefers to describe

what he has done and what might immediately follow from it. “So far

what PolyWorld has shownis that successful organismsin a biologically

motivated and only somewhat complex environment have evolved

adaptive strategies for living in this environment,” he says. Whenit

comes to describing the creatures themselves, Yaeger is less tentative.

“I see them,” he says, “‘as artificial life.”

In September 1987, more than one hundredscientists and technicians

gathered in Los Alamos, New Mexico,to establish the new science of

artificial life. The event celebrated a technological and scientific water-

shed. A deepened understanding of biological mechanisms, along with

the exponentially increasing power ofdigital computers, had brought

humankindto the threshold of duplicating nature’s masterpiece,living

systems. The pioneers were both thrilled at the prospect and humbled

by previous speculations ofwhat lay ahead. The legacy ofMary Shelley,

who wrote of Frankenstein and his monster, as well as the dark accom-

plishments hatched onthevery site ofthe conference, hovered over the

proceedings like, as one participant put it, a bugaboo.

Nevertheless, the mood was exuberant. Manyofthe scientists drawn

to Los Alamos had long dreamed of an aggregate effort to create a new

form oflife; their individual labors had looked toward that day. Now it

had arrived. Thesignificance of the moment was later framed by a

physicist named James Doyne Farmer, who coauthored a paper about

the implications of this new science. Its abstract alone was perhaps as

striking a description of nascent technology at the lab as any since the

developmentofthe atomic bomb. Those whoread it would have been
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well advised to take a deep breath—and perhaps suspenddisbelief until
resuming aspiration—before reading the following prediction:

Within fifty to a hundred years a new class of organismsis likely to

emerge. These organismswill be artificial in the sense that they will

originally be designed by humans. However, they will reproduce, and

will evolve into somethingotherthan their original form;theywill be
“alive” under any reasonable definition of the word. . . . The advent

ofartificial life will be the most significant historical event since the

emergence of human beings. . . .

Artificial life, or a-life, is devoted to the creation and study oflifelike

organisms and systems built by humans. Thestuff ofthis life is nonor-
ganic matter, andits essenceis information: computers arethe kilns from
which these new organisms emerge. Just as medical scientists have
managed to tinker with life’s mechanisms in vitro, the biologists and
computerscientists of a-life hopeto create life in silico.
The degree to which this resembles real, ‘‘wet” life varies; many

experimenters admit freely that their laboratory creations are simply
simulations ofaspects of life. The goal of these practitioners of “weak”
a-life is to illuminate and understand moreclearly the life that exists on
earth and possibly elsewhere. As astronomer A. S. Eddington hassaid,
‘‘the contemplation in natural science ofa wider domain thantheactual
leads to a far better understanding ofthe actual.”’ By simulating a kind
oflife different from that with which wearefamiliar, a-life scientists seek

to explore paths that no form oflife in the universe has yet taken, the
better to understand the concepts and limits oflife itself.

Hopingthat the samesorts ofbehavior foundin nature will spontane-
ously emerge from the simulations, sometimes scientists attempt to
model directly processes characteristic of living systems. Biologists treat
these artificial systems as the ultimate laboratory animals; their character-
istics illuminate the traits ofknown organisms,but, since their composi-
tion is transparent, they are much moreeasily analyzed thanrats,plants,
or E.coli. Physicists pursue a-life in the hopethat the synthesis oflife will
shed light on a related quest: the understanding ofall complex nonlinear
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systems, which are thought to be ruled by universal forces not yet

comprehended. By studying phenomena such asself-organization in

a-life, these mysteries may soon be unraveled.

The boldest practitioners of this science engage in “strong”’ a-life.

They look toward the long-term developmentofactual living organisms

whose essence is information. These creatures may be embodied in

corporeal form—a-life robots—or they may live within a computer.

Whichever, these creations, as Farmerinsisted, are intendedto be “‘alive

under every reasonable definition of the word”—as muchas bacteria,

plants, animals, and humanbeings.

Many might consider this an absurd claim on the face of it. How

could something inside a computer ever be considered alive? Could

anything synthesized by humansever aspire to such a classification?

Should not the term “‘life’’ be restricted to nature’s domain?

The questionis difficult to answer, largely because we have no “reason-

able definition”oflife. Nearly two thousand years ago, Aristotle made

the observation that by ‘‘possessinglife,” one implied that “‘a thing can

nourishitselfand decay.’ Most everyonealso agreedthat the capacity for

self-reproduction is a necessary condition for life. From there, opinions

diverged andstill do. One could devise a laundry list of qualities charac-

teristic of life, but these inevitably fail. They are either overly dis-

criminating or excessively lenient. The creatures in PolyWorld, for

instance, are in many wayslifelike—they grow, reproduce, adapt, and

evolve. Yet even their creator dares not claim that they are truly alive.

Somescientists suggest that the definition-of-life question is a red

herring. Life, they say, should be gauged on a continuum, and not

granted according to a binary decision. A rock would certainly be low

on any continuum ofaliveness, and a dog, a tree, and a human being

would rank highly. More ambiguous systems would fall in a middle

region of semialiveness—somewhere below bacteria, which almost ev-

eryone agrees are alive, and somewhere above rocks. Viruses, which

some biologists consider living and others do not, would reside in the

upper reaches of this middle ground. Below that would be complex

systems that no onereally considers to be alive but that display some
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behaviors consistent with living organisms—things such as the economy
and automobiles. The PolyWorld organisms wouldfall somewhere be-
tween Chevrolets and the flu. There is a particular advantage in regard-
ing life in this manner: using systems that no one wouldclassify as truly
alive, biologists could nonetheless isolate the qualities oflife.

Butthis, too, is unsatisfying. One feels that it should mean something
to be alive, even as one concedesthe apparent impossibility in fixing the
borderline between life and nonlife. Part of the difficulty arises from
culture’s refusal to yield the province oflife to the realm of science. For
centuries, a mystical component, if not an unabashed nodto divinity,
loitered in whatever definition one chose to use. Despite attempts by
iconoclasts and visionaries to use empirical meansto recognize life, for

most of history people felt that a supernatural component bestowed the

property oflife on otherwise-inert materials.

Asscientists came to discard those beliefs, their idea oflife shifted to

accommodate new discoveries. After the identification of the cell, they

thought differently about how matter organizeditself into living struc-

tures. And once it was understood how critical Darwin’s contribution

wasto thelife sciences, evolution becamea central issue in defininglife.

To some, evolution remainsthe central issue. ““Life should be defined by

the possession of those properties which are neededto ensure evolution

by natural selection,” writes John Maynard Smith, not surprisingly an

evolutionary biologist. ““That is, entities with the properties of multi-

plication, variation, and heredity are alive, and entities lacking one or

more of those properties are not.”” The more recent discovery ofDNA

as a pervasive and essential componentin all matter generally regarded

as living added another wrinkle: not only did living things contain

blueprints for their operation and reproduction, but also these unique

collections of molecules contained elements of the history ofall life.

‘The possession ofa genetic program providesfor an absolute difference

between organisms and inanimate matter,”’ writes Ernst Mayr. ““Noth-

ing comparable exists in the inanimate world, except for manmade

computers.’’ (Note the sole, but significant, exception.)

The latest twist on our perception of the necessary conditions for

aliveness comesfrom the recognition ofcomplex systems theory as a key

componentin biology. A complex system is one whose componentparts
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interact with sufficient intricacy that they cannot be predicted by stan-

dard linear equations; so many variables are at. work in the system that

its overall behavior can only be understood as an emergent consequence

ofthe holistic sum ofall the myriad behaviors embedded within. Reduc-

tionism does not work with complex systems, andit is now clear that a

purely reductionist approach cannot be applied when studyinglife: in

living systems, the whole is more than the sum ofits parts. As weshall

see, this is the result not of a mysterious dram ofvital life-giving fluid

but rather the benefits of complexity, which allow certain behaviors and

characteristics to emerge unbidden. The mechanics of this may have

been hammered out by evolution, but the engine of evolution cannot

begin to fire until a certain degree of complexity is present. Living

systems epitomize complexity, so muchso that somescientists now see

complexity as a defining characteristic oflife.

But complexity is only one more item on the laundry list. Despite all

our scientific knowledge, ‘‘there is no generally accepted definition of

life,’’ as Carl Sagan flatly states in his Encyclopedia Britannica essay on the

topic. Philosopher Mark Bedau contends that the question “‘should be

considered one ofthe fundamental concepts ofphilosophy, but philoso-

phers haven’t thought of it much. Nor have biologists. They typically

throw up their hands. It’s not a natural property like water—you can

investigate water andsay, ‘there’s HO,that’s its essence.’ But life isn’t

material, it’s ephemeral.”

Philosophers, too, can throw uptheir handsat the dilemma.“I really

doubtthat a purely philosophical answerto these questions is possible,”’

writes Elliott Sober. The University ofWisconsin philosopher contends

that ultimately, the question is not important. ‘“‘Ifa machine can extract

energy from its environment, grow, repair damage to its body, and

reproduce,” heasks, ‘“‘what remains of the issue whetherit is ‘really’

alive?”’

Yet such a machine would notclose the issue but open it. Many

people would find it threatening to consider an artificial organism as

described aboveas literally alive. Now most human beings will not

regard anything as living if it is not composed of the same matter as

natural biological organisms. Physicist Gerald Feinberg and biologist

Robert Shapiro have coined a term for those who “‘believe thatall life
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must be based on the chemistry of carbon compounds and must operate
in an aqueous (water) medium”’: “carbaquists.”” Yet no one has effec-
tively argued that life could never exist in other forms.
The things we now consideralive are possibly only a subsetofa larger

class of organisms. By chance, by an unfortunate accidentofhistory, we
have been presented withthis limited spectrum ofpossible life-forms and
no others. Ourchallenge, then, is to anticipate which characteristics of
life as we knowit are peculiar to that subset, and which are universal of
all life, even the potential forms we haveyetto see or, as the case may
be, to build—to contemplate, and then create, life-as-it-could-be (to use

the term coined by Christopher Langton, who organizedthefirst a-life

conference).

“If scientists are going to develop a broad theory oflife, it’s going to

require them to accept radically non-organic things as being alive”’ says

Langton. “Most biologists are generally hesitant to do this now.It will

take a while to get processes like this that will convince biologists that

these things are alive, in the sense that people are alive. But we’re going

to get them.”

This book is about that quest: the effort to create the processes oflife

itself, with the intended effect of changing the way the world thinks. If

Langton and his colleagues achieve their goals, human beings will see

themselves in a different light. We will not be standing at the pinnacle

of someself-defined evolutionary hierarchy but will rank as particularly

complex representatives of one subset of life among many possible

alternatives.

Our uniqueness will lie in the ability to create our own successors.

Artificial life is something quite different from genetic engineering,

which uses fully evolved wetlife as its starting point. The scientists of

a-life are devising the means by which actual living systems can be

generated, evolved, and observed. Theirs is an effort to engineer the

course of evolution and extend the range of living systems on planet

earth and beyond. From this grand experiment, a more profound under-

standing oflife itself, an ability to use its mechanisms to perform our

workand,perhaps, the discovery ofpowerful laws ofnature that govern
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not only biological systems but also any series of complex nonlinear

self-organizing interactions may ultimatelyarise.

What drives men and womenengagedin the questfor a-life is a desire

to decipher the vast tangle of obscurities that nature haslaid before us,

particularly in regard to the deepest question ofall, Whatislife?

Working in different disciplines these researchers have concludedthat

the way to answerthat question is not merely to observe butto create.

The first step is believing it can be done, and there is convincing

evidence that it can be done. The nextstep is doing it. Though it may

take many years in termsofthelife span in human individuals, in the

scope of evolutionary time the result could be accomplished within an

instant. In any case, this fearsome work is underway, and this book will

introduce you to the remarkable people performingit.

With the fruits of their labors, we may come to know whatit means

to be alive. By makinglife, we may finally know whatlife is.

10
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Anybody wholooksat living organisms knows perfectly well that they can
produce other organismslike themselves. This is their normalfunction, they

wouldn’t exist ifthey didn’t do this, and it’s plausible that this is the reason

why they aboundin the world. In other words, living organisms are very

complicated aggregationsofelementary parts, and by any reasonable theory

ofprobability or thermodynamics highly improbable. That they should occur

in the world at all is a miracle of the first magnitude. . . .

John von Neumann

He died so prematurely, seeing the promised land but hardly enteringit.

Stanislaw M. Ulam,ofhisfriend von Neumann



Von Neumann was dying. One day in 1954 his shoulder exploded so
fiercely with pain that he could hardly stand. It was an emissary of
prostate cancer, spreading beyond hope. He had only monthsto live.
His famous demeanor—strikingly jovial, relentlessly energetic, exhaus-
tively probing, buoyantly informed—now sagged. He wasstill capable
ofpiercing wit, and his mathematicalskills, unparalleled in our century,

Neumann’sfinal visit to Los Alamos, “‘and he frequently seemedto look
around,asif, it occurred to melater, he might have been thinking this
was perhapshis last visit and he wanted to rememberthe scenery, the
mountains, the places he knew so well and where he had so often had
interesting and pleasant times.”’

In his fifty-three years, John von Neumann madefull use of his
extraordinary mind, “‘a perfect instrument whose gears were machined
to mesh accurately within a thousandth of an inch,” according to one
admiring Nobellaureate. He was a math prodigy in Budapest, and his
family, prosperous Jewish bankers, had the wherewithal to provide him
with schoolingto cultivate his abilities. He earned a doctorateat twenty-
two, at twenty-three became the youngest person to lecture at the
University of Berlin, and at thirty, along with Albert Einstein, he was
appointed oneofthefirst professors ofthe Institute for Advanced Study,
in Princeton, NewJersey. Thoughhisskill at calculation and memoriza-
tion would become legendary—hecould recall verbatim lists of names
from phone books and esoterica of Byzantine culture from history
books—his curiosity led him to creative leaps that propelled him to the
forefront of his generation. He helped hammer out the niceties of
quantum mechanics in the cafes of Gottingen, virtually invented game
theory in Berlin, solved ergodic mathematical questions in Princeton,
helped concoct the A-bomb in Los Alamos, and madeso crucial a
contribution to the developmentofthe electronic digital computerthat
almost all such machinesare referred to as von Neumannprocessors.It
is unknown whether a smile crossed the face of physicist Hans Bethe

13
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whenhesaid, “I have sometimes wondered whethera brain like von

Neumann’s does notindicate a species superiorto that ofman.” Indeed,

the joke was that Johnny, as he was knownto friends, was in fact not

human but a demigod; however, he understood Homosapiens so well

that he could convincingly simulate them.

Von Neumann’sbelief in his own invulnerability was evident in his

owndisregard for the consequences of physics when behind the wheel

of an automobile; he totaled approximately one car a year and emerged

unscathed. Now cancer had cometo claim him. “Now that this thing

has come,”he asked of his doctor, “howshall I spend the remainder of

my life?”” The answer: work on what is most important to you.

Twoactivities occupied him during that period. Thefirst involved

weaponry, the technology of death. The second was something rela-

tively abstract: the technology oflife.

Thefirst involved his government duties. Only three months before

the cancer appeared, von Neumann had been sworn onto the Atomic

Energy Commission and in that capacity was the mainscientific voice

in the country’s nuclear weaponsestablishment. One indication ofhis

influence there: the nation’s ballistic missile committee was called the

von Neumanngroup. The mathematician was not shy about advocating

the use of the horrible weaponry he helped conceive and, perhaps

recalling his family’s retreat from Communist Hungary, actually favored

preventative nuclear war. Through his illness he continued his work,

and, up until his last hospital visit, he consulted in top-secret sessions

with representatives of the Cold Warbrain trust.

His scientific pursuits stood in contrast with his weaponry labors. Von

Neumann had becomeinfatuated with the similarities of the com-

puter—or, moreprecisely, with what this machine could become—and

with the workings of nature. His goal was to create a theory that would

encompass both biologies, natural and artificial.

The idea that the behavior of living organisms could be viewed as

equivalent to the behavior of machines cameeasily to someone of von

Neumann’s temperament. His world was built on logical principle.

Whenyou boiled down any phenomenon,its essence would consist of

the axiomsthat produced it. When von Neumann wasfirst told of the

14
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efforts to build a supercalculating machine that would become the first
electronic computer, he immediately inquired of the device’s logic-
based operations. It would be von Neumann who engineered the idea
that a computer was first and foremost a logic machine, not merely
something that dully crunched numbers. Life was no different. Not
surprisingly, von Neumannregardedlife itself as a reconstructible con-
catenationofevents and interactions. Mysticism did notenter the equa-
tion. Nor did randomness: “I shudderat the thought,”’ he wrote, “‘that
highly purposive organizational elements, like the protein, should origi-
nate in a random process.”
Von Neumann wouldreadily admit that biological organisms were

complex, more complicated than anyartificial structure man had ever
pondered. But ultimately, because he believed life was based on logic,
he believed that we were capable offorcing organisms to surrendertheir
secrets. It could be done. It would be done. Von Neumannset about
doingit.

In the late 1940s, he was invited to give a series of lectures on the
subject. The most famous wasdelivered in Pasadena, California,as part
of something called the Hixon Symposium. His audience consisted of
fellow scientists: physicists, biologists, medical researchers. His host was
the future Nobel Prize winner Linus Pauling. There were no computer
scientists in attendance because, of course, the field did notexist, except
perhaps in von Neumann’s head. Thoughthe lecture was notparticu-
larly technical, the bold subject matter madefor heady stuff, evenforthis
sophisticated audience. Onelistener compared the experience to “‘the
delightful but difficult role of hanging on thetail of a kite.”
The lecture wastitled, “The General and Logical Theory of Au-

tomata.”’ By the term “automata,” von Neumann wasreferring to
self-operating machines, specifically any such machine whose behavior
could be unerringly defined in mathematical terms. An automatonis a
machine that processes information, proceeding logically, inexorably
performingits next action after applying data received from outsideitself
in light of instructions programmedwithinitself. Since von Neumann
saw no reason whyorganisms,from bacteria to humanbeings, could not
be viewed as machines—andvice versa—this term in his hand connoted

15
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something more flexible than the word’s usual implication. If you un-

derstood automata, the implication was, you understood not only ma-

chinery better—you understoodlife.

The mostinteresting part ofthe Hixonlecture, and certainly the most

unconventional, dealt with the conceptofself-reproduction. Could an

artificial machine produce a copyofitself, he wondered, that would in

turn be capable of creating more copies? (Just as natural machines—

ferns, parrots, and humans—do?)

A positive answer would be a strong indication that the link between

artificial and natural automata was strong. Creating offspringis a prime

common-sense criterion for determining whether something 1s alive.

When René Descartes declared to the queen of France that animals

indeed were

a

class ofautomata, Her Royal Highness pointedto a clock,

and said, “See to it that it produces offspring.”’ Descartes was stumped,

but von Neumannbelieved he could satisfy those conditions. Yes, a

machine could reproduceitself, he asserted. He was going to proveit.

Von Neumann regarded automata theory as his crowning achieve-

ment. He spoke on it, discussed it with his colleagues, and prepared to

write a definitive book on the subject. But the manuscript would never

be completed—nor would his other explorations in the previously un-

trodden territory where life and machinery overlap.

In April 1956, von Neumannentered Walter Reed Hospital. Among

the papers he brought along with him werenotes for a series oflectures

he had agreed to present at Yale University, ““The Computer and the

Brain.” The point ofthe lectures was that computers and human beings

are different classes of automata; the lectures would compare and con-

trast, the better to understand both cases. Originally, he had agreed to

speak forfive days; after his illness he still hoped to deliver the lectures,

somewhat abbreviated, from the wheelchair to which he had been

consigned. Even that was overly optimistic. He would notleave the

hospital grounds again.

“Even Johnny’s exceptional mind could not overcome the weariness

of the body,”’ wrote Klara von Neumann,and, on February 8, 1957,

John von Neumanndied. His last days had been attended by air-force

orderlies cleared at top-secret security levels, in case he spilled out

16
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classified informationin his final delirium. But von Neumannuttered no
moresecrets.

Nevertheless, von Neumann’s legacy on the subject ofautomata theory
was enoughtoclearly distinguish the Hungarian mathematician as the
father of what would cometo bethe field ofartificial life. He also
fathered a mental construct knownas the self-reproducing automaton.
There were several species of this creature, though he managed to
develop fully only two before his death.
Von Neumann acknowledged the sensational implications ofthis

work.In

a

letter to Norbert Wienerhe stated that word ofthe “repro-
ductive potentialities of the machinesofthe future” should be kept out
ofthe press. As for himself, he boasted, ‘‘I have been quite virtuous and
had no journalistic contacts whatever.”
Von Neumann was aware ofthe stigma assigned to those whotried

to producelifelike processes by artificial means. The ghost of Mary
Shelley’s Frankenstein monster, and any other numberof more recent
science-fiction scenarios, cast a mottled shadow oversuch enterprises. It
wasbetter to proceed benignly with his work, ofwhich the overwhelm-
ing bulk was conductedin his head, or with pen and paper—thoughhe
had a briefflirtation with Tinkertoys, which he quickly abandoned,
turning over the dowels and wheels to the grandson offellow scientist
Oskar Morgenstern. There was no hint of thestartling implications of
this sort of work. But John von Neumann wasinitiating a new era in |
whathadpreviously been only a dark recess ofscience—or quasi science
as some would haveit. Trying to extendlife in a realm where none had
existed.

For most of history, this was a mystical quest rather than a rational
one. Scientists regarded life as dependent on a certain quality bestowed
on its parts. The idea that one could produceit by duplicatingits physics,
its materials, was to them absurd. What was required, instead, was to
replace what was understood to be the essence oflife, and this was
something supernatural, a trespass on the divine. Accordingto the bibli-
cal creation story it was God,after all, who

17
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_. formed man of the dust of the ground, and breathed into his

nostrils the breath oflife, and man becamea living soul.

Though it was not man’splace to infuse inanimate objects with the

breath oflife, ancient legends and tales speculated on such occasions.

Pygmalion made

a

statue cometo life. Dion Cassius, a second-century

Romanhistorian, reported otherstatues with some alarming capabilities:

they bled, they sweated, they swooned atthe sight of an evil figure, and

they turned respectfully toward conquering generals. In Jewish fable, a

learnedrabbi vivified a lumpofclay as a beast called a golem, who began

life as a servant but eventually hauntedits creator.

That was myth. Thereality was an unnavigable gulf between living

and nonliving. Aristotle, one of the few philosophers ever to devote

much timeto defining life, believed that what distinguished organisms

from their inanimate surroundings waspossession of a soul. While only

man had the highest variety of soul, animals and even plants hadless

impressive models. In the case of any organism, he wrote, “bodies exist

only for the sake of the soul.’”’ So how could onecreatelife, unless one

were in possession of the breath oflife, soul material?

For centuries, there seemedlittle reason to question that concept.

Even the discoveries of the seventeenth-century British physician and

medical researcher William Harveyfailed to tarnish it. Though Harvey

disproved such misconceptionsas the eruption offlies from dung (even

Aristotle believed that animals could arise from mud), hestill held that

life had some divine component, infused while the organism wasin ovo,

or in the egg. Omne vivum ex ovo, said Harvey—nolife except from life.

But the Industrial Revolution and its contemporary companions, the

revelations ofNewtonian physics and laws ofthermodynamics, began to

extend science’s domain, and the biological realm becameless forbid-

dingly mystical. Newton’s worldview indicated that we could predict

whereall the celestial bodies wouldbe at a certain time—might not the

workoflife be equally predictable? A new school of thought emerged,

which regarded life as a mechanistic process.

According to mechanism, life was literally an automaton, like a

clockwork. .

Could it then be duplicated? Mechanists like Descartes and Leibniz
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gance of Swiss watches, combined with Rube Goldberg ingenuity.
They took advantage notonly ofgears but also of gravity, hydraulics,
pulleys, and sunlight. Theeffect could be dazzling, as with the extraordi-
nary clock of Berne. Created in 1530, this massive timepiece hourly
disgorged a dazzling pageantry of automatafigures, beginning with a
crowing cock and followedbya carefully choreographed procession in
which the nodding head ofa clock king allowedpassage ofa parade of
spear-wielding bear cubs anda ferociouslion.

Undoubtedly entertaining, these made nopretensions to usurp na-
ture. But later automata madetentative steps toward the murkyline
dividing life from nonlife. The most famousofthese wasthe creation of
Jacques de Vaucanson, a Frenchmanin his twenties who in 1738 dazzled
Paris with “‘an artificial duck made of gilded copper who drinks, eats,
quacks, splashes about the water, anddigests his foodlike a living duck.”
Displayed throughout Europe, the duck confounded its audiences. Its
complexity was prodigious, with over four hundred movingpieces in a
single wing. Whenthe duckfell into disrepair in the early 1800s, Goethe
bemoanedits fate: ““We found Vaucanson’s automata completely para-
lyzed,” he wrote in his journal. ‘“The duck had lost its feathers and,

reducedto a skeleton, wouldstill bravely eat its oats but could no longer
digest them.”

A Swiss inventor named Rechsteiner revived the duck and trium-
phantly reintroduced the automaton at Milan’s Scala Theater in 1844.
Rechsteiner then took 3 years to build his ownartificial duck, which he
displayed at Munich’s Royal Odeon before, among other dignitaries,
King Louis I of Bavaria.

The newspaper Das freie Wort offered a detailed description ofthis
marvelous new fowl’s behavior. Apparently the duck’s movements
were sufficiently natural to convince the observers that an intelligence
lay beneath its motions. When fed, the duck greedily snarfed its por-
ridge, pausing periodically to raise his head andstare at its astonished
onlookers. Then came the climax: “‘. . . the contractions of the bird’s
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body clearly show that his stomachis a bit upset by this rapid meal and

the effects of a painful digestion become obvious. However the brave

little bird holds out, and after a few minutes we are convinced in the

most concrete manner that he has overcomehis internal difficulties.

The truth is that the smell which now spreads through the room be-
99

comes almost unbearable. . . .

Since the model no longerexists, the description can only ignite our

imaginations. Had Rechsteiner and his predecessor de Vaucanson ac-

quired such deep understanding oflife that the creations themselves

were worthy ofserious study? It would have been fascinating, even

enlightening, for nineteenth-century biologists to study these man-made

ducks, to compare their machinations with those of nature and perhaps

to acquire insights on alternative approachesto such metabolic phenom-

ena as digestion andflatulence. One newspaper account of 1847 seems

to argue just that, that Rechsteiner’s talented mallard was a biological

modelofscientific significance.

_. . All the movements andattitudes of this automaton faithfully

reproduce nature, copyingit to thelife even downto thetiniest detail,

so muchso that for a momentweare temptedto believe thatthere is

a real duck before us, whereas all these movements are carried out by

the most complicated mechanisms. The inventor’s mastery is shown

particularly on the three occasions whenthe duck is doing something,

whenheis breathing, digesting, and evacuating. Hereis clearly some-

thing more than mere mechanical ability. The artist has penetrated

into the deepest secrets ofthe process ofassimilation and ofalimentary

chemistry. Since life depends on electro-magneticactivity, the inven-

tor has also used that in his automation.

It is just this grasp of the secret of natural processes and the practical

application of this knowledge which we consider an immense step

forward in the world of natural science, especially in physiology, and

we have no doubtthat the discoveries of this master mind will make

his name immortal.

But the obvious differences between the mechanical model andits

natural inspiration—the presence ofscrews and springs instead of organs
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and bone—only underlay the difficulty of creating life and particularly
the difficulty of convincing critics that the stuff of engineering could
produce something alive. Those who disagreed with the mechanists
were quick to reaffirm theircertainty that the effort was an impossibility. |
Despite Harvey and Pasteur, and even Darwin and Descartes,the intui-
tive assertions of Aristotle still prevailed.
Themost vocal of these critics called themselves vitalists. This term

was taken from the so-called vital force or élan vital that supposedly
existed only in living organisms.Vitalists themselves varied on the nature
of this force. Somebelievedit a chemical; others claimed it was some
immaterial agent. By the nineteenth century many were convincedthat
the agent waselectricity, and as proofthey pointed to that force’s ability
to twitch the limbsofthe dead. Vitalistic writings ranged from Franken-
stein (who drew

a

spark oflife from electricity) to the ideas of Henri
Bergson.

Thevitalists voiced the suspicionsofthe vast majority ofthe population,
whothoughtthat ofcourse there was a divine componenttolife and who
thought it perfectly reasonable that some special material might well
divide living from nonliving matter. Vitalism’s final significantflag bearer
was Germanbiologist Hans Driesch. Hearguedhis case with thefervor of
an apostate. In 1891, Drieschvisited the zoology station in Trieste,Italy,
wherehe saw experimentsin sea urchin embryosthat seemed to contradict
what wasacceptedbiological theory. When a single embryo wassplit at a
very early stage, a complete sea urchin grew from each cell cluster. His
misinterpretation ofthe phenomenon assumedthata vital force, which he
called an entelechy, was at work. An entelechy was a ‘“‘nonmechanical
causal agent”’ that‘contained its owngoal.” After his sea urchin epiphany,
Driesch spent a contentiouslifetime attempting to reconcile science with
vitalism, taking pathetic swipes at Darwinism along the way. Citing what
he considered empirical truths and embellishing his views with compli-
cated conjectures concerningentelechies, which roughly correspondedto
Anistotle’s view of the soul, he continued his struggle well into the
twentieth century. ‘‘A true doctrine is never completely extinguished,”
he wrote.“It may fora time be out-shoutedby its opponents, but there are
always a few who, whatever maybefall, pursue their way, heedlessofall
the uproarofthe day.”
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Though it would be a difficult task to unearth a modern scientist

subscribingto that true doctrine,vitalism ofa sort seemsto persist. There

remains in us all an atavistic tendency to surrender biological preroga-

tives to any so-called beings outside the known family of earthbound

organisms. There is a particular reluctance to concede the honor of

life-form to anything created synthetically. This reluctance often trans-

formsitselfinto profound skepticism, even mockery, when onesuggests

that life could be fashioned in a laboratory or in a computer, by using

as the main substrate not organic molecules or other familiar forms of

chemistry but something quite different—information.

Information. The premise being that the basis oflife is information,

steeped in a dynamical system complex enough to reproduce andto bear

offspring more complex than the parent.

This was von Neumann’s premise.

Information was what made John von Neumann’s creature, his self-

reproducing machine, different from the automata of his engineering

predecessors. At the centerofits being wasits blueprint, which dictated

not only its behavior but also its reproductive activity. _

Admittedly, this was a daring crossover. A leap over a foreboding

chasm is required before one can grant a construction ofpure logic some

of the powers ofa living, breathing being.

What madeeven considering the matter possible was the work ofthe

logician Alan Turing, who like von Neumann had a profound impact

on the development of modern computers. In 1936, Turing concocted

his own imaginary automaton. The Turing machine, as it became

known, made no bid to join the society of living creatures. It could be

visualized more as a sophisticated tape player, with an arbitrarily extend-

able tape. (Remember, this device existed only in the imagination,

where million-mile-long tapes and centuries-long processes could find

reasonable accommodations.) The tape was markedoff in sections and

in eachsection resided a bit ofinformation. The tape head,a devicethat

moved over the tape, was capable both of reading these bits and, if

necessary, of erasing what was on a square or of writing on a square.
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There wasalso a control mechanism in the tape head, which told it what
to doasit read each pieceofinformation.Its characteristics and behavior
qualified it as being what was knownasa finite state machine (FSM). It
could also be called a finite automaton.

This deceptively simple device separated all information into two
elements—that which came from an object’s internal state and that
which was derived externally. Also assumed was that our universe is
granular; thatis, that it movesin discrete time steps, although these could
be as small as one imagined, evenbillionthsofa second. Durning any of
these instances, an FSM would bein a certain describable state. The
description could be extremely intricate or very simple; the only limita-
tion was that it had to be one of

a

finite set of possible states. (The
number could be very high but not infinite.) Between the current
instant and the nextdiscrete time step, the FSM, using whateversensory
inputthatparticular machine hadavailable to it, would take note ofthe
external world. Then, referring to a “rule table”’ controlling behavior,
the FSM would consider both that sensory input and its own current
state to determine what behavior the machine would exhibit, as well as
which internal state the machine would assumein that time step.
A simple example ofan FSM is the children’s game ofmusicalchairs.

Here, the world is broken down into obvious time steps, defined by
pauses in the music. Players could be in any offourstates: sitting,
standing, moving, and leaving the game. Therules ofthe musical chairs
universe are as follows:

If one is sitting, and there is no music, remain in thatstate.

If oneis sitting, and there is music, change to the movingstate.
If one is moving and there is music, remain in thatstate.
If one is moving and there is no music, change to the sitting state if there is

a chair, and change to the standing state if there is no chair.
If one is in the standingstate, leave the game.

If one has left the game, remain in thatstate.

In the game of musical chairs, each participant acts like a finite state
machine, noting two things: his or her internal state, and the external
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condition of the world—the music. At each point in the game, the

players apply this information to the rule table to determine both how

to behave andtheir subsequentstates.

In the Turing machine, the FSM head would workthis way: Thetape

head might be in a given state A, and it may beresting on part of the

tape containing a numeral 1. Before the nextstep it would read that

information and consult a rule table for the confluence of those two

circumstances. The result might yield something like the following:

replace the “1” with a “‘0,”” move the tape head one spaceto the left and

change to state B. The process would repeat, with the tape headreading

the information on the space to which it had just moved.

What made the Turing machine extremely powerful was the storing

capability of its extendable tape. With the proper information on that

tape, the Turing machine could emulate the actions of a different ma-

chine. If, for instance, someoneplaying musical chairs carried a Turing

machine outfitted with the properrules on its tape, he or she could use

its output to play the game without havingto cogitate. The ultimate

Turing machine would be able to read any set ofrules from its tape. In

fact, Turing proved that such a machine, the universal Turing machine,

would also be a universal computer. (There was a specific mathematical

proofthat determined this quality.) This meantthat, given enoughtime,

it could emulate any machine whose behavior was susceptible to being

described thoroughly. Turing and his collaborator, philosopher Alonzo

Church, further presented the Physical Church-Turing Hypothesis,

which stated that such a machine could duplicate not only the functions

of mathematical machines but also the functions of nature.

This made sense when one looked at the world through Turing’s

consciousness. In that view, almost anything could be analyzedas a state

machine. For what determined the behavior of any machine but what

was insideit (its state) and what it drew from its environment(informa-

tion from the tape)?

The Church-Turing Hypothesis could also apply to the human mind.

If one conceded that the numberofpossible states of mind wasfinite

(and some people did not make that concession), a reasonable yet dis-

turbingresult followed. At any instant a single mind found itself in one

of those possible states. Before the next instant, sensory input would
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arrive. The environmental information in combination with the initial
state would determine both the person’s behavior and the nextstate of
the mind. Turing’s contention was that the mind, as a finite state ma-
chine, had simply followed a logical protocol—essentially, it had fol-
lowed a rule table determined by biological and physical forces—in
order to get to that nextstate.

Overthe next fifty years Turing’s creation becamea focal point for
arguments raging over whether a machine could acquire intelligence.
Many cognitive scientists insisted that a computer could accomplish
this—ainthe realm oflogic,all electronic digital computers were proven
to be equivalents ofTuring machines, and thus they qualified as univer-
sal computers. Other scientists disagreed, arguing that the mind could
neverbe considered an FSM—itsstate could not beso crisply described,
nor could a rule table be drawn to emulate infallibly human thought. But
von Neumann wasless interested in what would later be knownas the
realm ofartificial intelligence (AI) than in what would be knownas
a-life, the worldofartificial life. By concentrating on self-reproduction,
his focus waslife rather than mind.
The natural behaviorof artificial structures had actually been leit-

motiv in von Neumann’s 1940s work on computers. Between 1939 and
1940, he corresponded with a fellow Hungarian, physicist Rudolph
Ortvay, whofirst suggested a connection betweenthe brain and elec-
tronic calculating equipment. In 1943, von Neumannread a paper by
Warren McCulloch and Walter Pitts. Titled “‘A Logical Calculus of the
Ideas Immanent in Nervous Activity,” it presented a methodofusing a
mathematical model to emulate the functions of the nervous system: an
artificial neural network. Von Neumannassociated this development
with Turing’s contention that a universal machine could emulate any
system of computation. Here was a system that suggested that living
organisms themselves had a built-in computer system whose output
determined behavior! “Anything that can be exhaustively and unam-
biguously described, anything that can be completely and unambigu-
ously put into work,is ipso facto realizable by a suitable finite neural
network,” von Neumanntold the Hixon Symposium.

Thus, as Turing and Churchhadintuited, a universal computer could
match the mental functions of any living creature. Living things were
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indeed among those machinesthat the Turing machine could emulate.

It would take a very long tape, of course, to duplicate the actions of a

humanbeing, or even a muchsimpler life-form such as a beetle, an oak

tree, or a bacterium. But it could be done. The logical basis seemed

impeccable. Onedid not needto build the actual machineto understand

the message: life was a class of automata.

Von Neumannrealizedthat biology offered the most powerful infor-

mation processing system available by far and thatits emulation would

be the key to powerful artificial systems. In his work on computer

design, von Neumann viewed the various parts of the computer as

organs. The switching devices that he used for the early computers—

and-gates, or-gates, not-gates, and delay circuits—were modeled on

neurons.

In the samespirit, he designed anartificial creature. It would assume

biology’s most intricate function, self-reproduction.

Thefirst self-reproducing automaton von Neumannimagined was a

species of computer, composed of switches, delays, and other informa-

tion-passing parts. But it was not to be a construct of information but

rather a solid mass, existing in a real world. Besides, its computational

elements, the automaton also had five other components:

1. A manipulating element (like a hand), which accepted its orders

from the computing (control) part of the machine.

2. Acutting element, capable of disconnecting two elements when

told to by the computer.

3. A fusing element that could connect two parts.

4. A sensing element, which could recognize any of the parts and

convey this information to the computer.

5. “Girders’’ that were rigid structural elements and provided not

only a chassis for the creature but also an information-storage

facility.

The beast also had a habitat. Its environment was a huge reservoir—an

endless lake fortuitously stocked with the same sorts of elements of

which the beast itself was made up.
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The bodyparts ofthe creature were arrangedin such a way to consist
of three main subsystems—and a crucial appendage. One could view
von Neumann’sself-reproducing automaton as a triad of symbiotic
structures. The first, Component A, was a sort of factory, which would
gather materials from the lake and arrange them accordingto instruc-
tions fed to it from another component.
The secondpart ofthis trinity, ComponentB, functionedas a dupli-

cator: its job was to read informational instructions and copy them.
Component C was the control apparatus, the computeritself.
The instructions themselves would be Component D. These would

be arranged in a long string, read like a ticker tape. Physically, they
consisted ofa longseries ofgirders arranged in a sawtooth formation. At
eachjuncture, the presence or absenceofan intersecting girder indicated
either a “1” or a “0.” Thus placing a girder at an intersection was
effectively the same thing as putting a mark on a tape—orfixing bit

inside a computer memory. Reading this long tape of girders, one
compiled a binary number, which, when decoded,yielded information.
Because the string of girders was assumedto stretch quite a distance—
many miles—the nature of the information could be extremely com-

plex, more so than the information in a bookoftext.

Theself-reproduction began, and the automaton camealive, so to

speak, by reading the instruction girder-tape. Component C read the

instruction, fed it to the duplicator (Component B), which copiedit,

and gave the duplicate instruction to the factory, while storing the

original.

The factory, reading the instruction tape, paddled out onto thevast

lake, evaluating the variousparts as they drifted past. Its commission was
to look for a certain part with which to begin constructingits offspring.
Whenit sensed a match, it grasped the part with its hand, holdingit until
it found the next part. Then it welded the secondpart to thefirst. When
the construction was completed, the automatonbuilt a second factory,

a duplicator, and a computer. But one crucial step remained, and it was
this step that established the prescient brilliance of von Neumann’s
thought experiment. This occurred whenthe long girder-tape, Compo-
nent D, which wasretained by the parent duplicator, was inserted into

the new offspring. By bequeathing to the newcreature a copy ofthe
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Information is stored in von Neumann’s kinematic self-reproducing automaton by

means of connecting ‘‘girders,’’ scavenged from the infinite lake in which it resides.

Here no girders intersect these junctures perpendicularly; therefore this series would be

read as OOOOOO.

Here, the first, second, and fourth junctures in the

sawtooth pattern are intersected by vertical girders.

Reading these sections as ‘‘1’’ and blank sections as

“0,’’ one would decode this series as 110100. Using

this method, and a great many girders, one could encode

unlimited information. |

reproductive instructions, the new creature would be “‘fertile,” able to

repeat the process.

This concatenation of events would sound almosttrivially familiar to

anyone with a working knowledge ofbiology, because von Neumann's

automaton,although it was conceived several years before the discovery

of the DNA molecule, essentially mirrored the reproductive process in

natural life. Perhaps with some ironic understatement, von Neumann

told his audience at the Hixonlecture that

the description of this automaton has some further attractive sides.

.. . For instanceit is quite clear that the instruction [tape] is roughly

effecting the functions of a gene. It is also clear that the copying

mechanism B performs the fundamental act of reproduction, the du-

plication of the genetic material, which is clearly the fundamental

operation in the multiplication ofliving cells. It is also easy to see how

arbitrary alterations of the system . . . can exhibit certain typical traits
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which appear in connection with mutation, lethally as a rule, but with
a possibility of continuing reproduction with a modificationoftraits.

In other words, not only did these automata reproduce as wedid, but
over time they had the capacity to evolve into something more complex
than their original state. Again, just as we did.

If one viewed von Neumann’s imaginary creatures as a hypothesis,
then the work of Watson and Crick andtheir successors was empirical
validation. As physicist Freeman Dyson noted, ‘“‘So far as we know,the
basic design ofevery microorganism larger than a virusis precisely as von
Neumannsaid it should be.”’

This first self-reproducing automaton became knownas the kine-
matic model. It had

a

fatal flaw. Thoughits process for creating progeny
was logically sound, the kinematic model suffered from a more general-
ized shakiness of constitution. The problem lay in its elements—too
many black boxes. A black box is a primitive, a given—somethingthat
behavesin a certain way butgives no clue to the observer exactly how
that result is obtained. Unfortunately, too much hadto be taken onfaith
with the kinematic beast. Where do those ‘‘arms” come from? Those
““sensors’’?

Thesilence following these questions did not negate von Neumann’s
breakthrough.Asthe British geneticist L. S. Penrose observed,“Since the
aim ofvon Neumann’sreflections wasto resolve the logical conditions of
the problem, the stupendous mechanical complexity ofthe machine was
of no consequence.” But the fact was that von Neumann could not
produce working models of these parts—they belonged to a more ad-
vanced technology,one that had not arrived even decadeslater. ‘Possibly
such aa system can yet be designed in principle. .. ,”” wrote mathematician
and biologist Walter R. Stahl in 1965, “but thecritical mass ofparts might
run into the hundreds ofthousandsor millions. The kinematic modelalso
doesnotlenditselfvery well to mathematical analysis.”’

Some mathematicians and physicists managed to shelve the black-box
problem by working on less ambitious self-reproducing structures.
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These considerably humbler constructions nonetheless had the advan-

tage ofexisting as more than mental speculations. Their creators thought

it important, even at the expense of drastically simplifying, to build

something that reproduced. They chiseled a crucial cleft in the wall of

misunderstanding that divides biology from other matter. Again, as

Penrose putit, “The idea of of an object reproducing itself . . . is so

closely associated with the fundamental processes of biology that it

carries with it a suggestion of magic.”

These early followers ofvon Neumann,and the a-life researchers that

followed them, encountered something quite remarkable that made

their task easier. However counterintuitive it may be, certain natural

tendencies—rules of the universe, if you would—seem actually to en-

courage phenomenasuchas self-reproduction. The efforts of these ex-

perimenters became an importanttributary to a flow ofscientific theory

and experimentation: the field of complexity, which bore particular

significance to artificial life. |

Onthis point, von Neumannagainanticipated the phenomenon.His

study of natural systems undoubtedly led to his most blazing insight of

all—aninstinctual grasp thatlife was grounded notonlyin information

but also in complexity. Years before the ascendency ofchaos theory and

the study ofnonlinear dynamic systems, von Neumann madea connec-

tion that only now has becomecentral to the understanding ofbiology.

Life, he said, depends on a certain measure of complexity. Ifa certain

critical mass of complexity is reached, objects can self-reproduce in an

open-ended fashion, not only creating their equals but also parenting

more complicated objects than themselves. The crowning example of

this was the path of evolution, which progressed from relatively simple

one-celled organisms to much more complex ones such as mammals.

Below that measure of complexity, would-be organisms could not per-

form self-reproduction and were doomed to decay. The concept was

analogous to a rocket ship requiring a certain velocity to escape the

Earth’s gravitational force—ifit did not climb fast enough,the vehicle

would lose momentum and tumble down to Earth.

The implication for biologists soon became clear and provided per-

hapsthe best answerofall to vitalist cant. Though there was no mystical

élan vital that distinguishedlife from nonlife, there was something abso-

30



The Promised Land

lutely integral to biological systems that might be considereda sort oflife
force: complexity.

Furthermore,intertwined with complexity theory was somethingelse
associated with the emergenceoflife: the concept ofself-organization.
Researchers in the new field of a-life came to understand—indeed,to
depend on—the observation that self-organization could be seen as a
yet-unchartedforce in nature, a force that encouraged the evolutionary
regime that nudged systems toward increasing complexity. What they
foundis that, even against seemingly insurmountable odds, life wants to
happen. So perhaps it was not magic but somestaple ofnature that made
self-reproducing objects possible, if not inevitable.

Surely the phenomenoncan beteased from unexpected sources. In
the late 1950s HomerJacobsen,a physicist at Brooklyn College, noted
that “‘scientists have succeeded in duplicating most of the characteristic
functions of living things, using admittedly non-living models.” The
one major exception was reproduction, and he set out to remedy the
lapse, using, of all things, an H.O. scale-model railroad kit. Using a
circular train layout with several sidings, he released self-propelled box-

cars oftwo types, which hecalled head andtail. A complete “‘organism”’
would consist of a certain arrangement of those types. He implemented
his modelrailroad with a set of simple rules for coupling, decoupling,
and switching. These evoked a consistentresult: the complete organisms
he started with could manipulate random boxcars in the system into

other complete organisms—offspring. Amazingly, using off-the-shelf
toys, Jacobsen had evoked a key behavior of von Neumann’sself-

reproducing automaton.

Similarly, the aforementioned geneticist Penrose, with his son Roger,
built an original system ofself-reproducing structures. Their materials
were humble: pieces of plywood cut into unusual shapes. Various
notches on wooden blocks allowed them to link when they hit each
other in certain ways, much as certain molecules bondedto each other,

or as cells of the immune system latched on to viral invaders. After
several iterations, the system workedto the point wherea “‘seed”’—aset
ofseveral linked blocks in a certain state—could,after a series ofrandom

encounters with other blocks (catalyzed by vigorous shaking of the box
full ofblocks), wound upas not onebut twosets ofblocksin that initial
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state: parent and offspring. The elder Penrosesaid that in principle one

could fashion a similar system that actually allowed for evolutionary

activity. ‘Such an elaborate schemeis so far unattainable in practice. We

have to be content with makinga very parasitic organism,”’ he admitted.

But healso noted that “‘it is not, however, much morehelpless than a
99virus.

These simple experiments suggested that one might indeed use the

principles ofvon Neumann’s kinematic automatonto tap the power of

life. This led somescientists to speculate on the massive benefits that

mightaccrue from this process. Their plans were bold but, theyinsisted, —

feasible. With the confidence that the von Neumannpedigree brought

to the field, they pressed on, braving ridicule and funding droughts.

Oneofthefirst of these proposals was Edward F. Moore’s “‘Artificial

Living Plants.” Moore’s imaginary creations were floating factories,

huge barges propelled by jet-powered squidlike extremities. Their logi-

cal operation was precisely that which von Neumann outlined. Once

droppedinto a coastal area, the artificial living plant drew in raw materi-

als from thesea, the beach,andtheair, operating as a botanical plant does

to keep itself running. That energy was channeled into purifying the

materials in order to manufacture parts from it. ‘‘From these elements,”’

wrote Moore,“the machine would makewire,solenoids, gears, screws,

relays, pipes, tanks and other parts, and then assemble them into ma-

chineslike itself, which in turn could make more copies.”

But there would be a secondary task programmedinto theplant’s

instruction tape, a by-productofthe reproduction process. This yielded

an output that would allow an astronomically huge repayment to the

makers and investors of the plant. It could be something as simple as the

plant’s harvesting a certain mineral more than necessary to produce

offspring (thus becoming,for instance, a zero-labor-force mine for mag-

nesium). Orit created a product not required for reproduction—suchas

fresh water. The difference between this factory and others was that the

artificial living plant was self-sustaining. And by making other facto-

ries—perhapsthousands of them—asingle initial factory produced un-

limited gains.

Moore concededthat his machine would be “‘more complicated and

more expensive than von Neumann’s.”’ An artificial living plant, he
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wrote with understatementtypical of those concocting these earthshak-
Ing systems, “is obviously not going to be accomplished by a lone
inventor working in a basement.”’ But he estimated that for no more
than $75,000,000—arelatively paltry sum for Big Science, even in
1955—the considerable design problems mightbe resolvedin ten years.
Even if the solutions required discovering innovative new chemical
processes, he claimed, producing these things would be no moredifficult
than sending a humanto anotherplanet.

Menweresubsequently sent to the moon,but no onefundedartificial
living plants. The idea persisted, though, and Freeman Dyson ofthe
Princeton-based Institute for Advance Study enthusiastically played with
the conceptofself-reproducing automata in a series of thought experi-
ments. One wasbased directly on Moore’s plan, and, although Dyson
imaginedthat fresh water produced by plants might cause the desert to
bloom,he also envisioned thousands of wrecked plants washing up on
coastlines—a virtual eco-disaster. So Dyson turned his imagination to
the cosmos and proposed self-reproducing automaton sent to the
snow-covered Saturnian moon Enceladus. In his vision, this particular
machine would draw onthe distant sun’s energy to create factories that
produceda long stream ofsolar-poweredsailboats, each carrying a block
ofice. The sailboats would head toward Mars, andthefiery ride into the
Martian atmosphere would melt the ice blocks. Dyson figured that
the accumulated moisture they bore could warm the atmosphere ofthe
fourth planet from the sun, makingit a cozy hothouseforlife-forms and
agriculture. In this case, he says, “‘a finite piece of hardware, which we
may build for a modest price once we understand howtodoit, produces
an infinite payoff, or at least a payoff that is absurdly large by human
standards.”’

Dyson’s concern wasthat this payoff came by an apparentviolation
of accumulated wisdom, if not the natural order. Something had been
created where nothing seemed to have previously existed (this is why
Ted Taylor, a Princeton physicist who also speculated about self-
reproducing systems, called them “‘Santa Claus machines’’). All without

the sweat and toil associated with such advances.

But whodaresbelieve in Santa Claus? Ourintuition, and every shard
of our empirical skepticism, dictate there is no such bonanza. Yet these
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von Neumannesque thought experiments draw plausibility from the

suggestion that the phenomenonoflife is the ultimate free lunch—it

seems to thumb its nose at the incontrovertible principles of entropy.

According to the second law of thermodynamics, as time passes, energy

dissipates and becomes unusable. Order deteriorates. But life seems to

behaveas if it has not bothered to read the second law. Life seems to

propagate order over time. From its unquestionably simpler beginnings,

the history of life as we know it has been a trajectory of increasing

well-ordered complexity. As von Neumann noted, the evolutionary

characteristics of life apparently defy the secondlaw,at least on a local

basis. (Physicists explain the contradiction by saying that over the whole

universe energy and orderis indeed dissipating; by sticking our noses to

the glass in this particular hothouse, we do not see the whole picture.

Viewedfrom largerlens, the organizing properties oflife are perfectly

in line with the second law and in fact aid its execution.) The awe-

inspiring ability of von Neumann’s self-reproducing machines, and any

related form ofa-life, was that it enabled this power,this illusory loop-

hole in the second law of thermodynamics, to be harnessed. There may

not be a vital element that consists ofa life force, but there is a unique

ability of living things over time to gain complexity, to order certain

domains of the universe. Thus if we build living things,artificial orga-

nisms that take advantageofthis power, we can extend our own powers

exponentially.

“It is safe to predict,’’ Dysonsaid, of this possibility, “that this will be

one of the central concerns of the twenty-first century.”

Perhaps the prospect of this is so powerful that our impulse is to

ignore it, or dismiss it as science fiction, asifmany of our contemporary

realities were not first envisioned by science-fiction writers. This seems

to have been the fate of the most elaborate proposal to vivify von

Neumann’s kinematic model: a 1980 NASA study that proposedself-

replicating lunar factories.

In 1980, NASAsponsored a ten-week program to determinethe role

of advanced automation and robotic devices in future space missions.

The agency recruited eighteen university professors to work with fifteen

program engineers. They teamed off into four groups, each to address

the feasibility of a mission that might be undertaken at somelater date.
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The Mission IV Group outlined how von Neumann’sself-replicating
machine might be used to colonize the moon and, eventually, the

universe.

The team leaderofthis group, knownas the Self-Replicating Systems
(SRS) Concept Team, was Richard Laing. After dropping out of an
English literature program in 1956, Laing had donetechnical writing for
some computerscientists who becameinvolved in founding what would
become the Logic of Computers Group at the University ofMichigan.
Eventually the ideas discussed there—dealing with the overlap between
biological and natural systems—-sofascinated him that he earned a doc-
torate in systems sciences and becamea full memberof the group. He
spent muchofhis time there thinking aboutthe implications of the von
Neumann automaton, and, most notably, theorized a circumstance

where the automatonneednotstore the information aboutits structure
on the genetic tape but could supply that data itself; by a process of

self-examination. This would mean that its evolution would not be

strictly Darwinian butratherin the spirit of the sort of evolution postu-

lated by Lamarck, whobelieved that natural organisms might pass ac-

quired traits to their offspring. This matter was supposedly putto rest

nearly a century ago by such experimentsas the the severingofrat’s tails

in successive generations: no matter how manyancestral mutilations one

cares to conduct, the descendants will be born with healthy tails. The

subsequent discoveries in molecular biology confirmed that Lamarckian

evolution was a null issue in natural biology. But Laing indicated that

artificial biology might proveto be different.

In 1980, Laing was leaving Michigan, moving to Oregon wherehis

wife had found employment. The offer to participate in the NASA

program seemeda convenient, and certainly intriguing, stopover onhis

westward journey. Whenhearrived at the university at Santa Clara for

the summersession, he foundinstantaffinity with the three other mem-

bers of his team: Georg von Tiesenhausen, a young German rocket

scientist imported by the new space agency after the war; Robert A.
Freitas, Jr., a scientist with a law degree; and Rodger Cliff, a NASA

engineer. Their first session was so filled with ideas and pointers that

Laing urged them to return quickly to their apartments and write down

everything they had mentioned.
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According to Laing, the unconventional plans of the SRS Concept

Team madethe leaders ofthe summerstudy somewhatanxious. Despite

what seemed to be a solid scientific backing, there was something

decidedly science-fiction-like about the whole thing. The shadow of

William Proxmire, who had squashedyears offunding for the Search for

Extraterrestrial Intelligence (SETI) work by a wrong-headed Golden

Fleece Award, loomedperilously, threatening any project whose meth-

odology might be twistedinto

a

silly soundbite. So the team delivered

reassurances in the form of constantbriefings, reciting their progress in

five-minute odes delivered by speakerphone to Washington. Theyper-

formed some deft soft-pedaling. Instead of self-reproducing factories,

which reeked of anthropomorphism,they called these self-replicating.

The SRS Concept Team sought to demonstrate that “machineself-

replication and growth is a fundamentally feasible goal.” One difficult

question was the issue of “closure’”—could this quasi organism find in

its immediate environmentall the materials it needed to grow, metabo-

lize, and reproduce? The proposedfactory, like any organism, would

require not only the proper physical elements butalso sufficient energy.

Andfull closure would not be accomplished unless the system,again like

any independent organism, was able to generate and handle all the

information required to operate and create offspring.

Total closure was elusive. Certain components, like precision micro-

electronic parts or highly calibrated ball bearings, required a prohibi-

tively complex production process. So the guess, accepted by the study

group, was that 90%—-96% ofthe materials would beavailable, originally

in raw form and eventually converted to usable format by the factory;

the remaining 4%-10% would be sent from earth. The group called

these ‘‘vitamin parts.” Likewise, if the information closure was incom-

plete—for instance, if the behavior programmed by the equivalent of

von Neumann’s genetictapesfailed to account for perturbations of the

environment that would affect the factory—then, information vitamins

would be sent up by earth monitors.

Partial closure, though, was a crutch that significantly limited the

conceptual poweroftheself-replicating factory scheme. Only withtotal

closure would the factories be fully independent organisms, and only

then would the Santa Claus effect—that something-for-nothing ex-
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change that seemed to inoculate life-forms against entropic conse-
quences—kick in, hard.

“There was the suggestion,” Laing says, “if you could just tease
moneyfor this self-replicating factory, you would never need money
again. You could take over the universe!”’
The Mission IV Group suggestedthatself-replicating systems should

display five formsofmachine behavior: production,replication, growth,
evolution, and self-repair. The team provided two detailed designs.
These unfolded like origami fugitives from an Isaac Asimov novel:
however, they were bolstered by scientific citations and illustrated by
reassuringline figures and charts. Forthis was,afterall, an official report
of the space agency of the United States government.
The first design was “‘a fully autonomous, general-purposeself-re-

plicating factory to be deployed on the surface of planetary bodies or
moons.” The debt to von Neumann wastotal: this was the realization
of the kinematic automaton.Instead ofthe territory ofmind,an infinite
lake miraculously stocked withparts, it drew its materials from the virgin
landscape of an unpopulated planet or moon.It gathered raw materials
by mining. Controlled by radio from the command center, digging
machines, loaders, and transport vehicles were, in effect, limbs of the

creature. The elements dug up were analyzed, sorted, and sent to a
materials depot. From there, they went to a parts production plant,
which made components for both the output product (this could be
whatever we wanta factory to produce—anything from platinum ingots
to compactdisk players) and the offspring factories. These components
wentinto the parts depot and woundupin the productionfacility.

Whenthe overall command center—the equivalent ofthe control, or
computer, componentin the von Neumann model—saidit was time to
replicate, the SRScreated triplets, reproducing by strict von Neumann
rules, the final step being the transmission ofthe genetic blueprints. The
original, having performed its parental duty, was thereafter sterile and
operated only as a production facility. The three new factories repro-
duced, and there were then thirteen in the complex. A generationlater
‘‘an SRSfield factory 40 units strong is busy manufacturing products for
outshipment.”’

The seconddesign proposed a “‘Growing Lunar Manufacturing Facil-
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Anartist’s rendition of a self-replicating lunarfactory.

ity” (LMF). Instead of beginning with a chicken—a plug-and-play

self-replicating factory—this began with an egg. Specifically, a 100-ton

spherical seed. Inside the seed was a litter of task-specific robots. Once

planted in the proper lunar nest, the egg cracked open,andits cargo of

robots emerged. There were robots to mine, gather, and process materi-

als. These busy workers first constructed a small solar array to provide

start-up power. Then scouting robots determined the best location to

build the factory. Other robots set up and calibrated a network of

transponders, and so established a control system. Then mining robots

leveled the surface, while paving robots set the foundation for the

factory. When the space wasready, the central computer was movedto

a perch at the center of the factory. Work began on a hugesolar canopy

to provide powerfor the nextfruits of the seed—the chemical process-

ing, fabrication, assembly, and control sectors. In about a year, this
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teeming embryo reached maturity, and a factory was online, producing
whateverits control program told it to.
The SRS Concept Team offered several options from that point. The

factory could expand onits original site (they estimated that around
three billion units would entirely cover the lunar surface, making the
moon into a single dense industrial area, a sort of cosmic rust belt
without energy costs). Or it could produce robot-filled seeds for other
factories and build rockets to launch them into otherlocations in the
solar system. There would be extravagantly bountiful return on the
original investment—the seed money, as it were. Rare isotopes from

Jupiter and Saturn. Hydrocarbons from Titan. Heavy metals from the
asteroid belt. In addition, factories could be programmedto send out

batteries of monitor vehicles, soaring on the solar wind, designed ‘“‘to

track and warn of objects approaching humanhabitats,facilities, or the

Earth.”

But these von Neumann organisms would not be limited to the solar

system. Because the seeds carried no mortal baggage, the excruciatingly

long periods required to covervast interstellar distances would beirrele-

vant. The Mission IV Group calmly noted that “reproductive probes

could permit the direct investigation ofthe nearest million stars in about

10,000 years and the entire Milky Way galaxy in less than 10° years,

starting with a total investment by humanity ofa single self-replicating

exploratory spacecraft.’ With pokerfaces, the Self-Replicating Systems

Concept team proposed a plan that would not be completed until 10

times the span of recorded history. Barring, of course, unexpected

delays.

Thinking in this time frame, one pictured inert material spending

centuries to traverse empty reaches of space. But despite the obvious

perils ofsuch an unconventional claim, the SRS Concept Team empha-

sized that these constructs should be regarded not simply as a special kind

of factories but also as living organisms.

What bothered Laing and his colleagues was this: The certainty that

organisms tend to seek their own ends introducesthe possibility that our

creations will be our competitors. Perhaps they would even evolve into

a species that competed with humankind. “‘It is not too early to begin

considering the possible kinds of behaviors which advanced machines
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mightdisplay, and the ‘machine sociobiology’ which may emerge,” they

wrote, suggesting that “it is prudent to inquire as to the possibility of

unforeseen dangers to our continued existence.”

First, as Moore suggested in his article onartificial living plants, was

the problem of population control. Possible limitations to excessive

breeding could include a built-in birth controlpill, which would kick

in after a specific number of reproductive cycles. Still, the inexorable

multiplication of decentralized factories would be excessive. A possible

solution, then, would be predators. Following the example of adminis-

trators in the National Park Service, we might launch species-specific

predator machines,or “‘universal deconstructors” to thin out exploding

populations.

Then there was the so-called unpluggability problem. Unlike com-

puters and machines with which weare familiar, self-replicating systems

had a degree of independence that made mootthe last-resort contin-

gency when machines went wrong—turningit off or pulling the plug.

(As did astronaut Dave to the HAL computer in 2001.) “We must

assume that we cannot necessarily pull the plug on our autonomous

artificially intelligent species once they have gotten beyonda certain

point of development,” was the gloomy conclusion.

The problem—which was a problem only from ourpoint of view,

not from the vantagepointoftheartificial self-replicating systems—was

that evolution would inevitably encourage behavior that suited the

machinesand notnecessarily its creators. If, for instance, the creators of

a self-replicating system programmedinto the machine’s genetic instruc-

tions a shut-downswitch that would respondto signal from earth, any

machines that-mutated in such a way to override that switch would have

a distinct evolutionary advantage over their cousins—andsoonthat trait

would proliferate in the gene pool.

On the other hand, we would certainly want some evolutionary

adaptability in ourself-replicating systems. “Since we cannotforesee all

ofthe ways in which the system maybeperturbed,” explains the NASA

report, ‘“‘we shall have to supply it with goals, as well as homeostatic

capabilities, enabling the machines to solve their own difficulties and

restore themselves to proper working order with little or no human

assistance.”’ This could be done in two ways: the machines could learn,
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or the machines, over a long period of time, could evolve to a higher

fitness. The NASAscientists seemedto think the latter option wasbest.

Indeed, they viewedtheself-replicating machines as eventually provid-

ing an even clearer case for the arguments of sociobiology—which

assumes that evolution played a dominantrole in social behavior—than

does the natural world. The NASA team speculated on kinship relation-

ships between machines and even the use of mimicry and other natural

phenomena.

This wasfairly far afield for a summerstudy in automation in space

missions, certainly more than many in the upper reaches of NASA

wanted to hear. But the team went evenfurther into uncharted specula-

tive terrain when they decided to ponder philosophical, ethical, and

even religious considerations ofbuilding theseself-replicating machines.

The scope of the questions they raised was astonishing and, some would

say, absurd. But, as Laing says now of those controversial queries, ““We

felt we had a duty to pose those questions.’ Hearkening back to Aris-

totle, they wondered whether a machine could have a soul—orthink it

had a soul. “Could a self-reproducing, evolving machine have a concept

of God?” they asked. ‘Or would humankindbe seen as nothing more

than an evolutionary precursor?”

The answerto that question lay in perhaps the most disturbing specu-

lation ofthe SRS Concept Team:that ourartificial life machines would

be symbiotically linked to us as no less than equal partners, coevolving

through the eons. Humankind, they asserted, was either a “biological

Waystation”’ in the grand schemeofthings orelse an “‘evolutionary dead

end.”’ It was only through theseself-replicating systems—“‘in a very real

intellectual and material sense ouroffspring,”’ they said—that the fruit-

less latter option could be avoided. While acknowledging the possibility

that these silicon-and-steel progeny might render humans, as well as

other forms ofcarbon-based life, obsolete, the authors chose to view the

situation more optimistically (no surprise since they were, after all,

advocating that we begin to build these machines). They envisioned a
near-eternal coexistence where, for the price of merging itself into a

larger system, “mankind could achieve immortality for itself.”

After postulating the possible extinction of humankind, andat the

least as significant an event ‘‘as the emergence andseparation ofplant and
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animal kingdomsbillions ofyears ago on Earth,”’ the NASA SRS Con-

cept Team patiently waited for the funding that would set the process

in motion. Thefirst step would be technology andfeasibility assessments

at research centers such as MIT, Carnegie-Mellon, or Ford Aerospace.

They even wrote a samplesolicitation for relevant research proposals.

While this was being done, they suggested, NASA should immediately

begin developing a laboratory robot that could perform simple self-

replicating functions.

According to Laing, the NASA administrators liked the idea and held

out the possibility that work could begin. In 1983, when Laing wastold

that Ronald Reagan was about to announce a majorspaceinitiative, he

hoped that it would include a concentrated effort to build self-

replicating lunar factories. The Reagan speech instead proposed Star

Wars.

Asstated earlier, von Neumann was notsatisfied with his kinematic

model because ofthe black-box problem, which would,for the foresee-

able future, limit his creation to the confines of the mind. Even for von

Neumannthis was a dilemma,andthe resolution cameat the suggestion

ofhis longtimefriend and fellow master mathematician Stanislaw Ulam.

The two had been friends since 1937, when von Neumann visited

Ulam’s homein Poland. Their relationship was cemented by the war-

time kinship at Los Alamos, wherethe pair of expatriates had been key

participants in the Manhattan Project. Ulam shared his friend’s interest

in automata theory andindeed, could recall sitting in a coffeehouse in

Lwéwin 1929, speculating on the possibility of artificial automata re-

producing themselves. |

When confronted with von Neumann’s black-box problem, Ulam

suggested doing away with the metaphor of a creature swimming ona

lake and picking up and manipulating these troublesome primitives.

Instead, he drew from the phenomenonofcrystal growth a different

environment: an infinite grid, laid out like a checkerboard. Each square

of the grid could be seen as a “‘cell.”” Each cell on the grid would

essentially be a separate finite state machine, acting on a sharedset of

rules. The configuration of the grid would changeas discrete time steps
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ticked off. Every cell would hold information that would be knownas

its state, and at each time step it would look to the cells around it and

consult the rule table to determineits state in the next tick. A collection

of cells on such a grid could be viewed as an organism.

This idea appealed to von Neumann. The organism livingin this grid

space wouldbea creature of pure logic. Everything aboutit could be

stated mathematically. It would be fully realized and provable beyond

contention. It would exist. From the bones of Ulam’s suggestion, von

Neumann remadehis kinematic self-reproducing automaton into what

would be knownasthefirst cellular automaton (CA). (The name would

come from Arthur Burks, who edited von Neumann’s papers on the

phenomenon; otherwise, Ulam’s description of tessellation struc-

tures—atessellation is a plane oftiles, as one would find on a bathroom

floor—might have stuck.)

Von Neumann’s cellular model for a self-reproducing automaton

began with a horizonless checkerboard, with each square,orcell, in a

quiescent, or inactive, state—essentially, a blank canvas. Then von Neu-

mann figuratively painted a monster on the canvas, covering two hun-

dred thousand cells on the lattice. In the spirit of a paint-by-number

landscape,the details of the creature were represented by different “‘col-

ors’ in various cells—only instead of literal colors there were twenty-

nine differing states of the cell. It was the precise combination of those

cells in their given states that told the creature how to behave, and

indeed that defined the creatureitself. It was shaped like a box with a

tail, a very long tail. The box, abouteighty cells long by four hundred

cells wide, contained suborganisms that replicated the functions of

Components A,B, and C (the factory, the duplicator, and the computer)

of the kinematic model; these took up only a fourth of the creature’s

cells. The rest of the squares were in thetail, the blueprint, which was

a single-file snake of 150,000 cells.

Instead of swimming and grabbing, the metaphorfor this machine’s

process of reproduction was claiming and transformingterritory. It was
reminiscent of certain geopolitical board games, where players invade

and conquer neighboring countries. More to the point, this was a

physical interpretation of what happenedin natural reproduction. The

atoms and molecules that made up the new entity, the offspring, neces-
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A schematic diagram (not drawn to scale) of von Neumann’s self-reproducing cellular

automaton. When the rules are executed by the cells in the tape (which stretches as

far as 150,000 squares on the grid), the changing states of the cells in the body of

the organism act to change the states of the previously stable cells outside it. First a

constructing arm protrudes, and then the body of a new organism forms. Eventually

there will be two identical patterns, each one resembling the same fully formed

self-reproducing automaton of von Neumann’s design. Reproduction will have been

completed, in the spirit of natural reproduction.

sarily came from the environment. The idea—theidea oflife really—

was to gather those materials in their disorganized forms and integrate

them in the highly complex organization ofa living being.

The von Neumannself-reproducing automaton, once embedded in

the vast CA checkerboard, would follow rules. More properly, each

individual cell, as an FSM, began to follow the rule that applied toit.

The effect of these local behaviors caused a global behavior to emerge:
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the self-reproducing structure interacted with neighboring cells and
changed someoftheir states. It transformed them into the materials—in
terms ofcell states—that made upthe original organism. Because there
were twenty-nine possible states for each cell, the process was fairly
complicated. Essentially, the machine workedin

a

fashion similartoits
kinematic cousin. Thetail ofthe cell containedinstructions for the body
ofthe creature, whose collection ofcells, dependingontheirstate, acted
as computer, factory, or duplicator. Eventually, by following the rules of
transition that von Neumanndrew up,the organism managed to make
a duplicate of its main body. Information was passed through a kind of
umbilical cord, from mother to daughter. Thelast step in the process was
the duplication of the tail and the detachment of the umbilical cord.
Twoidentical creatures, both capable ofself-reproduction, were now in
the endless checkerboard.

Von Neumannnever completed his written proofofa cellular model.
For more than a year he arose each day before dawn to work on his
manuscript. By March 1953, when he delivered a series of talks at
Princeton University, he was able to describe it in somedetail, but the
complexity of the subject was more than he had anticipated, and the
manuscript grew from two long chapters to four, with more planned.
Von Neumannshelved the work when he wasappointed to the Atomic
Energy Commission and intendedto finish it when his service ended.
When it becameclear that his health wasfailing, he allowed John G.
Kemeny, wholater went on to invent the computer language BASIC,
to write an article describingthe self-reproducing CA. Kemeny’s work
appeared in Scientific American in 1955,described as an attempt “‘to show
there is no conclusive evidence for an essential gap between man and a
machine.” What excited Kemeny wasthe capacity for evolution in von
Neumann-type automata. He notedthatthetail ofthe machine, which
requires most ofthe cells, was like a set of chromosomes and marveled
at how, in comparison, the body of a human being needs only a small
portion of its matter to make up the genetic material.

“Could such machines go through an evolutionary process?”
Kemeny wondered; he concluded, as von Neumanndid,thatit certainly
could. He speculated that one might program thetransitionrules so that
a tiny number of random changes would occur during the copying
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process—someofthe bits would beflipped from ontooff, or vice versa.

This would be like a mutation. Or one could take a deep breath andsay

that this would be a mutation. As is characteristic of mutations, it might

well be passed on to the offspring. If this mutation woundupincreasing

the machine’s fitness, adhering to the conventions of natural selection,

it would spread throughout the gene pool of the machine population.

Eventually we would havethe fruits of evolution.

This raised the same questions that Dyson and Laing’s Self-Replica-

ting Systems Concept Team pondered: What happens when weset

these structures free? What can emerge from them? Certainly it is less

threatening to observe these consequences when they occur simply as

combinationsofelectrical charges on a computer chip rather than in

huge factories that alter the course ofcivilization.

Oris it? It turns out that deciding how seriously to weigh events that

may occur only within the confines of a computer1s a considerable

dilemma. How closely can nature be simulated by symbolic manipula-

tion of information? Can building artificial organisms increase our

knowledge aboutliving processes? Can it enhance our cloudy under-

standing of the complex forces of nature? Can we ultimately learn to

corral those forces to build organismsaslifelike as those we know?

Would those, then, be alive?

Thefield ofartificial life would transform these from idle queries to

essential ones.
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To declare that the personoids are somehow ‘handicapped’? with respect to

us, inasmuch as they do not see or hear as we do,is totally absurd. With

equal justice one could assert that it is we who are deprived with respect to

them—unable to feel with immediacy the phenomenalism of mathematics,

which, after all, we know only in a cerebral, inferentialfashion. They live

in it; it is their air, clouds, water, and even bread—yes, evenfood, because

in a certain sense they take nourishmentfrom it. To say they are imprisoned

inside the machine is mere journalism.

