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FOREWORD

Thefirst time I became interested in Neural Nets and Statistical Pattern Recognition wasin
early 1958 while I was a graduate student in the Moore School ofElectrical Engineering of
the University of Pennsylvania. My student subscription to the NEW YORKER magazine
brought many chuckles from cartoons and stories but the only item from all those many
issues that has stayed with me was a column in the December6, 1958issue titled "Rival"
This covered an interview with Frank Rosenblatt in which he described his hopesfor his
“artificial intelligences" which would rival humansin perception and problem solving. By
the time I read this column I knew a fair amount about Rosenblatt's research on
Perceptrons, since as part of a machine learning and recognition research project and a
search fora dissertation topic, I had spent much time pouring over his Cornell Aeronautical
Laboratory reports, I had also read parts of a book Stochastic Models for Learning by Bush
and Mosteller (Wiley, 1955) and been studying papers on Statistical Discrimination, in
particular papers by C R. Rao and the chapter on Problems of Discrimination in his book
Advanced Statistical Methods in Biometric Research (Wiley , 1952). About the same time
Robert Bush joined the University of Pennsylvania as chairman of Psychology. I chose
Bush as mydissertation advisor, and with some support from R. Duncan Lucedid a
dissertation (for the Ph.D in electrical engineering!) on the analysis of some stochastic
processes arising from Luce's nonlinear "Beta" model for learning. This is how learning
models,artificial neural networks, and statistical pattern classification came together in my
cognizance.

Twoyears later, when I joined General Dynamics/Electronics (GD/E) in Rochester, New
York, as Managerof the Machine Intelligence Advanced Development Laboratory, it seemed
as though every company and university laboratory was working on perceptron type
machines. At GD/E wealso implemented our own version ofan adaptive pattern recognizer
which was soon called APE (Adaptive Pattern Encoder). There were many other learning
machines implemented by various organizations, machines with names such as MINOS,
SOCRATES,and of course ADALINE and MADALINE.It wasa time for catchy names
and audaciousclaims [see Kanal, Proc IEEE, October 1972]. Clearly PERCEPTRON and
ADALINE werethe key innovations and they had memorable names, although I have it on
good authority that in the 1980's when the new machine vision company Perceptron was
formed, its founders had no idea that the name they had come up with had a previous
incarnation, Because of simultaneous exposure to papers on learning models, perceptrons,
andstatistical discrimination, my attempts at understanding perceptrons and other “bionic”
networks were formulated in terms of statistical classification methods, stochastic
approximation procedures and stochastic models for learning "Evaluation ofa class of
Pattern Recognition Networks"presented at the Bionics conference in Ithaca, N.Y in 1961
and reprinted in this book, summarized someof that understanding, It may seem surprising
now,butat that time it had been stated by someof the well known researchers writing in the
engineering literature on pattern recognition, that the use of a weighted sum of binary
variables as done in the perceptron type classification function limited the variables to being
statistically independent.

Rosenblatt had not limited himself to using just a single Threshold Logic Unit but used
networks of such units. The problem was howto train multilayer perceptron networks, A
paper on the topic written by Block, Knight and Rosenblatt was murky indeed, and did not
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demonstrate a convergent procedure to train such networks. In 1962-63 at Philco-Ford,
seeking a systematic approachto designing layeredclassification nets, we decided to use a
hierarchy ofthreshold logic units with a first layer of "feature logics" which were threshold
logic units on overlapping receptive fields of the image, feeding two additional levels of
weighted threshold logic decision units. The weights in each level of the hierarchy were
estimated using statistical methods ratherthan iterative training procedures [L.N. Kanal &
NC. Randall, Recognition System Design by Statistical Analysis, Proc. 19th Conf.
A.C.M,1964]. Wereferred to the networks as two layer networks since we did not count
the input as a layer On a project to recognize tanks in aerial photography, the method
worked well enoughin practice that the U.S. Army agency sponsoringthe project decided
to classify the final reports, although previously the project had been unclassified. We were
unable to publish the classified results! Then, enamoured by the claimed promise of
coherent opticalfiltering as a parallel implementation for automatic target recognition, the
funding we had been promised was diverted away from our electro-optical implementation to
a coherent opticalfiltering group. Some years later we presented the arguments favoring our
approach, compared to optical implementations andtrainable systems, in an article titled
"Systems Considerations for Automatic Imagery Screening" by T.J.Harley, L.N. Kanal and
N.C. Randall, which is included in the IEEE Press reprint volume titled Machine
Recognition of Patterns edited by A. Agrawala. In the years which followed multilevel
statistically designed classifiers and AI search proceduresapplied to pattern recognition
held myinterest, although comments in my 1974 survey,"Patterns In Pattern Recognition:
1968-1974" [IEEE Trans. on IT, 1974], mention papers by Amari and others and show an
awareness that neural networks and biologically motivated automata were making a
comeback.

In the last few years trainable multilayer neural networks have returned to dominate research
in pattern recognition andthis timethere is potential for gaining muchgreaterinsightinto
their systematic design and performance analysis. Artificial neural networks trained on
sample data are nonparametricstatistical estimators for densities and classifiers, This leads
to many questions about ANN's in comparisonto alternate statistical methodologies. Such
questions include the information requirements for each approach, the sample sizes for
design andtest, the robustness to incomplete data and different types of noise, and the
generalization capability of competing procedures Additional points of comparison concern
the relations ofthe sizes of feature vectors for each pattern category; the capability for
variable-length vector pattern recognition; the capability for fusion of multiple sources or
sensors; the ability to incorporate domain knowledge; the ability to work with otherpattern
recognition paradigms in an integrated fashion; the ability of the methodology to extend to
other types ofproblem solving, e.g., combinatorial optimization, resource allocation,etc.,
using the same general network architecture; the suitability for easy mapping to VLSI or
other parallel architecture. The capability of neural networks to combine adaptation with
parallelism in an easy andnatural fashion and the ability of learning continuously while
working on a problem in a real environmentare of particular interest. Finally, the cost of
implementation and oftraining personnel in the methodology will also be determiners of
comparative success.

Someofthe above questions are beginningto be addressedin the literature and the present
volumeis also a goodstart in this direction. I am thankful to Professors Anil K. Jain and
Ishwar K. Sethi for theirinitiative in assembling and editing this volume and to the authors
of each chapter for their contribution to this volume. The richnessof the artificial neural
network paradigm for pattern recognition ensures that, despite the many individuals
working in this area, much work remainsto be done to gain a true understanding of ANN
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methodologies andtheir relation to better understood pattern recognition methods I expect

that additional volumeswill be assembled and published in this book series on the subject of

artificial neural networks and their relation to and interaction with statistical pattern

recognition, genetic algorithms, expert systems, and other a i
aoe ° ’ T

recognition of patterns pproaches to the machine

Laveen N. Kanal
College Park, MD





PREFACE

Artificial neural networks (ANNs) are currently enjoying tremendous popularity across

many disciplines. The interest in artificial neural networks is not new; it dates back to

the work of McCulloch and Pitts, who, about forty years ago, proposed an abstract

model of living nerve cells or neurons. Since then, the field of ANN has charted a

bumpy course, with expectations running high in the late 50’s with the publication of

Rosenblatt’s Perceptron model, and going down in the late 60’s with the publication of

Minsky and Pappart’s book, ‘‘Perceptrons’’. While isolated interest in ANNs continued

thereafter, a resurgence of interest camein the early 80’s, with the work of Hopfield and

his associates as well as that of Rummelhart and the parallel distributed processing
(PDP) research group.

Two broad groups of researchers have been drawn to the study ofartificial neural
networks. The first group of researchers mainly consists ofscientists who are interested
in obtaining answers to some fundamental issues of perception, learning, and memory
organization in the human brain through the study and developmentof different neuron
models Theartificial neural network models espoused by this group of researchers are
required to be as close as possible to the biological neural networks The second group
of ANN researchers is drawn mainly from the engineering community These researchers
are interested in exploiting the learning and parallel processing capabilities of the ANN

to build engineering applications This set of researchers takes a pragmatic approach
towards various ANN models; they are not overly concerned about the closeness of the
artificial neural systems with their biological counterparts

Pattern recognition applications have emerged as the main beneficiary of the recent
developments in ANNs, Pattern recognition tasks such as recognizing a familiar face or
voice, identifying objects around us, or noticing relationships in a set of observations that
we perform so effortlessly, have proven to be difficult in unconstrained settings for the
traditional algorithmic approach, even using very powerful computers. In this respect,
ANNs, with their self-organizing and non-algorithmic learning characteristics, offer a
great deal of potential for pattern recognition applications.

The pattern recognition related activities using ANNs can be broadly grouped into two
categories. The first group of activities consists of using the discriminatory or self-
organizing features of various ANN models, such as multilayer perceptrons, neocognitron,
ARTseries, Kohonen’s self-organizing feature maps, etc to build systems for recognizing
different kinds of shapes, sounds and textures Many such efforts have led to
performancelevels that are comparable or superior to the existing levels of performance
achieved by traditional pattern recognition methods. The second group of pattern
recognition related activities centers around mapping traditional pattern classifiers into
ANNarchitectures The aim of such mappingsis to utilize some ofthe key features of
ANN models to obtain better classification performance in terms of speed or ertor rate
or both. Most of the commonly used classifiers, such as linear classifiers, quadratic
classifiers, tree classifiers, nearest neighbor classifiers, have been exactly or
approximately mapped into layered ANNarchitectures.



With the growing complexity of pattern recognition related problems which are being
solved using ANNs, many ANN zesearchers are grappling with design issues such as the
size of the network, the number of training patterns, and performance assessment and
bounds These researchers are discovering that many of the learning procedures lack the
scaling property, ie these procedures simply fail or produce unsatisfactory results when
applied to problems of bigger size. Phenomena like these are very familiar to researchers
in statistical pattern recognition (SPR), where the ‘‘curse of dimensionality” is a well-
known problem. Issues related to the training and test sample sizes, feature space
dimensionality, and the discriminatory power of different classifier types have all been
extensively studied in the SPRliterature. It appears that many ANN researchers looking
at pattern recognition problems are not aware of the ties between their field and SPR,
and are therefore unable to successfully exploit the past work that has been done in SPR.
Similarly, many pattern recognition and computer vision researchers do not realize the
potential of the ANN approach to solve problems such as feature extraction,
segmentation, and object recognition.

It is in the context of the above remarks that the idea for this volumeoriginated; we are
now delighted to share it with you There are thirteen chapters in this volume, organized
into three groups The theme ofthe 5 chapters in the first group revolves around the
connections between ANNs and SPR. Familiarity with work in each of these areas can
lead to mutual benefit, as the study of ANNs and SPR share many common goals The
first chapter in this group is a paper by Kanal that was originally published in 1961 It
is included here because it is one of the first papers, if not the first, to discuss the
relationship between perceptrons and statistical classification methods, and also to relate
learning algorithms to stochastic approximation methods. The second chapter, by Werbos,
provides an overview of artificial neural networks research, especially the back-
propagation algorithm for static as well as dynamic situations, and its linkage with
statistical pattern recognition. The third chapter in the first group is by Raudys and Jain,
whoinvestigate the performanceof artificial neural networks designed using only a small
set of exemplars, The next two chapters, by Gelfand and Delp, and Sethi, deal with the
relationship between tree classifiers and multiple layer perceptron networks

The second group of 5 chapters is devoted to the application of neural networks to
vatious pattern recognition problems involving image and speech data. Thefirst chapter
in this group, by Lee, Srihari and Gaborski, provides a theoretical relationship and an
empirical comparison between the Bayes decision rule and the back-propagation network,
using the problem of handwritten character recognition In the second chapter of this
group, Khotanzad and Lu examine the use of multiple layer perceptron networks for
shape and texture recognition, and compare the performance ofneuralnetclassifiers with
some conventional classifiers The third chapter in the application group is by Ghosh and
Bovik, who highlight the relationships between conventional and neural techniques for
processing of textured images, and suggest discrete 2-dimensional Gabor transforms using
a neural network implementation. The next chapter in this group, by Rangarajan,
Chellappa and Manjunath looks at the telationship between the Markov random fields
and neural networks. This relationship is examined in the context of early or low-level
vision processing, suggesting some applications that might benefit from an approach that
combines Markov random fields and neural networks The last chapter in the application
group is by Bengio and De Mori. After surveying the application of different neural
models to automatic speech recognition, Bengio and De Mori present the details of using
radial basis functions network for a particular speech recognition task One consistent
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conclusion in all the five chapters of the application group is that neural net classifiers

can serve as a good alternative to conventional classifiers The maximum advantage in

the use of neural classifiers occurs when the data are noisy and a large number of

training samples are available

The third section of the book deals with the implementation aspects ofartificial neural

networks. While the most widely used neural network implementations today are software

simulators, it goes without saying that the full advantage of neural network paradigm

cannot be reaped without hardware implementations. The first chapter in this section, by

Hassoun, deals with the architecture of dynamic associative memories, a class of ANNs

which utilizes supervised learning procedures to store information as stable memory

states Optical implementations of ANNs hold great promise The second chapter, by

Vijaya Kumar and Wong, describes such implementations for four associative memory

schemes The third and final chapter of the implementation section is on the VLSI

implementation of neural networks Salam, Choi and Wang provide an overview ofthe

various issues related to the silicon implementation of neural nets Some notable

successes have already been achieved in thesilicon implementation of biological devices,

the most notable being the silicon retina and cochlea, by Mead and his group, at

CalTech According to Mead, analog VLSI neural networks running at 10 quadrillion

operations per second are ultimately achievable. :

This book could not have been completed without the whole-hearted cooperation ofall

the authors; we ate thankful to them. Wearealso grateful to Professor Laveen Kanal

for his constant encouragement and suggestions We are also thankful to the Plenum

Publishing Corporation for its kind permission to reprint Laveen Kanal’s paper Our

sincere thanks also goes to the staff at Elsevier Science Publishers B.V. for their

cooperation and support. We would consider our goal accomplished if this book is able

to contribute in some way to greater interaction between the two communities of ANN

and SPR researchers. It is to them that this book is dedicated

Ishwar K. Sethi Anil K Jain

Detroit, MI East Lansing, MI
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EVALUATION OF A CLASS OF PATTERN-RECOGNITION

NETWORKS

Laveen Kanal

General Dynamics/Electronics, Rochester, New York

INTRODUCTION

The realization of devices to perform a given pattern-recognition task can

be considered in terms of the problem of providing the following specifications,

A, The observables (measurements or tests) x;, i= 1,2,...,¥, by which pat-

terns are to be characterized. ,

B. The form of the classification function,i.e., the mannerin which observ-

ables are to be used in assigning a pattern to one of K known groups.

C, The procedures for determining the classification function from samples

of patterns from the K different groups.

In any given instance the results of the measurements may be represented

by x= (x1,%2,.++)%,). Then the universe of patterns can be thought of as being an

n-dimensional space and the recognition task becomes one of dividing this V-

dimensional space into mutually exclusive regions R,, j=1,2,...,K, such that

when x falls in R,, the pattern is listed under group j.

Unless an especially auspicious choice has been made of the VW characteristics

which define the observation space, the x, will, in general, have to be treated as

stochastic variables. The recognition task then becomesthe application of sta-

tistical inference to the classification of a pattern to one of the K known groups

to which it can possibly belong. Information on the probability distributions of

observables for the various groups can range from complete ignorance of the

functional form of the distribution, to the case where the functional form and all

parameters are known.

1. A CLASS OF PATTERN-RECOGNITION NETWORKS

In some recent articles (see, for example, Hawkins, 1961), work on the appli-

cation of a class of networks to pattern recognition has been reported. Figures

1 and 2 showtwo networks typical of this class, The measurements x, which

Previously published in Biological Prototypes and Synthetic Systems (Volume 1)

edited by Eugene E Bernard and Morley R. Kare, Plenum Press, New York, 1962
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Fig. 1. Example of a neuron-type pattern-recognition network;
see equation (1),

characterize the pattern are obtained, for instance, by placing the pattern on an

"artificial retina" with the outputs of the retina elements being quantized such

that the x; are either 0 or 1.

In Fig. 1 the classification function takes the form of a weighted sum of the
X;, Viz.,

N

> aj4X;> T; j21,2,.,.,K (1)
i=l

where the set of coefficients a,, which is desired is the one which permits the

threshold J, to be exceeded whenevera pattern from group ; is present and not

otherwise.

In the network of Fig. 2, subsets of the x,, selected perhaps in a random

manner, are connected through fixed weights (+1,—1) to summation units with

thresholds, Let 5,,, be the fixed weights between the retina elements and the

summation units, where 6,,, can be 0, Let I, be the thresholds for the summation

units, and y,, be the outputs from the summation units, with y,, being 0 when the

thresholds —, are not exceeded, and 1 otherwise. Further, let a,, be weighting

coefficients (variable) between summation units and response units and let T, be

the thresholds for the response units. Then the classification function used by
the network of Fig. 2 is

Me

Damm >T f= 42...,K M<N (2)
1ne

with

i

N

(lit >> Bin ti > In
i=l

Ym = }
0 otherwise

Although the network of Fig. 2 uses the derived variables y, to characterize

the patterns, the form of the classification function is the same as that for the

network of Fig. 1. ‘An evaluation of this class of networks can be considered in
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Fig, 2. Perceptron-type pattern-recognition network (after Hawkins);

see equation (2).

the context of comparable classification functions which can be derived from

some more or less formal principles proposed in classification theory and

practice.

2. A REPRESENTATION OF THE JOINT DISTRIBUTION

Let X denote the set of all points x = (x1, x2-..,xy) with each x;=0 or 1, and

let p(x) = p(x1,%2,-.-,%,) denote the joint probability of the x, in a given group.

Since there are 2" points in X , any parametric description of an arbitrary proba-

bility distribution will, in general, require (2% - 1) independent parameters. A

particular parametric representation due to Bahadur (1959b) is used here.

Using &, to denote the expected value when the underlying distribution is

p(x), define for each i= 1,2,...,N,

m, =p(x;=1)=E, (x) O<m <1

2,=e

3, = E, (z;2;) i<j (3)

Tije = Ep (2;2;Z%) r<j<k

ra, w= Ep (2122 +++) Zw)

Further define
N

Pi (%1)X2,--+, Xn) = UG m*? (1 — m,)?7* (4)



so that p; (x1,X2,.+., Xn) = p1 (x) denotes the probability distribution of the x, when

(1) the x,'s are independently distributed and (2) they have the same marginal

distributions as underthe distribution p(x), Itis shown by Bahadurthat for every
x = (x),x2,-.., xy) inX

= (5)where p(x) = pi(x) F(x)

(x)= 1+ » 1 j2 42 + ~ FijeZiZjZq test TyQ0++ N Z1ZQ00. Zy (6)
i<j i<i<k

The 2%-~1 correlations and the N marginal frequencies m,; are the parameters
which determine the probability distribution p(x). In order that an arbitrary set
of 2%-N-1 real numbers Tiptijy++) SerVe as the correlation parameters of a

probability distribution p(x) for any set of numbers m,, 0 <a; <1, it is necessary

and sufficient that f(x) be non-negative for each x.

The distribution p(x) can now be approximated by distributions of lower
order. Thus p, (x) is a first-order approximation to p(x),

p2{x) =p, (x) [i+ > 47% | (7)
i<j

is a second-order approximation to p(x), and so on, For 1 <m<VJ, the approxi-

mation p,,(x) is the only distribution of order not exceeding m under which any

Set {x,1,X;2,-.+,Xjm} of m variables has the same joint distribution as underthe

given p(x). Of course, approximations to p(x) may also be obtained by retaining
various selected terms in the expansion for f(x) and dropping the remaining

terms. Because any approximation to p(x) is obtained by dropping termsof f(x),

a Classification procedure based on it will not do as well as the same procedure
when p(x) is used,

3. A CLASS OF CLASSIFICATION FUNCTIONS

A well-known theoretical solution to the problem of classifying an unknown

pattern into one of two known groupsin such a way as to minimize the probability

of making an errorin the assignment ofinputs to the two groups, or in a manner

which equalizes the errors for the two groups, minimizes the expected loss, or

is best according to some other criterion, is in terms of the likelihood ratio

(see, for example, Anderson, 1958, Chap.6).

In the present case, the problem is to classify an unknown pattern into one

of the several groups to which it can possibly belong. One way to proceed would

be to set up likelihood ratios for each pair of the K groups (Anderson, 1958)

which would require K(K — 1)/2 classification functions. For the construction of

networks, it is desirable to have only a small numberof classification functions

and by representing the K groups by, for example, a binary code, much less than

K classification functions can be considered; each classification function pools

patterns from all K groups into just two groups: those which should produce a 1

and those which should produce a 0, Denote these two groups by group 1 and

group 2 respectively and let p(x/i),i=1,2..., denote respectively the probability

distribution for x under group 1 and group 2. Then the likelihood-ratio regions
for classification are defined by

 
 



 

R,: LC: ~ P(x/l)1 (x) eID >t

R,:L(xSt
(8)

Thus, if the function L(x) exceeds the threshold 1, the pattern is classified as

belonging to group 1, otherwise the pattern is classified into group 2. [One way

of deriving such a tule is to consider the conditional probabilities that, given a

pattern having 4 certain x= (x,,x2,...,Xy), thepattern belongsto group 1 or group

9, The boundary of the two regions for classification can be defined by the equa-

tion p(1/x)-p(2/x)=0, which gives the expression p(x/1)/p(x/2) = p(2)/p().]

The classification functions and corresponding networks which result when

various approximations to p(x) are used in a likelihood-ratio procedure can now

be derived. If a first-order approximation is used, p(x) is replaced by p; (x).

This implies an assumption of independence of the x,. Letting m, and a, represent

the means of the x; in groups 1 and 2 respectively, the likelihood ratio is

mii (1- m,)'~*i
=l

L(x) =4 (9)
I] 2a —n,)'7*
i=l

taking the logarithm gives

N
> (a;x; + ¢;)
geil

where

a, = log mi (=a)
"i (1—m,) (10)

and

c, = log (=m)
(1 —1,)

The summation overc, can be absorbed inthe threshold and a particular weighted

sum is obtained forthe classification function. The resulting network is that of

Fig. 1, with the coefficients as defined in equation (10). Let

_ x, 7) x, — Nj
2S yo

Vm; (1 -— m,;) ¥n;(1-7n,)

and let rijstijx...,and 8;;, Sijx-.-, be the correlation parameters for group 1 and

group 2 respectively. Then for a second-order approximation to the joint dis-

tributions, the logarithm of the likelihood ratio is

N
> a,x; + log ( + >» rea) — log (: + > sure) (11)
Pal i<i i<i

plus a constant term, Using the approximation log (1+ 6) +6, and letting



= Pitg =and
Vm, (1 - m,) m, (1 - m,)

expression (11) can be written as

viee
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Similarly, if third-order correlations are retained, the above derivation gives
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The above expressions come from Bahadur (1959a). Here we note that second-,

third-, and higher order approximations give rise to expressions linear in the

x;, under certain conditions, In (18), if u,, =v,,,the resulting classification func-

tion is represented by a network such asthat of Fig. 1, in which the coefficients
are given by

aj? =a; + x (~ m+95) vy (15)
7 I

Similarly, (14) will lead to a classification function, linearin the x,, if Wine = Vines
and

ay > Vy t > (my — 14) Viaje
ki
ki

the coefficients of the classification function being

a® =a, + > (— maj, +0jV),) + > (mjm,, — ny) Vijx (16)
ifi ifi

ki
i<k

In this manner, a set of classification functions

N N
> aiXi > aK eee, > al™) x,
a= i=1 a=l

corresponding to increasing orders of approximation to the joint distributions
of the x, in the two groups, are obtained when specific assumptions are made
about the relationships between correlation parameters. The network corre-
sponding to each of these classification functions has the form of Fig. 1; a net-

 
   



 

mpted to classify correctly eight groups of patterns could be

constructed from three classification functions of the type used in Fig. 1. The

performance of such networks relative to corresponding networks based on clas-

sification functions of the form (13), (14), and higher order approximations will

be determined by the extent to which assumptions about relationships between

correlation parameters, necessary to obtain the above linear classification

functions, are true for a given experimental situation.

In addition to the above derivation, one can consider various intuitive pro-

cedures for deriving linear classification functions, An arbitrary linear combi-

work which atte

N

nation of the measurements (x1,X2,--+,Xy) is the function > a,x;, in which the
i=l

coefficients a; are to be chosen to provide maximum discrimination (in some

sense) between the two groups, An example of such a procedure is that due to

Fisher (1936). Let m, and n, represent the means of the x, for group 1 and group

2 respectively, and let d,=m;—- 1, The difference in mean values of the linear

N N

function for the two groups is >> a,d,, Furthermore, the function }° a,x; has

N N i=l i=l

the variance > aajv,, where y, are elements of the covariance matrix,
=l1i=l ij

assumed equal forthe two groups. The sense in which maximum discrimination

between the two groups is provided by Fisher's discriminant function is to choose

the coefficients a; such as to maximize the ratio

(Sa,d,
N N

> > ajajViy
g=1 j=l

Introducing a Lagrangian multiplier A and differentiating the expression

LLaad — \DLaazvi;

one obtains a set of linear equations which have the solutions

a,=vildy tere t+ WNidy i= 1,2,...,0

where vii are elements of the inverse of the common covariance matrix. This

same function results from a likelihood-ratio procedure forthe case of continuous

variables with multivariate normal distributions and equal covariance matrices

for the two groups, and so it is the optimum discriminant function only when

these specific conditions hold; without the assumption of equal covariance ma-

trices, a quadratic function would result from the likelihood ratio (Rao, 1952,

Chap. 8; Anderson, 1958, Chap. 6). For the latter case, intuitive procedures

which lead to linear discriminant functions can be considered. Examples are the

Anderson-Bahadur method (1960) which for the case of arbitrary distributions,

maximizes the ratio N

> axl
i=l

N N % N N WY

(2; > a) a2 > oii)
fot fTi=1 jr

 



ice., the ratio of the difference between means to the sum of the standard devi-
ations and the linear discriminant functions presented by Kullback (1959, Chaps,
9 and 13) obtained by maximizing three measures of information.

4, DETERMINATION OF COEFFICIENTS FROM SAMPLES

From the discussion up to this point it is apparent that, for the most part,
the class of pattern-recognition networks considered in section 1 continue to be
excursions in the realm of linear discriminant functions. It is also clear that
the use of a weighted sum of the x, as the classification function does not, as
some have suggested, limit the x; to being independent, but may imply a variety
of relationships among correlations and covariances of the type present in the
examples of linear discriminant functions given in the last section.

The major departure of the pattern-recognition efforts being discussed from
the work in linear discriminant functions is the mannerin which samples are
used, Rather than obtain the coefficients of the classification function from as-
sumptions concerning the functional form of the probability distributions or from
a program of estimation, interest has shiftedto starting from an arbitrary initial
state (a), Apes ay) and using iteration based on experience with one or more
samples on each trial, to go from the initial state to a final state (4),a),..., ay)
which will produce a desired result.

The problem of using experience to go from somearbitrary initial state of
coefficients to a final desired state can be approached in many ways; one « ay is
to use completely random perturbationof the coefficients and some of the adaptive
systems presented at this symposium report using this method. One would gen-
erally desire somewhat more systematic methods which,at least conceptually,
have a better chance of producing a sequence of adjustments which converge in
some meaningful sense. The problem may then be stated as one of finding a set
of transition operators T to apply to the state vector. In this form, varying de-
grees of complexity can be introduced into the formulation of the problem,as is
discussed by Bellman (1961). However, complexity in formulation which intro-
duces complexity in computation is not very helpful; the procedures which are
desirable are those which involve simple calculations after each trial and do not
require the storage of old data for use in future computations. Useful iteration
procedures can be derived from thepoint of view provided by the techniques used
in stochastic models for learning (Bush and Mosteller, 1955; Bush and Estes,
1959; Luce, 1959; Kanal, 1961: Kanal, 1962) and from the point of view provided
by stochastic approximation methods (Dvoretsky, 1956; Sakrison, 1961: Kushner,
1950; Magee, 1960), Typical of anumberof other efforts is the approach of mini-
mizing a mean-square error criterion (Widrow, 1960; Widrow and Hoff, 1960;
Gabor et al., 1961).

5. SOME COMMENTS ON COMPARING DESIGN PROCEDURES

The embodiment of adaptive procedures in a real-time pattern-recognition
system is most desirable when the environment in which the system operates
can undergo unsuspected changes. However, when the environment is stationary,
the design of a pattern-recognition network corresponding to a given form for
the classification function can be carried out on a computer. In this case the
coefficients can be obtained either by using the data directly in an iterative pro-

 



 

cedure, or using statistical estimation of parameters to obtain classification

functions such as outlined in section 8, Computer programs for obtaining dis-

criminant functions and other classification functions for applicationin a variety

af fields have been used for a number of years. Typical of some recent appli-

cations to speech and character recognition is the work reported in Marill and

Green (1960), Welch and Wimpress (1961), and Keith-Smith and Klem (1961),

from which an idea of the computation involved can be obtained. One pointof

comparison between the various methods one may consideris, of course, the

relative complexity of the computation,

The error curve corresponding to a classification function can be obtained

by computing the probabilities of misclassification for different choices of the

threshold. An evaluation of the worth of the classification functions resulting

when iteration based on experience is used to obtain the coefficients from sam-

ples can be provided by comparing their error curves with error curves obtained

from the linear functions corresponding to the different orders of approximations

as discussed in section 3, and with the error curves obtained from intuitive

rocedures such as those of Fisher (1936), Anderson and Bahadur (1960), and

Kullback (1959),
°

6. SOME COMMENTS ON THE CHOICE OF OBSERVABLES,

AND ON INVARIANCE PROPERTIES

It has been long recognized that a central problem is the choice of a suitable

set of observables and, for the most part, an arbitrary choice has been made,

as for example, the choice of dichotomous variables obtained from the elements

of an "artificial retina."

Experience indicates that when using procedures which are not optimum, a

classification procedure based on dividing the x, into mutually exclusive subsets

s,, deriving classification functions f, based separately on the s,, and using f, to

obtain a final classification function F can, in some situations, do better than a

similar function based directly on all the x, (In most of the work reported on the

type of network represented by Fig. 2, subsets of dichotomous variables have

been chosen in a random manner and arbitrary fixed weights have been usedto

form the first set of classification functions {,,)

A discussion of the problem of selecting a small numberof dichotomous

variables from an available large set is presented in the paperby Raiffa (1957).

Some comments on the invariance of two measures of information to non-

singular transformations of the observables, and on the connection between the

invariant properties and linear discriminant functions are presented in Kullback

(1959), The paper by Ming-kuei Hu (1961) presents a set of moment-invariants,

It should be noted that for most situations these moments will themselves be

random variables.
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1, Overview

This chapterwill try to address the three broad questions: (1) In what ways do ANNs

differ from the well-known paradigms of SPR? Are there concepts in ANN for which

no counterpart in SPR exists (and vice-versa)?; (2) What benefits can come outof

interaction between ANN and SPRresearchers?; (3) What advantages, if any, do ANN

techniques have over SPR methods in dealing with real-world problems?

For the most part, ANNsfor pattern recognition are to SPR whatpoetry is to prose -

- technically a subset, based on the acceptance ofcertain design constraints of enormous

practical utility, plus an additional source of inspiration which can be very helpful in the

design process. Beyond that, the underlying concepts and paradigms are so close, and

the range of problems under study overlap to such a degree, that greater mutual

communication can minimize duplication of effort and enrich both communities in many

other ways. Oneareaof substantive difference is that some parts of the ANN community

treat pattern recognition as a subset of systemsto perform dynamic system identification

and control; this may lead to improvementsin pattern recognition, in some cases, when

the pattern to be recognized is essentially dynamic (e g., speech or movingtargets). The

attempt to understandintelligence in the brain forces us to keep facing up to difficult

and important questions, such as the question of how a host of more specific designs and

methods can be integrated together in one unified, flexible general-purpose system.

The remainder of this chapter will elaborate on these points. Section 2 will discuss

pattern recognition and neural networks in general terms, Section 3 will discuss a few

alternative neural network paradigms, and their relation to SPR. Section 4 will briefly

discuss dynamic systems and control, The chapter will start on an introductory level, but

will try to build up to current research.