Stanislaw Lem

Thereal reasonfor studying CAsis to promoteartificiallife . . . this is the

computer scientist’s Great Work as surely as the building of the Notre

Damecathedral on the Ile de France was the Great Work of the medieval

artisan.

Rudy Rucker



For several monthsin the late 1960s, the common room of the mathe-
matics departmentat the University ofCambridge—ablandinstitutional
space with worn furniture anda stillborn light creeping into the room
from the open doors of adjoining offices—was taken over by what
seemed a mutant version of the Chinese game of Go. From a small
square coffee table, it grew, spilling over the side, colonizing the floor,
and stretching toward the corners. The pieces were not thetraditional
Go stones but rather squared-off little counter pieces, or small shells
taken off of a necklace.

At various times, there could be six or seven people moving these
pieces. But they could notaccurately becalled participants. They had no
more control of the game than did the group ofspectators that often
dropped into the common room during coffee time—an expanding
coffee time, to be sure, often stretching for the better part of the after-
noon. A deterministic set of rules, not human wile, determined where
the pieces went. These precepts dictated which pieces on the grid would
remain (in which case they would “‘survive”), which pieces would be
removedfrom the grid (in which case, they would be considered to have
“died”’) and whether new pieces would be placed on the grid (or
‘“born’’).

The gamewascalled Life. It was destined to become the most famous
example ofvon Neumann’sinvention, cellular automata, and aninspira-
tion to a generation ofartificial life researchers. Its creator was John
Horton Conway, a mathematician then in his early thirties who had
already earneda reputationforbrilliance in exploring the abstract fringes
of numbertheory, as well as for his world-class eccentricities. These
ranged from a memorable fondnessfor disorder (“Other mathematicians
talk of his offices in the same wayarcheologists discuss ancientcities,”
wrote onejournalist) to a voracious appetite for whimsical pursuits, such
as twisting his tongue into weird shapes. He often combined these dual
notorieties in vigorous sojourns into the realm of mathematical games.
Conway was in an enviable position: when in the grasp of a mathe-

matical obsession, he was free to devote all his energies to it. This had
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been a goal he had pursued since his boyhood in Liverpool, when his

mathematical skills became apparent. He was quite capable ofreeling off

the first thousand digits ofm. His classmates called him “The Professor.”

He was confident in his mastery until he finally won his cherished

appointment at Cambridge in his early twenties. Then he was suddenly

seized by doubt. What if he were merely a pretender to genius? Fortu-

nately, his doubts were soon dispelled. He made a ground-breaking

mathematical discovery in group number theory, which came to be

called the Conway group. From then on,not only were his worries gone

but also his obligations. At times he consideredthe situation scandalous,

but he was required to do nothing but think, about subject matters solely

of his own discretion. As a result, he says, “I have spent a fantastic

amount of my timeplaying childish games.”

In 1968, the particular “‘game’’ that obsessed Conway involved the

workings of CAs. He had a suspicion about them that he wanted to

confirm. Though it was true that von Neumann’s automaton qualified

as a universal computer—it could emulate any describable function of

any other machinebyuseofaset oflogical rules—the organism itselfwas

frustratingly complex, with its two hundred thousand cells in any of

twenty-nine states. Conway suspected that a cellular automaton with

universal computing capabilities might be simpler. Much simpler. So he

set out to build an extremely elementary CA, one so simple that you

could update it, time step by time step, on a simple checkerboard,

working by hand. Hewassure that it would notbe too difficult to come

up with something that followed only a few simple rules but yielded

unlimited results.

Conwaybelieved that from the most rudimentary elements one could

producefantastic results.He would sometimes daydream aboutentering

a warehouse full of odd bits of machinery—full of junk, really—and

wiring the parts pretty much at random. Andonly then figuring what

you might do with the contraption. “Just imagine this whopping great

machine with buttons and coloredlights on,”’ he would say. ““My guess

is that after you’ve lived with it a long time, you’d notice something

you'd beable to use it for.”” Most amazing ofall, you might figure out

a certain set of contortions to put the machine through, so it could
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behave like a computer—and thus, behave like any machine in the
world! |
More to the point, something equally amazing apparently occurred

many years ago on this planet when simple molecules somehow devel-
oped into a complex system that eventually bore what we now call life,
in all its dizzying evolutionary development.

The trick for Conway was to come up with the simplest imaginable
model that could explode into the infinite power of a universal com-
puter. He would live with it for a while, explore its peccadilloes, see
how its powers might unfold, and, he hoped, showthat it could calculate
anything. This Life computer would be by necessity a rather cumber-
some configurationofcells, and it would operate extremely inefficiently.
Yet, if it were a universal machine, it would be capable of eventually

matching the workings of the most powerful supercomputers in exis-
tence. The experiment would not break new ground mathematically—
von Neumann had done that job—but by greatly simplifying the
master’s work, Conway would clarify those concepts.

Ifhe were very lucky, the system mightyield something. . . alive. “I
wanted to see someself-reproducing animal,’’ Conwaysays. ‘‘Display-
ing someinteresting behavior. In a weak form,living.”’
The key would be therules that dictated survival, birth, and death.

Since the rules in this case would generate everything in this artificial
world—a complete physics, the meaning ofthis universe—it was essen-
tial they be perfectly tuned. A slight variation could transform a fairly
stable system into absurd chaos. ‘‘Suddenly it all goes catastrophic,”
Conway explains. “And yousort of tinker with it, and say, ‘Ah, I made
that a bit too strong,’ so you sort ofweaken somethingthere, and then
somethingcollapses. And it took about two years, really, of experimen-
tation at coffee time to get it right. And coffee timelasts all day here.”

Conway’s task wasparticularly challenging because he wasdrastically
reducing von Neumann’s Byzantine set of twenty-nine states. His CAs
ideally would have but twostates. A space in the grid, a cell, would be
either filled or empty. On or off. Oneor zero. Alive or dead.

At one point he doubtedthat it could be done and developed a system
that had an extra state in it. This did have the advantage of adding sex
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to the stark politics of life and death. ““The basic rule was that three

things gave birth, provided they were ofmixed sexes. Someone noticed

wecalled the states A and B, so we called them actresses and bishops.

[This from a hoary series ofrisqué English jokes.] The basic plan was the

sex of the offspring would be the weakerone,the oneleast represented,

because it tends to even things up. We also had a thing called the

Frustration Rule. If you weren’t touching something of the opposite

sex, you died.”

Butactresses and bishops were sent offstage when Conway tuned the

rules so that his conditions were satisfied by the minimum twostates.

This wasLife.

These were the complete rules, a grand unified theory of a universe

capable of generating Life, and, conceivably,life:

Life occurs on a virtual checkerboard. The squaresare called cells.

They are in one oftwostates: alive or dead. Each cell has eight possible

neighbors, the cells which touch its sides or its corners.

Ifa cell on the checkerboardis alive, it will survive in the next time

step (or generation)ifthere are either twoor three neighbors alsoalive.

It will die of overcrowdingifthere are morethan threelive neighbors,

and it will die of exposure if there are fewer than two.

Ifa cell on the checkerboardis dead, it will remain dead in the next

generation unless exactly three ofits eight neighbors are alive. In that

case, the cell will be “born” in the next generation.

That was it. Once Conwaysettled on those rules, things happened

very quickly in the common room. Thefirst thing that he and his

colleagues tried was to see what happened to the most simple initial

configurations oncethe rules were applied. Most ofthem quickly settled

into stable patterns. Conwayandhis friends namedthese objects, much

in the taxonomic style of stellar constellations, after the shapes they

suggested: block, ship, longboat, beehive, loaf, canoe, pond. Other

shapessettled into periodic configurations, alternating between shapesas

the time steps click by. These were called oscillators, and some of them

were called toads, blinkers, clocks, and traffic lights.

But certain simple life-forms had much more complex biographies.
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Theclassic example of these was the R Pentomino. A pentomino was
a contiguous arrangementof any five neighboringcells; this particular
example is roughly shaped like the letter R. At each click ofthe genera-
tional clock, the R Pentomino turned out something different. Seem-
ingly, there wasnopredictability to its patterns. It soon becameclear that
the R Pentomino’s fertility was prodigious. At one point it broke into
four objects, explodinginto a kaleidoscope-like activity, sort ofa Busby
Berkeley dance of blinking cells. Then the symmetry dissolved. Small
objects appeared continuously. Sometimes objects broke up only when
other newborn cells tampered with the equilibrium;at other times they
were temporary configurations, doomedto dispell into quiescence. As
each generation passed, Conwayandhis helpers despaired ofever know-
ing the fate of the configuration. (Monthslater, they learned that the R
Pentominostabilized after 1103 generations.) Particularly because some
of the small objects it generated used the rules of Life to movesteadily,
as if purposefully. These were the gliders.

It was Richard Guy, a colleague of Conway’s in the Cambridge
mathematics department, who discoveredthefirst glider. In the midst of

tracking the R Pentomino,aroundthe seventieth generation, Guysaid,

“Oh, look, mybit’s walking.” It was a five-cell object that shifted its

body with each generation, always in the same direction, muchin the

spirit ofa single-cell organism thatshifts its matter as a means oflocomo-

tion. Others contended that it lookeda little like an insect, waggingits

_ abdomenas it moved. (Conway later wondered whether “‘insect”’ might

have been a better term for the configuration than “‘glider.’’) After four

time steps the glider returnedto its original configuration; only now it

had moveditself one cell diagonally on the checkerboard.

The discovery of such a reliable moving configuration was a particu-

larly exciting observation for Conway’s group.In orderto provethat the

rules of Life supported a universe in which a universal Turing machine

could be embedded(andtherefore Life could emulate any other compu-

tation machine, whetherelectronic or natural), it was necessary to show

that a literal computer could be built ofLife patterns. This would include

patterns that emulated computer parts like a counter, a clock, and a

memory. The gliders, whose motion was sufficiently reliable to keep

timing, would help considerably.
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The development of a simple stable form

in the game of Life. The initial form is

a row offour live cells. Each cell in the

configuration then examines its neighbors

and itself. The simple rules of Life then

determine whether the cell will be alive

or dead in the next generation. In this
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neighbors—the right number to keepit

unless perturbed.

By the time Richard Guy foundthefirst glider, Life was growingfar

beyond the bounds of the small coffee table in the common room and,

indeed, out of the room itself. The fact was, manipulating Life by hand

was rather unwieldy. (The benefit was that you really understood what

was happening whenyoupainstakingly generated the births and deaths.)

To minimize the confusion, Conway’s group had devised a system that

worked fairly smoothly. The configuration would be laid out in white

counters. Applying the rules, the mathematicians would determine

which ones would die in the next generation andplace a shell on top of

those. Thusto “‘shell’’ a cell was to kill it. Births were markedbyplacing

a new counter onthespace.(A certain professor often made the mistake

of giving birth when four live neighbors surrounded an empty cell

instead of three: these were dubbed “‘Nigel Martin births,”’ in honor of

the erratic sheller.) At times, the population would grow to a point
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where it would requireless effort to reverse the procedure,so that shells

wereplaced onsurvivingcells rather than on doomedones. There were,

afterall, a limited amountofshells. In those cases, someone would shout,

Shell the living! and that switch would be carried off.

Then there were the blinker watchers, whose job it was to notice

when a configuration had attained periodicity. Once that was observed,

the players could shortcut the procedure, particularly when the blinker

was located some distance from the main action, by ignoring those

stones until neighboringcells upset the pattern’s stability.

Whenthe configurations tumbled offthe single Go board,the players

would hastily place sheets of paper on the carpet and draw squares on

them to extend the grid. It was, in fact, on the carpet that Guy found

the glider. Oncea glider managed to get away from the main configura-

tion, ofcourse, it headed offthe papers, out ofthe room,and,in theory,

out of Cambridge, out ofEngland, out ofeverywhere. Asa result, some

configurations could never really be tracked. (Although the R Pen-

tominoturnedoutto bestable after 1103 timesteps, its six free-traveling

gliders have long since shimmiedoverthe horizoninto the eternal mist.)

The glider discovery was encouraging, but Conwaystill required

other crucial patterns to prove that Life could be a universal computer.

Key among them wasa pulse generator, a construct that would shoot out

gliders with regularity so they could bounce off other structures as part

of an embodiedcomputer. Instead of painstakingly trying to discover
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The motion of a glider in Life. In the course of the four generations required

for the glider to recapture its original form, the pattern displaces itself one

square diagonally.
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this glider-gun configuration, Conway decided to open the problem up

to the world at large. The best way to do this was through Martin
Gardner, who wrote a columnfor Scientific American called ‘“‘Mathemati-
cal Games.” To math nuts and to the kind of people who would
considercellular automata interesting (two sets with considerable over-

lap), Gardner’s columnwaslike a monthly update ofthe Bible. Through

Gardner, Conwayplayed a trick on this select population: he conjec-
tured that a finite initial configuration of Life would not be able to

generate infinite populations, and offered $50 to anyone who could
disprove that. The way to accomplish this refutation would be a con-
figuration for a Life machine that spit out objects ad infinitum, beit a

glider gun that shoots off the objects or a “‘puffer train” that moves on

the grid, leaving behind a constanttrail oflive cells, or “‘smoke.”’

When R. William Gosper read the October 1970 edition of Scientific

American, it brought his own work to a stop. Gosper was oneofthe key

computer hackers at MIT’s Artificial Intelligence Laboratory, and one of

the brightest programmers in the world. He enjoyed a mathematical

puzzle, but he recognized that Conway’s challenge was more than a

game—CAs, andLife in particular, represented a vivid abstract world in

which real consequences occurred. It was an alternative universe built of

mathematics, virtually uncharted—the kind of place where Gosper

wanted to spend a lot of time. “‘It represented the ability to do science

without already having been beaten to the punch by Newton,and Gauss

and everybody,” says Gosper, “‘the ability to do everything from animal

husbandry to recursive function theory.”’

Gosper quickly hacked a program to enable him and his fellow

hackers to run Life configurations on the Digital Equipment Corpora-

tion (DEC) PDP-6 computer on the ninth floor of the Technology

Square building. Through a small, circular black-and-white monitor

they could see Life zip through its generations. Comparedto the pains-

taking, error-prone machinations ofthe handcrafted Conway technique,

this was warp speed. Configurations would occasionally eruptinto fasci-

nating digressions, and the Life explorers, often surrounded by equally

mesmerized spectators, would watch for hours. Actually, since unpre-

dictability was part of the terrain with CAs, andsince significant clues

to their secrets simply emerged from the crazy quilt of interactions,it
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was hardto distinguish between wasting time and doing science.Part of
the routine wassetting up aninitial configuration andletting ’er rip.

But there was work, too, and Gosper and his group wentatit full
time. It took no more than a month before they sent a message to
Conwayvia Gardner: We foundthe glider gun.Later, his group found
a puffer train, too. Then came Gosper’s piéce de résistance: “We even-
tually got puffer trains that emitted gliders which collided together to
make glider guns which then emitted gliders but in a quadratically
increasing number. . . . Wetotally filled the space with gliders.”

From this breakthrough, Conway had the evidence he needed to

prove that Life could indeed support universal computation. Using
glider streams to represent bits, Conway was able to produce the equiva-

lent of and-gates, or-gates, and not-gates, as well as an analogue of a

computer's internal storage. He never bothered to actually build this

virtual computer on a real machine, but the MIT groupcreated a

Life-based adding unit that Conway saw when hevisited the other

Cambridgeone day and consideredlovely. “It worked like clockwork,”’

he recalls. “Streams of gliders would come around here, and sort of

ticked around—click click click click click—and then the sum came out

as anotherstream.”’

As far as Conway was concerned, that completed the task he hadset

out to accomplish with Life—he had proved that von Neumann’s ideas

could be realized in a much simpler context, and healso spread an

enormous amount of cheer while doing it. The catalyst for all the

excitement, of course, was the computer. The Scientific American article

appeared at a time whenit had only recently becomepossible to run

cellular automata on interactive computers, and the MIT group was only

one ofmany covensofhackers whogathered around a machineat night

to run Life. It was estimated by Time that millions of dollars ofunautho-

rized computer time were squandered by Life tinkerers, who even

published their own newsletter listing various discoveries. And many,

notably Gosper, kept up Life explorations for years and kept on publish-
ing scientific papers on their results.

Thesingle disappointment forJohn Horton Conwaywasthat, despite

Life’s undeniable versatility, and its verifiable unpredictability, no con-

figuration in that CAyielded a self-reproducing animal in a reasonably
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small space. In theory,heinsisted, Life can support the emergence ofany

recognizable animal, as well as unlimited unrecognizable ones. “On a

large enoughscale you wouldreally see living configurations,” he says.

“Genuinely living, whatever reasonable definition youcare to giveto it.

Evolving, reproducing, squabbling overterritory. Getting cleverer and

cleverer. Writing learned Ph.D. theses. On a large enough board,there’s

no doubt in my mindthis sort of thing would happen.”

By “‘large enough board,”’ Conway wasreferring to something very

large—perhaps bigger than the physical universe. (Others were more

optimistic, thinking that a Go board the size of the solar system might

do the trick.) But Conway thoughtthat a square grid of a mere million

cells a side might yield a creature comparable to a one-celled animal.

But would that animal be alive? The nature of cellular automata was

such that many would concede it. And some would even declare that

CAsare sufficiently complex to develop an entire universe as sophis-

ticated as the one in which welive. Indeed, claimed one researcher, we

had no proofthat this universe in particular was not a CA,running on

the computer of some magnificent hacker in heaven.

From the time that von Neumann took Ulam’s suggestion to place his

self-reproducing creature in a universe built on an abstract grid, cellular

automata have had, no pun intended, a checkered career. If not for

Conway,in fact, the entire study, which eventually attained considera-

ble currencyin the scientific world, might have been unfairly consigned

to the trash heap ofthetrivial. But from the daysofthe self-reproducing

automaton, a series of dedicated believers kept it alive until its current

state offashionability and hard-wonsignificance. Oneofthese caretakers

compared his advocacy ofcellular automata to that of a hospital intern

charged with keeping the patient alive until the shift ends, and the next

physician inherits the charts and telemetry.

Its first champion after von Neumannwasan unprepossessing philos-

ophy scholar, named Arthur Burks. Burks obtained a doctorate in 1941,

having written a thesis on a then-unheralded nineteenth-century Amer-

ican thinker named Charles S. Peirce. He then served in the military,

where he took upelectrical engineering, an interest he pursued at the
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MooreSchoolin Philadelphia, where work was being done on what was
arguably the first general purpose electronic computer, the ENIAC.
Burks becamepart of that effort. Among the people he met was von
Neumann, whowasconsulting at Moore. When von Neumanndecided
to design his own computer, Burks, by then an assistant professor of
philosophy at the University of Michigan, was amongthelogic engi-
neers he recruited.

In 1949, the Burroughs Companyagreed to fund a computerresearch
group at the University ofMichigan. Burks wasput in charge and given
the freedom to shape the group toward his ownpeculiar interests, which
straddled the little-known line between electronics and biology.

Burks was following not only in von Neumann’s footsteps but also
hewingto thespirit ofhis thesis subject. Peirce’s ideas were based on an
insistence that life’s workings were foundedin logic. In particular, he

believed that evolution itselfwas a mechanism that would eventually be

parsed mathematically. He compared evolution to thestatistical me-

chanics dictating the movement of molecules in gases. Speaking of the

predictability of the properties of gases when exposed to heat, Peirce

wrote:

In like manner, Darwin, though unable to say what the operation of

variation and natural selection in any individual case may be, demon-

strates that in the long run they will, or would, adapt animals to their

circumstances. Whetheror not existing animal forms are due to such

action, or whatposition the theory oughtto take, forms the subject of

a discussion in which questions of fact and questions of logic are

curiously interlaced.

This train ofthought—arunawaytrain,in relation to the more bounded

theories ofthe philosopher’s peers—anticipated Turing, von Neumann,

the early theorists ofAI and nowtheresearchers ofartificial life. In light

of subsequent discoveries, Peirce’s theoretical trajectory seemed uncan-
nily aimed. Close study of Peirce encouraged Burks to focus his group

differently from any other computerscience departmentin the country.

(Burks would later concoct his own Peirce-based philosophy,calling it
logical mechanism.) The Logic of Computers Group,as it came to be
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known,attracted people like John Holland, a young MIT graduate who

believed that computers coulddisplay adaptive behavior. It was at Mich-

igan that Holland becamethefirst computer science Ph.D.in the coun-

try and probably in the world. And it was at Michigan that the seeds

would be sown for a new synthesis between biology and information.

Burks will probably be best remembered for editing von Neumann’s

posthumouspapers on automata theory. Though he had never discussed

the theory with von Neumannpersonally, it dealt with threads ofthought

that Burks had been unravelingall his career. In the process ofresurrecting

the material, Burks became an expert in the subject matter, even correct-

ing errors in von Neumann’s hastily drawn cellular model oftheself-

reproducing automaton. But even before publishing von Neumann’s

theories, Burks was encouraging others to explore CAs. Other notable

work derived from von Neumann’s ideas began coming out ofMichigan.

For instance, E.F. Codd, an engineer whose doctoral studies were being

paid for by his employer, IBM,designeda self-reproducing automaton

like von Neumann’s, but much simpler—it required using only eight

possible cellular states instead ofvon Neumann’s twenty-nine.

At Michigan, the Logic of Computers Group becamethefirst place

where cellular automata were run on computers. To besure, the sys-

tem wasan inelegant kludge. Two expensive machines were required.

One was a behemoth IBM 1800, which crunched the extensive calcu-

lations. The other was a smaller, interactive hybrid of two DEC mod-

els, the PDP-7 and PDP-8. The experimenter would control the

model with the DEC keyboard and use the superior DEC display. By

turning knobs, different rules could be applied, and the results ob-

served. It was a new sort of mathematical research, one in which the

payoff came not by calculation but by emergence. As the work pro-

eressed, it turned out that the forces at work in cellular automata

seemed remarkably similar to forces in nature. It was not unusual at

the Logic of Computers Group to see doctoral theses on CA-based

methods of charting heart fibnilation.

In a sense, with cellular automata, researchers turned the keys over to

nature. Forces of self-organization, not yet understood, along with the

particular artificial physics in the given experiment, would drive the
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system. Sometimes, the destination would be unexpected. That was the
mystery and powerofCAs. Butit wasa secret kept largely in the Frieze
Building in Ann Arbor.

But then, most of the general practices of the Logic of Computers
Groupat the University of Michigan were performedin relative isola-
tion. At the center of the belief system at Michigan was nature—nature
as teacher, nature as the complex system to whichall electronic systems
shouldaspire, nature that would be the fulcrum of a symbiotic study of
biology and engineering. It was the place where natural objects inspired
computer theory, and computer creations behaved as natural objects.
Elsewhere the god ofAI would prevail, relegating the Michigan people
to a fate worse than ridicule, a sort ofacademic limbo where they would

present papers, develop ideas, and actually prove things—with little
impact on the fields of computer science or biology.

The sad fact was that, several years after Conway’s Life swept the
computer world,CAs were in danger of sinking into oblivion. It was
during that dark time, in April 1975, when a youngItalian Ph.D.student
at Michigan, Tommaso Toffoli, was beginning his graduate thesis on the
subject. His approach,as he described it in the final document, was to
address the question, ““Whatare cellular automata worth saving for?”’ He

confessed puzzlementthat, ofthe few who worked the field, most were

mathematicians. From a pure mathematical viewpoint,it seemed to him,
CAs weren’t so fascinating. No, he argued, “‘the importance ofcellular

automata lies in their connection with the physical world.’’ (The emphasis
was Toffoli’s.) Particularly that of complex dynamical systems, where

behaviorarises as an emergent property of a numberofvariable forces.
Because, unlike so many things simulated on the computer, CAs do not
merely reflect reality—they are reality. They are actual dynamical sys-
tems. While they can be used to modelcertain physical systems, with the
validity of each model to be determined by how well the results match
the original, they can also be used to understand complex systems in
general.

“Von Neumannhimself devised cellular automata to make a reduc-

tionistic point aboutthe plausibility oflife being possible in a world with
very simple primitives,’ Toffoli later explained. “But even von Neu-
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mann, who was a quantum physicist, neglected completely the connec-

tions with physics—that a cellular automata could be a model of funda-

mental physics.”’

Since his boyhood in a small town near Venice, Toffoli had been

interested in the histories ofthings, in politics as well as in science. There

were connections. Hesaw,for instance, that a national constitution was

like a structuralset of rules operating in a cellular automaton,“‘sort of a

mechanism that in a certain context makes something that is self-

sustaining, self-reproducing.”’ This idea—that physical reality was some-

thing that could be extended beyond the bounds ofwhat was narrowly

considered science—drove him to unorthodoxstudies and inevitably,

once he discovered CAs, to Michigan.

Toffoli’s work focused on the concept ofreversibility. One of the

complaints aboutcellular automata had beenthat they could be executed

only in a single direction in time; given a random formation, one could

noteasily retrace the process in order to determine what happenedinthe

previous step and so on,to theinitial seed configuration. This was an

importantcriticism because the universe in which welive is assumed to

be computationally reversible—given all knowledge, we can calculate

what happenedin previousinstant. IfCAs could not be proven to have

the sameability, the promise they held—toact as true complex dynami-

cal systems and produce emergent behavior, up to and including the

level wherelife is supported—wasillusory. So Toffoli set out to prove

that CAs, indeed, could be reversible.

‘Suppose someone commissioned God to makeaninteresting uni-

verse,” Toffoli says. “It would probably be reversible and, indeed,it

turns out our universeis reversible. Andas it turns out, the simplest way

for a reversible cellular automaton [to operate] is the same way the

universe works.’ Through a long, arduousset ofproofs, including some

of the calculations he gleaned from a long-ignored Russian document

that no one had even botheredtotranslate, Toffoli managed to construct

this proof. “‘So we were able to remove an obstacle to the utilizability

of cellular automata as models of fundamental physics,” he says.

After Toffoli completed his thesis, he was just about to accept anoffer

from Bell Labs when hereceived a call from a very unusual man—an

MIT professor who had never completed college but who had until
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recently headed the fabled Artificial Intelligence Laboratory there. This

was Ed Fredkin. Fredkin hadalso postulated that CAs could be reversible

and had even hypothesized a methodcalled “the billiard-ball model”’ for

proving this. It relied on a series of interactions reminiscent of the

complex collisions found in the neighborhood poolhall, but the mathe-

matics were sufficient to prove the theorem. ‘““We have your thesis

here,” Fredkin told Toffoli. ‘““The theoreticianssay it is too practical, and

the practical people say it is too theoretical, and neither know what to

do with it. But I’m interested in the subject, so why don’t you come for

an interview?”

It would be a fortuitous match. Ed Fredkin had long been driven by

the obsession to prove that the universe was made of information, and

wasin fact a mammoth computer. Fredkin hadfirst developed an affinity

for computers as a technician for the Army SAGE defense system—

becoming one of the world’sfirst virtuoso programmers—andhereal-

ized that computation was a compelling metaphorfor the workings of

physics. As he thought about it more, he discarded the qualifier of

metaphor. ““Thereis a kind ofdigital information process that underlies

everything,” he flatly states.

When Fredkin learned about CAs, he instantly realized that these

artificial worlds were well suited to represent his theories. Fredkin con-

sidered these worlds as essentially no different from our own:heinsisted

that our known universe wasliterally a CA. According to Fredkin, the

living organisms within this universe operated by the sameprinciples.

“Living things may be soft and squishy,”he says. ‘“But the basisoflife

is clearly digital. We don’t know howit works exactly, but instead of

computerbits, there’s a four-state code [the four base chemicals that

make up DNA and whose sequencing forms the genetic code]. And

there’s some kind of process that interprets it. It’s obviously somesort

of program, running on a digital computer,it’s just that the messages

don’t come in from a model, they come from chemicals. There are

people whoare against the concept, but then, many people used to think

that organic compounds couldn’t be synthesized by man—it’s basically

a vitalist point of view that there’s something more than mechanism in

life. The information is overwhelming that it is a digital information

process, and that life can be mimickedinits entirety by such a process.
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Put it another way—nothingis done by nature that can’t be done by a

computer. If a computer can’t do it, nature can’t.”

In the 1970s, Fredkin’s views were considered heretical. His reluc-

tance to publish in academic journals did not help matters. His method

of dissemination was the high-powered schmooze. Once,for instance,

he took a year off specifically to spend time with Richard Feynman,

perhaps the nation’s most brilliant physicist. The two engaged in “‘won-

derful, tense and interminable arguments,” in Feynman’s words. The

sabbatical ended with the MIT professor gaining a more acute under-

standing of quantum theory, and with the Nobel laureate Feynman

giving speeches on simulating physics with computers, and attributing

his entire interest in the subject to Fredkin.

Fredkin could afford to hew his own paths. A canny identifier of

technological niches and a successful entrepreneur, he founded a com-

pany and made millions; he even bought his own Caribbeanisland. His

visionary knowledge of computers was sufficiently impressive for Mar-

vin Minsky to recruit him to head Project MAC (Multiple-Access

Computers/Machine-Aided Cognition), which included MIT’s Artifi-

cial Intelligence Lab. As always, he ran into controversy. A typical

instance was Fredkin’s appearance on the Merv Gniffin Show.Before a

television audience unaccustomed to automata theory, Fredkin postu-

lated a future where people would wear thousands of microscopically

small robots on their heads, each manninga shaft of hair. These robots

would be programmedtoslice the hair whenit reached a certain length.

Someofhis more conservative MIT colleagues considered this an indi-

cation that Fredkin was notserious.

By the time Fredkin left Project MAC, he had somethingelse in

mind: a separate fiefdom within MIT’s Laboratory for Computer Sci-

ence, dedicated to studyingartificial phenomena,particularly those that

would provide evidence for his contention that the universe is a com-

puter. Hecalled it the Information Mechanics Group. He knew it would

be difficult to establish because, as he now recalls, ““my work was held

in low repute by both faculty and graduate students.’ Hestill bristles

when herecalls one bright graduate student whom he askedto join the

group. Although the young man wasfascinated with CAs, his friends

told him that, if he pursued that thread, he would be labeled a flake and
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his career would beruined. ‘“‘And whatdid he do?” asks Fredkin rhetori-

cally ofthis lost soul. “Became a systems programmer! People don’t trust
their own feelings, and they’re pushed by peer pressure towards the
lowest common denominator.”’

Eventually Fredkin was able to assemblea first-rate staffwhose passion
for cellular automata, and whosebeliefthat information was the basis for

physical phenomena, overrode the potential stigma of exploring an
unproven edge ofscientific thought. Toffoli was his first hire. Then
came Canadian computerscientist Norman Margolus, who would dis-
cover a simple reversible CA rule called “‘the Margolus rule,” which
elegantly confirmed the validity of Fredkin’s billiard-ball model. Then
there was French physicist Gerard Vichniac andfor a briefperiod infor-
mation theorist Charles Bennett. From their prestigious perch at MIT,
the group set out to spread the word that physics could be simulated,
particularly by cellular automata.

Toffoli and Margolus designed a special computer dedicated to the
lightning-quick execution of CAs. Theycalled it the cellular automata
machine (CAM) andit zipped through the generations of, say, Con-

way’s Life, quicker than a well-programmedversion would on a Cray,
the world’s fastest general purpose computer. Later they compressed the
entire computerinto a single circuit board that could beinserted into an

IBM personal computer. This sixth iteration of their computer, the
CAM-6,offered significant benefits to explorers ofartificial universes.

Because most of the interesting results in CA research were unpredict-
able, and because the emergent phenomenathat ideally came of CA

experiments were attained only by actually running the program,the
CAM.-6delivered millions of dollars worth of computer powerto un-
derfundedscientists panningfor theoretical gold in thefields ofinforma-

tion theory—at approximately $1500.

Equally significant was its role as a popularizer of the powers of
cellular automata. Previously, when one viewed the chunk-chunk-

chunk displacement of dots in a typical CA display, one would have
either to understand fully the physics and mathematics that drive CA

theory or to accept on faith that something significant was emerging.
Things moved too slowly for one to perceive the changes. With the
CAM-6, the deep implications of even the simplest CA, like Life, was
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suddenly accessible to even the most casual observer. It was the differ-

ence betweena set of snapshots and a motionpicture.

Toffoli and Margolus would dazzle visitors with the CAM-6. Their

version of Conway’srule set added a neat twist: in addition to the two

standard states, each represented bya color, a third color was added to

representa cell that was at one timealive but is now dead—asort offossil

state. From an initial group of of poxlike clusters, the screen literally

appeared as a simmering soup, suddenly self-organizing in a series of

patterns, surroundedby fossil clouds. Then, as one’s eyes focused on

small parts, gliders became visible—as maggots once miraculously ap-

peared on waste matter, they seemed to have arisen spontaneously!

Then Margolus and Toffoli would run reversible CAs. From an

undifferentiated jumble of variegated color, the patterns on the screen

resolved themselves into relatively stable configurations, resembling

something Jackson Pollock might have done had he worked in needle-

point. These eventually diffused into confetti-like particles. Then Mar-

golus would throw the universe into reverse. Chaos reemerged, sucking

the pixels into what seemed a black hole. Finally the screen would

reexplodeinto theinitial state. It was like watching a time-lapse movie

of the universe’s formation, run in reverse—each second representing

billions ofyears—all the wayto the big bang. In the wordsofajournalist

exposed to the CAM-6,“One could imagine Timothy Leary spending

an entire vacation within fifteen feet of the machine.”

The CAM-6 not only helped the Information Mechanics Group

produce a sound bodyof research on cellular automata but motivated

occasional newcomersto join the explorations. During the late 1970s,

MIT became the center of the CA world. A small world, to be sure.

Despite the von Neumannpedigree, Burks’s faith, Fredkin’s vision, and

Toffoli’s implementations, CA studies remained an obscure backwater

of physics and information theory. |

That all changed in 1982, when a brash and bnilliant young scientist

named Stephen Wolfram entered the field with the flourish ofa featured

actor who had dramatically withheld his appearance until the secondact.

Wolfram had been thinking on his own about the idea of cellular
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automata. Not knowing that they already existed, he basically rein-

vented them,only later discovering that they were not only an obscure

scientific field but also a cult phenomenon. He considered the subject

area interesting, and from Stephen Wolfram that adjective is about as
high a complimentas oneis likely to hear. More typical washis assess-

ment of the work previously done in the field—“‘pitiful.”’

His gracelessness toward his predecessors knew no bounds. “‘WhenI

started, there were maybe 200 papers written on cellular automata,’’ he

says. “‘It’s amazing howlittle was concluded from those 200 papers.
They’re really bad.’”’ At one conference at Los Alamos, Wolfram metthe
grand Ulam, who had coinventedcellular automata with von Neumann,

and afterward described the occasion with shocking disrespect: “I didn’t
like talking to him, because he wouldlapseintosenility,” recalls Wolf-
ram. “I don’t remember the exact things he said, he was. trying to be
nice, but it was very boring and embarrassing.”

A classic Wolfram-ism. Still in his early thirties, Wolfram has ruffled

more feathers than a sadistic ornithologist. He was not your ordinary

upper-middle-class English lad. His father was a well-reviewed but

minor novelist; his mother a philosophy professor at Oxford. Neither

were apparently prepared for Stephen, whoby his own description was

a filial catastrophe, so horrid that baby-sitters would invariably refuse

return engagements. At twelve he was sentoff to Eton. Ignoring the

fabled playing fields, he spent his time ona self-designed course ofhis

single passion: science. The only actual schoolwork he performed wasin

the course ofa small business he ran, doing math and physics homework

for his wealthy classmates.

At fourteen hefelt confident enough to send out a paper on a problem

in particle physics to professors at Oxford and Cambridge. They ac-
cepted it as though a peer had producedit. Not long after that Wolfram

began visiting those institutions and giving talks to physics professors.

He entered Oxford at sixteen, almost as an obligatory pass at nor-

malcy. He felt that he was able to practice particle physics research
withoutthe training. Onhisfirst day, he recalls, ‘‘I went to the first-year

lectures and found them awful. The second day I went to the second-

year lectures and found that correspondingly awful. On thethird dayI

wentto one third-year lecture and decided it wasall too horrible and I
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wasn’t going to go to any morelectures.”’ His studies wereself-directed.

He required no mentor, and none appeared. To the contrary, his con-

tacts with the faculty bordered on acrimonious. He made one enemy

whena rising physicist mentioned a question he had worked on for

years, and Wolfram made an offhand commentthat solved the problem.

Wolfram himself considered the revered Oxford donsto be jerks and

readily expressed his opinion. The only concession he madeto conven-

tion was taking the year-endtest required ofall students after thefirst

year. Hefinished at the top ofthe class.

Wolfram quit Oxford, goingstraight to graduate school at Cal Tech,

where his champions included Nobel laureates Feynman and Murray

Gell-Mann. Hehadjust turned twenty when he earned his doctorate.

He took a research post there, during which time he becamethe young-

est recipient ofthe first round ofMacArthur Fellowships—the so-called

genius grants. But he fell out with Cal Tech over a dispute concerning

the ownership of a symbol-manipulating computer language he had

written. Of the many jobs offered, he took a post with the Institute for

AdvancedStudy, the former homeofboth Einstein and von Neumann,

wherehefurtherstartled the establishment by discarding his pursuit of

quantum chromodynamics in favor of what many considered a quasi-

scientific diversion: cellular automata.

To somephysicists, it seemed a stupendous misstep, akin to a young

Henry Aaron leaving the major leagues to pursue an interest in Wiffle

Ball. But Wolfram, as usual, knew what he wasdoing. His interest arose

partially from his beliefs about the use of the computer in scientific

research. He was convincedthat science was on the brink of a new type

of research methodology. Instead of constructing experiments with real

materials, the computeritselfwas a viable substrate for experimentation.

The computer was a realm somewhere in between mental excursions

later articulated in logical formulas and hard-core manipulation ofstuff

in test tubes that yielded significant measurements. The territory was

abstract, yet it existed, and nothing illustrated this new form of research

quite as well as cellular automata.

Equally important to Wolfram was the fact that CAs were genuine

complex systems, easily contained within the confines of a computer.

Some of these systems were extremely interesting, displaying the same
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deep complexity that one sees in a wide variety ofplaces—from nonlin-

ear physical phenomenasuchasfluid turbulence to the economyand to

living organisms. It was Wolfram’s suspicion that he could use cellular

automata to makesignificant statements about complex systems in gen-

eral—particularly someideas he had about the emergence ofcomplexity

from very simple origins.

It was at an informal conference at Moskito Island, Ed Fredkin’s

private resort, that Wolfram had a chance to observe the current avatars

of cellular automata. Typically, Wolfram came to the tropical retreat

without botheringto pack a bathingsuit or even a pair ofshorts: science,

not recreation, drew him to the Caribbean. Fredkin, Toffoli, and Mar-

golus were pleased to have Wolfram along; their pleasure would be

somewhat tempered later on, when the brash newcomer insinuated

himselfas the key theorist in their field. A small indicator ofthe tensions

is a dispute over whether Wolfram actually decided to focus on CAs

during that 1982 foray to Moskito Island (as Fredkin and Toffoli say) or

whether Wolfram had already made the choice by that time (as he

insists).

Stull, the MIT group realized that Wolfram’s interest, and the atten-

tion he would bringto the field, would beto their benefit. “It’s like a

a small town where only one lawyer had been practicing before,”’

explains Bennett, now an information theorist at IBM.“Another lawyer

comes and they both get rich.”

To Wolfram, though, CAs were peripheral to a major point he

wanted to make about complexity. (Thoughfor a briefperiod he did get

involved in some CA hucksterism, by hawking postcards and note cards

with pictures of interesting CAs.) ‘““The point is simple,”’ says Wolfram.

“You canstart out with something that seems quite simple, yet you can

get out ofit something which seems very complicated—so complicated

that if you’re presented with the thing, you can’t tell anything butit
seems random.”’ Wolfram did not discover this important phenome-

non—infact, he consideredit rather obvious—buthe advancedits study
by experimenting with it in CA universes.

To illustrate his point, Wolfram used his favorite variety of cellular

automata, the one-dimensional (1-D) CA. Von Neumann’s automaton,

as well as Conway’s Life, operated in two dimensions—vertical and
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horizontal. The 1-D variant was only horizontal; it occurred on a

single-file line. Each cell touched only two othercells, one on the right

and oneontheleft. An advantage of a 1-D cellular automaton was that

a single picture could clearly reveal its history—each generation was

represented by single line residing under the previous line. Another

benefit was that rule sets were simpler, so that it was feasible to studyall

possible variations ofthe domain andreach a definitive conclusion. After

he discovered how powerful the 1-D variety could be, he marveled that

no one hadseriously used it before. ‘‘It seemslike an incredibly obvious

thing to do,”’ he says now.

Howdid Wolfram use 1-D CAs to show how deep complexity results

from simple input? He began with a simple 1-D cellular automaton,

with cells in two possible states—onoroff, alive or dead. It started with

an initial configuration, a row ofcells turned on oroff at random. This

was Line A. A new row beneath, Line B, would represent the next

generation. Thestate ofeach cell in Line B was determined bya rule set.

This particular set of rules considered three neighbors of the second-

generation cell on Line B: the cell on Line A directly above it and the

twocells on Line A on eitherside of that cell. There are eight possible

combinations of the states of those three cells; representing the dead

states with ‘‘0”’ and thelive states with ‘‘1,”’ the combinationsare 111,

110, 101, 100, 011, 010, 001, and 000. In any given rule set, each of

these triplets on Line A determines the state—either on or off—of the

cell on Line B beneath the centerofthe triplet. For instance, one might

look at a triplet on Line A andseethatthecell on theleft is on, the cell

in the center is off, and the cell to the right is on. That would be

represented as 101. A rule table might dictate that, for that particular

triplet, the cell on Line is on. Each cell ofLine B would be determined

in the same manner. The process would be repeated for Line C, and so

on, until the entire computerscreenfilled in, like a fax machine churn-

ing out a transmitted image.

In this particular type of cellular automaton, there are 256 possible

rule sets. Wolfram explored them all. Some of those rules quickly re-

solved themselves into boring configurations. One variation was blank-

ness (all dead cells); another was darkness (all live cells). This is what

Wolfram called, in his topology ofCAs, a Class 1 CA. Anothervariation
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was some other frozen configuration where initial activity ceased and

stable structures reigned. Wolfram placed those examples in Class 2.

But other configurations broke upinto relatively disordered patterns.

These belonged to Class 3. The computer screen looked like video

noise, sometimes pocked with a collection of inverted triangles that

seemed to comein no discernible order. In fact, if someone followed a

single columnofcells from top to bottom, from Line A to Line Z, that

person would have found it just about impossible to determine thatthe

mechanism by which cells were turned on or off was not as random as

coin tosses.

Of course, randomness had nothing to do with it. Whether or not a.

cell is turned on was entirely a deterministic consequence ofthe rules.

Just as a stone, when someonepicksit up andletsgo,falls to the ground

as a result of a rule of gravity. The consequences are determined.

Most of the time in nature, we can easily see the effect of rules, as

classified by Newton. Wolfram’s interpretations indicated that some-

times things are following simple rules when they seem to be following

extremely complicated rules, or no rules at all. The problem was our

ownlimited vision—wesimply did not know theserules. His challenge,

then, was to find those uncharted rules—to discover the natural laws that

determine complex systems.

All this becomesa less abstract task when one considers the possibility

that simple rules dictate not only chaotic, seemingly random, behavior

butalso theless disordered, yetstill massively complex behavior onesees

in biological behavior. Indeed there was final class of CAs that seemed

to display this behavior. Wolfram classified these as belonging to Class

4 structures—not disordered but complex, and sometimes long lived.

These were capable of propagating information, and includedall CAs

(such as Life) that supported universal computers.

Thefact that these structures evolved from simple rules was a hint that

creatinglife in the data test tube of a computer might not be as daunting

a task as one would have thought. Much progress could be made by

determining whatlawsnaturelaid out, by programmingthose laws, and

by allowinglifelike behavior to emerge in applying those algorithms.

Could this be done? Wolfram wasreluctant to allow that things were

that easy. It really was not at the heart of his work, which focused more
o
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on building anartificial physics to understand better complex systems in
general—infact, he contendedthat his classification of CAs into four
classes was indeed a step toward measuring complexity itself. Yet he was
intrigued by somefascinating hints that something very muchlike cellu-
lar automata actually occurred in the world outside mathematics and the
computer.

Most strikingly, Wolfram assembled a collection of seashells that
people sent him after reading his papers and hearing him lecture. The
conchlikeshells were marked with patterns ofinverted triangles. No one
whoobserved a lot of one-dimensional CAs could take a single glance
at one of these shells and fail to make the connection with one-
dimensional CAs. It almost seemed that the patterns were peeled off the
computerscreen andpasted ontotheshells. The obvious conclusion was
that cellular automata principles were the determiningfactor in dishing
out pigmentation in mollusk shells.

When you viewed nature from the lens of cellular automata, there
were plenty of other new things to see. For instance, a neurobiologist
postulated that CA rules might be in play within the visual cortex,
enabling our vision system. (Not coincidentally, some computerscien-
tists began using CAsto do imageprocessing.) A pathologist discovered
a new way to analyze blood smears by using a CA rule to count white
blood cells. And a research physician at the University ofArizona exten-
sively documented CA-like activity in natural structures in biological
cells called cytoskeletal microtubules.

A comparison between the natural pattern on a mollusk shell and the pattern of a
simple one-dimensionalcellular automaton.
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Wolfram did not claim that CAsactually accounted for these natural

occurrences. After all, CAs were but mathematical models, which just

happened to becomereal when they are run in the computer. While

Wolfram did not take pains to contradict Ed Fredkin’s contention that

the world itselfwas a cellular automaton, the ur-CA from which every-

thing sprung, neither did he spend much time thinking about it. To

Wolfram cellular automata were a sort of rock under which might be

crawling somekeyhints to nature’s hidden doings.

Theidea that cellular automata could actually create a specific phenome-

non ofnature also intrigued Norman Packard, a physicist who worked

with Wolfram at the Institute for Advanced Study. Packard made a

conscious attempt to link this type of work to the real world. ““When

one worksin these abstract models, a responsible scientist feels the urge

to touch base with reality,’ explains Packard. “‘It’s one thing to come

up with a theoretical framework that describes the flow of information

within the class of abstract models, but it’s another thing to actually

bridge the gap between theoretical models and some system that’s actu-

ally doing something. You could make measurements on them and

make correspondence between the theory and the actual system.”

What did Packard choose to emulate using CAs? Snowflakes. “You

have that diversity—every snowflakeis supposed to bedifferent, though

that’s untestable—yet you have recognizable structure.” Packard here

was applying information theory to snowflakes. It worked pretty well.

If every snowflake were identical, picking up a new snowflake would

give you no more information than you would have already from

lookingat other flakes. If every snowflake had a randomstructure,like

chips of ice, the information would be different but meaningless. In-

stead, there is a syntax within snowflakes, several main types of struc-

tures, which are capable of containing individual variations. This is the

richest form of propagating information and is found in humanlan-

guages as well as biological reproduction.

The question is, What determines how snowflakes look the way they

look? Snowflakes form in the stratosphere when cold air becomes too

thin to hold the water vapor. Theair then reachesa state called super-
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saturation. From a seed in the air—perhaps a dust mote or a speck of
pollen—the water vapor grabs on and begins growing as the vapor
condenses andturns into ice. Simultaneously, the growth is affected by
heat generated bythesolidification process. Packard foundthat, depend-
ing on conditions, snowflakes take on certain general aspects. One set of
conditionsyields configurationsthat look like plates; another determines
snowflakes shapedlike collections of rods; and another yields compli-
cated dendritic stars. Yet no one knowsexactly whytheydifferslightly.
‘The relationship between the freezing of the ice and the diffusion of
heat is what makes the problem complicated, and may have to do with
what makes the pattern complicated,” says Packard.

Packard’s approach to the problem was to build snowflakes in the
computer. He recognized that this approach would not definitively
answer questions about snowflakes—merely because something hap-
penedinside ofhis computerdid not meanthat there wasany correlation
to stratospheric events on snowy days. His goal was to drive home a
point that the same sort of phenomenon could occur inside the com-
puter as in nature. By using CAs, hefigured, maybe he could get things
that looked so muchlike snowflakes that even a casual observer would
be forced to admit a probable connection. Let the meteorologists worry
about what happened from then on.

Packard wrote a program for a cellular automaton in which the off
cells, or those assigned a value of 0, represented water vapor, and the on
cells, or those assigned a value of 1, corresponded to ice and appeared
on the screen in color. The action occurred on the boundary of the
formingsnowflake and grew outward. A typicalset ofrules initiated a
scan ofa cell’s neighborhood,totaled the values ofthe surroundingcells,
and filled the new cells with either ice or water vapor, depending on
whetherthe total was odd or even. Pure mathematics, no chemistry.

“Immediately upon simulation, certain things started appearing
which were very suggestive ofreal snowflakes,” says Packard. True, the
CA models did not have someofthe complicated structures seen on real
snowflakes, particularly those with structures based on patterns of nee-
dlelike shapes. But Packard’s snowflakes hadplates and dendrites gTrow-
ing from the cornersofthe plates, from which more dendrites grew. An
elementary schoolchild could look at any one of the gorgeous pictures
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of computer screens in Packard’s collection andinstantly identify it as a

snowflake.

Snowflakes, of course, were notlife-forms. But the same principle—

that simple rules could duplicate the behavior of nonliving complex

systems in nature—could apply to attempts to duplicate the actions of

biological phenomena,evencreatures on the upperstories of the evolu-

tionary skyscraper. Perhaps the moststriking example of this came not

from a physicist or biologist but from a computer animator.

From the time Craig Reynolds was in college he thought that one

could write computer programs with simple rules to simulate the com-

plex movements of animals. His job as a computer animator in the

graphics division of the Symbolics computer company offered him the

necessary opportunity. Not far from where Reynolds lived in Culver

City, California, was a cemetery where great numbers ofblackbirds

congregated. Reynolds would go there with his friends and speculate on

how difficult it would be to get computercreatures to flock in the same

way the blackbirds did. The computer animators would bring lunch and

watch the birds. It was fascinating how the feathered creatures would

suddenly take off and assume a formation,as if some hidden drill coach

had blown a whistle. Omithologists didn’t really have a solid explanation

for this dazzling skill. To Reynolds it appeared that there was no drill

instructor bird, that the phenomenonof flocking was a decentralized

activity, where each bird followed somesimple rules. The group behav-

ior then emerged from thatcollective action. In Reynolds’s description,

“The motion of a flockofbirdsis . . . simple in concept yetis so visually

complex it seems randomly arrayed and yetis magnificently synchro-

nous. Perhaps most puzzling is the strong impression of intentional

centralized control. Yet all evidence indicates that flock motion must be

merely the aggregate result of the actions of individual animals, each

acting solely on the basis ofits local perception of the world.”

If indeed Reynolds’s theory was correct, flocking could be modeled

by allowing each individualin the simulationto apply a few simplerules.

Flock behavior would then spontaneously emerge. The trick was find-

ing out the rules. After logging many hours in the cemetery, Reynolds

boiled the behavior down to three primary components:
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1. A clumping force that kept the flock together.

2. An ability to match velocity so that the birds in the flock would
move at the samespeed.

3. A separation force that prevented birds from getting too close to
each other.

He then implemented these rules for birds inside his computer. He
called these “‘boids.”’ (This was not a Brooklynese mangling buta techie
abbreviation of “‘birdoid”’ that applied not only to simulated flocking
birds but also to schooling fish.) Their observations and actions were

entirely local. As they flew, the boids would notice what their neighbors
were doing—as though they were cells in a cellular automaton—and
apply that information to their own actions in the next time step. Each
boid, for instance, would detect the center of gravity within the radius
it was aware of and move towardthat point. If other boids were to the
left, for instance, the boid would moveleft. It would try to match its
speed to the velocity of the néarby boids, unless slowing down or
speeding up was requiredto stay near the flock. Andifa boid looked as
though it was inchingtoocloseto a neighbor, it would move away from
that potential collision.

Hoping to finish in time to present his results to the 1987 SIG-
GRAPH computer graphics convention, Reynolds worked hard on the
program and within two days saw confirmation ofhis theories. ‘They
really didn’t look like birds, but there was something aboutit you
recognized,” says Reynolds. “A goofy kind of flocking that you
wouldn’t see on nature shows, but you knew immediately whatit was.”
As he fine-tuned the program over the next few months, eventually
using it in a colleague’s animation project to control the behavior of
flocking birds and schooling fish, he began to get precisely the kind of
flocking you would see on nature shows. Uncannily so. The boids, each
one using nothing but Reynolds’s simple rules, were able to flock in
large configurations so convincingly that ornithologists, intuiting that
real birds might be performing the samealgorithms as Reynolds’s crea-
tions, began calling the animatorto find outhis rules.

77



ARTIFICIAL LIFE

At the beginning of each run, the boids, which appeared on the

computer screen like line drawings of paper planes, hardly hesitated

before quickly moving together,as if a vacuum cleaner had drawn them

in a well-spaced flock. They would shimmyalong, maintaining a stable

configuration in the center of the flock, while the boids at the edges

slowed downandsped upto maintain their presencein the group. They

seemed to be making minute adjustments akin to slight movements that

a driver makes on

a

fairly straight road. When Reynolds programmed

the simulation so the center of gravity would zigzag, the boids had no

trouble maintaining the integrity of the flock while traveling on this

slalomlike path. Reynolds even performed some runs where the com-

puter display represented the point of view of an individual boid—a

boid-cam!—which showeda certain jerkiness as the boid steered away

from the fringe of the flock to maintain contact with the group.

Then Reynolds tried some runs in which the flock encountered

obstacles—specifically thick cylinders resembling Grecian columns. No

problem. The flock would part at the column, with the boids turning

well before they reached the obstacle. This was remarkable since that

response was not programmed into them. After veering around the

cylinder, the flock would reunite. It was a response common in a

perfectly natural flock of birds. Reynolds foundthat his modelyielded

somesorts ofbehavior that were entirely unanticipated and surely were

not directly implied by his Spartan rules. For instance, one hapless boid,

whenits flock was avoiding an obstacle, found itself hemmed in by

fellow boids, unable to miss colliding with the column.It slammed into

the cylinder, halted for a brief instant—seemingly dazed—andthen, as

though regaining consciousness andbelatedly recalling therules, sped up

to join the flock. |

Obviously, something was happeningin this simulation, quite possi-

bly somethingthat hadrelevanceto real birds, perhaps to group motion

in general. At the least it seemed that Reynolds’s theory, a hypothesis

based on observation and evaluation ofthe literature, had enhancedits

viability by being successfully implemented. It did not mean that birds

actually used those rules, but it at least showed that using those rules

would produce a behavior that looked like flocking. Would not orni-

thologists benefit from using these models to perform thesorts ofexperi-
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was not clear even tois emergent, it

flight of the boids. Asit happened, the flock was u rily splitd—it temporandaunte

d.into two flocks and then reunite

79



ARTIFICIAL LIFE

ments that would be impossible in the field but absurdly simple in the

computer room? “‘Oneserious application,” Reynolds wrote,

would be to aid in the scientific investigation of flocks, herds, and

schools. These scientists must work almost exclusively in the observa-

tional mode; experiments with natural flocks and schools are difficult

to perform andarelikely to disturb the behaviors under study.It might

be possible, using a more carefully crafted modeloftherealistic behav-

ior of a certain species of bird, to perform controlled and repeatable

experiments with “simulated natural flocks.” A theory offlock organi-

zation can be unambiguously tested by implementing a distributed

behavioral model and simply comparing the aggregate motion ofthe

simulated flock with the natural one.

Reynolds was suggesting a departure for biologists and zoologists—

setting aside the observation of physical creatures in favor of the more

malleable virtual creatures that live inside a computer. Eveniftheir guts

were made ofmathematics and not gory wetstuff. For researchers more

accustomed to squatting in marshes than to planting themselves behind

workstations, this was an unreliable and most unwelcome departure. But —

as lifelike behavior emerged on more and more computerscreens, the

approach becameharder to dismiss.

It seemed to apply to things that swarm and crawlas well as to those

that fly. Even entomologists skeptical of computer experiments could

not easily account fortheattractive results of a team ofBelgianscientists

whoused cellular automata and other computer models to evoke the

collective behavior ofsocial insects. What bound this team, which called

itselfthe Unit ofTheoretical Behavioural Ecology at the Free University

of Brussels, was a desire to amplify the theories of self-organization

advanced by their Nobel Prize-winning colleague Ilya Prigogine. Their

backgroundsvaried, but the story ofJean-Louis Deneubourg wastypi-

cal. He was a chemist conversant with the phenomenon of molecular

-self-organization who stumbled on a book written by E. O. Wilson

about the behavior of wasps. He intuited that some of Prigogine’s

self-organizational principles were at play in insectsocial behavior, par-

ticularly in cases of allelomimesis (which meant that an individual's
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actions were dictated by the actions of a neighbor). Whereastraditional
biological canonshadit that the complexity ofcollective behavior could
be traced to complex behavior in individuals, Deneubourg and his
colleagues believed otherwise. “Even very simple allelomimetic behav-
ior can be the source of complex and surprising group behavior,” he
wrote in a paper coauthored by Simon Goss,a British biologist in his
group.It was no coincidencethat this seemed in lockstep with Stephen
Wolfram’s basic point aboutcellular automata—complex behavior from
simple rules—because the Brussels group used CAsas a means ofverify-
ing their theories aboutsocial insects and self-organization.

“Wecreate a script,” explains Deneubourg. “This script is the by-
productofobservationin the laboratory, empirical knowledge on social
Insect Organization, and also somefeelings on nonlinear systems.”’ For
instance, a script might deal with the way that termites collect food.
After observing termites dealing with food sources, Deneubourg andhis
associates would try to boil down a few simple rules that drove each
individual insect to behave the way it did (much the same way Craig
Reynolds figured out the rules for boid flocking). Then they would
write a computer simulation to see whether the hypothesis was sound—
whether the observed behaviorof a biological collective entity would
emerge from the computersimulation. In this case, they might use a
cellular automaton in which patternsoflive cells could not only change
to several different states but “‘move’’ by shifting to other locations. If
certain conditions existed, a CA pattern representing a termite picked up
food; other conditions led it to drop pheromones that would attract
subsequent simulated termites. The little blocks of live cells on the
screen turned outto be effective in gathering the simulated food pieces
scattered around the simulated environment.
To further arguefor the validity of a model, the Brussels team would

change something in the model—perhaps they would alter thesize of a
food source—and would note the different behavior of the simulated
termites. Then they would refer back to nature. This did not require
much effort since their laboratories stored, on pans stacked on shelves,
dozens of active insect colonies. Pulling out a colony was no more
difficult than heading to the bookcase to refer to a technical volume.
They would make the same changein the colony as they did on the
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computer,this time with a real food source.If the real termites did the

same thing that the simulated ones did, then the case that the same

phenomenon wasoccurring in both places would be compelling.

The Brussels group’s main intention was to study the processes of

self-organization. But they believed that entomologists would do well to

adopt their techniques and useartificial life to shed light on natural

processes. “I don’t wish to be arrogant,” says Goss. “But the people who

do field work go outin the field and at the end of three months come

back with seventy notebooks filled with illustrations—and they don’t

know what to do with it. If you’ve got a model in your mind and you

workto create simulations, you’ve got a lot ofspecific questions that you

have to answer, and it makesit easier to direct your observationaleffort

to things that matter, particular problems,andparticular behavior.Ittells

you what to look for.”’

Andusing cellular automata,orsimilarartificial life computer model-

ing techniques, theories could be convincingly verified. It had always

been von Neumann’sintuition that the computer would become the

most important staging groundforscientific experimentation. Stephen

Wolfram had amplified those thoughts in his own writings. Decon-

structing and rebuilding nature with the approach of Reynolds and the

Brussels group now extended that methodology—deep into the realm

of biology.

Ironically, all this activity spiraling around cellular automata, spurred in

part by Wolfram’s work, did not endear Wolfram to the ruling powers

at the Institute for Advanced Study. His colleagues there seemedto take

offense at his insistence that one could actually do science on the com-

puteritself, that the goings on across the divide of the computer screen

could be observed, discussed, and regardedas real occurrences. His aerie

on the third floor of Fuld Hall, stacked with computers and worksta-

tions—things!—presented an affront to them,and theyin turn presented

an affront to Wolfram as it becameclear that his four-yearstint at the

institute would not be extended permanently. By that time, Wolfram

was actively seeking options,and he accepted an offer from the Univer-

sity of Illinois to head a new Institute of Complex Studies. His term
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there had hardly begun when Wolfram formed a software company,its
main product a new mathematics processing software called Math-
ematica. The company was so successful that it occupied much of
Wolfram’s time over the next few years. By the time he was ready to
devote the bulk ofhis energies once moreto scientific work, he was no
longer pegged as the bad boy ofphysics, although his opinions ofhis
peers had not mellowedas he entered his fourth decade. “‘It’s depressing
perhaps,’’ he notes, perhaps with a measureofself-parody, “butasI get
older my opinion of myself has only gotten better.”’

Stephen Wolfram believed that he wasdestinedfinally to identify the
hidden laws that govern the universe and to provide ‘a general mathe-
matical theory to describe the nature andgeneration ofcomplexity,” and
he had no doubts he would succeed where others failed.
He was notalonein this effort. There were others working indepen-

dently or in small groups to crack these closely held natural secrets,
which dictated amongother things the behaviorofliving systems.
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The ultimate goal of the study of artificial life would be to create “‘life”’ in
some other medium,ideally a virtual medium where the essence of life has
been abstracted from the details of its implementation in any particular
model. We would like to build models that are so life-like that they cease
to become models of life and become examples of life themselves.

Chris Langton



James Doyne Farmersensed deep implications behind thejitterbugs and
percolationsofcellular automata. To Farmer math andlogic were found
not only in silicon chips and equations butalso in drippingfaucets and
rain forests; toy universes held a keyto a solution of a certain problem,
a mighty conundrumthat loomedas the most importantscientific ques-
tion of his day. It mattered little that this problem existed only in the
Weltanschauung of a few. Yesterday the question had not occurred even
to a few. Tomorrow,he believed, it would concern many scientists.

It involved the understanding of natural forces that dictated the be-
havior of complex systems suchas biological organisms. It was the same
quest that intrigued Stephen Wolfram. Farmercalled it the Holy Grail
of complexity. And he believed its pursuit was intimately intertwined
with the quest for artificial life.

Farmer was a gangling man with pointed features and sharp, hawklike
eyes. His light brown hair was boundin a ponytail, and his sartorial
preferences tended toward T-shirts or Latin-style camisas. Farmer was
born in 1952 in the desert town of Silver City, New Mexico. After
attending Stanford—he graduated wearing a gorilla suit, as a punning
tribute to the Viet Cong—Farmerwentto graduate schoolat the Uni-
versity of California, Santa Cruz, where he and a cadre of maverick
physics students, including Norman Packard (the cellular automatist
who wouldlater construct mathematical snowflakes in Wolfram’s labo-
ratory) would earn their spurs as pioneers in chaos, the theory of com-
plex dynamical systems. Farmer and his colleagues worked on defining
the chaotic perturbations of dripping faucets and erratic heartbeats.
Hewingto the egalitarian ethosoftime and place,the group calleditself
a collective and attempted to share credit on all its revelations. Ulti-
mately, this idealistic ambition becamepressuredby the relentless proto-
cols of establishmentscience. Certain names hadto besigned to certain
papers; certain credits had to be assigned so they could accrue oncertain
resumes. Jobs, after all, could not be shared. The collective eventually
disbanded, with some disgruntlements, but the spirit lingered in the
manner in which each memberpracticed science.
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A particular interest for Farmer was prediction: he believed that

complex systems, which, as we learned from CAs, often seemed hope-

lessly random whenin fact simple rules dictated their form, offered the

observer a fairly good chance ofknowing what might happen next. He,

Packard, and friends put these ideas to the test when they devised a

computer program that they hoped would track the meanderings ofa

roulette ball. They took the schemeto Las Vegas. The computerthat ran

the hardware fit inside a shoe andsent radio signals to someone who

would sent a discreet signal to the player. The algorithms worked;

eventually the scientists turned over the equipmentto professional gam-

blers, who periodically sent the scientists royalties from the winnings.

All that was secondary to what had tantalized Farmer eversince a

boyhoodreadingofa brieftale by Isaac Asimov, “The Last Question.”

In that story, humankind created a prodigious computer, so intelligent

that people posed deep questionsto it. But it was unable to answer a key

query dealing with the second law of thermodynamics: Could the in-

crease in entropy in the universe somehow bereversed? The Question,

ofcourse,is less critical now than it would becomebillions ofyears later,

whenpresumably entropy would irrevocably increase and usable energy

would inevitably decrease to the point wherelife could notbe sustained.

In other words, useful energy was an hourglass, and when it emptied,

nothing could survive. Was there a way out ofthe dilemma? During the

course of Asimov’s fifteen-page story, centuries passed, thousands of

centuries, millions ofcenturies,trillions. We learned that people eventu-

ally merged with the great machines they had created (in much the same

fantastic scenario envisioned by the NASA summerstudy concerning

self-reproducing machines), but the. Question, asked again and again,

still went unanswered by the computer, which complained that there

was insufficient data to compile a reply. Finally, all the matter of the

universe merged into a single consciousentity: the machine, which was

consumed with this now vital Question. Asall energy was absorbed, all

matter dispersed,the entity finally arrived at an answerto the Question,

and its utterance reversed entropy:let there be light.

“Which in my mind,is a capricious way to end

a

story,’’ says the adult

Farmer. ‘“‘But it does give you an idea that evolution might be a broader
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process than is usually thought, which runs contrapuntally to the in-
crease in entropy in the Universe.”’ Farmer soughtalternative views of
evolution, and in the works of Herbert Spencer, a contemporary of
Darwin, he cameacrossideas of self-organization. Spencer was perhaps
the first to identify evolution as an apparent foe of the second law of
thermodynamics. While entropy dissolved order, evolution, by drawing
on the force of self-organization, bootstrapped increasingly complex
eddies oforder, seemingly ignoring the insistent one-way sign posted by
the second law. The same phenomenonofself-organization would later
intrigue those who noticedit in cellular automata, bird flocking, and

insect social behavior. Like those scientists, says Farmer, “‘I see self-

organization as a deep physical principle along the lines ofthe second law
of thermodynamics. I think there exists an inexorable principal that’s
embedded in physics in a broad way, a very useful physical law.”

But what werethese principles? And how would wefind them?
Farmer viewedthelast part of our century as analogoustothefertile

period in the nineteenth century when giants of science discovered,

codified, and verified what are now knownasthe laws ofthermodynam-
ics or statistical mechanics. “If you look at that time, people were
kicking around funny ideas about heat and work,in vague terms,”’ says
Farmer. “Whatit really took to make it happen was the development
ofprecise measuring instruments to quantify conceptslike temperature.
For instance, [English scientist James Prescott] Joule did experimental
work, very nitty gritty things—he puta propeller in a vat of water and
measured the work needed to turn the propeller, while he simulta-
neously measuredtheresulting rise in the temperature of the water. As
a result, he was able to show relationship between temperature, heat,
and work. Oncethe language was madeprecise, others wereable to put
together a theory of what was occurring.”

Thermodynamic law was a tremendous advance, butit did not pro-
vide the lawsthat dictate what happens in complicated phenomena such
as complex dynamical systems—the weather, the economy,orbiological
organisms. As the Santa Cruz Dynamical Systems Collective demon-
strated, even something as commonplaceas a dripping faucet displayed
perplexingly complicated behavior that was ultimately classified as cha-
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otic, and newrules had to be divined to understand that behavior. All

this was a subject that, perhaps because ofits difficulty, physicists had

managed to avoid for centuries.

Only recentlydid scientists begin to deal with this complexity,partly

because the power of the computer made it possible to freeze the

phenomenonandstudyit in a controlled situation, andpartly because

of a new willingness to abandonthe constricting specialization that had

becomestandard in scientific practice and instead to draw from many

disciplines. Studying complexity often required expertise not only in

physics and mathematics but also in information theory, computer sci-

ence, physiology, chemistry, population genetics, and game theory.

Followinga trail in complexity studies could lead one from an economic

analysis of fluctuations in corn prices to a study of the development of

antibodiesin the immunesystem. Strange correspondences were the key

to breakthroughs here. But, as Farmerliked to point out, scientists had

yet to devise the equivalent of the experimental methods used by Joule

and the other wizards of thermodynamics.

Until the right experiments were found and the appropriate theories

classified, Farmerandhis colleagues were forced to deal with a mounting

accumulation of circumstantial evidence that a major body of laws was

waiting to be unearthed—noless than a set of fundamental principles

dictating complexity, including the workings oflife. “We know that

there are important problems to work on, we feel there’s something

that’s pregnant to happen—butwe’restill thrashing aroundtofigure out

whatit really is,” says Farmer. “That’s why this workis so exciting nght

now. Because there’s a very big discovery waiting to be made... . To

state as a physical law a principle which would describe the way in which

the world organizes itself.’’

There would be many payoffs accruing from that big prize, and the

biggest ofall, as far as Farmer was concerned, wasthat discovering these

principles would cough up thesecret oflife and further the effort to

create it synthetically. Farmer was a believer that human beings would

create the workings oflife, and he sensedthat the accomplishmentofthis

monumental achievementis bound inextricably with the study ofcom-

plexity. He viewed his work in chaos, merging physics with biology to

shake loose the mysteries oflife, as a bridge to this new challenge.
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After leaving Santa Cruz, Farmeraccepted a postdoctoral position at

the Los Alamos National Laboratory, in a section called the Center for

Nonlinear Studies (CNLS). The center studied complex nonlinear sys-

tems. The mission ofLos Alamos wasdirected to the nation’s defense—

specifically to research in nuclear weapons. But moneyalso wassetaside

for basic research, and CNLS, which operated as a separate entity, was

fundedin part from that stash. The work wasnonclassified, and the squat

one-story building in which the scientists worked was located ‘outside

the fence,”’ as lab parlance hadit, sharing a parking lot with the Bradbury

Science Museum in whichreplicas of the original atomic bombs were

ogled daily by tourists and visiting schoolchildren.

At the time Farmerarrived, the only person at CNLS doing similar

complexity work was Mitchell Feigenbaum, whosecareer,after years of

obscurity, was just then soaring on the strength of his original observa-

tions in chaos. But soon after Farmer’s arrival, Feigenbaum left, and the

new postdoc found himself inheriting a position of authority. So when

the director told him that the center had budgeted $35,000 to bring in

visiting scientists and asked him, Could he provide a list of people?

Farmer used the opportunity to draw together what would later become

a shortlist of key a-life researchers.

In May 1985 Farmer, with, among others, his old friend Packard,

cochaired a conference at Los Alamos called “‘Evolution, Games, and

Learning.’’ An odd mixture of subjects. But as Farmer and Packard put

it in their opening remarks, “The purpose . . . is to bring together the

study of adaptive processes in nature and their implementationin artifi-

cial systems, exploring what these different approaches have in common

and what they have to learn from each other.”’

This was intriguing on its face—melding natural phenomena with

artificial systems. But Farmer and Packard ventured into what most

people would consider murkier ground. They asserted that the tradi-

tional approach of physicists, that of reductionism, would not work in

this quest—instead a synthesis was required to answerthe questions they

were now posing:

1. Whatare the basic principles underlying the evolution ofbiologi-

cal organisms?
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2. What are the basic principles underlying the operation of the

brain?

3. How can machineslearn to solve problems without being explic-

itly programmed, or more generally, how can we make them

think?

Undoubtedly those experiments would utilize the extraordinary

powers of the computer. Von Neumannandothers had already antici-

pated the significance of the computerin altering the practice of science

(the late physicist Heinz Pagels tersely identified it as “the primary

research instrument of the sciences’). Farmer had another point to

make—that, as computer powerincreased and the cost of computer

powerdecreased, tremendously sophisticated research methods became

accessible to almost any scientist. A young physicist interested in com-

plexity had a terrific advantage over a predecessor a mere two decades

previous—theability to do world-class science on a garden-variety sun

workstation. It was almost as though an astrophysicist had his own

personal radio telescope or a particle physicist owned her own nuclear

accelerator. |

‘““The situation,’ Farmer and Packard wrote, “‘is reminiscent of the

60s music scene, whenelectronics got cheap enough that anyone with

ambition could buy anelectric guitar andstart a rock band in their own

garage.’ This was, they contended, the early stages of an explosion—

they called it “new wave science’”—and through a combination of

insight and serendipity, where experimentation often runs ahead of

theory, breakthroughs would come.

Farmer and Packard felt they were directly engaged in new wave

science. Farmer had a small grant from the Air Force that he used to

bring in someof his former colleagues from Santa Cruz, but there was

no room for them at Los Alamos. So they rented a big adobe house in

El Rancho, between Los AlamosandSanta Fe, a former speakeasy with

a 15-foot tin ceiling, a working kitchen, and a Ping-Pong table. Having

run cables all over the place to hook up to their computers, they

commenced work and explored CAs, dynamical systems, and simulated

evolution. “‘It really was in a sense garage-band science,” says Farmer.
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EL.

In the early 1980s another young man was moved by the music of

garage-bandscience. Before even receiving his first degree, and funded
only by indentured earnings from a stained-glass shop, this nascent
artificial lifer could nonetheless exploit a $1500 Apple II Computer to
advance the world’s knowledge aboutthe biology ofartificial systems,
performing work that would ultimately be published in one of the
world’s most prestigious physics journals.

This was Christopher Gale Langton. Doyne Farmer had met him a
few monthsprior to the Los Alamos meeting, at a small conference in
Cambridge. Though Farmer knew of Langton, he did notassociate his
face with his work. So Farmer, not knowinghis lunch companion,asked

as a Conversation opener what sort of science Langton practiced.

“Well, I don’t really know whattocall it,”’ said Langton of his work.
‘The best thing I might come up with is. . artificial life.”’