2. Neural Networks and Pattern Recognition -- Generalities

Before discussing the pros and cons of ANNs,I shouldfirst define just what an ANN

really is, However, neuroengineering -- the field which studies ANNs -- is a large and

diverse field, using a wide variety of designs There are popular articles which define

very clearly and explicitly what an ANNis, but which single out only one tool out of a

 

*The views expressed hereare those of the author, not those of NSF. Nevertheless, they

were prepared in the course of government work andare therefore in the public domain
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range of hundreds. Biologists, especially, tend to object to such articles, because "neural
networks" are often defined in a way which excludes actual physical neurons Section 3
will give examples of a few tools, but this section will give more of an overview.

There are at least two definitions which have beenused bydifferent authors, to try
to encompassthis field The most common definition emphasizes the prefix "neuro" --
pertaining to the brain. In that definition, neuroengineering is that field which tries to
copy over the known capabilities of the brain into computer hardware and software
Moreprecisely, it develops mathematical designs which could be embodied directly in
hardware or simulated in software; usually it is better to do the testing in software,

In developing these designs, neuroengineering tries to make use of what is known
about how the brain achieves these capabilities. There are actually two schools of
thought here. One school closely follows only what is now known aboutthe brain (in
simplified terms), and looks for "emergent computational properties." This may be
called the bottom-up or biologically-based school. The other school treats our
knowledgeof the brain as a very loose constraint, and focuses on the desired capabilities,
making heavy use ofstatistics and control theory The cooperation between these two
schools is not as close as it might be, but much of the vitality of the field is due to what
coopération does exist. This vitality is important both as a source of new ideas, and as
a force to attract and motivate a new generation of students.

Before going further, I must admit that I tend to follow the top-down school. Even

though my initial motivation was to understand the human mind -- and therefore the
brain -- I felt that a top-down approach was essential, in order to complementthe vast
accumulation of raw data in neurophysiology In fields like economic modeling,it is now
well-recognized that bottom-up modeling, when based on the desire to explicitly
represent every factory in the country, will usually lead to worse forecasts than a top-
down approach whichtries to get the aggregate behavior straight before adding more
micro-level detail. If the dynamics of each and every factory (and factory manager) were
fully and exactly known,this would not be possible, but in the real worldit is. In studying
the human mind, the key aggregate behaviorof interest is the ability to learn how to
solve complex, real-world problems, using neural-like computational structures. Once
again, the goal is to complement the bottom-up research, not to provide an alternative

Three Subdivisions of Neuroengineering

One way of mapping out the complex field of neuroengineering is by considering
which capabilities of the brain different 1esearchers are trying to replicate. Broadly
speaking, there are three groups One group is trying to understand specific brain
pathways and connections which implementspecific abilities, without regard to how these
abilities are learned For example, some researchers have spent mostoftheir time doing
biological experiments on the cochlea of the ear, in order to develop better models of

the actual transfer functions used in adult mammals to preprocess speechdata; they then
implement the same transfer functions directly in VLSI chips which can be used to
preprocess speech data. (Shamma 1987, Lyon and Mean 1988) Similar efforts have been
carried out for image processing (Mead 1989), for sonar processing (inspired by the
sonar system of the bat, among others), for motor control, and for other areas. In a

public talk, Bourlard and Wellekens(1988) have reported that the use of more biological  
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ors may improve performance in speaker-independent speech recognition,

even in a situation where it has little effect on speaker-dependent performance,

A second group mimics the ability of the brain to learn the solution to specific

roblems. Traditionally, in neuroengineering, we build systems to perform one of three

kinds of learning: supervised learning; reinforcementlearning; and unsupervised learning

Supervised meanslearning a static mapping from a vector X to a vector Y,

when there is a training set containing data on both vectors If the vector x contains a

pattern, and the vector xX containsa classification of that pattern, for each item in the

training set, then supervised learning boils down to a task which people in SPR have

worked on for years Often, however, ANNsare designed to adjust their parameters one

observation time, in real-time learning, rather than iterating over an entire database.

Reinforcement learning is similar to supervised learning, except that we do not

assume the availability of target vectors, Y, in the training set. Instead, we assume the

availability of a performance judge orutility function, which reports how good the

current outputs of the network are In essence, supervised learning is like telling a child

where to go (in the two-dimensional Y space of a back yard), while reinforcement

learningis like telling him thatheis "colder"or “hotter” as he gets closer or further from

a goal state. Manybiologists believe that reinforcement learning is'a better description

of how animals learn than supervised learning, because animals in nature receive

rewards and punishments from the environment but are not told what to do in detail,

Unsupervised learningis often touted as a way of adapting neural networks without

giving them any kind of directive feedback at all Some researchers are strongly

attracted to this way of describing things, because it suggests the possibility that some

neural networks(like themselves?) may tiuly experience absolutefree will, as described

by philosophers of the French existentialist school From an engineering perspective,

however, it is more useful to focus on the specific tasks which networks in this broad

category are actually trained to perform There are at least three main categories of

network here: (1) networks designed as “associative memories" (or, more precisely,

“autoassociative memories”) -- networks which, when given part of a pattern they have

seen before, will reconstruct the entire pattern; (2) networks designed as feature

extractors, such a$ "competitive learning" systems (based on clustering) or as "self-

organizing maps" (with analogies to factor analysis and principle components analysis);

(3) networks designed to model the dynamics of the variables they observe (system

identification networks). All three have important applications, and there have been

many efforts to combine these three (and supervised learning and reinforcementlearning

and fixed preprocessors) in various combinations, for different applications,
Finally, there is a third group of neural network researchers, besides the fixed-task

group and the learning group Years ago, John Hopfield (Hopfield and Tank 1986)

generated great excitement with the observation that certain ANNs,originally derived
in the biologically-basedlite:ature (Grossberg 1988), could also be used to minimize very

complex quadratics or solve even more complicatedstatic optimization problems They
also translate relatively easily into hardware implementations, like new VLSI chips or

optical computers
One of the classic applications of such Hopfield nets is in computer vision. Some

approaches to computervision wouldtry to identify edges and segments in an image by

minimizing a very complex measure of the quality of fit of the segmentation scheme;

preprocess
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many authors have used Hopfield nets to perform this minimization, and some propose
to hardwire the networks onto a chip. Hopfield nets are also used in applications like
traveling-salesman problems and problemsof placing connections in various kinds of
(nonneural) networks

From a technical point of view, Hopfield nets are continuous-time gradient-based
methods to minimize a user-specified "energy" function. They are often applied to
energy functions which do not have a unique local optimum; their energy surfaces often
define a pock-marked surface, with many local minima, andit is a serious challenge to
find the desired global minimum Twoapproaches are commonly used to cope with this
problem. In one approach, one tries to find an energy function which satisfies the
application without having local minima. The other approach, uses stochastic search

methodsto try to find the global optimum despite the existence of local optima; popular

methods along these lines are simulated annealing (e.g, Sun and Hassoun, 1990) and
genetic algorithms (Ackley 1990).

An Alternative (Hardware-Based) View of Neuroengineering

Many programs in neuroengineering, both in government and in industry, were not
motivated at first by any interest in understanding the brain. For example, a large part
of this activity grew out of hard core research in physics, motivated by a desire to exploit
the unique computational potential of photons compared with electrons. Leading
experts in optics such as Caulfield, Psaltis and Farhat argued that optical computing had
the potential to achieve a million-fold improvement in throughput compared with the
best digital VLSI technology Given the huge size of the computer industry, and the

economic importance of any improvement in throughput, this claim generated very
serious further evaluation Carver Mead (1989), who is regarded as the father of VLSI

technology, replied that analog, parallel, fixed-function VLSI might also achieve a
milion-fold increase in throughput, compared with the best general-purpose digital
technology. (After all, even the best digital technology typically runs one process stream
on one chip, a chip with a million transistors or so; however, an analog multiplication

requires only a handful of transistors )
The critics of optical computing and analog VLSI argued that both of these tech-

nologies are far too restrictive to be useful in anything like general-purpose computing.

They would fit a very tiny fraction at best of the overall computer market, Afterall, the
vast majority of existing computer programs, in all fields of science and industry, are
loaded down with "IF" statement and "DO"loops and long sequences of multiple types
of instructions; it would be almost impossible to break them upinto parallel calculations
performing the same operations (or a tiny choice of operations) over and over again.

The advocates replied that the human brain uses fixed-operation analog distributed
hardware, and that it seems capable of handling a fairly wide range of computational
tasks, Many research managers agreed with this assessment, and concluded that the

challenge before us was to duplicate this kind of capability in computers In brief: the
initial goal of many research programsin this field was simply to develop more broad
general-purpose algorithms which could take advantage of the capabilities of this kind
of computer hardware. The goal was to develop the most efficient possible algorithms-
- drawing on everything we know from existing disciplines like SPR, control theory and
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biology --the that the algorithms must be inherently implementable

in this kind of hardware. From an abstract mathematical point of view, one can always

find a “better” (or equally good) algorithm if one throws out the constraint, and searches

the entire space of all algorithms which will run ona sequential computer; however,

from a practical point of view, algorithms which live within the constraint have a

theoretical potential to run at one millionth the cost of those which do not.

This theoretical potential has rapidly become practical reality, just in the past year

(1989/90). This past year, Intel -- among others -- has announced the availability of a

new neural networkchip, which exploits the potential of analog VLSI David Andes of

the U.S. Navy (China Lake) has stated that one handful of the Intel chips has more

computational power, for what it does, than all of the Crays in the world put together

(The competing chips are also well worth looking at.) Factory managers who use

computervision products often complain that programs exist which could solve many of

their production automation problems, but that the existing products would require a

Cray at every station (which they cannot afford); if you can mimic or duplicate your

existing algorithm with an ANN, you can give such managers the option of buying a

small box with a few chips in it instead Because the same functional form can be used

to perform a wide variety of tasks, one can achieve economies of scale which would not

be possible with more narrow special-purpose chips; one can also reprogram such neural

hardware -- simply by sending in new parameter values -- even after it is installed.

Similar considerations apply to most military or aerospace markets (like China Lake)

In brief, the shift to ANNs could open up enormous new markets for pattern recognition,
because of the economics of new haidware.

Is there a limit to what kinds of algorithm can live within this constraint? Last year,
Stinchcombe and White (1989) proved that simple feedforward networks -- including the

kind of network implemented on the Intel chip -- can work as a “universal approximator"
of and decently behaved nonlinear mapping In more recent, unpublished work, they
have gone on to prove the ability to approximate functions in a way which makes the
derivatives of the approximation match the derivatives of the original function, to any
desired degree of accuracy, to any oider of differentiation

 

3. Some Examples of ANN Paradigms

Background

Are there concepts in ANN for which no counterpart in SPR exists (and vice-versa)?
This is an extremely difficult question, because it requires knowledge of all the "holes"
in both of the two disciplines, as well as a definition of the boundary of both disciplines
(which is an exercise in semantics) Furthermore, good ideas in either discipline can be
assimilated into the other; thus the holes which exist now canstill be filled in the future.

I would guess that about 80% of the work now being done with ANNs could be
classified as pattern recognition. In addition to research on image processing and speech
recognition, there has been substantial industrial interest in applicationslike diagnostics,
sensor fusion and financialrisk assessment. In fact, the latter three probably accountfor

the bulk of the substantial real-world applications to date. Applications to target
recognition, sensor fusion and the like account for a majority of current DOD funding
of the field, but NSF is currently trying to put more emphasis on other areas which
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receive less support from DOD
Maren (1990) is making some effort to classify and dissect the full range of

paradigmsused here, but the sheer volume of research makesit very difficult to do this
now. Therefore, in this chapter, I will only give a few examples of important paradigms
which I personally happen to know about. For those interested in a broader view, the
Proceedings of the International Joint Conference on Neural Networks serve as
something like an encyclopedia (with index) of this field.

Overview

Mostof the applications of ANNsto pattern recognitionstill involve the use of basic
backpropagation, applied to classical feedforward networks. Therefore, I will begin this
chapter with a review of that method, and discuss a practical application from AT&T
(Guyon et al, 1989) and its connection to Lie Groups in SPR. Next, I will discuss
alternative methods, based on different functional forms Then I will discuss the

statistical basis of basic backpropagation, and introduce some alternative methods (and
research topics) suggested by the theory.

All of the examples here will involve supervised learning, the learning of a mapping

from a vector X(t) to a vector Y(t) Section 4 will deal briefly with control (which

includes reinforcement learning) and neural nets for system identification (a form of

unsupervised learning) In the last year or two, many researchers have also begun to
use feature-extracting neural networks as preprocessors when classifying patterns; for

example, Granger Sutton et al (1990) use a competitive learning (clustering)

preprocessor, Foldiak (1989) uses a design which essentially performs principal
components analysis, and Hrycej (1990) uses a design more like true factor analysis,

related to the work in Werbos (1990d) Grossberg (1987) is probably the most popular

overview of competitive learning methods Kohonen (1988) discusses several different

feature extraction approaches. Kosko (1990) describes some more recent work related
to competitive learning. This chapter will not review any of that work.

Basic Backpropagation: Fundamentals

Guyon et al (1989) provide an excellent example of basic backpropagation, applied
to a real-world classification problem

Guyon et al began with a database of 1200 handwritten digits. (The goal was to
classify individual ZIP code digits after a preprocessor at the post office had performed
the initial segmentation.) In my notation, I would say that the training set consists of
T=1200 observations For each observation,t, the observation consists of two pieces of
information -- the input vector, X(t), and the target vector, Y(t), In this case, X(t) was

a vector consisting of 256 components, X,(t) through X,,,(t), each referring to the grey-

scale level of a pixel in the 16-by-16 input image. Likewise, Y(t) consisted of 10
components, Y,(t) through Y,,(t), corresponding to the 10 possible classifications. In my
notation, I would say that the size of the input vector is m=256, and the size of the

target vector is n=10, Ourgoalis to initialize and then train a neural network to input
X, and output a prediction of Y

The most popular way to set up such a networkis to use a three-layer structure -- 
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an input layer, a hidden layer, and an output layer, The outputs of the hidden layer

first, all in parallel, followed by the outputs of the output layer.

f the hidden layer are calculated by:

with
are calculated

The outputs 0

x(t) = s(net-() int, (1)

a

net(t) - We + YWXO) . i=l, A (2)
yal

K yj

where W’is a matrix of weights or parameters, where h is the number of hidden units,

and wheres is the "sigmoid" function:

s(z) = 1/( +e") @)

The outputs of the hidden layer are:

YQ) = s(net/(t)) isl, wn (4)

net(t) = W, + YO i=l, (5)
al

The notation here is designed to be simple for this structure, where a denotes the
lower layer and a+" denotes the upper or output layer. With more complex ANNs,it

is more usual to define net, x, and W, as more complicated, sparse vectors and matrices.

Intuitively, the yariable "net," is thought of as the voltage input which excites neuron
number1; x, Or y is thought of as the output frequency or activation of a neuron; W,is

thought of as the strength of the synapse connecting neuron j to neuron i. If the weights

becomeverylarge, structures like this become more and morelike hyperplaneclassifiers,
the classifiers used in discriminant analysis; again, however, the hidden layers provide

optimal features for use in that classification, and large weights are not always best.

In basic backpropagation, the goal is simply to adapt the weights W so as to
minimize the square error:

 

i a

E- SY arly - voy (6)
i=l t=!

From the viewpoint of SPR, what is new here? Certainly not the idea of minimizing
square error! From an abstract, mathematical point of view, this is simply a special case
of nonlinear regression, which has been in existence for decades, It is an interesting

special case, because the functional form hereis easy to implement in hardware, and can

serve as a universal approximator (even with a little simplification of the function s)
Whatis really new, however, is the way in which error is minimized, whichI will get to.

To adapt this kind of network, there are two common approaches, which may be

called batch learning and pattern learning (Pattern learning is usually described as
"online" learning, which is misleading, because it is usually done off-line in practice. One
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may also call it observation-by-observation learning.) In both methods, onestarts out
with initial guesses for the weights W,, exactly as one does in nonlinear regression,

(Most neural network researchers use a random number generator here, butit is better
to use prior information, if available and cheap.) One adapts the weights by a
conventional sort of iterative update procedure. In batch learning, one begins each
iteration by calculating the gradient of E based on the current weights, and then one

uses a gradient-based procedure to update the weights. In pattern learning, one cycles
through the observations, t; one begins each iteration by calculating the gradientof:

a

EQ) = Yer-Yoy . 7)
tah

and adapting the weights immediately in response to this gradient, before going on to
analyze the next observation,

The use of pattern learning is somewhat novel; however, there are precedentsto this
as well (albeit less well-known) Whatis really novel is the method of calculating the
gradient of E(t) or E, with respect to all of the weights, in a single pass through the
system. Once again, computationa! efficiency and economics are the defining features
of what we are doing

In basic backpropagation, we use the following sequences of equations to calculate
the gradients of E(t) with respect to all of the weights in a single pass through the
system:

FY@® - ¥@ - ¥Oo isl, A (8)

Fnet'(t) = s"(net‘(t)) « F_Y(t) i-l, va (9)

Fx(t) - yw, « F_net;(¢) jel, 4h (10)

FW) = x(t) * F_net/(t) i-l, wn j-O0, fe (11)

Finet(t) = s‘(net-(t)) * F(t) i=l, A (12)

FW) = X(0) * F_net,(t) i-1, A j-0, um (13)

(By convention, we assume x,= X,=1) The arrays F_W,’ and F_W,containthe desired

gradients. Note that we have to start from equation (8) and work through the other
equations in order to perform these calculations; we are calculating a kind of error

feedback in a direction backwards from the original calculations in equations (1) through
(7). ("F_" stands for "feedback to.") For pattern learning, we adjust the weights

immediately in response to these gradients, For batch learning, we simply add these
gradients across all observations t, and then respond. Even though equations (8) through
(13) must be calculated in that order, more orless, the calculations associated with any 
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  one equation can all be done in parallel, as was true with the original system.

Intuitively, one may think of these F_ . quantities as the derivatives of error with

respect to various intermediate calculations. For very simple neural networks(like the

case above), one may rationalize the feedback equations by appeal to the usual chain

rule for differentiation. However, with complex networks, it becomesvery tricky to do

this in a safe and rigorous way. /
Werbos(1974) -- which is now usually cited as the first paper on backpropagation-

= describes a more rigorous way of understanding these calculations, the core of which

has been reprinted in Werbos (1989) These derivatives are understood most easily as

igrdered derivatives,” a species of partial derivative defined with respect to the order of

calculations used in a system of differentiable equations (like equations (1) through (7)).

Werbos (1989) shows how a new chain rule for ordered derivatives can be used quite

easily, on any ordered system of differentiable equations, so as to yield the required

gradient in a single sweep with a rigorous assurance of a correct result, Backpropagation

in this more general sense is not restricted to ANNs, and it can be used to calculate the

derivatives of other things besideserror (see Section 4) Indeed, the concept of ordered

derivative provides a coherent and unified way to understand a wide variety of related

but specialized concepts in fields from economies through to nuclear engineering;it is

the kind of concept which belongsin basic calculus textbooks

After calculating a gradient, we still have to decide how to adapt the weights in

response to the gradient. Most workers simply use steepest descent, with a fixed and

arbitrary learning rate used across all the weights. This takes many iterations to

converge, but less time that it might take to hand-craft a set of optimal featuresfor the

hidden layer. Werbos (1988a,1989) discuss a variety of ways to speed up convergence,

and Shanno (1990) has described new numerical methods which may be adapted to do

even better. (There is a huge literature on this subject, but considerably more

fundamental work to be done )
The application of backpropagation to neural networks as such was first put forwards

as an idea in Werbos (1981) and Parker (1982), though it was mentioned briefly in

Werbos (1977), and the crudeintuition whichled to this idea -- and to certain adaptive

critic control designs -- appeared in Werbos (1968). Werbos (1981) -- a condensed

version of a longer paper written under the review authority of Charles Smith -- also

mentioned applications to energy modeling, such as sensitivity analysis, robust time-series

identification, and the like; such possibilities are discussed as well in Werbos (1990e)

Rumelhart, Hinton and Williams (1986) simplified and popularized these ideas, in a

seminal article which had a dramatic effect in encouraging interest in this field (and

which did acknowledge the earlier role of Parker(1982), LeCun (1985) and Charles

Smith). This experience helps to underline the tremendousvalue of artificial neural

networks as way of communicating and explaining generalized concepts in mathematics

which otherwise might have remained obscure and difficult

In the mid-1970’s, there were manyscientists who argued that cheap derivatives were

of little real importance, since they do not change the result which is ultimately

computed, and since computer time was getting cheaper and cheaper. Now, in the

1990’s, we recognize that our ability to handle larger problems becomes ever more

sensitive to issues of computational cost and complexity; cost ratios on the order of N

(the numberof variables) become ever more important as advanced hardware allows us



20

to increase the value of N,

Basic Backpropagation: More on the Example (and Lie Groups)

Guyonet al (1989)-- like most researchers with long experience in ANNs-- did not
rigidly follow the pattern of connections shown in equations (1) through (5). The
transfer function, s(z), was scaled, to make its inputs and outputs vary between -1 and
+1, instead of 0 and 1 The target vector, Y, was recoded to represent comparisons
between alternative classifications (i.e, each Y, represents the notion that someclass A

fits the pattern better than someclass B),

Before adapting an ANN,they did their best to develop a classical pattern-
recognition scheme (their Networks 1 through 4), represented as neural networks with
fixed weights. They used this classical analysis to give them a starting structure. They
movedon, in the next stage, to a multilayer network, with the lower layersfixed, and the

upper layer adaptive. They did try to use a "fully connected"structure in which (as in
equations (1) through (5)) each layer received input from every other neuron, but they

found that this led to poor results. In general, when people adapt ANNs containing a
large numberof weights, relative to the training set, the networks behave poorly in new

cases outside of the training set (This is called "poor generalization") Problems with
local minima are also more likely to occur, Recognizing this, they used some very

interesting methods to try to reduce the number of weights.
Drawing on their knowledge of image processing, they used hidden neurons limited

to taking input from certain windows in the input grid For example, one might write:

x, = s(net,) (14)
yy

 

12 yn

ner, ~ > yw,ryklXe, , (15)
Kein2 ny

where each neuron is now indexed by twointegers, representing coordinates in a two-
dimensionalgrid of pixels Hidden units -- x, -- were not calculated for every value of
i and j; for example, one might have hidden units defined only for even values of i and
j, $0 that the next layer can be more parsimonious. To reduce the number of weights

even further, one can take the drastic step of replacing equation (15) with:

142 pe

net, = YT WX (16)
ket-2 Iny-2

In this case, there are only 25 weights in all for this entire layer of neurons, If this is too
drastic, one can define twosets of hidden neuronsin parallel, x,“ and x,” each of which

obey equation (16), only with different weights
Guyon et al (1989) did not describe all the details of how they applied these

methods, which led to much fewer weights and better generalization. However,in public
talks, they have presented such details. They have noted thatit took about 20-40 passes
through the training set (using pattern learning) to converge. Similar techniques have
been extended by AT&T for pattern recognition; however, at the time of those earlier
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talks, the details were proprietary because of the likelihood of a commercial product.

The chain rule for ordered derivatives can be applied easily to these kinds of

structures, just as it can to equations (1) through (5). Here, the gradient of error with

respect to Wrest is essentially the sum of the derivatives of error with respect to the

corresponding W,,x:
These techniques may be seen, more fully, as a way of implementing the notion of

translational invariance, as described by Kanal in another chapter of this book, Thisis

simply a special case of the Lie-Group invariance concept. Rotational invariance could

easily be imposed on equation (16) to go even further with this concept(ie. to enforce

weights which obey the symmetry restriction, by cutting out excess degrees of freedom).

Giles and Maxwell (1987) have applied similar concepts to single-layer, polynomial-based

ANNs. Rumelhart (1990) pointed outthat this same kind of architecture could be used

to recognize letters in arbitrary positions in a visual field (because of the property of

translational invariance), thereby avoiding the usual segmentation problem. In general,

this example is one more case where a neural network formulation can be communicated

more easily than the more general -- but more difficult -- mathematics which underlyit.

It would be nice if similar symmetry properties could be applied uniformly to all

kinds of patterns, and if higher neural networks in the brain hadthe ability to detect

such symmetries However, after a few years of looking at this, I could find no really

plausible way that the brain might be doingthis, except indirectly, through the use of

explicit symbolic reasoning and building up ANNs whichserve as dynamic modelsof the

external environment It is plausible, after all, that the human use of symbolic reasoning

may help to explain why humansare better at generalization, on some level, that are

other mammals, despite the similarity in brain structure. The retina -- a special-purpose

system -- may be different, because it could enforce symmetries which are unique to

vision. Still, Hebb (1949) stressed the point that even humans lose their ability to

recognize patterns, when moyements of the eye are inhibited; dynamic modeling may be

crucial even to our abilities to recognize visual images In this connection, it is

interesting to remember howvision -- more than the othersenses-- played a crucialrole

in the evolution of the cerebral cortex of mammals and the precursorsto it in birds,

Alternative Functional Forms and Pruning

Basic backpropagation, as described above,is simply a matter of minimizing square

error with a particular functional form As with conventional linear regression, many

users simply dump the input vectors (independent variables) and target vectors

(dependent variables) into a computer package, and let the computer derive the

relationship. Unlike linear regression, however, this procedureis capable of learning any

arbitrary nonlinear relationship, if given enough hidden units.

Despite the practical advantages of this approach, 1t has at least three theoretical

limitations:

 

o It uses least squares in a situation where a different error function maybe better.

o It does not allow for the possibility of developing more parsimonious networks

which, as in the previous example, can be expected to perform better in
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generalization.

0 It does not allow for prior information, which may point towards different
functional forms.

 

Regarding the first point, the idea of minimizing square error is usually justified by
appeal to maximum likelihood theory, on the assumption that errors are governed by a
normal distribution, However, the norma! distribution generates numbers in the whole
range between minus infinity and plus infinity; it is not logically consistent with Y and
¥Y restricted to the range between 0 and I or -1 and +1. If the inputs and outputs are
logically binary, and the outputs can be interpreted as probabilities (e.g. of class
membership), one can simply use the classical Bernoulli measure of error (Wonnacott
and Wonnacott 1977) instead of equation (6):

EW) - log YOY+ (1 - YO)- YO) ) (17)

Differentiating, this replaces equation (8) by:

2*Y(t) - 1
Bo (18)
YOYO + U-YOQ)A-YO)
 F Y¥(s)

but keeps the rest of the schemeintact. Hinton (1990) has reported goodresults with
this approach. When the outputis not intrinsically binary, some authors prefer to
assume a normal distribution in "net"; in other words, they define:

E(t) = % (net, - net*y , (19)

where net’ is a target value calculated back from the target output. Many such
alternative error functions are possible, The use of such alternative error functions
changes equation 8 (or even 9), but does not affect the basic feedforward structure of
the network after training; thus it does not interfere with the use of chips like Intel’s for
pattern recognition after training has taken place On-chip learning is a complicated
matter at the present time, with or without these changes

From Statistician’s point of view, these different error functions simply represent
different models of the random disturbance; the only basis for preferring one over
another is prior knowledge aboutthe particular application in hand, or empirical data
showing that one fits better than another. Werbos (1990d) addresses the additional
problem of how to account for correlations in the disturbances across multiple target
variables; this is difficult at present within the cost constraints of ANNs, but may be
unnecessary for most current applications,

Parsimonyis a more complex and difficult subject. Even though simple feedforward
nets may be able to approximate any well-behaved function, there is certainly no
guarantee that they will do so in the most parsimonious fashion possible. As in the last
section, it is desirable to achieve more parsimony whenthis is possible; therefore, in
most applications, a network will generalize better if you choosethe particular functional
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forms and structures which are most likely to perform well with the minimum number

of weights. The cost of doing this may outweigh the benefits, when training data is

jentiful and prior information is expensive, but this is not always the case,

Some naive researchers have written papers suggesting that their new functional form

del of the neuron)is "better" than another,in a truly universal way; however, as

in any statistical modeling, different functional forms fit better on different problems,

and apriori generalizations across all problemstend to be dangerous. it is true, however,

that the standard feedforward networks tend to be better at classification problems

where different patterns can be separated easily by hyperplanes; whenit is better to use

hyperspheres OT ellipses, there can be significant benefits in using a slightly different

functional form. Yau and Manry (1990) and DeClaris (1990) have reported very good

results using backpropagation with functional formsaltered in this way, with appeal to

SPR, There is also a literature on “radial basis functions,” which do the samesort of

thing, but usually rely on a hand-crafted lower layer with fixed parameters. (Moody and

Darken 1989). In SPR,it is common touse Bayesian methods with the assumption that

patterns in different classes are governed by normaldistributions; work on “supervised

competitive learning" addresses a similar situation (Sutton et al 1990, Kohonen 1988).

In general, all of this work illustrates the general principle that it helps to use prior

information whenever such information is available and not too expensive.

Unfortunately, this will complicate the effoit to use standardized chips, until the various

tradeoffs and domains of application are better mapped out.

Some researchers suggest that we may look to the brain, to arrive at alternative

neuron models which may work better in practice One group proposes to use neurons

which calculate crossproducts and even higher-order polynomials in the input variables;

certain neurons in the brain do indeed have "modulatory" (multiplicative) inputs, but

these mainly involve external timing or synchronization inputs rather than a true

calculation of a local quadratic(Foote and Morrison 1987), They also lead to problems

in deciding which crossproducts to use and in hardware implementation. Another group

(Kuperstein 1987) suggests that true zero-to-infinity inputs should be coded in a kind of

logarithmic/decibel scale, whichis probably an excellent way to preprocess many forms

of data (It is already commonin SPR torepresent an intensity 1 as log(I), but the idea

here is to code anintensity input into several neurons, which respond logarithmically in

their major range but saturate outside that range; different neurons would have different

but slightly overlapping regions ) A third group suggests the use of neural networks with

simultaneous-time recurrence This would allow a network to implement the idea of a

relaxation algorithm easily and naturally, without time-lags _It is possible to implement

backpropagation very efficiently for such a network (Werbos 1988b), but the

mathematics are significantly more complex than they are for simple ordered systems.

It is unknown as yet how useful this feature is in practical applications, and it is also

unknown exactly what the brain is doing along theselines.

One final way to achieve parsimony is simply to prune out unnecessary weights in

an ordinary feedforward network, After all, this worked very well for Guyon et al

(1989). The brain itself is clearly a highly sparse structure Werbos (1987) presented

a few preliminary thoughts on the subject of automatic pruning (and regrowth), but a

large number of researchers -- including DeClaris, McAvoy and DeFiguerido (1990) --

claim success in real applications, based on approaches which should be published in the

(or mo
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next year or two. From a Sstatistician’s point of view, this is clearly just a nonlineay
extension of the well-known field of stepwise regression, which statisticians like
Dempster (1977) discussed long ago. Sparse networks can be run on chips simply by
setting a lot of weights to zero; however, there may be more efficient ways to implement
this idea in future generationsof chips or optical computers.

Many advocatesof neural networks look to ANNsto provide a high degreeoffault
tolerance. Unfortunately, a high degree of parsimony tends to reduce fault tolerance,
ceteris paribus. It may well be that certain neural network structures and training
regimes (e.g, adding noise to hidden nodes which are otherwise constrained to be
similar, to simulate faults during training) may help reduce the degree of conflict
between these objectives, but this is basically a topic for future research,

Statistical Issues and Bedrock and Associative Memory

The precedingparts of this section -- like a majority of the work in neuroengineering
and SPR -- is rooted in the classical concepts of maximum likelihood theory and
Bayesian estimation theory (Wonnacott and Wonnacott 1977), In those theories, one
begins by assuming that the classification model (or neural network model) is "true" for
some values of the parameters (or weights) One searches for those values of the
weights which have the maximum probability of being the true weights, More precisely,
one searchesfor the values of the weights with the highest conditional probability of
being true, conditioned upon the training data One exploits Bayes’ Law to deduce:

Pr(data | weights) Pr(weights) (20)Prweights | data) Pr(data)* (data

Thefirst term on the right -- Pr(data | weights), the likelihood term -- is a straightforward
computable function of the model, the weights and the data, so long as the model does
include a modelof the (probability distribution of the) error disturbances Whenerrors
follow a normaldistribution, independent of each other, then maximizing the likelihood
term is essentially equivalent to minimizing square error. The term in the denominator-
- Pr(data) -- does not affect the relative choice between different sets of weights, and
may be ignored here. The other term -- Pr(weights) -- is the prior probabilities term,
which has been an embarrassmentto students of learning andstatistics ever since the
time of Immanuel Kantor earlier; it represents our knowledge aboutlikely values of the
weights before we have access to any empirical data.