Farmer had foundan ally who would help realize the vision lurking
in Farmer’s heart ever since that Asimovstory. If indeed John von
Neumann was to be knownasthefatherofthis field, artificial life, Chris

Langton wasto be its midwife.

Langton cameto his profession late. As one former teacher putit,
Langton spent his formative years not in the companyofwise teachers
but “sort ofbumming around.” Thoughthey did not physically resem-
ble each other—Langton’s features were open and rough hewn,crafted
by a much rougher sculptor than the one whocarefully chiseled
Farmer’s physiognomy—heand Farmerweresiblings in style, sons of
the Southwest, though Langton was an adopted son. Either of them
could have drifted off the set of a Sam Shepardplay, a desert rat whoat
the drop ofa dime could launch into a mesmerizing explanation ofsome
obscure scientific phenomenonthat would amazingly spread opento the
big picture, leaving novices blinking at the phrasetransition.

Yet Langton was equipped with a pedigree. His father was a physicist,
employed by a Massachusetts-based company called Baird Atomic,
which made mass spectrometers and similarly esoteric scientific tools.
His mother earned an astronomydegree, though she foundhercalling
as an author of children’s books and mysteries. Jane Langton’s books
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were steeped in the transcendentalist tradition of New Englandlitera-

ture; perhaps her best-known work was Emily Dickinson Is Dead.

So it was that Chris Langton, born 1948 in Cambridge, Massachu-

setts, home ofMIT,inherited a natural affinity for science. But as a form

of rebellion almost obligatory in the time of his youth, he resisted its

lure. Still, when applying for college, he vaguely hoped to master com-

puter programming. Hevividly recalled the huge kick he got from

toying with the computerat his father’s workplace. When a high school

counselor told him, inaccurately, that Rockford College, a small con-

servative institution in Illinois, was about to get an expensive computer,

Langton choseit. The misdirection didn’t bother Langton, who majored

in, he recalls, ‘nothing in particular.”” His long hair and antiwarsenti-

ments put him at odds with his surroundings, and he dropped out of

Rockford College, he claims, at the approximate moment the adminis-

tration requested his removal.

Subsequently, there was the problem ofthe draft. Langton applied for

and was granted conscientious-objector status. He performedhisalter-

native service at Boston’s Massachusetts General Hospital; after he had

labored in the morgue for about a week, a corpse he was wheeling to

the autopsy room suddenly sat up. He asked for another job at the

hospital and wassént to the computer room ofthe Stanley Cobb Labora-

tory for Psychiatric Research.

Initially, it was just a job—if the young objector had any driving

motivation, and this was doubtful, it was an attempt to organize a

blues-rock band, himself on guitar. But he cameto like the work,

programming computers to interpret EEGs and performing other data

analysis. Helived across the street from the hospital and would show up

for workin late afternoon and work through the night. Langton andhis

fellow midnight programmersat the big DEC mainframefelt as though

they were stoking a hugeboiler. ‘“We were feeding the machinebits and

emptying outbits,” he recalls. “You had the feeling of being fire

tender, of tending a locomotive.” He learned a lot about computers

there, but a more vital process began in the Cobb Laboratory: Langton

gotthe first whiff ofwhat he cameto regard as a wonderfully intoxicat-

ing intellectual scent.

Hedetected the scent the day he was charged with the task ofmaking
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programswritten for a different computer run on the PDP-7—building
a virtual machine inside another machine. That exposed to him the
computer's protean abilities—without reading Turing’s work, Langton
understood it was a universal machine.

The scent grew more pungent when somepeople cameinto the lab
with the MIT program that executed Conway’s Life. Life enthralled
Langton, who developed a particular affinity for a configuration cen-
tered on a perfectly balanced starlike structure, a period 2 blinker,
flickering back and forth at alternate generations. Then a stray glider
would hit the structure; equilibrium gone, the star would dissolve into

the mist. That provoked thoughts on mortality. Langton was even more
deeply impressed by an incidentlate one night when he was alonein the
lab. The computer was running a longLife configuration, and Langton
hadn’t been monitoring it closely. Yet suddenly he felt a strong presence
in the room. Something was there. He looked up, and the computer
monitor showedan interesting configuration he hadn’t previously en-
countered. “‘I crossed a threshold then,” herecalls. ‘‘It was the first hint

that there was a distinction between hardware andthe behaviorit would
support. .. . You had the feeling there wasreally something very deep
here in this little artificial universe and its evolution through time. [At
the lab] we had lotofdiscussions about whether the program could be
open ended—could you have a universe in which life could evolve?”

Experimenting with the game, Langton probedits limitations and
potentials, envisioning himself as a physicist testing various collisions
with a virtual particle chamber. He would collide gliders at different
angles and note the consequences; he wouldalter the rules to see the
effect on breeding new configurations. He cameto appreciate the deli-
cate balance that Conway’srules instilled in the private universe ofLife.
Even then Langton suspected that somehow a computer might be

able to emulate life itself, but his thinking about this was vague. “I
couldn’t putit into a grand overall picture,” he now explains. ‘“But that
was the initial scent.”

The psychiatrist in charge of Cobb left Massachusetts General in
1972, and the lab dissolved as suddenly as a periodic Life configuration
fatally winged by stray glider. Langtondrifted,delivering a Land Rover
to Texas, doing odd jobs in San Francisco, and winding up in Puerto
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Rico, where he had accepted an offer to program a computerfor the

Caribbean Primate Research Center, which was engaged in a study of

monkey behavior. After completing his data base, he lingered for over

a year, spending moretime with the primate subjects of the studies than

with the humans conducting them. The attraction was a chance to

observe the development ofbehavior in a nonhumanculture. Somehow

it fit the scent.

Langton realized he required a formal scientific education. He re-

turned to New England, took courses in calculus and cosmology at

Boston University, and decided to move to the University ofAnzona in

Tucson. In the summer of 1975, planning to make his way west slowly,

he set out with several friends. Their idea was to indulge in a mutual

passion while traveling—hanggliding. The experience almost killed him.

It happened on Grandfather Mountain, the highest peak in North

Carolina’s Blue Ridge Mountains. Langton’s party had been there for

two months, funded by the resort owneras a semiofficial tourist attrac-

tion; when the hanggliders soared 1000 feet above the mountain in

40-mile-an-hour winds, it made a pretty sight for visitors. On thelast

day before heading to Arizona, Langton set out to try one final spot

landing. He hit wind shearandstalled outat tree level. He wentstraight

down. |

‘TI broke both my arms, both my legs, and as my knees cameup they

literally crushed myface to myskull,” recalls Langton, running through

a familiar if chilling litany. “I broke all the bones in my face, broke my

jaw, punctured and collapsed a lung... .”

In the monthsthat followed, many of them spentflat on his back in

a hospital bed, Langton had ample opportunity to ruminate. He used the

time to devour texts from many disciplines—astronomy, philosophy,

evolution, genetics—and he cametorealize that his brain, shaken clean

ofcobwebs from the crash, was absorbing knowledgelike a dry sponge.

It was as though his mind were a computerhit by a power surge and was

now rebooting andfed a new data set. Even morefascinating to Langton

was the feeling that his synapses, in his mind’s attempt to reconstruct

itself, were self-organizing, much as individual ants in a colony arrange

themselves in a manner conduciveto perform task.

By the timehearrived in Tucson, Arizona, a year later, he knew what
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he wantedto study: the basis of an artificial biology. The problem was

that his proposed curriculum was unprecedented; no single department

would take on an undergraduate who required advanced study in,

among other things, mathematics, anthropology, physics, computersci-

ence, molecular evolution, philosophy, ecology, and population genet-

ics. Langton would sign up for twenty courses a semester, dropping the

dogs and sticking with the ones “‘where the scent was the strongest.”’

Aroundthat time,the first personal computers appeared. It occurred
to Langton that he could use one of these modern marvels to vivify his

theories—to actually create something that displayedlifelike behavior.
Borrowing the money from a woman who owneda stained-glass shop,
he bought an Apple II; he arranged to repay the debt by sandblasting
glass over the next year.

Atfirst, his goal was creating a computer model of evolution. He had
in mind a phenomenonthat occurred in a population ofwhite mothsin
nineteenth-century England. As a consequenceofthe Industrial Revo-
lution, soot from factories darkened birch trees; the moths no longer
blendedin with the texture ofthe bark. Predatory birds feasted on them.
Within a few years, the moths seemed to turn black—apparently a
random mutation in the gene that determinedcolor had proliferated in
the gene pool, as a result of its obviously superior ability to enhance |
fitness. Langton hoped to duplicate this effect on the Apple.

Althoughhedid succeedin repeating the effect, he was unhappy with
the experiment. The mechanism he had used was ultimately dependent
on the fitness criteria that heartificially imposed on the simulation.It
was not realistic, not open ended, like real evolution, in which the

environment and not some outside programmer determinesfitness.

Frustrated, he wanderedthestacks ofthe library, wondering whether
anyone had made earlier attempts at the sort of synthesis he sought.
Indeed, someone had, quite masterfully: John von Neumann. When
Langton discovered the book describing von Neumann’;self-reproduc-
ing automaton, he instantly recognized the similarity of purpose. But
while von Neumann had designed an artificial organism that could
reproduce in the same wayreal organismsdid, no one hadeveractually
built one on a computer.

He contacted Burks, the editor of the von Neumann text, who
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confirmed that no computersimulation had fulfilled the task, though a

doctoral candidate at Michigan, E. F. Codd, had simplified von Neu-

mann’s highly complex blueprint—reducingthe possible states in each

cell from twenty-nine to eight. Burks suggested Langton might do well

to start with Codd’s book.

For the next few months, beginning in late summer 1979, Langton

did just that. By day he worked, either at the stained-glass shop or at

anotherjob, digging ditches under the Arizona sun. After spending the

evening hours with his new wife, he slept only until 1:00 a.m., where-

upon he would drag himself to the Apple. (This to the dismay ofhis

bride.) He charted his journey throughtheartificial universes he created

on a series of spiral notebooks that outlined the difficulties he encoun-

tered and the stratagems he used to overcome them.

Like the substrate in which Codd’s CAlived, the universe Langton

created had eight possible states for each cell. But as Langton attempted

to build pieces ofCodd’s organism on the Apple, he cameto realize that

the beast was far too complex for his purposes. The complexity arose

from Codd’s requirement(also a requirement ofvon Neumann)that the

self-reproducing structure must also be a universal computer; in other

words, it theoretically had to be able to run programs to emulate the

operation of every other possible computer or machine. Langton, how-

ever, was less interested in building a general purpose computer than

endowing a computercreation with the properties oflife. As he later

wrote,“It is highly unlikely that the earliest self-reproducing molecules,

from whichall living organisms are supposed to have been derived, were

capable of universal construction, and we would not wantto eliminate

those from theclass oftruly self-reproducing configurations.”

Instead, Langton was seeking the simplest configuration that could |

truly reproduce itself by the same means as the things that we now

concedeare alive. Von Neumann,and later Codd, fulfilled this require-

ment by using the information in the automation’s blueprint in two

ways. First, they treated the informationasinstructionsto be interpreted,

as in the case of instructions in a computer program. Second, they

treated the information as uninterpreted data, as in numbers in a data

base that are copied to andstored in a register inside a computer. A

simplerillustration than a computer program would be that of a piece
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of paper with text on it: the first means of treatment, interpretation,

would be reading the words; the second method, transcription, would

be placing the paper on a Xerox machine and making a duplicate. The

biological equivalent ofthis dual methodology, ofcourse, is found inside

a biological cell—in its everyday operation, certain genetic data are

interpreted in such a way that proteins form to catalyze certain reactions.

Andother times, notably in the reproductive process, genetic data are

not interpreted but simply copied.

Tosatisfy this requirement, Langton designed a set of what he called

“loops.”’ Placed in a sea ofzero-state, or quiescent,cells, a single Langton

loop resembled a square with a short tail on one end, reminiscent of the

letter Q. The square shape was important because with only ninety-four

cells there is limited space, so economy is maximized by reusing the

information that directed the construction ofa single side ofthe loop—it

was done four times, one for eachside.

Based on Codd’s constructions, Langton’s loops hadthreelayers, like

a flattened wire. The outerlayers, the insulation, were a strings ofcells

in state 2. These were the sheath cells. They acted as insulation to the

core cells, which werelike the copperpart ofthe wire. These conducted

the data necessary for reproduction. With each generation,the cells in

this inner layer followed rules that affected the state of their neighbors

and in effect propagated signals inside the genetic stream of the core.

Langton wantedto arrange the variousstates so that, following a given

rule table dictating the cell’s behavior in the next generation, thetail

would become a constructing appendage. It would thrust outward until

it reached the desired length, turn the corner, and repeat the process

until it completed the square. Once the outer shape ofthe newly formed

loop resembled the parent loop, the flow in the core layer—now mov-

ing betweenthe sheath layerslike fluid flowing through a pipe—would

continue. The “fluid” would becell states holding uninterpreted data.

When the information was completely passed to the offspring loop, the

two loops would separate. Soon after, the signals would change the

configuration of the offspring’s core so it precisely resembledtheinitial

configuration of the original loop—the ‘“‘Adam” loop. They would be

identical.

Whenthe process began again, the unread data—which werea virtual
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Chris Langton’s self-reproducing loops begin with a Q-shaped construct sitting in a

sea of quiescence. Executing the rules of its cellular automata world (the physics of its

universe), the tail of the Q extends and eventually forms a daughter loop. The

numbers on the loop each represent one of the eight possible states (the blank,

quiescentstate is state 8). Note that state 2 is the sheath state, acting as an insulator

for the variety of states that move between the sheaths, like signals along a wire.

recipe for building an offspring—would finally be interpreted. A new

generation would be born.

Creating a universe that would support this process was easier said

than done. A proper configuration of cells invarious states had to be

arranged in the corelayer so that everything would happen at the nght

time—data flowing, corners turned, and the initial configuration re-

stored at the precise time step that (a) the daughter loop received the

signals that allowedit to reach that stage, and (b) cutoff was performed.

There was certainly the question as to whetherthis could be donein a

relatively simple construct.

Langton’s notebooksindicated the difficulty. In late August 1979he
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had managedto replicate some aspects of Codd’s automaton and was

beginning to implement his own loops. He could produce loops that

grew but that could not duplicate themselves and signal the end of the

reproductive process. Eventually, he wasforced to rewrite Codd’s tran-

sition functions—to changetherules,to alter the universe. By October,

he was turning the corners and working onthedifficulties of engineer-

ing the birth, where the mother loop and daughter loop cleave, and

where the feedback from daughter to the mothersignals that her repro-

ductive mechanism canstart again.

After monthsoftinkering, on October 26 Langtonfinally wrote in his

journal: ‘I’ve doneit! The loop now reproducesitself.”” The immediate

question then became whether the daughter loop not only resembledits

parentbutalso contained the genetic code for reproduction. This, as von

Neumannrealized, was the key to genuineself-reproduction. Sitting

before the computerscreen, whichreflected the progress ofan indepen-

dent organism, operating on deterministic rules of an artificial universe,

Langton madethese notes:

I’m watching it now.It lookslike it will also reproduceitself and I’m

hopingthat (the) construction arm is long enough. ... The daughter

reproduced perfectly, the construction arm is okay! exactly the nght

length! the daughter reproduces too!! We’re off!

What had Langton actually created? His organisms looked nothing

like life as we know it—they wereintricate loops whose colorful con-

tents represent informational states. And even the most enlightened of

biologists would havehesitated at that junction in history to affirm that

an organism could exist whose constitution was formed not of matter

but ofinformation, resident in no corner ofthe known world butcitizen

of a newly minted universe of rudimentary homemade physics. Yet

thoughits origin may have been dubious, Langtonfelt confidentthatits

reproductive behavior was decidedly akin to that of real creatures. In

loop reproduction, there was a genotype—a series of core cells that

contains genetic code andis copied into the next generation. And there

was a phenotype—a codedseries of instructions that produces a new

organism. This allowed for the possibility of evolution, where a muta-
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tion in the genotype could result in a phenotype with improvedfitness,
whoseability to spread its genes would benefit from the advantage. The
process wouldbe,literally, the sameas in real organisms, and the evolu-

tion would be not simulated but genuine.

But those ideas were reserved for future experiments. The immediate
task was exploration of what occurred when the loops reproduced.
Langton discovered something remarkable here—an emergentorder.

It seemed that once the loop life cycle was in motion, the nascent
loops and their progenitors formed what could only be called a colony,
populating their territory in a mannereerily similar to certain marinelife

such as coral. As the first loop gave birth, both mother and daughter

commenced reproduction, the mother forming an offspring to the

north, and the daughter beginninga third generation to the east. But as

new loops were created, someof the elders, hopelessly surrounded by

descendents, became unable to extendtheir tails outward to reproduce

again. Langton’s rules allowedforthis: in those cases, the signals flowing

along the core cells would be erased, leaving an empty loop. They were

for practical purposes dead,easily distinguishable from live loops, which

contained core cells of varied states. As the reproductive process con-

tinued, more and moredead loops remainedin the center, while a vital

community birthed new generations on the outer levels. Muchlike a

coral reef.

It was the behavior of biology, emerging unbidden from therules of

the CA simulation.

For Langton, the experiment wasa vindication: Theforces ofbiology can

be reproduced in machines. The phenomenonofculture applies outside ofhuman

experience. Rule-based structures such as language can hold the keys to reproduc-

ing beings and to entire universes. When he would try to explain this,

people would regard him with suspicion. Almost asif, he concluded, he

were somesort of kook. But from that point on, Chris Langton knew

they were wrong and would no longer doubt himself on that point.

‘Theself-reproducing loops broughtit all together for me,”’ he later

claimed. “The pieces of the puzzle were in place.”’

Langton had defined his mission; now he had to evangelize it. The

difficulties in this were underlined immediately by his attempts to ex-

plain the significance ofhis self-reproducing loopsto his instructors and

102



Garage-Band Science

colleagues at Arizona. His efforts were received with overwhelming

indifference. “Look,” he would tell them. “I’ve got a universe, and I

have things which self-reproduce in it.” But nobody comprehended;

nobody caught the scent. This is just a computer program, night? they

would ask, as though Watson and Crick had not proventhatlife itself

was based on a sort of computer program.

Langtontried in vain to find someone who would sponsorhis gradu-

ate studies (he hadfinally gotten his undergraduate degree) at Arizona.

The only supporter Langton found was an anthropology professor, but

he could notoffer help unless Langton wonthe support ofthe computer

science department. Langton received nothing but blankstares there,

andhis efforts to excite the biology professors met with an even bleaker

response.

Only oneplace in the country, in fact, was receptive to the type of

curriculum Langton was proposing: the Logic of Computers Group at

the University of Michigan, headed by Burks. But even the Michigan

program was in flux. After years of carrying on a lonely struggle, the

group wasin the process ofbeing swallowed by Michigan’s engineering

school, which focused on more pragmatic, less experimental computa-

tional work, like data structures or compiler theory. Some Logic of

Computers Group faculty remained, but the group’s unique course of

study was dissipating under the pressure to teach “‘real’’ computersci-

ence. Oneofthelast students admitted into the natural systems program

was Langton. Hearrived at Michigan in 1982, at age thirty-three a

beginning graduate student. By the time he earnedthe final doctorate

conferred by the group, nine years later, Langton would have hatched

the new scientific field ofartificial life.

Though the continuing decline of the Logic of Computers Group was

a constant irritant, Langton managed to turn the engineering depart-

ment’s coup to his benefit; the newly required courses heightenedhis

mastery of computers. Another benefit was a chance to plunder the

group’s now-abandonedlibrary, which held various obscuretreatises on

self-organization and computational genetics. Meanwhile, he drew in-

sights and comment from remaininginstructors and the core of students
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whostill believed that nature had muchto teach about computing, and
vice versa. Langton was Burks’s teachingassistant, and he workedclosely
with John Holland. His passion wasstill cellular automata, but when he
tried to interest the undergraduates in Burks’s classes to undertakeseri-

ousstudies in the field, they would balk. What goodis this? they would
say. How can cellular automata get me a job?

Meanwhile Langton pressed ahead. He published his paper on the

self-reproducing loops, which was included in the proceedings of a
workshopin cellular automata at Los Alamos, the first major gathering

held on the subject. (Langton missed the event itself in order to be with

his wife as she gavebirth to their first child.) He built a state-of-the-art

CA simulation program on the Apollo workstation computer.

Amonghis creations was a simulation called ‘‘vants,’’ or virtual ants.

The rules were simple. The vant itself was a V-shaped construct that

movedin the direction ofits point. If the lead cell moved into a blank

square on the imaginary grid, the vant continued movingin that direc-

tion. If the square was blue, the vant turned right and changedthe color

of that cell to yellow. If the square was yellow, the vant turnedleft and

changedthe color ofthe square to blue. Thusthe vantleft a trail behind

it.

When more than one vant was placed on the grid, the result was

behavior strikingly similar to that of social insects. The most vivid

example was the uncannyparallel to the manner in which certain ants

lay pheromonetrails for food recruitment. It was remarkable to witness

the simulation running on a color monitor, as certain vants, after an

initial period of meandering, seemedto find each other and interact in

order to build a spiralingtrail.

Langton knew,ofcourse, how the simple rules ofthe vant simulation

evokedthis distinct form ofbehavior. Could it be that the path-follow-

ing behavior of ants derived from a kindred source? (Langton was to

some degree anticipating the experiments of the Brussels group, which,

we havelearned, used the self-organization theories of Prigogine to

program CA colonies ofsocial insects and compare them to the actual

organisms.) As he read entomology texts and followed real ants around

in an attempt to divine the patterns of their roaming, he pondered

whether ants themselves were, in effect, participants in some CA-like
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program. He wasparticularly struck by a quotation in a bookcalled The
Sciences of the Artificial, by Herbert Simon:

An ant, viewed as a behaving system, is quite simple. The apparent

complexity of its behavior over time is largely a reflection of the

complexity of the environment in whichit findsitself.

While Langton found this true for solitary ants, he considered it a
massive understatement when applied to cooperating colonies of ants..
Hesaw thisin his vants; though absurdly simple, they seemedto display
genuinely cooperative behavior. He never did discover whetherreal ant
behavior wastriggered by the samerules that his vants rigorously fol-
lowed, but he washeartened by a description oftermite behaviorby the
great entomologist E. O. Wilson. Certain termites, wrote the Harvard .
professor, “give every appearance ofaccomplishingtheir astonishing feat
by means of what computerscientists call dynamic programming. As
each step of the operation is completed, its result is assessed, and the

precise program for the next step (out of several of many available) is

chosen and activated. Thus no termite need serve as overseer with

blueprint in hand.”

When Langton quotedthat passagein oneofhis papers, he decisively

added emphasisto thefinal sentence: ‘Thus no termite need serve as overseer
with blueprint in hand.”’ It was a powerful statement that unwittingly

expressed the link between cellular automata and nature. Langton be-

came convincedthat the key to discovering, and ultimately producing,

the behavior ofall sorts of organisms was to use the CA approachas a

model. The essence of this approach could be summedupin a powerful

hyphenate: bottom-up. The word was to become very important in

Langton’s philosophyofartificial life. The concept described the collec-
tive powerofsmall actions rippling upward, combining with other small

actions, often recursively so that action would beget reaction—until a
recognizable pattern of global behavior emerged. As Wilson observed,
there was no central intelligence holding a blueprintand directingtraffic.

To Langton,this was nature’s way oftaking advantage ofcomplicated

phenomenathat occurred whenseveral variables combined to form a
complex system. From billions of trials and errors—the evolutionary
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process—out of the interaction would come something useful. It not

only seemsthatthose little nonconscious pieces of matter are cooperat-

ing; Langton contends they are cooperating. Quite literally.

“Thisis a trick ofnature thatis probably one ofthe most fundamental

physical laws,”’ he later explained.“It’s the way nature works. It’s what

makes atoms and what makes molecules. Co-operative structures, the

formation of co-operative structures, localized in time and space. You

have these little packets of co-operation, and then packets of packets,

and packets of packets of packets.”

Bottom-up was everywhere in biology. It was the waylife began,

from the formation of organic molecules, to the formation of bacteria,

to the emergence of multicell organisms, all the way to mollusks,ferns,

frogs, trees, beavers, roses, apes, Venus’s-flytraps, and human beings.

Throughout, the processes within these complicated creatures also

worked by a bottom-up methodology. Within an organism, individual

cells perform private rituals, releasing chemicals in a pattern predeter-

minedby setofrules. Ifcondition A exists in the environment, execute

action B. In that respect, the cell is no more than a finite state machine

acting in a CA-like universe. A big picture emerges from theselittle

behaviors: Organs. Central nervous systems. Entire organisms. Societies.

Since bottom-up was such a prevalentfactor in nature, it was obvious

to Langton that this approach was the correct one for computationally

evokinglifelike processes. He later would codify the elements of this

approach in defining the essential features of computer-based a-life

models: they consist ofpopulations ofsimple programsor specifications;

there is no single program that directs all of the other programs; each

program details the way in which a simple entity reacts to local situa-

tions; there are no rules in the system that dictate global behavior; and

any behaviorat levels higher than the individual programsis therefore

emergent.

Emergent behavior was the payoff of the bottom-up approach. To

Langton,an artificial life experiment’s success would depend ona revela-

tion, an emergent property. Something had to happen that was not

specifically programmedin.

An irony was embeddedhere. Though Langton furiously resisted any
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trace of vitalism in his philosophy, he regarded the concept of emer-

genceas sort ofan élan vital in and ofitself. No reductionism: the whole

is more than the sum ofits parts. When one builds a creature, or attempts

to model a biological process from the bottom up, inorganic rudiments

conspire to form something that behaves with the spirit of life. Or,

perhaps, somethingalive.

Quite naturally, Chris Langton preferred to write his doctoral thesis on

his theories of CAs and a-life. But he could not get such a thesis

approved. Theshifting focus of the computerscience department, dis-

tancing itself from the biology-inspired studies of the days of the Logic

ofComputers Group, workedagainst him. So he had to contrive a way

to accommodate both hisinterests and the more conventional demands

of the Michigan establishment. As it turned out, the topic he did con-

ceive turned outto have significant implications forartificial life.

Duringhis first year in Michigan, Langton had read a Wolfram paper

devising a classification system of four CA categories. Langton was

astonishedat the paper—notso muchat the methodology or the conclu-

sions but at the apparent fact that no one had ever attempted such a

seemingly obvious project. He noted in his work journal;

After a paper by Steve Wolfram of Cal Tech—amazing how I

screwed around with these linear arrays over a year ago and never

imaginedthat I was working with publishable material. Surely, I thinks

to myself, this has been done 30 years ago, but No! Some kid out of

Cal Tech publishes a learned paper on one dimensional two-state

arrays!! What have people been doing all these years?

Langtonrealized there might be widespreadinterest examining multiple

CA universes—not as a vague mathematical exercise but as a pungent
interpretation of the substrate oflife itself. What interested him was the
range ofbehavior evokedby certain rule sets. Which ones would result

in uninteresting universes—sheets of identical cells frozen in a single

regime, locked-in patterns doomed eternally to repeat? Which ones

107



ARTIFICIAL LIFE

would yield compelling results—a roiling ragout of activity, changing

forms, releasing gliders? And whichofthelatter could support universal

computation and, by implication,life?

Langton’s own ruminations on observing thousands ofcellular au-

tomata led him to surpass Wolfram’s classification system, skipping di-

rectly to a question that previously had been difficult even to frame,

What sorts of universes could support life? The fact that Langton be-

lieved that the varieties of natural life were one subset of a much larger

set of possible flavors of life gave him an advantage in tackling this

question. If other kinds oflife indeed existed, then it would be possible

to study them in orderto discover previously obscure properties oflife

itself. As it stands, the examination of only one subset of possible life

makesit difficult, ifnot futile, to distinguish between peculiar character-

istics of life-as-we-know-it and general traits of all possible kindsoflife.

Langtonattemptedtoisolate a general quality ofall life—the range of

areas in which it could thrive. He concentrated on universes of CAs,

running thousands of experiments in order to measure the degree to

which they were able to propagate information. Why was that ability

important? In Langton’s view,the transfer and retention ofinformation

is an essential characteristic oflife.

“It’s clear that most of the living things we know are physical em-

bodiments of information processing entities,” he later explained. “A

good deal ofwhat they do is based on processing information—notJust

materials, not just energy but information. Living organisms use infor-

mation in order to rebuild themselves, in order to locate food, in order

to maintain themselves by retaining internal structure . . . the structure

itself is information. You have to concludethat in living systems, infor-

mation manipulation has really gained control, dominating energy

manipulation.”

But the universe at large, including the domain of information, was

dominated by rules dictating the behavior of energy—especially the

dread second law ofthermodynamics. Living systems were distinguished

by what appeared to be a noble resistance to that law—their ability to

maintain a pocket ofincreasing order that, at least withinits confines,

confounded the second law. |

Langton believed there was a quantifiable regime in whichthat appar-
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6¢ent contradiction thrived. So he invented what he referred to as “‘a

knob’’: a mathematical tuning instrumentto adjust the dynamics of the
system, the better to observe and understand the mechanics ofthis

behavior. He dubbed his knob “the lambda (A) parameter.’”? When

Langtontested the rule tables ofCAuniverses, he used this knob toalter

the degree to which information could movefreely or be retained. The
A value ofa given system, which ranged from zero to one, corresponded

to this degree. |

If the 4 value was very low, approaching zero, this represented a

regime in which information was frozen. It could easily be retained
through time, but it could not move. Ifyou were to picture a substrate
that illustrated this, you might choosea solid such as ice. Ice molecules
retained their position andstate as time passed, but, since they did not
move around, no new information emerged. Under those circum-

stances, life could not thrive. If the A value was very high, approaching
its maximum value, then information movedvery freely and chaotically
and wasvery difficult to retain. The information could be envisioned as
molecules in a gaseous, or vaporous, stage. Life could not be supported
in these conditions, either.

On the other hand, there was a certain area where information

changcd butnotso rapidly thatit lost all connection to where it hadjust
been previously. This wasakin to a liquid state. Langton discoveredthat
it was the liquid regime that supported the most engaging events, those
that would support the kind of complexity that was the mark ofliving
systems.

In the CAshe ran, those whoserule sets yielded low A values were
generally those that Wolfram would havecalled Class 1 or Class 2. Those
would soonresolve into boring, intransigent patterns. Those with very
high numbers were Wolfram’s Class 3, which wound up in chaotic
jumbles. The mostinteresting ones, what Wolfram would call Class 4,
occurred at intermediate 4 points. These includedall the cellular au-
tomata that yielded a plethora of teemingactivity, such as glider guns.
Those were the CAs that supported universal computation, like the
game of Life, whose ) value was 0.273. It was at that regime in which
complexity was at the maximum,and entropy was optimized—asit was
in life.
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Periodic

 
(a) Langton’s view of information movement in complex dynamical systems such as

CAs. Attheleft is the regime where information is frozen; nothing can live there.

To the right of that is a somewhat more flexible regime where behavior such as

crystal growth can be seen; still, the limited movementof information cannot support

life. To the far right, information moves so freely thatits structure cannot be

maintained; the regime is too chaotic to support life. Only in that center ‘sweet

spot’’ can information be stable enough to support a message structure and loose

enough to transmit messages. Life lives there.

Langton noticed that the point at which universal computation be-

camelikely was at a particularly interesting location onhis chart. When

the 2 value reached that critical point, a phase transition occurred—a

sudden shift from one regime to another. (An example of a phase

transition in nature wouldbetheshift from a frozen solid to a liquid or

from a liquid to a gaseousstate.) He came tobelieve that being sited in

this location was an essential characteristic ofsystems ofsuch complexity,

including living systems. He recalled von Neumann’s comments on

complexity andliving systems: ‘““There is thus this completely decisive

property of complexity, that there exists a critical size below which the

process of synthesis is degenerative, but above which the phenomenon

of synthesis, if properly arranged, can become explosive. . . a

In other words, a key ingredient of life—the proper degree of com-

plexity that allowedit to spit in theface ofentropy—hungona cliffside.

Ona precipicetoits left was a barren regime where not enoughinfor-

mation could move;to its right was a swirling maelstrom whereinfor-_

mation movedso wildly that chaosruled. Belly up to that maelstrom, life
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(b) Langton’s “‘sweet spot’’ can be charted. The vertical axis represents
complexity, and the horizontal gives the 0 value, which represents the degree of
information movement and retention on a 0 to 1 scale. In this typical dynamical
system, the i value reaches a sharp peak at the height of the system’s complexity.
This represents a phase transition. Life is supported at the boundaries of this
transition.

Also noted for comparison purposes are the locations of Wolfram’s fourclasses of
cellular automata. Class 1 consists of stable forms; Class 2 CAsare periodic; Class
3 CAs are chaotic. Class 4 CAs, however, have rich complexity. They support
universal computation—andlife.

took advantage of the proximity to draw its information-processing
abilities, but it dared notstray too far from the frozen areas that allowed
it to keep someinformation stable, so that some order could be estab-
lished in interpreting that information.

Langton was able to quantify this phenomenon. Life, he argued,
existed “‘on the edge of chaos.”’ In order to create anartificial life, then,
one required a system that would maintain the proper order ofcomplex-
ity—at the edge of the phase transition between desert and cyclone.

Langton believed it could be done.

GL

111



ARTIFICIAL LIFE

When Doyne Farmer met Chris Langton in Cambridge in 1985—and

first heard the term “‘artificial life’’ being applied to an area of study

Farmer had beentrackinghis entire professional life—he wassufficiently

impressed to urge his superiors at the CNLSat Los Alamosto hire the

overage graduate student. Fortunately for Langton, whose paper

qualifications were tenuous, there was a tradition at CNLS of adopting

promising yet unprovenscientists. Feigenbaum was a recent example of

a bet that paid off in triple bars; although his original credentials were

vague, people had begun calling him “the Mozart of chaos.” Perhaps

recalling that late bloomer, CNLSdirector David Campbell set aside the

vitae of the candidates for a postdoctoral opening and asked Farmer,

‘Which guy is really good?”’

Langton was hired, despite the technicality that he had yet to com-

plete his thesis. (Somewhat to the embarrassment of his new employer,

that task would not be completed for almost four years.) For the first

time, Langton found himself in a situation in which his thoughts on

creatingartificial life were not merely tolerated but encouraged. He

intended to exploit the opportunity to the fullest. Not only would he

pursue a-life in his own work, but he would also do his damnedestto

organize others whose thinking might be alongthelines of his own.

He knew they were out there. Every so often he would comeacross

published papers from these people. But there was no reliable source—

an article concerning what Langton consideredartificial life might ap-

pear in Physica D, or in the Journal of Theoretical Biology, or Complex

SystemsJournal, or American Scientist—even, he wouldjoke, in the Indian

JournalofBasket Weaving. ‘Eighty percent of these people wereclueless

as to other work that had been doneinthis direction,”’ Langtonrecalls.

“They just started working on this stuff of their own. Either it hadn't

occurredto them that the sameideas were shared by others, or they had

no idea how to go aboutfinding the other people who thoughtthe same

way. The field existed, but only implicitly.”

It fell, then, to Langton to make things explicit. He would find the

people who were doing whathe consideredto beartificial life and count

on their experiencing a shock ofrecognition whenthey heard the term.

He would invite them to gather, share their experiences, relate their

experiments, expoundtheir theories, and ultimately define the bounda-
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ries of the field. It would be an “Interdisciplinary Workshop on the

Synthesis and Simulation of Living Systems,” the first conference ever

on artificial life. Langton’s intent was to cast as wide a netas possible,

even to the point of risking the presence of a few nut cases, in order to

draw out of the woodwork obscure but thoughtful scientists whose

work was melding information and biology. These he would supple-

ment with names, some of them celebrated, of those whose work

somehow contributed to this exciting synthesis.

Some thought that the effort was folly, that the idea of building or

even studying “‘artificial life’’ smacked of science fiction, that it lacked

focus, upon it would bring ridicule to anyone whose name became

associated with it. (Onescientist who eventually attended asked a Nobel

Prize-winning colleagueifhe should attend and got the followingreply:

“This is the sort ofconference you mightgoto, but nevertell a soul you

werethere.’’) Indeed, recalls Langton, “nobody else was willing to tack

their nameonto it as an official organizer. My name was going to sink

or swim with the success of this workshop.”

The conference was set for September 1987, at Los Alamos. Word

was distributed through flyers posted on university bulletin boards,

through messages on computer networks, through a plug in the com-

puter recreations column in Scientific American, and through an official

conference announcement. Thelatter was a bold manifesto ofLangton’s

beliefs. Though its language was sedate, the two-paragraph description

of the event and its subject made breathtaking claims:

Artificial life is the study ofartificial systems that exhibit behavior

characteristic of natural living systems. It is the quest to explainlife in

any ofits possible manifestations, withoutrestriction to the particular

examples that have evolved on earth. This includes biological and

chemical experiments, computer simulations, and purely theoretical

endeavors. Processes occurring on molecular, social, and evolutionary

scales are subject to investigation. The ultimate goal is to extract the

logical form of living systems.

Microelectronic technology and genetic engineering will soon give

us the capability to create new life formsinsilico as well as in vitro. This

capacity will presenthumanity with the most far-reaching technical,
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theoretical, and ethical challenges it has ever confronted. The time

seems appropriate for a gathering of those involved in attempts to

simulate or synthesize aspects of living systems.

Septemberis usually a kind season in Los Alamos, relatively free of

daytime heat and blessed with pleasant mountain chills in the evening.

September 1987 was no exception.It was not the weather, however,but

the opportunity to participate in the beginnings of a major enterprise in

the history of the biosphere that drew approximately 160 computer

scientists, anthropologists, theoretical biologists, population geneticists,

biochemists, ethologists, physicists, and a few of undefinable stripe to a

second-floor lecture room at the OppenheimerStudy Center on the Los

Alamos campus. Langton’s proposal had indeed struck a nerve. As the

assemblage gathered on Monday, September 21, 1987, for thefirst of

five days oflectures, coffee breaks, lunches, postersessions, dinners, and

demonstrations, the thin mountain air, even within the fortresslike walls

ofthe modern governmentfacility, crackled with anticipation. Anassist-

ant director ofthe lab said a few rambling words ofwelcome,and there

was Chris Langton, faced with visionfulfilled, nervously addressing the

core ofa scientific field, including some ofhis secret heroes, onits first

official day of life. Among those in attendance were Richard Dawkins,

Aristid Lindenmayer, John Holland, and Richard Laing. “I’m very

happy,” he told them, almostin tears, as his first stencil was beamed on

the overhead projector.

Thefirst artificial-life workshop, or A-life I, as it came to be known,

was a charmed event. Thirty talks and twenty demonstrations provided

what would be a framework for thinking about a-life. There were

organisms generated from cellular automata, computer simulations of

neo-Darwinian evolution, coadapted computer ecosystems, logic-based

recreations ofthe origin of life, competitions between computer-virus-

like creatures, plants grownin silicon greenhouses, and even an occa-

sional robot displaying emergent behaviors. “‘At almost every

presentation,”’ recalls Langton, ‘‘everybody in the room experienced a

gut feeling of “Yes! Yes! Yes!’ ’’ But even the excitementofthe formal ”

sessions was surpassed by animated impromptu discussions begun in

coffee breaks, carried over to lunch, resumed at dinner, and in some
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cases continued in midnight hikes into the moonlit desert landscape,
whicheerily laps on the fringes of the staid scientific company town.

As the conference proceeded, an espirit de corps emerged. It was

almost as if the participants, sharing similar vision but without any
commongroundto shareit, had been adrift in a scientific diaspora. Says

Langton,

There were so many people who were doingserious things in this area

but couldn’t do it for a living, so they were doingit ontheside, just

playing around withit. Everybody hada sensethat this was interesting

stuff, and ought to be pursued on a granderscale. Although many of

us had been working completely independently, without the aware-

ness of this whole othersparse set ofpeople out there also working on

the stuff, the amazing thing was how similar our experience had been,

and how similar our frustrations had been.

Optimism concerningthefield’s future ran high, and in the energiz-
ing atmosphere of Los Alamos, comparisons were made between the
a-life workshop and the legendary Dartmouth conference of 1956, in
which a few computer scientists and psychologists hatched a similar
enterprise, which would cometo be knownasartificial intelligence.An
apt parallel since, as a-lifers would often note,as artificial intelligence was
to intelligence,artificial life wasto life itself.

But with the benefit of hindsight, Langton and most of the others
consciously expressed caution when speaking of the promise of their
studies. They recalled the embarrassment, not to mention the badsci-

ence ofit all, when the poker-faced predictions of the AI pioneers—
who promised the likes of human-level intelligence in ten
years—woundup as quaint buffoonery a couple of decades later, when
computersstill could not replicate the cognition of an average one year
old. In retrospect, plenty had been done (a computer playing grand-
master chess, for instance, is nothing to sneeze at) but thefailure to meet

exaggerated expectations hadtarnished the whole enterprise. As a result

Langton and otherkey a-life people refused to be pinned downto risky
time frames, even speculating that scientists might not produce bonafide
organismsfor at least a century.
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A few were not so circumspect. A roboticist named Hans Moravec,

for instance, addressed the conference andflatly stated that the a-life

movement would build something akin to anartificial human infifty

years. The claim wasironic in light of the film clip Moravec brought to

the conference, which clearly revealed that his own creation, an autono-

mousrobot, took an average of five hours to simply cross a room. (The

puckish Moravec later admitted that his prediction was perhaps overly

optimistic, but that scientific advances often dwarfed the most fantastic

predictions imaginable. Given that, he said, why not have some fun

when playing at prognostication?)

The only real tension at the workshop cameat the judging of what

was lightly referred to as the “artificial 4-H contest,” conceived by

Langton as a good-natured show-and-tell, and judged by A. K. (Kee)

Dewdney,who hadinherited Gardner’s holy columnin Scientific Amen-

can. The $100first prize, went to botanic computer graphics created by

Aristid Lindenmayer and Przemyslaw Prusinkiewicz and generated

using a rule-based grammarcreated by Lindenmayer. Other simulations

were singled out for awards, the categories for which were reverse

engineered, much like the process by which all members in a given

summer-camp bunkwill win certificates. But surprisingly,recalls Lang-

ton, ‘‘there was some confusion and bitterness—somepeople were very

upset that their things didn’t get the prize. And there were others who

were saying—‘How can youcall that alive?’ ”’

It was a perpetually haunting question: Whatis life? Variations of it

echoed throughout the workshop. Artificial life presupposed that one

could synthesize somethingthatsatisfied the conditions for “aliveness.”’

But among many obstacles standing in the way ofthis ideal, none was

more basic than the problem of definition. How can youcreate life

whenno one agrees what that means? How would you know you had

doneit?

Faced with a similar problem in the fuzzily defined term “‘intelli-

gence,” AI had a provisional solution called the Turing test. Suggested |

by Alan Turing, this basically consisted of situating a computer and a

person behind a screen. A discerning interviewer onthe otherside ofthe
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screen would then direct questions to both. If he or she were unable to

distinguish which respondent was which, the computer program would

have passed the test. But could there be an equivalentin artificial life?

In a coincidental nod to de Vaucanson, some peopleat the a-life confer-

ence begantalking about a ducktest: if it looks like a duck and quacks

like a duck,it belongs in the class labeled ducks. This Vaucansontest was

admittedly subjective but ultimately no more so than the Turingtest. A

molecular biologist jokingly suggested a variation:first lock the candi-

date for aliveness in a room with a biologist. If the biologist came out

of the room thinking he had beencloistered with a living creature, that

would be a positive sign. “‘And,”’ he explained, “ifyour organism comes

out and andsays it’s alive, you know you’re on the righttrack.”’

Most of the conference participants believed that the effort begun at

Los Alamos would eventually result in artificial creatures that would

satisfy the creator’s owncriteria for aliveness. Whetherthe rest of the

world would adopt those criteria was another question. What distin-

guished most of the a-life scientists from their more conservative col-

leagues—and from the general public—is that they regarded plants,

animals, and humansas machines, albeit much more sophisticated ones

than artificial examples. But machines nonetheless, and therefore poten-
tially matchable by humanenterprise, regardless ofthe materials required

to build them. Understanding this was simple, but believing it required
a leap of faith that often forced one to cometo grips with hitherto

dormant remnants ofvitalism or of other mystical baggage.

Would others be willing to take that leap? Could animals made of

information encourage the sort of conceptual flexibility that regarded
living organisms as a subset of machines? In order to do so, one would
have to do away,totally, with the preconception that corporeal form is
a precondition for aliveness.

‘The leap you have to makeis to think about machinenessas being
the logic of organization,” explains Langton. ‘It’s not the material.
There’s nothing implicit about the material of anything—if you can
captureits logical organization in some other medium you can have the

same ‘machine’ because it’s the organization that constitutes the ma-
chine, not the stuff it’s made of. That’s the leap you have to make.It’s
a small one.”” Then Langton slyly compared that mentalshift to another
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small adjustment in regarding the world—theidea, spurred by Coper-

nicus, that the common wisdom holding that the universe revolved

aroundthe earth was wrong andin fact that the earth revolved around

the sun. “Thestep itself wasn’t big, just a slight change in perspective

about what’s at the center,”’ says Langton, “‘but its consequences were

enormous.”

Mostof the participants of the workshop agreed with Langton: The

stuff oflife is not stuff. Life is a dynamic physical process, and, ifyou can

duplicate those processes—enable them to “‘haunt”’ otherwise inanimate

material—youhavecreatedlife. This can be done regardless ofmaterials.

It could even be done on a computer.

For monthsafter the conference Langton spent muchofhis timesifting

through the papers submitted for inclusion in the conference proceed-

ings, a collection that would, Langton hoped, cement the bonds forged

at the workshopand bestowonthefield the beginnings ofpermanence.

As he read, and mentally replayed the innumerable conversations he had

participated in or had had recounted to him later, Langton came to

realize that, although no statement of purpose or manifesto had been

drafted—surely no plenary session had been planned for such an enter-

prise—the assemblage had indeed reached an implicit consensus of the

key points ofwhat would hereafter be calledartificial life. In writing his

introduction to the proceedings, Langton attempted to elucidate these

items.

First of all, life was to be defined as ‘‘a property of the organization

of matter, rather than a property of the matter which is so organized.”

There would be nothingin the way onedefinedlife that would preclude

its creation using formsother than carbon-based chemistry. It would not

even require a physical body, as long as the processes, the behaviors

peculiar to life, were faithfully realized—things like self-reproduction,

metabolism, growth,and adaptive responses. Langton andhis colleagues

counted on an eventual shift toward this point of view. Thefacts, they

believed, would dictate a willingness to entertain the possibility. And

ultimately, someone wouldcreate anartificial organism that would put

the matter to rest for all but the most dedicated vitalist.
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This was not to say that the success of a-life hinged on producing a
synthetic beast, a silicon Frankenstein to parade around thescientific
community as a vindication of unconventionalbeliefs. Those working,
in an extremely long-range time-scape, on building creatures who one
day would be considered alive were only part of the field. Most of the
workers in a-life were concerned with duplicating pieces of lifelike
behavior, the better to understand living systems in general and in some
cases the behaviors of specified species. The key to these efforts was that
experiments of this stripe did not merely simulate a function ofliving
organismsbutrather duplicatedit. Langton’s favorite example ofthis was
Craig Reynolds’s use of the methodology of cellular automata to pro-
duce computerbirds, or boids. Although boids were indeed crude and
incomplete models of genuine birds, the flocking behavior they exhib-
ited was nota simulation of flocking but an emergentprocessevery bit
as valid as the behavior generated bythereal thing. ‘‘Flocking in boids
is true flocking,’ Langton wrote, ‘‘and may be counted as another
empirical data point in the study of flocking behavior in general, right
up there with flocks of geese and flocksofstarlings.”
The secondissue concernedthe general approachofthefield. It could

be summedup in oneofLangton’s favorite phrases: bottom-up. Partici-
pants in A-life I agreed with him thatartificial life should be pursued in
the style of cellular automata, engineering local interactions so that
complex global behaviors will emerge. These interactions occurred in
parallel, and the specifics of the interactions were routinely indecipher-
able, although the emergent patterns were coherent and recognizable.
The double axis ofthis belief system—life as process and work from

the bottom up—was more than an experimental approach. It was a
worldview built on the platform of complex systems theory, biological
iconoclasm, post-Darwinian evolutionary thought, and an overall skew
from which one viewed the worldat large: one gigantic natural system
that emergedasthe collective result ofbillions ofstate machines follow-
ing tiny rule structures. The conscripts in the artificial life revolution
possessed notonly a solid footing in the particulars of dozens ofdisci-
plines, from chaos theory to genetics, but also a peculiar view on the
nature oflife itself. They held its unique characteristics in awe butfelt
confident that those qualities were based on sufficiently logical and
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repeatable grounds that could be duplicated in different circumstances.

And they very badly wantedto realize that feat.

The odds of a single unheralded scientist initiating such an epochal

enterprise were higher than a random appearance of black orchids in

one’s vegetable garden. Characteristically, Chris Langton saw it—all of

it, from the time he first picked up that irresistible scent—notas a

personaltriumph butas an extension ofa process not yet understood but

eventually decipherable. ‘In some sense the idea is having me now

instead of me having the idea,’”’ he explains. “There are these other

formsoflife, artificial ones, that want to come into existence. And they

are using meas a vehicle for its reproduction andits implementation.”
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Many of the problems that have concerned mankind ever since his social
emergence and long antecedentto civilization are implicitly problems about
the origin of life. Such problems as the elementary ones of life and death
itself, and the more sophisticated ones about supernatural and divinegovern-
ance of the Universe, are now expressed in theform of, “Has the Universe
a purpose?” or “Are mind and matter related?’’ . . . it is precisely that
knowledge which is now accumulating in step with the increased resolving
powerofinstruments and the developments in chemical and physical theory.
The region of the mysterious is rapidly shrinking.

J. D. Bernal



Stuart Kauffman worksin two places. One is a small laboratory he heads

at the medical school of the University of Pennsylvania. It is stocked

with familiar paraphernalia ofthe trade: test tubes, pots, burners, strange

vials stored in refrigerators, and overworked graduate students. Every so

often Kauffmanorders a few drams of commercial DNA anduses them

as a base for an experiment that involves replicating a function that in

some wayparallels the way life began on earth. After monthsoftesting,

none of the experiments has worked. Kauffman is undaunted. He is

confident that results will come.

Kauftman’s other workplace is the Santa Fe Institute, in the city of

that name.It is a desk and computer workstation in one ofseveral small

offices in the Institute’s original headquarters, an adobe grotto that was

formerly a convent. It is here that Kauffman has been much more

successful. Forming theories, not chemical reactionsin pots,is his strong

suit. As one ofthe Institute’s original ‘‘external faculty’? members (there

is no internal faculty, just as there are no matriculating students at the

complexity think-tank knownas SFI), he compellingly weavesa story,

his story. It snakes and doubles back onitself like a New Wave Science

mutation of Scheherazade’s tales. It also has unlimited potential in

changing the way wethink about life. Kauffman thinks of himself as a

walking fuse; the presumption—certainly, his presumption—is that one

day the fuse will ignite, causing an explosion which will force paradigm

shifts in several fields.

Kauffman has willingly become identified with theartificial life

movement, in part because of the new field’s prospective ties to the

origin of life. Ultimately, the goal of a-life is to do what has occurred

only once on the planet—to make somethingalive from parts that were

not alive. How that happened is the compelling mystery ofthe origin of

life, and the challenge of a-life is to match that astonishing transforma-
tion on a routine basis. Conversely, understanding the origin ofthe only

example of life we know of—natural life, including ourselves—will

provide invaluable clues to the synthesis of other formsoflife.

Thestudy ofthe origin of life abounds with theories, many ofwhich
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are extremely difficult to disprove and almost impossible to confirm.

The trouble begins with the disagreementoverthe nature ofthe planet’s

composition and atmosphere at the time life emerged, and the trouble

only deepens when some working hypotheses, offered by the most

respectable ofscientists, take bizarre, unanswerable twists. Some of the

livelier onesstill under consideration are Graham Cairns-Smith’s belief

thatlife began in evolvinglayers ofclay and transmitteditselfin a genetic

takeover to biochemicals (this has, we shall see, special significance to

artificial life), and the “directed panspermia”’ model that contends that

life began here from somesort of extraterrestrial spore sent over by a

distant interstellar cousin.

All these theories reflect the paradox in which the origin oflife is

stuck. As von Neumannnoted, life could not occur unless a certain

complexity was present. Oncethat crucial level was attained, an evolu-

tionary process could begin to create even more complex molecules and,

eventually, organisms. But how did that considerable initial complexity

get there? The process has been compared to the proverbial monkeys

banging away on typewriters and coming up with Hamlet, or some deft

behemothstuffing a truck-size canister with auto parts, shakingit like a

cocktail mixer, and openingit to discoverer a polished, ready-to-drive

Mercedes-Benz 300 SL, complete with hood ornamentin place. The

problem drove otherwise-patient scientists to throw up their hands and

relegate the origin-of-life studies to the realm of quasi science, and it

forced some otherwise-conservative biologists to propose farfetched ex-

planations to accommodate the cosmically stacked odds againstlife ever

appearing.

Stuart Kauffmaninsists that the odds are not as high as people thought.

His idea hinges on the importanceofself-organization, which in turn is

tied to the as-yet-unchartedrules that Farmerand others think exist, and

could becomeclear in part by pursuingartificial life.

“Artificial life,”’ says Kauffman, “‘is a way of exploring how complex

systems can exhibitself-organization, adaptation, evolution, co-evolu-

tion, metabolism,all sorts of stuff. It is mimic of biology, although

biologists don’t know it yet. Out ofit will emerge somesort ofstrange

companion theory to biology . . . a particular substantiation of how
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living things work. This emerging discipline may be getting at what the
logical structure is for living things.”

Whenhisstorytelling gets underway—Kauffman’spapers are difficult
for even well-versed lay people to follow, so his science is best experi-
enced in the oral tradition—the air becomes charged with his charisma.
Onebegins to understand why the MacArthur Foundation honored the
biologist with one ofits precious “‘genius’’ grants. Kauffman, a stocky
man whose unkempthair andstarkly angular jawline are reminiscent of
an early Rolling Stone, will lock his eyes upon you. Hewill address you,
frequently, by your first name, often followed by the exclamation, “I

_ know I’m right.”” Sometimes he adds,“I’m betting my wholelife onit.”’

Kauffman’s odyssey began when he was in his twenties, in the early
1960s. As an undergraduate at Dartmouth, Kauffmanhadstudied philos-
ophy, focusing on logic. His studies included Booleanlogic, the system,
devised in 1854 by George Boole, that coded statements of reason into
a symbolic form amenable to mathematical calculation. From there
Kauffman won a Marshall Fellowship at Oxford, intending to study the
philosophy of mind. But he cameto realize that theoretical biology
appealed to him more.Forreasonshestill cannot explain, he decided to
become a medical doctor. He embarked on a premedical curriculum.

Amongthe subjects he studied was humancell differentiation. It was,
and remains, somewhat a mystery how single fertilized zygote splits
into manycells and at somepoint newcells display different forms. The
genes in eachcell are identical, but thecells are distinct types: muscle,
kidney, nerve, and so on. Around the time Kauffman was studyingthis
phenomenon, two French biologists, Jacob and Monod, discovered
gene switching, whichpartially explained things by showing howcer-
tain genes could switch other genes on andoff.
Jacob and Monod’s work triggered a new series of challenges in

understanding how the process worked. Human beings have approxi-
mately one hundred thousand genes, and some genes, undercertain
circumstances, turn other genes onoroff. It seemed hopelessly compli-
cated. Who could tell what relationships existed between the genes,
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and whatfunctions dictated whether a given gene would be switched on

or off?

Onewayto dothis was by a reductionist approach:isolate little pieces

of the network and examinetherelationships between them. By con-

centrating ona single gene, biologists could find out which other genes

are connected to it in the biochemical circuitry. In theory, after a

painstaking processofisolating and charting, the whole network could

be diagrammed. Indeed, this was the standard approach for learning

about gene switching. But early on, Kauffman recognizedthat it would

be a very long time before we wereable to get a networkwide picture

ofthe system—ifever. “‘It’s worse than a jigsaw puzzle,”” Kauffmansays.

‘‘A jigsaw puzzle suggests you have a bunch ofpieces on the samelevel

which canfit into a picture. This is morelike bits and pieces at a variety

of levels, and no idea howto fit the whole thing together. Meantime,

evolution is busy evolving newproteins that change the connections and

the logic in the circuit—literally, you’re scrambling the circuitry.”

According to Kauffman, even if we succeeded in completing this

unspeakably labyrinthine circuit diagram, the answers would still be

elusive. “The molecular biologists will feel they’ve done a wonderfuljob

in working outall this circuitry, but then a mathematician will say,

‘Okay, here’s a system with 100,000 variables regulating each other’s

activity—whatwill it do?’ Andthe biologist will gasp. The reason1s,it’s

very hard to figure out whatfive things hooked to one anotherwill do.

And. nobody knows how to think about the behavior of systems with

100,000 variables acting on each other.”’

Kauffman thought that the problem could indeed be tackled. But a

shift in viewpoint would be required. Before one could begin to answer

questions about the large network involved in gene switching, Kauff-

man reasoned, wefirst had to understand the behavior of any sort of

network of one hundred thousand units where some units dictated the

condition of others. In his mind, the question was not so much about

the particulars of any individual network—especially since in no two

human beings was the circuitry identical. “The problem,” Kauffman

says, ‘is whether the behavior of the network depends on thedetails of

that whole network, or whether the behavior instead is a very robust

thing, that in a sense doesn’t depend on the details.”’ (Kauffman,like
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manyscientists, defines ‘“‘robust”’ as “‘stable in the face ofperturbations.”’)

In other words, attempting to chart the connections oneby oneis

akin to taking a tree census. Kauffman was moreinterested in studying

the forest.

Kauffman was suggesting something heretical—that the intricate,

clockworklike nature ofbiological reality that most ofus expect was not

as fastidious as we suspected. The majority of biologists viewed the

genetic circuitry as akin to a detailed computer program that is ex-

tremely sensitive to errors: a well-ordered scheme that might have been

produced by a superprogrammer with an uncanny sense ofstructure.

That biological precision was one reason why it was so difficult to

envision all the steps in a scenario in which life emerged from much

simpler ingredients. To suggest that a random set of computer instruc-

tions could come up with something as complicated in its intertwining

relationships as the process oflife was absurd. Yet, that was exactly what

Kauffman contended was the case. He believed that powers ofself-

organization—thoseelusive yet omnipresentlittle natural rules that we

have yet to understand—were at work in all sorts of complicated net-

works. Like an omnipresent team of chambermaids, these powers

scooped up randomness andarranged things in a manageable order. The

mannerin which they did this was an example ofwhat Langton would

call a bottom-up process—nocentral plan existed to clear up the confu-

sion, but the accumulation oflocal actions forced the entire system into

an emergent behavior that was notat all predictable from the initial

conditions.

Kauffman insisted it was those self-organizing powers, and not a

microdesignedcircuit plan, that dictated, among otherthings, the gene-

switching network.

If one could identify the workings of forces of self-organization and

complexity, lifelike behavior could be duplicated by producinga struc-

ture for interaction and evolution that takes advantage of those forces.

Natureitselfwould organize things, as Kauffmaninsisted was the process

with natural life. It would certainly be conceivable to create life, new

organisms more complex than any human designer could imagine. The

implications for artificial life were tremendous.

At the time of this revelation Kauffman was a nonfunded medical
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student in his mid-twenties, who wassetting broken armsat the Univer-

sity of California medical school at San Francisco. His fellow students

had nointerest in discussing the matter with him. He knew no other

researchers thinking about the problem. But, as Kauffman later ex-

plained, “For no good reason whatsoever I have always had the confi-

dence I could tackle any problem that I wanted.’’ Asked why this

problem in particular was so importantto him,he pauses, andfinally says

this about his motivations: “I’ve always wanted the order onefinds in

the world not to be particular, peculiar, odd or contrived—I wantit to

be, in the mathematician’s sense, generic. Typical. Natural. Fundamen-

tal. Inevitable. Godlike. That’s it. It’s God’s heart, not his twiddling

fingers, that I’ve always in some sense wantedtosee.”’ |

In 1965 Kauffmandevised a plan to see God’s heart. He would create

a network nearly as complex as that which linked the one hundred

thousand human genes, hookthe pieces together in a random manner,

and see if anything biology-like emerged. That would certainly indicate

that, rather than requiring exactly the nghtpieces fitting snugly into the

puzzle, a much less rigorous set of circumstances were required to

producetheessencesoflife.

Kauffman found an IBM mainframe where he could do the work, but

had to borrow moneyfrom the medical school to pay for the computer

time. In his recollection the sum was around $1000.

He wrote a FORTRANprogram that would generate a Boolean

network similar to what he knew of gene-switching networks. A Boo-

lean network was roughly similar to a cellular automata system. It was

a collection of nodes—most easily thought of as light bulbs—that

switched on or off, depending on whether they received current. This

was determined by set of logical rules that looked at other bulbs and

told, given the conditions of those bulbs, whether the given light bulb

would be on or off in the next time step. The relationships between the

bulbs followedrulesfirst outlined by Boole. There were sixteen Boolean

relationships, and most were by then second nature to computer pro-

grammers and data-base workers. For instance, the “or” rule, which

stated that, if either bulb A or bulb B are on, then bulb C will be on in

the next time step. The ‘‘and”’rule said that, if both bulb A and bulb B

are on, then bulb C will be on in the next timestep.
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Kauffman began with a network ofone hundred bulbs, far fewer than

in the human genomebutstill one of boggling complexity. Each light

bulb was randomly assigned two otherlight bulbs, the currentstates of

which would determineits fate in the next time step. The variousrules,

or Boolean functions, dictating whether the light bulb would be on or

off, were also randomly assigned—Kaufftman, not knowingtherelation-

ship between genes that determined switching, included all sixteen

Boolean functions. He would then apply the rules, and thestate of the

network would change according to those rules. He would continue,

time step by time step, and see what happened.

His hope wasthat the network would soonfinditself in a fixed state

cycle. To do this, the network would haveto return to one ofthe exact

samestates that it previously experienced. From that point on(since the

rules did not change), the network would finditselfin a loop, repeating

the same changes over and overagain. Eventually, of course, this would

be inevitable, since there is only a finite numberofpossible states for the

networkto bein. Intuition suggested that this state cycle would be very

long in coming, and, when it came, the loop would take manytimesteps

to complete. After all, there were many possible states of the entire

network—each state represented a network with a different combina-

tion of the one hundredbulbs on oroffin a given moment. Since each

bulb could be in one of twostates, the numberofpossible states of the

network wasprecisely, two to the one-hundredth power,or ten to the

thirtieth power. That meant, in Arabic numbers, a ‘‘1”’ with thirty ‘‘0’s”’

behindit. So it would seem that among these many, manypossiblestates,

it would take an extremely large number of time steps before the

network reached a position that it had experienced previously.

The chancesofthe network soonfindingits way back to any givenstate

seemed many times more minuscule than a person’s chancesofhitting a

state lottery two weeks in a row—atleast those odds could be measured

and digested. Thissituation was morelike picking Ping-Pongballs from a
giant box holdingtrillions ofnumberedballs, each time returningtheball
to the box and shaking it thoroughly. How soon wouldit take for the same

ball to be picked twice? Even a computer executing thousands oftime
steps a second mighttake years tofind itself in a familiar configuration.

One would expect the system to be chaotic for a very long time.
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But Kauffmanfervently hoped that something quite different would

occur. For one thing he notes, “If it was a very long state cycle, and it

took hours of time crunching anddidn’t find the cycle, I would use up

my thousand bucks.” What actually occurred was that thefirst state, a

jumble of ons and offs, changed into a secondstate, another jumble of

ons and offs. And a third, and a fourth. Which was to be expected. But

at the tenth state, the experiment took a dramatic twist. The eleventh,

twelfth, and thirteenth states were, again, all different—but the four-

teenth time step, out of a dizzying googolplex of possibilities, was a

repeat ofstate 10! And from then on,inevitably, the program looped in

a cycle of fourstates.

Kauffman slapped his hands in astonishment. “That’s it!’ he told

himself. ‘I’ve got self-organization!’’ Then using a different random

configuration and switching the assignments of Boolean functions, he

repeated the experiment. (Hedidthis literally by shuffling someofthe

punch cards he fed into the hulking IBM mainframe.) Each time a

similar phenomenon occurred: the computer would chunk off, state-

state-state-state-state, for about ten iterations and thenfall into a three-

or four-state cycle.

In chaos theory, there was a namefor the state of the network that

triggered such a looping cycle: a periodic attractor. It was a force that

draws otherwise-chaotic systems into recognizable patterns, muchas

when a lake forms, the water settles into drainage basins. Years later,

Kauffman would be versed in the poetic terminology of chaos theory,

and indeed his experiment wouldfind its way in the annals ofthatfield,

called, to his pride, the Kauffman Model. Indeed, he would identify the

self-organizing force at work in the modelas a form of “‘antichaos.”

Whatdid this have to do with biology? With gene switching? Ac-

cording to Kauffman,plenty. It indicated that seemingly intricate clock-

work constructions like human gene-switching networks were

dependentnot so muchontheir precise construction, which dictated the

position and connectionsofeach node,as on a global property ofall such

networks driven by complex local reactions—a property that virtually

demanded that order should arise. That property was, in Kauftman’s

conceit, the stuff of God’s heart.

The Kauffman Modeloffered a glimpse of a powerful and continual
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process ofself-organization, one Kauffman contended was at work in a

wide domainofbiological phenomena,ranging from cell differentiation,

to the behavior of the immune system, to the evolutionary process, and

indeed to the emergenceoflife itself.

The most famous experiment in attempting to ascertain the details of

life’s origin was conducted in 1952 by a twenty-three-year-old Univer-

sity of Chicago graduate student named Stanley Miller. The paradigm

for life’s beginningat that time focused on the “‘soup,” a prebiotic stew

ofchemicals supposed to exist on the surface ofearth approximately four

billion years ago. One ofthe more troubling gaps in that theory was the

process by which some of the complex molecules of organic chemistry

formed from the simple elements ofthe stew. In orderfor life to emerge

from the soup, the brew musthave been primed for the formation of

things like amino acids, the building blocks of enzymes and proteins.

Theoreticians have long conjectured that a spark for such a mixture

could have come from a prebiotic thunderstorm,with a lightning bolt

catalyzing the properreaction. But until Miller, nobody had provided

evidence that such a thing could happen.

In retrospect, the experiment seems elementary, so simple that soon
after the results were published, Scientific American provided the instruc-

tions so do-it-yourselfers could create the stuff oflife from homemade

prebiotic soups, in the comfort of their basement workshops. Butit did

not seem so simple when Miller began. He codesigned the setup with

his research adviser, Harold Urey. A construct of sealed flasks and test

tubes, the Miller-Urey apparatus had only a touch of Rube Goldberg.

Atits center was the approximationofthe ocean:a 5-liter flask ofwater.

Instead ofmodern air, the atmosphereinside the apparatus was a simula-

tion of the alleged ingredients of early earth: methane, ammonia, and

hydrogen.Since billions ofyears ago the planet’s temperature was high,
Miller used a coil to heat his mix to a constant bubble. The deus ex
machina was simulated lightning, an electrical device that spat sparks at

the water vaporasit first rose into an adjacent compartment and then
proceededto a cooler area, where it condensed. The transformed drop-
lets would rain into the sea. A week of this modest turmoil produced a
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sticky reddish stain on the glass. The water was a murky yellow-brown.

WhenMiller analyzed this gooey result, he found that the simple chemi-

cals mixed into his homemadeprimordial soup yielded the more com-

plex compounds of aminoacids fundamental tolife.

Some contemporary commentators believed that the Miller-Urey

experimentindicated that the origin oflife was not a near-miraculous

long-shot occurrence but something firmly dictated by the conditions

on earth. Carl Sagan, who produced aminoacids in a Miller-Urey-type

experimentthat substituted ultraviolet radiation for the simulated light-

ning, said that Miller’s humble effort “‘is now recognized as the single

most significant step in convincing manyscientists thatlife is likely to be

abundantin the cosmos.”’ Lay observers wentfarther, suggesting that the

origin-of-life problem had been broughtto its knees: “If their apparatus

had beenas big as the ocean,”’ gushed Time, “and if it had worked for

a million years instead ofone week,it might have created somethinglike

the first living molecule.”’

This optimism hasfaded in the three decades since Miller-Urey.“The

problem . . has turned out to be much moredifficult than I, and most

other people, envisioned,” Miller himself told a reporter in 1990. For

one thing, there is considerable doubt about the composition of earth’s

early atmosphere. But even more dauntingis the failure ofMiller-Urey

to accountfor the subsequent steps up the ladder from simple organic

chemicals to living organisms. Though individual experiments provided

potential justification for certain key steps to occur, no one has managed

to confirm the current paradigm that would begin from the point of

Miller-Urey and proceed to a population of adaptive, evolving mole-

cules, one of which becamethe original replicator, a complex organic

molecule capable ofself-reproduction that eventually becamethe ances-

tor of us all. An early replicator molecule is assumed to be a “naked”’

RNA, capable of existence in independent form (as opposed to its

present ubiquity as the memberof the cellular team responsible for

translating instructions from DNAand executing them by synthesizing

the requested proteins). Thus early life was supposedly an RNA world,

consisting of self-replicating RNA, which was eventually upstaged by

DNAandproteins.

The major problem with this theory was a seemingly faulty time
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sequence. The relationship between RNA andproteins is symbiotic:
RNAreplicates with the help of proteins, and in turn RNAdirects the
synthesis of proteins. Naked RNA,then,is in effect an egg before a
chicken. The inability to resolve this contradiction helped keep the
naked-RNAparadigm from universal acceptance and opened the door
to all sorts of theories, involving clays, sulfur-based compounds, and

interstellar spores.

As Kauffmansawthesituation, “Ifyou wantto base the origin oflife
on replicating RNA, the dominant hypothesis is that a single-strand
RNA molecule can make a copy ofitself, without enzymes and without
proteins, which will later become enzymesto catalyze the reactions.
(The enzymes and the DNA will comelater, because RNA has to
produce them.) The bottomline ofall this, in all the experimental work,
is that it doesn’t work. And there are deeper problems conceptually—if
you start with a nude replicating piece of RNA, how do you get
metabolism, how do you get a complex weboftransformations among
chemicals going? Nobody has an answerto that.”

Kauffmaninsisted that a key componentoflife’s origin was missing
from these theories, the same powerofself-organization that he first
documented in his experiment in Boolean networks. The more Kauff-
man looked, the more he found applicationsfor his model. Around 1970
the thought came to him that perhaps, as he later phrased the concept,
“this is the way everythingstarted.” He sat down andoutlined a possible
beginning to life on earth but became discouraged when a colleague
dismissed it as pure theory. Ultimately, this sort of criticism was applied
to Kauffman’s pursuit ofbiological self-organizing principles in general,
and, for almost the entire decade of the 1970s, Kauffman, performing

more conventional research, used fruit flies to study evolution. His
musings on life’s beginnings were shelved.

In 1982, at a conference in India, someone told him about some
recent theoretical models about the origin oflife, particularly that of
Freeman Dyson. Kauffman lookedat this work, and his three-pronged
reaction typified his chutzpah-drenched approach to science: Hisfirst
comment: ““Goddamnit, I did that in 1971.’ His second comment:

‘“There’s a hole in the argument.”’ His third comment: “I can doit
better.”’
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It was a twenty-four-hour return flight from New Delhi to Kauff-

man’s destination ofToronto. When he disembarkedhe had forty pages

of algebraic notation and a theory. Kauffman’sfirst words to the friend

who met him at the airport were, “I know howlife started.”

Thefriend told him to get some sleep. But Kauffmaninsisted on

relating the theory that, he recalls, his friend liked.

Kauffman’s theory flew in the face of the leading alternative, which

was based on replicating RNA molecules. But it shared some ofits

structural characteristics with one of the key theories that did subscribe

to the RNA hypothesis. This was the hypercycle, postulated by a Ger-

man biochemist named Manfred Eigen. A hypercycle, as one biologist

put it, is a connected networkof“functionally coupled, self-replicating

entities.”” Just as in realized life-forms, certain behaviors emerged that

were more than the sum oftheir interactions. The beauty of a hypercy-

cle was that the reactions were interdependent, andtherefore nosingle

reaction could be so successful that it drove out the other functions of

a cycle: it was in effect a balanced ecosystem. Eigen and his collaborator

Peter Schuster used the hypercycle model to postulate how naked

strands ofRNA might form a chain of complicated reactions that would

lead to evolution of more fit examples of RNA and eventually to the

emergence of the more sophisticated functions characteristic of current

ribosomes and messenger RNA. Kauffman’s own idea of a self-

catalyzing network operated in a fashion familiar to anyone who had

studied hypercycles. The element in common wasa parallel structure of

cooperation.

But Kauffman rejected the idea that life had sprung from an RNA

world. Instead, the Kauffman theory focused on how early life might

have supported the dual functions ofreplication and metabolism.Inthis,

it had much in commonwith the modelpostulated by Dyson. Dyson’s

explanation ofthe origin oflife was based on his educated guess that the

phenomenon was a combination oftwoseparate processes, one in which

replication emerged and anotherthat fixed the machinery of metabo-

lism. Previous theories of the origin of life had focused on one or the

other and could beclassified as either protein theories, which contended

that metabolism, fueled on proteins, camefirst, or nucleic acid theories,

which insisted that a replicator like RNA wasthefirst instance oflife.
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Dyson complained that theorists had focused onthe latter, thus underes-

timating the importance of metabolism. Dyson’s dual structure excited

Kauffman because his owntheory, unlike that ofEigen and most others

trying to nail downtheparticulars of life’s origin, also hinged on the

presence of metabolism.In fact, Kauffman’s hypercycle-like system had

a metabolism ofits own, in that it drew materials and energy from the

world aroundit to increase and maintain internal order.