In maximum likelihoodtheory, we usually assume thatall possible sets of weights are
equally likely apriori Thus to maximize equation (20), we simply maximize the
likelihood term Someengineers have aiguedthat this procedure is firmly grounded in
theory andscientific, because it leads to precise and predictable results without telying
on subjective things like prior probabilities, unlike the more "ad hoc" methods used by
some people in SPR and neuroengineering In certain fields, like economics, the
maximum likelihood approach is indeed more practical in most cases than explicit
Bayesian regression (where the computerasks the user to provide Pr(weights)), because
it is easier for a human to trade off empirical data versus prior information in his head
when he knows which is which  
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Unfortunately, the assumption of equal probabilities apriori is still an arbitrary

assumption, with no more guarantee of truth than any other arbitrary assumption one

might make. The real world is far messier. Least squares can be very useful, when the

training set is larger than the number of weights, as discussed above, however, as the

training set grows smaller, or the number of variables grows larger, it becomes ever more

important to make our prior assumptions as realistic as possible. No one is immuneto

this problem -- engineers,statisticians, neuroengineers ot SPR practitioners. Neuro-

engineers and SPR practitioners have faced up to this problem more than most groups

have, because we both deal so often with enormous input vectors. Likewise, for very

easons, we need to face up to the issue whichstatisticians call "robustness" -- the

problem of how to work with models or networks which are unavoidably oversimplified

representations of external reality Actually, these problems are central to econometrics

as well, but econometricians have many ad hocfixes available (Werbos (1990c).

Forlarger training sets, these issues of prior probabilities and robustness help to

explain the need for parsimony. Long ago, philosophers like the Reverend Occam

argued that humans would be unable to learn from experience without somehowgiving

greater credence to a simpler model, rather than a complex model, in cases where both

fit experience equally well Solomonoff (1964) formalized this notion, and showed how

it is still consistent with notions such as "open-mindedness" which we would want our

learning systems to possess, Later workers in complexity theory formulated notions of

estimation which are closely related or even equivalentto Solomonoff’s proposal, and

are working to refine these concepts in the context of neural networks. Sara Solla of

AT&T and Papantoni-Kazakos are working along these lines, but the subject is quite

difficult. (Tishby, Levin and Solla 1989, Papantoni-Kazakos 1989).

In the limit as the training set becomes extremely small, the best way to predict the

classification of a new pattern is usually by analogy (If the input vectoris really just one

number, one usually relies on classical interpolation, which is similar.) This helps to

explain the widespread popularity of nearest-neighbor schemes in SPR, and the

popularity of associative memory approachesto supervised learning in ANNs. (Kosko

has called these systems “heteroassociative memory", and stresses that they converge

faster than backpropagation.) The sameprinciple is at work in both fields.

Classical statisticians have suggested that suchsituations can still be understood

within the scope of maximumlikelihood theory One can formulate a model which

predicts new patterns to be similar to their neighbors, plus noise, and then use

maximum likelihood methods One could even use such methods-- with backpropagation

-- to adapt a similarity metric, which may even be modeled as a function of system inputs

rather than a fixed matrix, To make this approach more consistent with conventional

modeling, we could simply use this arrangementto forecast the errors of a more con-

ventional least-squares forecasting network Werbos (1977) described this general

approach, under the nameof "syncretism," but no one has had a chanceto pursueit as

yet. A good adaptation of the similarity metric would still require a large database, but

the approach may beof value in cases where similarity-based forecasting works better

than ordinary approaches Apriori probabilities would still affect the results, because of

the importanceof the initial (or default) value of the similarity metric,

Thereis an interesting similarity betweensyncretism, on the one hand,andvariations

of basic backpropagation in which different weights use different learning rates to

similar r
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respond to gradients Both the weight-specific learning rates and the corresponding
similarity metric terms serve as measures of "attention" -- the degree to which a specific

input is used to explain any errors in classification Most biologists believe that time-
varying attention in some form is essential to learning in higher organisms.

Syncretism is simply one of many ways to try to come up with a more rational,
flexible and technically sound way to reconcile the capabilities of nearest-neighbor
classification and least-squares classification. There are many other ways, and thereis

much room for further research, both in the SPR and ANN communities. Werbos

(1987) described another such approach, which generalizes the classical statistical
method of ridge regression (Dempster 1977), in which the norm of the weight vectoris
added to the error function E(t).

Among the host of associative memory and vector quantization methods actually
used in engineering applications, the ones encountered most often are related to the
CMACarchitecture (Albus 1971) and the ideas of Kohonen (1988). Lukes et al (1990)

used a simple associative memoryfor a simulated control application, and Miller (Kraft
and Campagna 1990) used a CMACtocontrol a physical robot. Both researchers have
reported informally that they have successfully implemented differentiable versions of
these designs, which yield more accurate results and open up newapplications. (For
example, one can build a two-layer structure in which the upper, fast layer is an
associative memory, and the bottom layer is adapted by backpropagation. This would
fit the idea that humans learn new patterns quickly and new features moreslowly.
There are important control applications as well.) Nestor, Inc, of Providence, Rhode

Island, has also found many clients for its memory-based supervised learning system,

Fahlman (1990) has developed a new learning system which is intermediate in spirit
between backpropagation and associative memory.

4. Dynamic Systems and Control 

So far we have discussed pattern recognition as a static problem, mapping a vector
X(t) to a vector Y(t). In actuality, there are manyclassification problems-- like speech
or target recognition in a moving viewscreen -- which are essentially dynamic in nature.

Furthermore, pattern recognition in mammals occurs in subsystems, within the context
of a larger system (brain) whose overall function is one of control. For this reason, the
most important area for fundamental research in neuroengineering involves systems of
ANNsforcontrol or system identification applications, This work has been mappedout
vety carefully and reviewed at length (Werbos 1990b, Miller, Sutton and Werbos 1990).

How does the work in that area impinge upon pattern classification?
At the simplest level, ANNs for speech recognition and the like need to be more

than static maps, in order to classify speech accurately. It is important that the
classification at time t reflect information from earlier times as well, In fact, it is very

easy to modify feedforward networks to include time-lagged inputs or memories (a form
of "recurrence”), and to use backpropagation in training them. Werbos (1990a) gives a
tutorial on how to do this, using the same methodsoriginally discussed in Werbos (1974).
Lang et al (1990) have reported reasonable success in classifying speech based on a
special case of this general approach. Neural networks with this kind of recurrence are
essentially just a nonlinear generalization of the ARMA models which have been used  
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in the past in speech recognition. Lockwood Reed (1990) -- who organized the

interagency group On speech recognition in the United States government-- has argued

that conventional approaches to speech recognition have reached a plateau, from which

large improvements will be ever more difficult; he has argued that neural networks

should be able to get beyond that plateau, after a few years of catching up. Carnegie-

Mellon -- where Lang and Waibel are working -- also maintains the best performing

ublic domain speech recognition programs based on conventional methods (hidden

Markov models, HMM), according to some observers; these methods are said to be

roughly as good as the best proprietary packages, and should makean excellentbasis for

comparison as this work progresses.

In actuality, there are certain difficulties in applying these methods directly to speech

data. The information available in speech classification is far less than the information

available in the entire speech process; in other words, the sequence of speech labels has

Jess information content than doesthe entire time-series of speech, by far. Thus from

4 statistical point of view, it may be desirable to try to exploit the information (variance)

in the speech dataitself by developing models of the speech process. In effect, this is

one more case where an unsupervised learning strategy can serve as a feature generator

(at the very least) for a classification process One can do this dynamic modeling, once

again, by using backpropagation through time, where the target vectors are the state of

the speech process at time t+ 1, Considerably more robust results can them be had by

using more sophisticated approaches (Werbos 1990b), which tend to be better in

generating long-term memories Levin (1990) has shown how a hybrid HMM/neural

system can be built, which can always outperform conventional HMM,by treating part

of the recognition problem as a control problem; this could be extended muchfurther,

using advanced neurocontrol methods.
In those recognition problems which do feed directly into a control problem, there

may be ways to use the control information (Werbos 1987) to focus attention on key

variables, and improve the real-world value of the recognition subsystem; however, | am

not aware of any ANN implementations as yet of this idea.

5. Conclusions

ANNs and SPR are both large, diverse areas of research. They both share a large
number of paradigms, such as least squares estimation, exploitation of symmetry,
clustering, and so on ANNsin pattern recognition may be viewed as a subset of SPR,

a subset which is carefully designed so as to allow maximum computational efficiency --
something which is of enormous importance to most practical applications, ANN
researchers havealso carried out efforts to understand fixed pattern recognition systems
in the brain, which can be useful as preprocessors for ANNs and SPR both. ANN
researchers also try to maintain links with our understanding of learning in biological

brains -- a subject of enormous importance In recent work, many ANNresearchers
have focused on dynamic systems and control problems, which could allow new and more

powerful approaches to pattern recognition as well.
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Abstract
Small training sample effects commonin statistical classification and artificial neural

network classifier design are discussed A review of known small sample results are pre-
sented, and peaking phenomenarelated to the increase in the number of features and the

number of neurons is discussed.

1. INTRODUCTION

Artificial neural networks are now widely recognized as a useful classification tech-

nique for pattern recognition [31] A typical artificial neural network (ANN) classifier (a

feedforward network) consists of several layers of neurons (see Figure 1) Each(say 2“)

input layer hidden layers output layer

Figure 1: An ANN With Two Hidden Layers
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newon has several (say d) inputs 21,02,...,24, one output y;, and performs an operation

d
yi = fi(D> wat; + win), (1)

j=]

where f; is a nondecreasing and differentiable activation function, and w,; is the weight

assigned to the j‘* input of the z* neuron Examples of such activation functions are

hard limiting or soft limiting threshold functions and Huber’s and Tukey’s functions [83],

The neurons in the input layer correspond to the components of the feature vector to

be classified. In the feedforward network which will be discussed here, the inputs to the

neuions in each successive layer are the outputs of the preceeding layer The neurons in

the output layer are usually associated with pattern class labels.

The important design issues in building an ANNclassifier are to find an appropriate

network topology (numberof hidden layers, number of neuronsin each layer) and to learn

the weights w,; for each neuron from the given training samples. If an one-layer ANN

classifier with a single neuron and hard limiting threshold activation function (a simple

perceptron [46]) is used, then a linear discriminant functionis realized and the resulting

decision surface is a hyperplane [32] On the other hand, a multilayer ANN with soft

limiting threshold activation function can realize an arbitrarily complex decision surface

[6, 17, 30, 31, 53]. A number of methodsexist to train an ANN [18, 31, 32, 47, 52] These

training methods differ in the error function and in the optimization technique-used to

dete1mine the weights in the neural network Let y; be the actual output and 0; be the

desired output of the i** neuron in the output layer of ANN. The most popular e1ro1

function is the mean square erro1 function defined as

n P

MSE = Ye relvi = 053) = So (ys — 043)", (2)
j=li=l j=li=l

where n is the number of training samples, p is the number of neurons in the output layer,

and e( ) denotes the error function

The ANNclassifier can be analyzed as a special case of statistical pattern classifiers

which are “data-driven”, in the same spitit as Parzen-windowclassifiers and K-NNclassi-

fiers [8] It is well knownthat, in a finite training sample case, the expected classification

error E'Py of a statistical pattern classifier can increase as number of features are in-

creased due to the inaccuracies in estimating the parameters of theclassifier Thefinite

number of training samples causes the following practical difficulties and constraints in

designing a classifier [3, 8, 9, 19, 21, 24, 37, 42]:

1 The resubstitution error iate has an optimistic bias.

2 A peaking in classification performance is often observed as the numberof features

increases

3 A simple classification algorithm (e.g., a linear discriminant function) may outper-
form a more complex classification algorithm (e g., a quadratic discriminant func-

tion).  
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4 A nonparametric decision rule may outperform a parametzic decision rule even if

the assumed parametric modelis correct

5. There is an optimum value of K in the K-NN decision rule

6. The choice of window width is critical in the performance of a Parzen window

classifier.

7 In the case of unequal numbersof training samples per class, the decision boundary

may need to be “balanced”

Webelieve that ANN classifiers will also encounter similar difficulties and constraints

when the number of training samples is small The purpose ofthis paper is to analyze

the small sample size effects that occur in the design of ANNclassifiers

In Section 2 we present some known results concerning the influence of the number
of training samples on the accuracy of several well known parametric and nonparametric

statistical classifiers. These results will be useful in analyzing similar small sample size

effects for ANN classifiers. In Section 3 we discuss the classification accuracy and training

time of ANN classifiers Section 4 deals with the problem of estimating classification

error. In Sections 5 and 6, we analyze the “peaking” phenomena which arises due to an

increase in the numberof inputs and the number of hidden layer nodes in multilayer ANN
classifiers Section 7 consists of discussion, and suggestions for future research,

2. FINITE SAMPLE PROBLEMSIN STATISTICAL PATTERN
RECOGNITION

One of the most popular and simplest statistical pattern classifier is the Fisher linear

discriminant function (LDF)

g(x) = Ss wit; + Wo, (3)
tl

where 21,2, ,2q denote the d features, and wo, wi, . , wa are constants

For a two-class problem, if g(x) > 0 then the feature vector = (#1, 22,.. ,2a)? is

allocated to class 71, otherwise to class tz The linear discriminant function linearly

maps the training patterns from each class on the real line defined by the weight vector

w = (wo, W1,W2,...,wWa)’. Fisher [11] chose the weight vector such that the mean squared
deviation of the projected training patterns around their class mean vectors (within-

class scatter) is minimized with respect to the separation between the projected class

mean. vectors (between-class scatter). The weights of this LDF are identical to those

obtained from the “plug-in” decision rule for the case of two Gaussian class-conditional

density functions when the unknown mean vectors and the common covariance matrix

are replaced by their maximum likelihood estimates The same weight vector can also be

obtained by the least-mean-square-ertor adaptation algorithm with an equal numberof
training patterns from both classes [14, 26] Therefore, the linear discriminant function
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is, in fact, an one-layer perceptron trained by the standard delta rule learning algorithm

[47]
The expected probability of misclassification, EPy, of LDF can be written as,

EPy = uP{g(z) < Ole € m} + BP{g(z) > Ol2 € m}, (4)

where g, and q are prior probabilities of classes 7, and 72, respectively The expected

probability of misclassification, EPy, of the LDF depends on the number of training

samples per class N, and No , dimensionality of the feature vector d, and the asymptotic

probability of misclassification, Poo,

Pu = jim, BPs
It is not easy to obtain a simple analytic expression for EPy, so Raudys and Pikelis [43]

provided a table showing this dependencefor various values of N, d, Poo, and the Maha-

lanobis distance between the two class-conditional density functions, The relative increase

in the expected probability of misclassification (E-Py/P..) increases with an increase in

dimensionality and the asymptotic probability of misclassification, and decreases with an

increase in the numberof training samples.

Pikelis [35] compared a number of asymptotic expansions ofthe expected probabilty

of misclassification for LDF and found that Deev’s expansion [7] is the most exact. In the

case of Gaussian class-conditional density functions with a common covariance matrix,

the second term on the right hand side of Equation (4) can be computed as follows [7]

 (5)ag

{

SL Spite + MeaapseP{g(X) > 0[X €m}=¢4-5 ,
2 [NytNo-1 Ny +Ngtl (1 4. Maa a1)

Ni+No-d Ni+No NiN2 6?

where N; is the number of training samples from class ;,¢(c) is Laplace’s probability

integral and 6? is the squared Mahalanobis distance, 6? = (#1 — H2)*(a — we) The

first term in Equation (4)

P{g(X) < 0[X € m} =1— P{g(X) > 0X € m}

can be obtained from Equation (5) by interchanging N; and N2

Equation (5) shows that if d > (Ni + No — 2), ie when the estimated covariance

matrix becomes singular, the misclassification error increases enormously Due to the

nonlinear nature of the Laplace integral ¢(c), the term -

N;—N,\ (d-1\_. a

will increase the classification error when N, # Nz This degradation in classification per-

formance due to unequal numbersof training samples from different classes is significant

when a quadratic dicriminant function is used in high dimensional cases [38, 42]

In the standard delta learning rule, the weights wo, wi,. ., wa ofthe linear discriminant

function are found by minimizing the mean-square-error (Equation(2)) Other, more
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complicated, criteria can also be used [48, 49, 50]. For example, a minimization of the

modulus criterion,

e(e) = lel,
0

in a second-order perceptron (where new derivedfeatures involving quadratic or exponen-

tial terms are used) can result in an optimal Bayes decision boundary [48]
In manylearning algorithms, the weights wo, w1,.. , wq ate changed only when a train-

ing vector Xp is incorrectly classified (error-co1rection algorithms). For example, in the

relaxation algorithm REL,

>

0, other wise,
c*, when_X, is incorrectly classified,

e(c) = { ° (8)

and in the fixed increment algorithm FIX

jc], when X, is incorrectly classified, 9)

e(c) = 0, other wise (

When an empirical probability of misclassification is minimized then we use a hard-

limiting threshold function

1, when X, is incorrectly classified, (10)

otherwise.
?