The cornerstone of Kauffman’s theory was the discovery he made as

a medical student—the ease with which self-organization emergesinall
networks. This was the proof that confirmed his idea that biology is
determined by the heart of God—global order from local interaction—

and notthe detail-riddenfiligrees ofGod’s twiddlingdigits. It only stood
to reason that this concept would beat play in the waylife itself
emerged.

In Kauftman’s theory, the prebiotic soup was loaded with the simple
chemicals thought to be present on earth beforelife existed, including
simple aminoacids called monomers, which potentially can hook up to
create form linear chains called polymers. Kauffman regarded the chemi-
cals as strings of symbols, depicting the progress of the reactions in
discrete time steps, like a cellular automaton or a Boolean network
experiment. |

There were a sizable numberofreactions possible between monom-
ers, and, beginning in the second timestep, polymersstarted to form as
the monomers bonded. The numberofpossible reactions between the
monomersandthesteadily increasing set ofpolymers was astronomical.
Even beginning with a set of only two monomers, the possibilities got
very large very quickly. For instance, if monomer A linked with mo-
nomer B to form the “‘species”’ of polymer known as AB,in the next
time step AB could hookupagain with A to form AAB,with B to form
ABB,or with AB to form ABAB.Eachtimestep multiplied the possible
strings considerably, and very quickly the possible species were well into
the millions. In addition, the numberofpossible reactions between the
polymers grew at an even higherrate. It would seem like chaos, with
strings forming and breaking apart seemingly at random. But as com-
puter models have demonstrated, that was not what happened.

Certain chemicals had a catalyzing effect on the production of other
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A computer-based autocatalytic network consisting of 15 species. The network begins

with the artificial monomers A and B,circled here. The dots represent reactions, as

the monomers combine with each other and with the results of these combinations to

form polymers (represented here by strings of A’s and B’s). Meanwhile certain

polymers catalyze certain reactions (represented by brokenlines). Although this looks

hopelessly complex, it is actually a depiction of how order asserts itself in such

systems: from an unrelated stew of millions ofpossible polymer species, a limited

reaction network self-organizes from the chaos and forms a kind of metabolism.

Something like this may have been the origin of life itself.

chemicals, expediting each given reaction. As the time steps ac-

cumulated, a frenzied round-robin of experimentation occurred as dif-

ferent species emerged and tested their catalyzing ability on other

reactions. As the numberof successful combinations accumulated, the

percentage ofcatalyzed reactions increased. At a certain point—yjustlike

the flash point that occurred when the Kauffman model settled into a
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periodic attractor that set off the short state cycles—a phase transition
occurred, a sort of connective explosion where suddenlycritical mass
was achieved,and, in a subset ofchemicals, every polymerhad its forma-
tion catalyzed by someother polymerin the subset. From then on, the
formation ofpolymerspecies was no longer a hit-and-miss operation but
a metabolizing function ofthe system atlarge. You had,in effect, a living
‘‘autocatalytic’’ system.

“There’s a vast explosion of the number of organic molecules,”
describes Kauffman. ‘“‘There’s also an even vaster numberoflegitimate
organic reactions by which they can convert to one another. All of a
sudden, youcrystallize a connecting metabolism.It’s not piecemeal,it’s
a phasetransition. So my view is thatlife started with an autocatalytic,
self-reproducingset ofpolymers, which simultaneously collectively cat-
alyzed a metabolism. And you have a going concern. You never had a
naked gene. Youjust have to get a complex enoughpotofchemicals and
it'll all work.”’ (At this point, it remains a logical, not a chemical,
construct.) |

Kauftman’s theories, if valid, had an advantage overthe alternatives:
those, notrelying ontheself-organizing power of networks he postu-
lated, faced extremely long oddsagainst getting started. They depended
on the creation of a single type of molecule that had the capability of
evolving into the exacting array of chemicals necessary to fuel the
engines of life. Instead of the systemwide parallel reactions Kauffman
proposed—which heclaimedinevitably yielded the result of complex-
ity—these alternatives proceededin serial fashion. They depended on a
series of proper circumstances, like a long session at roulette where a
single numberwasplayed continuously,in hopesit would turn up every
time. But there was an obvious counterindication: if the odds were so
terrifically stacked against these theories, why were we here? “Life did
start,” concludes Kauffman. “Andif I’m right, the probability oflife is
very muchhigher than anybody thought.”

Life wants to happen. The thought was comforting to Kauffman. About
a yearafter he first hatched his theory aboutthe origin oflife, he trekked
up a mountain outside Sacramento. High above the world, he rumi-
nated about autocatalytic networks, how simple they were, and how
inevitable. He experienced a shudder of oneness with his surroundings
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andfelt that a special piece of the universe had exposeditself to him: the

heart of God.

With the advent of a-life studies, Stuart Kauffman’s theory founditself

embeddedin a set of experiments and theories that drew on the pro-

posed circumstancesofthe early biosphere and considered autocatalytic

systems based on that chemistry as a sort of organism: dynamic systems

that metabolized and evolved. Thecreators ofthese systems, which were

constructed in laboratory pots ofchemicals (‘‘wet’’) or computer simula-

tions (“dry”) were armed with scientific buckshot, in order to hit

multiple targets, ranging from questions concerning the origin oflife to

the self-organizing behavior of dynamic systems in general to the sorts

of reactions that could trigger any evolving set of chemical chains. In

some cases, these simulations shed entirely the claim that they resembled

in significant mannerthe circumstancesof prebiotic earth and in doing

so demanded consideration as objects in their ownright, displaying key

behavior ofadaptive systems and enabling usto studylifelike machinery

at close range.

One example was Doyne Farmer and Norman Packard’s model ofan

artificial chemistry inspired by Kauffman’s theories. It was later embod-

ied in an eighty-thousand-line computer program written by an athletic

and soft-spoken biologist in his early thirties named Richard Bagley.

The modelitself evolved in the four years since Bagley began program-

mingit; after much tinkeringit indicated that Kauffman’s hypothesis was

sound—his assumptions about reactions in artificial monomers and

polymers indeed yielded an active autocatalytic network.

This did not necessarily prove anything about howlife actually began

on this planet, in this universe. But as Bagley explains, “In trying to

make things go, our gameis not to providea very realistic description

ofnature;instead, wetry to find out whatnature hadto be to makethings

go.” This distinction was key to understanding what happened in any

a-life experiment but was often misunderstood,especially by biologists

whofocused onlife as we knowit and notontheories oflife in general.

“Most biologists are disdainful of theories,” says Farmer. “They are

trapped by thefact that their science, in the way that they define it, is
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studying life as it is on earth, and that automatically makes their view
very narrow.”’

WhenBagley venturedto La Jolla, California, to show his computer
model to some ofthe gurusofthe origin-of-life world—Leslie Orgel of
the Salk Institute, Stanley Miller of the University of California, San
Diego, and the rising star Gerald Joyce of the Scripps Research Insti-
tute—he received a mixed reaction. Orgel, although skeptical of
Kauffman’s theories, offered suggestions as sort of a hedge against its
potential success. Joyce, enthusiastic aboutthe a-life approach, was en-
couraging—although he considered Kauffman’s assumptions to be
overly optimistic, he urged Kauffman to pursue chemical experiments
geared toward justifying his hypotheses. But Miller, who almostforty
years ago madetheclassic wetartificial life experiment, was unim-
pressed. “Running equations through a computer doesnot constitute an
experiment,’ he declared to a reporter. Bagley described Miller’s stance
as “dogmatic resistance.”

The complaint was that computer models of the origin oflife are
inherently doomed to irrelevancy. As biologist Hyman Hartman
pointed out, the quest to understand howlife actually began was more
an exercise in ratiocination than an experimental quest. ‘‘It’s a historical
question,” hesays. A theory successfully consummated on the computer
might be a thing of beauty, but besides indicating a certain viability it
was inconclusive. There would be no way to prove that such a scheme
actually occurredbillions of years ago. But Hartman’s criticism can be
directed also at Miller’s original wet experiment, because it, too, was a
mere simulation of prebiotic conditions.

Onthe other hand, a computer modelthat presumed a viable chemis-
try and then proceededto alchemize the behavioroflife from reactions
based on that chemistry provided something quite valuable. “What we
really are interested in is taking thesalient features of the origin oflife,
and making a model ofself-organization,”’ says Bagley. ‘“‘As a result, we
have this very nice model ofself-organization and of evolutionary be-
havior.”’ This model need not represent the way things happened
(though Kauffman wouldinsist this is the case), but something that could
have happened. Equally significant was the fact that in this model,
something was happening. An alternate form of metabolism was occur-
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ring, based on a grammarofstring processing rather than on reactions

between atoms within chemicals. The chemistry may have beenartifi-

cial, but that did not mean that there was not muchto be learned from

studying it. That the connections werelogical was unassailable. Andjust

as the boids of Craig Reynolds did not simulate flocking butactually

flocked, the Bagley computer model did not merely simulate an evolv-

ing metabolism: it metabolized.

“The fact that [our model displays behavior] notliterally seen in

nature I find more encouraging, not less,” says Bagley, “because as

wonderfully diverse as the world is, to get our minds thinking about

what’s really going on in evolution,or in this kind of functionalself-

organization, the more examples we have, the better. Thinking about

life in other environments can only help us.”

The hope was that an accumulating base ofartificial representations

ofhow complexity could form from prebiotic-like environments could

make a compelling case for Kauffman’s claim that life was virtually

inevitable, not a long shot. Indeed, othera-lifers found artificial environ-

ments to be fertile ground for developing biologic behaviors from slews

of random interactions.

Oneofthese a-lifers was a Danish physicist named Steen Rasmussen.

His heritage was similar to that of others who had been drawn to an

artificial life approach to classic biological and complexity problems.

After study in multiple disciplines—though his doctorate was in physics

and applied mathematics, he was trained as an engineerand also held a

degree in philosophy—he becamefascinated with dynamical systems

and with self-organization, particularly in the way they manifested

themselves in nature. After meeting Farmer and Langton, both ofwhom

had movedacross the parking lot from CNLSto Los Alamos’s theoreti-

cal division, Rasmussen wasinvited to perform postdoctoral work with

them. Farmer had becomeleader of T-13, the complex systems group.

Rasmussen’s first a-life work concerned origin-of-life autocatalytic

sets, and the reliable emergence of order in those experiments led him

to explore other sorts of simulations, including those with little direct

correlation to the prebiotic conditions of life. This would have the

advantage of finding alternative approaches to the emergence oflife,
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which mightyield clues to other varieties of living dynamical systems
that had failed to show themselves thus far as a result of the possibly
arbitrary evolutionary path that life on earth had followed.

Rasmussen decided to generate a metabolic system based on the types
of interactions generic to computers: an artificial chemistry based on
computerinstructions. He borrowedtherules from anearly, nonintru-
sive exercise in computerviruses called ““Core War.” Thebasic compo-
nentsofthis ‘“core world” were the instruction set ofassembly language
commands charged with manipulating information in the core of the
computer memory. Rasmussen and his Danish collaborators named
their world VENUS, which stood both as an acronym for Virtual
Evolution in a Nonstochastic Universe Simulator and asa tribute to “‘the
Roman goddessofnatural productivity, love, and beauty, with the hope
that [we] would create interesting life-like properties.”

Essentially, VENUSwasa prebiotic soup of information, fed with a
rule set that, Rasmussen hoped, had the capability to self-organize and
develop characteristics recognizable aslife. All within the confines ofan
IBM PS/2 model 80 personal computer. He explains that ‘in previous
quantitative models of the origin oflife, people assume somethingis the
important evolutionary route, and try to direct the system along that
route. The restriction is ‘the model mustgo this way,’ and you can only
learn whatis important if you go this way. What has been missing is
openness—you don’t tell the system beforehand where to go. The
system decidesby itself, and it can take oneofinfinitely many routes to
somewhere. They may beblind alleys, and the system may die as it
sometimes does . . . or you can havea totally new thing coming out. We
are trying to build a zoo ofartificial chemistries and what they can
produce. From this zoo we hope to beable to find some general
principles from which weare able to makethereal things.”

Overa series of twelve-hour runs, approximately twenty-two mil-
lion instructions were executed and around one hundred thousand
generations passed. It was,at first, difficult for Rasmussen andhis col-
leagues to determine any organizingprinciples, as they stared at a jum-
ble of colored dots on a computer screen, each color representing a
different instruction.
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Onthe one hand it was obvious that something was happeningasthe

simulation proceeded; the core was changing. Onethe other hand,the

basic physics of this universeis so different from our “‘real’’ physics that

we had no clue about what would develop in the system. We did not

know what to look for in the core. . . . Since we did not have any

automated methods for interpreting [the core] data, we had no other

choice than to dump many, many cores, where each hard copy occu-

pied several meters ofpaper, and hopethat the humaneye wasable to

catch anything ofinterest. It took a long time before we were ready

to test evolution of different environments in a more systematic way.

When that time came, Rasmussen and team had become experts in

gaugingtheterrain ofthis untasted new flavor of universe. They came

to see themselves as archaeologists set loose on a virgin planet. A starting

point was provided by a determination of what could be called an

“organism” in a world made ofpatterns of computer instructions; this

had beenset by the Core War rules, which defined creatures as consist-

ing of persistent patterns of computer instructions. These were capable

ofmaintaining themselves through time, even as they executed the very

information ofwhich they consisted. For instance, those creatures con-

sisting of MOV (move) instructions would, on execution, move from

one core location to another. Otherinstructions were capable of adding

twoinstructions, orsplitting another instruction,orsplitting the organ-

ism itself. If an instruction could not be executed in the next timestep,

it would be dead. Detecting organisms could be tricky because, as

presumably was the case whenreal life emerged, the more primitive the

life-form, the more difficult it would have beento distinguish it from its

surroundings. Whenthepatternsofinstructions became more persistent,

of course, these more stable creatures were moreeasily tracked. Indeed,

distinct populations of organisms did emerge;the artificial chemistry of

VENUSwasa fertile one.

Rasmussen and company found that generally two sorts of envi-

ronments were generated by core conditions, depending on which

evolutionary accident affected the initial conditions: a relatively un-

complicated desert populated by simple instruction loops and a dense

jungle with cooperating strv -cures ofseveral instructions. By andlarge,
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the jungles were more felicitous grounds for the origin oflifelike
behaviors; organismsthat lived in deserts usually formed in the jungles
and later adapted themselves to the conditions of the less complex
environment.

As generation after generation passed, the population changed and
became more complex. Organismsthat thescientists hand designed and,
in a form ofdirected panspermia, dropped into theartificial universe,
found themselves unable to survive in the “noisy” environment of
VENUS,which was spiked with random perturbations to simulate the
environmental accidents that might affect the prebiotic locale. More
successful and robust were organisms that emerged from within the
system itself.

As the experiments proceeded, and many thousands of generations
passed, the VENUSobservers learned to identify these organisms and
detect what they called ‘“‘fossils,”’ traces of structural organisms that had
become extinct. Eventually they made a series of conclusions that,
depending on whether one accepts VENUSasa viable proving grounds
for life, held potential value for those wondering how organisms emerge
from any nonorganic environment.

Some of these results were rather obvious. For instance, without a
flow of energy, life cannot emerge. This was a simple application ofthe
second law of thermodynamics, and, if that had not held in VENUS,
something would have been terribly wrong. Also to be expected was the
fact that different sorts of evolutionary conditions caused differing evo-
lutionary paths.

Moreinteresting were certain phenomena that seemed to bear out
manyaccepted but yet-unconfirmed hypothesesabouttheorigin oflife.
Small perturbations in the environment and chance historical events
potentially could force major changes in evolution. Sometimes a seren-
dipitous microscopic event could squelch life from appearing even in
otherwise-optimal conditions. Sometimes a jarring event that might
otherwise be survivable bya self-correction in the system was followed
by more noise, and the combination wiped out the nascent life-forms.
Oneparticular instance where this sort of combination punchresulted
in a knockout wastriggered whena particularly efficient self-replicating
series of instructions caused the core to become flooded with those
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organisms. The system adjusteditself several times, with the organisms

eventually stabilizing their growth and switching to a form ofbeing that

reproduced only on alternate time steps—but a further perturbation

knocked out the new instruction-set organisms before they fine-tuned

themselves.

Perhapsthe key lesson that Rasmussen drew from VENUSdealt with

the imperative quality of cooperative structures. As in autocatalytic

networks, the evolution of a viablelifelike system depended on symbi-

otic structures within the system. For example, one ofthe more success-

ful organisms that emerged among VENUS's runswasa structure called

MOV-SPL (moveandsplit). This was a combination of the instructions

to move from onepart of the core to another andto splititself. As it

expanded and movedthroughout the core,it interacted with whatever

it encountered andleft fragments of its own instruction set behind—in

this way it fed the gene pool with MOV andSPLinstructions. When

the gene pool wassufficiently spiked, the MOV-SPL organism, while

not displaying classic replication, easily reproduced from one generation

to another because, whenits instructionssplit apart, they found them-

selves instantly linked with analogues to their previous partners. Thus

the organism displayed stability. |

“Despite the brittleness of the individualinstruction and the modest

core size,” concluded the Rasmussen group,“our system is indeedable

to evolve stable cooperative structures.”’ Interestingly, the group point-

edly declined to judge whetheror notthese cooperative structures were

alive. The very idea that the matter was worthy ofconsideration wasto

many a heresy. Yet, as Rasmussen insisted, something was happening

here. The system was less a simulation than analternative. Whatit was

remained undefined. But it was something, and that in itself vindicated

the experiment.

“If we believe that it’s possible to extract the logic of life and putit

into some other hardware,” says Rasmussen, “then we have to conclude

that there is a reality in VENUSwhichis just as real as our reality.”

Rasmussen’s wastheclassic a-life request: to accept a view requiring

an initial suspension ofintuitive judgment, a leap offaith madeeasier to

undertake by the self-consistency and plausible foundations of these

alternate universes. The Danish physicist understood the difficulty pre-
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sented by this leap but was ferventin insisting the leap must be taken.
At the second a-life conference, Rasmussen distributed an intentionally
provocative crib sheettitled “Aspects of Information, Life Reality, and
Physics.” In the logical procession of the seven propositions he offered,
his philosophical training becameevident:

Information and Life:
(I) A universal computer is indeed universal and can emulate any

process (Turing).

(II) The essence oflife is a process (von Neumann).

(III) There exist criteria by which weare able to distinguish living

from non-living things.

Accepting(I), (II), and (III) implies the possibility oflife in a computer.

Life and Reality:
(IV) Ifsomebody managesto develop life in a computer environment,

whichsatisfied(III), it follows from (II) that these life-forms are just

as muchalive as you andI.

(V) Such an artificial organism must perceive a reality Rj, which for

itself is just as real as our “real’’ reality R, is for us.

(VI) From (V) we conclude that R, and R, has the same ontological
status. Although R, in a material way is imbedded in R,, R, is

independentof R,.

Reality and Physics:
(VII) IfR, and R, have the same ontological status it might be possible

to learn something about the fundamental properties ofrealities in

general, and of R,in particular, by studying the details of different
R,’s. An example of such a property is the physics ofa reality.

Thefinal proposition provided a wondrousjustification for creating
artificial universes. Once Rasmussen’s view ofreality was accepted, a
unique set of possibilities unfolded. Forthefirst time, it was possible to
separate the qualities oflife in general from the qualities of the single,
perhaps anomalous,form oflife presented to us thus far. What happened
in VENUS; what happened in some of the more fruitful cellular au-
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tomata; and what happenedin the computer generation of autocatalytic

networks certainly displayed somequalities that we attributetolife. The

systems were notliving but arguably fell between the inertness of a rock

and thevitality of a bacterium. Call them protolife. The workers of

artificial life were cooking many varieties of these protolife systems, a

veritable explosion in artificial chemistry, artificial physics, artificial

worlds in whichlifelike behaviors emerge. At Los Alamosalone, the

membersofthe T-13 Complex Systems Group came up with a panoply

ofvarious universes in which to growlife. Besides the autocatalytic nets

ofFarmer and Bagley, there were Rasmussen’s VENUS, Langton’s CAs,

and a group experimentin creating a “process gas,” a sort of simulated

molecular proving ground that could model manysorts of interactions

and that presumably yielded emergent behavior. In addition,an Italian

scientist at T-13, Walter Fontana, was developing what hecalled an

“algorithmic chemistry,” in which a form oflogical calculus provided a

grammar under whose rules emergent behavior might form.

Understandably, the sum ofthe experiments was a variegatedjumble.

The current task was finding the right means of measurement: to pro-

vide the quantification for these new worlds, in order to standardize the

languages of new life.

Langton’s workin defininglife on the edge ofchaos wasa step in this

direction, by providing a specific measurement, the X parameter, by

which to locate the region where life may thrive. Kauffman extended

Langton’s ideas by applying them to his work on Boolean networks.

Others, like physicist James Crutchfield, were designing a methodology

to measure the complexity ofartificial universes.

Crutchfield has been one of Farmer’s partners in the iconoclastic

Santa Cruz Dynamical Systems Collective; after a stint teaching at

Berkeley, he cruised the variousinstitutions devoted to studying com-

plex systems. After studying the physics of the matter, Crutchfield was

beginning to create new universes of his own. His purpose was notto

simulate but to form CA-like systems that displayed information pro-

cessing and computational structure. As with Langton, Kauffman, and

others experimenting with artificial worlds, he hoped that the systems

would display a level of computational capability that they did not have

at the beginning of the experiment. These powers would emerge. On
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the heels of this, new structures would develop. The system would
continue to evolveinto realmsdifficult or impossible to predict. Crutch-
field hoped to measure these new structures and better understand the
machinery of emergence. Using his methodology, others devising arti-
ficial universes could measure their own systems, extracting a numerical
value to determine the degree of “‘life-hood”’ in them.

Crutchfield agreed with Farmer and Kauffmanthatthe a-life initiative
wasintimately intertwined with the quest for the hidden self-organizing
force that flexed its will on massively complex systems such as living
organisms. Reason dictatedthat this pervasive force had a very busy time
whenlife emerged from the primordial soup or whatever mix of dead
elements existed those billions of years ago.

“There are some very basic principles of life that we just don’t
understand,” says Crutchfield. ““At some point there wasn’t biological
life. But nonetheless since biological life now exists we know thatthere’s
some point in time during which things had to be driven in that general
direction. So that sort oflifeless, physical nature had to move forward
and reorganizeitself. It’s at that point in a sense where I’m studyingit.
I can’t provethatlife should spontaneouslyarise, butjust given the sheer
evidence around methat things do organize, we do learn, and there’s so
much organized matter around, I think it’s actually in a sense highly
probable that there does exist some basic organizing force. And I see no
impediments to creating somethingthat can indisputably be called alive.
If you seriously consider whatscienceis about, all the arrows point in
that direction. Scientists try to understand things we don’t yet under-
stand. Andlife is one of those things. We will understandit. I don’t see
any limitation in principle here.”
No one expected to concocta silicon caldron of primordial broth,

bubbling on until some one-celled goblin sprang up from the computer
screen and announcedits presence. The goal, on its face, was more

modest. To proceed a step further on the ladder of emergence. The
manner in which this was to be conducted was borrowed from nature.
If researchers did it often enough, and measured what they did, they
might come to understand the forces that made it happen.

GL
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It will not be a-life that definitively determines how life originally

emerged:thatis a detective story with the final pages long shredded. But

a new methodology of emergence,pioneeredby a-life experiments, has

the potential to bring us deeper comprehension of the mysteries of

biology, includingthe originoflife. In the early 1990s, Gerald Joyce of

the Scripps Research Institute, a young medical researcher who had

already spent years dogging thediscrete facts of life’s first push, broke

with his more conservative colleagues in embracing the techniques of

artificial life to conduct experiments in the origin oflife. He readily

admitted that the staged events in his laboratory, invariably simulating

the RNA world (which he, unlike Kauffman, believed is the key step

in the generation oflife), had only a nodding acquaintanceship with

prebiotic earth conditions. “These are artificial life kinds of games,

where onestarts with a pre-formed RNA,” hesays, “you don’t ask

where it comes from, you just make it and put it in a clean tube. No

contaminants, no nothing—just the rightstuff.”

What placed Joyce’s work truly in the a-life mold was the use of

natural phenomenato transform his model chemical world into some-

thing more than a model: ““Wetry to teach the enzymesto take over the

replication activity themselves. If we do that, it’s artificial life. A self-

replicating system based on Darwinian evolution—that’s the agreed-

upon definition oflife by the wet people, the people whoaretrying to

makeit in the test tube.”

Joyce’s guidinglight, besides his mentor Orgel, was foundin the texts

of Thomas Pynchon. IfJoyce was inspired by V., one long paean to

entropy, he wasutterly thrilled with the apocalyptic Gravity ’s Rainbow.

To Joyce, it was a parable. From the screaming-comes-across-the-sky

destruction, to the warpedyet orderly rebuilding ofthe world, Rainbow,

says Joyce, “‘is actually a cheerful book—despite the entropic forces of

the universe that try to drive us into the ground,thereis an organizing

principle. What is the organizing principle? Self-organization!”’

That epiphany motivated Joyce to probethat ineluctable phenome-

non,first in computer populations ofevolving automata. Then he began

working with Orgel and sensed that magic was to be made with RNA.

“T’ve been a wet person ever since,” he says.

But the computer workleft its mark on him: he treated RNA mole-

148



God’s Heart

behaviors. They were his artificial agents, sometimes operating on their
ownobscure agenda. ‘‘Molecules surprise you,” he says. ““They don’t do
whatyoutell them to do. We'll set up an experiment, and then we’ll see
whatthe results are, and then based ontheresults, we'll see where we’ll
go from there. It’s the kind of thing Langtonis doing, in that what
emerges is not what one expected.”
The machinery of emergence that Joyce utilized was evolution. By

using it in molecules, Joyce was probablyretracing a path, ifnot follow-
ing in the samesteps, trod by the succession ofmolecules hiking toward
that level of fitness called life. Molecules were the substrate in which
things actually happened. Exploiting mutations, testing fitness, and urg-
ing the molecules to move up a ladder of complexity, where the upper
rungs find morefit variations, Joyce created the conditions for classic
evolution.

The methods were ingenious. A goal was set: to evolve RNA mole-
cules so that they developed new abilities. Others had made some
progress in this area—Orgelin particular altered RNA molecules so they
couldself-replicate under special conditions. This was a stunt that mod-
erm RNA,which was honedto dispatch the chores ofmetabolism, could
not normally perform, although the current dogma wasthatearly forms
of RNA were able to self-reproduce and thereby evolve.

But Joyce’s work used evolution to train these RNAsto function as
an enzyme, or ribozyme, to perform tasks that they probably never have
performed before. In order to see how this is done, one could consider
an RNA molecule. This is a string of nucleotides, built from four base
chemicals: guanine, cytosine, adenine, and uracil. Taken in toto, the
sequence of base chemicals along the molecule consists of the RNA
code. In ribozymes, the coded messageis translated via a folding process
into an enzymethat can catalyze a chemical reaction. As new genera-
tions of molecules proceed, a possibility of mutation exists at each
nucleotide on the string. Most mutations have either no effect or a
negative effect on the ribozyme’s behavior, but some canlead to differ-
ent properties that, depending on what one determinesis a desirable
function of a ribozyme, can improve the ribozyme’s makeup.
Joyce devised a scheme to invoke mutations systematically so that the
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entire space ofpossible one-mutation variants was explored, followed by

two-mutation variants, and so on. Bycarefully producing ribozymes of

limited mutation, and by creating a selection pressure that allowed

increased reproduction of the ribozymes that best performed the task

Joyce wanted accomplished, he eventually got a population that could

perform thetask, evenifit seemed an unlikely behavioraljump from the

behavior of ribozymesin theinitial population.

The first major success that Joyce enjoyed began with a self-splicing

ribozyme; that is, a ribozymethatcatalyzes a reaction with the following

result: it cleavesitself, literally snipping the RNAstring of nucleotides

to form twostrings. This molecule was called the Tetrahymena ribozyme,

consisting of 413 nucleotides.

Joyce wanted to change the Tetrahymena ribozyme so that it could

perform a “novelcatalytic function.” Instead ofcleaving RNA,it would

split DNA strings. Plain old RNA did not do this—the task was similar

to teaching a cat to bark like a dog. Bututilizing his cunningly effective

method, which in a single reactor vessel produced mutant structural

variants of the original, or wild-type, RNA enzymes, Joyce was able to

coax significantvariations. By stimulating reproduction of the variations

that reacted with the DNA substrate he placed in the vessel, he was

eventually able to produce a mutant form of Tetrahymena ribozymethat

cleaved DNAwith anefficacy unknownin the wild type. As Joyce and

his collaborator, Debra Robertson wrote, “The selected molecule

represents the discovery of the first RNA enzyme knownto cleave

single-strand DNAspecifically.”” Using controlled evolution, ribosomes

had been trained to to break with their nature.

The next task was to teach the errant molecules to react with a

compound morealien to it, namely glucose. Both DNAand RNAare

five-carbon sugars; glucose is a six-carbon sugar. Though the increment

wassmall, the gulfbetweena five- and a six-carbon sugar was huge;they

borelittle structural resemblance. ‘‘We’re trying to teach the nbozyme

to be what’s called a glucose phosphatase, an enzyme that can cut

phosphatesoff of glucose. And from there on to more wild things.”

The newtricks that Joyce trained molecules to perform had potential

for dramatic effect on the world outside the laboratory, namely in the

battle against the devastating disease AIDS. AIDS performsits evil in the
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form ofan RNAvirus. This is a bogus strand ofRNA that invadesa cell

and copies its dread message into the cell’s DNA. If there were a way
to develop a counteracting form ofRNA,capable ofsplitting the AIDS

RNA,or its DNA copy,the disease might be neutralized. Joyce thought
there was a way: using evolution to train molecules as dedicated AIDS

fighters. Joyce conjectured that his methods could potentially evolve a
ribozyme “‘to be the best anti-AIDS thing we can get. Wecan attack the
virus, and then we can attack the DNA copy.” |

Working on a National Institutes of Health grant called ‘Evolution-
ary Engineering ofAnti-HIV-1 Ribozymes,”’ Joyce and his team started
to explore an a-life means of fighting AIDS. He began with the same
ribozyme they used to cut DNA, whichin its present state was not
particularly effective in cutting the AIDS genome(since that was never
a task for which fitness was rewarded). But as the ribozyme was exposed
to conditions that caused it to mutate, someofthe altered population
attacked the AIDSvirus moresuccessfully than others. The system was
geared toward applyingselection pressure to the degree that the AIDS
virus was attacked—in other words, those ribozymesthat perform Veg-
O-Matic-style destruction on the AIDS genomewere allowedto pro-
duce moreoffspring. ““We’re evolving the enzymeto be a better and
better AIDSkiller,” says Joyce.

This was only thefirst series ofsteps, conducted underpristine condi-
tions. The next level of difficulty would be training the ribosome to
perform with the same directed fury outside the test tube, within the
more noisy confines of an AIDS-infected T-cell. The final step would
be creating a piece of genetic material to be delivered to the cells of
AIDSpatients that would contain the information for manufacturing
this new ribozyme,so that victims ofthe disease would be able to create
the AIDS killer within their own bodies.

Gerald Joyce recognized that the greatest advantage of applyingarti-
ficial life to wet work wasthe ability to attack problems such as the AIDS
virus. But he also realized that in the long term, advancesin artificial life _
mightrealize something even more profoundly significant in the annals
of our species.

Joyce called these “the moresci-fi goals, be they artificial organisms,
as a modelforearly life on earth, orjust as a thing to do.” They involved
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a new origin oflife, the creation of alternate life forms. Since Joyce was

affiliated with the exobiology program of NASA, he madeit a point to

legitimize the funding the agency might devote in that area in the future.

Hefelt that researchers who daredlabel their workasartificial life should

not haveto cloak their goals by subsumingthe research underfields less

prone to sarcasm. “I made that argument at meetings with NASA

scientists, and they boughtit,”’ he says. ‘““That’s now an explicit part of

the goals ofthe program—to makelife. Whatever the substrate may be.”’

Those seeking to hatch these new formsoflife would certainly need

to exploit the uncharted forces of physics that a-life researchers yearn to

map. Stuart Kauffman wouldinsist that the first thing to explore would

be the workings ofself-organization, and indeed,that was a key ingredi-

ent in experiments underway. But as GeraldJoyce discovered in his wet

work—and von Neumannnotedin his last writings—there was unlim-

ited power in a certain organizing force with which we are somewhat

more familiar.

The powerof evolution.
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When man wanted tofly, hefirst turned to natural example—the bird—to

develop his early notions of how to accomplish this difficult task. Notable

failures by Daedalus and numerous bird-like contraptions (ornithopters) at

first pointed in the wrong direction, but eventually, persistence and the

abstraction of the appropriate knowledge (lift over an airfoil) resulted in

successful glider and powered flight. In contrast to this example, isn’t it

peculiar that when man has tried to build machines to think, learn, and

adapt he has ignored and largely continues to ignore one of nature’s most

powerful examples of adaptation, genetics and natural selection?

David Goldberg



John Henry Holland was born in 1929 in Indiana andraised in a small
town in Western Ohio. Heinherited the pluck if not the avocationsof
his father, a soybean speculator whose passion was gymnastics. John
Henry hada fever for knowledge,particularly that whichilluminated the
intricate structure of the world. He would sometimestinker with more
compactversionsofreality in an attempt to mimic someofits complica-
tions. One of his favorite activities was simulating famous military
clashes; he would patiently produce drawings ofwar matériel on mime-
ograph paper, run off copies, cut up the pieces, and launch them in
intricate campaigns. His academic strengths were physics and mathemat-
ics, and in his senior year in high school he ventured to a nearby town
to take a test offered statewide in those subjects. Only twopoints,hestill
recalls, separated him from thefirst-place finisher. But third place was
good enoughfor a scholarship to MIT.

An odyssey had begun that would lead him to a compelling method-
ology ofsimulating the mechanicsofnatural evolution on computers.It
would be twenty years before John Hollandsettled on it and twenty
years more before people began to understandits significance.

It was 1946, and the reverberations of the Manhattan Project had
scarcely settled in the scientific imagination. The project’s enigmatic
leader, Robert Oppenheimer, was Holland’s hero. The MIT freshman

was entranced by the great physicist’s breadth ofintelligence—by the
fact that he read in dozens of languages, appreciated obscurereligions,
was humbled by poetry. “He seemed very much a Renaissance kind of
man,” says Holland.

This was in keeping with Holland’s own view of the world. He
considered things in their wholeness. Very early on he intuited some-
thing aboutlarge, interacting systems—everything from local ecologies
to the operation of the town schools—that seemed obvious on the face
but was actually quite profound. These systems were layered with a
hierarchy of systems, but persisting throughout was repetitive series of
key units. Holland regardedthese as ‘“‘building blocks.” It was sort ofan
atomic theory, writ large and applied liberally.

155



ARTIFICIAL LIFE

These interests placed him on

a

collision course with several forcesat

MIT. One ofthem was Norbert Wiener, the crusty mathematician who

spearheaded a movementthat called itself “cybernetics,” a term bor-

rowed from a Greek wordfor steersman, an embodimentof this new

science that putatively focused on control systems in nature and ma-

chines. Yet it strived for more. Essentially, Wiener argued what his

acquaintance and sometimecolleague von Neumannalso asserted: orga-

nisms are essentially machines, and it is possible for humans to build

things that display similar behavior. Weiner and his cohorts wouldvisit

the creators of the early computers and stress the importance of using

nature as a model. “Everywhere we met with a sympathetic hearing,”

he reported, ‘‘and the vocabulary of engineers soon became contami-

nated with the terms of the neurophysiologist and the psychologist.”

Unfortunately, perhaps because it was so intimately tied to its contem-

porary technologies, cybernetics implicitly aligneditself with an analog

approachtothis merger ofthe synthetic and thenatural. It saw the world

as a continuous process, not a granular or digital one. Its signature

devices were homeostatic contraptions that maintained a sense of equi-

librium as a result of feedback loops, much in the spirit of the sense of

instinct with which nature endowedits creations. But technology was

destined to take a decidedly digital turn, and the computational biology

approachthat relied on discrete information (as postulated by von Neu-

mann) would ultimately fill the niche that cybernetics once hopedtofill

in the ecosystem of human endeavor.

At MIT in the late 1940s, however, cybernetics thrived. Wiener’s

influence led John Holland to consider a common ground between

biology andartificial computation. In particular, Holland was fascinated

by a kind of programming based on constructingartificial networks of

metaphorical neurons. The idea that individual neurons worked to-

gether to form a network from which memories and complex behavior

emerged—andthat such networks could be built artifically—dovetailed

elegantly with Holland’s building blocks.

MIT wasthen in the process of building one ofthe first electronic

computers. Called “Whirlwind,” it was contracted by the Department

of Defense to analyze trajectories of possible incoming missiles in “real
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time,” as they flew. Holland managedto get himselfa low-level security
clearance and soon became an expert in the nascent field of computer
programming. As a result, IBM asked him to work with anelite squad
of engineers planningthe logical design of the company’s first commer-
cial calculator, the 701. The team included Arthur Samuels, who would

soon write a landmark program that would enable the computer to
“learn” the game ofcheckers by playing opponents, gaining experience
with every loss, and eventually surpassing the level of an average stove-
side checkers wag. Anotherparticipant was John McCarthy,destined to
become oneofthe initiators of the artificial intelligence movement.

In orderto test the 701, the young engineers decided to implement
a nerve-net system. Holland and his colleagues regarded the computer
like a giant, albeit sedentary, lab rat. ‘Even then we understood there

were real advantages of having these simulated test animals,” says Hol-
land. “The advantage was that we could go inside and see individual
neurons, start the thing over from the sameinitial conditions, and go

through a different training routine.”

Working with the prototype 701 offered myriad frustrations. Design
work wascarried on by day,so the simulation team worked between 11
P.M. and dawn. Atthe start of each session, the program had to be
laboriously clicked into memory. The 701 was about one hundred times
slower than a cheap personal computer of thirty years hence, and it
broke down abouttwice an hour, at which point the program hadto be
restored. But they got the machine behaving, in a rudimentary sense,
like a lab rat, in that successive iterations showed that the interconnected
web of neurons “learned” something about a maze. Holland never
forgotthis clear link between biology and computation: machines could
be trained to adapt to surroundings in the same way that animals could.
Andthe wayto doit was from the bottom up—tostart with a situation
of virtual randomness and program nature into it. Nature could then
take its course. Humankind hadfinally learned enough aboutnature’s
mechanisms that we could abstract them into mathematical principles—
and lifelike results would emerge.

McCarthy and Marvin Minsky drew the opposite conclusion when
they helped found AI. Artificial intelligence postulated that computers
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could behavelike organisms, but its approach was from the top down.

Structures were not encouraged to emerge, but were imposed. Programs

for AI were solution oriented. They posed a question to the computer

andtried to make the computer answerit in the way that a humanbeing

would.

As Algainedcredibility as the cutting edge of computerscience, and

indeed becamethe dogmaofits day, John Holland’s line ofthinking was

shunted to obscurity. Fortunately, Holland, after leaving IBM topursue

his doctorate, chose the single place in the United States where he could

freely hone his vision, melding the idea ofbuilding blocks with biology

and computation. This was the University of Michigan, where Arthur

Burks was aboutto start the Logic of Computers Group. Holland knew

only that Michigan had an excellent math departmentand, unlike MIT,

a top-rankedfootball team. (Heliked to goto football games.) But, once

Holland returned to the Midwest, Burks took him underhis wing. Soon

Holland was immersed in the group’s multidisciplinary enterprises and

thinking about cellular automata and nerve nets.

In the late 1950s Holland hadtherealization that perhaps the best way

to execute these simulations would be to design a different type of

computer. In nature, many of the small interactions from which global

consequences emerge occurall at once—aparallel process—but, when

trying to simulate these on a computer, researchers were forced to

adhere to the serial structure of the machine, which required events to

queue up to be handled one at a time,bythesingle processor that was

the brain of the computer. Holland postulated a machine that would

have several processors working simultaneously—a parallel-processing

computer. He published his theory ashis dissertation, but nobody at the

time was sufficiently motivated to actually build one.

Roamingthe math library, Holland had also comeacross a book that

would changehis life, The Genetic Theory ofNatural Selection, written by

the esteemed evolutionary biologist R. A. Fisher. The first attempt at a

mathematical theory of evolution, it used the tools of physics to tackle

biology. Holland was entranced. The book dared cross the boundary

between logic and biology, and it opened to Holland the potential of

evolution as an engine for adaptation. Evolution was, like learning, a
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form ofadapting to the environment,the difference being that it worked

over generationsrather than in a single life span. And it was a considera-

bly more powerful form ofadaptation than learning—an organism with-

out an eye could not grow onein single lifetime, although it might be

an ancestor of a species that did have an eye. In such a case the eventual

development of a complex yet endlessly useful organ would be an

example of evolution’s ability to produce brilliant responses to the envi-

ronment: what Holland called the “perpetual novelty’. provided by

evolution. If evolution worked so well for organisms, why could it not

work with computer programs? You could start with an unformed

structure, replicate the machinery of nature, and let behavior emerge.

The process, treating the reproduction ofall organisms in a generation

simultaneously, would beparallel, in keeping with nature’s multiproces-

sor methodology. “‘It seemed great to me,” Hollandrecalls. “I could see

evolution as a creative process, the essence of making something out of

nothing.”

Something out of nothing—a natural alchemy that humans had long

envied would finally be exploited.

Holland wasnotthe first researcher to concoct a scheme to reproduce

logically the workings of evolution, but his system had an advantage.It

drew onhis long-held idea ofbuilding blocks. Other systems worked on

individual genes. After each generation, there would be a shuffling of

genes after which those that improved the organism’s fitness would

persist, but in these schemes there was no real ability to develop incre-

mentally, certainly not in the mannerthat evolution allowedlife to gain

slowly in complexity until it included massively complicated machines

such as bacteria, mushrooms, and human beings.

This changed with Holland’s invention, the genetic algorithm (GA).

The nameisself-descriptive: An algorithm is an expeditious formula, a

sort of recipe, a key to solving a problem; this particular algorithm is

based on genetic principles. The GA wasa valuable breakthroughin two

respects: First, it utilized evolution to provide a powerful way to perform

optimization functions on a computer. (Optimization, as explained by

one of Holland’s disciples, means “‘to improve performance toward

some optimal point or points.” If one envisions perfection as the top of
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a mountain, optimization is the meansofscaling the peak.) Second,it
provided a window for the workings of evolution and a unique manner

of studying natural phenomena.

The genetic algorithm, by adhering to natural principles, embodied

the key characteristics of evolution. It acted like organismsdid. ‘‘It was

a very brilliant step ofJohn Hollandto realize that he could probably do

somethingin artificial intelligence byjust importing theprinciples oflife

directly,” says William Hamilton, an Oxford evolutionary biologist.

The genetic algorithm did not comeout ofHolland’s headfull blown.

To an unusual degree, he engaged his students in the quest. Between

1962 and 1965, Holland taught a mid-level graduate course called ‘“The-

ory ofAdaptive Systems.” It was commonfor Holland andhis graduate

students to sit around a seminartable hashing outparticulars of the GA

and tinkering with its parameters. Ultimately, with benefit of this multi-

ple input, Holland came up with a standard form of what would be

knownasthe genetic algorithm.

Oddly, Holland did not botherto run anytests or experiments on the

computer. “I’ve always been a pen-and-pencil person,’ explains the

nation’s first Ph.D. in computerscience. “Besides, I was used to working

on the [interactive] computer at IBM,and at Michigan using the com-

puter meantdealing with the computing center, and putting in stacks of

cards, and waiting for them to comeout. I wasless challenged by getting

the programs right. It didn’t seem to be that crucial. And of course, in

those days I was practically the only oneinterested in this stuff so there

wasn’t any rush to getit out.”

But Holland’s students were eager to put genetic algorithms through

their computational paces. A cascade of experiments flooded the com-

puting center. One of the first used GAsto seek strategies in an ex-

tremely simplified version of chess. Another student produced a

dissertation that used GAs to simulate the functions ofsingle-cell orga-

nisms, the first example of many biological simulations using GAs.

Perhaps the most ambitious experiment was suggested by David Gold-

berg, who found his way to Holland’s course some years after the GA

had becomea cult item at Michigan. A former pipeline worker, Gold-

berg came under Holland’s spell and wondered whethergenetic algo-

rithm might be able to sort out the problemsin allocating resources in
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natural gas. He suggested that he might study the matter forhis disserta-

tion. Arguing that the problem wastoo difficult to tackle, Holland tried

to dissuade Goldberg. “‘I felt we didn’t know enoughaboutthe system

and he was going to spendfive years learning aboutit before he could

even start on the problem.” But within a year Goldberg was able to

comeup withresults, using a version ofthe GA on an inexpensive Apple

II personal computer.

Like most significant excursions in artificial life, the genetic algorithm

extracted the essential mechanics of a function associated with natural

life—in this case, genetic evolution—and executed them in order

to produce the equivalent behavior in an artificial setting. The GA

also hewed to one of John von Neumann’s important lessons: in

both biological and artificial systems, the information central to the

organism had to be regarded in two manners—both as genetic infor-

mation to be duplicated andas instructions to be executed. The infor-

mational basis of the organism is known as the genotype. The

expression of those genes results in a physical organism knownas the

phenotype.

To understand how closely GAs adhered to natural reproduction,

consider how biological organisms produceoffspring. Cells of sexually

reproducing organisms contain a set of paired chromosomes, one each

from the mother and father. (These cells are diploids.) The exception

comes in the reproductive cells, or gametes. These are created in a

process called meiosis, when paired chromosomesin a diploid cell split

and result in a gamete cell with single chromosomes. During meiosis,

parts of each chromosomestrand in a pair “‘cross over” to the other

chromosome, in sort of a swapping arrangement. Thusthe single-

strand chromosomes in the gametes contain genes from both mother

and father. During the mating process, two gametes from different

organisms combine to form a complete diploid once again, with each

of the chromosomespairing off with a representative from the other

parent. During this process, there is a possibility that some genes expe-

rience alterations, or mutations, that affect the phenotype.

The genetic algorithm translated this process to the realm of pure
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logic and mathematics. It postulated the genomeas a string of binary

numbers. This string could be metaphorically viewed as a chromosome,

on which genes were located at various points, or loci. The differing

variations ofthese genes werecalled “‘alleles.”’ (Thus a gene for eye color

wouldbesituated on a locus of the chromosome; it might contain the

allele for blue pigmentation or the allele for brown.) In a GA any

location marked off on every string in the population could be seen as

a gene;the alleles would bethesets ofbinary alternatives on those places

in individual strings, packets of ones and zeros.

To begin an experiment, one generated a population of random

strings. It made up a sort ofsymbolic gene pool. Forthis seed population

it was arbitrary whether a numberat any position on anystring was a one

or a zero. The equivalent of a coin toss was performedat each point.

Then the population was exposedto a fitness test. Unlike natural,

open-ended evolution,this fitness test was not a built-in feature of the

environment (in the natural world these tests were survivability and

success in reproducing) but rather something that the programmer im-

posed: “unnatural selection,an artificial survival of the fittest,” as David

Goldberg described it. Although in some ways unnatural selection re-

duced the system’s fidelity to nature, in other ways it made GAsuseful

tools. Programmers could rely on this feature to optimize the system for

the effect desired, although it had to be something with a measurable

outcome. A good example wasthe ability to sort numbers. In thatcase,

each string would be required to act as though it were a computer

program written to perform that number-sorting task. After each string

was put throughits paces, the results were examined, and eachstring was

given a relative score.

One would notexpecta series ofrandomly chosenstrings to perform

like a well-written computer program any more than one would expect

a randomly chosencollection ofgenes to produce a viable organism. But

unlike natural organisms, which were either alive or dead, a line of

computercodeinserted in a program could be evaluated as to the degree

to which it advanceda task. Since binary numbers werethe proper input

for a computer program, the input of even a random string would be

considered, precisely as a series of random numbers were considered by
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a telephoneas valid input for a telephone number: for example, John

Holland’s telephone number in Ann Arbor. Out of a population of a

hundred random strings, there would certainly be some that had one

digit in the correct place on thestring and probably a few that had two

or three numbers properly arranged. Those would be considered the

most fit, the valedictorians of their class.

Just as valedictorians have the the best chance of winning admission

to the most exclusive universities, these winners had the best odds of

being selected the parents of the next generation of strings. Because

typically only 10% were chosen, this was indeed an exclusive club. But

exactly as extremely selective schools sometimesspiced their incoming

classes with a few less dominating students, in hopes that they might

bloom belatedly, the genetic operators in the GA did not limit the

replicators to the very fittest. The process was weighted: the odds that

a given string would beretained for the next generation corresponded

mathematically to the degree to which it was fit. The equivalent of a

lottery was held, with the fittest strings holding stacks of potential

winningtickets, fairly fit strings holding fewertickets, and relatively

unfit strings holding perhaps a single ticket or two. Thus some ofthe

laggards were preserved, but a very low percentage, commensurate with

their fitness values. Barring wild long shots, theleastfit strings would not

survive at all. After this process, the winning 10%, with thefittest strings

overrepresented, would be copied ten timesso that the population size

would remain constant in the next generation.

Next, the strings mated. In a mass marriage ceremony worthy ofRev.

Moon,eachstring was randomly paired with another. For each matched

pair, a point on each of the couple’s strings was also randomly chosen.

That was the crossover point—all the numbersafter that point on string

A in the couple were swapped with the corresponding numbers on

string B. (In some GA experiments the data on thestrings are exchanged

at several places.) This was a nod to the evolutionary mechanism of

crossover.
Finally, a point mutation factor was added. A certain small percentage

ofnumbers on thestrings were chosen randomly and flipped—changed

from oneto zero or from zero to one.
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Before Crossover After Crossover

Crossing Site

String 1
/VV

New String 1

CROSSOVER ==>

 /\ ALL.
New String 2

In genetic algorithms, crossover is a mating of two strings. In its simplest

implementation, a crossover point is randomly selected andfrom that point the two

strings swap their remainders. Genetic information from both ‘‘parents’’ is thus

included in the offspring strings.

Once the reproduction process was complete, the new population

was again exposed to the environment. The program was run once

more, and each newstring was gradedforits ability to perform thetask.

The process was repeated.

It seemed an almost absurdly simple recipe for optimization: take a

string ofrandom numbers and treat them as computer programs. Grade

them according to how well they do at executing the work ofa custom-

designed computer program, and then reward them to the extent of

their excellence by allowing them to reproduce to that degree. Then

take the revised population, pair the strings, and have each marriage

partner swapa part ofitselfwith its mate. Change a few bits for mutation,

and do it again. One wouldintuitively expect this process to take a very

long time to match the results of a computer program specially written

for a task—in fact, it might be difficult to envision something that good

ever resulting from this elementary process. As Holland and Goldberg

once wrote, ‘‘genetic algorithms . . . have often been attacked on the

groundsthatnatural evolution is simply too slow to accomplish anything
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useful in an artificial learning system; three billion years is longer than

most people care to wait for a solution to a problem.”

But computer muscle telescoped millions of generations worth of

evolution into a lunch hour, and the GA turnedoutto be a stunningly

powerful tool. Indeed, it seemed to deliver on Holland’s original per-

ceptions of the benefits of evolution: “‘perpetual novelty” and “‘some-

thing out of nothing.”

Take as an example theartificial ants constructed by David Jefferson

working with a group of UCLAresearchers. The immediate goal of

Jefferson and his colleagues was to use evolution to develop trail-

following behavior in an insect made of information. The task they

selected, called Tracker, was following a specific trail of eighty-nine

squares on a thirty-two-by-thirty-two-square toroidal grid. (To say a

grid was toroidal was to treat it as a map representing a doughnut: the

squares on the right edge effectively touched the corresponding squares

on the left edge. Similarly, the top squares were assumedto neighbor the

bottom squares. Nothing could walk off the grid.) Inspired by actual

pheromonetrails used by ants to aid each other in foraging, thetrail

twisted and turned, and becameincreasingly difficult to follow as it

progressed. It suffered gaps at several points, and, by the last segment of

the trail, there were more missing squares than actual ‘“‘scented”’ ones.

It would be a mild challenge for any computer hacker to write a

computerprogram foranartificial creature to follow this trail, which the

UCLA team nicknamed “The John Muir Trail.’’ But Jefferson and his

colleagues hoped to get something from nothing—they were counting

on evolution to write the program.

Theants actually were computer programs,strings of 450 binary bits.

These bits were interpreted by the computer as finite state machines.

Each internalstate, along with the conditions in the environment, pro-

vided the conditions for behavior in the next move. The ant wasas-

sumedto have sensory input only in the cell directly in front ofthe single

cell that the ant occupied. After determining whetherthat cell was on
or offand lookingat its own state (which providedtherules), it executed

one of several possible responses: move forward onestep, turn right
without moving, turn left without moving, or do nothing. The rules
also determined whichstate it should assume in the next timestep.
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The John Muir Trail is

represented by the dark squares;

the gray squares represent the most

efficient path through its gaps.

The numbers are like milestones

on the path; ants are graded on

howfar they go in 200 time

steps; a perfect ant will reach

square 89. Artificial ants created

by the UCLA artificial life team

were bred to traverse the trail,

using the genetic algorithm. Over

many generations, populations of

perfect ants were evolved.

Thefirst generation of ants was given totally random genotypes—

they werestrings of ones and zeros selected by chance. A population of

64 K, or 65,536, of these “‘random’’ ants wascreated. (The number was

chosen because it was a multiple of the 16 K processing elements on the

large computer at UCLA.)In this first generation, it was common for

ants not to moveat all, or to move haphazardly, or to continue stub-

bornly in a single direction. This behavior resulted in a low score, as

determined by points assigned to ants who completed designated por-

tions ofthe trail. But someants, in the two hundredtimesteps in which

the program was run, managed to complete four or more squares and got

higher scores. After each ant was scored, the top 10% was selected for

reproduction in the next generation. (This was a streamlined variation

ofstandard genetic algorithm practice, which selects “‘winners’’ in direct

proportion to their scores.) They were copied so that their numbers

equaled a full population and paired off. Then crossover was performed,

and a small numberof bits were inverted to produce mutations.

Within twenty generations, evolution had already made a remarkable

difference. The average ant in the population could properly make the

turns, twists, and jumps of almost thirty squares. Even more impressive

than that average was the most frequent score attained by ants in that

population—these ants could navigate the trail to sixty squares! At sev-

166



The Genetic Algorithm

enty generations, the population was loaded with smart ants. The aver-

age individual was completing aroundfifty-six squares. But even this

impressive number was held down by being averaged with someutter

failures caused by the inevitable glitches of mutation. A significant per-

centage of the population had managed to complete the trail success-

fully, all eighty-nine squares. In fact, this was the most frequent score in

generation 70. There it was—a population of ants who were born to

traverse the John Muir Trail, fulfilling their birthright perfectly.

It was importantto emphasize that the genetic algorithm was not only

pulling the fitness of the population up to the level of the ‘“‘best’”’ ant in

the initial population butalso creating super-ants who used novel com-

binations of genes to attack cleverly the pitfalls of the John Muir Trail.

Ofthousands of ants in the many seed populations attempted, in which

the genotypes were randomly assigned, the very best of these was able

to follow thetrail for an amazingfifty-eight steps, until it got flummoxed

by a double gap in thetrail and ran out of time. That ant was sort of an

idiot savant, a chance occurrence, the equivalent of getting dealt four

aces in a poker hand. But the GA delivered something better than the

best ant that one could have ever expected by chance. It sought the

equivalent offour aces for ten consecutive hands—something with a degree

of organization that would never be associated with a chance distribu-

tion. Just like the products of natural evolution.

A good example was an organism dubbed “‘Champ 100,” one ofthe

well-evolved artificial ants who successfully traversed the John Muir

Trail. The product ofone hundred generationsofevolution,it inherited

behavior that madeit act as though it knewthetrail, and its confidence

in negotiating the trail was a strong indication that a force more powerful

than chance shapedits character. At timesits responses seemed as though

a virtuoso programmerhad beenat work. Evolutionary biologists were

familiar with this effect and referred to it as Paley’s Watch, in honorof

Rev. William Paley (1743-1805), who complained that, like a well-

crafted watch, the products of natural selection were too intricate to
have come about withoutthe hand of'a presumably supernatural outside

designer.

That watchmaker’s deft hand seemed responsible for some ofChamp
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100’s approaches to the John Muir Trail. Champ 100 hada bias toward

right-hand turns, a feature encouragedbythetrails’s use of three right-
handturns beforethefirst left-hand turn. This enabledit to zip through

the early undulations ofthe trail. Later, whenthetrail wiggled right and
left, Champ 100 set itselfinto a more cautious state. Champ 100 also had

in its arsenal of trail-following tricks an ingenious combination ofthree

states that enabled it to handle several different challenges: makinga left

turn when a corner was missing, negotiating a two-square gap, and

making a right-hand jumpsimilar to a chess knight and then picking up

the trail from there. Champ 100 also devised a devilishly efficientseries

of state changes to negotiate the final “‘stepping stone’’ segmentof the

trail. “Such efficient logic,”’ wrote the UCLA team, “suggests that

evolution has had the effect of ‘compiling’ knowledge of this environ-

mentinto the structure of the organism.”

Champ 100 was an impressive creature, even more so because no one

programmed it. Its code was arrived at by the incremental wisdom of

natural selection. It was only a single example of a myriadselection of

novel responses yielded by the genetic algorithm. Each one of them

seemed to counteract the common-senseintuition that something can-

not come out of nothing.

Interestingly, the UCLA team foundthattheirstartling results—ants that

perfectly navigated thetrail after only a few generations—wereattaina-

ble by a mutation rate of only onebit in a hundred. Decreasing that rate

tenfold, to one in a thousand, made very little difference. Those who

used GAsoften observed similar effects—mutations introduced into the

population seemed to have only a minoreffect in improving adaptation.

This phenomenonwasstrikingly, if unintentionally, illustrated by Larry

Yaeger in his PolyWorld model. Several weeks into his labor he discov-

ered, while debugging some code,that he had forgotten to implement

mutation. Yet PolyWorld, using crossover alone, had already evolved

lifelike behaviors from initially random genotypes and had even yielded

speciation among the organisms.

This corresponded to the suspicion held by Holland whenhefirst

began work onthe genetic algorithm. Ratherheretically at the time, he
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wondered whether the degree to which mutation drove evolution had
not been exaggerated. Holland suspected that recombination, or cross-
Over, was consistently underrated by biologists. ‘““Even the wet biolo-
gists, those whoarereally dealing with those systems, put much, much
more emphasis on mutation than recombination,’ says Holland. ‘“‘Muta-
tion is a process that’s anywhere between eight to ten magnitudesless
frequent than crossover.[It is estimated that approximately one in about
ten million genes experience mutation in the reproductive process.] Any
physicist worth his salt is going to see it as funny that the one, over-
whelmingly important process is so muchrarer than the one regardedas
unimportant.”’

The problem as Holland saw it was not that biologists were blind, but
they were not using the right tools to see. “Very few field studies can
show theseeffects,” he says. Still, the accepted doctrinein biology that
mutation was much more important than recombination might have
daunted any mathematician or computerscientist trying to construct a
model ofevolution. Previous efforts, in fact, had bowedto that standard

and omitted crossover.“It’s a little surprising to me that someoneastute
wouldn’t have, at least from sheer curiosity, thrown in crossover. Be-
cause the programming cost is small. But they didn’t.” Holland did,
because of his faith that running a biological model that supposedly
tapped the same force active in natural evolution might provide hith-
erto-unavailable insights into the process.

In Holland’s scheme,crossover allowed important building blocks of
high fitness to carry over into the next generation. These formeda base
from which the genomecould moresuccessfully evolve. As these blocks
met up with other successful building blocks,the result could be new
and innovative approaches to the difficulties offered by the environ-
ment. Thusthe process delivered what Holland thoughtofas evolution’s
greatest virtue: its perpetual novelty in its approaches to maintaining
fitness.

“The broadidea that these local patterns might form something larger
was already in cellular automata,” he says. ‘“‘But then there was the
question of how you could get something that was morelike a child’s
building block—somethingthat could be used in a lot of contexts that
fit together in different ways. This precise notion came whenI looked
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at Fisher’s theorem, which applies only to individual genes. I wanted to

extend it to apply to groups of genes.”

This desire led to what Holland calls his ‘‘schema theorem,”’ which

explained how building blocks exerted their powers in GASandindi-

cated what might be a basis for populationwide retention of genes in

natural biology. The word “‘schema”’ referred to a similarity template

used to describe all strings that contained a given building block orset

ofbuilding blocks. Each string that contained those building blocks was

an example of that schema, no matter which numbers were located

elsewhere onthestring.

For example, if a building block was the two-digit subsetofa string,

10, and it was located in the first two places in a string of eight digits,

all possible strings beginning with the numerals 10 wouldbesaid to be

examples of that schema. It would be notationally represented as

10****** with an asterisk signifying “don’t care.”’

Thus examplesofstrings thatfit the schema 10****** would include

10111111

10000000

10010010

but not

01111111

11000000.

A schema need not be contiguous. For instance, one could postulate

schemata such as 1******0, or 10**0000, or even *******1_ The

point was that a schema represented every possible example that

matched up exactly, once the don’t cares were ignored.

The key principle of the schema theorem was proximity. In building

blocks, proximity was power. Consider a GA “‘organism”’ witha partic-

ular combination of ‘“‘genes”’ that generated a relatively fit phenotype.

Duringthe process ofcrossover, the metaphorical chromosomewassplit

at a given point, and someofthealleles were replaced bythe alleles of

the mate. The likelihood that any combination ofalleles were lost was

directly proportionalto the distance between them on the chromosome.

If in a given schemaonedigit began a string and the other completed

it, it was virtually certain that the combination ofthese two genes would

not be transmitted to the offspring; the point at whichthestring wassplit
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was bound to come betweentheir respective loci. But if the points of

the schema were direct neighbors, the opposite was true; in the vast

majority of reproductions the combination would persist in the next

generation. Only in the case wherethe crossoversplit occurred on that

single point between the two would they be separated. The more

compact the building block the less likely it was to besplit.

Thus if a particular building block of a very few neighboringbits

generated a behaviorthat increased fitness, it was highly likely that the

particular behavior could proliferate in the gene pool. Forinstance,ifin

the Tracker simulation ofants, a four-gene building block caused the ant

to proceed forward as long as it detected a part ofthe trail in front ofit

(given that the trail began with a straightaway, this was an optimal

response), that block was very likely to persist. First of all, it greatly

enhancedfitness so it was likely to be found in the winningpercentage

oforganisms chosento reproducein the next generation. Second, when

crossover was imposed on the population, the compactsize ofthe block

enabled it in most ofthe matings to persist in the next generation, where

it again enhancedfitness and made the organisms in whichit appeared

_ strong candidates for subsequent reproductions. It was reasonable to

assume that after several generations such a powerful building block

would find itself proliferating in the gene pool. Any offspring that

violated the integrity of the block, by splitting it or mutating oneofits

genes, did not have that desirable behavior and wasless fit and not

selected for reproduction.

Ifin any given experiment there were a number ofcombinationsthat

led to a piece of clever behavior, the schema theorem explained how,

once those combinations werefirst discovered by a chance crossover or

mutation, they stuck. During the experimentitself it was possible to

examine the strings of a given generation and sort out individual ap-

proaches to the environment, orideas, by isolating the building blocks.

By tracking schemata, and by seeing how the building blocks prolifer-

ated andinteracted, one could see how,overa period ofgenerations, the

entire population adapted to its environment.

Did groups of actual genes work by the same rules as Holland’s

schema theorem? Was crossover insufficiently recognized as a driving
force in genetic evolution? Answers were slow in coming, mainly be-
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cause biologists were loath to examinethe question. Afterall, the indica-

tots came from a mathematical model and not from experiments in wet

matter. Biologists were particularly reluctant to entertain the idea that

GAs were notsimulations of evolution but examples ofit, just as, in

Langton’s view, the artificial mechanism by which Craig Reynolds’s

boids flocked led to true flocking behavior.

Oneexceptionto this rule was the noted evolutionary biologist Richard

Dawkins. The Oxford professor viewedartificial life as ‘‘a generator of

insight in our understandingofreal life.” Dawkins acquired this high

regard for a-life, and particularly simulated evolution,in the preparation

ofhis book The Blind Watchmaker. The book wasintended to show how

evolution, proceeding by subtle gradations, could achieve the dazzling

order and complexity ofcontemporary life-forms. Besides describing the

process, Dawkins wanted to illustrate it dynamically. A user of the

Macintosh, he wrote a computer program that made use of some of

evolution’s properties. The result surprised even such an enthusiastic

evolutionist as Dawkins.

Invoking the whimsical term that biologist Desmond Mormis called

animal-like shapes in his paintings, Dawkins named the computer-

graphics organisms “‘biomorphs.”’ These creatures were nothingbutline

drawings in the form of primitive trees. Their visual properties were

controlled by nine parameters, which controlled characteristics such as

branching, segmentation, and symmetry. He referred to these parame-

ters as genes. Each gene was subject to mutation, which would create a

variation in the biomorph in the next generation.

As with GAs, biomorphs would evolve by unnaturalselection. Fitness

was to be determinedsolely by a subjective outsider, the person working

the computer. Dawkins compared the process to the sort of artificial

selection that occurs in cattle breeding. At the onset of the biomorph

reproductive process, the selector was given a choice of several bi-

omorphoffspring of the current genetic champion, each representing a

single mutation of one of the champion’s nine genes. The selector

picked, for whatever reason, the one that suited his or her fancy. As

Dawkinsputit, the human eye wastheselecting agent. Organisms who
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survived were likely to have qualities as amorphousas “‘interesting”’ or

“pretty” or “different from the last few”’ or “‘gee, this looksa lot like a

peachtree.’’ A reproduction and mutation algorithm generated offspring

from that survivor, and then the process was repeated. The idea of the

experiment was to see how far, in a reasonable numberof generations,

the biomorphs could evolve to something quite different from an origi-

nal random form—presumably into something the individual selector

would like very much. |

Starting with simple botanic stick figures, Dawkins hopedthetree

structures would evolve into more complex stick figures. This was

massive understatement. Dawkins’s simple system was capable of pro-

ducing a wide bandwidth of images that quickly leapt from the plant

kingdom to the insect world. The biologist was astonished:

When I wrote the program I never thought that it would evolve

anything more than a variety oftree-like shapes. . . . Nothing in my

biologist’s intuition, nothing in my 20 years’ experience in program-

ming computers, and nothing in my wildest dreams, prepared me for

what actually emerged onthe screen. I can’t remember exactly when

in the sequenceit first began to dawn on methat an evolved resem-

blance to somethinglike an insect was possible. With a wild surmise,

I began to breed, generation after generation, from whichever child

looked most like an insect. My incredulity grew in parallel with the

evolving resemblance.. . . I still cannot conceal to you myfeeling of

exultation as I first watched those exquisite creatures emerging

before my eyes. I distinctly heard the triumphal opening chords of

Also sprach Zarathustra (the “‘2001 theme’’) in my mind. I couldn’t

eat, and that night “my” insects swarmed behind my eyelids as I

tried to sleep.

The “‘lost chord of Zarathustra’ insect had begun witha single pixel.

In a mere twenty-nine generationsit evolved into something resembling
a critter one might find undera leaf. Nature had consumeda few billion

years to create its critters. Dawkins compressed this time into a few

keystrokes of a Macintosh.

The insect was soon joined by other visual life-forms. Biomorph
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- Startingfrom a single-pixel

biomorph, Richard Dawkins bred

an insect-like creature in a mere

\é 29 generations. Hereis the

creature’s family tree, with

a few evolutionary detours

gure 4 included.

Land, as Dawkinscalled it, was a repository of diversity that rivaled the

Burgess Shale, the location in British Columbia teeming with unusual

fauna from the dawn of Cambrian Era. Not only could creatures like

scorpions andbeesbe evolvedbutalso creatures resemblingspiders, bats,

frogs, and birds. The forms could also resemble artifacts: Spitfire air-

planes, lunar landers, letters of the alphabet. (Dawkinsspelled out his

name.) The range seemedlimitless. ““On my wanderings through the

backwaters of Biomorph Land,” Dawkins wrote, ‘I have encountered

fairy shrimps, Aztec temples, Gothic church windows, aboriginal draw-

ings ofkangaroos, and, on one memorable but unrecapturable occasion,

a passable caricature of the Wykeham Professor of Logic.”

Although the experimentplayed like a game,it followed the same
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rules that nature did. In evolving creatures, Dawkins noted, one was not

creating them but discovering them. Theyalready existed, in a sense, as

possible permutationsof a given set of genes and of a finite number of

mutations. This was what biologists referred to as “genetic space,”’ a

mathematical atlas that geographically located all possible life-forms.

Those of identical genetic composition shared a location, those varying

by a single mutation rested alongside, and those differing only by a few

changes resided in the same neighborhood. The moredifferences in the

genotype,the farther away an organism wasin genetic space. Dawkins’s

Zarathustra insect, having evolved by twenty-nine mutations from its

single-pixel ancestor, therefore resided twenty-nine spaces away in ge-

netic space. But considering that for each single mutation there were

approximately half a trillion possible variations (each of the nine genes

had nineteen possible alleles), the number of possible biomorphsafter

twenty-nine steps was almost beyond comprehension. This was a key

lesson ofBiomorph Land—simulated evolution was a powerful mecha-
nism to search through genetic space. By usingvisual attractiveness as an

indicator offitness, one could bypasstrillions ofuninteresting biomorphs

and get directly to the good ones.

This same principle was at work in the genetic algorithm.Instead of
exploring natural genetic space, the GA used evolution to search what
was called ‘“‘problem space,” all the possible solutions to a given prob-
lem. When the UCLA team created Champ 100, they were using
natural selection to “discover” an ant who could successfully negotiate

the John Muir Trail in a cunning manner. When David Goldberg found
a particularly economic meansofallocating gas pipeline flow, he wasalso
using GAsto search the problem space for that dilemma. So powerful
was the GA in that capacity that Goldberg wrote, “If we were, for
example, to search for the best person among the world’s 4.5 billion
people as rapidly as the GA, we would only needto talk to fourorfive
people before making our near optimal selection.”

The evidence seemed clear: Genetic algorithms could generate robust
programsandartificial adaptive phenomenabyutilizing the power of
evolution. Yet the lords of computer science were slow to bestow their

175



ARTIFICIAL LIFE

blessings on it. The GA stood outside the standard dogmaandran afoul

ofa cultural bias. In artificial intelligence the standard methodofcreating

adaptive systems was associated with coding wizardry. The star hackers

of AI could notrespect, let alone adopt, a programming system where

the innovation was applied by an outside force—nature.

‘The problem that outsiders have with genetic algorithms in gen-

eral is that you can think of 100 reasons why they won’t work,”’ says

John Koza, a former student of Holland who nowteachesat Stanford.

‘And the particular question is, How can it work if it starts from

randomness? We're all trained to think ofprecise, exact solutions to

things—things you can prove with logical means, like solving prob-

lems in high school geometry—andhereis this totally illogical stuff!

But people always forget the key point of genetic algorithms, whichis

that they work with a large population, hundreds of thousands. Most

of what it produces is bad, butit tries a whole lot of things, and some

of those are good.”’

Koza’s own computer programmingsystem relied on GAsto solve

problems of remarkably varied stripes. The system was sort of an all-

purpose answer machine, with evolution as its engine. Its creation was

unconventional. After earning a doctorate at Michiganin the early 1960s

Koza had abandonedactive practice ofcomputerscience. He cofounded -

a business that ultimately became the prime producer of scratch-off

lottery tickets and consequently enjoyed fortunes commensurate to

those of the winners of those contests. He maintained his interest in

artificial adaptive systems, but only in thespirit of a hobbyist. In 1987,

when Koza was on a Londonstopoverafter attending an AI conference

in Italy, a friend handed him the proceedings of a conference on genetic

algorithms. He leafed through it on the plane, becomingincreasingly

excited. Impressed with the various applications, he noticed what

seemed to him a glaring omission—‘“What these people need,” he

thought, “is a way to generate programs.”

Koza began to work on a system to breed computer programs geneti-

cally. He chose the complex yet flexible computer language LISP as the

medium for the programscreated by the system and attempted to apply

the GA to create those programs. His breakthrough was deciding to

identify the units of crossover not as single characters, or even as lines
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in a computer program, but as symbolic expressions (S-expressions)

written in the LISP syntax. Made of mathematical functions and inputs

appropriate to the problem,these S-expressions were essentially subrou-

tines, which were commonly viewed as tree structures. These subrou-

tines could be successfully crossed over so that in a reasonable percentage

ofmatings, the offspring computer program would conform to syntax at

least as well as its parents did. Another way of viewing it was that the

S-expressions formed tree-shaped ‘‘chromosomes.’’ Crossover was the

equivalent of swapping branches.

Evolutionary biologist William Hamilton thoughtthis was the sort of

advance that could makeartificial life work significant. ““Of course,

biology has never produced a tree-shaped chromosome,they’reall linear

[i.e., string shaped],”’ he says. ““But Kozais able to get remarkable results

by using natural selection on tree-shaped chromosomes,by transferring

little twigs of trees from one to another. And surely that is a very

interesting thing. I think tree-shaped chromosomes are the coming

wave.It may bealso be goodfor biologists to understand the limitations

which may beforced on life by the fact that it always has to work with

linear chromosomes.”