+

Smith [49] derived the following approximate formula to calculate the expected prob-

ability of misclassification of MSE, REL and FIX adaptation algorithms for linear dis-

criminant functions

Oe fod 1 a a _EPR = P2, + 5,(A® + Bd 1), (11)

where parameters A* and B® depend on the type, a, of the error function (MSE, REL,

FIX) and on the asymptotic probability of misclassification (see Table 1) Consider a

Table 1: The coefficients A and B in Equation (11) [49]
Algorithm MSE REL FIX
6 Px A B A B A B
1.0 0.309 0880 4400 0886 .0441 0152 505

2.0 0.159 1210 2420 1400 .2610 1960 317

4.0 0.023 0540 .0675 .1680 .1820 2180 .232

 

 

classification problem for which the Mahalanobis distance 6 = 2, dimensionality d=10, and

training sample size N = Ny = N2 = 20 , then Equation (11) results in EP¥5* = 0.2165
for the standard delta rule with MSEcriterion (the exact value from Pikelis’ table [35]
is 0.219 and Deev’s [7] main term in Equation (5) gives 0.217 ); EP¥®" = 0 221 for
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the relaxation error criteria (Equation (8)), and EPIX = 0 235 for the fixed increment

criteria (Equation (9)). With an increase in the Mahalanobis distance 6 (o1 a decrease

in the asymptotic probability of misclassification P,. ), the role of training samples in

determining the weights of the linear discriminant function is diminished and,as a result,

the differences between the expected errors EPMS®, EPHand EP#!* increase When

one uses minimum empiricalclassification error criteria (Equation (10)), the classification

error is significantly higher than that of the classifiers which use the MSE, REL and FIX

criteria [51] Therefore, the standard delta rule where the mean-square-error criterion is

minimized is the most preferable learning rule to design ANNclassifiers in terms of its

sensitivity to the training sample size

The above results concerning the linear disctiminant function and the mean-square-

etror delta adaptation algorithm are valid when only a single-layer ANN performs the

classification, and when a hard-limiting threshold activation function is used in Equation

(1). When oneusesa soft limiting activation function in a two-layer ANN, then Equation

(1) in fact performsa feature extraction procedure In other words, the outputs of the hid-

den layer define a new feature space where simple classes can sometimes be comparatively

easily separated by adjusting the weights of neurons in the output layer

It is well known that a multi-layer ANNclassifier can form complex decision boundaries

similar to nonparametric Parzen window or K-Nearest Neighborclassifiers [17, 30, 31]

Therefore, a knowledge of the sensitivity of the nonparametric statistical classifiers to the

finiteness of the training sample size can serve as a guide in the analysis of multi-layer

ANNclassifiers Unfortunately, very little is known about the behavior of nonparametric

statistical classifiers in the finite sample case

Raudys [38] obtained some results by means of simulation studies for nonparametric

Parzen window classifiers. The classification problem involved two multivariate Gaussian

populations with identity covariance matrices. He used the following window function:

XX,
X

T 7

where » is the window width, X; is a training sample, and C is a constant

The 1elative increase in the classification error (EPy/ Poo ) is presented in Table 2

for two values of the smoothing paramete: (A = 0.1,0 8). The increase in the error

rate of the Parzen window classifier to the training sample size drops when the value of

the smoothing parameter increases. When \ - 0, a Parzen window classifier with the

Gaussian window function performs no “smoothing” and its performance becomessimilar

to an 1-NNclassification rule Thus, values of « = EPy/Po presented for A = 01 aie

plactically the values of « for the 1-NN classifier Note that the increase in the error rate

of the nonparametric statistical pattern classifiers with an increase in numberoffeatures

d is more significant than for parametric MSE adaptation rule [42] The decrease of

the classification error with an increase in the training sample size is also slower for

nonpatametric classifiers. Therefore, in order to design complex decision boundaries in

a high dimensional feature space with the help of nonparametricstatistical classifiers, a

very large number of training samples is required. We suspect that in a two-category

case, the complex multi-layer neural network classifiers will also have similar behavior.  
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Table 2: The valuesof the relative increase in the expected probability of misclassification

k= EPy/ Poo of Parzen windowclassifier for two Gaussian classes with common identity

covariance matrices [38].
 

 
 

N d=3 N d=5 N d=8

Pr 0.1 0.01 Pye 01 001 Pro 01 0.01

6 2.56 4.65 6 2.56 4.65 6 2.56 4.65
 

2 197/196 353/351 3 215/212 355/351 5 228/226 430/421
3 190/180 292/286 5 198/194 324/315 8 213/205 348/341
6 178/168 261/251 10 187/180 3.07/287 16 195/190 318/308
15 164/146 232/218 25 LT1/158 256/2.38 40 191/176 3.72/246
30 1.50/123 215/171 50 166/144 216/190 80 184/165 228/2.10
150 1.39/1.06 1.53/1.20 250 162/112 1.86/1.27 400 181/129 214/1.54
 

The search for the appropriate aichitecture and the weights of an ANN classifier is an

optimization problem for a given etror function. This optimization problem itself in fact

involves selecting a variant of an ANNclassifier among an immense numberof all possible

ANNclassifiers with a given architecture Raudys [41, 44, 45] analyzed a problem where

the best model needs to be selected from an infinite general population (M)of the models.
Let the 2“* model M; EM be characterized by some value of the error function P;, and

there exists an estimate P. of P, It is assumed that P,, Po,.. are random variables with

a density function f(P) Similarly, A, Py, are random variables with the conditional

density function f(P,|P;) Due to inaccuracies in the estimates P,, Ps, ., the selection
of the best model according to the estimates P;, P,. results in an increase in the value

of the true error function Pi,ye compared with the value of the error Pica: in an ideal

selection procedure which uses the true values P,, Po, ..

In Table 3 we present estimates of the relative mean increase in classification e1zor

«= EPiue/E Piaeat obtained for a mathematical model when true probabilities of misclas-

sification Pi, P2,. have a generalized Beta distribution with parametets Prin, Pmaz,Y =

40,7 = 4 and the best modelis selected from 10° models randomly chosen from the gen-

eral population M [41] Theestimates P,, P,, were obtained by using n test samples,
where nP; is Binomially distributed with parameters P; and n. This methodology was
also applied to the problem of selecting the best subset of features [45]

The theoretical values of the relative increase in the classification error due to an

inaccurate selection of the best model provide only guidelines for real model selection

tasks, They show, however, that when the sample size is small, the increase in the true

classification error is rather significant and there is only a small chance that a good

model will be selected. The same conclusion is valid for the ANN optimization problem

The performance of the complex multi-layer ANN classifier trained on a small number

of samples will differ significantly from that of the ANNclassifier ideally trained on an

arbitrarily large number of samples
Unfortunately, the above theoretical model does not allow us to evaluate the influ-

ence of dimensionality, number of hidden layers, and other parameters which define the
architecture of ANN classifiers Table 3 also shows that the relative increase in the clas-
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Table 3: The values of the relative increase in the classification error k = EPiue/EPideol

when inexact sample-based estimates of the classification error [41] were used to select

the best model.
 

 

 

Prin |Pmax

N °0.2/0.3 0.1/0.2 0.03/05 0.01/0.1

25 23 2.7 45 8.9

50 2.1 2.5 38 71

100 1.8 2.2 31 52

200 1.5 18 2.4 38

500 1.3 1.5 L7 2.6
 

sification error due to inexact sample-based optimization criterion depends on the error

tate of the optimized classifier Prin: When Prin is small, the relative increase is large.

The absolute value of the increase in the classification error is of the same order as the

standard deviation of the estimates P,, P,, . used as the criterion to find the best weights

of an ANNclassifier

3. THE CLASSIFICATION ACCURACY AND TRAINING TIME OF

ARTIFICIAL NEURAL NETWORKS

Multi-layer neural network classifiers represent a wide class of classification tules. By

changing the shape of activation function f() in Equation (1), and the architecture of

the ANN,one can obtainclassification algorithms with different derived features.

It is generally known [31] that traditional multi-layer artificial neural network classi-

fiers trained by the back propagation algorithm require a great number of sweeps of the

training sample data in order to minimize empiricalclassification error

For a given pattern recognition problem and a given set of training samples, the

complexity of the decision region required to obtain a goodclassification accuracy of the

training samples is fixed On the other hand, an ANN with a large number of hidden

layers and a large number of neurons in the hidden layers will have more degrees of

freedom and will require less accurate determination of the weights to achieve the desired

classification accuracy. Therefore, for a given set of training samples, it will be easiex

to train a complex neural network than a simple one. This observation is supported by

numerous experimental studies [2, 16, 28, 34, 47]. In an analysis of the XOR problem

with a two-layer neural network, Rumelhart et al. [47] propose an empirical equation to

determine the number, S, of presentations of training samples as a function of the number

H of the hidden nodes:

S = 280 — 33 log, H. (13)

Kung and Hwang [28] present a graph of the convergence time(i.e., numberof training

sweeps) versus the number of hidden nodes per layer when various numbers of hidden

layers are used There were n=8 pairs of randomly generated 12-dimensionalinput and  
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7-dimensional output training patterns They observed that a network with more hidden

nodes per layer and with more layers led to a smaller number of training sweeps. They

also noted an abrupt reduction in the numberof training sweeps around n-1 hidden nodes

(n is the number of training patterns). This observation agrees with a well-known fact

in statistical pattern recognition theory, that in a d-dimensional case, a hyperplane can
discriminate perfectly any set of d+1 points with arbitrary class labels [4]. Therefore,
when the numberof hidden units is equal to n-1 there is no need to adjust the weights of

the hidden layer units! We repeat the experiment on two-layer ANN classifiers and show

the result in Figure 2.

 

   

Qo
oOSo 4
Oo

no 7

o 4
QO
oO
oO

a 8 |
“wa QO
° o

®
2£ 4

aD
c

Qo
Ss 4

a ee

° T T T T T

5 6 7 8 9 10 11

numberof hidden nodes, H

Figure 2: The convergence time (ie , number of training sweeps S$) versus the numberof

hidden nodes per layer in the two-layer ANN classifiers.

With an increase in the number of training samples, the complexity of the decision

boundaries required for perfect discrimination of the training samples increases There-

fore, “training times are typically longer when complex decision boundaties are required

and when networks have more hidden layers” [31]
We pointed out in Section 2, that in selecting the best classifier on the basis of in-

accurate sample-based estimates Pr, Pa, .., the difference between the true (test sample

estimate) classification error of the “best” classifier and the ideal one (obtained when
selection is performed on the basis of exact values P,, P,,.. ) decreases with an increase
in the number of training samples used to obtain the estimates Py, Pa, . Besides the

true classification error Pyu_e and the ideal classification erto1 Pigegt in the selection p1o-

cess, therepats an apparent error Papparent, i.e. the minimal value among the estimates

P,, Pr, , Pm (here m is the numberofclassifiers compared empirically). The mean value
of the apparent ettor (F'Papparent) is less than that of the ideal error EPideai The differ-
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ence, (FE Pideal — EPaupparent)s decreases with an increase in the training sample size used

to obtain estimates A, Py... Pn In the best classifier selection problem, while using the

random optimization search proceduie, the values of the true, ideal, and apparent errors

depend on the number m, ie, the size of the set from which the “best” classifier is se-

lected All three error rates decrease with an increase in m; the apparent error decteases

most quickly, and the true error most slowly (see, for example, curves in Figure 3 ob-

tained for the Beta-Binomialdistribution model discussed in section 2). In experiments
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Figure 3: The mean values of the true error E'Prue (1,17), ideal error EPsaeat (2) and

apparent error ELPapparent (3,3’) in best classifier selection versus number, m, of classifiers

compated (Beta- Binomial distribution of (P;,P;) (41).

with feature selection, when the number m is sufficiently large, the true error ceases to

decrease, and merely oscillates [41] Therefore, with finite training sample size, there is

no need to analyze a very large number of classifiers if they were randomly chosen from

the set of all possible classifiers The same conclusion can be drawn for ANN optimiza

tion The optimization itself is a selection of the best classifier from the infinitely many

possible classifiers with a given architecture Simulation studies confirm this theoreti-

cally obtained conclusion In Figure 4, we present two such pairs of graphs obtained by

means of simulation Similar graphs were obtained by le Cun et al [5] while solving a

handwritten digit recognition problem by meansof a 3-layer artificial neural network.

Therefore, in the ANN training problem, an excessive amount of optimization of the

neural network weights is not necessary if the training sample size is small The opti-

mal number of sweeps required to minimize the true classification error (the test sample

estimate) depends on the number of training samples. It increases with an increase in

sample size; however, theoretically-based recommendations for training effort required in 
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Figure 4: True error (1(B),1(C)) and apparent error (2(B),2(C)) versus number of sweeps
in the back propagation algorithm (H = 4,d = 12,N = 100, two spherically Gaussian

populations N(;, 16?) 3 wi = (wa, . , Hia)?; data set B: wig = (-1)'/j,6? = 1,1 = 1,257 =
1,. ,d; data set C: a = po, 6? = 4°-1,7 = 1,2)

practical problems do not yet exist.
The analysis presented above showsthat instead of minimizing the apparent (training

sample) error, one should minimize the true (test sample) error

4. ESTIMATION OF THE CLASSIFICATION ERROR

A number of techniques exist to estimate the classification error in statistical pattern

recognition [13, 15, 20]; It is well known that the resubstitution estimate is optimistically
biased Use of the resubstitution method to estimate error rate of an ANNclassifier in

the small training sample case will also result in a biased estimate Therefore, in a finite

design sample case, the hold-out method (where independent test samples are used to

estimate the classification error) is preferable.

Dutta and Shekhar [10] present the following resubstitution (Pp) and hold-out (Py)
estimates, obtained for a three-layer ANN classifier with 6- and 10-dimensional feature
vectors when the total number of training samples from 4 classes was 30 and the test

sample size was 17

Pr = 0.20 for d=6 and Pp = 0.076 for d=10,
Pr = 0.235 for d=6 and Py = 0.176 for d=10
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Wenotice a significant difference between Px and Py in the 10-dimensional case. The

difference (Pu - Pr) can serve as a criterion to evaluate the sufficiency of the training

sample size. Thus, for d=6 we can conclude that the training sample size is sufficient,

since Pe = 02 and Pr = 0235, and for d=10 the training sample size is not sufficient,

since Pp = 0 076 and Pry = 0.176.

It is important to remember that the estimates Py and Py ate random variables Their

standard deviations can be approximately evaluated by the following equation [12, 36, 39}.