Koza saw the difference betweenthe single characters used in classic

GAsandthe subroutines of his system as correspondingto a difference

in the natural world, the former as ‘“‘analogous to one of the four

nucleotide bases found in molecules ofDNA”andthelatter “‘as analo-

gous to the work performed by protein in livingcell.”

Theresulting “genetic programming”’ system was able to cope mas-

terfully with a grab bag of applications, from manipulating robots to

discovering mathematical theoremsandto searchingforthe best strategy

in a game-playing problem.

Koza admitted limitations. The system was not a panacea that solved

any problem one dared pose it. Because the programsrelied on incre-

mental improvements in fitness, so-called all-or-nothing situations, in

which no way existed to measurepartial fitness in solving the problem,
were impervious to its powers. Also, the outside programmer was re-

quired to devise LISP functions relevant to the problem at hand andto
set up customized parameters—for example, how manygenerations and

how large a population size. This constituted such significant tampering
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from an outside hand that Koza’s system could not claim thatits results

purely evolved from random beginnings.

Oneofthe experiments Kozatried was replicating the work ofDavid

Jefferson and his colleagues at UCLA, whohadcreatedartificial ants by

genetic algorithms. It was a good test for Koza, because his system

dependedon his being able to measure varying degrees ofsuccess before

a given problem wassolved;this was simplein trail following, where one

only had to count the squares to gaugethe fitness of a given organism.

He concentrated on series of evolving ant behaviors directed toward

completing a moredifficult trail than the John Muir Trail, an irregular,

pockmarked pathway devised by Chris Langton. It was dubbed “‘the

Santa Fe Trail.”” The UCLA team, using the powerful supercomputer

Connection Machine, had bred two hundred generations, each of

65,536 ants, with their version of the GA andyieldeda single individual

in the final generation who was able to complete the perilous trail

successfully.

Instead of using the GA to evolve an ant directly, Koza used his

genetic programming system to create a LISP computer program to

generate an ant’s behavior. He began with a population of randomly

generated LISP programs, each spiced with expressions relevant to the

task (e.g., ‘“‘if sensor detects space, advance’’) butarbitrarily distributed.

After the programs were run, the phenotype behaviors were tested for

fitness. The winning programs were then mated.

Koza eschewed mutation altogether. “Mutation is a sideshow in

nature and a sideshow in genetic algorithms,” says Koza, venturing

somewhat beyondthetentative claims of others in urging a heightened

appreciation of crossover. “I usually keep it turned off.”’

The programsthat evolved equaled and in somecases surpassed the

efforts of the UCLA team—in onecase, Koza wasable, after only seven

generations, to develop an ant that successfully negotiated the eighty-

nine steps of the trail without a single misstep.

This was characteristic of the manner in which the genetic pro-

gramming system managed to overcomethe considerable set of prob-

lems to which it was suited. These encompassed a range that impressed

even its creator. Koza used the system to solve quadratic, integral,

linear, and differential equations. He directed it to find prime num-

178



The Genetic Algorithm

bers. He used it to perform pattern recognition, simulating a six-pixel

retina. He foundit able to solve nonlinear physics problems, such as

determining the equations required to balance a broom on a moving

pushcart.

Perhaps the most remarkable performance came when Kozadirected

the system to apply itselfto finding the laws ofplanetary motion, discov-

ered in the fifteenth century by Johannes Kepler. Not only did the

genetic programming system manage to “rediscover” Kepler’s famous

third law (“the cube of a planet’s distance from the sun is proportional

to the square ofits period’’), but also,as the system climbedupthefitness

scale, one ofits interim solutions corresponded to an earlier conjecture

by Kepler, published ten years before the great mathematician finally

perfected the equation!

Despite his impressive results, Koza foundthe reaction to his genetic-

style programmingsystem, to putit charitably, mixed.‘‘Theresistance,”’

he says, “‘is almost knee-jerk and vitriolic in somecases.”

Manytraditional programmers, Koza explains, deplored the fact that

a degree of chance was involved, both in the initial randomization and

the probabilistic choices ofstrings that survived to the next generation.

‘Some people just broil at the idea of any algorithm working that

way,says Koza. “And then you’ve got the complaint that it’s sloppy.

Because the first thing that comes to your mind when you hear about

crossover is, “Oh, I can think of a case where crossover won’t work.’

Of course you can think of a case. The key to genetic algorithms[as

well as to natural selection] is the population, that thousands of things
are being tried at once, most of which don’t work out—buttheideais

to find the few that do.”

If the idea of genetic algorithms upset certain computerscientists,
Koza’s suggestion that GAs could generate complex computer pro-
grams written in the LISP language and competitive with human pro-
grammers in tackling difficult problems made those people sputter
with disbelief. The main complaint came from the counterintuitive-
ness of any powerful computing system not engineered by humans.

The resistance was the same John Holland faced when he developed
the GAitself—a reaction to the very scary, and seemingly insane, idea
of turning over the car keys to nature. People thought of nature as
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blind, but they forgot about the Blind Watchmaker of evolution and

the unmatchable intricacy of its creations.

“Tt’s an emotional thing. It’s almost like the vitalism that went on in

biology a century ago. You have this resistance to the idea, because

everybody thinks of the program that they wrote that didn’t work

because they had a comma misplaced in the code,’’ says Koza.

Butthey forget the fact that there were a whole lot ofways they could

have written that program which would have madeit perform just as

well. And some mistakes could have been harmless—extra spaces, or

different variable names, or a different order to manyofthe steps. They

forget that. And then they forget that in writing the program they

backloaded a big chunk from a program they wrote five years ago, or

read about in a book, and incorporatedit as a subroutine. They forget

all those things, instead focusing on the presumption that if one

commais wrong,it doesn’t work.

Well, it’s true if one little bit ofDNA is wrong out ofyourbillions

of bits in the chain, you maygetsickle cell anemia and die at age 15.

Butthe fact is there’s probably millions of mistakes in your DNA, but

most don’t matter. The mistakes create almost the same aminoacid in

the protein chain, and it works almost the same as the intended one,

and you workjustfine. Orit gives you red hair, whereas most people

have black or brown hair. But who cares? At the end of the day

whether you have brownhair or red doesn’t have mucheffect on your

survival.

In short, Koza presented intriguing evidence that certain powers of

complex forces found in biological systems could not only be duplicated

artificially but also could be exploited to perform useful tasks. Under the

guise ofa programming system, Koza seemingly offered that maddening

delusion of “something out of nothing” characteristic oflife. Instead of

confounding the second law of thermodynamics, his system flouted a

different sort of rule, the hard-won prejudice that only programs

wrought by humanarchitects could do work. What the doubters did not

see, and would not see until accumulated evidence forced them to
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accept the paradigm, wasthe tireless worker behind the kitchen door:
nature itself, with its inscrutable forces that a-lifers were striving to
understand.

One ofthe more compelling GA applications camein the realm ofgame
theory,in particular a certain conundrum associated with the emergence
ofcooperative structures in biology, from bacterial behavior to a myriad
assortment of situations occurring in human relations. This was the
so-called Prisoner’s Dilemma. Its connection to the GA cameby way of
a political scientist named Robert Axelrod. Not coincidentally, Axelrod
was a professor at the University of Michigan and a colleague ofJohn
Holland. Axelrod, Holland, and biologist William Hamilton were
among the regular participants in a multidisciplinary study group that
met at Michigan several times a term and focused on the connections
between biology,particularly evolution, and otherdisciplines.

Axelrod wanted to understand how cooperation itself evolved
“among egotists without central authority.” Everywhere, he noticed
unspoken arrangements betweenputatively self-interested individuals,
arrangements that mutually benefited both parties. He wondered
whether these indeed werethe best strategies in situations where two
parties had divergent andselfish interests and how those systems of
cooperation cameto be.In the long run, he hopedthat the lessons from
his work would lead to an enlightened view of cooperation itself, per-
haps even affecting the interaction of sovereign nations.
The Prisoner’s Dilemma provided Axelrod with a meansto study the

problem. Originally discovered in 1950 by tworesearchers at the Rand
Corporation,it is a game in which twoplayers confront each other, with
the choice either to cooperate or to defect. The assumption wasthat the
encounter would be repeated for a finite number of encounters, or
“iterations” of the dilemma. Depending onthe player’s choice and the
decision made by the other player, a certain amount of points were
assigned to each player. It was a non-zero-sum game,and certain combi-
nations could result either in mutual benefit, as when both cooperated,
or in slight mutual disadvantage, as when both defected. However,
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when one player cooperated and the other defected, the defector got

more points than ifboth cooperated. These possibilities could be charted

in a “payoff matrix”’:

COLUMN PLAYER COLUMN PLAYER

COOPERATES DEFECTS

ROW PLAYER 3, 3 0,5

COOPERATES Reward for mutual Sucker’s payoff and

cooperation temptation to

defect

ROW PLAYER 5, 0 1,1

DEFECTS Temptation to Punishment for

defect and sucker’s mutual defection

 

payoft

Note.—Thepayoffs to the row playerarelisted first.

In Axelrod’s view, the iterated Prisoner’s Dilemma embodied the

essence of innumerable forms of continued interaction in the natural

world and among humanbeings. Oneofhis favorite examples was the

behavior of infantry troops in World War I trench warfare. In the

course of the extended and continuous exposure to enemyforces, a

spontaneouslive-and-let-live behavior emerged, with the troops arriv-

ing at an unspoken yet clearly understood agreement not to shoot,as

long as they themselves were not active targets. Axelrod and collabora-

tor William Hamilton also cited the tolerance of male birds when

hearing songs from neighboring males who nonetheless might be com-

petitors for the sexual favors of female birds. In contrast, those song-

birds who were not neighbors and did not have a continuing

interaction were treated with aggression.

Obviously, some strategies in the Prisoner’s Dilemma would yield

better results than others. In order to discover the best ones, Axelrod

held a computer tournamentand discovered amongthesixteen entrants

one approach that performed successfully among varied strategies and

wondecisively in most cases. It was the simplest strategy entered, TIT
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FOR TAT.Thisis easily summarized: cooperatefirst, then do what the

opponentdid in the previous encounter. Despite its elegant brevity, it

remained invincible; after it won the first tournament, a secondfield of

sixty-one challengers—computerscientists, evolutionary biologists, and

economists among them—failed to unseat it, despite the fact that they

were permitted to tailor their ownstrategies specifically to counter TIT

FOR TAT.
TIT FOR TAT had been programmed by a human, a Canadian

psychologist. However, Axelrod wondered whether the powerful ge-

netic algorithm might come up with an equally effective strategy, if not

something muchlike TIT FOR TATitself. He arranged an expernment

in which an individual in the GA population was a chromosome of

seventy genes. When executed, each chromosome would dictate a strat-

egy, defecting or cooperating depending on the behavior of the oppo-

nent in the previous three encounters. This allowed for a huge number

of possible strategies, so large, Axelrod wrote, that, “if a computer had

examined thosestrategies at the rate of 100 per second since the begin-

ning ofthe universe, less than one percent would have been checked by

now.”

How quickly would the genetic algorithm searchthis space ofpossible

solutions to find the fittest? Would it find one as good as TIT FOR

TAT?

Axelrod used a population of twenty individuals, each of which

played the Prisoner’s Dilemma with a benchmarkset ofeight opponents

representing a range ofstrategies. After each round in the tournament,

the population was subjected to the reproduction process. The more

points an individual chalked upin the interactions, the better its odds of

reproducing. Axelrod continuedthis for fifty generations and repeated

the entire experiment forty times. “The results are quite remarkable,”

wrote Axelrod. “‘From strictly random start, the genetic algorithm

evolved populations whose median memberwasjust as successful as the

best rule in the tournament, TIT FOR TAT.” Even more impressive,

the GA foundstrategies that, in this particular tournamentat least,

actually beat TIT FOR TAT. (The champion, though unseated here,

would haveretained its crown against the GA competitors ifall had been

pitted against the population of the previous two tournaments.) Thus,
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the GA proved, as Axelrod putit, “very good at what actual evolution

does so well: developing highly specialized adaptationsto specific envi-

ronmental settings.”’

Significantly, the GA solution, although notprecisely duplicating the
elemental rule of TIT FOR TAT,borea distinct similarity. It retained

TIT FOR TAT’sessential characteristic: an eagerness to manipulate the

relationship into mutual cooperation. (This must have been relief to

Axelrod, who undoubtedly hopedthe thrust of his work would be to

provide humanity with a logical basis for cooperative behavior.) How-

ever, unlike almost every known successful Prisoner’s Dilemmarule, the

GAsolution began its encounters with a defection. Onfirst glance this

seemed counterproductive because it postponed, perhaps disastrously,

the ideal situation in which both parties would cooperate continuously.

But on examination it turned outto be a clever ploy for quickly deter-

mining the opponent’s strategy, so the GA strategy could immediately

know whetherthat ideal series of transactions could ensue.If the oppo-

nent were not so inclined, then the GA strategy had notsuffered the |

initial blow that the initially ‘nice’? TIT FOR TATinevitably weath-

ered on meeting a so-called mean gambiteer.

One of Axelrod’s former students, Stephanie Forrest, built on his

work in genetic algorithms and cooperation. Her collaboration with

physicist Gottfried Mayer-Kress went beyondthe Prisoner’s Dilemma

and into the muchtrickier realm ofinternational security, specifically the

economic responses of competing nations. Forrest and Mayer-Kress

chose to experiment with the well-known Richardson model. This

model postulated three self-interested nations,all faced with an identical

dilemma: what was the minimum amount of resources they should

devote to defense, at the same time maintaining national security? At any

given point, the two weakernations formeda provisionalalliance against

the most powerful. In this case, as Forrest and Mayer-Kress explained,

“the genetic algorithm is modeling a negotiation process in the sense

that it is searching for a set of parameters (policies) that satisfy some

globalcriteria (stability, reduction ofexpenditures, etc.) and by whichall

countries might agree to abide.”

The “‘solution”’ to the Richardson model depended on which inter-

national goals each nation harbored, but for the purposes of this experi-
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mentthescientists assumedthatall three nations cared most to maintain

global stability. The key, then, would be finding the balance-of-power

points—formulas for success—that each country could utilize to main-

tain that equilibrium.Ideally, those levels would besufficiently robust as

to avoid a quick deteriorationifthe levels of arms expenditures were to

fluctuate.

Previous work on the Richardson model hadyielded good solutions.

The GA method found equally sound balance-of-powerpoints previ-

ously undiscovered by other methods. The manner in which the GAs

conducted their search ignored the sorts of solution points that were

anomalouscoincidences and favoredinstead the points that stood outas

perfect scores in a rich field of excellent alternatives. The balance-of-

powerpoints located by the GA method were unusually impervious to

suddenshifting of a parameter. This was important because the crucial

lessons from these models lay not so muchin finding perfect responses

to toy problems but in “‘insight about where to look for analytical

solutions.’’.

Forrest and Mayer-Kress urged caution about their results, as this

modeldid notallow the three countriesto fix individual policy. But they

were sufficiently encouraged to suggest further work, including a more

ambitious model where each country had more control overits re-

sources and alliances and where the encounters between countries

would moreclosely replicate those between actual nations. Despite the

primitivestate ofthese global models, they would have considerable use

in quick-and-dirty analyses, in cases like arms-control negotiations,

where there might not be timeto run detailed models of Byzantinely

complexsituations. Amongthoseinvestigating these uses were the Rand

Corporation and the joint chiefs of staff. Forrest and Mayer-Kress were

optimistic that genetic algorithms, the stuff of evolution, might well aid

in modeling international relations, with effects that might enable hu-

mans to keep evolving:

Recent developments in Eastern Europe have demonstrated how

structures that were rigid for decades can suddenly destabilize, leading

to crises and qualitative changes. The end of a simple world with two

major adversaries might indicate the beginning of a ‘‘messy future’”’
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with manyrelevant players. International security mayalso be increas-

ingly influenced by other factors such as global climate changes.

. .. As our simple modelillustrates, there is a wide variety of possible

consequencesfor political decisions in such a system. Computational

methods, such as the genetic algorithm . . will be increasingly impor-

tant in suggesting possible alternatives.

Considering their powerbothas a paradigm for nature and as an optimi-

zation method in computer science, it was puzzling why genetic al-

gorithms remained obscure for so long. John Holland was never much

a manipulatorofpolitics ofscience. He essentially turned over develop-

ment of the GAto his students while he worked on a book aboutthe

theory of adaptation, a significant but hardly accessible tome that took

him, he admits, too many years to complete.

In 1983 a National Science Foundation (NSF) grant allowed manyin

this community to gather together to discuss their research. It was not

much of a community. Many, if not most, of the genetic algorithmists

had been students of Holland. Some of his brightest disciples had

dropped the subject in order to pursue more conventional areas of

computerscience such asrelational data bases, where they were more

likely to land jobs and win prestige. Holland guesses that about 90% of

those working in GAs cameto that Michigan conclave, andstill every-

one could comfortably be seated at a single conference table.

In 1985 Holland began to do what he had not previously done: take

to the road to promote the idea of genetic algorithms. “I consciously

decided to doit,” he explains. “I don’t typically like to attend confer-

ences very much—I’drathertalk to people under other circumstances.

I’m a crowd avoider. But there was a year in which I decided simply,

I’m goingto go to these things, and see what could happen ifAI people

really lookedat this instead of saying, ‘Oh,that’s just that geneticstuff,

I’m notinterested.’ ”’

In his presentations, Holland demonstrated GAs and stressed the

schema theorem. “‘Everybody thought genetic algorithms were muta-

tions. I felt the critical thing was to convince them that somethingelse

was going on when you had recombination.”’ Although Holland had
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worked out the mathematics thoroughly, the formulas were not nearly

as compelling as the general story he hadtotell. ““The schema theorem

in itselfwas just not convincingto people, butif I started showing them

diagrams, and how it worked, people really believed. It was really a

matter of pedagogy.”’

Holland spoke at a major machine learning conference, wooing the

AI establishment. At the Evolution, Games, and Learning conference,

he met Farmerand hooked up with what wereto be thefirst adherents

of the field of artificial life. Through those connections, Holland was

invited to spend a year at Los Alamos as an Ulam scholar, and he

ultimately accepted an external faculty post at the Santa Fe Institute.

Because of the rising popularity of parallelism, the study of nonlinear

adaptive systems—andartificial life—the genetic algorithm was finding

its way into standard textbooks andthe fabric ofcomputer science. Not

only John Henry Holland butnatureitself was finally getting its due.
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Progress in physics comes by taking things apart; in computation by putting

things together. We might have had an analytic science ofcomputation, but

as it worked out, we learned more from putting together thermostats and

computers than we didfrom taking apart monkey brains andfrog eyes.

Danny Hillis



“I suppose,” says William Daniel Hillis, “if I were brought up at the

right time I might have very well been an alchemist and gotten attracted

to the notion of mixing lead and urine togetherto try and get gold.”

Instead, having been born in 1956, Danny Hillis is attempting al-

chemy ofa different form: mixing silicon with complex systems theory

to produce emergent behaviors characteristic oflife. It is his dream to

create a machinethat lives and cogitates—a computer, he says, not

jokingatall, ‘‘that would be proud of me.” Herealizes he may never

see that day, and concedes, reluctantly, that the conceptis perched just

this side of impossibility. After all, if he had been an ancient alchemist,

he notes, “I would have wasted mylife.”’

But Hillis also knowsthat there are twotracks ofartificial life. The

more ambitious goalis the creation ofliving systems, the equivalent of

biological alchemy. The other quest, closer to hand,is the simulation—

in some cases the duplication—oflife’s unique processes, in order to

heighten our understanding of natural life and of possible alternative

forms oflife. ““There’s two reasons to study this stuff,’’ he says. “I’m

interested in both of them.”’

His most concrete contribution has been the creation ofa-life’s most

powerful tool, a supercomputer that is unmatched in simulating the

massively parallel processes that life performs routinely. But Hillis’s

ultimate impact could lie in the way he uses this tool. Wheneverhe can

manageit, he sets aside the considerable chores of chief scientist and

cofounder of a multimillion dollar company and attempts to simulate —

evolution. He hopes to discern patterns that biologists missed, perhaps

even to discover promising indicators that current theory is misguided.

His findings have led him to several iconoclastic conclusions that could

promote debate of white-hot intensity amongcircles of evolutionary

biologists—if only they would listen.

Hillis, who wears T-shirts to work and bears the wizened yet won-

drous demeanorofan elfapproaching middle age, has taken a circuitous

path to these discoveries. His parents both studied in fields associated

with life sciences. His father was an Air Force epidemiologist, who
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movedthe family to locales both mundaneandexotic,as longas hepati-
tis was rampant. His mother earned her doctorate in biostatistics. To
Hillis, science meant biology. A typical home experiment was maintain-
ing a tissue culture ofcells taken from a frog heart. In one schoolbiology
project—his family had settled near Baltimore at that point—heand a
friend appropriated hundreds of petri dishes in order to measure the
degree of bacteria in every nook and cranny of Towson Junior High
School. (“We found one thing in the gym that wasreally toxic,’”’ he
claims, but he cannotrecall the offending microorganism.)

His other passion was computers, a subject he first becameinterested
in when his family lived in India. Because computer parts were rare
items in that milieu, Hillis built a ticktacktoe computer with wires and
nails. He had an exceptional talent for that sort of thing. While still in
high school, he was recommended to people in the chemistry depart-
ment at Johns Hopkins, who were building a mass spectrometer and

needed someone to hook a computerupto it. The designated machine

was an old Minuteman-missile computer donated as governmentsur-

plus. No programming manuals existed, but Hillis, despite never having

any programmingtraining, taught himself how to complete thetask.

Danny Hillis entered MIT, where he planned to study neurophysi-

ology. People kept urging him to venture over to the AI lab to meet
Marvin Minsky. Rather than makea cold call, Hillis did homework. He

obtained the funding proposal for the lab and notedthat oneofits goals
was developing a system to encourageilliterate children to program

computers. So far, there had been nosolid ideas on how to accomplish

this. Hillis determined to solve the problem himself and went to Sey-

mour Papert, one of the lab’s directors, with a design for a computer

terminal that operated by manipulating pictures instead of text. Papert

hired him. Weeks went by, however, and Hillis still had not encoun-

tered Minsky. Finally, someone told him that Minsky spenthis time on

the ground floor, where he was designing a small computer. Hillis found

the workshop, read the design plans, and unilaterally began making

changes. Apparently they were well conceived. Minsky welcomedthe

input and eventually became Hillis’s mentor.

It became a marvelous routine. Every night Marvin Minsky would

drive Danny Hillis home and provide a sound track of bewitching
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concepts. They often discussed the organization ofthe brain and possible

theories on the emergence ofintelligence. Hillis came to appreciate

complexity and how its workings were consistent in nature and ma-

chine. ‘“‘How simple things combine and make complex things,’’ he

now explains. “Computers are sort of an example of that, and neurons

are an example. Andso fundamentally I find transistors as interesting as

neurons.”’

In the early 1970s MIT’s Artificial Intelligence Laboratory encom-

passed computation, consciousness, robotics, and even theories of child

development. Hillis becameits star student and eventually movedinto

the basementofMinsky’s house. The centerpiece ofhis makeshift apart-

ment was the house’s heaving furnace.

 Hillis’s official course ofstudy was mathematics. “Marvin encouraged

meto do that on the grounds that nobody knew anything in computer

science, so I should learn something that’s liable to be true ten years

later,’’ he explains. This decision was endorsed by Hillis’s second great

mentor, Richard Feynman, who was suspicious of computer science

because ofthe inability of its practitioners, when challenged, to explain

lucidly what it was they did.

Eventually Hillis himself grew wary of the prevalent approach to

artificial intelligence. Considering that he himself was a prince in the

palace ofclassical AI, this stance bordered on apostasy. Yet he was simply

facing facts. After a rush of enthusiasm, the discipline had lost momen-

tum and was mired in what somecalled an AI Winter. Though the

aggregate effort drove closer to the prize of truly smart machines, the

increments were puny when comparedto the giant leaps required to

transform silicon savants into creatures with but a fraction of a human

being’s common-senseintelligence. Instead of conceptual leaps, AI’s

avatars offered arcane digressions. ““AI wasn’t happening,”’ says Hillis.

“Everybody was asking why.”’

Hillis became convinced that the trouble began with a bottleneck in

the computers themselves. They were simply notlifelike. These were

sequential machines (called “von Neumann machines,” becauseoftheir

reliance on the Hungarian’s original design), which forcedall processing

to pass through a single piece of hardware. Although this processing

occurred at very high speeds—sometimes millions of operations a sec-
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ond—there was so muchinformation to be manipulated and calculated

that even speed calculations measured in nanoseconds wereinsufficient.

“The more knowledge you gave them, the slower computers got,” says

Hillis. ““And with a person, the more knowledgeyougive him,thefaster

he gets. So we werein this paradox thatifyou tried to make computers

smart, they got stupider.”

The solution, Hillis reasoned, was to make computers work morelike

their natural counterparts—to process in parallel. To let many little

things happen,in orderto allow big, complicated things to emerge. The

image he had in mind was the humanbrain, with its plentiful thicket of

neurons. Instead of a single processor crunching numbers, Hillis’s com-

puter would have many processors—thousands of them,in fact. (He

knew this could be done from his experience workingas a consultant for

the Milton Bradley toy company, whose consumer products used very

large scale integration [VLSI], the process by which the crucial innards

of entire computers could be compressed on single integrated circuit

chip.) The processors would each crunch numbers and then “‘talk’’ to

each other by a scheme of connectedness that would emerge as spon-

taneously as order emerges in natural systems. Thus the computer would

be knownas ‘‘the Connection Machine.”’

Hillis was notthe first to imagine a parallel computer. In fact, John

Holland proposed something along those lines twenty years before.

(When Hillis ultimately finished his dissertation describing the design of

the Connection Machine, he presented Holland with a copy inscribed,

“Just think of this as a Holland machine.’’) And supercomputer manu-

facturers had experimented with multiple processor machines, with up

to a dozen processors. But nothing like what Hillis was proposing. His

first design utilized sixteen thousand processors and then he proposedto

quadruple that! Traditional computerscientists had no trouble ticking

off reasons whythis could not possibly work; they cited mathematical

principles that theoretically limited the speed gain ofparallel processing.

“But I had this very good reason why I thought it would work,”’ says

Hillis. ‘“So that led me to go ahead andbuild it even though everybody

thought it was crazy.”

Not everyone. Marvin Minsky lent Hillis support, MIT’s AI Lab

194



Alchemists and Parasites

helped him, and governmentagencies, particularly the defense-related

agenciesso critical to funding cutting-edge computingefforts, kicked in

a grant of a million dollars. (Ultimately, the project would cost $5,000,-

000.) Danny Hillis was the only graduate student at MIT with several

programmers onstaff and his ownsecretary. Eventually, though, it

becameclear that the Connection Machine could be completed only

under the guise of an independent corporation. Minsky introduced

Hillis to businesswoman Sheryl Handler who helped him dojust that.

Amongthe founders were Minsky and CBSpatriarch William S.Paley.

Hillis named the company ‘“Thinking Machines’’; its most successful

product to date is a sleek black box,slightly bigger than a washing

machine, with flashing red lights and 65,536 processors working in

parallel. More modest versions cost $1,000,000, and a second generation

was estimated to sell at prices between $25,000,000 and $50,000,000.

The success of the Connection Machine madeHillis a corporate leader,

the tender of a growing companywith five hundred employees, housed

in a gorgeous headquarters building on the Charles River in Cambndge,

Massachusetts. His passion for building the world’s fastest computer was

equalled by another addictive interest—using the Connection Machine

as an engineforartificial evolution.

Like many of the pioneers in artificial life, Danny Hillis found his own

way to that basin of scientific attraction. In retrospect it was inevitable

that he would exploit the similarities between the parallel processing

performed by his computer and the same technique routinely executed

by nature.

The pursuit jibed with Hillis’s lifelong fascination with emergence,

the phenomenon of unbidden consequences from simple rules. Scien-

tists, he believed, assuming that the universe was deterministic, nghtfully

attempted to keep their focus on cause andeffect. ““But as people with

egos,”’ says Hillis, ‘““we would like to believe that we’re somehow com-

plicated, something much more interesting than a bunch of molecules

interacting. To me, there’s no contradiction between these two views

because of the notion of emergence. Just because something is made of
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simple parts that may not be very worthwhile in limited interactions,

doesn’t mean that the ensemble of them together can’t be worthwhile
and interesting.”

As Hillis pondered the notion, he recognized that the most complex
ensembles were living systems—life-forms, including human ones.
Whenone asked a biologist how weandourliving cousinsattained this

level of complexity, the short answer wasthe single word, “‘evolution.”

Andindeed, evolution was something based on simple rulesthat yielded

wondrously complicated results. So Hillis decided to look closer at

evolution to better understand emergence. As he read his Darwin,his

Fisher, his Haldane, and his Gould, however,herealized that the theory

of evolution wasfar from complete. There were gaps in our knowledge

and spirited disagreement about some componentsofgeneral evolution-

ary theory.

Hillis was drawnto oneparticular controversy concerning the nature

of evolutionary progress. One biological theorem, postulated by R.A.

Fisher, conjectured that evolution proceededby steady improvements in

fitness. Hillis saw this as equivalent to the so-called hill climbing tech-

nique used by certain computer optimization procedures, such as learn-

ing in neural network simulations. Because each generation was

supposedly slightly fitter than the previous one,a graphillustrating this

progress would show line angling upward, as thoughthefitness of the

species were engaged in scaling a peak.

Biologists studying the problem had created a more complicated,

multidimensional map of the way that a species might evolve. This

“adaptive landscape,”’ first postulated by Sewall Wright, represented the

space of all possible genetic combinations. It was filled with bumps,

peaks, valleys, and spikes. The gene pool ofan entire population resided

at a single area on this landscape. The higher the ground,thefitter the

population would be if it found its way there. When the terrain was

fairly level, a population theoretically engaged in a “random walk,”’ with

the effects of crossover and mutation moving its genetic composition to

different places, until it found an ascending plane. From that point, the

morefit individuals within the population would push fitness higher,

and the rest of the population would follow.

But, if hill climbing was indeed the method nature used to achieve
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higherfitness, the discovery of the highest ground could not always be

assumed. Once the population scaled a medium-size peak, it tended to

get stuck. This was due to the built-in reluctance of a population to

decrease its fitness, which would be necessary in order to search the

landscape for an even higher peak. The population would remainfat and

happy onits hill but miss out on the mountains that lay somewhereelse

on the chart. The population was then “stuck on a local maximum”

with no incentive to make the giant evolutionary leaps that push life

toward more complexity.

Hillis suspected that something other than hill climbing must have

been required for the rich properties oflife to emerge. “If evolution is

a hill-climbing technique, why doesn’t it seem to have problemsthat we

know hill-climbing techniques suffer from?” he asks, referring to the

local maxima problem.‘‘Whyis evolution so much more powerful than

any otherhill-climbing technique? Whyis it able to evolve much more

complicated things?”

In 1986 Hillis began seeking answers to these questions by simulating

evolution on his multimillion-dollar machine. Combininghis sixty-four

thousandparallel processors, an experimental chemist’s careful method-

ology, and the observational acumenofa biologist, Hillis had the power

to generate hitherto-unsuspected insights from a sophisticated form of

artificial evolution.

Physicist Niels Bohr once observed that “‘we should doubtless kill

an animal if we tried to carry on the investigation of its organs so far

that we could describe the role played by single atoms in vital func-

tions. .. . The minimum freedom which we must allow organismsin

this respect is just large enough to permit it, so to say, to hide its

ultimate secrets from us.”’ This limitation did not exist with theartifi-

cial organisms that Hillis studied. Ultimate secrets could now be ex-

posed. “I can run a population for 100,000 generations,” Hillis

explains. ““And then I can look at the same thing geologists look at,

the fossil record. Then I can look at the actual genes themselves—not
just the phenotypes of the individuals but the actual genetic material.

And I don’t have to look at them with just my own eyes, I’ve got a

big parallel computer to look at them. I can see things that are going

on there that biologists don’t have the data to see.”’ |
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Hillis worked with artificial organisms—strings of numbers that rep-

resented genes, which in turn expressed themselves as phenotypes by

performing computationaltasks. It was very much in the spirit ofJohn

Holland’s genetic algorithm.

Atfirst he set relatively simple problemsfor his organisms. He would

require them to arrange their bits in a certain order, rewarding the ones

that came closest to the desired arrangement after each generation.

Fitness would be determined, of course, by criteria set by Hillis on what

was the perfect order, and his clever use of that complication prevented

the system from getting stuck in local maxima. It was easy to demon-

strate how. Begin with a string of twelve numbers. Hillis might decide

to regard a perfect sequence as one in which each numberhasa higher

number to its right. The perfect sequence, then, would begin with

numeral 1 and proceed, in order, to 12:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12.

In evolvingthis order, hill-climbing techniques would beeffective only

to a point because the problem might not be solved purely by incre-

ments. For example, consider an arrangement that began with 2 and

ascended by even numbers up to 12; then, at the seventh digit dropped

to 1 and counted by odd numbers to 11:

2, 4, 6, 8, 10, 12, 1, 3, 5, 7, 9, 11.

Only one step from perfection, yet obviously flawed, this organism

would findit difficult to evolve further. It was stuck in a local maximum.

Because ofthe ramplike slopes this scheme would draw on a landscape

map—where hill climbing would lead to a precipice—Hillis called his

organisms “‘Ramps.’’ He posedincreasingly difficult problems to them

so he could learn about evolution from their behavior.

When biologist Charles Taylor saw the system, he proposed that

Hillis try experiments using both sexual reproduction and asexual repro-

duction. Hillis could then address an enduring problem in biology: why

was there sex? Some theorists believed that it was only by strange

happenstance—a frozen accident—that organisms mated, because the

short-term advantage would befor an individual to pass on as many of

‘its genes as possible. Sex diluted the number of genes one passed to
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offspring, and commonsenseindicated that the fittest organisms would

be better offreproducing asexually. In the long run,sexual reproduction

did strengthenfitness in the population, but evolution, which proceeded

generation by generation, had no consciousness and worked from no

billion-year blueprint. Evolution proceeded like a cellular automaton

experiment in that decisions were local, although consequences reso-

nated globally. So it was difficult to see how even sound long-term

behaviors could overrule decisions that made sense in the short run.

Hillis implemented sex in his system, effectively giving organisms the

choice whether to reproducesexually. He accomplishedthis by introduc-

ing a genethat controlled the percentage of the time that the organism

reproduced sexually. The percentages that helped increase fitness in the

phenotypes of the organisms would, of course, dominate. In the first

experimentsHillis ran with this parameter the organisms foundit in their

interest to practice asexual behavior. Later, he posed some different

tasks, and in those cases the system took the far-sighted decision and

sought mates. Hillis could not isolate what, if any, rule determined

whether populations chose or rejected sexual reproduction. But the

experimentdid indicate that sexual reproduction drove the Ramp popu-

lation away from local maxima andfreed it to seek higher peaks. This

was a logical consequenceof sex, which had a built-in risk of reducing

fitness whenrelatively optimal genes were “‘watered down’”’ when com-

bined with less fit set of genes. This result made Hillis feel he was on

to something. He suspected that his experiments could unearth clues

that biologists were missing.

At the time, Hillis was training his Rampsto tackle a thorny problem.

In this experiment, the measure ofa Ramp’sfitness was the ability ofthe

organism to sort numbers. The degree to which each Rampsorteda list

of sixteen numbers in descending order determined howsuccessful that

individual was. Sorting-network problems were a familiar challenge to

computer hackers, who tried to build systems that arrange numbers

using the fewest steps, or exchanges—the fewer exchanges, the more

wizardry required. Using his modified version of the genetic algorithm,

Hills would seed his next generation with the organisms of the current

generation whosorted thelist in the fewest exchanges.

The particular sorting network problem Hillis chose for his Ramps

199



ARTIFICIAL LIFE

had long been used both as a benchmark of programmingskill and as a

proving ground for theoretical approaches to data manipulation. Essen-

tially, he was pitting his Ramps, with evolution as a cornerman,against

the cream ofhuman endeavor. In 1962 a pair of computerscientists had

published an article claiming the best possible solution to sorting net-

works, a system that would sort the sixteen integers in sixty-five ex-

changes. Two years later, the guru of code crunchers, Donald Knuth,

created a system requiring only sixty-three exchanges. In 1969 the

computer world was astonished when someone did it in one fewer

exchange, and later that year the amazement was “‘tripled,’’ to quote

Knuth, when even that solution was eclipsed. This ultimate sorting

program, written by a man named Milton Green, was elegant enough

to arouse suspicion of Faustian dealings. It involved only sixty ex-

changes.

Hillis was running a population of 64 K, or 65,536, Ramps to evolve

themselves to a state where they could become computerprogramsthat

solved the problem. (Because each individual could beassigned its own

processor in the Connection Machine, the experiment could be run

with lightning speed.) He generally ran his populationsfor five thousand

or more generations, a time-consumingprocess for biologists breeding

fruit flies but a day’s work in the Cambridge headquarters of Thinking

Machines. As was typical in Hillis’s experiments, relatively capable in-

dividuals emerged in early runs and spread their highly fit genes

throughout the population; by the end of the run the population had

long founditself at a local maximum. The best of these sorted all the

numbers successfully, requiring sixty-five exchanges.

This was a fairly impressive performancebya set ofinitially random

numbers who found their way to a solution without human interven-

tion; after all, two very satisfied computer scientists in 1962 had pub-

lished their results in a paper, to some acclaim, after accomplishing the

task in the same numberof steps. But Hillis wanted his system to find

the higher peaks in the landscape. He introduced conditions that would

drag the population from its stagnant perch and force it to seek the

higher ground.First, he tried increasing the rate ofmutations. Although

this drove the population off the hill, the mutations triggered dire lapses

in fitness from which the population rarely recovered.
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The breakthrough came when Hillis heard about the Red Queen

hypothesis. The appellation was borrowed from Alice in Wonderland,

wherein the Red Queen goaded the young protagonist into running

furiously, although it seemed to advance the young girl not an inch.

Whenshe complained to the queen, Her Majesty informed her that

constant running was required to remain in the sameplace. Biologists

used this anecdote in describing ‘‘evolutionary armsraces,’’ when two

populationsofdiffering species were set against each other, in predator-

prey or host-parasite relationships. Regardingthelatter, ifa host popula-

tion evolvedstrategictraits to foil the parasite, the parasite would in turn

evolve a strategy to compensate. William Hamilton, among others, had

suggested that the presence of parasites might have been integral in

accelerating the pace ofevolution to a rate capable ofyieldingits present

diversity and complexity; he had even run his own computer simula-

tions, which indicated that organisms might have adopted sexual repro-

duction to thwart parasitic invasions on their offspring. Hillis decided to

introduce parasites in his system.

Hillis called his parasites “‘anti-Ramps.”’ Like their rivals, they were

rewarded according to a fitness function—the degree to which they

harassed their digital cousins. It was a classic evolutionary armsrace in

which both species would coevolve and discover improvements in re-

sponse to their opponent’s evolutionary improvements. Hillis arranged

an ingenious method ofattack: the anti-Rampsliterally provided test

cases to gauge the Ramps’ solutions to the sorting problems. As the

simulation progressed, and as the Ramps came up withbetter solutions,

the anti-Ramps would evolve increasingly challengingtest cases. If one

thought of the Ramps as chess players, the anti-Ramps were chess

impresarios, who produced series of opponents. Theyfirst ushered in

fumbling novices, provided experienced players when the beginners

were consistently vanquished, and eventually flew in cunning grand

masters.

Undercontinual attack from these demanding challengers, the Ramps
were forced to devise evolutionary strategies that would maintain and

even improvethe quality of their sorting. Thefirst strategy was tosettle

on a fortified arrangementofintegers so that the bite of the anti-Ramp

would not be fatal. The second was to proceed with a high genetic
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variation from one generation to the next in order to assure that the

parents’ defects would not always be passed to the offspring andthat the

predators would be kept off balance.

Without anti-Ramps to keep them honest, previous populations of

Ramps required tens of thousands of generations and long nights of

Connection Machinetimeto find their local maxima. When coevolving

parasites invaded the evolutionary landscape, however,a different story

unfolded. Hillis liked to show videotapes of the screen display from the

Connection Machinethatillustrated this genetic drama. Each pixel on

the screen represented an individual Ramp, and the fitness of each

Ramp (how well it sorted the numbers) was represented byan arbitrarily

assigned color. (The anti-Ramps were not depicted, but their effects

were apparent.) As individuals were eliminated, selected, and mated in

each time step, a new generation would replace the current one on the

screen, and the color of the new population reflected these offspring.

Clusters formed, and sometimes waves of similar Ramps pulsated in

apparent synchrony. Atfirst, the Ramps began to improvetheir ability

to sort the numbers; this was reflected by localized changesin color from

blue to green. Each time pockets of Rampsstabilized, however, a grim

apocalyptic wave swept over them. The anti-Ramps obviously had

devised test cases that broke the sorting schemes. But some Ramps

evolved solutions that both met the demands of the test cases and

developed immunities to that breed of anti-Ramp. Clusters of these

improved Ramps, now in greenish yellow, roiled and spread on the

screen, attainedstability, and were besieged once more. Each time they

reappeared, the newly immunized Rampsborea colorindicating higher

fitness. Soon, some Ramps appeared in bright red, which indicated a

fitness that Hillis’s previous Rampscould not have hopedtoattain. They

had landed on the evolutionary landscape equivalent of the Andes.

Thevery first time Danny Hillis tried this, the entire epochalstruggle

described above occurredin fifteen minutes. The Ramp population was

harshly dislodged from its comfy maximum. Racing around the evolu-

tionary landscape as though pursued by hellhounds, the Ramps found

andscaled the elusive higher peak. Althoughtheir solution did not equal

Green’s championship sorting network of sixty, they did match the

second-best total ofsixty-two,a significant improvement from previous
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runs. Hillis ran the experiment a few times more, and the population,

again hounded by coevolving anti-Ramps, managed to constructa sort-

ing network of sixty-one exchanges. Hillis was ecstatic, especially be-

cause he had been underthe misimpression that the best-ever total had

been sixty-two exchanges; he thought that his Ramps had outstripped

the apex ofhuman achievement. Whenherechecked the literature and

realized that his system fell short, he was so disappointed that he soon

shelved the sorting-network problem indefinitely.

The concept, however, of accelerated evolution through coevolving

parasites stuck with Hillis. He was convinced that Red Queen behavior

yielded effective results because coevolving rivals forced the evolution-

ary system away fromstability, on the cusp of phase transitions such as

the ones Langton postulated in his work on the A parameter. Thus the

Ramps and anti-Ramps combinedto drive the system to the edge of

chaos, and a rich complexity ofnovel genotype strategies arose from that

fertile computational region.

Hillis’s work also had implications for the definition oflife itself. If

von Neumannestablished that life existed as an emergent information

process; if Kauffman was among those whotold us that throughself-

organization life wanted to happen;ifLangton, Crutchfield, and Farmer

informed us that amonglife’s properties was a preference for locating

itselfjust this side of chaos; then Hillis, in ratifying computationally the

work of biologists such as Hamilton, hinted that life was a symbiotic

process that virtually required the companyofdeadly rivals. Equilibrium

was an illusion; order finds itself from a relentlessly troubled sea. Both

Axelrod’s iterated Prisoner’s Dilemma and the GA-basedsolutions to

that problem confirmed the benefits of cooperation between putative

rivals. They placed the mean-spirited inherencies of Darwinian natural

selection in a more benign light, where even deadly defections serve the

system, by pushing it to higher levels of complexity.

“Artificial life is going to produce somevery crisp, simple ideas—like,

the interesting thing in natural selection is not the evolution ofa single
species, but things like the coevolution of hosts and parasites,” says

Hillis. ‘“That may turn outto bea critical thing. But once wegetinto

that mode ofthinking we’ll never quite think the same again, and never

try the samethings.”’

203



ARTIFICIAL LIFE

e.

DannyHillis had a ready example for those who probed him forspecifics

in response to his contention thatartificial life would change our think-

ing about biology. Sitting in his cluttered corner office in Thinking

Machines one day, wearinghis usual faded T-shirt, he sat downat a table

and spread out somegraphsandpapers. “‘Here’s a prediction,” he says,

his words bolstered by the confidence provided by an imposingstack of

statistical data. ‘‘I think the idea of a gene will change. I think the idea

ofa gene as developed by population biologists is fundamentally incom-

plete and misleading.”

Hillis was addressing a problem at the heart of the mechanics of

evolution. Biologists had cometo believe that, rather than the steady

progress ofhill climbing, evolution movesby leaps and bounds,alternat-

ing with periods ofstasis. Species remain relatively stable for a while, in

a virtual equilibrium wherefitness is suited to the environment. Then

a sudden change in the environment, or an empowering mutation,

causes an abruptjumpin fitness, as new andeffective physical character-

istics express themselves in the phenotypesofthe species. If pictured on

a graph,this progress resemblesa series ofplateaus punctuated by sudden

jumps to another plateau, what biologists describe as ‘“‘punctuated

equilibrium.”

Consider an animal population that is currently sightless but whose

possible genetic makeupincludesa set ofgenes that result in a phenotype

that has vision. Thegift of sight would allow this animal to detect food

much moreeasily, perceive predators moreclearly, and evaluate poten-

tial mates more wisely. A seeing population would probably finditself

atop a very high peak onthe fitness landscape. But an eye is an extremely

complex organ, undoubtedly the morphological result of many genes.

Biologists refer to cases like these, where the proper combination of

multiple genes is requiredfor a trait to appear, as epistatic. It is implausi-

ble that any combination ofcrossover or mutations in a single generation

will yield a genotype that suddenly causes an eye to appear. Evenifit did,

the process of mating would disrupt that improbable chain of events.

Using the hill-climbing theory, one might picture the population

slowly but steadily changing its genetic makeup until the hill leading
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toward sight is climbed. But how could this be reconciled with the

complex makings of an eye? It is difficult to picture any set of gradual

steps that could indicate that the path toward sight is a sloping ascent.

(Half'an eye would not be able to see—so how would havinghalfan eye,

let alone the first tiny fraction of an eye, be rewarded?) On the other

hand,it is equally difficult to imagine a punctuated equivalent, where

the population jumps up a high sheercliff that represents the sharp

improvement that would come from providingsight to a formerly blind

population.

Whenbiologists attempted to resolve these questions they smacked

head on into an evidentiary wall. In order to address issues such as

epistasis, evolutionary biologists were forced to reconstructthe past from

fossil remains. These seldom gavedefinitive answers. Attemptsat actual
animal breeding—raising a few hundred generations of the favored
organism for this sort ofthing, drosophila(fruit flies) would fall far short

of the required evolutionary time span for these dramatic effects.

Danny Hillis, however, had an edge—the Connection Machine.

Theartificial organismsin Hillis’s particular world evolved notby the

steady progress of hill climbing but by the sudden leaps of punctuated
equilibrium. “The average fitness of a population does not always in-
crease steadily with time,” he reported in a paper describinghis results.
“Instead progress often consists of long periodsofrelative stasis, punc-
tuated by short periods of rapid progress.”

If Hillis had stopped there in his analysis, he would have been at
precisely the point where evolutionary biologists found themselves—
examiningfossil records andresults offruit fly breeding, and saying, Yes,
according to these measures of the phenotypes, fitness proceeded by
stable periods and sudden increases.

But with artificial organisms Hillis had the power to examine and
analyze the genotypeas easily as the realized phenotypes. In doing so, he
discovered something remarkable. While the population seemed to be
resting during the periods of equilibrium—theplateaus pictured in the
graph—theunderlying genetic makeup wasactively evolving. The sud-
den increase in fitness was no more an instant occurrence than the
appearance of a newborn indicates something springing out ofnothing;
the population seemed to be gestating its next jump. Specifically, the
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In this experiment, Hillis evolved a population of 65,536 Ramps, testing them

against a problem where the highest score was 100. The pattern of their success after

a numberofgenerations shows clearly that their gains in fitness proceeded by

“punctuated equilibrium’’—periodsof stability were shattered by sudden leaps in

fitness. Each upswing in the chart represents a population-wide increase in

fitness—evolution hadfound a new power that enabled the Ramps to deal with their

environment more effectively.

Hillis identified three traits in particular that increased the fitness of these Ramps:

the discovery of the right combination accounted for the leaps in fitness. When Hillis

examined the genomes of the Ramps during the presumably stable period of

equilibrium, however, he found that the gene pool was actually seething with activity,

setting the stage for the next leap. This sort of simulated evolution uncovers a rich

area for biologists to study—atesting ground for evolutionary theory.

gene poolofthe population containeda set of epistatic genes that could

not be expressed unless all were present; otherwise the alleles for these

genes would berecessive. (Rememberthatan allele represents a particu-

lar variation of the gene—blue pigment and brown pigmentare both
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alleles of eye color.) Whereas the dominanttraits were expressed in the
population, these recessive alleles accumulated in the population, along
with other apparently coadaptive alleles; a feedback network seemed to
encouragetheparallel developmentofthis ensemble. When the number
of these recessive alleles reached a certain level, these genes spread
widely throughout the population. The epistatic effect of their presence
in the individuals that had all those traits made those phenotypes dramat-
ically more fit, and the population leapt to a new plateau of so-called
equilibrium.

Hillis illustrated the phenomenonwith story: Consider a population
of plants. Amongthe genesin this population wasa set of ten, each of
which produceda certain enzyme.Ifin any individual all ten produced
the right enzymes, a synergistic effect occurred that allowed that particu-
lar plant to photosynthesize in a totally different way—a much more
efficient way. A population of those plants would experience an explo-
sive rise in fitness. But all ten enzymes were required to producethis
epistatic process. Meanwhile, the ten enzymeswerealso useful for other
functions in the organism, but the presence of one or more did not
necessarily increase fitness; an alternate enzyme might perform the same
job.

If all ten enzymes appeared in a single individual, that plant would
certainly do very well, but, when it mated with another individual that
did not haveall ten enzymes,its offspring would not have the advantage.
But becausethatplant survived well, it would certainly pass on its genes.
And every time another individual in the population had the entire
ensemble of enzymes, that individual did well, and these genes would
spread even more. The increase of those mutated genes was further
spurred by a positive feedback effect; as greater numbers of those genes
appeared, they would find more oftheir ilk with which to interact and

thus would be more useful to individuals who carried them. The en-
zyme-producing genes would rise in the population, until they reached
a certain percentage in the population. At that point, a phase transition
occurred, muchlike the sudden ordering ofinteractions in the experi-
ments of Stuart Kauffman. From that point on, there were sufficient
numbersofthose genes to combine with each otherin otherindividuals,
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and the success of those combinations pushed therest of the population

to quickly follow, whichit did because the genes were readily available.

The epistatic effect would proliferate.

“You reach this magic percentage, and all of a sudden there’s this

huge positive feedback, and choook! It shoots up until everybody has

it,” says Hillis.

Hillis resolved to quantify that magic percentage, the point demarcat-

ing stasis and punctuation. In his effort he sought the help of Richard

Feynman. But Feynman died before they reached a solution. Months

later, biologist Eric Lander helped Hillis crack the problem:the result

was the simple and beautiful equation, one over e squared. (e is a

well-known mathematical constant.) When the presence of the crucial

genes reachedthat value, the population would dramatically leap to a

higher plateau. The equation was admirably robust, remaining constant

no matter how many genes were involved in expressing the trait that

increased fitness.

It also had personal meaningforits discoverer. Feynman had always

loved the constant e, and Hillis suspected he would have loved this

solution. Hillis did show Feynman the equation—in a dream. Indeed,

the dream-Feynmanadmiredits elegance. “I thought you were dead,”

said Hillis in his dream to the physicist. Feynman acknowledgedthatthis

was so, but seemedto indicate a bright side to death: ‘“‘At least we aren't

interrupted when we’re talking,” he said. Hillis, awakingin tears, real-

ized that his emotion at the beauty of the equation wastied to the loss

of his friend and mentor.

The experimentled Hillis to believe that, although biologists who

believed in punctuated equilibrium were correct, they were unaware of

its cause. It was not necessarily a drastic perturbation ofthe environment

or a crucial mutation that caused the jump (Hillis was among those who

emerged from a-life experiments with a decreased respectfor the role of

mutation in evolution) but complex interactions of multiple genes.

Epistasis was so importantthat Hillis suspected that we may soon rethink

our definition of a gene. Instead of a single packet of genetic informa-

tion, a gene in Hillis’s thinking could be thoughtofasa set ofinteracting

packets. As many as a dozen or more.
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‘‘People’s idea of a gene is something that adapts by itself,” he says.

“It goes back to Mendel. In somesense the notion of twelve of them

working together fights the basic idea of the gene. Biologists will say

we've never had examples of high epistatic interactions among a dozen

genes, there’s no reason to believe those exist in biology. And the reason

is that they’ve never seen them. They can’t see them. Considering the

way they look for a gene, there’s no way they could have discovered

them if they werethere.”

Skeptics could note with impunity that Hillis’s work proved nothing.
Simply because his simulated populations yielded certain results did not
compel the science of genetics to redefineitself: Hillis recognized that

his experiments were notproofs. Yet hefelt that, although his informa-
tion organisms did not havethe intricacy and breadth oftheir natural
counterparts, the evolution depicted in his experiments wassufficiently
rigorousto earn the attention ofbiologists. That his fieldwork occurred
in the realm ofsilicon, only as tangible as mathematics and imagination,
should not work against him.

In the past, the prejudice against mathematical modelingin theoretical
biology might have been justified. In making biological simulations the
stupefyingly complex mathematics of life was by necessity oversimpli-
fied, to the point where the connection to the physical world was
tenuousorat least subject to massive swings in interpretation. The noted
zoologist Theodosius Dobzhansky had once compared computer mod-
els in biology to masturbation: it could sometimesbe pleasant, butit is
not a substitute for the real thing. But Hillis believed that simulations
donein the a-life community had brokenthe barrier. These may be toy
problems, but they were very serious toys.

“If biologists want to tell me what really happensin biology then I’ll
alwaysbelieveit,” he says. ‘““They know more than me about whatreally
happens in the real world. But I think biologists for the most part are
very naive about computation. So the biologists who go outin the field
and count bugs are not real impressed by the people whosit home and
solve equations.”

And, although most biologists preferred bug counts to a-life experi-
ments, an increasing number cameto regard Hillis’s efforts with some
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seriousness. Their reaction to his results was not dismissal but rather a

keen interest in determining whether the behavior of these simulated

populations indicated a similar process occurring in natural life.

‘“That’s not the majority reaction,” admits Hillis. “But I would say

the biologists I admire tend to react that way.”

In another sense, the opinion ofbiologists was irrelevant. One need not

concedetheapplicability ofHillis’s work to wetreality to see its benefits.

Hillis believed that the success achieved by his Ramps underpressure

from coevolving parasites presented a promising approach to computer

programming. His aspirations for evolutionary programming exceeded

even those ofJohn Koza. “‘Weall find programmingvery frustrating,’

he says. “The dream is to have this little world where we can evolve

programs to do something we want. We punish them and wipe them

out if they don’t do what we want, and after a few hundred thousand

generations or so, we have a program thatideally behaves the way we

like. We can play God—butall we have to do is define the puzzle for

them. We don’t have to be smart enough to figure out the way they

solve the puzzle.”’

DannyHillis was consistently fascinated with the way that the Ramps

had implementedtheir sorting network.It seemed to progressbytotally

nonintuitive means, shifting numbers back and forth in a way that

seemingly directed the task backward, although ofcourse in the end the

numbers were miraculously sorted. It was possible that some exchanges

were indeed counterproductive, but remained as evolutionary relics of

previous paths taken and abandoned. In any case, examining the odd

itinerary that the Ramps charted in their journey toward solving the

problem provided an unearthly insight into a different sort of intelli-

gence, a nonhumanintelligence. One had to regard it with the same

open-mindedfascination as one would an extraterrestrial message.

Another advantage of the coevolutionary programming wasthat the

algorithms produced were particularly robust. Unlike computer pro-

grams written by humans, whichsuffered from the brittleness inevitable

when design proceeded in a structured, hierarchical manner, the pro-

gramsresulting from coevolutionary systems werebuilt like tanks. It was
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rare that a simple perturbation would upset them; otherwise they would
have fallen easy prey to those parasites furiously shoving test cases at
them. Those parasites were highly motivated to break the algorithms of
the host organisms. Their ability to continue their lineage depended on
success. Thus solutions reached by the hosts were acquired by the digital
equivalent ofblood. “‘IfI had tofly an airplane that depended onsorting
numberscorrectly, I would rather fly an airplane that depended onthis
algorithm than onethat I did for myself,’’ says Hillis.

Hillis envisioned a day when natural, coevolutionary paradigm
would be applied in major programming projects. Unlike the current
approach, where a program was debugged and cloned copies were
distributed from the original, coevolved programslived on the cusp of
chaos. Like natural living systems, no single program was precisely
identical to any other. This bestowed notonly a certain imperviousness
to system crashes caused by unauthorized use buta relative immunity to
computerviruses. Because each version of a computer operating system
would be different, virus designers could nottailor their digital intruders
to the coding of a generic series of hosts.

SomeofHillis’s employees at Thinking Machines werealso implement-
ing applicationsthat exploited the mechanicsoflife. The most spectacu-
lar work ofthis nature at Thinking Machines was that ofKarl Sims. Not
yet thirty, Sims was a lanky programmer whosetrail to artificial life
began with biology studies at MIT,took a hard right turn with computer
studies at the Media Lab, and detoured toward a job programming
special effects in Hollywood. Then he returned to Cambridge to work
for Hillis. Hisjob was to create eye-popping graphics and animation that
demonstrated the breathtaking nature of the Connection Machine’s
power. Ensconcedin his warren at Thinking Machines, he began think-
ing about using biological models to produce digital images. Because
much of the challenge of producing computer graphics came in du-
plicating the rich complexity ofthe real world, why not draw onnature’s
techniques, which were obviously quite capable of generating compli-
cated objects?

Sims used a genetic paradigm to produce the complexity ofnatural
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objects. He began by elaborating on Richard Dawkins’s biomorphsys-

tem. Dawkins’s system had produced a set of organisms, each with a

given numberofgenes that determined their appearance. The means of

selection was the human observer, a so-called unnatural selection in

whichaesthetics, and sometimes even perverse whim, determinedfit-

ness. The system’s “‘undesigned and unpredictable” organisms beggared

the efforts of all but the most imaginative artists. Sims considered the

biomorphsystem a computerartist’s tool, one that allowed a person with

no programmingability and no drawing acumen to create complex and

compelling images.

One ofSims’s projects wascreatinglifelike, yet disturbingly unfamil-

iar trees that would populate the otherworldly landscape ofan animation

piece called ‘“‘Panspermia.” Sims began his botanic quest with sixteen

images, each of which had random values assigned to its twenty-one

genes. The genes, which were digits representing symbolic expressions

in the dialect of LISP computer language spoken by the Connection

Machine,controlled parameters such as branching factors, growthrate,

twistiness, and budding behavior. The computer read the genetic con-

tent and expressed each numberstring in a phenotypetree. Sims then

picked the oneheliked,and that survivor had fifteen offspring. Because

one or more genes mutated in the reproductive process, none of the

daughters was identical to the parent. Sims then repeated the process.

After as few as five generations, he often yielded fascinating, uncharted

species.

Sims amplified the power of Dawkins’s methodology by mergingit

with Holland’s genetic algorithm techniques: in each generation he

could replace biomorphic asexual reproduction with the digital form of

sexual reproduction practiced in GAs. This was simply done:instead of

clicking his mouse ona single parent, Sims used a different mouse button

and clicked on twoalternatives to mate. Besides the alternatives on the

screen, he could produce a specimenrestored from a previous ruan—the

equivalent of a cattle breeder’s keeping of unlimited stock of purebred

bull sperm on hand—and use that to mate with a newly generated

candidate. Because Sims’s goal was to achieve aesthetically pleasing

results and not to discover clues to biological behavior, he also used

forms of mating that were less natural than the crossover-and-mutation
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GA mating. He would,for instance, arrange liaisons in which the off-

spring received a random assortment of genes from each parent or even

pairings that noted the values of each parent’s genes and bequeathedthe

offspring’s corresponding genes with values set at some numberbetween

Mommy’s and Daddy’s. Sims even implemented a method to animate

the mating processvisually: in a nod to his Hollywooddays, he described

it as a “genetic cross-dissolve.”’

This arsenal of biologically inspired tools allowed Sims to search

through the space of possible artificial trees—a near-infinite range—

with blazing speed. This resulted in a painless form ofartistry. This

winnowing process was a kind of superamplified version of the game

Twenty Questions, in whicha series of true-false queries narrowed the

space of all possible humansto a single individual. Instead of beginning

with a blank page or screen, the human designer equipped with Sims’s

program and a Connection Machinehada virtual stack ofpaper,billions

and billions of reams high. One could imagine each piece of paper
picturing a different sort of tree; somewhere in the sky-high tower of
paper every conceivable tree was represented. By simply evolving in a
direction that felt right, the designer eliminated the vast numbers of

unsuitable trees and very quickly got to a desirable forest. When Sims
first tried this, he came onfascinatingartificial species. Some appeared
to be denizens of an undiscoveredrain forest, stumpy trees with viney
leaves, or willowy constructs with thorny appendages. Others,tangles of
menacing tendrils, seemed to be Martian bushes sprung from thepalette
of science-fiction illustrator Frank Frazetta.

“If were to try to design these, I would use fractals and other tech-
niques, but I would have to doit all by hand,”says Sims of his system.
‘“This is a way to get variety quickly. I can save the genomes, sprinkle
them aboutand grow forests pretty quickly. Since this method does not
require you to understand or even look at the numbersor functions, you
just do it. Think ofthe genotype as a seed—when youplant geraniums,
you don’t know what the DNAlookslike.”’ Theartificially evolved
landscape depicted in ‘‘Panspermia,” lush with instances of alternative

botany, indicates that nature’s design power can beeasily harnessed,

once its algorithmsare astutely captured.

Sims’s system was equally impressive when the goal was extended
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from creating plantlike structures to free-form designs. In only a few

generations, anyone capable of manipulating a computer mouse could

create hauntingly beautiful visual artifacts. The powerto search not only

the space ofall possible trees but also all possible images—a dizzying

conceptin andofitself—coughed up pictures that displayed the hard-

earned distinctiveness of great modern artists. Sims had a portfolio of

evolved images that evoked Dali, Klee, Picasso, Mondrian, and Rothko.

Otherimageswereless indentifiable: shimmeringglaciers, kaleidoscopic

webs, a “‘fire offaces.”’ Simsalso used the system to producerich textures

quickly: instead of painstakingly grinding out algorithmsfor simulating

the patterns of marble, woodgrain, bark, or crystal, he could find them

through evolution.

Sims became so impressed with the searching powerof his genetic

graphics system that he decided to extend it beyond the creation of

imagesinto the realm of physics and mathematics. Specifically, he won-

dered whetherhe could use this technique on the Connection Machine

to determineparticularly fertile examples ofdynamical systems. In effect,

he was performing the sametype of work undertaken by Langton and

Wolfram whenthey constructed their respective taxonomies ofcellular

automata rules—only instead of running the rule systems one by one to

observe the behavior of each system or measuring the behavior accord-

ing to a metric gaugelike the A parameter, Simsleft his equations and

measuring tools behind. Instead, he breezily zipped through rule sets by

setting systems in motion to see whetherinteresting behavior emerged,

choosing the oneshe liked most and reproducing them.First, he mated

and bred CA-lookuptables and very quickly found Class 4—type systems.

Then he tried the process with continuous dynamical systems and

yielded a range offascinating behaviors, some ofwhich seemed to have

slipped out of the binding of Benoit Mandelbrot’s Fractal Geometry of

Nature.

“These are powerful methods for creating dynamical systems with

emergent complexity that would be difficult to build by design,”’ Sims

wrote. Who was the designer? The sameset of forces that designed

viruses, ferns, coral reefs, and human beings. Sims, like other a-life

experimenters, had borrowed that unnamed designer’s toolbox,includ-

ing one ofits handiest items, evolution.
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A cellular automata snowflake created by Norman Packard. Beginning from a single seed
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structures that amazingly resemble natural snowflakes emerge on the computerscreen. They
CreeETieMeleee utes they raise a question: Does nature generate its own com-
plex forms by a like mathematical process?
 



 
Chris Langton’s cellular automata “loops” reproduce in the spirit oflife. Beginning from a sin-
gle organism,the loops form a colony. As the loops on the outer fringes reproduce, the inner

loops—blocked by their daughters—can no longer produce offspring. These dead progeni-
tors provide a base for future generations’ expansion, muchlike the formation of a coral
reef. This self-organizing behavior emerges spontaneously, from the bottom up—a key char-
acteristic of artificiallife.
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Examples of one-dimensionalcellular automata. The colors of the dots, or cells, in each row

are determined from looking at the dots in the row aboveit and applying simple rules. The

first row, or in the case of the top image, the single “seed,” is randomly chosen. Simply by

executing these elemeritary rules, these CAs often display dazzling complexity. This occurs

much in the same fashion that natural systems, particularly living organisms, achieve com-
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The creatures of PolyWorld have evolved from random genomes: over generations TN
eeReeeRemeseemRitMm OREMmeeintret Pers
ations, several species have emerged, clustering geographically in areas bounded bybarriers:
in one domain they are mainly blue; in another, bright pink; and in a third, purple. Food
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relatively unfit creatures abound, replaced by somewhat more fit descendants in 2. In 3, a
bright red pocket of very fit organisms emerges. The fit characteristics spread through the
population (4). At that point the parasites are introduced, and they gain the upper hand in
5. From thaipoint, the population oscillates between levels of fitness as Ramps and parasites
engagein an evolutionary arms race (6).
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humanusersimply selects mutantoffspring of a randomly generated parent, and yerrele UT
process. The ultimate descendants canbe strikingly evocative.

 
  



 

Stages in developing a plantusing the a-life technique of L-systems. The growth Oy TER ai

cial Mycelis is dictated by the execution of algorithms.  

 
The Gardenof L. All of the plants below were generated by L-systems and then rendered in

three dimensions by computer-graphics techniques. The sky was created with a fractal algo-
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A comparison:The top frame showsstages in the simulated developmentof the gametophyte
ReettRcaeNatta techniques. The bot-
tom frameis a microphotographof the natural gametophyte.
  



 
Someofthe MIT Mobile Robot Laboratory’s artificiallife robots. The best known, eeOCRRUTaRforeground; the midgetat

its foot is Squirt. The back row consists of, left to TeA cideSNZoLUthe right foreground is Attila, who may one

day explore Mars.
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An ineluctable message emerged from all these experiments: something
very muchlike natural evolution could be effectively executed within
the circuitry of a digital computer. Mostartificial lifers wouldinsist that
the phenomenonproducedby the computer was indeed evolutionitself,
as pure as the form that Darwin identified in the natural world.

Consideringtheinitial success of digital evolution and its powerto
harness natural selection, a seductive question arose: Would it not be
possible to actually evolve real creatures? To start with some inert lump
ofinformation and, compressingbillions of years of activity into some-
thing a bit more manageable (overnight? a week? even a year’), to wind
up with life? Could one indeed follow the path apparently taken on
earth, so that something as simple as a bacterium could makeits way up
the evolutionary ladder into something as complex as a mollusk, a snake,
a dog, or a human being?

It was perhaps the vital methodological question in artificial life, one
that lurked behind every experiment in emergent behavior. In early
stages of the field, most researchers had been content—indeed, their

artificial creatures. By necessity, these attempts were constrained,
streamlined to promote unprogrammed behaviorin a certain arena. In
efforts that simulated evolution,the limiting factor was the fitness func-
tion. The means of fitness were generally chosen and applied by the
experimenter. The alternative approach would be more amorphous: an
open-ended strategy wherecriteria for fitness would emerge, as they had
in nature, according to the requirements of survival in the dynamic
environment. Novel adaptations, often not imagined by the human
architects of the digital environment, could change the nature of orga-
nisms dramatically. A series of startling changes might allow simple
life-forms to scale the evolutionary ladder and to climb toward more
complex variations. In theory, one could begin with somethingas simple
as a one-celled creature, and, applying the proper algorithms, let the
system run,like some epochal time-lapse exposure,until more complex
organisms evolved: algae, ferns, salamanders, swordfish, roses, buffalo,
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and people. In practice, of course, this ideal was inconceivable. Com-

puters of 1990s vintage were far too weak.

Computer power aside, how far could one go in this direction?

Skeptics and carbaquists insist that a series of iterated evolutions on

information organisms can never duplicate the physical interactions that

undoubtedly had their effect on the development of life on this planet.

But one doesnothave to accept the possibility ofdigital life to admit the

value of such an effort, which seems worthwhile if for no other reason

than to observe what sorts of phenomena occurred in the system's

journey from initial disorder to recognizable order. Each instance of

lifelike behavior shown by the system is an implicit argument that

computable emergent forces had evoked those same behaviors in the

natural world. If the behavior of information organisms evolved in an

open-ended environment turn outto be extremely lifelike, the result

could prove the strongest argumentyet for redefining the termsoflife

itself.

Those ideas drove a biologist named Thomas Ray to devise what he

considered thefirst truly open-ended system. To this diminutive, ener-

getic scientist, allowing the system to find its own fitness—a natural

selection as opposed to anartificial one—was key to creating living

things on the computer. Ray’s own definition of life hinged on that

factor: “I would consider a system to belivingifit is self-replicating, and

capable of open-ended evolution . . . ,” he wrote. ‘*Artificial selection

can neverbe as creative as natural selection. . . . Freely evolving creatures

will discover means ofmutual exploitation andassociated implicit fitness

functions that we would never think of.”

Ray’s interest in the field was not that ofa digital alchemist but of a

professional biologist. Although he studied chemistry at Florida State

University and had been planning to take further undergraduate work

in physics and math, Ray became interested in ecology, “‘sort of in the

sixties frame ofmind,” he explains, somewhatsheepishly. He completed

a doctorate in biology at Harvard, and did fieldwork in the rain forests

of Costa Rica. But one particular experience from his Cambridge days

settled into his mindlike a dormantspore. Ray had taken aninterest in

the Chinese game of Go, and one day in the late 1970s he was the

recipient of a remarkable one-on-one deconstruction of the ancient
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game, from a beak-nosed, ponytailed hacker working at MIT’s Artificial
Intelligence Lab. To Ray’s astonishment,this person cooly analyzed the
game in biological terms, matter-of-factly mentioning that computer
programs could self-replicate. Ray instantly made the connection be-
tweenself-replication and natural selection and became very excited at
the implications.

At the time, Ray’s computer experience was insufficientto experi-
ment with the concept. And soon, the pressures of his subsequent
passion, rain forest conservation, took precedence. It was not until late
in 1989, when Ray had becomeanassistant professorat the University
of Delaware, that the spore revivified. Ray had become familiar with
workings of personal computers, and he also followed the news of
computerviruses. For somereason, the words of the mystery Goplayer
tumbled back into his head. Could computerviruses be included among
the potential life-forms the hacker had postulated? Could he exploit
these possibilities to perform a digital form of the Darwinism he had
studied so closely this past decade? Ray became determined to find out.
No oneelse at Delaware was muchinterested. When Ray brought up

the idea at a graduate seminar in ecology, “I was virtually laughed out
ofthe room,” hesays. Ray’s colleagues, who had previously voted him
down for tenure, considered the premise wacky. But Raypersisted.
Although he had a grant to study tropical ecologies, he neglected the
project. Instead he hatchedideas for techniques ofsimulating evolution.
“It was something that was obsessing me, and

I

felt I had to go where
the flow ofmy energies were,”’ he says. “Artificial life was the thing that
kept me awakeat night.”
Wondering whether others were similarly impassioned, he posted an

inquiry On various computer networks and wasled to the proceedings
of thefirst artificial life conference. They galvanized Ray. Hearranged
to go to New Mexicoto visit Langton, Farmer, and the other T-13 a-life
researchers to discuss his idea for an open-ended evolutionary system.

It was a good thing he did. Ray’s idea had been to create creatures
consisting of computerinstructions who would “‘live’’ inside the ma-
chine’s core memory and compete for space in that silicon terrain. A
potentially treacherous plan. Although Rayplannedto run his experi-
ment in an isolated personal computer labeled ‘“‘containment facility”
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and protected with metal bars covering the disk drive andserial port,

there was no guarantee that, through negligence or sabotage, his crea-

tures would notbe transferred to other computers. If for instance they

found their way into one ofthe time-sharing mainframes on the Dela-

ware campus, they couldinfect other jobs working on the computer or

even migrate from that machineto the data highways of the interna-

tional computer network. Ray’s experiment could have been the equiv-

alent of importing a deadly predator to an ecology that had evolved no

protection against such an invader.It could be even more destructive

than the notorious “Internet Worm” loosed on the computer nets in

November 1988 by a mischievous Cornell student—almost exactly a

year before Ray’s trip to Los Alamos. Unlike the comparatively primi-

tive worm, Ray’s organisms would be constantly evolving. Natural

selection would favor those organisms most difficult to eradicate, and,

like certain insects immune to DDT, mutated variations ofTom Ray’s

experiment might become permanent, and unwelcome,residents on the

computernets.

Langton and Farmer suggested a modification, based on Turing’s

perception that any digital computer could emulate any other digital

computer. They suggested,in effect, that Ray should create an imagi-

nary computerand simulate its operation within a real computer. That

way, his organisms, in their competition for memory space in a virtual

computer, could use a nonfunctional computer language, one that

worked only in the model. If someone attemptedto liberate the crea-

tures and use them outside this theoretical cage, the code would not

work. |

Ray’s ideas of open-ended evolution depended on the creation of

viable creatures whose subsequent mutations would drive the system

toward a diverse set of more complex creatures. Mutations, however,

were more often destructive than beneficial. Although natural orga-

nisms, with built-in redundancy, can accommodate occasional muta-

tions, computer programs generally cannot. Non-open-endedsimulated

evolution systems such as genetic algorithms and Dawkins-style bi-

omorphsavoided this problem by having an outside force weeding the

population by a predetermined definition of fitness—a neat way to
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sweep away poorly mutated organisms. Because an open-endedsystem
found its ownfitness, Ray would not havethat advantage.