SD(P.) = EPO EP.) (14)

Ne

where E. denotes the expection operator and n; is the number of samples used to obtain

the error estimate P, (here e = Rox ff)

In solving practical pattern recognition problems, a researcher needs to select the

“best” classifier and evaluate its performance empirically. Even when independent test

samples are used to estimate the classification error of the best, classifier, the result will

still be optimistically biased [41, 44]; the test samples take the role of additional training

samples If severalclassifiers are evaluated and compared, then the bias mentioned above

can becomesignificant; the bias can exceed the standard deviation (Equation (14)) of the

estimate Pj used to select the best version [45]. Therefore, one has to remember that in

evaluation of the performance of the ANN classifier, an independent test sample, never

used before, should be used to obtain an unbiased error rate

5, PEAKING IN THE CLASSIFICATION PERFORMANCE WITH

INCREASE IN DIMENSIONALITY

It is well known that introducing additional features never increases the classification

error of the optimal Bayes classifier However, in a finite training sample case, or when

one uses an inappropriate statistical modelfor the real data, the addition of new features

can actually increase the classification error. The additional discriminatory information

provided by the new featuresis outweighed by the increase in the inaccuracy of parameter

estimates needed in the classification tule. Thus a peaking phenomenonis observed:

addition of new features decreases the classification error at first, then the error levels

off, and begins to increase [1, 8, 9, 19, 22, 24, 29, 37, 40) The peaking phenomenonis

also observed in the design of ANNclassifiers A single linear threshold element trained

by the delta rule in a finite training sample case will have the same behaviour as the

standard linear discriminant function. In the latter case, the optimal numberof features,

dopt, is a function of the asymptotic probability of error Poo, the numberof features d, and

the training sample size N (22). If “best” features (providing the most discriminatory

information) are added first and these best features are significantly better than the worst

ones, then doy: will be small Ifthe discriminatory information provided by the individual

features is approximately equal, or if we include them in the classifier in a random order

then dop: & N —1 [22]
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Whenone uses a piecewise linear classifier with H linear hyperplanes, then the “effec-
tive” number of training samples used to determine the weights of each linear boundary

segment is approximately [23]

N* = N/H, (15)

where Nis the numberof training samples per class. A two-layer neural network classifier

with a hard-limiting activation function gives a piecewise-linear decision boundary. One

can, therefore, expect that when His small, the numberof observations used to adjust the
weights of each hidden layer element will be approximately equal to N* = N/H, where

His the number of neuronsin the hidden layer

In Figure 5 we present several graphs that illustrate peaking phenomena. A two-layer

ANNclassifier with H neurons in the hidden layer was trained by back propagation rule

with a sigmoidal activation function and was used to classify two spherically Gaussian

pattern classes. A set of 1000 independent test samples was used to estimate the error rate

of the ANNclassifier Graphs were obtained by averaging the results of sixty Monte Carlo

trials with different training samplesets of fixed size and different initial weights. Similar

results, which demonstrate the peaking with increase in dimensionality, were obtained by
Kohonen et al [27] Graph B in Figure 5, obtained for a case where the discriminating

power of the features drops very slowly with the increase in the number of features, does

not exhibit the peaking phenomenon
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6. EFFECT OF THE NUMBER OF NEURONSIN THE HIDDEN LAYER

ON THE PERFORMANCE OF ANN CLASSIFIERS

It is obvious that theclassification error of an ideally tr ained neural network classifier

cannot be increased by introducing new hidden layer neural elements. With an increase

in the numberof hiddenlayer elements, the classification error of the ideally trained ANN

classifier, P,., will fall sharply at first, then more slowly, and eventually, the addition of

new elementswill not effect P.. However, for finite number of training samples, numerical

evaluations indicate the existence of the peaking phenomenonas the number of neurons in

the hidden layer increases Several graphs that illustrate the peaking phenomenon while

increasing the number of hidden neurons for two classes of Gaussian data are presented

in Figure 6 Khotanzad and Lu [25] trained a two-layer ANN classifier to recognize the

English alphabet Training data consisted of differently positioned, scaled, and oriented

64 x 64 binary images of each of twenty six English characters, 12 images per character.

The performance of the ANN classifier peaked at approximately 50 neurons (2% error) in

the hidden layer, and with an inctease in H, saturated at an error rate of 5%
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Figuie 6: Expected probability of misclassification £.Py versus the numberof neurons Hin

the hidden layer (T'woclasses of spherically Gaussian populations, N(0,7 4°-?), 1 = 1,2,

numberof features d=8, training sample size N=10,50,100)

7, DISCUSSION

Artificial neural network classifiers can be analyzed as a special class of statistical

pattern recognition algorithms In the case of small number of training samples, several

unexpected and counterintuitive behavior can sometimes be observed in the design of the

ANNclassifiers Someof these are listed below  
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1 Increase in the true (test sample) classification error due to small size of the training
samples;

2. Optimistic bias in the apparent (training sample) error rate;

3. Increase in the number of sweeps required to minimize the true and apparent classi-

fication error rates of the ANN classifier with an increase in the numberof training

samples;

4 An optimistic bias in the e1ror rate of the best version of an ANNclassifier selected

from several competing models based on small number of test samples;

5. A peaking in classification performance with an increase in the number of features

and the number of neurons in hidden layers of the ANN classifier.

In spite of the extensive development of ANN theory and applications, many important

theoretical problems are far from being solved, and very few quantitative results are

available There are several small sample problems which need to be solved:

1 The role of the shape of the nonlinear activation function and the number of units

in the hidden layer on the sensitivity of two-layer ANN classifier to the finiteness of

the training sample.

2. Dependence of the true (test sample) error and the apparent (training sample) error

on the training time (number of sweeps) and the architecture of the ANN in the
finite training sample case.

3 Designing fast training algorithms which minimize the true error instead of mini-

mizing the apparent error.

4 A procedure to determine the optimal number of neurons in the hidden layer, in

accordance with the training sample size and the problem complexity
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Abstract

Classification trees constitute an important and increasingly popular form of
hierarchical classifiers. We first describe and compareclassification trees and feedfor-

ward neural network classifiers. We then focus on the specific problem of obtaining
tight-sized trees, i.e., tees which neither underfit nor overfit the data. A new efficient
iterative method is proposed to grow and prune classification trees. This method
divides the data sample into two subsets and iteratively grows a tree with one subset
and prunes it with the other subset, successively interchanging the roles of the two
subsets. Numerical results on a waveform 1ecognition problem are presented.

1. INTRODUCTION

The goal of this paper is to examine certain problems with some well-known
methods of constructing classification trees, and to suggest some new methods which
overcome these problems. Although the topic under consideration here is really
classification trees, it is useful to compare classification trees and feedforward neural
network classifiers (some work has already been done along these lines; see [1], [15]).

Both of these methodologies are currently being applied to complex pattern recogni-
tion problems and both are active areas of research. A comparison of classification
trees and neural network classifiers suggests how it might be possible to combine the
two methodologies in such a way that they complement each others capabilities. The
classification tree construction methods described in this paper can be applied to the
design ofclassification trees in general, and to the design ofclassification trees which
are used in combination with neural networks in particular. In further work, we
explore the application of these tree construction algorithms to classification trees
which employ neural network feature extraction (see [7]).

This research was partially supported by the Whirlpool Foundation, and by the National
Science Foundation through grant No CDR-8803017 to the Engineering Research Center
for Intelligent Manufacturing Systems
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The pattern recognition problem we consider in this paper is in the statistical
framework, Hence we are given a data set which consists of a random sample of
feature vectors and their corresponding class labels. These features were presumably
identified based on problem-specific knowledge and exploratory data analysis. The
problem is to design a classifier which has appropriate predictive or generalization
capability, i.e, which can accurately classify samples not amongst the training data.
Furthermore, the problem is completely nonparametric as we make no assumptions
concerning the nature of the underlying class distributions,

A typical binary decision tree forclassification is shown in Figure 1. The circular
nodes are binary decision nodes whose two descendents are determined by a threshold
T%} on a specified feature value xy. The square nodes are terminal nodes and are
assigned a class label. Note that the same feature may occur in different parts of the
tree associated with a different threshold. Note also that a feature may be a node-
dependentfunction (linear or nonlinear) ofthe original features; following [4] we refer
to such functions as transgenerated features. When an unlabelled feature vectoris sub-
mitted for classification, the vector is assigned the class label of the terminal nodeit
lands in, Theclassification capability of a tree classifier arises from its ability to parti-
tion the feature space into complex regions by making a sequence of simple decisions
at each ofits nodes.
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classification tree for a 5 dimensional feature space and 3 classes,  
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There have been many approaches to constructing classification trees
2].£31,(4],06],[8],[1 11,[12],[14],[16],[171,18]. Classification trees are usually con-

structed top-down, i.¢., an appropriate feature and threshold are first selected at the

root node, and then the data set is propagated down through the root node and
appropriate features and thresholds are selected at the nodes at the second level of the

tree, and so on. Classification tree construction involves three steps: splitting nodes
(selecting features and thresholds), determining which nodes are terminal nodes, and

assigning Class labels to terminal nodes. Nowit is straightforward to assign class
labels to terminal nodes, andit is generally agreed that fora fixed set of features the
performance of a classification tree does not vary significantly over a wide range of
reasonable splitting criteria (c.f. [2]). Hence there are really two fundamental prob-
lems in classification tree design: extracting good transgenerated features and select-
ing the right-sized tree, With regard to transgenerated features there are certain trade-
offs. An appropriate choice of transgenerated features can lead to simplier trees with
lowererror rates; however, transgenerated features can also lead to large increasesin
the computation required to construct the classification tree, and can reduce or elim-

inate the ability to interpret a split at a node. In previous work, transgenerated features
have typically consisted of linear combinations ofthe original features [2],[4],[16]. It
seems reasonable that under certain conditions transgenerated features which consist

of nonlinear combinations ofthe original features might be appropriate. With regard
to right-sized tree selection, the issue here is that trees that are too large or too small

can overfit or underfit the data, respectively. Early approaches to selecting terminal
nodes were based on stoppingrules, e.g., under specified conditions the recursive par-
titioning is simply halted. The difficulty with such approachesis that partitioning is
halted too soon at certain nodes and too late at others. More recent approaches to
selecting terminal nodes involve growing a large tree with pure terminal nodes (i.e.
terminal nodes which contain data samples from only a single class) and selectively
pruning it upwards [2].

Some advantages ofclassification trees are that they have a form which can be
compactly stored; they efficiently classify new data; and they demonstrate good gen-
eralization capability on a variety of problems. Also, the construction procedure
includes a meansof selecting the right-sized tree to avoid overfitting or underfitting
the data. Some disadvantages of classification trees are that for certain problems the
use of only single or linear combinations of features and a stepwise level-by-level con-
struction methodology can be myopic and lead to large trees and/or poor errorrates.
Also, most approaches to constructing classification trees are nonadaptive, i.e., the
entire data set of feature vectors and their class labels must be available before con-
struction begins (but see [3],[18]). It would be desirable to have a method for updat-

ing trees as new data becomesavailable, possibly in real-time.

In contrast to a binary decision tree, a typical multilayer feedforward neural net-
work is shown in Figure 2. The network consists of interconnected identical simple
plocessing units called neurons (we do not call them nodes here to avoid confusion
with nodes of a tree). An individual neuron sums its weighted inputs and passes the
result through a threshold unit. In a multilayer feedforward network the neurons are
organized into layers with no feedback or lateral connections. Layers of neurons
which are not in the output layer are called hidden layers. The feature values x, are
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the inputs to the network, and the weights and thresholds w; are the parameters which

are adjusted via training. When an unlabelled feature vector is submitted for

classification, the vectoris assigned the class label corresponding to the largest output

value. The classification capability of a feedforward net arises from its ability to

implement complex mappings duetoits multilayer structure and the use of nonlinear

threshold functions(like the sigmodalnonlinearity).

n‘9 = 1(LW,x,- Wo)
u

 

 
 

 

a) anand:
—-l

f(x) = sign(x) oy = 128
1+a%*
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b)

 

Figure 2 (a) A single neuron and some threshold functions; (b) a two-layer feed

forward neural network.

The most popular approach to multilayer feedforward network classifiers is to fix

the size ofthe network (i.e, the numberof hidden layers and the numberof nodes per

layer), and to train the network using the so-called backpropagation algorithm [10],

[13]. Backpropagation is a (stochastic) gradient algorithm which recursively updates

the weights and thresholds so as to minimize the mean square error betweenthe true

and desired network outputs. There are two fundamental problems in the design of

feedforward net classifiers: finding efficient and reliable training algorithms, and

selecting the right-sized net. With regard to training algorithms, iterative algorithms

related to backpropagation have been proposed to reduce the training time at the cost

of increased complexity. There has also been research into noniterative algorithms 
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which transform the network structure and/or the input data. With regard to right-

sized net selection, the issue is that nets that are too large or too small can overfit or

underfit the data, respectively. There has beenalot of research into the capabilities of
feedforward nets as they depend on the networksize, but heuristic approaches are usu-
ally used to select a net for a particular problem [9].

Some advantages of feedforward neural network classifiers are that, like
classification trees, they have small memory requirements; they also efficiently clas-
sify new data and demonstrate good generalization capability. Also, feedforward nets
can be trained by iterative algorithms like backpropagation which are adaptive,i.e.,
each feature vector and class label is successively used to updated weights and thres-

holds in the net. Some disadvantages are the extremely long training times and the

possibility of trapping in local minima. Also, no systematic procedure exists for
selecting the size of the net. Furthermore, these problems become more severe for
large complex problems.

In view of the characteristics of tee and feedforward neural network classifiers as
described above, we suggest that it might be possible to combine the two methodolo-
gies in such a way as to improve the performance obtainable by either alone. Now
from a certain point of view, the advantages and disadvantagesof the tree and feedfor-
ward net classifiers can be associated with either too much structure (in the case ofthe
tree) or too little structure (in the case of the net). Ifthe tree and the net could be com-

bined into a classifier which had some intermediate degree of structure, then perhaps
only the advantagesof the two approaches mightbe retained. One wayto dothis is to
use a classification tree which has a small multilayer perceptron at each node to extract
a nonlinear transgenerated feature. These small feedforward nets would be offixed
size with one hidden layer and a single output (corresponding to only a binary decision
at each node). By using such nets the problemsoftraining time, local minima, and
selecting the size of the net might be controlled. At the same time, the nets can gen-
erate rich nonlinear transgenerated features potentially leading to smaller trees and
better classification performance. Also, it might be possible to develop an adaptive
version ofsuch a classification tree, since some version of the back propagation algo-
rithm could be usedto train the nets at the nodesof the tree.

The rest of this paper develops some new methods for growing and pruning
classification trees. The methods described here are useful regardless of what type of
transgenerated features are used (including nonlinear features generated by feedfor-
ward nets at the nodes ofthe tree). However, here we only considersplits on single
feature coordinates. In [7] we have extended these methods to incorporate transgen-

erated neural network feature extraction, along the lines described above; we remark

that the results in terms of decreased tree size and improvedclassification performance
aie very encouraging.

The starting point for our work are two related methods for growing and pruning
(and also estimating the errorrate) of classification trees from [2]. In the first method
the data set is divided into independenttraining andtest sets, and a large tree with pure
terminal nodes is grown based on the training set. Then a pruned subtree is selected
by minimizing an estimate of the misclassification rate based on the test set over a
parametric family of pruned subtrees. The test set is also used to estimate the
misclassification rate ofthe selected subtree. This method is not desirable for small
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data sets because it only uses part of the data to grow the tree and part of the data to

prune it. In the second methoda large tree with pure terminal nodesis grown based on

the entire data set. Then a pruned subtreeis selected by minimizing a cross validation

estimate of the misclassification rate over a parametric family of pruned subtrees,

These methods are based on an efficient pruning algorithm which generates the

parametric family of pruned subtrees. These methods have been incorporated into a

program known as CART(Classification And Regression Trees) which has achieved

wide-spread popularity.

There are some significant problems with the CART methods of growing and

pruningclassification trees. The most serious problem with the CART methodsis that

a pruned subtree is selected by minimizing over a parametric family of pruned sub-

trees, and this parametric family may not include the optimal (or even a good) pruned

subtree, For reasons which will becomeclear in the sequel, we believe this is likely to

be the case for difficult classification problems which require large trees to approxi-

mate complex decision regions. A further problem with the CARTcross validation

method is that it can be very expensive computationally as it requires the growing and

pruning of auxiliary trees. Based on these problems we propose two new methodsfor

growing and pruning classification trees.

In the first proposed methodthedata setis divided into independent training and

test sets, and a large tree with pure terminal nodes is grown based on the training set.

Then a pruned subtree is selected by minimizing an estimate of the misclassification

rate based on thetest set over all pruned subtrees. Thetest set is also used to estimate

the misclassification rate of the selected subtree. Again, this methodis not desirable

for small data sets becauseit only uses part of the data to grow the tree and part ofthe

data to prune it. In the second proposed method, the first method is iterated, alter-

nately using the test (training) set to grow a tree off of the terminal nodes ofthe previ-

ously selected pruned subtree, and the training (test) set to select a new pruned subtree,

It can be shownthat this iterative method converges. These methods are based on an

efficient pruning algorithm which generates a particular pruned subtree.