But Ray thought he knew the way around the problem. Again, the
virtual computer concept was the hero. Because an imaginary com-
puter’s machine-language requirements could be made muchless exact-
ing than those ofa real computer, Ray could devise a specialized use of
a computerinstruction set that would be more forgiving to mutations.
The schemerelied on using what Raycalled “electronic templates.”
These were small blocks of computer instructions contained in each
organism; replication occurred when the organism found the opposite
template in the environment. Because the environment was well
stocked with potential matching templates, even mutated organisms
with altered instruction blocks could easily reproduce. In addition, when
an organism searched for complementary templates it was in effect
examining its environment. Thus Ray’s digital organisms had the equiv-
alent of sensory apparatuses. By searching their environment for match-
Ing parts, Ray’s creatures behaved in the spirit of von Neumann’s
imaginary kinematic self-reproducing automaton.

As soon as Ray returned to Delaware, he began creating theartificial
environment he wouldcall Tierra. Previous work in open-endedartifi-
cial evolution focused on theorigin oflife in an attempt to evoke the
behavior of biology from a prebiotic environment. The archetypical
example was the VENUSsimulator, codesigned by Steen Rasmussen,
the Danish physicist who was part of the Los Alamos T-13 group. |
Although Ray considered VENUSinteresting, he felt that it was un-
necessary to begin so early in biological history. “It’s based on the

from quarks!” he says, the dismissive hyperbole underlying his convic-
tion that his approach is superior. ‘““They wantto start with fundamental
particles andgetlife to emerge spontaneously, at the origin oflife level.
Whattheyget is more like chemistry thanlife. There’s no individuality.
It’s a far cry from organisms.”
Ray modeled his system ona later stage in life’s development, the

explosion ofbiological diversity that signaled the onset of the Cambrian
Era, roughly six hundred million years ago. From

a

relative paucity of
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phyla, the earth teemed with unprecedented new life-forms. Ray be-

lieved that his system’s exploitation of open-ended evolution, if not

providing a similar profusion, would demonstrate the mechanics of that

diversification.

The Tierran system was a competition for computer processing time

and memory space. Whereas natural organisms drew energy from the

sun to maintain their order, the digital organisms within the Tierran

environment drew their energy from the virtual computer's central

processing unit (CPU) and used that energy to power the equivalent of

their own energy centers, virtual CPUsassigned to each organism. The

components of the virtual computer—CPU, memory, and operating

system software—were the environment, and the digital creatures them-

selves were assembly-language programs that ran on the computer.

(Assembly language consists of digital instructions read directly by a

computer’s central processor.) Like many other digital creatures, the

code ofTierran organisms acted both as a genotype,in thatthe code was

copied during reproduction, and as a phenotype, in that the execution

of the program performed a function that determinedits fitness. Typi-

cally, executing the code would cause a creature to be copied from one

part ofthe environmentto another. Cell division, or replication, occur-

red when the moveresulted in a daughtercell that required its ownslice

of CPU time. Essentially, Tierran organisms were genetic replication

machines, digital kin to the hypothesized RNA-world life-forms that

supposedly were the ancestors of all known subsequent formsoflife.

All this took place in a block of computer memory that Ray referred

to as “the soup.” The creatures living in the soup were arranged in a

circular queue,lined up toreceive their slice of time from the virtual

computer’s CPU. A function Ray called the “‘reaper” made sure the

soup did notstagnate, policing the population by lopping off the crea-

tures at the top of a separate, linear, “‘reaper queue.” These were gener-

ally the oldest, which climbed upthelist simply by aging. However, by

successfully executing instructions, organisms could postpone their

climb and thus fend off the reaper. Flawed creatures rose quickly up the

queue and reached their fatal peaks after a short existence. But even

relatively fit creatures could not permanently stave off their rise toward
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death because newcomers constantly were introduced below them. In
Tierra, as on earth, death was inevitable.

Evolution in Tierra was driven by several methods ofmutation. First,
the soup itself was subject to noise—random bit flipping that Ray
considered ‘analogous to mutations caused by cosmic rays.” (This in-
sured the demise of even superbly adapted creatures, whose high fitness
eventually would be worn downbythe backgroundbit flipping.) Ray
also implemented mutations during the replication process in order to
emulate genetic variation. Finally, there was a form of mutation that
sometimes caused random alterations ofinstructions whenthecreatures
executed their code. The cumulative effect ofall these mutations was to
vary the Tierran environmentandthe evolutionofits inhabitants each
time the program wasrun; thus Tierra was nota deterministic system but
a probabilistic one.

For two months Ray programmed furiously, and soon after New
Year's Day 1990 he was ready to begin the test runs of Tierra on the
high-powered Toshiba laptop he used for development.

Thefirst time Ray ran Tierra, he did not expect much. “The Los
Alamos people had told meit was goingto be really hard to do whatI
wanted, that it would take years of work,’’ he recalls. “I believed that.
They told me it wouldn’t work with the type ofinstructions I used,
because they’re too brittle, mutations would stop the system. I believed
that, too, but I wantedtotry it, as Chris Langton putit, to find out why
it wouldn’t work. So whenI first ran the system I just wanted to get it
working. I figured out how manyinstructions it would require to
replicate, roundedit off, and that was myinstruction set. Then

I

built
a creature to test the simulator, a creature that self-replicated and didn’t
do anythingelse. I thought, ‘Okay, I'll get the simulator working, and
it'll take me years to get evolution out of the system.’

‘‘But as it turns out, I never had to write anothercreature.”
On January 3, working at night on a table in the bedroom ofhis

apartment while his wife slept, Ray “inoculated” the soup with his
single test organism, eighty instructions long. Hecalled it the “‘Ances-
tor.” Its replications took somewhere over eight hundred instruction
executions each time. The Ancestor and descendants quickly populated
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the soup, until it was 80% full. Once that threshold was attained, the

reaper beganits grim task and ensured that the population would grow

no further.

The experiment proceeded at twelve million instructions per hour.

(Later, using more powerful computers, Tierra would run six times

faster.) Ray tracked the proceedings on a dynamic bar chart, which

identified the organisms and the degree to whichthey proliferated in the

soup. Initially, clones of the Ancestor dominated thoroughly; these

typically replicated only once before dying. Then mutants began to

appear. Thefirst was a strain ofcreatures seventy-nine instructions long.

The horizontal bar on the chart representing those creatures began to

pulse, the bar representing the eighty-instruction Ancestors shrank, and

soon the lower bar inched past the original. Eventually, some bars

directly below those two began pulsing, indicating that even smaller

mutationshadsuccessfully found waystoself-replicate. Ray wasthrilled;

Tierra was displaying the effects of evolution,as variations on the origi-

nal were discovering more successful strategies for coping in the envi-

ronment. The smaller organisms were more successful because their

slightly shorter length allowed them to reproduce while occupyingless

CPUtime. (Ray also had the option of adjusting the system parameters

to reward larger organisms instead of smaller ones.)

Then something very strange happened. In the lowerregionsof the

screen a bar began pulsing. It represented a creature of only forty-five

instructions! With so sparse a genome,a creature could notself-replicate

on its own in Tierra—the process required a minimal numberofinstruc-

tions, probably, Ray thought,in the low sixties. Yet the bar representing

the population offorty-five instructions soon matchedthesize ofthe bar

representing the previous most populous creature. In fact, the two

seemed to be engaged in a tug-of-war. As one pulsed outward,the other

would shrink, and vice versa.

It was obvious what had occurred. A providential mutation had

formed a successful parasite. Although the forty-five-instruction orga-

nism did not contain all the instructions necessary for replication, it

sought out a larger, complete organism asa host and borrowed the host’s

replication code. Because the parasite had fewer instructions to execute

and occupied less CPU time, it had an advantage over complete crea-
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tures andproliferated quickly. But the population of parasites had an
upper limit. If too successful, the parasites would decimate their hosts,
on whom they depended for reproduction. The parasites would suffer
periodic catastrophes as they drove outtheir hosts.

Meanwhile, any host mutations that made it more difficult for para-
sites to usurp the replication abilities were quickly rewarded. One muta-
tion in particular proved cunningly effective in “immunizing”potential
hosts—extra instructions that, in effect, caused the organism to “‘hide”’
from the attacking parasite. Instead of the normal procedure ofperiodi-
cally posting its location in the computer memory, an immunized host
would forgo this step. Parasites depended on seeing this information in
the CPU registers, and, whenthey failed to find it, they would forget
their ownsize and location. Unableto find their host, they could not
reproduce again, andthe host wouldbe liberated. However, to compen-
sate for its failure to noteits size and location in memory,the host had
to undergoa self-examination process after every step in orderto restore
its own “‘self-concept.” That particular function had a high energy
cost—it increased the organism size and required more CPU time—but
the gain in fitness more than compensated.So strains ofimmunizedhosts
emerged and virtually wiped out the forty-five-instruction parasites.

This by no means meantthe endofparasitism. Although thosefirst
invaders were gone,their progeny had mutated into organisms adapted
to this new twist in the environment. This new species of parasite had
the ability to examineitself; so it could “remember” the information
that the host causedit to forget. Once the parasite recalled that informa-
tion it could feast on the host’s replication code with impunity. Adding
this function increased the length of the parasite and cost it vital CPU
time, but, again, the trade-off was beneficial.

Evolutionary arms races were a familiar turf for ecologists such as
Tom Ray. In the natural biosphere, of course, they extended over
evolutionary time, measured in thousands of years. But even a true
believer such as Ray was astonished at howeasily a digital terrain could
generate this same competition. Tierra had developed identical phe-
nomena within ten minutes! Just as remarkable was that his system had
producedthis situation, previously wedded to biology’s domain, with-
out any manipulation whatsoever. |
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“In my wildest dreams that was whatI wanted,” he said. “I didn’t

write the Ancestor with the idea that it was going to produceall this.”

Mostsatisfying to Ray was an effect clearly triggered by Tierra’s open

nature: on its own, the system had shifted the criteria for what con-

stituted a fit organism. Whenthe soupfilled with organisms, the evolu-

tionary landscapeitselfchanged; the digital creatures were forced to seek

novel responsesto their altered circumstances. They did this by reward-

ing what previously would have been hopelessly ineffectual mutations.

The door was opened to unprogrammeddiversity.

“At the outset, selection favors efficiency towards the size bias we set

up,” explains Ray. “But as the system runs, mutants do odd things, and

one of the odd things they do is discover other creatures, then exploit

them. The parasites don’t contain all the information they need to

replicate, but they find that information in their environment, which

now consists of other creatures. And it even turns out they alter each

other’s information, and in that way divert someoneelse’s energy re-

sources into the replication of their own genome. That’s where the

evolution gets interesting, because they’reall still trying to make their

code more efficient, but the bulk ofevolution is coming from exploiting

each other. The organisms have a whole new realm to the fitness

landscape, a new adaptationfor passing on their genes,a specific mecha-

nism not present in the Ancestor. In this case, parasitism, or immunity

to parasitism.”

The emergenceofdiversity in Tierra’s maiden voyage was no anom-

aly. Although each subsequent run differed in some respect, the major

effects kept repeating. Within a few million instructionsparasites would

emerge, and an evolutionary arms race would ensue.

Ray conducted a variety ofexperiments with Tierra. As an alternative

to inoculating the system with a single Ancestor, he injected the soup

with creatures evolved from previous runs. His gene bank soon grew to

over twenty-nine thousand different genotypesofself-replicating orga-

nisms, of over three hundredsizeclasses. Typically, he wouldisolate a

certain host and a certain parasite and see the effects. Then he would sort

and analyze the results with the aid of an accompanying program called

Beagle, honoring the ship on which Darwin voyagedto the Galapagos.

“This sort ofthing should be very interesting to population geneticists,”
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ogy; then, trying the opposite, he removed parasites from the soup. “‘Just
as in natural ecological communities, the presence ofa predator doubles
the diversity,” he says. “The predator [parasite] tends to suppress the
dominant host competitor, and preventsit from competitively excluding
the weaker competitors. So Tierrareflects real ecological communities
In a very nice way.”’

Ray’s other experiments indicated that genetic mutationitself is not
necessarily the driving force behind evolution. In one experiment, he
adjusted the parameters of the system by switching off the background
noise and eliminating mutations from replication. He inoculatedthe
soup with hosts and parasites, and diversity emerged assurely as before.
Heattributedthis to the effect caused by the “sloppy replication” that
occurred when parasites tampered with the host genomes. The host
codes were sometimes broken, causing an effect much like crossover.
Along with Hillis’s findings and related work by Kauffman and Koza,
this result was a further indicator that the evolution oforganic complex-
ity, and possibly sexual reproduction, might owe much to the emer-
gence ofparasites.

Like Hillis and Koza, Ray believed that digital evolution had the
potential to become the engine of practical computer programmingin
the next century. Tierran organisms, like Hillis’s Ramps and Koza’s
LISP creatures, were capable of brilliant feats of code crunching. As
millions of instructions were executed, Tierran organisms optimized
their size, managing to compact very complicated algorithmsinto in-
struction sets much smaller than those with which they began. Ray saw
organisms clock a 5.75-fold increase in efficiency. The organisms per-
formed this wizardry by using the extremely nonintuitive techniques
that come naturally to artificial organisms.
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Oneexampleillustrated how organismsdiscover programmingtricks.

Ray’s creatures commonly hadpieces of code, or templates, to mark

where they began and where they ended. (These acted as a sort of

membraneto isolate the creature from the environment.) But one spe-

cies of creature hit on an idea that enabled it to evolve without using a

template to mark its end. “These creatures,” wrote Ray, “located the

address of the template marking their beginning, and then the address of

a template in the middle of their genome. These two addresses were

then subtracted to calculate half of their size, and this value was multi-

plied by two . . . to calculate their full size.”

Ray’s organisms were capable of more complicated tricks. After one

run offifteen billion instructions, he examined a certain creature he

named “‘72etq.”” (Ray named his organisms by the numberof instruc-

tions in their genotype, followedby threeletters, representing the order

in which the creature appeared in his experiments. Thus the Ancestor

was called 80aaa, and 72etq represented the 3315th different version of

a creature seventy-twoinstructions long.) This particular organism exe-

cuted a series of algorithms that performeda sophisticated optimization

technique called “‘unrolling the loop.” It allowed the creature to operate

with a genomehalfits actual size (thirty-six instructions) by a comphi-

cated but highly compact series of instruction swaps and self-

examinations. According to Ray, “the optimization technique is a very

clever one invented by humans,yetit is implemented in a mixed-up but

functional style that no human would use (unless very intoxicated).””

Ray managed to examine carefully only a small percentage of the

genomesofhis more evolved creatures;it is logical to assumethat others

had devised equally impressive optimization schemes that may or may

not have been worked out by humans. One could speculate that envi-

ronmentslike Tierra mightfind utility as virtual laboratories for generat-

ing the algorithms that would drive the devilishly complex computer

programs run on the supercomputersin the next century.

Still, the most spectacular news from Tierra was its analogue to

biology,particularly in the diversity that emerged when Ray allowedit

to run for mammothsessions. A series of eras unfolded. These appeared

suddenly, after long stretches of stable behavior. (This was further con-

firmation of Hillis’s discovery that punctuated equilibrium emerges
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spontaneously in computational evolution.) In each of these, genetic
explosionserupted noiselessly, marked on the screen only by a profusion
ofdifferent levels on the dynamicbarchart. (Later, one ofRay’s students
improvedthe display so that different organisms would be represented
by colored rods.) Yet to an observer supplied with the knowledge that
the tiny world had undergonea sort of evolutionary apocalypse, these
shifts in light seemed accompanied by Wagnerian fanfares and blinding
flashes oflightning. It was history on the grandest possible scale. |
A typical experimentofthis sort began with an inoculation ofa single

Ancestor. Soon camethe almost inevitable appearance of parasites and
host adaptationsto resist the parasites. For millions ofinstructions, Tierra
maintained a pattern wherein twosets of organisms—descendants of
organismsofaroundeighty instructionsandparasites with around forty-
five instructions—maintained their presence in the soup. Suddenly, a
newsort oforganism arrived and began to dominate. On examining the
code, Ray discovered that these new mutants were hyper-parasites: al-
though derived from the genomesof host organisms, they had devel-
oped an ability to divert the metabolism of the parasites in order to
bolster their own replication function.
The hyper-parasites were remarkable creatures. They were the same

length as the eighty-instruction Ancestor, but subsequent evolutionary
pressure had changed almost one-fourth ofthe genomeandreplaced the
Ancestor’s instructions with others. Those changes greatly enhanced
their fitness by allowing them notonly to replicate but also to fatally
attack their small competitors. This stunt was dispatched in a manner
that would win accolades and envy from any skilled hacker: hyper-
parasites managed to examine themselves constantly to see whether
parasites were present. If a parasite was detected, the hyper-parasite
executed a Pac-Man-style maneuver. Transmogrifying from victim
to victimizer, it diverted the parasite’s CPU time to itself. The assault
was so devastating that its continued repetition drove the parasites to
extinction.

From that point on, cleansed of simple parasites, Tierra went into
another long period ofrelative stability. No longer burdened with
competing parasites, the host organisms, almost all of which were now
hyper-parasites, searched evolutionary space in an attempt to maintain
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the genetic integrity necessary to replicate, while consumingless energy.

The method by which the hyper-parasites accomplished this recalled

experiments by Robert Axelrod and others studying the evolution of

cooperation. Groups of hyper-parasites worked symbiotically, sharing

the code for replication. This new variation could not reproduce on

its own butrelied on similar organisms to provide the missing piece of

the reproductive gene. Like pairs of cooperating participants in the

iterated Prisoner’s Dilemma, each organism realized a benefit from the

symbiosis.

This utopian scenario continued for millions ofinstructions. It was,

however, doomed. Formalized cooperation had become yet another

aspect of the environmentto be exploited by an Opportunistic muta-

tion. In this case, the interloper was a tiny organism that shrewdly

placed itself between two cooperating hyper-parasites and intercepted

the genetic information for replication as it passed from one to the

other. It was as though a quarterback and a halfback, smug in the

knowledge that no defensemen were nearby, had been practicing

handoffs, and suddenly, inexplicably, a defensive back emerged from

nowhere andspirited away the precious football. By commandeering

the replication code in one well-positioned grab, this hyper-hyper-

parasite, or “cheater,” was able to reproduce and thrive with a body

length of only twenty-seven instructions.

“When the hyper-parasites drove the parasites to extinction at around

550 million instructions, I thought that I was never going to see them

again because the defense seemediron-clad,” says Ray. “But the evolu-

tion of sociality made them vulnerable again, and gave the parasites a

way back into the system.”

As each run of Tierra unfolded, Ray and others attuned to the

behavioral mosaic of ecology could recognize biological phenomenaas

they emerged. But, because Tierra waslife of a different sort, a truly

synthetic form oflife, it may have been displaying behavior that was

lifelike but characteristic mainly of an alternative form oflife. Tom Ray

admitted a problem in identifying these possible effects: “What we see

is what we know,” he wrote. “It is likely to take longer before we

appreciate the unique properties of these new life forms.”
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EL.

Tierra’s instant ability to yield the drama, and apparently the dynamics,
ofan evolutionary biosphere changed Ray’s life. The same ecologists at
Delaware whooncerefused him tenure now cameto his office and spent
hours staring at the bars on his computer screen. Ray won tenure.
Others at Delaware, particularly a group of computerscientists, became
committed enthusiasts, and soon Raywasat the forefront of a Newark-
based a-life study group.

Stull, Ray suffered the reluctance ofthose who had difficulty conceiv-
ing lifelike phenomena arising from the bowels ofa computer. When
one official at the Air Force Office for Scientific Research (AFOSR)
reviewed Ray’s work with Tierra, he passed it around and found not
only resistance to supporting the idea but also an edge ofridicule, a
suspicion that Ray had perhaps overly relied on science fiction for his
vision. Some at the AFOSR wondered whether some of the modest
funding devoted to other experiments underthe rubric ofartificial life
should not be reconsidered: Doyne Farmerhadto reassure the funders
that serious science was indeed the agenda ofthis new field.

As Ray continued his work, however, and began circulating his
results among computerscientists and biologists, Tierra gained a level of
respect unprecedented among a-life experiments. IBM, excited about
the possibility oftransferring the methodology ofRay’s organismsto the
principles ofprogramming massivelyparallel computers, awarded him a
$15,000 prize in their supercomputing competition. Ray’s work won
attention from science journals and thelay press. The Santa Fe Institute
invited him to spend six monthsat the institute as a visiting fellow.
Perhaps most impressive of all the reactions came from the ranks of
biologists, most ofwhom normally were wary about the possibilities of
producinglifelike phenomena on computers. When Raypresented his
results to a gathering of evolutionary biologists, he won the respect of
key evolutionary biologists like John Maynard Smith. Ecologist Stephen
P. Hubbell of Princeton,originally a skeptic, attended a seminar on the
work and described it as ‘‘spectacular.”” Another noted biologist, Gra-
ham Bell of McGill University described Ray’s system as “the first
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logical demonstration ofthe validity of the Darwinian theory of evolu-

tion,”’ and wrote a letter touting Ray’s system.

This work has three important uses. First, it is a superb educational

tool. Many people doubt that the theory of evolution is logically

possible. . . . Now, one can simply point to the output of Ray’s

programs; they are the ultimate demonstration ofthe logical coherence

of evolution by selection. Secondly, it seemslikely to provide a supe-

rior method for testing theoretical ideas in evolution, by providing

morerealistic general algorithms than have ever before been available.

Thirdly, it may also represent a general advancein computation,since

it makes it possible to evolve efficient algorithms for any purpose.

_. . 1 am writing to assure you that it . . . ranks among the most

interesting developments in evolutionary theory in the last ten years.

Ray would cheerfully admit the limitationsofhis system—he noted

that several magnitudes ofincreased computer power would be required

to support a system to evolve more complex creatures, one that could

support life-forms with the equivalents of both DNA and RNA,for

instance, or multicellular organisms. But in a sense Tierra had already

accomplished one of Ray’s prime goals—the beginnings of a shift in

perception caused by a successful implementation of open-endedartifi-

cial evolution. An indication of this came in the August 27, 1991,

edition of the New York Times, declaring that, on the heels of Tierran

evolution, “a new round of debate has developed amongscientists as to

where the dividing line between life and non-life maylie.” A debate

long anticipated by the proponents ofartificial life.

Tom Ray had an additional viewpoint on the ability of Tierra to

evolve the workings of biology from a digital soup: “The conclusion I

draw from it,”’ he says, “‘is that virtual life is out there, waiting for us to

create environments for it to evolve into.”
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It still takes a leap offaith to believe that von Neumann’s result meansit
is physically possiblefor a general-purpose computerto reproduceitself. We
have taken the chemicalofliving things and madevitalparts ofliving things
from them (e.g., genes) but we have not yet generalized the secrets of living
things to non-living creations of our own. (By “non-living’’ I mean not a
memberofthe biological kingdom with its history ofevolution, man-made.)
I believe we shall, that the leap offaith is no small one and shall soon require
nofaith. I seeforests ofinorganic trees. I see buildings construct themselves,
growingfrom a single brick-egg each. I see robots reproduce and evolve.

Alvy Ray Smith III



process cast a double illumination: it increased our understanding of
issues of biology, and it advanced our ability to create a biology based
on computation. Although Lindenmayer’s system performedthis trick
in a unique manner, the transformation it effected echoed throughout
the artificial life experience. In a similar manner,the synthesis ofsimple
organisms,insects, and ecologies ofmultiple artificial organisms by vari-
ous means would also bring a-life researchers closer to those bifurcating
goals.

A stocky, grey-haired mustached Hungarian in his sixties, Linden-
mayer had cometo the United States soon after World WarII and in
1956 received a doctorate from Michiganin plant physiology. But his
focusshifted during a postdoctoral study in England with thelogician J.
H. Woodger, an exacting curmudgeon who attempted to bring biology
to heel by axiomatizingits theories. Lindenmayer began thinking about
using mathematical formulas to describe plant development.
The means he used was a formal language theory, a mathematical

grammarpostulated on the theory ofalgorithms. Language theory had

four letters to dictate recipes for complete organisms. Lindenmayer’s
system had something in commonwith cellular automata:it proceeded
by discrete time steps and with every step each symbol would lookfirst
to its neighbors and thento

a

specific rule to see which symbolit would
be in the nexttick ofthe clock. Therules in Lindenmayer’s system relied
on self-similarity in the form of recursion, a programming technique
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where functions can refer to themselves. Theresult could include end-

less simultaneous permutationsbasedona single variable, just as a televi-

sion camera pointed at a monitor repeated an image ad infinitum.

The very assumptionthat a simple algorithmic formula could dare to

predict such a seemingly complicated consequenceas the srowth of a

plant seemed astounding. But, if it could be done, it would further

indicate that the complex self-organizing principles in nature could be

embodied in the pure realm of mathematics and computation.

Evidence that this grammar could indeed be used to modelbiological

processes appeared in an extremely simple example—a Lindenmayer

system that happenedto correspondto the growth pattern ofa particular

form of algae. There were two sorts of cells in the early stages of this

plant form; they differed in size and readiness to divide. In the mathe-

matical model, each cell type was represented by a symbol, either a or

b. Their development was generated by tworules:

Rule 1: an a in the current step becomes ab in the next step

Rule 2: a b in the current step becomesa in the next step

The process began with an initial string, knownas the axiom, in this

example a string of two symbols ab. After the first mestep, the string

was transformedto aba (applyingrule 1 to a yielded ab; applying rule 2

to b yielded a.) One moretime step changed aba to abaab. The timestep

after that yielded abaababa, a fairly complexresult for only three ticks of

the computational clock. Because this particular example corresponded

to a plant form in the natural world, one could check the veracity of the

mathematical system by peering into a microscope to see whether the

algae developed in the same wayas the system.(It did.)

The rulesets formedin his language came to be knownas L-systems.

Lindenmayer intended L-systems to be used purely as mathematical

constructs describing the developmentsystems of plants. Using L-sys-

tems, one could create endless sets of production rules that may or may

not have any correspondence to occurrences in nature.

In 1970, however, two of his graduate students at the University of

Utrecht in the Netherlands, Ben Hesper and Pauline Hogeweg, won-

dered whether L-systems could be exploited to actually draw botanic
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forms. Theresults ofthese experiments would not be plants themselves,
nor would they be models ofplants, but a hybrid, an offspring ofnature
and logic.

Hesper and Hogeweg spent two weeks working on a computer
program that wouldinterpret an L-system rule set to generate something
that branched and formedlike a plant. “The L-Systems themselves don’t
generate images,” explains Hogeweg. “They generate long strings.
There’s a second step necessary to generate images. You must interpret
the string as branches and so on.”

Thestring they eventually turned overto the attendantat a computer
lab some miles way (the computer at Utrecht had insufficient power)
consisted of aroundfive thousand symbols. Then,as was the procedure,
the attendant fed the cards into the computer and waited until the
machine processed the program. Some hours later, the researchers re-
turned to the lab to find an extremely baffled attendant. Instead of a
series of numbers, the output of this program lookedlike . . . a fern! A
rather elegantone, too. Because it was not really modeled on a plant but
was a result of morphogenesis from an L-system string, the researchers
decidedto call the structure a “‘morpheme.”’
Hogeweg and Hesperrushed back to Utrecht to show the morpheme

to Lindenmayer himself: His reaction was chilly. “He didn’t like our
work,”’ recalls Hogeweg. “‘Hefelt that L-Systems were part of mathe-
matical theory, and you shouldn’t dilute them by producingpictures. He
wasn't excited then about pursuing that avenue.” Even after the two
doctoral students published an influential paper in 1974that exhaustively
studieda set of3,584 L-system trees, Lindenmayer regarded morphemes
as a charming yet inconsequential curiosity; he used the image on his
Christmas cards.

One person who became drawn to Lindenmayer’s work after seeing
a plantlike morpheme was a young mathematician named Alvy Ray
Smith III. During the late 1960s Smith, disenchanted by the military use
of computers, sought more benign applications: he settled on cellular
automata andself-reproducing systems. His Ph.D. thesis was a brilliant
proofthat onecould construct a universal computer in a 1-D CA.But,
as Smith became moreestablishedin his field, he once again questioned
his ownrole.
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Pauline Hogeweg and Ben Hesper generated these ferns by

Lindenmayer’s mathematical development systems.
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“I wanted to think of computers as more than just sterile, number-
crunching things,” he explains. “There seemed three ways to realize
this—using them to understand consciousness, using them to understand
life, or applying them to create art. One of the reasons I had been
attracted to cellular automata was that they seemedtoberelated to living
things—like von Neumann’s self-reproducing automaton—and that
you could think of the visual configurations of CAs evolving through
time as graphics or movies. But I felt isolated. Here we were in the
middle of protests over Vietnam, and I was working on something |
could discuss with maybe 100 people in the world—ifthat many. What
was the contributionto the greater good?”

In 1974 Smith ventured to a conference in Noordwijkerhout, Neth-
erlands, cochaired by Lindenmayer. It was held at a daffodil ranch where
flowersfilled the eye from horizon to horizon. Someone handed Smith
a paper with one ofHogeweg’s images. It touched something very deep
in Smith. Later, he would recall how he was moved by the image—
something that wasa plant but nota plant. Something obviously lifelike
but not alive. And there was a morepersonal reasonforhis fascination:
Smith’s father had been a botanist.

Soon after that conference, Smith visited the fabled research center,

point was drawingpictures, and he drew on his background in formal
languages and CAsto becomeoneofthe world’s best-known computer-
graphicsartists, winningcult status as one ofthe prime wizards in George
Lucas’s special effects operation. But he neverlost interest in using these
pragmatic processes to shed light on the essence ofnatural systems—and
on life itself. As Smith wrote in a 1982 technical memo:

Geometric computation is a path to understanding natural phenom-
ena. The question is: How far does form divorced from physics go
towards a profound knowledge? Consider man: How much under-
standing of his shape can be gleaned from treating the embryo as a
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living geometric computation? Thethesis is that pure computed form

is a way of understanding the complexity of lifeforms and natural

shapes.

Smith saw two powerful meansofproducing these complex, natural-

seeming results from simple rules. One involved the fractal geometry

first devised by Benoit Mandelbrot of IBM. Fractals relied on self-

similarity to generate infinite complexity. Although Smith found the

spirit of fractals inspiring and instructive, he chose to pursue the other

approach, “‘parallel graph languages” based on L-systems. Hecalled

these “‘graftals.”” Smith designed software that utilized L-systems, along

with other techniques, to generate structures fortrees, flowers, bushes,

and herbs; after a process of electronic touch-up, or “rendering,” these

images would appear on the screen with stunning verisimilitude.

Symbols interpreted could become stands of Aspen spruce, blinding

fields ofwildflowers,or the restful daffodils Smith recalled from Noord-

wijkerhout.

In no way, ofcourse, were the artificial plants alive. Yet their inescap-

able realism encouraged observers to believe that the machinery of life

was within human grasp.

“We can getartificial forms of sufficient complexity that we human

beings say it looks like life—butifyou lookat the details, it’s nowhere

close,” says Smith. “It doesn’t grow like life, it doesn’t have the inner

structure that organisms have. But whatit tells me is that even though

natural plants look complex and hard to understand, they might be

understandable, because the rules that drive their form probably are not

as hard as they might appearto beatfirst. In other words, you can get

the complexity of plants fairly simply.”

Peter Oppenheimer was another computerscientist experimenting

with systems that generated botanic forms. He believed that creating

artificial ferns and trees could illuminate the natural mechanism ofself-

graduate at Princeton. However, the computational-tree-generating

system he implemented at the New York Institute of Technology uti-

lized other algorithms as well. A few knobs controlled parameters for
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tree branching, growthrate, degree of twistiness, and otherfactors. An
equivalent to mutation was provided in that he allowed random varia-
tion in the interpretation ofthe parameters. “This way, I could use one
seed to create a whole forest of trees,’ he says. In the sense that the

in the process. Rather, like Hogeweg and Hesper’s L-systems and
Smith’s graftals, Oppenheimer’s system made trees from symbols by
what wasessentially a morphogenetic algorithm,like that at work inside
living cells that interpreted DNAinstructions.
An odd thing happened to Oppenheimer as he producedimageafter

Image of near-photographic renderings of trees. As he turned thedials
to tune the parameters so that his trees would look natural, he began to
sense the geometry that formed them. Hefelt he had rediscovered a path
trod by biology. Both plants and his own mathematical representations
ofthem followedthis trajectory, propelled by rules of self-organization.

Oppenheimer had stumbled on a concept that had engaged von
Neumann, Langton, Farmer, and any numberofa-lifers: life consists not
of aggregations of matter, but processes that organize that matter. Yet-
uncharted principles of complexity direct matter toward life, and the

twisting the knobs of mathematics and information, we can create im-
ages—and eventually organisms—that derive from those principles with
equal fidelity.

In the mid-1980s theselife artists were joined by Przemyslaw Prusin-
kiewicz, an Eastern European computerscientist then teaching at the
University ofRegina in Canada. Prusinkiewicz had been working with
fractals until he read one of Alvy Ray Smith’s papers; he immediately
wrote his own program utilizing L-systems to generate structures. In
1986, he met Lindenmayer. “That was a turning point,” he oncesaid
of that meeting. “I was no longer happy with pretty pictures—I wanted
plants based on nature.”

By then, Lindenmayer no longer frowned on interpretations of his
system that yielded pretty pictures. He understood that the mechanics of
visual representation of L-systems were helpful in realizing his original
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goal—creating an analogueof plant development that would shedlight

on the natural process. Thus, when one used L-systems to create a

realistic-looking daisy, apple twig, or unclassifiable hybrid, the result was

not only a striking visual image but also a graph representing some

progress achieved in mimicking the gears ofnature. “‘In this sense,” he

wrote with Prusinkiewicz, “interactive computer graphics complements

the mathematical theory of L-systems by providing a tool for formulat-

until Lindenmayer died in 1990. They used a sophisticated program-

ming system dubbed a “virtual laboratory,” that interpreted L-system

symbols to striking effect. Various L-systems rule sets proved amenable

to an impressive variety of botanic forms. Certain rules mimicked

growth, branching,leaf formation, and budding. Combined with geo-

metric information, these could be rendered into gorgeous imagesof, for

instance, sunflowers, herbs, and palm trees.

Beautiful as these were, it was the developmental process itself that

most interested the pair. L-systems were capable ofreflecting the actual

growth of plants according to various conditions, like food intake and

weathervariables. In a neutral environment, assuming a steady source of

sunlight, water, and ground nutrients, the plant could be generated cell

by cell, as it grew in regular patterns or, using probabilistic rules,

sprouted with the uniqueness oneseesin the field. The virtual environ-

ment could be manipulated; rules could be written to limit growth

accordingto the presence of a certain value, which might be viewed as

the amountofsunlight, of photosynthesis, or of a growth hormone.

Lindenmayer and Prusinkiewicz andtheir students also began simu-

lating the cellular development of organisms. Using L-systems, 1t was

possible to begin with a single cell, to grow a multicellular embryo, and

to proceed from there. The evidence of a photo-realist L-systems sun-

flower indicated that nature took a similar tack in creating its own

sunflower. An even stronger case for this confluence was made by

viewingthe stages ofembryonic development ofan artificial fern resem-

bling Microsorium linguaeforme, in an experiment by Martin de Boer.

Using a “map L-system’’ that grew and divided cells by rules that

depended on which combinationsofcell neighbors pushed against the
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artificial gametophyte’s form was determined by the complex interac-
tion of new cells pushing against recently divided cells. “The result is
particularly interesting from a biological perspective,” Prusinkiewicz
and Lindenmayer wrote, “since it indicates that genetically controlled
cell division patterns play an importantrole in determining the shape of
a structure.’

It also indicated an intriguing direction ofartificial life: to begin with
a single artificial cell and, using a set of principles or rules, to grow an
actual being. The embryological path toartificial life.

‘That sameideafirst inspired Stewart Wilson, an otherwise rather con-
servative computer scientist, to begin experimenting in artificial life.
“T'd been thinking aboutit for a long time,” he recalls, ‘“‘and finally put
together a concept where you’d have these mules, starting from an egg.
It occurred to me that you could base that whole developmentprocess
on a kind of program, a production-system program .. . and this

trine. So [in this development system], ifyou’re

a

fertilized egg, you look
at your program andif you find there’s nobody around you, you split
and becometwocells. At that stage it’s deterministic, butlater it isn’t

It grow and you havethis aggregate ofcells. And then you have some
wayofrating that forfitness. You can do this, because now you have
a phenotype.”’

241



ARTIFICIAL LIFE

existence. The procedure would have been an ambitious schemeand,as

he readily admits, too much an undertaking for that time.

Trained as an electrical engineer and a physicist, Wilson became

increasingly fascinated by information theory and its relationship to

learning. How did an organism adapt to its surroundings? Could com-

puter programs perform the same sorts of adaptation? In 1979 he came

across a reference to the work ofJohn Holland. Wilson ventured into

the MIT computersciencelibrary in the basement of the Technology

Square building—next doorto Polaroid, where Wilson then worked as

a researcher—and found Holland’s book. Althoughit was four years old,

it had yet to be checked out. The GA approachfascinated Wilson, but

he became even more excited by a subsequent development ofHolland:

a much-expanded adaptation scheme called “classifier systems.” This

seemed to Wilson an ideal substrate for autonomousartificial creatures.

Classifier systems not only made use of the process of evolution but also

allowed for individual learning.

John Holland had been halfway through writing his study of adapta-

tion when he began contemplating such a system. “I was very optimistic

aboutgenetic algorithms,” he nowrecalls. “An awful lot ofmy intuition

was tied to genetics. And yet, in the back of my mind,I asked myself,

Why can’t [the creature] change as it goes along? If it doesn’t like [the

process of changingits] nucleotides, why can’t it use something else?”’

That something else was a means of adapting on an individual level

rather than on a population level over a period of generations. In order

to do this, Holland’s organisms would require some sort of sensory

input, so they could sample their environment. One day Holland was

lunching with a student and discussing different ways an artificial orga-

nism mightclassify its surroundings. The student asked how one might

make such an organism so it would be able to makejudgments aboutthe

environmentadaptively, so that it could adjust to its surroundings. In

other words, how could it learn? Hollandrealized that his system should

answer that question and more: artificial organisms should not only

classify their environment butalso act on what they classified.

Holland came up with classifier systems, a self-contained scheme for

machine learning. Unlike genetic algorithms,classifiers were not closely

based on nature: they integrated GAs, pure logic, economic theory, and
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computerscience. “I wanted a general purpose learning system,” Hol-
landsays. ‘‘So I felt free to borrow from whatever.”
The shift was significant. Not only were GAs powerful but also they

were implicit commentators on the evolutionary process. If a scientist
conducted a genetic algorithm experimentthat yielded fascinating re-
sults, it was reasonable to wonder whether a corresponding phenome-

kinship with life as we know it. However, their extended powers quali-
fied them as objects of study in and of themselves. Like many of the
lifelike artificial systemsthat researchers would undoubtedly create in the
next decades, they ventured deeper into the realm ofalternate life and
drew not only on biology but also on other sorts of known complex
systems.

Holland’s experiment began, as did most canonical a-life ventures,
with strings of random numbers. These werethe classifiers themselves.
Classifiers were rules, interpreted in what wascalled a condition-action,
or if-then, format. The classifiers activated ““messages,’’ which were
stored on a messagelist, much like a bulletin board at a local supermar-
ket. Messages werepieces ofinformation:a fact about the environment
or a report of the success of a previous action.
The classifier system used ‘detectors’ to perceive facts aboutits

environmentand, encodingthosefacts as messages, posted them on the
message board. If the messages on the board satisfied the conditions of
classifier rules, then action would be taken—in the form of posting a
message in the next step. (This could trigger the posting of further
messages in subsequent steps.) Finally, certain messages would trigger
activation of output devices called “effectors,” which would cause the

bone, the flow seemed obvious: Input, message reading and posting,
output. The middle step, ofcourse, was what translated information into
the behaviors oflife.

Holland likedto illustrate the process by postulating a fanciful clas-
sifier system that simulated some of the behaviors of a frog. The goals
of the frog were getting food and avoiding predators. Holland pro-
vided the followinglist ofrules, previously discovered by theclassify-
ing process:
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Rules

IF small, flying object to left THEN send @.

IF small, flying object to right THENsend %.

IF small, flying object centered THENsend.¢.

IF large, looming object THENsend!.

IF no large looming object THEN send *.

IF * and @ THEN movehead 15° left.

IF * and % THEN movehead 15° nght.

IE * and ¢ THEN movein direction head pointing.

IF ! THEN moverapidly away from direction head pointing.

Message List

(Holds most recent messages)

x @.

In this example, theartificial frog had already used the detector function

to post messages on the messagelist. The presence ofthe messages * and

@ on thelist indicated that there was a small flying object to the

left—probably a nice, juicy insect—andthat no large looming object—

the earmark ofa predator—waspresent. Thejoint presence ofthose two

messages would triggerthe sixth rule on thelist, and then the frog would

moveits head to theleft. It would then be in position to eat the small

flying object.

If moving its head to the left proved a successful stratagem in this

situation, then the system would rewardit. Positive feedback. Indeed,

after every step, the rule set underwentan evaluation. A problem arose,

however: when a result was obtained from following the entire set of

rules, how did the system know whichspecific rules to reward? Holland

would illustrate this problem with the example of a triple jump in

checkers: this triumphant move would reap instant reward, but in all

probability it had been the result of several clever preceeding moves.

Those, too, should be rewarded. In somecases, there could be hundreds

of complex rules associated with a positive result, some of the rules

irrelevant, some subtly flawed, and others deceptively effective.

Holland addressed this problem by treating the rules as bidders in a
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market economy. He viewedeachrule as a small business. Its product
was a message. Each timea rule appeared it made an implicit “‘bid’’ for
its business, like a construction company makinga bid for a job. The
value of the bid was paid off to other rules with which it became
associated. Those other rules became,in effect, companiesthat provided
business supplies—the equivalent of building materials—to that first
rule. In order for a rule to survive,its payoff had to exceed the amount
invested by its bid. If a set of rules ‘“‘won,” the payoff was given to the
virtual contractor, which in turn would pay off its suppliers.

Underthis system,a short, effective rule might go into business with
many other rules. Those rules could, in turn, find more complicated
partners and become ‘“‘chained”’ to those. Those mightbe chainedtostill
others. But no matter how complicated the rules became, the payoff
would find its way back tothefirst, elementary rule. The intermediate
rules acted as middlemen,receiving a large payoff and then distributing

Rule List

A schematic of a classifier
system. One can view the

  
  

 

  

   
  

input upper box as a creature. Its
mossngee ouput detectors get information from

a“ the environment, which it

handles by a process ofposting
and matching messagesINPUT .

. . . .(information- (edluste reinetha) effectors which (classifiers). This determines its
an (Generatesnownes) nn behavior. After each step it

evaluates the result of its
behavior and modifies its
internal rules. Ultimately, the
most efficacious rules win out,
including powerful new rules
generated by an evolutionary
process. The creature adapts to
its environment.
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portionsofit to their “suppliers.” One might also view the amount due

to the first rule as a lump sum handled through

a

series ofintermediaries,

whopassed it down theline like a hot dog at a ballgame or a bucket of

water directed toward a raging inferno by an old-timefire-fighting

squad. Holland had the latter example in mind when he dubbed this

credit-allocation process “‘the bucket brigade algorithm.” “I had read

some account of Benjamin Franklin’s aboutcolonial bucket brigades,

and it seemedlike the kind of thing that would describe the process,”

he explains. It proved reliably efficacious in allowing powerful rules to

proliferate and maintain their presence. In Holland’s terminology, these

small yet essential rules formed the building blocks on which any com-

plex adaptive system relied. In the case of the frog classifier system listed

above, the final rule listed, which kept the frog away from deadly

predators, was of obviousvalue in all situations. As an economic entity,

it had potential for a booming business. |

The other majortoolin classifier systems, of course, was the genetic

algorithm. The best rules were mated, their offspring given the opportu-

nity to competein the behavioral bazaar. Because of the GA’s ability to

produce novelvariations, the mating process allowed notonly the reten-

tion of successful rules and the elimination of poor ones but also the

potential creation ofbetter and better rules. Thus, in the frog classifier

system, if a crossover or mutation found a rule that read “IF * and @

THEN move head 15° left and moveforward’’ was more successful than

its abbreviated parent, that rule would make successful bids and. prolifer-

ate in the community of classifiers.

Typically, Holland devised classifier systems without implementing

them on a computer. “It was always in my mind that it should be

implementable,”’ he says. “It was algorithmic, in a funnysense, like a

computer program. But my tendency 1s to shape the problem in a

mathematical sense, with pencil and paper.” Someofthe students in a

psychology seminar he wasteaching then wantedto useclassifier systems

to simulate organisms on a computer. Oneof these students, Judith

Reitman, had a student ofher own who was a programmer, and on her

suggestion this student began programming Holland’s system to repre-
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sent an organism running through a maze. The classifer-system creature
not only negotiated its way through the labyrinth but developed maze-
runningskills that stood it in good stead when placed in an entirely
different maze.

Another Holland disciple, Lashon Booker, more fully implemented
the idea of an artificial creature in a classifier system. Booker’s creature,
dubbed ““GOFER,,”venturedinto a two-dimensional world containing
“food”and “poison.” It was GOFER’s task to distinguish between the
two while remaining well fed. GOFER discovered a set of rules that
allowed it to classify the objects in its universe and was able, by acting
on those rules, both to eat heartily and to avoid digital salmonella.

For Stewart Wilson, all this was a revelation. Helived and workedin
Cambridge, Massachusetts, probably the world centerofartificial intelli-
genceresearch. Yet here was a computable system that allowed comput-
ers to independently develop ingenious solutions to difficult
problems—andthe AI establishment ignoredit!

Wiulson’sinitial foray in classifier systems addressed a problem hewas
working on at Polaroid. Although he successfully applied Holland’s
system to computervision, directing a video camera to center and focus
on an objectwithinits field ofvision, Wilson wanted to exploreclassifier
systemsin a different, purer way. After his appointmentin 1981 to a post
at the Rowland Institute, an elite research center funded by Polaroid
founder Edward Land, he enjoyed freedom to pursue any avenue he
chose—even an experimentas strange as creating an artificial animal. In
an unintentionally Kafka-esque twist, Wilson referred to his creature
only as ‘‘*,”’

The creature * had simple needs: it lived to eat. But like many
mammals, it arrived in its world with undeveloped cognitive survival
tools. Before it could feast on the artificial meals that Wilson had spread
over the forestlike terrain like Hansel’s bread crumbs, * had to learn
what food was. Also, *’s ability to roam was impaired by objects repre-
senting trees or rocks. Its vision was extremely limited, but its sensing
was enhancedbya sort ofradar—an analogue, Wilson figured, to a sense
ofsmell—thatallowedit to determine what wasinits immediate neigh-
borhood.It also had pleasure and pain sensors. Whenit bit something
that turned outto be food, * would get a rush ofpleasure akin to a bite
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of a cheeseburgerafter some hours offasting. Biting a rock, or bumping

into a tree, would hurt.

In a digital equivalent of an Outward Bound program, Wilson

dropped * into the environment and observed,hands off, as it attempted

to survive.

“He actually leamed,’’ says Wilson of *. “He createdclassifiers. After

he bumpedinto a rock he got painful feedback, but since there was often

food around rocks, he learned not only that he shouldn’t knock intoit,

but that he shouldn’t wander away, because there’s probably goingto be

food at the other side. And when * was out in the open, he developed

this interesting sort ofbehavior. He wouldn’t move randomly, but drift

in one direction, which incidentally is the best strategy for someone 1n

a fog. And as soon as he saw something, he would respond immediately.

If it was food he’d immediately eat it, and if it was a rock, he’d proceed

aroundit.”

One might notethat instead of using the indefinite pronoun, Wilson

referred to * as “he.” Sheepishly, he acknowledgesthis tendency. “You

anthromorphize things so quickly with these little creatures,” he ex-

plains. “You cheer him on.”

Wilson was most proudof* for its—or his—ability to defer immedi-

ate gratification, to chain its strategies by virtue of a bucket-brigade

algorithm. * came to understand that sometimes one must endure unre-

warding circumstances before enjoying fulfillment. Although Wilson

claimed that * was the first artificial creature to learn this lesson, he

believed that the phenomenon was an expected consequence of using

classifier systems. ‘““These are systems with positive feedback,’ he ex-

plains. ‘‘And that’s what a Darwinian system is—somethingthat’s good

just gets better. It’s a multiple optimization system in that a creature has

to be able to deal with lots of different things in the world, and can’t

devoteall its resources to dealing with the food problem. Otherwise it’s

going to die. So it gets awfully good at the problem.”

How good? Before any learning, an artificial creature in Wilson’s

virtual forest would require an average of forty-onesteps to reach food.

Onthe otherhand, *, after one thousandtimesteps, generally managed

to dinein less than six steps. After another two thousandsteps * had the

ability to procure a meal every four and a half steps.
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Wilson was so impressed with *’s developmentofsurvival skills that
his own view ofartificial intelligence and machinelearningrefocused.
He nowjudgedclassical AI as misguided. Instead, he hadcast his lot with
the alternate strategy—using emergent processes to make machines be-
have with the novelty and cunning of nature’s creations. Thinking the
term “‘artificial animal” as somewhat verbose, he called his idea the
“animat” path towardartificial intelligence.

“In standard AI, basically, the effort seems to have been to take some
fragment of high human competence like playing chess or proving
theorems, and makea program that can do that,” he says. “And you do
have these marvelous programsthat play chess very well, and so on. But
they’re not very good at reasoning and search—they’re not adaptive. They
can't generalize. Ifyou say to one ofthese chess programs, ‘OK,nowlet’s
play checkers,’ they can’t. Also, they don’t deal with the perceptual
problem—achess program mighthaveinputs about what’s on the game
board, but there’s nothingvisual aboutit. You have beautiful crystalline
results like excellent chess, but the programsare very brittle. The animat
approachsays,‘Let’sstart very differently—let’s try to maintain the holism
all the way. Let’s go downto a very low level, as low as we haveto go, to
the point where we have a complete environment, a somewhatrealistic
simulated environment.’ And then you gradually complicateit, you make
it more and moredifficult, and the creatures adapt. Sometimes you may
have to add to thearchitectures ofthe creatures, but you dothat only as
little as necessary—the gameis to use as much adaptation aspossible all the
wayout.So then, the Holy Grail is that you would get to the higherlevel,
the humanstuff. That’s the animatpath to AI.”

Or, as Wilsonstated in a paper about animats,

build up gradually to the human... . We hope to reach human
intelligence from below instead of piecemeal through high-level
competences as in Standard AI.

This marched lockstep with Langton’s observation that artificial life
must be pursued from the bottom up, a conviction now shared by almost
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all of the community devoted to generating a computational biology

with lifelike digital creatures.

Wilson was delighted that his own experiments found their way into

a developing new discipline. Yet he worried that the quick growth of

a-life studies mightresult in a redundancy of effort, or, equally bad, in

an accumulation of experiments whose validity cannot be evaluated

because ofthe inability to compare them to other experiments. “What

wereally need is a theory of environments,” he says. “Researchers will

show you their artificial organisms, and these things may be doing

great—reproducing, surviving, and everything—but then you say, ‘So

what?’ What problem have you solved? We need a taxonomy—weneed

to know what we meanby an easy environment, and what we mean by

a difficult one. And we also needa theory ofcreature efficiency. So that

if you have two different creatures you can put them in the same

environment and compare. Andifthey do well, then you complicate the

environment. You would then be able to know whether or not a

creature represents a step forward.”

Wilson therefore proposed a means by which one can precisely judge

the performance ofanartificial creature within its environment. Some-

one might be able to claim, “I have used an environment of type x in

the Alpha family tree of environments, and the creature I have placed in

this survives with an efficiency value of E, a level previously unat-

tained.”’ Although James Crutchfield, as we have seen, wasalso inter-

ested in establishing benchmark environments, his purpose was directed

more toward creating an index of complexity rather than toward

a

level

playing field for opposing artificial organisms. Wilson hoped that a

well-calibrated set of universes, ascending in difficulty, would actually

spur the creation ofcreatures that venture closer and closer to the realm

of the living.

‘Wilson did not say, however, at what point we can definitively state

that on survival in a certain environment—universe JW-419 or what-

ever—a creature must be deemedalive. He had no commentasto which

point in the hierarchy ofartificial worlds determined a space where

living artificial organisms would emerge. He believed that one could

make progress toward understanding and simulating the behavioroflife
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Others were less circumspect. Among these were Norman Packard,
the childhoodfriend of Doyne Farmer, creator of CA snowflakes and
currently a physicist at the Centerfor Complex Systems Researchat the
University ofIllinois. Packard was very muchin agreement with Wilson
that a standard means of measuring progress in artificial environments
was required,buthepreferredto link the quest with a frank attempt to
define the nature ofthe phenomenon. He began a paper cowritten with
philosopher Mark Bedau with a confrontational gauntlet:

Whatis life? How canit be recognized? In an everyday context these
questions seem tantalizingly clear—acatis alive and a rock is not. But
formalizing this distinction is difficult especially if the formalizationis
to be used in empirical measurements. In this Paper we present an
empirically measurablestatistical quality that distinguisheslife.

For Packard and Bedau, a professor at Reed College, the matter was
simple: “We believe that life is a property that an organism has if and
only if it is a memberof an evolving biological system of organisms
interacting with each other and with their environment,” they wrote.
They saw life as a property associated with that environment; an orga-
nism was notalive in the long term, but a temporary participant in an
evolving biosphere. Although the property of aliveness was complex,
three aspects were identifiable: an information-processing apparatus, a
capability to perform functions by way of a complex structure, and an
ability over generations to modify and innovate on thatstructure spon-
taneously. The latter, of course, referred to evolution.
To Packard and Bedau, the key measure ofaliveness was an evalua-

tion ofwhat theycalled “evolutionary activity.” They quantified this by
measuring the movementofbeneficial, or useful, genes within the gene
poolofa particular species. Useful genes were those that increased the
fitness of organisms that inherited them. “The continual retention of
new useful genetic material indicates that the population is continually
enhancing the gene pool,” they explained.
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Packard and Bedau identified this movement of beneficial genes as

“telic waves.” The term was controversial because use of the word

“teleology” bordered on taboo among biologists—evolution did not

proceed according to a predefined purpose but by incremental increases

in fitness driven by the requirements of survival in the particular envi-

ronment. Here, the term wasusedin a different manner: “The teleology

in telic waves presupposes no deity directing things behind the scene,”’

wrote the coauthors. The teleology was a posteriori—Monday morning

quarterbacking on the genes that, in retrospect, worked to improve the

species. Reflecting on these genetic changes, one could say that they

were purposeful without admitting that it was anyone’s intent to bring

about this purpose. Or so went the rhetorical footwork of Packard and

Bedau.

Looking farther into the future, they envisioned a circumstance

where purposefulness does have its place. Unlike populations driven

solely by evolution, the organisms in these models would be sophis-

ticated enough to act on explicit goals—precisely as human beings

perform acts with conscious intent, so would these. This would be

knownas “mental teleology,” where adaptations indeed come aboutto

fulfill a predetermined purpose.In those cases, the telic waves would be

based not on survival but on psychological adaptations or on learning.

Theparticular computer model designed by Packard in thelate 1980s

had no such mental teleology. If artificial environments were rated on

a scale of theme parks, this would fall far short of Disneyland, although

it might standas an interesting roadside attraction. Organismsthat Pack-

ard referred to as “bugs” were placed in a world dotted with heaps of

food, from which the bugs could draw energy. The bugs had sufficient

intelligence to seek and identify food, but every movementdrained their

energy. Whenits energy wastotally drained, the bug died. Onthe other

hand, when a bug accumulated a certain amount offood, it reproduced.

In one version of this biosphere, reproduction was asexual, and the

genomeofthe offspring was subject to mutation.In a later version, two

bugs sexually reproduced and the offspring’s genome was a product of

mutation and crossover. As the bugs evolved, and increased their ability

to gather food in the most efficient manner, Packard and Bedau mea-

sured the movementofthe genesin the entire gene pool by charting the
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telic waves. This was done by evaluatingand measuring the activity of
those genes that increasedthefitness of the bug population. By publish-
ing the results of their calculations, they implicitly invited others to
subject their own environments to the sametest.

Packard and Bedau thoughtthat the telic wave idea not only pro-
moted a benchmark to compare artificial environments but also pro-
vided the equivalent ofa Turingtest to determine whatisalive. “In this
context,” they wrote, “‘positive activity would indicate an entity’s con-
tinual incorporation of new behavioral or psychological patterns of
activity.”’ The presenceoftelic waves ina system would be evidencethat
life is present. Real life. One could even evaluate natural biological
populations with this measure, although the task would be difficult
because wetlife, unlike artificiallife, selfishly shrouds its genetic content
from researchers who wish to measure genetic movement.

Did this mean that Packard and Bedau considered somethingas ele-
mentary as the energy-seeking digital bugs in their model actually alive?
When posed with the question, Packard was equivocal. ‘““When the
simulation ends I don’t feel a big sense of remorse because they’re all
dead,” he admits. ‘““But when the simulationis going I do identify them
as having a certain element of living-ness, even thoughit’s crude. I’ve
madea list of things that I think characterize a living system and I think
theysatisfy all thosecriteria.”

Skeptics would rush to disagreement. But Packard wasless interested
in dazzling doubters and carbaquists than in determining

a

litmustest for
a quality that indicates thatlife lives here. He thoughtthat the pursuit was
a logical step from his work in Stephen Wolfram’s CA lab at the Institute
for Advanced Study. The link between CAs and evolving organismsin
artificial ecosystems, he claimed, was that both were complex dynamic
systems with an elementofcreativity. “The snowflakes were a physical
system that displayedcertain levels ofcreativity,” he says. ‘“There is some
aspect of the dynamics of cellular automata that could conceivably
generate an endless stream of novel complex formsthat get frozen into
those snowflakes. I think a version ofthat is what’s happeninginlife,
too. Thereis something aboutthelife process that’s creating this endless
stream ofdiverse complex forms, andit’s that processI really wantto get
a handle on.”
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Ei.

That same urge motivated DavidJefferson. He was a lanky, intense, and

sometimes acerbic computerscientist whoin the early 1980s was teach-

ing at the University of Southern California. He had already established

himself in his field by his “time warp”’ parallel simulation algorithm.

Then, pursuing a long-held interest in evolution, he came across Daw-

kins’s book The Selfish Gene and became fascinated with the workings

ofbiology, which, it now seemed obviousto him, wereso closely linked

to the mechanicsof information. Heset about creating his ownsilicon

world, populated by whathe called “‘programinals.”” The term may have

sounded like a slick brainstorm from a toy marketer, but Jefferson was

serious about his task. Although he consideredartificial intelligence to

be a valuable pursuit, he believed that artificial life would ultimately be

a more powerful quest. “I’m interested in life, not intelligence,” he

explains.‘‘Intelligence to me is incredibly exciting, yet a footnotein the

history oflife. One thing that drives me1s the desire to create life inside

these computers: To create life from non-life.”

His first experiment was a simple competition betweenpredators and

prey. Jefferson’s digital organisms, strings of LISP code, represented

foxes and rabbits. He assumed that as his animals evolved, he would

generate a classic predator-prey arms race—foxes would thrive until

rabbits developed a response to the threat, whereupon a variant of the

foxes would develop a subsequent response. Ad infinitum. Atfirst, his

system did respond in that manner but then seemed to follow its own

emergent agenda. The rabbit population would suddenly dissolve, and

the food-deprived foxes would follow them into extinction. Jefferson

was not sufficiently trained as a biologist to understand what has happen-

ing, but he thoughthe had his answer after reading a paper by evolution-

ary biologist Robert May about instability in ecosystems: only in very

large populations could Jefferson attain the classic oscillation he had

hoped for. The relatively small populations he was working with

courted unstable oscillations and sudden extinctions—they were atrisk,

exactly like small populations in the natural world.

Jefferson tried further variations. At onepoint, he devised a system in

which he created two similar types of animals, equal in fighting ability
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and pitted against each other. He assumedthat the populations of the
two species would fluctuate as one gained a temporary evolutionary
advantage andanother developeda response. Tohis surprise, one species
quickly dominated, forcing the other into extinction. Poring overthe
code for the organisms of the victorious species, he discovered that
the difference had been a devastatingly advantageous point mutation in
the genomeofthe winningspecies. Paradoxically, this particular muta-
tion (like most mutationssuffered by organisms) weakenedthe individ-
ual animals—it turned off their powers oflocomotion. These creatures
remainedfixed in their initial location, as immobile as rocks. But the
specific parameters ofJefferson’s system madethis handicap beneficial.
By not moving, the animals avoided venturingintothe field ofvision
of potential foes. They conserved energy and waited for enemies to
come to them, whereupon they vanquished them.

There were twolessonshere. First was a general lesson aboutartificial
ecosystems: it bordered on impossibility to create these with absolute
fidelity to the natural world. However, excellent debugging could, and
inevitably would, be performed by the organisms themselves. If a pro-
grammererredin designing an environment and exposedthe possibility
that a certain adaptation would exploit the error, one could count on an
evolving digital organism seizing the Opportunity, as surely as a high-
priced drug lawyer detects a loophole in a search warrant. Jefferson’s
realization ofthis first lesson led to the second thing he learned from his
programinals: he obviously needed to integrate more biological knowl-
edge into hisefforts, preferably in collaboration with a biologist.
The problem was resolved when Jefferson met Charles Taylor, a

population biologist at UCLA. Chuck Taylor had long harboreda secret
passion—adesire to trace the evolution of consciousness. He was fas-

campus in Riverside, he subtly shifted his professional focus to address
that topic. Interviewing for the position at UCLA, he wisely refrained
from mentioning his willingness to use an unconventional tool—the
computer—to pursue his goals. Only after he wassafely hired did he
begin in earnest. He read up on Turing machines and AI. A friend
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pointed him to Holland’s work, and he was thrilled by the genetic

algorithm. By 1982, when Jefferson appeared with news ofhis digital

organisms, Taylor already realized that artificial life could become a

powerful meansofpracticing biology.Jefferson offered Taylor not only

computational skill but also a methodology by which scientists might

incrementally discover the process by which consciousness and mind

emerged. Ideally, the a-life simulations could wind an ascending path

toward the critical complexity required for consciousness.

SoonJeffersonjoined Taylor on the UCLAfaculty. Thepair drew on

funding directed through a new quasi department, Cognitive Science.

Taylor also introducedJefferson to an informal weekly conclave of

faculty, the Center for the Study of Evolution and the Ongin of Life,

which provided a means for researchers to present even unorthodox

theoriesin life sciences to a constructively critical group oftop biologists,

physicists, astronomers, psychologists, and other assorted wise folk. With

Taylor’s help and with the aid of a group of graduate students who

helped bear the programming burden,Jefferson transformedhis system

into what he andhis colleagues described as ‘‘a powerful new kind of

tool for biological simulation, capable of modeling population behavior

and evolution toa finerlevel of detail than any other tool we knowof.”

Theycalled it RAM. The name waslifted outofJefferson's programinal

program.

The program was essentially a malleable digital environment and

construction kit for strings of LISP code that represented animals. Each

time the system ticked off a step, the RAM animals could perform any

or all of the following functions:

Examine the nearby environment and possibly some of the animals

found there.

Onthebasis ofthe nearby environment,the time,its own age, and

its state (including genesandpast history) decide, perhaps probabilisti-

cally, what actions to take next.

Take action, including anyorall of the following: update statistics,

move, update its own. memory, modify the environment or other

animals, reproduce, or die.
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minethesite based on issues such as distance, the numberofmales, and
the competition for those males. Others insisted that the male grouse
determine lek formation.
Working with Robert Gibson, a UCLA grouse specialist, the RAM

team simulated the process on an Apollo workstation. “Such simulations
cannotprovethat oneset offactors actually underlies the process,” they
emphasized. “‘But they can test whether or not a specified explanation
is able to describe what is observed, and they can demonstrate that
certain hypothesized explanations are inadequate.’ Drawing from data
compiled at leks in the Sierra Nevada, they postulated a population of
two hundred grouse, divided equally between male and female, at-

grouse were unableto construct anything approachingthenaturaldistri-
bution of leks. Thus the male-dominance-pattern theory of lek forma-
tion was convincingly refuted—it may be mathematically impossible.
After testing several variables, the RAM team found that the lek-
formation patterns that best matched those in the field were the result
of implementing manyofthe variables hypothesized by various zoolo-
gists. This suggested, but ofcourse did not prove, that grouse considered
a variety ofdifferentcriteria in forming leks, with females in the driver’s
seat.
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Soon, UCLA wasonits way to becoming a major site in the pursuit

of a-life. Its leaders made an oddpair: Taylor was moderate and contem-

plative, with a bent toward ruminating on the metaphysical and ethical

ramifications of their work. He enjoyed speakingat length on the issues

involved in defining life. Jefferson, on the other hand, took a firmly

logical view characteristic of computer scientists beginning with von

Neumann. To him,the definition-of-life issue was a red herring.If one

considered an organism aliveif it replicated, grew, and evolved, then

artificial life was here, now, in computers at UCLA. If one demanded

that life must display the complexity of natural organisms, thenartificial

life was not here now. Ourpresentdigital beings, he wouldsay, fell short

ofeven the complexity ofbacterium,missing by a factor often thousand,

maybe even a million. But Jefferson believed that in twenty or thirty

years this level could be matched in silico.

The group included two or three other faculty members, among

them Michael Dyer, the head of the university's Al lab. These were

joined by several graduate students drawnto the study andcreation of

a-life, which was beginning to evolve its own reputation as a hot spe-

cialty in computerscience, if not biology. Grant moneyarrived, allow-

ing the cognitive science group to purchase a $1,200,000 Connection

Machine. Using the aggregate might of 16,384 processors, Jefferson and

company created the next iteration of their a-life system.

They called it Genesys.

Although Genesys was designed to accommodate the sort of direct

simulation of natural phenomena performed on RAM, the massive

parallelism of the Connection Machine madeit particularly tempting to

create original creatures on Genesys and to use them to explore issues

relevantto the nature oflife itself, particularly evolution. One ofthe first

Genesys experiments was Tracker, the trail-following experiment that

demonstrated the power ofGAswith artificial ants followingan irregular

path called “the John Muir Trail.” Through generations of evolution,

the ants developedthe ability to follow thetrail perfectly.

After proving itself on the John Muir Trail, Tracker was the basis of

an interesting experiment with implications for evolutionary biologists.

From New Mexico, Chris Langton devised a second trail, called “‘the

Santa Fe Trail’ and challenged a population ofants bred on curves and
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generations, the John Muirants did not perform as well on the Santa Fe
Trail as the descendants of a control group of “baby”’ ants that began
from scratch on that road. The John Muirants had overspecialized and
in the process hadlost the diversity necessary to draw on different genes
in the poolto tackle the challenges of a newtrail. |
Once again, an environmental loophole asserted itself, aided by the

fact that evolution seeks the shortest path to survival. TheJohn Muir ants
‘“weren’t optimized for general trail-following, just followingthis one,”
explainsJefferson. “They werewilling to use any heuristic, any shortcut,
any piece ofjunk code that worked onthat onetrail. A similar situation
would betrying to evolvereptiles to live undersea. You’d probably do
better starting with amphibians. So here’s an example ofmacroevolution
which nobodyreally doubted, butas far as I know, nobody could really
exhibit, either. Until we did.” |

Although Tracker successfully utilized the genetic algorithm to
evolve tracking behaviorin artificial ants,it ignored whatwasfora-lifers
probably the mostinteresting aspect of ants: social behavior. An ant
colony can be viewed as a superorganism;its constituent members are
morelike organs ofa single being thanself-interested individuals. Work-
Ing cooperatively, the ants in the colony divide their labors, specialize
their tasks, pursue shared goals, and adaptto the circumstances of their
environment. Yetthere is no central controller, no dispatcher ant who
distributesa task list each morning. The individualants act on their own,
and emerging from their local behavioris a seemingly coordinated global
behavior. ‘The total behavioral repertory ofan individual ant workeris
relatively simple, consisting accordingto species of no more than 20 to
45 acts,’ wrote E. O. Wilson and Bert Hdélldobler. “Yet the behavior
of the colony as a whole is vastly more complex.” This dovetailed so
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In this same spirit, and on the heels of Tracker, the a-life cadre at

UCLA was eager to conduct more experiments with computational

ants. When a graduate biology seminar in ant behavior was offered, half

the students were computerscientists. One ofthese was Robert Collins,

recruited into the a-life group early in 1989 by Jefferson, who was

looking for someone with the skills to program the Connection Ma-

chine. “‘He was honest with me,”recalls Collins. ““He said ifthis artificial

life stuffturns out to be reasonable, I’d be in a greatposition.Ifeveryone

laughs at it and nothing comesoutofit, I might not be in such a great

position.”’ Collins took the risk and participated in Tracker. Working

with Jefferson, as well as with the T-13 group at Los Alamos, Collins

began to build a general-purpose simulator, which originally imple-

mented a specific simulation—ants. “We wanted something that was

qualitatively life-like that ifyou showeda videoto biologists they would

say that artificial life might have somethingtoit,”’ says Collins. Instead

of the population ofindividual ants following trails in Tracker, this new

project, dubbed ‘“‘AntFarm,” would use colonies of ants. The hope was

to evoke emergent,self-organizing behavior.

AntFarm was probably the most complex a-life experiment to date.

Certainly the Connection Machineat Boelter Hall was the busiestdigital

anthill in history.It originally simulated the activities of 16,384 colonies,

each of which consisted of 128 members, for a total of 2,097,152 ants.

The ants themselves had genomes of 25,590 bits, compared to the

Tracker ants’ measly 450-bit genomes. (All ants in a given colony had

the same genome,but, because each ant experienced the environment

differently, it would display unique behavior.) These longer chromo-

somes, when interpreted by the AntFarm program, gave the ants the

potential to sense information about their environmentover a sixteen-

- by-sixteen-cell grid, including information about the location of food

and pheromone chemicals dropped by other ants. The AntFarm crea-

tures were able to forage, pick up food, drop pheromones, and use a

mental compass to find their way back to the nest.

Collins and Jefferson implementedseveral innovative techniques in

AntEarm. Thefirst was a variation on the standard GA. The UCLA team

was dissatisfied with the way mates were chosen:although effective, the

technique of randomly choosing partners for the fittest organisms had
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little to do with the way natural organisms choose mates. Important
factors such as geographical proximity were left out. AntFarm used a
modified mating procedure. Each successful colony would sendits ants
out on two “random walks” in the neighborhood ofthe nest. During
these strolls, they would inevitably pass several other colonies where
they would note the amountoffood successfully foraged and stored in
the nest. After each walk, the scouts would choose the colony with the
most opulent larder. Those two winners were mated. This broughtthe
GAcloser in line with nature’s methodology.

Another important advance in AntFarm was the organisms’ “‘repre-
sentation’’—the schemeused to makedigits behave like insects. Instead

neural network” (ANN). This wasa thicket of connections determined
by heredity, notsubject to learning over the course ofan individual ant’s
lifetime. The neural network was designed so that the ants would have
the potential for a wide range ofbehavior, but it would take generations
of successful searching through evolutionary space before the ants
evolved to the point where they could exploit the ANNto thefullest.

Whentheartificial ant colonies werefirst set into motion, however,
the ants were unable to develop any foragingskills. Collins programmed
a more sophisticated sort of neural network, but even this did not
produceants capable of foraging. The problem wassolved bysplitting
the foraging skill into two components—-searching for food and trans-
porting food back to the nest. The ants were given a complete neural
network for each component. With that two-tiered implementation,
the AntFarm coloniessent out soldiers who evolved the ability to locate
the food, to secure it, and to transport it to the nest.

ing than viewinga literal ant farm. Becausethe terrain of digital anthills
covered a one-thousand-cell square grid, only a portion was shownat
a given time. The ants were represented by red dots. They wandered
around a boundedportion of the screen, usually in a northeasterly
direction,until they chanced on green dots. These signified a packet of
food. A differentdisplay, inconveniently placedin a different room, gave
the statistics on each anthill, so any attempt to understand what hap-
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pened on the screen was punctuated by frequent exits to verify the

success of a given colony or the population in general.

Eventually, some red dots began behavingin a different manner. No

longerdrifting, they went more directly to the food. These were citizens

ofwell-evolved colonies. Meanwhile, other colonies were floundering.

They would dispatch ants who missed the food, who located food but

failed to grasp it, or who grasped the food but zipped past the nestlike

a downhill putt from an overeager golfer. These colonies had little

chance of being selected for mating at the end of the five-hundred-

time-step generation.

As the time steps and generations mounted, the ant genomes began

to demonstrate the beneficial effects of natural selection. From an aver-

age of zero food units stored in the initial configuration, when the

genomes were random numbers, the ants began to improvetheir ability

to gather food. Some colonies gathered twoorthree units by the fifth

generation. Eleven or twelve units a few generations later. By the

thousandth generation, some colonies had hoarded two hundredfifty

or three hundred units. The colonies had evolved good strategies for

foraging.

Collins and Jefferson were frustrated, however, at the failure of a

cooperative strategy to emerge. After nearly a year of computationalant

farming, the artificial bugs still foraged as individuals, unwilling to leave

pheromonetrails to alert their brothers to the presence of a food source.

(This process was called recruitment.) Any pheromonerelease seemed

random, a result of a mutation or crossover effect that contributed

nothing to fitness. Collins ran tests to verify that, using the ANNs,the

artificial ants were genetically capable of recruitment. But they had yet

to discoverthat location in evolutionary space that allowed this trait to

flower.

There may have been a kind explanation for this, suggested by obser-

vation of natural ants. A study by entomologists had indicated that in

certain cases, particularly when food patches were small, ant colonies did

best by sending only a few workers out to gather the food; these foraged

alone and neglected pheromone communication. AntFarm may have

presented those same conditions. On the other hand, the system might

have harbored some flaw—a bug,so to speak—that prevented coopera-
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tion from emerging. The immediate challenge for Collins was determin-

After AntFarm, the UCLA team planned to engage in experiments
that took the measure oftherelative advantages of evolution and learn-
ing. DavidJefferson in particular believed that comparedto the elephant
of evolution, learning—the cognitive adaptation achieved in a single
lifetime—wasa relative mouse. “Lookatlife on Earth,”’ hesays. “‘Most
ofit is microorganisms. Muchofthe remaining biomassis plants. A small
fraction, multicellular animals. Most of those don’t do anything wecall
learning. While life, through evolution, adapts exquisitely well to its
ecological environment, most oflife doesn’t do anything resembling
learning.”

To Jefferson, learning mightbe part oflife but apparently not one on
whichscientists should concentrate when devising creatures. Evolution
was wherethegold resided. “It’s not our goal,” he says, “to either study
learning or evolve learning unless for some reason that should be an
interesting part of evolution.”

Quite coincidentally, a researcher on the otherside ofthe continent has
run an a-life experimentthat intimatedprecisely whatJefferson doubted:
learning is an interesting part of evolution. In a tiny, third-floor warren
at Bellcore in Morristown, NewJersey, computerscientist David Ackley
created anartificial life world named “AL.” This two-dimensional uni-
verse was populated by genetically reproducing artificiallife-formscalled
“agents.””

As Ackley andhis collaborator at Bellcore, Michael Littman, designed
AL, it was a rigorous survival test for these hapless agents. At one
hundred by one hundredcells, AL was not particularly spacious, and the
agents’ freedom wasfurther constricted by a smattering of walls both
inside the world and onits boundaries. If an agent smacked into a wall,
it would suffer damage. Carnivores roamedtheland, damaging agents
more seriously—too many encounters and the agents would die. The
agents could seek shelter from their foes in trees, but, if a tree died,it
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would crush the agent huddled underneath. Although agents couldfeast

on dead carnivores and, in a pinch, the corpses of other agents, their

main fare wasplants. Besides dinner, the plants were indirect causes of

reproduction; when sufficiently energized by food consumption, the

agents reproduced.

The AL agents, however, had an advantage. Unlike residents of other

evolutionary a-life ecosystems, they possessed neural networkbrains that

allowed them to learn within a single generation.

Standard genetic theory dating from Mendel dictated that anything an

organism learned duringa lifetime was not physically passed on to its

offspring. The opposite view was Lamarckism, whichstated that acquired

characteristics could be passed on to subsequent generations. AL, of

course, did notfollow the discredited theories ofLamarck.Forinstance,if

an agentlearnedthata certain response helped it avoid the carnivores, that

information mighthelp the agent survive but would not be reflected in the

genetic material passed on to its daughter. Yet, according to Ackley,

learning such a technique could have an impact on evolution. This was due

to a controversial theory called the Baldwin Effect, which was one ofthe

emergent phenomena Ackley hoped to evoke in AL.

OVERVIEW LANDSCAPE VIEW INPUT TO AGENT

AL (world) 100x100 cell non-toroidal, asynchronousupdates by type. (closeup of southwestcorner)

Simulation endsafter 1 million steps or agent extinction.

(trees) Infrequent birth and death. Provide shelter for agents from Al=|

||

carnivores but no food. Only one agent allowedpertree.

Occupantkilled if tree dies.

@ (plants) Geometric growth up to a crowdinglimit. Eaten only by

agents. Walkedoverby carnivores. Minimum of50 plants alive.

&(carnivores) Controlled by hand-coded FSA. Inputis direction to

closest agent directly N,S,E or W no further than 6 cells away.

Cause damage to agents. Eat dead agents. Reproduce when

sufficiently nourished. Damaged by agents. Die if sufficiently

damagedor hungry. New one addedto world every 200 steps.

) (agents) Controlled by genetically-coded neural network. Input is

representation of closest object directly N,S,E & W no further

than 4 cells away (see figure). Outputis 2 bits coding action

direction N,S,E, or W. Eat plants and caneat dead agents and

carnivores. Reproduce whensufficiently nourished passing genes bias

to offspring (see text). Damaged by carnivores, walls and other

agents. Die if sufficiently damaged or hungry. bn UNIT VALUES

A (walls) Delimit outer edges of world and are scattered inside. OOele|@

Permanent. Cause minor damageto agents.
0 1

energy

        
David Ackley’s world of AL. Tothe left is a description of the world; the center

shows a part of the world itself; and to the right is a chart showing what the agent

perceives. These perceptions trigger the agent’s action network, which determinesits

behavior in response to this input.
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The Baldwin Effect was namedafter J. M. Baldwin,a biologist who
formulated the idea almost a hundred years ago. It suggested that Dar-
winian evolution could be shaped by what individuals learned in a
lifetime. Consistent with the rejection ofLamarckism,it postulated that
the learningitselfwas not passed on; rather, there were physical tenden-
cies rewarded by organisms who had learned certain skills, and these
changedthecriteria forfitness. |
“The ideais pretty simple,” Ackley says, using his favorite example.

“Suppose you have a population of squirrels that way back in the foggy
past learned to jump from tree to tree. One population mightlearn to
do this and another population doesn’t. The population that learned
tree-jumping will get evolutionarily rewarded for things that help the
task, like developing webbing between thetoes, while the other popula-
tion won’t get rewarded forthat. So looking at this over evolutionary
time, you can nowseethat the population that used to learn to jump
from tree to tree becomes bom to jump from tree to tree. What the
ancestors learned, the descendants inherited.It’s like Lamarckian evolu-
tion, exceptit’s not in fact Lamarckian.It’s just that you’re changing the
fitness function by something you learned.”’

Ackley devised an algorithm for what he called “evolutionary rein-
forcement learning” (ERL). As dictated by their genetic code, agents
would actually develop two neural networks: an “action network” that
would convert sensory input into behaviors, and an “evaluation net-
work”that would also draw from sensory input, by using that informa-
tion to judge whethera particularsituation was good or bad. Depending
on the feedback it received after acting on that judgment, the agent
would reinforce, or modify, its behavior.

Using ERL, Ackley’s organisms began life with a set of rules for
behavior, which would evolve overa period ofgenerations. These rules
had variables in them thatallowed for adaptive learning. An example of
this mechanism would be found in Adam, an agent so named because
it fathered 272 generations that came to dominate an entire AL popula-
tion, Adam beganlife with a fairly capable behavioral network, with one
glaring flaw—whenfaced with a predator to its south, it insisted on
moving in that same direction. During the early days of Adam’s exis-
tence, this unfortunate peccadillo almost led to disaster—only luck al-
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lowedit to escape a southerly predator that was on the verge ofbashing

it to a pulp. This experience, however, led Adam to observe thatits

response could befairly judged as “bad.” It adjusted its networkso that

the next time a predator lurked to its south, it would perform

a

less

misguided behavior, onethat avoided ugly confrontations and would be

evaluated as good and therefore reinforced. This worked well, and

Adam soon wasparentto the first ofits four children, and the dynasty

was on its way.

Obviously, any agent who acquired similar wisdom would have a

decided advantage over an agent whohad not divined a clever protocol

for comingface to face with a predator. Because agents do not commu-

nicate with each other, however, this vital information would not be

passed onto an agent’s offspring in a digital equivalentofa father-to-son

chat. A descendant would be able to include that maneuverin its bag of

survival tricks only by learning the response from scratch or experienc-

ing a mutation that would affect its genome so that the response was

present as a born instinct. A third option would be a long-term process:

the Baldwin Effect.

Ackley’s first experiments with AL life-forms were an attempt to

determinetherelative worth oflearning, evolution, or a combination of

the two. He seeded AL with a population of agents with variousparts

of their neural net system disabled, either the learning or evolutionary

abilities, or both. In addition, he created a “‘brainless”’ group; stripped of

their senses, these unfortunates wandered obliviously throughout the

terrain, like blind Lears. Finally, he loosed onthelandscape fully enabled

agents. All four species were tested for one hundred runs, each run

beginning from a random arrangementof objects and organisms. The

results showedthat, indeed, AL wasa rather inhospitable world. Fewer

than 18% ofall the populations avoidedextinction before ten thousand

time steps, and only a tenth of those survived until the millionth time

step. As one might expect, the brainless agents did poorly. But, surpris-

ingly, the two species capable of evolution but not learning did even

worse. It appears that these species became extinct before natural selec-

tion had an opportunity to assert itself in the genomes of the species

capable of taking advantage of evolution. This suspicion was confirmed

by the comparative performance of the two best species, the learning-
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only agents and the ERL agents. For approximately a half-million time
steps they did equally well in maintaining anactive population, but from
that point and beyond those with both evolution and learning capabili-
ties—the ERL group—managedtothrivein the perilous world ofAL.
Only ERLagents survived until the millionth time step. Seven popula-
tions outof the original ERL one hundredlived to commemoratethis
anniversary.

When Ackley and Littman soughtto identify interesting phenomena
in the course of those experiments, including evidence of the Baldwin
Effect, it was those latter populations that provided the richest fossil
record. One runin particular caught Ackley’s fancy. Atits muillionth-step
birthday, it showednosigns of flagging. Ackley and Littman decided to

populations rose and ebbed, and almost a week ofcontinuous computer
cycles later, the last remaining agent, scion of 3,216 generations, finally
succumbed.

This megarun of AL produced an embarrassmentofdata becauseit
retained the life history and genetic makeup of thousands of agents.
Trying to discern the relative significance of learning and evolution in
the ERL agents, Ackley and Littman analyzed the difference between
genomesbefore andafter six hundred thousand time steps, when evolu-
tionary changes beganclearly asserting themselves. Isolating the genes
that determined the agents’ response to plants, the food source in the
environment, they found anintriguingclue.Initially, the agents seemed
to rely on learning to determine that the plants were good. That infor-
mation was then converted to action—the agents approached the plants.
But genomesanalyzedinlater stages ofthe run showedthatthis learning
function had atrophied. Instead, from the moment they were born,these
more evolved agents knew instinctually that plants were good to eat.
They did not haveto learn that usefulfact. Ackley and Littman conjec-
tured that the shift was a result of the Baldwin Effect:

In the beginning era of successful populations, agents possess (mostly
by luck) learning genestelling them plants are good. This is a big
benefit for survival since the agents learn to eat, leading to energy
increases, and eventually offspring. From timeto time, action-related
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mutations occur that cause agents to approach plants instinctively.

These changesare favored by natural selection because they avoid the

shortcoming ofeach new agent havingto rediscover that plants’ good-

ness meansit should approach them. Agents begin to eat at birth and

are better able to survive. . .. What once had to be acquired, was now

inherited by around the three million step mark.

That was not the only majordiscovery in this AL run. When exhum-

ing the data concerning the population’s eventual demise, Ackley and

Littman discovered a phenomenonasstrange as the Baldwin Effect, one

apparently undescribed in any of the biologicalliterature. They called it

“shielding.” It appeared in the genes that determined how the agent

evaluates carnivores. Because encounters with the roaming beasts invari-

ably damage, and sometimeskill, agents, one would expect the crusty

survivors oflater evolutionary periodsto havea fairly dim view of these

predators. Yet there was a disturbing period very late in the megarun,

lasting over a million time steps, during which the agents in the surviving

population considered the carnivores good. They liked them.

“How could this have cometo be?” Ackley wondered. ‘““Why would

natural selection have permitted such unfit organisms to proliferate?”

The reason seemedto lie in the extremely high fitness of the instinct-

based “‘action network”of these agents. Their genes dictated an inborn

desire to run from the predators. The agents were free to assumethat

carnivores were good because they never lingered in the presence of

predators and thusthey fortuituously avoidedtesting this assumption. In

addition, the carnivore population, living in an unfortunate time of

well-evolved agents, was limited by the difficulty of procuring a decent

meal. As a result those agents who, by mutation orcrossover, inherited

a learning network incapable of making correct predator evaluations,

were not punished by natural selection. As Ackley and Littman putit,

“The well-adapted action network apparently shielded the maladapted

learning network from thefitness function.”

This effect should not be viewedas a protective shield, but one that

preservedanillusory, perhaps dangerous, assumption. Aslong asthefirst

line of defense against the predators, the action network, remained

intact, the agents would not have to face the consequences of this

268



Artificial Flora, Fauna, and Ecologies

From that point, the learning genes that contributed to the original
acquisition of the characteristic will be shielded. Inevitably, the genes
atrophy, as evolution removes the necessity to learn something thatis
nowaninherenttrait. As the ability to learn thattrait genetically deterio-
rates, the organismitselfbecomesat risk. “Whennaturalselection is the
only source offeedback,” write Ackley and Littman, ‘shielding and goal
regression are potential hazards wherever the Baldwin Effectis a poten-
tial benefit.”

Shielding need not be a hazard, however. “Shielding frees up the
learning mechanism, which in this case was bad, because there was
nothing else to learn in AL—the agents here had basically beaten their
world,” says Ackley, referring to shielding in the carnivore learning net.
“Butif these guys had more powerful brains, they could learn agricul-
ture, for example. They could limittheir feeding so they’d keep a good
supply offoodall over the place, and they could support a population
two or three times the previoussize.”
The implication was obvious. Once our computers support a more

powerful digital ecosystem, we will see much more complex emergent
behavior from ourartificial creatures—even such epochal phenomenaas
a shift from a foraging society to an entirely unprogrammedagricultural
economy. Onerecalls John Horton Conway on the possibility ofa very
large Life population “evolving, reproducing, squabbling overterritory.
Getting cleverer and cleverer. Writing learned Ph.D theses.”

These were not the only lessons of AL. At one point, Ackley won-
dered what would happen when he created the perfect agent—one
whose response to every situation was optimal. He then seeded the
environmentwiththese tiber-agents and compared their performanceto
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a successful, but not perfectly evolved, population of ERL-equipped

agents. Indeed, the population of hand-optimized agents did very well,

surviving through many thousands oftime steps. However, they did not

equal the success of the control group of evolved yet imperfect agents.

Thelatter frequently sustained a population size of between thirty and

sixty agents alive at a given point, while the putative superagents usually

numbered betweenten and thirty, and sometimes sank to single digits.

“They were a plague ontheland,”said Ackley of his hand-engineered

wonders. They would eat plants before they flowered. The sloppier

population, whose behaviors were determined by many generations of

evolution and learning, may not have always responded appropriately in

every situation, but their very imprecision was better suited to maintain-

ing a thriving community; the combination of evolution and learning

enabled them to “‘find”a solution to their environment that was supe-

rior to the best that a human could endow them with.

Despite his impressive findings, Ackley had few hopes that evolution-

ary biologists would rapidly seize on his work and attemptto verify it

in the field. A predecessor to his experiment, a computer simulation of

the Baldwin Effect performed by Geoff Hinton andS. J. Nowlan, had

wonlittle attention from that camp.Instead, emboldenedby the encour-

aging responseto a video heran at the second a-life conference in 1990,

Ackley intended to push forward with even more ambitious experi-

ments in a-life. His stated beliefs were that humans are machines of a

sort, that the humanbrain is an information processor, and that creating

artificial life will enable us to place ourselves more squarely in the

pantheon of complex systems. As he and Littman declared,

Computers, like microscopes, are instruments of empirical science.

Multi-scale simulation models offer a way ofcasting light on elusive

phenomenathat hides in the cracks betweenlevels. . . . The powerof

the computational microscope is growingby leaps and bounds, and we

are just beginning to learn howto useit.
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I wish to build completely autonomous mobile agents that co-exist in the
world with humans, and are seen by those humansas intelligent beings in
their own right. I will call such agents Creatures. This is my intellectual
motivation. I have no particular interest in demonstrating how human
beings work, although humans,like other animals, are interesting objects of
study in this endeavoras they are successful autonomous agents. I have no
particular interest in applications; it seems clear to me that if my goals can
be met then the range ofapplicationsfor such Creatures will be limited only
by our(or their) imaginations. I have no particular interest in the philosoph-
ical implications of Creatures, although clearly there will be significant
implications. |

Rodney A. Brooks



penthouse, as it were, of one of two blockish towers overlooking the
sprawl of Cambridge, Massachusetts’s silicon-industrial complex. Butit
seems more like the basement. Short on windows and elbow room,the
maze of workrooms, hallways, and common spaces 1s permeated by a
constant hum from an armada of mainframe computers. On the ninth
floor, it always seemslike midnight, the feverish hour favored by those
driven by desire, not duty.
Only on the ninth floor is access limited to those with keys. The

security measure is a vestige of the days, over twenty years ago, when
protesters correlated the engines of computation with the war machine
grinding in rice paddies and jungles 9,000 miles distant. Instability may
have ruled the streets, but the sixties were the glory days of the ninth
floor. There, the best computer programmers in the world virtually
invented what would become an international counterculture centered
on the free exchangeofinformation. Theylaid the digital foundation for
what would be knownasclassical AI. They coded chess programs, LISP,
worlds made of colored blocks, and Conway’s Life. It was a citadel of
logic, protected from the messiness of the real world.

In the early 1990s, the ninthfloor is in some ways a mirror-image
Weltanschauung of its predecessor because it employs logic, in the bot-
tom-upspirit ofartificial life, to cope with the messy world. Its creators
sometimescall their work “‘real artificial life.”

Its exemplar is Genghis, a foot-long robot cockroach.Its body is a
metal chassis loaded with computer chips; its legs are angled rods with
rubber-tip socks; its head is a row of six sensors lined up like lights on
a police car roof, and protruding from its thorax are twostiff wires that
act as whiskers. Genghis may have benefited from its creators’ indul-
gence in whimsy,butit also represents an iconoclastic new paradigm in
robotics.

Genghis rests belly to the floor. But, when powerflows from its
on-board battery, it comes to. . . life. With a ponderous whir, Genghis
pauses an instant and then pushesits legs to the ground until it stands.
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Then it begins to walk. A leg on each side goes outward and forward,

like a healthy kick from a slow-motion Rockette, andplantsitselfon the

ground. The process1s repeated, with two different legs going forward.

With high-pitched grinding of the twelve on-board motors, Genghis

makes its way across the room,its gait appearing as a somewhat more

deliberate variation of a real insect’s walk.

All is well until it encounters a telephone book placed in its path

specifically to annoyIt. Genghis’s front leg on theleft hits the side as it

begins its movement forward. All motion halts. Then the leg moves

again, this time angled more steeply upward. The widened angle is

sufficient to brace the leg on the cover of the book. With what seems

like deliberate, confident movements, Genghis manages to climb over

the book and makeits way to the far edge. When it movesits front leg

forward and can notfeel the ground, it pauses, startled, as if sensing that

it is about to dive into an empty swimmingpool. Its rear legs stiffen,

angling its entire body so that this time the leg can touch the ground.

With dignified caution, Genghis lowers itselffrom the book and contin-

uesits stroll.

No oneever“told” Genghisspecifically how to deal with telephone

books or other impediments to its motion. Indeed, the very concept of

walking is at best a vague abstraction to the robot. Dealing with obsta-

cles, and maintaining its locomotive rhythm, are emergent behaviors

based on simple rules. The robot’s movements come from the complex,

self-organizing consequences of simple rules. Just like an interesting

configuration in a cellular automaton.

Or an animal.

Genghis is both mascot and vindication for the Mobile Robot (Mobot)

Group at MIT’s Artificial Intelligence Laboratory. Although not the

mostelaborate application of the Mobotlab’s principles—it was built in

twelve weeks, mainly by an undergraduate —Genghis has drawnatten-

tion from quartersas varied as the DepartmentofDefense and the David

Letterman Show. More important than what it does is what it repre-

sents—a subtle but potentially debilitating blow to traditional robotics
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and AI, in favor of the ideology ofartificial life. The source, if not the
sorcerer of this, is an Australian expatriate who did notrealize he was a
flag bearer ofa-life until the movement embraced him.
Born in 1954, Brooks grew up in Adelaide. At ten he built his first

Moravec wasbuilding a mobile robot. His goal was to place the robot
on oneside of a room and have it maneuverits way across the room,
avoidingtrash cans and desks. He approached the problem with standard
assumptions. In orderto negotiate its journey successfully, the machine

would “know”things. It would know whatits goal was. It would know
what an obstacle was and recognize one whenit saw it. It would know
how to movearoundobstacles. Ifsuch a wondrous consummation were
ever to occur, it would know whenit completedits task.
Moravec was extremely dedicated and clever,ifa little odd. He lived

in a makeshift warren in Stanford’s Al building, between the ceilingtiles
and the roof. His robot was among the best and smartest autonomous
robots the world had ever seen. Yet Brooks could not help wondering
whether there might not be a better way to go about making such
creatures. “It would sit and compute for fifteen minutes and move a
meter, then sit and computeforfifteen minutes more,’ Brooksrecalls,
with unseemly amusement. “That seemed long for me. I didn’t wanta
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real slow robot. I wanted one that wasfaster to begin with. I wanted a

robot to be in the world, with real people around.”

Brooks, infact, was disgusted with the timidity of the entire field.

Researchers would point with pride to robots who could figure out

which blocks to move in a sandbox. Placed in rooms with pure black

backdrops—settings that lacked any of the clamor and noiseofthe real

world—these robots were coddled.‘I was mad at those logic guys who

I thought wereplaying in the sandbox with theirlittle blocks world and

didn’t understand the complexities of the real world,” recalls Brooks. “I

guess I was so mad at them that I was trying to say they shouldn’t even

exist.”

During the next several years, Brooks honed his own vision while

serving time at a pinball progression of jobs in the golden triangle of

American robot labs—Stanford to Carnegie-Mellon to MIT to Stanford

again andfinally, in 1984, back to MIT. Anassistant professor in the

Artificial Intelligence Laboratory, he was encouraged to establish a mo-

bile robot group with a numberofinterested students and paid workers,

provided that he could procure the funding and interest the students.

Brooks accepted the challenge with his trademark bravado.

Withintherelatively staid bounds ofthe Al establishment, his irrever-

ence quickly distinguished him as a punk rocker among established and

beloved crooners. “I’d never been

a

self-doubt kind of guy,” he ex-

plains. “When I’ve worked onthings,I’ve made them big. When I was

a graduate student I built a big complex software system, much hairier

than anyoneelse had ever built for a vision system. I programmed the

first version of a LISP system for the Lucid company, and I’m still kind

of their compiler hacker. Thefirst time I came to MIT, as a research

scientist, I was assigned to implement things that had been studied

theoretically for years and built them, got them to work very quickly.”

When Brooks returned to Cambridge, in 1985, he sensed the heat.

He had notreally built robots since his junkyard high school toys. Now,

he was a memberofthe AI elite—against which he would soon devise

scathing methodological indictments.

He soon had hisfirst worker, Anita Flynn. She was a former United

States Naval Academy plebe who had taken up engineering after the
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bitter realization that a slight myopia prevented her from pilot training,
and a congressional edict barred women from flying second seat on
combatplanes. At a Naval researchlab, she became interested in robotics
and particularly the way they extracted information from sensors. But
the labor in robotics had always been 90% engineering—more metal-
lurgy than coding—and the AI Lab rarely deigned to indulge these
hardware projects. When Flynn learned that Brooks was recruiting
machinebuilders, she signed on as research partner and factotum,order-
ing the arcane gizmos and wires required to build mobile robots. Soon
after Flynn came Jonathan Connell, a twenty-four-year-old graduate
student from Connecticut. A grant of $3000 arrived, earmarked for
equipmentfor their first creation. They decided on a nameforit: Allen,
in honor of AI pioneer Allen Newell.
Some weeksafter taking the position, Brooks took a trip that would

prove fateful not for only Allen’s future but also for the Mobile Robot
Group. Brooks’s wife at the time was Thai, and he accompanied herto
visit herrelatives in a village situated in southern Thailand. Noneofthe
relatives spoke English, and for some reason they were quite emphatic
that Brooks’s well being wouldbeatrisk if he autonomously explored
the village. In fact, they insisted he remain in the house, which stood on
stilts by the river. Only by deeply offending them could he violate their
wishes. “‘My wife was busy with herrelatives, so I just got to sit there
for a month with nothing to do,” he says. “I hated it, but it was great
for thinking.”

Brooks thought about Allen. He knew thatit had to be different than
the current lamedarlings ofresearch robotics. These, in Brooks’s view,
were doomedbytheir adherenceto the AI paradigm.This stated that the
robotfirst perceived its world and then beganto think aboutit—it tried
to build a little model of the world and then lay mental plans as to how
it would achieveits goal in that world. Only then would the robot act,
by translating its cognition into action. Brooksbelieved that there should
only be two steps—perception and action. The robot should sense
something andthen act on it, without a cognitive bottleneck.

But how could this be implemented? As Brooks sweated outhis days
in the stilted house by the river, he pondered

a

series of behaviors that
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could be seen as modules, intimately intertwined with a simultaneous

process ofreal-time world modeling. Depending on whatits sensors told

it at any given moment,the robot would choose the appropriate behav-

ior. Essentially, it would actlike a giantfinite state machine. Information

aboutits environmentandits present state would be processed according

to rules, rules would runin parallel, and behavior would emerge from the

continual series of actions that would result.

Using this new idea, the robot would forgo the complicated planning,

mapping, and cognition required by the AI paradigm. It would have

layers of behavior modulesthat triggered other behaviors when appro-

priate. A behavior toward the top of the stack might be “explore.” The

next level down might be a “walk” behavior. Then would be a set of

even lower-level behaviors, determinedby inputfrom the sensors on the

legs. Instead ofstarting at the top and working down,his machine would

begin at the bottom. The behaviors at the basement of the hierarchy

would determine howthe robot coped with the world on a moment-to-

momentbasis. The robot mightfirst check the space directly in front of

it. If space were clear, the wheels would turn, thereby making the robot

move forward. Once the wheels turned completely, the robot would

again look ahead to see whetherthe path wasclear. The ‘“‘walk”’ process

would continue until the machine sensed something blockingits path.

At that point, a different behavioral rule would kick in, suppressing

“walk” and activating “‘avoid obstacle,” which might trigger wheel

movements to turn or move backward. Or, if the robot founditself

walking for a certain number of steps without incident, it might “get

bored”andtrigger the “explore” level, causing it to change direction in

search of interesting input.

Because the process continually allowed one behavior to subsume

control from another—using low-level behaviors allowed the robot to

cope with the world in real time; using higher-level behaviors allowed

the robot to pursue goals—Brooks dubbed his scheme “subsumption

architecture.” Quite coincidentally, he began intoning the word “‘bot-

tom-up”as a slogan, the sameslogan favored by Chris Langton.

Whereas the robots produced by the unhappy paradigm ofartificial

intelligence were faced with a confounding bottleneck of cognition:
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The subsumption architecture would avoid the AI bottleneck and
build on behaviors so that complex results would emerge:

SENSORS —

reason about behavior of objects
eee

plan changes to the world
meee

identify objects
eee

monitor changes
meee

build maps
meee

explore
ee

wander

 

avoid objects

— ACTUATORS

Brooks’s optimism in postulating that his robots could climbto those
levels and top all previous efforts at smart robotics was based on the
premise that they had to get better in order to survivein their environ-
ment. Brooksbelieved that forcing his creatures to cope with the same
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dirty reality that humans and animals dealt with constantly was the only

way that one could expect intelligence to emerge in those artificial

constructs. It worked in the natural world, where the challenge of

dealing with the uncertainties of real life was the fuel that stoked the

engines of evolution. Brooks professed utter contempt for minimalized

“toy worlds” andespecially for computer simulations;real roboticists, he

felt, built robots for the real world. |

Within a few monthsafter his return from Thailand, Brooks had

designed a subsumption architecture for Allen, a wheeled robot that

resembled the Star Wars character R2-D2 inits electronic underwear.

Ironically, Allen’s initial successes came mostly in computer simulations

ofits architecture and not from actual movementsofthe robot itself. The

paper Brooks published about the robot was, as he later admitted, “a

simulation, and an oh-by-the-way-we-have-a-real-robot-which-w
ill-

be-working-next-monthsort ofpaper.” Brooks and crew eventually did

use subsumption architecture to make Allen follow walls and recognize

doorways, so that it somewhat provedits worth in the real world. But

Allen never becametruly autonomous, in that it was tethered to a LISP

machinethat ran its software. In what would becomestandard practice

in the lab, the lessons learned in preparing the robot were quickly shifted

to the next project.

Promiscuity in project selection would become common in Brooks’s

lab. It was almost as if the lab itself were working on somesort of

subsumption architecture; often, it would be called away from a behav-

ior by a suddenactivation thatled it to something else, another behavior

valued more highly. Or new hardware technology would arrive that

would makeit easier to achieve a goal with a robotstarted from scratch.

Half-built robots were abandoned, sometimes forever, and were other

times revived when a graduate student decided to implementa project

on it. “We have this long learning curve on how to build robots—it

took years to get over our hardware fear—and we’ve been on that

learning curve quite a while,” Brooks explained several years after the

process began.“‘At times wesort of run against the physical capabilities

of a robot. It can’t do anymore,it can’t sense anymore, so it’s hard to

keep on with it.”

What remained a constant wasthe defacto religion ofthe MobotLab,
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_ espoused with nose-thumbingélan by Brooksand his chargesin

a

series
ofpapers with unusually Jargon-free prose (the better to throw down a
gauntlet) and intentionally provocative titles, such as ‘Elephants Don’t
Play Chess” or ‘‘Battling Reality” or “Fast, Cheap, and Out of Con-
trol.” (Emblazoned on buttons, the latter became a motto ofsorts for the
lab.) Though in practice Brooks would avoid pedantry in favor of
pragmatism,heintentionally leaned toward hyperbolic pronouncements
in his talks and publications. This not only drew attention to his ideas
but also provided additional motivation for his group. In one paper,
Brooksactually isolated morestrident nuggets of his philosophy in a
section labeled “dogma.” His explanation is instructive: “I’m saying,
“You guys have a dogma,a certain irrational set of beliefs, only you’re
not willing to admitit.’ Well, here’s my alternateirrationalset ofbeliefs,
if you like—something that works.’ ”

Anintegral part of the Mobot Lab dogma was the idea of imbuing
robots with biological essence. During Allen’s nascent days, Brooks
cameacross anarticle in TWA’s in-flight magazine about a University
of Pittsburgh professor working with pigeons. Brooks obtained the
researcher’s papers and discoveredsimilarities between what the pigeons
were doing andthe intended behaviors ofrobots using the subsumption
architecture. It confirmed Brooks’s suspicion that subsumption not only
predated modern robotics but also, having been implemented in our
evolutionary forerunners, was nature’s way.

“It’s inspirational,” he says of biology’s relationship to his work. “It

many ofthe properties, and these systems are successful in the world.”
Brooks identified one animal in particular as a good model for his

robots: the insect. While workers at UCLAtriedto create digital insects,
and while workers at Brussels simulated insects by cellular automata,
Brooks began to build mechanical insects. He explained this passion in
a 1986 paper, ‘AI through Building Robots”:

- Operate in a dynamic world, carrying out a numberof complex
tasks, including hunting, eating, mating, nest building, and rearing of
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supplies all of which impair the insects’ abilities to achieve its goals.

Statistically, however, insects succeed. No human-built systems are

remotely as reliable.

Instead oftrying to construct geniuses who could not manage to walk

across the room, Brooks wanted to build idiots who could shimmy

across a rutted field like water bugs. Instead of consuming the computa-

tional power of a Connection Machine while trying to codify and

interpret the input from a video camera, his robots would get quick-

and-dirty input from cheapsensors that told them when they hit some-

thing. With some clever humanplanning, these minimalist subsumption

robots would quickly exceed their top-heavy cousins in utilitarianism.

Insect-level robots “‘have the potential to change ourdaily lives in much

the way microprocessors have,” wrote Brooks in one of his manifestos.

As an example hepostulated a vacuum-cleaning robot. Many people

imaginedthisas an ideal robotic vocation; they pictured a wheeled metal

object resembling a human being—perhapsin a maid’s uniform—pushing

around a conventionalvacuum cleaner. Brooks’s proposed dust-gathering

robot looked instead like a common vacuum cleaner itself, albeit a rather

large one. Periodically roaming the house, it vacuumed and avoided

furniture. Its weakness was an inability to get into cornersandtightspaces,

so Brooks provided a supplement:tiny six-legged robots, only a few inches

in diameter. These solar-powered robot “bugs” crawled into corners,

electrostatically picked up dirt, and storedit in their bellies. Whenthelarge

vacuum robot approached,its noise triggered a sensor in the bug. As

Brooksputit, “Whenit hears [the sound]it will run to the middle ofthe

room and dumpits gutsall over thefloor.”

Brooks ended his speculation with characteristic flourish: “Such,” he

concluded, ‘‘is the future.”’

While Brooks’s insect-level robots flouted the reigning wisdom,in some

respects they hearkened back to an ill-maintained path first cleared by

cyberneticians. These early roboticists also desired electronic beings who

performeda la biology. The most famous experimentofthis stripe was
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conducted in 1950 by W. Grey Walter, a British biologist known for
writing The Living Brain, a book that captivated Brooksas a young boy
in South Australia. Walter built what he called “imitations oflife.”
These were Elmerand Elsie, identified by the “‘mock-biological” name
Machina speculatrix, “‘because,”’ Walter wrote, “they illustrate particularly
the exploratory, speculative behavior that is so characteristic of most
animals.’’ Walter outfitted Elmer and Elsie with radio tubes, motors, two
batteries each (a regular six-volt storage battery and one of the variety
usedfor hearingaids), and sensors to discern light and touch. Because the
electronics of each of these faux animals were housed under a shell-
shaped dome, with

a

light sensor protruding, they resembledtortoises.
Elmer and Elsie had but those two sensors each. Yet, as Walter

reported, “the strange richness providedby this particular sort ofpermu-
tation introducesright awayoneoftheaspects ofanimal behavior—and
human psychology—that M. speculatrix is designed to illustrate: the
uncertainty, randomness,free will or independence so strikingly absent
in most well designed machines.” Elmer’s photocell sensor was hooked

sought brightness. Whenit cameacross a flashlight beam,its motors sped
up. Elmer rushed toward the light. As the robot approached, however,
and as the beam’s intensity became overwhelming, Elmer backed away.
Whena secondlight was placed in the room, Elmerscurried back and
forth between them.It recalled to Walter’s mind the dilemmaofBuri-
dan’s ass, “which the scholastic philosophers said woulddie ofstarvation
between twobarrels of hay if it did not possess a transcendental free
will.”” As Elmer’s batteries died down,it virtually solved this hoary
dilemma. The robot’s weakened sensors allowed it to approach the
20-watt lamp overits ‘“‘hutch,” where sustenance lay in the form of a
battery charger. As soon as the batteries were renewed, of course, the
light once again made Elmerscurry in what surely must have been pain.

Next, Walter placed an indicator light on Elmer’s shell that switched
on when its motorstarted or stopped. Elmer quickly zeroed in on a
mirror hung in the room. An entertaining danceofoscillation ensued.
Each time its motor turned off, the indicator light would flash, and
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Elmer, exposed to thelight, would grind its motor again. “The model

flickers andjigs at its reflection in a manner so specific that were it an

animal a biologist would be justified in attributing to it a capacity for

self-recognition,” Walter wrote.

Walter then placed Elmer and his twin, Elsie, in the same room. With

indicatorlights on both tortoises, they engaged in a complex dance of

attraction and repulsion. When both soughtto recharge from the same

hutch, the stronger one had the power to muscle out the tortoise whose

battery charge was weaker. Thusthe creature most desperate for energy

received none and soon “‘expired” of exhaustion.

Walter was optimistic that others would imitate lifewith more com-

plex creaturesofsimilar style. Hepredicted thatin the near future similar

imitationsoflife would repair themselves and reproduce. Yet, as classical

Al imposedits top-down dogma on experimental robotics and demanded

from its creations a near-human grasp oflogic, the supple, animal-like

behaviors of Elmer and Elsie were relegated to the curiosity heap.

But not forgotten. Over thirty years later, that same idea of complex

behavior arising from simple components was reflected in Vehicles, a

compact but resonant book published in 1984.Its author was Valentino

Braitenberg, a German neuroanatomist who remained a devout cyber-

netician. In Vehicles, he painstakingly created a series of imaginary

wheeled carts, outfitted with sensors and motors, and asked his readers

to infer logically the sources oftheir behavior. As did ElmerandElsie,

Braitenberg’s vehicles appeared motivated by urges and emotions.

With droll whimsy, Braitenberg dismissed the issue of defining life.

Thevery simplest of his vehicles was equipped with a single sensor and

a single motor, wired sothat it moved proportionally to the strength of

the signal reaching the sensor. If the sensor reacted negatively to heat,

for instance, and the vehicle were placed in a pond, one mightindulge

in the first of a series of anthropomorphicspeculations on its remarkably

complex behavior:

It is quite restless, you would say, and does not like warm water. But

it is quite stupid, sinceit is not able to turn back to the nice cold spot

it overshot in its restlessness. Anyway, you would say, it is ALIVE,
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since you have neverseen a particle ofdead matter move around quite
like that.

Subsequent vehicles, with more sensors and motors, displayed behavior
characteristic of emotions ranging from cowardice (avoids objects) to
love (embraces objects). The behavior of various vehicles encouraged
observers to judge them as explorers, social beings, even philosophers.
Braitenberg even argued, as did Walter, that certain of his vehicles
displayed free will.

To those who might object that free will implies conscious decision
making, he parried with the provocation that perhaps free will exists
only in the eyes of observers. “Interest arises when we look at these
machinesor vehicles as if they were animals in a natural environment,”
he wrote. “And yet we know very well that there is nothing in these
vehicles which we have not put in ourselves.”’ This was coy; afterall,
there is “nothing” in complex cellular automata not determined by the
rules, nothing in a human being but what is found in the embryo, and
probably nothing in the entire spectrum ofnatural life but what was
evolved from a commonsingle-cell ancestor. (Braitenberg insisted his
vehicles, too, evolved—wiring mistakes that evoked unexpectedly
clever behavior were, in essence, favorable mutations.) So no one would
miss his point, Braitenberg spent a lengthy appendix discussing phenom-
ena in the natural world that correspond to the mechanismsofhis
vehicles. But the virtually unanswerable question remained—how could
we be so sure that the behavior produced by these transparently wired
machines was qualitatively different from behavior in the natural world?
In a sense, Braitenberg was proposing a Turingtest forlife. Ifsomething
behavedlike

a

living thing, he implicitly argued, we may well consider
it to be alive.

Braitenberg’s work provided a treasure house ofideas for bottom-up
minded roboticists. MIT’s Media Lab wasparticularly fertile ground for
those ideas; Marvin Minsky who had movedfrom the AI Lab to this
high-tech research enclave, enthralled followers with his book Society of
Mind, which postulated that nature’s approach toward intelligence and
behavior was decentralized. A group at the Media Lab used these con-
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cepts to outfit colorful, linking-toy LEGO blocks with motors, wheels,

sensors and integrated circuit chips so they could vivify the behavior of

digital ‘‘turtles”’ in the learning-oriented computerlanguage Logo. MIT

computerscientist Mitchel Resnick and his colleagues further modified

this “LEGO-Logo” system by outfitting the creatures with what he

called “electronic bricks,” programmablecircuit blocks that eliminated

the need for the creations to be attached by cable to a computer. Thus

Braitenberg-ized, the constructs could be seen less as machines than as

creatures. Resnick claims that “‘there is great potential for using LEGO/

Logo as a construction set for artificial creatures. . . . using sensors a

LEGO/Logocreature can sense the world around itself—then changeits

behavior depending on whatit senses. . . . LEGO/Logocreatures don’t

just act in the world, they interact with the world.”

This was an idea independently seconded by a robotics lab at the

University of Edinburgh, which was constructing its own Braitenberg-

inspired LEGO robots. Theinstantly interesting yet confoundedly com-

plex behaviors oftheir plastic beasts led the Scottish scientists to praise

and bemoan what Braitenberg called the “law of uphill analysis and

downhill invention” regarding vehicles. The law stated that inventing

machines that behaved like animals was easy; figuring out why such.

interesting behavior arose was the true challenge. Therein lay, most

probably, the Holy Grail of complexity.

Mitchel Resnick’s own epiphany occurred at a children’s LEGO-

Logo workshop on constructing creatures. One project entailed wniting

a program to enable a creature to follow a line drawn on the ground.

“We wrote the program andit was followingthisline,” recalls Resnick.

“Andall of a sudden it struck me that I had no idea what was going to

happen whenit reachedthe endofthe line. We'd wnitten the program,

but we didn’t take that into account.I didn’t have time to think about

what it might do,so I just watched it. Whenit gotto the endofthe line,

it turned aroundandstarted following the line in the other direction!If

we had planned for it to do something, that would have been the ideal

thing for it do to.”’

Children, Resnick elaborated, viewed the creatures on three levels:

“on a mechanistic level, examining how one LEGO piece makesanother

move, . . . the information level, exploring how information flows from
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one Electronic Brick to another[,] . . . [and] a psychological level, attribut-
ing intentionality or personality to the creatures.”” Whereas most science
teachers wouldrushto correct such heretical inferences, Resnick did not
consider them erroneous. “Complex systems can be meaningfully de-
scribed at many different levels—thatis one of the important lessons of
artificial life,’ he wrote.

Notsurprisingly, the spirits ofGrey Walter and Valentino Braitenberg
burned brightly on the ninth floor of Technology Square. In 1987

software on thelarge prefabricatedcircular base ofAllen, Connell began
with two radio-controlled toy automobiles, modeled on the cars driven
by characters in a TV series, “Knight Rider 2000.” He removed the
toys’ radio controllers and replaced them with logic chips holding the
code for subsumptionarchitecture. The cars were outfitted with infrared
sensors so they could “‘see’’ obstacles and each other. Within seconds of
activation, a robot would begin movingand‘‘exploring” the room until
it was aboutto collide with an object. At that point the sensors would
note the presence of an object, and the wheels would suddenly spin in
reverse. (The cars had nobrakes.)

Later, the exploration mode was refined. With each tick of an on-
board clock, the robot movedto theright. This set the robot in a circular
path. In an open space with nointruders, the robot indefinitely circled,
as if markingterritory. If the second robot were released in the room,
Its trajectory would threaten to violate this territory. One oftwo things
would happen. The intruder would sense the defender, and veer away
from the circle before crossing the invisible line. Orthe circling robot
would sense the interloper, whose presence would then trigger avoid-
ance behavior. When the exploration behavior returned, the robot
would draw a newterritory.

Connell added yet another behavior level, which he called “follow
the leader.” The clock inside the robot would now take note ofthe
duration of an obstacle’s presence. If it sensed the continuous presence
of obstacles, the robot would execute the normal avoidance behavior.
But if it were in an open space, its first impulse would be to rush
gregariously toward an object. As Connell wrote,
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This last behavior allows our robots to truly relate to one another.

Before, when two robots met they simply shied away from each other.

But now if one has established its territory and is approached by a

second, they actually interact. If a circling robotsees the backside of

a wandering robotstill in the explore mode, for instance,it will latch

on andtry to follow the wanderer. If the two meet head-to-head, on

the other hand, the local robot attacks the visitor by driving straight

toward him.Ifthe visitoris still in the ‘“explore”’ modeit will run away

and leavethe local robot’s territory. If, however,the visitor has already

staked out a territory that overlaps that of the first robot, the two

robots will have a face-off. The robots park nose to nose andglare until

one ofthem yields its territory by switching outofthe “follow” mode.

Obviously, this interplay had its comic aspects, which inspired the

roboticists to name the cars after the dog-and-cat cartoon characters

Tom andJerry. (The names had a second meaning: in keeping with the

tradition ofnaming robotsafter computerscience pioneers, the alternate

namesakes were MIT programmer legends Tom Knight and Gerry

Sussman.)

The behavior ofTom andJerry courted anthropomorphic responses.

Some of the unprogrammed, emergent responses described by Connell

seemed sufficiently clever, or at least sufficiently lifelike, to encourage

observers to infer motives and emotionsin these simple robots. Could

it be that those same forces, and not the other, more rigorous qualities

we have identified with life, led to the labeling of animals behaving in

this manneras “‘living’’?

Rodney Brookspreferred notto deal with the question. “I don’tlike

definitions, because every time you get a definition someonepushesit

the wrong way,orpullsit the wrong way,” hesays. “I wantto havestuff

that speaksforitself, stuffdeployed out there in the world, and surround-

ing you now.Ifyou wantto argueifit’s intelligent or not, or if it’s living

or not, fine. Butifit’s sitting there existing 24 hours a day, 365 days of

the year, doing stuff whichis tricky to do and doingit well, then ’m

going to be happy. And whocares what you call it, right?”’

Brooks is convincedthat, ifresearchers used the subsumption scheme,

there would be no foreseeable obstacle to prevent the development of
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robots of even human-level intelligence. Or beyond. When asked
whether this indeed were so, Brooks answers unhesitatingly, “‘All the
way. There will be embellishments, there will be new things to come
in, but I don’t see the wall yet. I don’t see a wall.”

All the way?

“Yeah,” hereiterates. “All the way.”

Questions ofthis sort were also beingactively addressed by people in the
single area ofbiology whosepractitioners seemed willing, even eager, to
consider the possibility ofartificial life: ethology, the study of animal
behavior. |
The tolerance cameas a function ofthe field’s recent history. In the

wakeofthe pioneering work ofKonrad Lorenz on aggression, ethology
drew muchattention and funding in the years immediately following
World War II. Those who hopedfor so-called cures for humanity’s
foibles were disappointed. As a meansofbetter understanding the animal
kingdom, however, ethology has done considerably better. The work of
Nobel laureate Niko Tinbergen,for instance, is regarded as a landmark
in the analysis of animal behavior. Concentrating on the actions of a
small fish, the three-spined stickleback, Tinbergen theorized a hierarchi-
cal structure based on “‘drive centers’’ that helped determine what the
fish would do at a given instant.
To a-lifers, this system resembled a finite state machine, something

easily replicable in software. The concepts of Tinbergen and his succes-
sors bore suchcloserelationship to computational systems that inevitably
some ethologists began using the computer as a modeling tool. But
neither their successes in these pursuits nor important work done by
neuroethologists in determining which parts of the nervous system per-
formedvariousactions did muchtoretard the field’s gradual yet undeni-
able fall from popularity amongscientists. The actionin life sciences lay
in molecular and evolutionary biology, where breakthroughs abounded,
and the secret oflife itself seemed to rest. In comparison, there was
something quaint about ethology. It was too . . . earthbound.
A conference on adaptive behavior held in Paris in fall 1990 at-

tempted, with limited success, to draw together computerscientists,
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roboticists, and ethologists. The implicit hope was to foster two kinds of

cooperation. First, those working in silicon could exploit examples from

the field work and models of the ethologists and implement them in

simulations and robots—a process well under way. The second kind of

cooperation was more unusual. It involved ethologists studying the

behaviorofartificial creatures, regarding these artificial constructs as if

they were animals.

The ethologists were at once cautious and surprisingly accommodat-

ing. Their presentations were punctuated with asides and genuflections

to the roboticists, suggesting possible connections between, for instance,

field studies of songbirds and autonomousrobots. They often addressed

Rodney Brooksdirectly. When pressed for explanations for their will-

ingness to direct their attentions to such unorthodox ground, they made

cogent arguments. They argued that ethology should be mainly con-

cerned with studying behavior and should notentangleitself into ulti-

mately nit-picking definitions of what wasalive or what was not.

“There is a spectrum of living to non-living things,” says David

McFarland, an Oxford professor who has authored some of ethology’s

standard texts. “And my argument wouldbethat the protocols and the

principles of behavior control are the same across the spectrum. I

wouldn’t say they’re the same,but they share the same body oftheory.”’

McFarland hadlittle time for those who argued that robot behavior was

in some wayless “real’’ than the behavior of natural creatures. ‘Those

who would talk like that usually have a kind of an anthropomorphic

viewpoint, which I don’t go for. It’s not objective.Ifyou're going to say

an animal can make decisions and a robot can’t, then it’s sort of a

quasi-religious stance.”

The ethologists, however, were concernedthat the a-life contingent

had been insufficiently discriminating in choosing what of ethology to

integrate into their simulations and critters. For instance, McFarland was

aghast that many roboticists regarded the sort of hierarchies Tinbergen

postulated as the last word in animal behavior. “Ethologists abandoned

hierarchical thinking a long time ago,” he says.

In a certain sense, McFarland’s complaint was irrelevant. Although

most computer-basedartificiallife experiments began with clear purpose

as to which a-life they owed allegience—weak a-life, which simulates
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the mechanismsofnatural biology; or strong a-life, which aims toward
the creationofliving creatures—experiments in what cameto be known
at MIT as “computational ethology” were notso clearly delineated. As
far as the roboticists were concerned,their brand ofa-life leaned toward
the strong: although they happily drew from biology’s breathtaking
engineering feats, they made no claims to biological fidelity for their
creatures. “There is a certain tension,” admits Pattie Maes, an MIT
roboticist interested in both strong and weakartificiallife. “Do we want
to be engineers and come up withsystemsthat are useful, or do we want
to study behaviors as a biological thing?”
The former usually won out. For one thing, animals were often, as

Maesputsit, “‘suboptimal.”” They did things that made sense for them-
selves but did not qualify as efficient robot behavior. For another thing,
funding agencies were more willing to support robots that performed
measurablelabors than those that rigorously followed natural methodol-
ogy. At MIT,the ethological approachinspired a series of experiments
in both computersimulations and robotics. Computerscientists particu-
larly frustrated with the top-down formulations ofAI, whichinsists that
creatures hold a model of the entire world in theirsilicon heads, found
ethology particularly enticing. Ethology offered a perspective of “‘situat-
edness,” a bottom-up approach that assumedthat the creature would
operate more like an FSM. The bookshelvesin the cubicles of faculty
and graduate students at the Mobot Lab and the Media Lab quite
commonly harbored Gould’s basic textbook on ethology and McFar-
land’s Oxford Companion to Animal Behavior. |

Michael Travers, a graduate student at the Media Lab, used ethology
as the basis for an “animal construction kit’”’ he named “Agar.” (Mi-
crobiologists used the substance agar as a catalyst to grow cultures.)
Travers contended that ‘“‘people and computers can demonstrate their
intelligence by manipulating symbols, but animals have no such ability,
or only very limited formsofit. Instead they display their intelligence by
action in their world. The appropriateness of an animal’s actionsto its
situation constitutesits intelligence.’’ Using a complicated set ofbehav-
ioral triggers he called “‘agents,’’ Travers managed to produce specific
instancesofant behavior emergently, throughthe creature’s responses to
Its state. For instance, in Agar, ants sought food, picked up food when
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they foundit, and then returned to the nest. While executing the latter

behavior, they left a pheromonetrail that alerted their colleagues to the

direction in which foodlay. Travers’s ants, presumably like real ants, did

not have to ponderthe reason for this—leaving pheromonewassimply

a function ofnoticing that one’s pincers were holding a piece offood.

“It’s clear,” he wrote, “that the boundary between behavioral system

and physiology is mostly artificial.”

Another researcher straddling that boundary wasRandall D. Beer of

Case Western Reserve University. He constructed perhaps the most

elaborate simulated insect to date. Because it was modeled on the Amer-

ican cockroach, or Periplaneta americana, Beer namedhis creation the

“computer cockroach,” or Periplaneta computatrix. (He chose the name

to honor the work of Michael Arbib, an automata theorist who spent

years implementingthe neural structure ofa frog he called Rana computa-

trix.) Like Rodney Brooks, Beer was profoundly discontented with

classical AI. His suspicions werereinforced by an essaytitled “Why Not

the Whole Iguana?” written by cognitive scientist Daniel Dennett. It

argued that AI should retreat from modeling “human microcompe-

tences” such as chess or reading fables, and focus instead on modeling

the overall competencesofsimpler animals. Beer also became interested

in a branch of ethology that looks to neural structures of animals to

explain certain aspects ofbehavior. In constructing his cockroach, then,

he aimedfor establishing a subdiscipline, computational neuroethology.

P. computatrix, then, was centered around a nervous system suggested

by biological examples. Theinsect visible on the monitor of the Texas

Instruments LISP machine had a coffin-shaped body, six legs, a dia-

mond-shaped head with an inverted V for a mouth, and two long

whiskers. But what mattered was the neural network that swallowed

input from the environment and expectorated the output that dictated

its behavior.

Beer first modeled locomotion. In order to walk successfully, the

insect had to coordinate the movementofits six legs so thatat all times

its center of gravity remained within a tripod of legs on the ground.

Otherwise it would ignominiously tumble. Using neuroethological

studies of insect locomotion, Beer set up a neural network that used

feedback from the cockroach’s legs to discover a stable gait known to
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was knownasthe “‘tripodgait.”” By varying the firing frequencyofthis
particular neuron, Beer was able to produce five different emergent
gaits, all ofwhich had beenidentified by Donald Wilson as characteristic
of natural insects.

barrier, extending three-quarters ofthe wayacross the room. Appearing
on the screen, the cockroach moved warily yet effortlessly, coordinating
its leg movements with natural elegance.It picked up thescent of the
food and plodded towardit, only to be frustrated by the barrier. As its
left antennacollided with this obstacle, the cockroach moved into posi-
tion to follow its edge, toward theright, even though the maneuver
entailed moving away from the food. By noting the activation levels
depicted on the side of the screen, one could see that with the food-
seeking behavior flummoxed, the edge-following behavior hesitantly
asserted itself. Soon, the bug lost the scent of the food, and its sole
concern was following the edge of the barrier. When the cockroach
reached the barrier’s end, it fleetingly, almost wistfully, turned back
towardit and attemptedto reestablish contact. But it had already moved
into open space andits antennafelt nothing. Walking behavior then
subsumed edge following. The cockroach wandered, roaming in
roughly a northeasterly direction until it arrived at the far comer of the
cell, whereuponit rather nimbly turned toward theleft to avoid entrap-
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ment. Thenit followed the top wall until its minute hesitation signaled

it had again apprehendedthe scent of food. That did it. The famished

insect droppedall pretenses to edge following and veeredstraight toward

the food patch, whereuponit beganto eat.

Observers of this experiment were impressed by the autonomous

artificial insect’s successful negotiation of what could have been an

unfortunate situation. There was also something rather intangible, but

perhaps even morestriking,at work. At eachstep in the experiment, one

Randall Beer’s artificial cockroach negotiates its way to the food source (dark circle).

The cockroach is released into the simulated room and left to its own devices.

Quickly picking up the scent of dinner, it heads directly toward the food, then

encounters the barrier. It switches to edge-following behavior until it reaches the end

of the barrier; by that timeit is too farfrom the food to senseit. Wandering about,

the roach avoids getting stuck in a corner by exercising another behavior and following

the top wall. When it again senses the food, nothing stands between it and a good

meal. Watching the artificial insect solve this problem, one could easily mistakeits

behaviorfor that of a natural organism.
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could nothelp butframe the question one would ask of a living being
confronted with a dilemma, What would it do next? Just as in watching
a genuine cockroach,the answer was not quite predictable, because the
behavior was not programmed but emergent. But it was always reason-
able from the bug’s point ofview. The behavior ofthe bug easily made
one feel, if but for an instant, that this crudely drawnstick figure, P.
computatnx, wasalive.
The MIT MobotLabstrived to create ever-higherlevels ofethologi-

cal validity. Because, as Brooks put it, “a robot is worth a thousand
simulations,”’ the idea at Tech Square was to embodytheseideas in the
physical world. The Mobot Lab’s second large project was Herbert,
adopted byJon Connell as his doctoral project. Connell specifically used
an ethological methodology to encourage Herbert to perform a deceiv-
ingly complex goal: collecting empty soda cans around the laboratory.
(Because manyin the lab hadties in some way to DannyHillis’s com-
pany, Thinking Machines, Herbert was jokingly referred to as “the
Collection Machine.”’) This task was the sort of “mindless” goal that
artificially intelligent robots had difficulty accomplishing; it required

cluttered area, identify soda cans, determine whether they were empty,
and accurately grasp them.

Connell drew inspiration from ethological studies of several animals,
including Tinbergen’s demonstration that baby seagulls respond identi-
cally to a crude mock-up ofa parent’s head (with a crucial identifier—a
red spot near the point of the beak). This showed him how Herbert
could easily recognize a soda can solely by an outline ofits shape.
But Herbert owed muchofhis behaviors to studies ofthe coastal snail

Littorina. These indicated that the snail operates on a hierarchy ofbehav-
lors corresponding closely to Brooks’s subsumption scheme. Whenin-
teracting with the particulars of its environment, Connell noted, the
snail “can perform some seemingly sophisticated navigational tasks with
a relatively simple control structure.”
Amongthesnail’s behaviors is a reflex called UP, which tells it to

crawl against gravity’s grain, and another called DARK, which urgesit
to crawl away from light sources. The opposite behavior, BRIGHT,
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stronger behavior, DARKER, which activates only when the creature

‘5 out of water. This forces the snail toward darker regions. Finally, a

STOP behavior is activated wheneverthe snail is fully dry.

Coastal snails eat a certain kind of algae, one that grows in the cracks

in rocks just abovethetide line. Leavingits underwater habitat to seek

this food puts the snail at risk; if it spends too much time in the sun,it

fries. If it wanders too far inland, it dries out. The emergent properties

of its behaviors allow it to survive. Whenstill underwater, it finds the

shoreline by heading toward the rocks, which are darker than sand.

DARK.Thenit climbs. UP. Whenit reaches an overhangin a rock, the

snail becomesinverted, and it heads toward the brighter region toward

the surface. BRIGHT.It continues climbing until it is out of the water

butretreats if the sun is too bright. DARKER.If not, it climbs untilit

finds a crack in the rock. UP. Attracted by darkness, it crawls into the

crack and,ideally, discovers algae. Ifby chance it climbs too far, it stops,

waiting until a wave washes it home again. STOP. Althoughits central-

ized brain does not “know” where food is to be found or which

conditions may put the animal at risk, the appropriate responses to its

world constitute a behavioral network that does know these things.

Herbert used its surroundings in the same way; its name wasa tribute

to Herbert Simon, who observed that the complex behavior of an ant

is a function of the complexity of its environment. As Connell wrote in

his dissertation, Herbert could‘use the world as its own representation.”

Unlike Allen, Herbert hadall of its computer chips on board; it was

truly autonomous.It resembled an electronic wedding cake—the bot-

tom layer was a circular base resting on three wheels; the middle layer

was a maze ofcircuit boards; and the top layer consisted ofwires, chips,

and two oversize replacements for bride and groom—a human-sized —

hinged metal arm and

a

periscope-shapedlaser light sensor with a small

video camera affixed to it. Its circuitry housed its behaviors. Truetoits

bottom-upspirit, not a central brain buta series of parallel processors

coordinated these behaviors. Its behaviors would emerge from moment-

to-momentinteractions with its environments. Herbert was incapable,

in fact, of rememberingits state more than three seconds previous.

It operated like a coastal snail. Using environmental cues as it wan-

dered through the maze of rooms and work spaces on the ninth floor,
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match the squat cylindrical shape imprinted in its chips. Instead of
plotting the coordinates of the can in its vision field and directing the
arm to the region, the robot simply kept turning until the can wasin the
center ofits vision field. The appearanceofthe can in this place caused
the robot to stop all movement. |

Thelack of wheel activity triggered the set of behaviors concerning
the arm. True to Herbert’s on-the-fly behavioral style, the arm navi-
gated by the sensors onits hand. The hand“felt”its way aroundthe area
of the suspected can. It did this by skimming the table surface, by
touching it every couple of inches, feeling for the familiar raised shape
of a can. Whenthesensors felt something that seemed to be a can, the
hand surroundedit and grasped. Oncethe sensors reported a can firmly
held in its pincers, another set of behaviors activated: go home.
By the time Herbert wasretired in 1989, the Mobot Lab was enjoying

a boom in both its human and robotpopulations. With Brooks provid-
ing thereligion and Anita Flynn acting asfacilitator and cheerleader—
commussioning T-shirts and organizing an annual “Robot
Olympics’’—the MobotLabgaveoffa special aurathat touched all who
workedthere; there was a feeling that history was being made. Other
paradigms of robotic research snared more funding, but the sorts of
results obtained in the ninth floor seemed,to the MIT roboticists at least,
substantially more impressive than those oftheir competitors.

This was underlined by successes in the area with which thetradi-
tional paradigm had the most difficulty: navigation. In 1989 one of
Brooks’s students, a Yugoslavian-born graduate of the University of
Kansas named Maja Mataric, used Brooks’s ideas to design an intuitive
navigational scheme in Toto, a sonar-equipped robot. By juggling
behaviors such as STROLL, AVOID,and ALIGN, Toto managed to

explore the ninth floor of Tech Square and, by using a scheme of
remembering landmarksaroundthelab, actually learned howto find the

297



ARTIFICIAL LIFE

quickest routes to arbitrarily chosen locations. While implementing

these behaviors, Mataric drew on the design features ofbats, bees, birds,

and rats, some of which also used landmarks as navigational tools. As

does a human, whenheorshetells someone to turn left at the gas station

and right at the light.

The biological, subsumption approach was working. Researchers

outside MIT began to look moreclosely at Brooks’s ideas and the work

of his group,especially after the first two a-life conferences placed this

methodology firmly within the wider pursuit ofartificial life.

Within MIT,the lab became knownas one of the most interesting

projects on campus. It was able to attract brilliant undergraduates like

Colin Angle, an upstate New Yorker with a wizard’s touch whose

philosophy on matriculating was“to majorin whateverlets me build the

coolest stuff.” For three years Angle dabbled;stuffed with oscilloscopes,

circuit boards, and wires, his room in a campusfraternity house had

becomea virtual electronics lab. Before his senior year in 1988, how-

ever, he bested forty-three competitors for an undergraduate position at

the MobotLab, and his lot was cast. Within a few weeksofhis arrival

Brooks asked, ““Why don’t we build a walking robot?” The group

decided to attempt a six-legged walker. Angle volunteered. In less than

three months, aided by others in the lab, he built Genghis, the Mobot

Lab’s best attempt to date at real artificial life.

Genghis was so named because “it stomps over things,” says Angle.

Genghis’s appearance added to its mystique: Its cockroach-styled chas-

sis was a marriage of functional design and bad Japanese science-fiction

films. Brooks’s subsumption architecture was the basis forits behavior,

but Angle’s pack-rat ingenuity infused the robot with an ethological

verisimilitude: although not a biologist, Angle had been encouraged to

adopt the same opportunistic view of potential synergy between body —

and environment that nature seems to favor. Thus Genghis claimed

maximum value from its sensors, enabling the six-legged machine to

find its way through cluttered rooms without benefit of sight, knowl-

edge of what a room 1s, or a central brain. Its intelligence was truly

distributed, as fifty-seven “‘augmented” FSMsinits hardware executed

basic behaviors: stand up, simple walk, force balancing (compensating

for rough terrain by taking account ofthe force expended during each
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step), leg lifting, whiskers (controlling the feedback from long front
touchsensors), pitch stabilization, prowling, and steered prowling.

Thelatter two allowed Genghisto live up to its barbaric moniker.
Prowling occurred whenthe robot’s forward-facing pyroelectric sensors
detected the heat of a human being. This inhibited walking until the
intruder passed; then the robot moved forward again. Steered prowling
wassimilar, except that Genghis “‘attacked”—its sensors locked onto the
prey andit pursued,albeit at a leisurely pace.

As Randall Beer realized while simulating his artificial cockroach,
six-legged insect gaits were difficult to attain. Producing these gaits in
the real world was morethan difficult. Brooks wrote a specific code for
the timing and coordination of the leg behaviors. Later, Pattie Maes,
while a visiting faculty member from the University ofBrussels, devised
a behavioral scheme where Genghis’s walking could truly emerge. She
eventually implemented an even more resourceful method whereby
each time Genghis was switched on,using feedback from sensors onits
legs, and a sensor onits belly, which flopped on the ground whenthe
robot fumbled in its attempts to find a stable gait, it would literally learn
howto walk. It would fall, it would try somethingelse, it would take
a step and trip, but finally Genghis would triumphantly, emergently
walk.

To be sure, Genghis, and the dream ofinsect-level intelligenceit
represented,hadits share ofdetractors. The people in big robotics would
look askanceat this bug, a foot in length and hardly tipping a scale at
three pounds. Even as Genghis deftly crawled across the floor, they
would object to the claimsof its creators in offended tones: What of
human culture does this represent? they would ask, and then deliver
what for roboticists, ultimately a field driven by steel and pragmatics,is
the coup de grace: “‘What can it do?”
Rodney Brooks had the answerforthat. Genghis, or its successors,

could explore the moon. Or even Mars.

Exploring outer space would require autonomousrobots. Using robots
controlled from earth would notbefeasible: because there would be a
time gap betweentransmission and reception, a human in Texas could
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not steer a robot across a Martian ditch—it would beas ifa truck driver,

seeing a curve in the road, waited forty-five minutes before turning the

steering wheel. NASA understoodthat our beachhead on the moon,or

on othercelestial bodies, would best be established by mobile robots

operating independently. The space agency commissioned two institu-

tions to build robots to land in advanceofa possible manned expedition

to Mars in 2019: the Jet Propulsion Laboratory in Pasadena, California,

and Carnegie-Mellon’s RoboticsInstitute. Both of these laboratories

proposed large robots working on the classical AI cognitive paradigm.

Ofthe two projects, the rumored front-runner was Carnegie-Mellon’s

Ambler,a six-legged robot that bore little resemblance to an insect or to

any biological specimen—it was more like a propane tank onstilts. It

stood 19 feet high, and its six legs were as thick as elephant stumps.It

weighedtons, cost millions of dollars, and was not easily transportable.

Brooks regarded robots like Ambler as dinosaurs. He charged that a

mission based ona single large robot explorer was doomed to unproduc-

tive conservatism. A single mishap mightruin the entire project. He also

suspected that no degree of caution would compensate for the handicap

of a top-down methodology he felt was inadequate for the task of

autonomous exploration.

The reasonable alternative, Brooks argued, was to populate Mars or

the moon with hordes of small robots. Dozens, even hundreds, of

six-legged subsumption-architecture artificial insects would cost consid-

erably less than a single Ambler. They would be given the ability to

communicate with each other. If one insect became permanently dis-

abled—if it died—others would shove it aside and continuetheirtask.

The community of robots would behave like an insect colony, with the

simple behaviors of each memberaiding the execution of a shared goal.

Withlittle encouragement from NASA, Brooks made extraterrestrial

exploration and industrial applications a focal point for the Mobile

Robot Group. The prototype explorer was Attila, a sophisticated de-

scendant of Genghis. Colin Angle undertook the hardware design.

Brooks, who designedthe software, claimed that the 3.6-poundartificial

creature was the most sophisticated robot per pound ever built by

human beings. “I think with Attila, we’ve almost got insect intelli-

gence,” he says. Attila was more solidly constructed than Genghis—it
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looked meaner. It had twenty-three motors, 150 sensors, and thecir-
cuitry of eleven computers. Its legs were jointed, more limber and
durable than those ofits predecessor, so that Attila was able to walk over
rough terrain and climb overobstacles. The nature of the construction
also allowed Attila, if it tumbled off a crater and landed onits back,to
rotate its legs and the appropriate sensors so that it could continue
walking. Besides an array of inclinometers, touch sensors, velocity sen-
sors, and force sensors that enabled Attila to cope with its immediate
environment, the robot could also use infrared sensors to sense objects
within three meters, and even a video camera to sense distant landmarks.

Anita Flynn, Brooks’s longtime lieutenant, postulated a different sort
of robot explorer. For several years she had been developing the tech-
nology for what she referred to as “gnat robots,” artificial creatures
barely bigger than quarters which would eventually cost not much more
than the currencies that these coins represent. These took advantage of
recent advancesin silicon-embedded micromotors, visible only by mi-
croscopes; such mechanical miniaturization promised a revolution in
robotics similar in impact to that experienced by computers during the
transition from tubes to chips. Because Flynn had once worked with
Danny Hillis, she quickly understoodthat in the spint ofthe Connection
Machine gnat robots could harness massive parallelism.

She envisioned millions of gnat robots, with sensor technology em-
beddedin their densely imprinted circuitry, spread over the surface of
a planet. Outfitted with transmission capability, they would recordseis-
mographic conditions, temperature and humidity, and the presence of
certain chemicals, and then send the information to a central orbiteror
even to roving Attilas. The gnats could perform theirtasks from wher-
everthey landed, or they could explore their immediate neighborhoods.
Although someofthe first gnat robots, including Flynn’s prototype,
Squirt, were literally computer chips with wheels, there were better
ways of locomotion for such diminutive creatures. In contemplating
these movements, Flynn obviously had been thinking ofdandelions and
grasshoppers: ““On Mars, gnats could be spread on the wind,”she wrote.
“Elsewhere, they could disperse by hopping. Solar cells would collect
energy andstoreit in a silicon spring. After a certain compression, a
catch would release the spring, and the robot would go flying.”
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The papers by MobotLab scientists proposing such expeditions were

peppered with similarly vivid imagery. One might have been tempted

to dismiss these scenarios as overly speculative. Yet in their daily labors,

the Mobile Robot Groupdealt with the pragmatics and problem solving

required to realize these proposals. Their progress indicated that their

discussions lay less in the realm of science fiction than in short to

medium term agendas,particularly in evoking powerful behaviors from

groups of robots.

“Attila is a base and gnat robotics is a base for the next step, which

will be emergent behaviors from multitudes of robots, societies of ro-

bots,” explains Flynn. “People here are starting to think about what

they’re going to do if they had twenty or a hundred or a thousand

robots.”

Such thoughts inevitably turned to the insect societies. Pattie Maes,

who in 1991 becameanassistant professor ofcomputer science at MIT’s

Media Lab, addressed herself to implementing emergent swarm intelli-

gencein robots. It was Maes, while still on loan from the University of

Brussels, who had designed Genghis’s walking algorithm. But she had

never forgotten some experiments conducted by LucSteels, the leader

of her AI group at Brussels.

Steels spent much time pondering the paradox of emergence:that

self-organization provoked autonomousagents following simplerules to

cooperate spontaneously. Steels understood that the power of emer-

gence would provide bounty from crumbs. Something out ofnothing. Yet

by its very nature emergence was difficult to control; its results were

unbidden. Steels insisted that the difficulty could be overcome. With

careful planning and a deep knowledge of complex systems, he argued,

st was far from a misnomerto have a specifically evoked emergent

behavior.

His experiments involved emergent social behavior from groups of

autonomousagents: swarm intelligence. He, too, was looking forward

to robotcolonies on distant planets. Drawing from the social insect and

cellular automata studies of his neighbors at the University of Brussels

studying under Prigogine, and postulating robots running under

Brooks’s subsumption architecture, Steels constructed a “‘robot ecol-

ogy” based on functional self-organization. He viewedthe ecology itself
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as a complex dynamical system. Using Prigogine’s concept of “‘dissipa-
tive structures,”’ which identified self-organizing powers as rising from
the responses of a system in rough equilibrium exposed to an outside
disturbance, he designed a simulation of mobile robots engaged in an
equilibrium behavior—exploring the terrain around a recently landed
spaceship on the moon. The system would be “provoked” by the
presence ofrock samples. Steels hoped that the system would spontane-
ously produce a dissipative “spatial structure”—a path—between the
rocks and the mother ship. Under the domination of this spacial struc-
ture the robots would collect the rocks and deposit them in theship.

Steels’s simulation allowed his virtual robots to perform this tricky
task by eschewing hard-to-implement features such as vision or the
cognitive use of symbolic logic. Instead, his robots cleverly exploited
aspects of dynamical systems.First, they used random behaviorin their
original explorations,to guarantee that they would find rock samples. (A
probability theorem stated that starting from any point in a random walk
restricted to a finite space, we can reach any other point any number of times.)
Second, the robots made use ofa “gradientfield”’ to limit the boundaries

point increases.”’ In this case, it consisted of a pulsating wave of sound
originating from the mothership. As the robots moved away from the
ship, the sound becamefainter, a circumstance taken into account in
their behavior. Finally, Steels used the principles ofself-organization and
parallelism. Following the simple rules assigned them, the robots per-
formedbehaviorthat altered the environment and thereby altered their
subsequent performances ofthoserules.

Steels ran his simulations on a ten-by-ten-cell grid, with one hundred
rock samples scattered. (The rocks were often bunched in clusters; a
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would not wanderbeyondthevivifying sound pulses ofthe mothership.

Ifa robot sensed an obstacle,it executed behavioral rules for avoiding1t.

If a robot sensed a rock sample,it first performed a series of behaviors

to collect the rock, then switched to the return-to-ship mode. Using

only these behaviors,it took eightvirtual robots approximately twenty-

five thousandtimesteps to gather the rock samples. If 256 robots blitzed

the terrain, the samples were gathered in around five hundred timesteps.

That simulation was limited in that robots communicated only with

the mother ship and not with eachother. Steels remedied this omission

by allotting each robot a number of radioactive “‘crumbs,”’ easily detect-

able by robot sensors. Then he added behaviors: when a robotcarried

a rock sample onits return trek to the mother ship, it would periodically

drop two crumbsbehindit. When a robot not carrying a sample sensed

crumbs, it would pick one up (insuring thattrails would not remain

indefinitely) and move toward the highest concentration of crumbs.

Thus robots would moreefficiently be drawnto the fertile rock-hunting

areas.

Using this methodology, inspired by pheromone-dropping habits of

ants and other social insects, eight of Steels’s robots required only

twenty-five hundred time steps to swoop up the rock samples—a tenfold

decrease from painstaking work of their less communicative cousins.

The efficiency was such that increasing the numbers of robots quickly

reached a point of diminishing returns. While sixteen robots gathered

the samples in fewer than fifteen hundred time steps, doubling and

redoubling those numbers failed to match the performance of an

equal number of gatherers using less communication. It seemed that

brute-force massive parallelism obtained the fastest results, but a more

economical approach—only a few robots with the ability to communi-

cate—camefairly close. As ants, wasps, and commune dwellers knew,

cooperation yielded wondrousefficiencies.

Similarly, Maes, Brooks, and Mataric proposedthe following scenario

for a horde of mobile robots attempting to clear an area of lunarterrain

in anticipation ofa manned expedition. A crucial componentofthis task

would be accumulatingpiles of lunar soil to use as a shield against solar

radiation or perhaps eventhe building material for the baseitself. Ameri-

can andJapaneseplannersbelieved this task would be best accomplished -

304



Real Artificial Life

by traditional construction technology—a full-size bulldozer, either a
robot controlled by radio or a machine actually driven by a blue-collar
astronaut. Brooks and his coauthors instead suggested that a swarm of
robots should do the job.
The invasion ofa-life soldiers would occur several years before as-

tronauts were sent. Onarrival on the moon,the spaceship would dis-
gorge several hundred 5-pound, solar-charged robots that resembled
tiny bulldozers, with scoops capable of gathering lunar soil. As envi-
sioned by Brooks and crew, each robot would execute the sameset of
rules, inspired in part by Craig Reynolds’s deconstruction of bird-
flocking behavior:

1. each robot maintains a minimum distance from the robots sur-
roundingit,

2. each robot matches velocities with the robots in its neighbor-
hood,

3. each robot moves towards the perceived center of mass of the
robots in its neighborhood,

4. the velocity ofa robotis proportional to the number ofbig rocks
It perceives in its neighborhood(orinverse proportional to the degree
of flatness of the local neighborhood),

5. when a robot hasn’t moved muchfor a while it goes into a new
“mode,” adopting a new set ofbehaviors which are appropriate for the
next global task.

. . a collection of robots executing thefirst three rules will tend
to wander around someareain a flock-like way. Rules 4 and 5 should
ensure that the flock stops wandering around, once an appropriate
location has been found.

Again, the robots would follow

a

series ofrules designed to produce
emergent, functional behavior. Each robot would emit a radio signal
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whereupon they would back up and scoop up soil from the incline.

Sensing a full scoop, these robots would gravitate to robots sending the

special signal. Sensinga pile ofsoil, they would dumptheload from their

scoops. Ultimately, the team of robots would level an area oflunarturf

and pile soil at the boundary.

Although the MobotLab researchers devised their scheme indepen-

dently, the global process they proposed bore an uncanny resemblance

to the vision delivered ten years previous by Richard Laing’s team of

scientists working under NASA’s aegis. The ship carrying the robots

corresponded in part to the Laing team’s earth-originating “seeds,”

designed to sprout into self-replicating lunar factories. The scientists

reporting to NASA had no inkling that an ethological, bottom-up

approachto robotics would promotethe construction oflifelike autono-

mous robots to invade the moon, Mars, and more distant destinations.

Inspired by John von Neumann’s mind experiment, their proposal had

vergedonsciencefiction. With new,enabling technologies, their vision

had becomefeasible.

The experience of the Mobot Lab robotcists, the computational

ethologists, and the theorists of emergence demonstrated that the most

fertile grounds for seeking those enabling technologies were biological

systems. Living organisms, the best machines previously imaginable,

embodied powerful processes honed by evolution and self-organiza-

On theleft, a sketch of a lunar mining module envisioned in 1 980 by the

NASA Self-Replicating Systems Concept team. On the right, a rendering of a

currently working robot developed by the MIT MobotLab, which can be modified

to perform those same extraterrestrial tasks.

 
306



Real Artificial Life

tion. Now that these ideas were being similarly embodied in nonor-
ganic machines, the dreams of the NASAscientists did not seem so
farfetched. Nor did the premise thatlife could exist outside of carbon-
chain chemical matter. Consider a reasonable extraterrestrial observer
viewing a thousand Attilas on the moon as they flocked toward a
location, fanned out to explore the area, and carried stones back to a

ciently. Howrestrictive would the observer’s definition of life have to
be to exclude this system?

At the Mobile Robot Lab, there was no statement ofpurpose regard-
ing whetherthe successors ofAllen, Herbert, Genghis, and Attila might
claim the status of living beings. There did seem a consensusthat by
striving for animal-levelintelligence, as opposedto using the techniques
of top-down symbolic knowledge to embody humanlike thought pro-
cesses 1n robots, roboticists may well create additions to the natural
ecology that would engage in symbiotic relationships with human be-
ings, muchin the way humanscultivate houseplants,ride on horses, and
employ canaries in mines. One of the papers generated by the lab
described the vision: ‘There may be a colony of almost microscopic
screen-cleaning robots that live on yourtelevision screen, a horde of
slightly larger robots that scrape the foodoffthe plates before the water
cycle beginsin the dishwasher, a group ofmouse-sized robots that keep
the corners of your house clean, a family of dog-sized robots that
maintain your garden and a herd of hippopotamusesthat build the dam
that supplies you with water and electricity.”

If, as Rodney Brooks claims, Grey Walter’s cybernetic Elsie and
Elmersurpassedbacteria intelligence, and Attila falls only slightly short
of insect-level intelligence, would we soonseelife be simulated at, say,
the canine level? One of the Mobot Lab workers, Paul Viola, actually
wagered a case of fine cognac that he could accomplish this within a
decade. Thatis, he would build a robotthat behaved so muchlike a dog
that for all practical purposesit really was a dog. Viola and his skeptical
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friend woulduse an intriguing variation of the Turingtest to determine

whetherthe bet shouldbepaid off. Viola wouldbring it home and show

it to his friend’s (yet-unborn) children.

If they loved it, Viola would win the bet.
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THE STRONG CLAIM

 

How dare you sport thus with life? Do your duty with me, and I will do
mine towards you and the rest of mankind. If you comply with my
condition, I will leave them and you with peace; but ifyou refuse I willglut
the maw of death, until it be satiated with the blood of your remaining
friends.

The monster, in Mary Shelley’s Frankenstein



On November3, 1983, Fred Cohen allowedhis attention to drift from
the discussion in the small seminar room at the University of Southern

confront the six-month deadline for submitting another. So far, all he
had was a workmanlike elaboration ofhis originalfailed attempt, which
dealt with theories ofparallel processing. If his professors rejected that,
there would be no doctorate in computer science and not much of a

Cohen was a nomadicstudentin electrical engineering and computer
security. The son of physicists, he had grown up in Pittsburgh, where
he earned a bachelor’s degree at Carnegie-Mellon and a master’s in
information science from the University of Pittsburgh. Robust, brash,
and sometimes impolitic, Cohen liked a good time. He was a member
ofboth the lacrosse and Frisbee teams. Yet herealized that the demands
of adulthood were on him. Vowing to become“‘a perfect student,” he
entered USC to study computational theory and robotics.
Now,Fred Cohen daydreamedas his professor Leonard Adleman and

Cohen’sfellow students discussed various Trojan-horse attacks on com-
puters. In Cohen’s studies on parallel processing, he had becomeinter-
ested in distributed algorithms, a way to allocate parts of a single
computational problem to different parts of a computer or even to
different computers. He mused that one wayto tackle the mechanicsof
this wouldbeviaself-replicating programs. Cohen wasofcourse familiar
with von Neumann’s work. Butthe idea he was hatching that morning
dealt with much simpler constructs than the famous self-reproducing
automaton. Whatif simple pieces of programs could insert themselves
into other programs and assume control of them, in the same waythat
parasites fix themselves to hosts?

“It was as if there were this curtain between me andthetruth, and
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Godsplit the curtain apart and said, ‘There it is.’ ’’ says Cohen when

describinghis feelings that day. “I immediately understood the implica-

tions. I’d been working on computersecurity for a long time—I knew

how systems worked, and how different attacks worked. .. . But now

it came over me. Anyone who writes one of these things would have

something that could replicate everywhere.”

Cohen’s realization provided another key piece in the puzzle ofhow

life should be defined. Life should be regarded as one half of a duplex

system: the organism and its environment. A recipe for interactions

capable of cooking up the mechanics of life required the setting that

allowed its potential to be fulfilled. The DNAcodeis effective within

the structure of a cell, which provides the raw materials to interpret the

code by forming its vital enzymes. Von Neumann’s kinematic self-

reproducing automaton required a lake stocked with the proper body

parts. And

a

certain class of computer programsthat could self-replicate

and feed on other programs neededa rich data environment. In creating

a dizzyingly complex matrix of computer operating systems, we had

inadvertently spawnedthis environment.It was fertile ground for a new

type ofcreature: a parasitic information organism. Sorich wasthis world

of data that Cohen believed that even simple creatures could live in

it—and wreak havoc on its stability.

Whenthe seminar ended, Cohen explainedthe idea to Adleman. The

professor immediately identified the biological analogue to what Cohen

proposed was possible: viruses.

Unknown to Adleman or Cohen, science-fiction writer David Ger-

rold,in his 1972 book, When Harley Was One, had already used the word

“virus” (whose own meaning derives from that Latin word for poison)

to refer to a rogue computer construct. The coinage had not caught on:

Gerrold,in fact, had deleted the relevant passage in reprints ofthe novel.

Cohen ultimately would define a computervirusas “4 program that can

“Gnfect’ other programs by modifying them to include a possibly evolved

copy ofitself.”

Adleman encouraged Cohen to experiment with the idea. Cohen

retreated to the small office he shared with four other students and sat

downat his terminal. Within five minutes he had written the code for
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a program that could insinuate itself into other programs. A computer
virus. The easiest part—the destructive component—completed, Cohen
worked until the early evening on the more difficult component: code
so that the construct would not proliferate uncontrollably. By eight
o'clock that night he had completed his work: two hundred lines in the
computer language C that would be known as the first documented
computervirus.

Cohen wanted the virusliterally to seek permission before infecting
other programs. “I didn’t want to have something that just spread, I
wanted to have something I could control,” he explains. “It was quite
clever as viruses go. Not only wouldit ask me for authorization, butit
wouldn't randomly infect everything. I did analysis of the habits of
varioususers [this was readily available to Cohen because ofthe habit of
the UNIX operating system to provide lists of each user’s files] and
figured out which programs were run most often by mostusers. It would
infect the thing that was most likely to spread theinfection furthest and
fastest. It’s no different than a biological disease—ifyou wanted toinfect
a lot of humans, you would choose to begin with someone like a
prostitute in Las Vegas.”
Adleman secured permission for Cohen to release his program into

the UNIX environment ofthe VAX 11-750 computer at USC. Cohen
doubts that his adviser fully explained the nature of the experimentto
the administrators that granted the request. How could they have known
the implications? Cohen was certain that he could maintain control of
his creature. He was the first computer scientist ever to conduct a
scientifically monitoredrelease ofa predatory information organism “‘in
the wild.”’

The experiment was performed in mid-afternoon, peak time for
computer usage at the university. There were approximately fifty users
time-sharing the VAX.
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on a UNIX computer—the system user, also known as the “root’”’—

became infected, Cohen would then have that system user’s access to

everything on the system,including the ability to read and writetoall

files, including the operating system itself. It would belike capturing the

queen bee: the hive would be his. Cohen postedthe availability of the

program on the user bulletin board and waited.

When the first user accepted the bait and accessed the program, the

virus struck. Scanning the user’s files and comparing them to the log

determining program activity (kept elsewhere in the system), it chose the

most “social” program to infect. In the UNIX system, certain programs

in the files of individual users were available to everyone on the sys-

tem—those most accessed were the choices for invasion. The virus

required onlyhalf‘a second to insert itselfinto this file, a time far too brief

for any user to suspect anything was amiss.

In the case ofthisfirst infection, the program chosen was an on-screen

time-of-day indicator that many users liked to run when they worked

with an editing program called EMACS. Approximately half the users

would routinely access this clock. Whenthevirus asked Cohen permis-

sion to infect, he granted it. The infection then spread to other people

using the clock and soon reached the user who had possession of the

EMACSprogram itself. From then on, everyone whoused that program

would become infected—pending Cohen’s permission. The infection

would reside in the most social file of each contaminated user. Within

a few minutes, the root himself accessed an infected program, and the

virus’s job was done.

Cohen’s virus had completely penetrated the system.

Cohen was now able to access the programsandfiles of any user;

he could type commandsas if he were that user. He used this power

to carefully eradicate the virus from each user’s files. Then he ran the

experiment again. He unleashed the virus five timesin all. Each time,

he achieved 100% penetration. Here was the way Cohen logged a

typical run (note that “loadavg” was a frequently used utility program

that measured user activity, and “‘editor’ referred to the EMACS

program):
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ELAPSED TIME EVENT EFFECT
(in minutes)

O Program announced on BBoard Existence published

1 min Social user runs program “Loadavg” infected

4 min Hditor owner runs “Loadavg” editor infected

8-18 min Many users use editor Many programs infected

14 min Root uses editor All privileges granted:

Partially for this reason, Cohen exercised great caution when docu-
menting his results. He took to heart the advice ofDavidJefferson, then
still at USC, who,realizing the significance ofCohen’sfind,said, “Make
this the greatest paper you will ever write.” After receiving permission
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to make computerviruseshis thesis topic (it was so late in the gamethat

this could only be donebyfirst submittinghis previous proposal withthe

verbal understanding that he would quickly submita brief on his pro-

posed subject change), Cohen read extensively on epidemiology,

analyzed his data in exacting mathematical terms, and planned expen-

ments on other systems. The latter was no simple matter. As soonas the

administrators in charge oftheinitial test site saw results of Cohen’sfirst

experiments, they unconditionally banned any encores, even those pro-

posed by Cohen that would implementspecial programs totest a sys-

tem’s ability to resist possible infections. ‘This apparent fear reaction

seems typical,” wrote Cohen in his thesis. ‘Rather than try to solve

technical problemstechnically, policy solutionsare often chosen.”

Those administering other systems at USC expressed similar fears and

even refused Cohen permission to perform his experiments using sani-

tized versions oflog tapes in off-line simulation.It seemed to Cohen as

if they hopedto eradicate the potential menace of predatory computer

programs by willing it away. After months of negotiation, Cohen was

finally able to repeat someofhis tests on other systems and to reconfirm

his results. But despite proposing what he considered foolproof safe-

guards, he was neverable to secure the access he required to experiment

with and measure the dissemination of computerviruses.

When Cohenbeganto discuss his research in public, the response was

even more alarming. Cohen would claim thatafter he spoke at one

computersecurity conference in Canada, an Americanofficial told him

that, had the State Department known ofthe subject ofhis talk,it would

not have allowed him to speak. Cohen further claimed that he was

subject to a thorough search on reentering the country. After he com-

pleted his thesis in 1985, the newly minted doctorhad difficulty publish-

ing the paper summarizingit. Finally, in 1987, it was accepted by the

journal Computers and Security. Because Cohendid not want the people

whoassisted him to become stigmatized, he felt compelled to take the

unusual step of acknowledging them only by their Christian names.

By then it was four years since Fred Cohenhadfirst stumbled on the

realization that a fertile information environment existed for a poten-

tially destructive form of artificial life. Cohen had been suffering, and

would continue to suffer, from a virtual lockout in funding. His aca-
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demic career was marked by an inability to continue his experimentation

eradication and prevention. Cohen wouldlater vividly recall a presenta-
tion from that period. As he introduced the audienceto the brave new
world of computerviruses, his eyes chanced on the obviously disturbed
visage of a young woman.

“It was as if someonetold her her mother was not her mother,”’ says
Cohen.“That’s the reaction I got from most people until the theory and
practice of this thing became well understood. It was not within their
belief set. And it wasn’t until they gothit by it that they understood.”

more research, however, he recognized the footprints of others. Al-
though no one hadcreated a rigorously defined computervirus before
Cohen, there had been speculation about predatory computer orga-

Throughout computerhistory, such unauthorized after-hoursactivities
sometimes masked advances in the science. Those ventures constituted
the brief prehistory of free-range artificial life-forms: wildlife. They
came into being as pranks, or unorthodox means of research, and in
no case did they seem designed for destruction. But they portended a
potentially horrifying future if artificial life were realized without
proper controls. Worse, their persistence indicated that those controls
might be unattainable.

Thefirst knownpredatory self-replicating organisms, however, never
found their way out of the confines of the unwieldy IBM 7090 main-
frame computer in the bowels of AT&T’s Bell Labs in New Jersey.
These beasts were the digital warriors in a gladiatorial game called
“Darwin.” In 1962 there was nothing else like it. Darwin’s creator,
Victor Vyssotsky, used von Neumann automata theory as a basis for the
creation ofself-replicating programs that were released by their pro-
grammers into a virtual arena—muchlikeferal roosters tossed into the
cockfightby their trainers. Vyssotsky matchedhis autonomous gladiators

317



ARTIFICIAL LIFE

with those of two other Bell computerscientists, H. Douglas MclIlroy

and Robert Morris, Sr.

The organisms were made oflow-level computerlanguage, or assem-

bly-language, instructionsthat could be executed in the memory “‘core”’

ofthe machine. The organisms could perform three functions: PROBE,

CLAIM,and KILL. Whenan organism wasreleased into the computer

environment, it would PROBE addresses in the core. If it found a

region of the core to be empty,it could CLAIM the turf by self-

replicating. If an enemy resided in the examined area, the organism

sought to KILLit.

At one point, Mcllroy released an interesting fighter into the core.

Possibly it was the first computer construct to be called a virus, although

it did not, like Cohen’slater creation, infect extant programs in the spirit

of a biological virus. It consisted of only fifteen instructions. Because the

rules of Darwin allowed each organism to protect twenty ofits instruc-

tions from the attacks of other organisms, the virus was indestructible.

But the organism’s brevity dictated incompleteness: it could PROBE

addresses for enemies and KILL those it discovered but could not exe-

cute instructions for self-replicating. This put it at a disadvantage, be-

cause the winner of Darwin, in the spirit of its namesake, was the

organism with the most progeny. If it did not destroy its opponents

within the game’s timelimit, it would invariably lose. Not long after the

creation of this organism, the third Darwin fanatic, Morris, wrote a

creature of thirty instructions that displayed adaptive behavior: it not

only learned how to make increasingly effective probes for enemies but

also passed that information ontoits offspring. It won consistently.

Muchofthis activity was in the spirit of what would becomea-life

experiments. The Bell workers tried various biological strategies, even

implementing bisexual species (with disappointing results—according to

one account, “the two types spent much ofthe time tryingto find one

another, and of course the whole species could bekilled by exterminat-

ingall of either sort”). Yet at Bell Labs, Darwin was regardedsolely as

a recreation. After each roundofbattles, the organisms were purged, and

it was implicitly understood that no one would reveal the nature of the

lab’s midnight diversions.
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For years Darwin remaineda secret. Meanwhile, computer scientists
began concocting a variety of information organisms well suited to
proliferating in the wild. These did not infect existing programs but
simply self-replicated, sometimeserasing the original copies and some-
times multiplying with alarming speed. Oneoftheearliest examples was
“Cookie Monster,”’ an anonymously coded mid-1960s program on an
MIT’ time-sharing computer. It caused a typed plea for cookies to
persistently scroll across a user’s computer and stopped only when the
user typed the word “‘cookie.”

In 1971 Bob Thomas, a computer scientist at Bolt Baranek and
Newman wrote a more ambitious variation. Thomas’s work in air-.
traffic-control software, whereairplanes had to be tracked on different
computers as they moved from oneregion to another, inspired him to
write “creeper,” which, moving from one node of the Arpanet com-
puter network to another, would unexpectedly appear on someone’s
computerscreen as the message, “I’m creeper! Catch meifyou can!”In
response, some programmers wrote “Teaper” programs that attempted
to locate and snuff out creepers.

In the mid 1970s John Shoch and Jon Hupp. two Xerox PARC
researchers, came across the idea and attempted to implementit to
increase the productivity of the network of personal computersat their
research facility in Palo Alto, California. Shoch and Hupp wereinter-
ested in what wascalled “distributive computation,” a process where
boundaries between individual machinesarecrossed in orderto use their
collective processing power to address a single problem. Xerox’s net-
work linked over a hundred personal computers by a high-speed net-
work protocol called “Ethernet.”’ Shoch and Hupp viewedthe entire
net as a single computer with a hundred processors. The problem was
accessing the different machines in an orderly fashion. As Shoch ex-
plains, “You’re not going to walk around the building loading up 100
machines with the program,that’s a really dull idea.”

Eventually, they implemented a creeperlike scheme whereby a pro-
gram could movearoundthe network,find idle machines, and runtests
in them. (Xerox PARC workersseldom,if ever, shut powerfrom their
computers; when the machines were not runninga user’s programs, they
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would revert to a simple program that diagnosed possible memory

problems.) This would best be performed at night, when all but the

hardiest programmers had gone home.

Oniginally, the researchers envisioned their work as akin to the crea-

ture in the movie The Blob, a formless yet vital ooze that used its viscous

nature to insinuate itself into unwelcome areas. But a contemporary

science-fiction novel, The Shockwave Rider, byJohn Brunnerfeatured an

informational monsterthat elusively traveled, 4 la creeper, throughouta

network. Brunner’s characters called it a “tapeworm.” So the Xerox

researchers classified any segmented computation capable ofliving on

multiple machines as a worm.

Shoch and Hupp’s worm wouldfind idle machines,initialize them to

receive a new program, and send a copyofa specific program into the

machine. The machine would then run the program, whereupon it

would be considered a segment of the worm. When the program was

finished with the machine, it would leave and return the machinetoits

original state.

The only purpose of “the existential worm,” thefirst iteration, was

survival. Once a segment wasestablished, it would send out a few more

copies; a “‘complete’”’ worm generally had a fixed number of segments.

Whena user reclaimed a machine by beginning a program, the segment

would moveto another machine. A built-in timer would limit the life

span of the worm. Next camethe“billboard worm,” which distributed

a graphic image throughout the network. When users arrived in the

morning, they would know a worm segment wasin their machine by

the screen display—a “cartoon of the day.” Ultimately, the researchers

implemented a complicated worm that, moving from machine to ma-

chine, performeduseful, otherwise cumbersome, diagnostic tests on the

network. The success of this worm indicated that worms could indeed

be a powerful tool in achieving distributed computation.

In Brunner’s novel, the tapeworm eventually eluded humancontrol.

“It can’t be killed,” said its fictional creator. “‘It’s indefinitely self-

perpetuating so long as the net exists.” Shoch and Hupp read sober

significance into that passage. ““The biggest problem associated with

worm management,” they wrote,is ‘‘controlling its growth while main-_

taining stable behavior.” In one nocturnal experiment, they released a
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small, seemingly innocuous worm into the Ethernet. When they re-
turned the next morning, they were shocked to discover that the net-
work had been rendered a computational wasteland. Dozens of
machines were dead,refusing attempts to resuscitate them. The worm
still lived.

“If one restarted the regular memory diagnostic, it would run very
briefly, then be seized by the worm,” wrote Shoch and Hupp whenthey
published their research in 1980. “The worm would quickly load its
program into this new segment: the program would start to run and
promptly crash, leaving the worm incomplete—andstill hungrily look-
ing for new segments.”’ Fortunately, Shoch and Hupp had a doomsday
feature in their program that commandedall worms to commit hara-kiri.
What had happened was a mystery. Although theylater postulated

several ways that worms could similarly run amok, noneofthose sce-
_ harlos corresponded with the circumstancesof that particular incident.

form inits self-replication. As a result, the newly destructive worm was
not the sameas the Xerox researchers programmedbutrather, as Shoch
says, ‘‘a mutation.”’ |

Shoch did not push the biological metaphor any further. His worm
hadlittle similarity with natural worms. In that, it differed from com-
puterviruses, which actually did whatreal viruses did, and was not really
a predecessor to Cohen’s information organism. After Shoch and Hupp
published their paper, the idea received some limited notoriety, and
some people even experimented informally with creating worms in
personal computers. But the idea of computer wildlife still belonged
more to science fiction than to computer science. Until Fred Cohen
exposedthe possibility to his fellow students in Adleman’s seminar and,
eventually, to the world.

In May 1984, before Cohen’s results had been published, A. K. (Kee)
Dewdney wrote a columnin Scientific American about a gamehe devised
called “Core War.” Like Darwin, Core Warpostulated a battle between
organisms consisting ofinstructions in a mock machinecode,in this case
a language Dewdneycreatedcalled ‘““Redcode.” (By creating a “‘virtual”’
language, Dewdneyassured that the actual Core War organisms would
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not be able to live outside the designated battlefield.) In essence the

combatants would exchange blows, executing an instruction each

round. The aim was, as Dewdneyputit, “‘to destroy the other program

by ruining its instructions.”

Thefighters waged their wars in diabolically variant fashion. An early

Dewdneycreation was DWARF,which hedescribed as a “‘very stupid

but very dangerous” beast of four instructions, which methodically

peppered the core with a barrage of “zero bombs.” (A zero bomb was

the insertion of a zero in an address on the core; it was capable of

damaging the instructions of a creature residing in that address.) A

worthy foe for DWARFwas IMP,consisting ofasingle line ofcodethat

instructed the creature to moveitself to another address in the core.

Dewdney suggested that the ultimate victors of Core War battles

would be complicated creatures that displayed intelligence. His readers

gleefully provided these sophisticated information organisms. These in-

corporated both weaponry andshields: some of them were capable of

launching IMPsand ofimplementing IMP-STOMPER componentsto

stamp out enemy IMPs. One of the more successful creatures, MICE,

managed to snuff opponents by relentless self-replication. In the first

Core War tournament, MICE was challenged by a program called

CHANGI1, which turned itself into a virtual factory of IMPs. The

multiplying MICE fended off CHANG1’s zero bombs, and the match

ended in a draw.

If Fred Cohen’s experiments represented a landmark in the formal

study of computer viruses, Kee Dewdney’s column markeda signal, if

unwelcome,event in the subterranean creation of computerbeasts. On

one hand many programmers were precisely hewingto thespirit ofgood

clean fun that Dewdney intended for Core War—implementing the

game on various microcomputer operating systems, writing innovative

Redcode creatures, organizing tournaments, and even forming a club,

the International Core War Society. In addition, Core Warinspired the

methodology for some significant experiments in a-life: Steen Ras-

mussen’s VENUSprogram used Redcodeas inspiration for their com-

puter organisms, as did Tom Ray’s Tierra simulator.

Onthe other hand,Dewdney’s writings helped spread the newsofthe

destructive possibilities of information organisms. This was a factor in
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provoking an epidemic ofpredatory programs. Three years before Chris —
Langtoninitiated the first a-life conference, outlaw programmers were
creating free-range examples ofartificial life. “There are abundant ex-
amples of worms, viruses, and other software creatures living in every
conceivable computing environment,” Dewdney wrote in a follow-up
column in March 1985.“Someofthe possibilities are so horrifying that
I hesitate to set them downatall.” |

Particularly chilling was a letter written to Dewdneyby twoItalian
programmers who proposed but did not implement a virus on the
popular Apple II computer operating system. Each disk used in the
Apple devoted a small portion of its contents to a piece of the disk
operating system. Thestart-up disk used this code to set an ignition key
to boot up the computer. Thus it was called a “boot disk.” TheItalians

subsequentdisks inserted in the computer. They surmised that installing
a few such infected disks in their city’s (Brescia) largest computer store
would besufficient to spur an epidemic,ifan epidemic could consist of
such a benign virus. They decided that it could not. “No, our virus
should be malignant!” they concluded. “So we decided that after 16
self-reproduction cycles, counted onthe disk itself, the program should
decide to reinitialize the disk immediately after bootstrap.” The draw-
back to their solution was the disk would be wiped clean ofall its
potentially invaluable information. |

Anotherletter Dewdney included in the column was by a Pittsburgh
high schoolstudent whohadactually written a similar program,differing
mainly inits less thorough degree of devastation. (It did not wipe the
disk clean but rather mangled the operating system.) In a twist worthy
of Mary Shelley, the chief victim of the monster’s destruction was
apparently its creator. “I have never been ableto getrid ofmyelectronic
plague,” wrote the student. “It infested all of my disks, and all of my
friend’s disks. It even managed to get onto my math teacher’s graphing
disks.”’

Dewdneytried to suggest means of combatting computer viruses,
referring to proven defensive measures in Core War strategy. It was the
first of what would become a cottage industry of “disinfectant” or
““vaccination”’ programs. It was also too late. By the mid-1980s Fred
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Cohen’s dour prediction of computer security meltdown was quickly

beingfulfilled. During the next few years a de facto a-life research effort

was launched by both playful and malicious programmers. First came

crude viruses appearing on the Apple II computer, with nameslike

“Festering Hate” and “Elk Cloner.” Then came over sixty varieties of

virus attacking programs running on the popular MS-DOSoperating

system, including IBM personal computers. The dense informational

ecology of busy computer networks was particularly vulnerable to at-

tack. In November 1988, Robert Morris, Jr., a twenty-one-year-old

Cornell student(and the son of the computerscientist whohad written

the invincible Darwin organism at Bell Labs in 1962), released a self-

replicating program that came to be knownas “‘the Internet Worm.”

Morris quickly lost control of his creation and watched helplessly as it

wildly madecopiesofitself and shut down a networkaffecting millions

In a single human generation, from Morris, Sr., to Morris, Jr., the

technology ofartificial life had gone from an amusing diversion to a

destructive information bomb. This was the dark side of garage-band

science: the same powersthat could be easily summonedto illuminate

life’s machinery couldjust as easily be channeled, intentionally or other-

wise, toward mayhem.

Onthe other hand, as Fred Cohenlater noted, Morris’s program, by

quickly copyingitself to over six thousand computers, had established

the world’s record for high-speed computation. Cohen's remark was

made with a degree of irony. During the period that young Morris and

other unauthorized experimenters were blithely releasing predatory

creatures in the wild, Cohen and otherserious researchers were consist-

ently being refused not only funding but even permission to conduct

experiments in computer viruses. As a result, the creations of willful

some ways the most advanced, forms of artificial life thus far.

A case in point wasthe creature concocted in 1986 in the back room

of a Pakistani computer store, Brain Computer Services. The store’s

twenty-four-year-old proprietor, Amjad Farooq Alvi, and his teenage

brother Basit, decided to write the virus to punish the American custom-

ers (but not the Pakistanis) who bought pirated MS-DOSsoftware from
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their store. Apparently, they also hoped to reap profits from their cre-
ation: when the virus ruined someone’s work, it was programmedto
post the nameandtheaddressofthe store, along with a copyright notice
and with a note suggesting that the Lahore, Pakistan, business could
provide vaccination.

TheBrain Virus,as it came to be known,not only was oneofthe first
viruses to infect a large population (estimated at over one hundred
thousand) but also was regarded asa fairly clever program. Whena disk
infected with the Brain was usedto start the system, the virus copied
itself to the computer memory andthen “‘hid” itself. It then allowed the
booting process to continue. If the infected disk was not “bootable”
(1.e., it carried only files and was not intended for use in starting the
computer), the virus would insert itself in memory anyway, and display
the following message on screen:

Please Insert a Bootable Disk Then Type [Return].

In both cases, any disk subsequently inserted in the computer would
becomeinfected. The virus would search the disk to see whetherit was
already infected. Ifnot, it would write thevirus, by utilizing three blank
clusters ofthe disk, first marking them “BAD” (making them otherwise
unusable), then hidingitself in those areas (a cluster stretches over two
sectors of the nine-sectored disk). If no clusters were blank, the disk

the sectors were part ofa data file, that information would be lost, and
the contents of the entire file would possibly no longer be available.
Among the diabolical features of the Brain was an ability to resist

detection. If someone attempted to use a debugging program to search
for the infection, the virus would redirect the search to a noninfected
region. The program wasalso written in such a waythatit could not
easily be disassembled.Finally, it was sufficiently malleable that its code
could be altered by programmers wishing to elaborate on it, a quality
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that further compoundedbothits elusiveness and destructiveness. These

effectively acted as mutations, and the morefit ofthese enabled the Brain

to be ever morepersistent in surviving as a parasite in the data world

inside personal computers. As of 1989, researchers had charted ten major

Brain mutations, one of which was programmed to remain dormant

until May 5, 1992, whereupon it would destroy data.

Even though programmers eventually devised effective vaccination

programsagainst the Brain, observers conceded that the virus was des-

tined to hang on as longas its host, the MS-DOSoperating system,

remained popular. Even Fred Cohen, who with typical immodesty

regarded his ownviral creations as by far the most well-crafted variety

for many years thereafter, admitted a grudging respect for the Brain

authors. “This sucker is going to be here for a while,” he says. “It’s

going to be on computers for tens if not hundreds of years.’

Cohenbelieved that his ownvirus wasliterally alive. Whenthefield of

artificial life coalesced in 1987, that claim was taken quite seriously. The

a-life scientists generally agreed that, ofall information organisms, none

came so close to fulfilling the admittedly vague demands oflife as did

computerviruses.

Essentially computer viruses were thefirst organisms to contend for

what was known as the “Strong Claim”’to artificial life. This held,

according to Chris Langton, “‘that any definition or list of criteria broad

enough to include all knownbiological life will also include certain

classes of computer processes, which, therefore, will have to be consid-

ered ‘actually’ alive.” (The “Weak Claim”held that, although a-life

experiments were potentially useful simulations of the processes oflife,

the nature of living systems dictated that they could never themselves

becomeinstancesoflife.)

Did computer viruses, indeed, vindicate those who believed in the

Strong Claim? Was the daring leap that artificial life required of its

adherents—thebeliefthatlife could be created computationally—already

fulfilled?

It was true that Cohen’s virus, the Brain virus, certain winning Core

War organisms, and hundreds of other persistent computer creatures
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shared a frightening quality with natural organisms. All drew on forces
much more powerful than themselves, in a mannerconsistent withlife’s
slickest move: an apparentviolation ofthe secondlaw ofthermodynam-
ics. As Leonard Adleman was quick to perceive, Cohen’s virus accom-
plishedthis trick with eerie similarity to the devices ofbiological viruses.
Yet this alone did not bestow them life.

In fact, it was not clear whether a biological virus itself could be
includedin thesociety oflife. The debate over this matter had long ago
turned into a unproductive stalemate. Biological viruses are no more
than nakedstrands ofnucleic acid, either RNA or DNA,surrounded by
a sheath of protein. They cannot perform their key organic functions,
particularly reproduction, without commandeering the host cells they
rudely violate. They remain dormant until invading a cell of a host
species, whereuponthey burst into activity, hijacking the mechanics of
the cell so that it performs tasks geared toward the viruses’ ends. The
materials inside the cell are appropriated to reproduce new viruses. At
times, evenparts ofthe host cell’s DNA codearereinterpretedto aid in
the production of viruses. Thus viruses are incomplete organisms.

T’o some,this incompleteness indicated that viruses were something
less than fully alive. To others, it seemed obviousthat viruses shared so
much with organisms universally considered alive—the family oflife,
from bacteria and up the ladder of complexity—that the boundaries of
our definition must include them. Because we had no definition oflife,
the question was perpetually up for grabs. Author Andrew Scott sug-
gested that the matter be putto rest by consideringlife not as a collection
of separate organisms but as a complete and integrated biosystem.
“Within such a system,” he wrote,“viruses are certainly a part oflife, just
as we ourselves are a part oflife.”

Did this mean that computer viruses could also make that claim? As
outlined by Doyne Farmer and Alletta d’A. Belin, a computer virus
**satisfies most, and potentially all, of the criteria [for life].’’

- A computervirusis a pattern on a computer memory storage device.

* A computerviruscan copyitselfto other computers, thereby repro-
ducingitself.
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- Like a real virus, a computer virus makesuse ofthe metabolism ofits

host (the computer) to modify the available storage medium.. . .

- A computer virus senses changes in the computer and responds to

them in order to procreate.

- The parts ofa computervirusare highly interdependent: a computer

virus can be killed by erasing one or more ofthe instructionsofits

program.

- Although manyvirusesare notstable underlarge electrical perturba-

tions, by the nature of the digital computer environmentthey are

stable to small noise fluctuations. A truly robust virus might also be

stable under somealterations of its programs.

- Computerviruses evolve, although primarily through the interme-

diary of human programmers. . . . For current computer viruses,

random variation is almost always destructive, although some more

clever viruses contain primitive built-in self-alteration mechanisms

that allow them to adapt to new environments, or that make them

difficult to detect and eliminate. Thus contemporary viruses do not

evolvenaturally... . Eventually it is likely that a computervirus will

be created with a robust capacity to evolve, that will progress far

beyondits initial form.

Thesimilarities between natural and artificial viruses are considerable.

Both share the condition ofbeing incomplete organismsthat fulfill their

active destiny by scavenging host mechanisms. Both are no-frills survival

mechanismsdedicatedto preserving their essence, a piece of code. They

do the same things for the same reasons. Theyinfect, replicate, and go

on to infect more, simply to preserve that precious data.

Theyattack their hosts in similar fashion. Certain forms ofbiological

virusesinfectcells by inserting their genetic material into the cell and by

operating outside the cell nucleus. Although the cell’s DNAis un-

harmed,the virus usesthe cell materials to produce enzymes for its own

puter organism called the “shell viruses.” These effectively form

a

shell
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aroundthe codeofthe original program, which then becomesa subrou-
tine of the virus. Other natural viruses operate in the cell nucleus. Some
of these link their genetic codes to the cell’s DNA;these correspond to
“add-on” computer viruses, which appendtheir code to the host pro-
gram. Yet anothertype ofnatural virus moresubtly integratesitselfwith
a host cell’s DNA,as in the case of lysogenic bacteria, whose inherited
genomescan include viral DNA. These may beseen as kin to “intru-
sive’ computer viruses, which replace a code from the host program
with their own viral code.

Computersecurity experts began to argue that digital viruses were
best fought by applying lessons from biological virology and epidemi-
ology. One expert, postulating that computer systems managers should
play the role of epidemiologist, drew the following analogy between
natural andartificial viruses:

A virus is expelled (sneeze, SENDFILE) from an infected member
(carrier or originator) of a community (family, users of a common

reader) to a target member of the community. Depending uponthe
susceptibility (e.g., immunity, similar language, commandorinstruc-
tion set) ofthe target andthesatisfaction ofnecessary triggering condi-
tions (passage of an incubation period, event on the system clock,
executionofthe virus code) the subject may manifest symptoms(fever,
pain, destruction or disclosure of files). Even where no symptoms
appear, the subject may manifest sub-clinical evidence of infection
(give positive response for a test of the virus).

Thefinal elementin the Strong Claim for computer viruses wastheir
comparable complexity. Parvoviruses, the simplest variety of natural
virus, consist of but a single strand of DNA with a coat made of only
three different proteins—the DNAofaparticular parvovirusthat infects
mice stretches for only 5081 nucleotides. Although the still-mysterious
nature ofbiological encryption no doubtensures that this information
is densely compressed,this still represents fewer data than werestored in
the Brain Virus.
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Computer viruses make a compelling case for aliveness, at least to the

degree that biological viruses are alive. Observers are stuck with some

variation of the admittedly subjective Vaucanson test. Does it look,

quack, smell like a duck? Applying this test to computer viruses, the

result is negative only in that no one has yet developed a species capable

of true open-ended evolution (although someviruses indeed evolved in

a more limited fashion). But this is expected (and dreaded) in the

not-too-distant future. |

Computerviruses, then, stand just on the cusp oflife—and soon will

cross over.

Considering that these creaturesareillicit, uncontrollable, and destruc-

tive, some people become unhinged atthe conceptof their being the

frontrunners ofthe Strong Claim. Computervirus scholar Eugene Spaf-

ford ended a compelling brief on why computer viruses should be

considered alive with a sudden turnaround. After affirming that viruses

were “‘very close to what we mightdefine asartificiallife,” Spafford,

who had becomegalvanized bythe virusperil after the Internet Worm

struck the computerfacility he supervised at Purdue, found his conclu-

sion so upsetting that he questioned his own means of defining life.

Then he addressed his real problem:

I would also be disappointed if computer viruses were consideredas

the first form ofartificial life, because their origin is one of unethical

practice. Viruses created for malicious purposes are obviously bad:

viruses constructed as experiments and released into the public domain

are likewise unethical, and poor science besides. . . . Facetiously, I

suggest that if computer viruses evolve into something with artificial

consciousness, this might provide a doctrineof‘“‘original sin”for their

theology.

Spafford preferred that the Strong Claim be proven by something less

offensive. Addressing the collected a-life elite in Santa Fe in 1990, he

asserted that any task a virus might expedite couldbe better performed—
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and, to the point, performed more safely—by other means. “There are
no practical, ‘good’ viruses,”’ he claimed.
One certainly cannot make that claim for biological viruses. Al-

though the precise contribution of viruses to the developmentoflife
on earth is not yet understood, somescientists believe that they hold a
crucial role in pushing early organisms off local maxima, much in the
same way that Hillis’s anti-Ramps forced his Rampsto better evolu-_
tionary solutions to the sorting problems. More recently, humans have
learned, beginning with the use of the relatively benign cowpoxvirus
as. a successful immunizing vaccination against deadly smallpox, to use
‘‘good”’ viruses to fight more destructive ones. Certain a-life scien-
tists—chief among them Hillis—believe that computational viruses
might similarly be used as tools to expedite otherwise-cumbersomeor
-unmanageable tasks.

Oneobvious application would use computer viruses to fight com-
puter viruses. These antiviruses, like dormant antibodies in an immune
system, would harmlessly reside in operating systems until the presence
of a hostile virus triggered their activation. Some of these have already
been written, including a set of programs created by programmers at
Lawrence Livermore Laboratory. But the Livermore Lab creatures were
neverreleased in the wild. The system administrators were worried that
the autonomousantivirals might themselves cause damage. Their posi-
tion was similar to that of an agricultural officer deciding whether to
import a foreign predatorthat attacked a troublesomeparasitic insect:it
would be impossible to predict the full effects of the newcomer on the
complex ecology. Indeed, Den Zuk(translated, this means “*search’’), a
flawed antiviral written by a Venezuelan programmer to combat the
Brain Virus, on its unauthorized release into the personal computer
environment, wound up causing damage comparable to that caused by
its target virus.

Yet the potential benefits of such programs encouragedscientists to
think of ways to exploit them. “Viruses have two features, aside from
their nastiness, that make them soeffective,’’ wrote scientist Harold
Thimbleby, a computer scientist at Stirling University in Scotland.
“They are autonomous and they communicate. . . . There areall sorts
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of occasions where the user would like to have autonomous communi-

cation working on his own behalf.’’ Thimbleby and a colleague thus began

creating what they called “‘liveware’—-elf-replicating organisms pro-

grammed to perform tasks automatically. Thimbleby was careful to

avoid the epidemiological jargon of computerviruses; he stipulated that

liveware creatures did not infect the data they manipulated, but rather

they “‘enlivened”’ it.

Oneofthe first examples ofliveware enhanceda data base ofresearch

work in human-computer interaction. Thimbleby ordinarily would

send out questionnaires and integrate the information into his data base.

Instead he sent out the data baseitself, “‘enlivened’”’ with liveware. The

virus residing in the program had the ability to recognize when another

copy ofthe data base found its way onto the same computer. When that

occurred, both data bases would examine their kin. Each data base

would then supply the other with any informationit held that its cousin

waslacking. ““The database therefore keepsitselfup to date, with practi-

cally no cost,” wrote Thimbleby.

Fred Cohen was also a believer that the biological mechanisms in

computerviruses could be exploitedas tireless information workers. He

wrote a “viral bill collector,” software to automate bill collecting for

businesses that needed their information distributed over several com-

puters. The program employed evolving viruses. Each virus monitored

a numberofindividual cases. The autonomousvirus sensed whena task

was required on a given case and sprang into action.Ifa reminder had

to be sent to the debtor, for instance, the virus would initiate that

process, then putitself to sleep, scheduling a “wake-up call” that told it

whento take the next action. If before that point a debtor paid the bill,

a human wouldregister the information and the virus would be awoken

to register that event. At any time, a human operator could gather

information on payments due by “polling” the viruses monitoring the

cases. In addition, Cohen populated the environment with a number of

maintenance viruses that monitored the system by various means. It

sweptup the digital detritus ofdead viruses, policed the human operators

so no one without the proper clearance could access files, and, most

important, aided in the process of evolution.

“In mybill collector system,”’ wrote Cohen,
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whenevera person wakesupa collector, a different maintenancevirus
is given the chance to reproduce. Whetherthebirth takes place de-
pends upon the probability ofreproduction associated with the parent
virus: that probability declines with successive generations. At birth,
each virusis assigned a reproductive probability and a limitedlife span
to keep the population under control. When the probabilities are
adjusted properly, the viral population becomesstable yet resilient.
. . . Eventually the system operated for two years with no human
intervention except the adding and removingofusers.

Cohen believed that, while malignant computer viruses could be
controlled, beneficial viruses could “‘lead to remarkable enhancements
of information systems, which should cometo bear the brunt of the

of his small company, an annual $1000 prize for “the most useful
computer virus.’” He was immediately attacked by Spafford, who
warned that Cohen was, in effect, inviting programmers to experiment
recklessly with forces they could not control. Cohen, he charged, was
behaving not only irresponsibly, but immorally.

Morality’s entrance into the debate wasa fitting intrusion. Atits heart
the question is not whether experiments in computerviruses should be
encouraged. Computer viruses are not inherently bad any more than
biological viruses, or any form oflife, can be considered bad. Uncon-
trolled release of viruses into the information ecosystem, however, can
certainly reap unhappyresults for those who depend on the stability of
that system.

The real moral question is whetherartificial life itself should be
encouraged. The dangers of viruses are a vivid paradigm of the perils
inherent in anyrealized form ofa-life. These perils are rooted in what
Doyne Farmer once called “‘the bugaboo of Frankenstein.” In Mary
Shelley’s story, the villain was not so much the murderous and ultimately
vindictive artificial life-form as the hubrisofits creator. Intoxicated with
the power ofcreation, he assumed that one could forge life without
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bearing the consequences. As Spafford glumly warned, damage from

computer viruses only hinted at the danger to come: ‘Similar but

considerably more tragic results could occur from careless experimenta-

tion with organic formsofartificial life.”

By “considerably more tragic,” Spafford was not kidding. As the

practitionersofartificial life themselves are quick to note, the develop-

ment ofa-life opens a box of potential horrors worse than those that

daunted Pandora.“It involves a threat to our species,’ wrote Farmer and

Belin. “It is easy to imagine nightmare scenarios in whichcold, malevo-

lent machines, or vicious genetically engineered creatures overwhelm

humanity.”

How could that occur? Farmer and Belin suggested a horrifying

example of a potentially destructive use of a-life techniques—‘“‘military

applications. . . from battlefield robotsto satellite warfare.”’ Considering

the pervasive government funding ofa-life studies, from Farmer and

Langton’s T-13 group to Brooks’s Mobot Lab, this seems almost an

inevitability. (In 1990, the United States government solicited contracts

for the development of computerviruses for military use.) Farmer con-

tended that, if a-life came to realize its potential, those uses would

destroy even those whosoughtto utilize it. “Once self-reproducing war

machinesare in place, even ifwe should change our mind and establish

a consensus, dismantling them may become impossible—they may be

literally out ofour control. An escalated technological war involving the

construction ofartificial armies would certainly end by destroying the

participants themselves, and wouldgiverise to a generationoflife forms

that might be even more hostile and destructive than their human

ancestors.”

This warning seemsless fantastic in light of the fact that, with com-

use it to stall the labors of a million people. The very properties that

madeartificial life worth pursuing assure that the most advanced forms

of a-life will be difficult, if not impossible, to control. Other autono-

mous organisms will undoubtedly follow in the viruses’ wake. By utiliz-

ing the biological mechanicsthat allow natural life to evolve according

to its own rules offitness, one invariably creates organisms that operate
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according to their own needs, whether or not these happen to corre-
spondto their creator’s needs. This quality allowsartificial organismsto
discover perpetually innovative solutions to the problemsresearchers
pose to them,butit also flirts with the risk that the organisms will mutate
in a manner that will make them,in effect, ask themselves why they
should bother to do what the researchers want them to do.

Consider an autonomousrobotthat has been programmed with Isaac
Asimov’s famous three laws of robotics. The first of these states, “A
robot may not injure a humanbeing, or, through inaction, allow a
humanbeing to cometo harm.”If, however, a robot were constantly
self-reprogrammedby genetic principles, it might discover a code muta-
tion that made its operating program jump over the subroutine that
evokedthatrule. Certainly such a robot, freed from the quite unnatural
restriction of placing another organism’s interests above its own, would
increase its fitness. If the trait were passed on to its descendants, those
offspring would eventually proliferate, and future generations of robots
would have no compunction about harming humanbeings. Like other
beneficiaries of evolution, they would be guided by their own genetic
self-interest. As a result, UCLA biologist Charles Taylor notes, “Artifi-
cial life violates Asimov’s First Law of Robotics byits very nature.”

This inherent potential for catastrophe makesartificial life a horribly
risky proposition. In this view, the promise of a-life, and the powerful
benefits it drawsby apparentviolation ofa different law—the second law
of thermodynamics—areas illusory as the belief that life actually does
violate the second law. Of course, it does not. In the long run there is
an entropic bill to be paid. Any local creation of order will eventually
incur a payback in accelerated disorder. It is almost as if life were a
Faustian deal with the universe, a temporary respite from the second law,
with horrific consequences to come. Someofthese consequencesare
already apparent: the order we created by building theedifices of our
civilization has already resulted in the entropy ofpollution. This princi-
ple can also beseen rather clearly in computer viruses. From the point
ofview ofthe infecting agent, the Brain Virus’s replications are creating
pockets of order from an otherwise-disordered information universe.
Yet the computeruserrealizes, to his or her dismay, that, although the
Brain Virus promotes orderfor itself, the toll it exacts from its overall
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environmentis massive disorder. In exchange forits few bytes oforgani-

zation, the Brain Virus scrambles megabytes.

Likewise, a kinematic von Neumann automatonsuch asa self-re-

plicating mining factory would undoubtedly provide a massive return on

its investment: yet ultimately it andits billions of progeny would be a

force for massive disorder, as the stored energy of the materials it gath-

ered would be irrevocably broken down and used upbythefactories.

The 1980 NASASelf-Replicating Systems (SRS) team predicted, “En-

vironmentalists might perhaps regard SRS released on earth merely as

automated strip-mining robots—yet another sophisticated instrumental-

ity in the hands of those who would mercilessly rape the Earth ofits

limited resources, leaving behind theugly scars ofprofit.” Interestingly,

the NASA team, condemningthis view as short sighted, suggested that

moreself-reproducing robots could be created to undo the damage and

restore earth to its original state. Taken to its logical point, this solution

would initiate an elaborate pyramid scheme,lasting perhaps thousands of

years, where the landscape wasperpetually filled with new a-life factories

undoing the work oftheir predecessors, until there were no resources

left to set the next round in motion.

Even the optimistic NASA team confronted the possibility that arti-

ficial life would drive natural life out of existence, citing the work of

physicist J. P. Wesley, who wrote, “Machines, being a form oflife, are

in competition with carbon-based life. Machines will make carbon-

based life extinct.”’

Onewouldthink that the enormity ofthis peril—noless than the end

of humanity, perhaps even of the entire biomass—would evoke a

ground swell of opposition to a-life. Yet none has so far emerged. This

is due less to artificial life’s dire risks than to the widespreadbelief that

it is not possible.

After several years of a-life research—thefirst tentative steps in what

may be an epic trek—could one confidently defend that assumption:

Could the doubters ofthe Strong Claim to a-life easily deny the promis-

ing nature ofthefield’s beginnings—the aggregate labors of von Neu-

mann, Conway, Wolfram, Kauffman, Langton, Farmer, Holland, Hillis,

Ray, Lindenmayer, Wilson, and Brooks? On whatbasis?

To besure, a-life is so younga field that no cottage industry of nay
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sayers (such as the onethat thrived on denying the possibility of strong
Al) hasyet arisen. Those whostill cling to vestiges ofvitalism, ofcourse,
dismiss the Strong Claim out of hand; others construct their disproofs
out of the droppings of those who professionally attack AI. Yet the
standard objections to AI do not seem to apply toartificiallife. Roger
Penrose seemed to acknowledgethis in his long argument about the
impossibility of consciousness emerging from artificial intelligence, The
Emperor’s New Mind. After a discussion of natural selection and the
chimera of consciousness, Penrose appeared reluctant to rule out the
possibility that a machine could indeed become conscious—ifevolution
were the mechanism by which it wasattained. “Thereisstill something
mysterious about evolution, with its apparent ‘groping’ toward some
future purpose,”he wrote. “Things at least seem to organize themselves
somewhatbetter than they ‘ought’ to, just on the basis of blind-chance
evolution and natural selection. . .. There seems to be something about
the waythatthe lawsofphysics work, which allowsnatural selection to
be a much moreeffective process than it would be with just arbitrary
laws.”” These apparently teleological properties of evolution, of course,
are actually the self-organizing properties that a-life examines and at-
tempts to exploit.

The most ardent critics of artificial life seem to be researchers in
systems theory, many ofwhom trace their intellectual lineage to cyber-
netics. They are often quick to cite the simulation problem. This is the
telescoping of an obvious truism—anysimulation of something cannot
be the same as the object it simulates—to a general criticism of the
methodology of simulation. Even those enthusiastic about the Weak
Claim to a-life, like Howard H.Pattee, have warnedthatits practitioners
should resist the temptation to assumethat fascinating results of com-
puter experiments had relevance to the physical world. But in practice
a-life frees itself from that dilemma by insisting that, although, indeed,
a computer experimentis by no means equivalent to something it may
be modeled on,it certainly is something. Mapsare notthe territory, but
mapsare indeedterritories.
The methodology ofa-life also shatters a related objection, that com-
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cannot emerge from a mere execution of algorithms: in the natural

world any number of chance occurrences contributed to the present

biological complexity. But random events are indeed well integrated

into artificial life. Von Neumannhimselfproposed, although he did not

have the chanceto design, a probabilistic version ofhis self-reproducing

cellular automaton, which obviated the deterministic nature of the pre-

vious version. Many experimentsin a-life, especially those that simulate

evolution, include a step where random events make each iteration

unpredictable. In any case, even in deterministic systems such as the CA

game, Life, the cacophony of variables is sufficiently complex that the

system can yield unbidden, or emergent, behavior.

Recognizing this, some systems theory critics have seized on the

evanescent nature of emergence as their caveat aboutartificial life. A

student of Pattee, Peter Cariani, claimed that a-life could be evaluated

only by rigorous definition of emergence and that such a definition

would establish that a product of pure computation could neveraspire

to the kind of emergence achieved in the biological world. But early

results from open-ended experiments in a-life, such as Ray’s Tierra, cast

doubts on this claim. Likewise, the nature of computerviruses seems to

contradict Cariani’s position that “biological organisms are autonomous

relative to us, while computer simulations are not.”

As morescientists come to regard a-life with increasing seriousness,

they undoubtedly will launch other theoretical arguments, perhaps con-

clusive ones, against the Strong Claim to artificial life. Until then it

seems reasonable to assume that von Neumann’sinstincts were correct,

and that his mathematical proofs of computational self-reproduction

indeedare relevant to the matter oflife. The early work in artificial life

so far seems only to confirm this.

Given that, there seems but onerationale for ignoring the potential

consequencesofa-life: the assumption thatit will be an arbitrarily long

period before scientists create indisputably living organisms, and longer

still before those organisms pose a serious threat to our well-being, let

alone to our survival. The almost innate skepticism about whetherit

could happen at all, when combined with the vague feeling that the

entire enterprise has a whiff of the crackpottoit, assures that the alarm

over what those scientists are doing will be minimal. The field of
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artificiallife will therefore be policed only byitself, a freedom that could
conceivably continue until the artificial-life community ventures
beyond the point where the knowledge can be stuffed back in its box.
By then it may betoolate to deal with the problem by simply turning
off the computers. As Norbert Wiener wrote forty years ago,

Again and again I have heard the statementthat learning machines
cannot subject us to any new dangers, because we can turn them off
when wefeel like it. But can we? To turn a machine off effectively,
we must be in possession of information as to whether the danger
point has come. The mere fact that we have made the machine does
not guarantee that we shall have the proper information to dothis.

Thescientists seeking artificial life are acutely aware ofthis. “Right
now it’s kind of nice thatartificial life is underground, because it means
we can keep a low profile and just do what we want,” says Doyne
Farmer. “But as responsible scientists I really do think that this is the
thing that’s going to have the biggest impact on the world in a hundred
years, and weshouldtry to get the issues out in front. And we should
do that before the equivalent ofthe bombis here. Certainly at this point
artificial life is notat all like nuclear weapons,but on the other handit
may be that once it starts happening it happens a lot faster than we
expect. Exponentials are always deceptive in that regard. And I do think
we're on some kind of exponential growth curve. I think it’s going to
be a lot better if we’re prepared—if we’ve thought abouttheissues, if
we know how we’re going to address them, if they’ve been aired
properly before that happens.”

In that spirit, the leaders ofthe artificial life movementare diligent in
urging a discussion of these matters. Chris Langton in particularinsists
that the biannual a-life conferences address the ethics and potential
dangers of the new science. He hopes that, through frank and open
discussion, the researchers would impose implicit sanctions on those
who would useartificial life to arm the dogs of war. He expects the
scientists to agree eventually on a framework ofresponsible methodolo-
gies. As with safeguards used in biotechnology labs, these would be
mandatory. Codes would be written in a manner that obviated the
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emergence of destructive wildlife. Langton and his colleagues have faith

that, with careful tending and scrupulous openness, the work of a-life

will limit itself to increasing our knowledge of living systems and to

using that knowledge for our benefit.

“Tos Alamos wasn’t an illogical place to hold the first workshop on

artificial life,” he says “It was here that the mastery of atomic fusion and

fission, the technology of death,ifyou will, happenedin secret, with no

official concern aboutthe possible consequences of mastering the tech-

nology, or deploying it, actually; and with no public feedback about

whether we should dothis or not. I want to makesure thatartificial life

happenswithall those axes reversed. Notin secret, but out in the open,

with as muchattentionto the possible consequences, implications, both

good and bad, as possible. We want to encourage public feedback.

We're going out of our way to involve not just scientists but philoso-

phers, artists . . . people whose profession it is to worry about the

consequences of technology.”

Langton insists on devoting attention to certain issues even while

admitting that the discussions are in some ways almost comically prema-

ture. The scientists at the 1990 a-life conference spent a session discuss-

ing whetherartificial life-forms should one day be granted civil rights.

Or whetherthoselife-forms may demandtheir civil rights. Some ofthe

questions had already been posed: the scientists in the 1980 NASA

summerstudy had speculated on that very question. More recently, the

late physicist Heinz Pagels addressed the question in The Dreams of

Reason:

_ The day will come when people have moral concernsregarding arti-

ficial life—-what are our obligations to the beings we create? Can we

permit such beings to hurt and kill one another? We may have a moral

problem in determining what actions we allow our artificial creatures

to undertake. Perhaps we ultimately have to let our creations befree

to come to terms with themselves.

Skeptics would find Pagels’s suggestion ludicrous. But the true believ-

ers of strong a-life have long ago assessed the matter with logic and

sobriety. The more they learn about the universe and the mechanics of
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Its complexity and the morethey learn about the theory ofcomputation
and its eerie reflection in the realm of biology, the less they see that
causes them to think otherwise. On a nonscientific basis, they even have
attempted to accommodate the conceptthat life can be created by
initiating emergentpatterns in a computeror within the chips ofa robot,
with humanspirituality. Believing that one couldcreate the patterns that
consist oflife, they insist, does not necessarily strip life of its awesome-
ness. Norofits dignity. And,if that dignity is to be retained in artificial
creations, it is fitting that the subjects of the new creation would be

Some ofthe would-belife bringers, emphasizing that in this they are
speaking informally and notas scientists, even speculate that their own
creations would havesouls.
“To methere is a soul, but the soul is in emergence,’’ says Danny

Hillis. “The soulis the result oftaking simple things that you understand
the rules of, and applyingthis emergent behaviorthat is both a conse-
quenceofthe rules andalso not obviously connectedto it. That’s to me
wherethe soul is. That’s a much more interesting, robust place for the
soul to be than offin somelittle corner ofscience which we just haven’t
figured outyet.”

NormanPackard seemsto agree. ‘People wantthere to be something
sacred aboutlife,” he says. “I think thereis somethingsacred, and I think
that there is actually something that’sstill mysterious. Even though I
believe you can have

a

living process in a completely computational
realm I think there’s still a question ofwhatis the nature ofthe soul, and
in what sense doliving things havesoul. Ifyou can envision something
living in an artificial realm then it’s hard not to be able to envision, at
least some point in the future, arbitrarily advancedlife-forms—as ad-
vanced as us. Therefore they would probably have a soul, too. Then
you'll have to deal with the problem with whether they have their own
rights as entities, and that could prove to be a real mess.”

Chris Langton puts the matter of granting civil rights to artificial life
in another way:

By the middle of this century, mankind has acquired the powerto
extinguish life on Earth. By the middle ofthe next century, he will be
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burden ofresponsibility on our shoulders. Not only the specific kinds

of living things that will exist, but the very course of evolution itself

will come more and more under our control. The future effects of

changes we made now are, in principle, unpredictable—we cannot

forsee all the possible consequencesof the kinds of manipulations we

are now capable of inflicting upon the very fabric of inheritance,

whetherin natural orartificial systems. Yet ifwe make changes we are

responsible for the consequences.

Whenpressed on the issue of responsibility, however, otherwise-

thoughtful a-life scientists become uncomfortable. They admit that

there is no precedent for what they hope will occur: a powerful, poten-

tially catastrophic technology will perpetually remain a benign and

beneficial force. They live a paradox: in creating something that more

fully reveals the beauty of living systems than anything that has come

before it, they maybeinitiating the end of their own species. Ofall the

controls andrestraints they suggest, none includesthe single best control:

abstinence. Stop doing it. They proceed on the assumption that the risk

is worth the benefits—a chance to unearth an unimaginably productive

force and, perhaps more important, to unlock the secrets that billions of

years of evolution has ledits subjects to ask. Perhaps it was something

in the nature of evolutionitself, a sort of fitness function, that has led

humanbeings to seek suchtruths.“Nature1s there, and I think curiosity

ss an inexorable force that can’t be contained,” says Farmer. “And I

think learning for its own sake is just something that is a force that goes

beyond us.”

Somea-life scientists, however, believe that the creation ofartificial

Some, as did the NASA SRSteam,speculated on an emergence of a-life

organismsthat will symbiotically share the environment with humans.

Possibly, they will be our equals. Possibly, our superiors. Others sin-

cerely think that newly minted organisms will assume our own evolu-

tionary niche. Farmer and Belin putit succinctly, ‘“With the advent of

artificial life, we may be the first species to create its own successors.”

“T see basically us racing towards the next level of organization of
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life,’’ says Langton. “The next major leap in the complexity oflife will
be to incorporate biological life together with sort of technological life.
There will be collections of biological and mechanical things which
together constitute a higher level of the organization oflife.” |

This so-called postbiological future was first envisioned by J. D.
Bernal in The World, The Flesh and the Devil, a prescient volume of

speculation published in 1929. While von Neumann wasstill doing
quantum mechanics in the coffeehouses of Géttingen, years before
pondering automata theory, Bernal—a young crystallographer who
would later become one of Britain’s most distinguishedlife scientists—
had been thinking aboutthefutureofartificial life. “To makelife itself
will be only a preliminary stage,”’ he wrote. ““The mere makingoflife
would only be important if we intended to allow it to evolve ofitself
anew. .. . Men will not be content to manufacturelife: they will want
to improve onit.”

The postbiological vision begins with the premise that genetic evolu-
tion has been outstripped by cultural evolution. Whereas previous orga-
nisms adapted to their environment by changing their physical
constitution over a period of generations, conscious human beings de-
velopedthe ability to adapt very rapidly by nongenetically passing infor-
mation to each other and to their descendants. Instead of developing
bodies that withstood very cold temperatures, for instance, humans
learned how to make warmingclothes and how to heat their domiciles.
So quickly have humans constructed a world whereculturalartifacts are
more necessary for survival than physical characteristics that humans
themselves are walking anachronisms, saddled with unusable debris
(bodyhair, fingernails, outmoded genderinstincts) from an evolutionary

_ past they havesince discarded. “In the present condition, we are uncom-
fortable halfbreeds, part biology, part culture, with many biologicaltraits
out of step with inventions of our minds” wrote Hans Moravec, the
Carnegie-Mellon roboticist who vividly outlined the postbiological vi-
sion in his book, Mind Children.

In the early history of life, there has been a possible precedent.
According to Scottish biologist Graham Cairns-Smith, the predecessor
of life as we now know it was clay-based crystals. These occasionally
held defects that acted as evolutionary mutations. Certain mutated crys-
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tals proved capable of more growth and reproduction than others and

proliferated. As clay structures became more complicated they acquired

the ability to encode their genetic information in strings of carbon

molecules, which proved morestable than their previous means of

inheritance. Eventually the strings of carbon molecules were able to

survive without the clays, and thus began carbon-based life. Cairns-

Smith referred to this origin-of-life theory as a “genetic takeover.”

Now,the theory goes, weare ready for a second genetic takeover: the

silicon-based organismsofa-life will replace carbon-basedlife, including

human beings. The new life-forms would have certain advantages.

Physically, they would be moreprotean: their bodies could be made of

any materials and in any shape. They could be more durable; they would

not have to die for perhaps thousands of years, if that. These new

organisms would also be able to evolve by two forms of evolution:

Darwinian natural selection, and Lamarckian inheritance of acquired

characteristics. Because their essence would be information held in the

malleable form ofsilicon bits and not in the hard-wired molecules of

DNA,one could tinker with one’s own genetic code and integrate what

one learned during the course of one’s lifetime—or even what others

learned during the course oftheir lifetimes. |

(Moravec and Hillis anticipated that these new life-forms would be

able to accommodate the consciousness of a human being, allowing

them to live in vastly improved bodies for thousands of years. “I have

the same nostalgic love ofhuman metabolism that everybodyelse does,

but if I can go into an improvedbodyandlast for 10,000 years I would

do it in an instant, no second thoughts,”’ says Hillis. “I actually don’t

think I’m going to have that option, but maybe mychildren will.”)

Despite Hillis’s hopes, and Moravec’s blithe prediction that this form

of ‘down loading” one’s consciousness into another life-form may

occur within the next century, most a-life scientists consider that time

frame,ifnot the entire concept, exceedingly optimistic. Although viral-

level artificial life is at hand, and insect-levellife is being contemplated,

these are mere anthills to the comparative Everests of mammals, pri-

mates, Homo sapiens. Most of those who accept the premise of what

Farmercalled the “‘coming evolution” see it ocurring incenturies, ifnot
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in millennia. Yet they quite soberly believe it will occur. This places
them in an interesting dilemma. Although uniformly recommending
strict safeguards in a-life experimentation and urgingthat a-life creations
not be used as tools of war, some of these scientists are genuinely
enthusiastic aboutthe possibility that their labors will eventually lead to
the extinction of the humanrace.

Those who holdthis view speak ofthe potential successors to human
beings—those “‘mind children” who provided Moravec with a book
title—with paternal pride. “What will these successors be like?”asked
Farmer andBelin. “If we fail in our task as creators, they may be cold
and malevolent. However,ifwe succeed, they may beglorious,enlight-
ened creaturesthat far surpass us in their wisdom and intelligence.”’

Doesthis meanthat the glory of these creations will be sufficient to.
ease the pain of our own extinction? Yes. “I’m not overly perturbed by
the prospect that there might be something better than us that might
replace us,”’ says Hillis. “I see no reason to believe that we’re the end of
the chain and I think that better than us is possible. To me what’s
important about humansis that they love, create and think and certainly
I wouldn’t wantto be replaced by something thatdidn’t do those things.
To meit’s not very important that humans havefive fingers. If I had a
son with six fingers and somehow that enhanced his ability to love and
create then I would feel very happy aboutthat.”

Disdaining the parochial human point of view on the matter, the
postbiological a-life scientists prefer to regard the matter in evolutionary
ume. “‘If you just consider things on the timescale of human lives, you
get this feeling that nature has a certain harmony,” says Packard.

Andthatit’s good notto disruptthis harmony too much—it’s good
not to pollute the planet, and it’s not good to destroy each other with
atom bombs.It’s good to kind ofmaintain a certain ecological, global
harmony. But on a longertimescale, not a few years, but a few million
years, I think there’s a different kind of harmony. There’s a harmony
of the evolutionary process. This harmonyis completely divorced
from the existence or the maintenance ofa particular species, let alone
a particular individual. You andI, we’re totally irrelevant, absolutely
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irrelevant. The evolutionary harmony, because ofits timescale, be-

comes divorced from individual considerations or even species

considerations.

I believe very strongly in the inevitability of the evolutionary pro-

cess. The reason thatartificial life is really exciting to me is becauseit

allows meto participate in this harmony. The only thing that worries

meis that somehow we wouldbe so inept as to introduce an element

ofcruelty into our successors. But I havea fairly strong feeling that the

process ofevolution carries withit an intrinsic fairnessto all the entities

that have participated. As long as what’s happening1s the integral part

ofthe evolutionary process ofwhat’s already going on I think that that

fairness will be part of the process.

Of course there is another possibility. Our interest and ability to

create new successors may not be so much a componentofany sort of

universal harmonybutrathera fatal genetic flaw, a misbegotten evolu-

tionary dead end,leadingto the creation of a-life organisms that do no

more than drive us into unwilling extinction. If that were so, those

steeringartificial life toward the creation ofautonomous, evolving orga-

nismstruly will become successors to the fictional Victor Frankenstein,

who wasdestroyed not so much by his own creation as by his willingness

What ofman’s view ofhimself? He now takespride in his uniqueness.

How will he adjust to being just an example of the generic class

“intelligent creatures’? Onthe other hand,the concept of‘“God”’ may

take as mucha beating as the notion of “‘man.” Afterall, He is special

now because Hecreated us. If we create another race ofbeings, then

are we not ourselves, in some similar sense, gods?

Venturing into the territory of gods exhilarated some, sobered others.

Oneofthe latter was Los Alamos physicist Steen Rasmussen. Well aware

of the hubris involved in flirting with the prospect of humanity’s end,

he confessed that in his heart of hearts he was doing wrong.
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“Ifyou ask mereally honestly, ‘Steen, why are you doingthis?’ I can’t
answer you,’ he says. “‘I feel in some way that I am committingsin by
the things I am doing.”

Although he does not share Rasmussen’s sense of sin, Chris Langton,
too, is occasionally visited by doubts. In late 1991, for instance, he had
a small dilemma to ponder. He had been wondering what it would take
to convincea skeptical biologist that a process occurring inside a com-
puter wasalive. In order to spur discussion on the matter, he considered
recruiting a corporate sponsor to offer a cash prize to the person or
persons whocreatedthe first indisputably livingartificial organism. To
do this it would have tosatisfy a set of criteria established by biologists,
preferably biologists who disbelieved that such creatures could ever be
computationally created. The premise was exciting, and Langton cer-
tainly believed that within his lifetime someone would collect the prize
for the organism thatfulfilled a-life’s Strong Claim. But there was also
something about the project that gave him pause.

‘I’m oftwo minds aboutit,”’ he admitted. ‘“There are ethics that need
to be thought through. Suppose in the late forties they’d offered a
$10,000 prize for an atom bomb?”’

was also the question of hubris. In a way, Langton was staring into the
same void into which his mythic predecessors had ventured, from the
medieval rabbi who summonedthe golem, to Victor Frankenstein.

But that was the legacy of legend. Ultimately, that path would wind
its way back tovitalism,to superstition. Although he and his colleagues
are intrigued—humanly so—by the speculative possibilities of their
work, whatdrives them is not the sort of vision reclaimed from pulp
science fiction, but the spirit of methodical inquiry associated with
science. It is deeply tied to the urge to understandthe universe, particu-
larly the bewitching complexity of biological systems and systems that
emulate them.

Langtonfinally decided that for the immediate future any competi-
tions he organized would reward only small steps towardartificial life,
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and not the full creation. This, he believed, would help the cause of

science. That was the bottom line: Langton was

a

scientist.

Still, he worried.

“This is not stuff to be taken lightly,” he said. “It’s not just a $10,000

prize for a computer game that does something.It’s life.’”’
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Artificial life is a new field and has yet to accumulate

a

literature of

its own. However,a-life can reasonably lay claim to a considerable body

ofwork executedin other disciplines, where in retrospectit appears that

the authors were addressing relevant subject matters in a spirit akin to

that ofartificial life studies. Many of these worksare listed in the notes

below; however,a far broaderselection is offered in an extensive bibli-

ography appended to the proceedings of the first artificial life confer-

ence. Those proceedings and the sequel, which includes papers

generated by the seconda-life conference, constitute the best technical

primerforthe field:

Christopher G. Langton,ed., Artificial Life, Santa Fe Institute Studies in

the Sciences of Complexity, vol. 6 (Reading, Mass.: Addison-Wesley,

1989). [Hereafter abbreviated as A-Life I.]

Christopher G. Langton, Charles Taylor, J. Doyne Farmer, and Steen

Rasmussen, eds., Artificial Life I, Santa Fe Institute Studies in the

Sciences of Complexity, vol. 10 (Reading, Mass.: Addison-Wesley,

1992). [Hereafter abbreviated as A-Life II.]

The hundreds of written sources consulted include the following,

chosenfor direct relevance to passages in Artificial Life. In a few cases, I

have selected sources for further reading in a subject.
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