Because the proposed methodsselect a pruned subtree by minimizing over all

pruned subtrees, as opposedto the CART methods which select a pruned subtree by

only minimizing over a parametric family of pruned subtrees, we expect them to per-

form better, i.e., have a lower misclassification tate. In addition, examination of the

various methodssuggests that the proposed methods should require much less compu-

tation than the CART methods. Wetry the various methods on a waveform recogni-

tion problem from [2], whichis a difficult problem for classification trees. The results

show that for this problem the proposed methodsdoinfact perform better and require

less computation than CART.

The paperis organized as follows. In Section 2 we develop notation for decision

rules and classification trees. In Section 3 we review the CART methodologies for

growing and pruning classification trees, propose new methodologies for growing and

pruningclassification trees, and compare them. In Section 4 we examine and compare

the optimal pruning algorithms which are used in CART and our proposed methods.

In Section 5 we give numerical results for the various methods on a waveform recog:

nition problem.  
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9, DECISION RULES AND CLASSIFICATION TREES

Let (X,Y) be jointly distributed random variables with X taking values in IR4 and
Y taking values in the integers (1,...,J}. X is a pattern orfeature vector and the com-

ponents of X are features, and Y is the associated class label. The problem is to esti-

mate Y based on observing X. In orderto do this we shall assume that a random sam-
ple LOs (Xx,Yn), n=1,... ,N} of feature vectors and their associated class

labels are available. Here the (Xx, »Yn)’s are independent identically distributed ran-

dom variables, independentof and distributed like (X,Y). L© will be called the data
set. Hence the problem is to estimate Y based on observing X, given knowledge of
L©

A decision rule is a function d(*) which maps IR¢ into {1,...,J}. When the
feature vector X is observed the estimated class is d(X). Suppose a decision rule is

to be constructed based on LYcL ©). and to be evaluated based on L™cL©, In this

case L® and L®will be called the training and test sets, respectively. The true

misclassification rate ofdis -

R’(d) = P(d(X) # Y)

LetLCL, The estimated misclassification rate of d based on L is

RW) =s5,

where M is the number of samples in L such that d(x) #Y,, and N is the total

number of samples in L. When L = L®, R(d)is a training sample estimate of R” (d),
and when L =L®), R(d) is a test sample estimate of R (d). Let Rg denote the
(minimum) Bayes misclassification rate.

Webriefly describe some necessary terminology for discussing trees (see [2] for
more detail), A tree is a finite nonempty set T of positive integers and two functions
left (°) and right (*) from T to TU {0} such that

(i) For each teT either left (t)=0 and right (t)=0, or left (t) > t and right (t) >t

(ii) For each teT, other than the smallest integer in T, there is a unique seT such that
eithert=left (s) or t=right (s)

T will itself be called a tree, and each element of T is a node. Figure 3 shows a tree

and the corresponding values of 9(t)=left (t) and 1(t)=right(1),

Let T; be a non empty subset of T and let left, (+) and right, (*) be the restriction
ofleft(*) and right(*) to T,, respectively. T, is a subtree of T ifthe triple T, left;(),
tight;(*), forms a tree. T, is a pruned subtree of T if T, is a subtree of T with the
same root nodeas T;this is denoted by T, < T or T2 Tj.

_. We now show howtoassociate a decision rule with a tree. Let T be a tree, and
Suppose that U(t)CIR? and j(t)e{1,...,J} for teT. Furthermore suppose that

{U(, teT} is a partition of IR‘. A classification tree consists of the tree T together
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Figure3A tree and the corresponding values of £(t) = left(t) and 1(t) = right(t)

with the partition {U(t):teT} and class labels {j(t):teT}. T will itself be called a
classification tree, The decision rule d corresponding to the classification tree T is

given by

d(x)=j(@) if xeU(t).

Motegenerally, we can associate a collection of decision rules with the pruned sub-

trees of a tree. Let T be a tree and suppose that U(t)CIR® and j(t)< {1,...,J} for teT.

Furthermore suppose that for every pruned subtree T; <T, {U(t), teT,} is a partition

of IR4, Then the decision rule d, corresponding to the classification tree T) is given

by

di(x)=j(t) if xeU(t), teT).

Wedenote the true misclassification rate ofa classification tee T by R* (T), and

the estimated misclassification rate based onL by R(T). An important fact is that R(T)

can be expressedas an additive function onT,ie.,  
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RD= ERO, RO=AW, Q.1)
tT

where M(t) is the numberof samples in L such that x,€U(t) and Y, #j(0), and N is

the total number of samples in L. Wewill also consider a risk function which penal-

izes the complexity of the classification tree as well as its misclassification rate. The

estimated complexity-misclassification rate of a classification tree T based on L is

defined as

R(T) = R(T) +aT .

Here @ is a constant which weights the number of terminal nodes in T, which is a
measure of the complexity of T. Note that R(T) can also be expressed as an additive

function on T,i.e.,

Ro(T) = YF Ral), RaQ =RO +O. (2.2)
teT

°

Let T and its pruned subtrees be classification trees as described above. Consider
the problem of minimizing the estimated misclassification rate, or more generally the
estimated complexity-misclassification rate, based on L, overthe pruned subtrees of T,
i.e. finding a T; = such that

Ro(T1) = min Ro(T)
TsT

Since the pruned subtrees of T are a finite set, the minimum exists but may not be
unique. Call any such minimizing T; an optimally pruned subtree of T with respect to
Ro. In [2, p. 285] it is shown that there exists an optimally pruned subtree T, < T such
that T, <T for any other optimally pruned subtree T <T. Call this T, the (unique)
smallest optimally pruned subtree of T with respect to Rg, and denote it by Tia). We
remark that T(a) will exist for any treeT and any cost function Rg(T) which can be

expressed as an additive function on T as in (2.2); there is nothing special about
classification trees and misclassification rates in this regard.

3. CLASSIFICATION TREE CONSTRUCTION AND ERROR RATE ESTIMA-
TION

The basic idea behind most algorithms for generating classification trees is to
recursively partition the feature space in such a way as to recursively generate thetree.
Ift is a nonterminal node,let t_, ta be its immediate descendents, At each nontermi-
nal node t the region U(t)cIR® is split into two regions U(tz,) and U(tg) which
correspond to the nodes ty and tp, respectively. Splitting continues in this way until
Some stopping criterion is met and the node becomesa terminal node. At each termi-
nal node t a class label j(t) is assigned. This procedure yields classification tree as
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defined in Section 2, In fact, if all nodes (terminal and nonterminal alike) are assigned

a class label then the procedure yields a tree such that every pruned subtree is a

classification tree, again as defined in Section 2.

The construction of a classification tree requires three steps:

1. The selection ofsplits (features and thresholds).

2. The decision as to which nodesare terminalnodes.

3. The assignmentofclass labels.

Weassignclass labels andselect splits as described in [2]. Briefly, we assign a class

label j(t) to each node t € T by minimizing the estimated misclassification rate at node

t. Weselecta split s(t) at each nonterminal node te T—T by minimizing the resulting

change in node impurity at nodest, and tr relative to node t; we use the Gini criterion

as our node impurity measure. Oursplits consist of thresholds on the individual

features s = {x: x, St} where t ranges over the real numbers and k=1,...,q. The

effect of using such splits is to partition the feature space with hyperplanes orthogonal

to the component axes. In other words, we do not consider transgenerated features

here. See [2] fora detailed discussion of the Gini and other impurity functions, Also,

see [4],[8],[12],[14] for other approaches to splitting.

Wenow consider the problem ofdeciding whether a node should be terminal or

nonterminal node, and how to estimate the misclassification tate. Suppose we con-

struct the classification tree T based on a data subset L cL©) using the splitting and

labelling methods described above, and we continue the splitting until every node has

pure class membership (assume this can be done for the moment). Then T correctly

classifies every sample in L and R(T)=0. Butif class distributions overlap T should

not correctly classify every sample in L and R*(T) 2 Rg > 0. It is seen that relatively

pure terminal nodes will lead to large trees which overfit the data, while relatively

impure terminal nodeswill lead to small trees which underfit the data; the problem is

to select a right-sized tree and to obtain honest estimates of its misclassification rate.

Early approaches to selecting terminal nodes were based on stoppingrules, In [2] it is

suggested that instead of using stoppingrules,it is better to grow a large tree withter-

minal nodes which havepure (or nearly pure) class membership, and selectively prune

it upwards.

Next, we describe four methods for growing, pruning and estimating the errorrate

of classification trees. These descriptions formalize the discussion in the Introduction

(Section 1) We first review the two CART methods from [2]. Based on certain prob-

lems with these methods, we propose two new methods. Let L be a subsetof the data

set L©. Let N(t) be the numberof samples in L which land in nodet, and let Nj(t) be

the number of samples in L which land in node t and belongto class j (also recall the

definitions of R(t) and R(T) fromSection 2), In the sequel, superscripts on quantities

like ni (0, N®(t), R(t), and R(T) meanthat the quantities are based on some data

subset L@cL©instead of LcL©., Such notation is necessary when we discuss algo-

rithms which operate on multiple data subsets L®cL©, e.g., when L®is a training

set and L™is a test set, or when LO, va L™) are subsets of L©which are used in a

V-fold cross validation procedure.
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Method I: CART Independent Training and Test Set Method [2]

1)

2)

3)

4)

5)

Divide L©into L®and L®such that L® and L®have approximately equal
numbers of samples in each ofthe classes.

Use L® to generate a tree T b splitting until all terminal nodes teT have
NOt) =NOM)for some j, or NOG) Nmin, or min(NO(t,), NO(tg)] =0 for
all possible splits oft, and assign class labels to all nodes.
Let T(c) be the smallest optimally pruned subtree of T with respectto RW,

Generate a nested sequence of pruned subtrees T= Tp 2T, 2... 2Tx =root(T) of
T such that T(a)=Tp=T for a<oy, Tia)=Ty for Oo <a<O,) and

k=1,...,K-1, and T(a)=Tx=root(T) for a@2ax, for some numbers

—oo < Oy <Q) <... < OK <oo (CARTcontains a pruning algorithm for comput-
ing the o4%’s and the T;,’s; see Section 4.)

Select the smallest T* < {Tp,...,Tx } such that

RO(T*) = min R@(T,)
k

Estimate the misclassification rate of T* by

R(T*) = RO(T+)

O

Method I only uses part of the data to grow the large tree T and partof the data to
pruneit. It is desirable, especially for small data sets, to use all of the data to grow the
large tree T andall of the data to prune it. The following cross validation method pro-
vides an alternative.

Method II: CART Cross Validation Method [2]

1)

2)

3)

4)

Divide L© into Ly,...,Ly such that £y,...,Ly have approximately equal
numbers of samples in each ofthe classes. Let L™) = L-L, for v=1,...,V (typi-
cally V = 10).

Use L© to generate a tree T by splitting until all terminal nodes teT have
NO(t) =NO(t) for some j, or NO(1) < Nmmin, or min[N(t,), N(ta)] =0 for
all possible splits oft, and assign class labels to all nodes.

Let T(a) be the smallest optimally pruned subtree of T with respect to R®,

Generate a nested sequence of pruned subtrees T= Tg 2T, 2... 2Tx =root(T) of
T such that T(a) = Tp for a< a1, Tia) = Ty for oO, SO < O4, and k=1,...K—1,
and T(Q) = Tx =root(T) for 2 ak, for some numbers
20 < Gy < Gy <...< OK < oo (Use CARTpruning algorithm; see Section 4)

Use L™to generate a tree T™b splitting until all terminal nodes te© have
NM(t) =N@(t) for some j, or NC (t) S Ninny OF min{[N(t,), N(tg)] =0 for
all possible splits of t, and assign class labels to all nodes, for v = 1,.,..,V.

Let T(q) be the smallest optimally pruned subtree of T™with respect to RY).
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5) Generate the parametric family of pruned subtrees T™ (a), 00 < A< 0, of TT),

for v=1,...,V (Use CARTpruningalgorithm,see Section 4)

Let

1 ¥V

RVMW= > D R(T(aoe )), K=1,....K-1
v=1

(Ry is the estimate of the misclassification rate based on L,, and R® is a cross

validation estimate of the misclassification rate)

6) Select the smallest T* < {To,... ,Tx } such that

R°v(T*) = min R°"(T,)

7) Estimate the misclassification rate of T* by

R(T*) = R°V(T*) oO

As pointed out in the Introduction there are some significant problems with the

CART methods. First, from our point of view there is no real justification that the

parametric family of pruned subtrees {T(a) : co < @ <o0} is the right set of pruned

subtrees to select the final tree T from. This problem affects both CART methods.

Second, although it is preferable to use MethodII over MethodI since it uses all the

data to grow the large tree T andall the data to select the final tree T”, Method II can

be very expensive computationally asit requires growing the large auxiliary trees Tt)

and generating a parametric family of pruned subtrees (T’ (a) : —°¢ <a <0} for each

one. Based on these problems with the CART methods, we now propose two new

methods for growing, pruning, and estimating the misclassification rate of

classification trees.

Method III: Proposed Independent Training and Test Set Method

1) Divide L©into L® and L® such that L®and L®have approximately equal

numbers of samples in eachclass.

2) Use L®to generate a tree T by splitting until all terminal nodes teT have

N{D(t) =NOfor some j, or N Dt) < Nin oF min[NO(t,), N@(ta)] = 0 for

all possible splits of t, and assign class labels to all nodes

3) Select the smallest pruned subtree T’ of T such that

R@(T*) = min ROT)
st

(Weshall give an efficient pruning algorithm for computing T’; see Section 4)

4) Estimate the misclassification rate of T by

R(T") = R(T")  
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Oo

Method IV: Proposed Iterative Method

1) Divide L©into L©and L® such that L® and L@) have approximately equal
numbers of samples in eachclass.

2) Nib L® too,generate a tree Ty by splitting until all terminal nodes teT have
(t) =N(t) for some j, or NM (t)S Nmin, or min[NO(t,), ND (te)] =0 for

all possible splits of t, and assign class labels to all nodes

3) Select the smallest pruned subtree To of Tg such that

RO(To) = min R(T)
TsT

(Use proposed pruning algorithm in Section 4)
Setk=1

4) Seti=1,j=2ifk is even, andi=2, j=1 if k is odd.

5) Use L®to generate a tree Tyby splitting the terminal nodes Ty until all termi-

nal nodes teT, have Ni\()=NW for some j, or N®(t)<SNmin, OF
min{N(t,), NO(tg)] = 0 for all possible splits of t, and assign class labels to
nodes in T, —Tx_1 (numbers, splits, and class labels of nodes in Th are
unchanged).

6) Select the smallest pruned subtree Ty of Ty such that

RO(TE) = min ROT)

Ty

(Use proposed pruning algorithm in Section 4)

7) Ie IT; = [Tha | then set T™ =Ty; else setk =k-+ 1 and go to 4)

8) Estimate the misclassification rate of T” by

RT)= y ROH)+ y ROW
teS@ teS@

where

s® = {te T*: t was assigned a class label based on LO} Oo

There is a modification of Step c) in Method IV which can significantly reduce
the amount of computation. Specifically, it can be shown that if a node is a terminal
node in any two consecutive optimally pruned subtrees, then it is a terminal nodein all
subsequent optimally pruned subtrees andnever has to be split. It can also be thrown
that the sequence of pruned subtrees {Ty} generated by Method I'V is nested (i.e.
Ty S$ Tht for all k) and converges(i.e. there exists integer K such that Ty == Tk for all
k2K). Proofs of those assertions and additional details on the implementation and
properties of Method IV can be foundin [5].

We now makeseveral remarks about how we perceive Methods III and IV might
overcome the problems with Methods I and II discussed above. First, note that in
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Method II the pruned subtree T’of T is selected by minimizing an unbiased indepen.
dent test set estimate of the misclassification rate over all pruned subtrees, whereas jn -
Method I the pruned subtree T of T only minimizes this estimate over a parametric
family of pruned subtrees, and this parametric family is selected using a biased resuh.
stitution estimate of the misclassification rate. Hence Method IH eliminates the prob.
lem encountered with Method I as to whether the parametric family of pruned subtrees
contains an optimal (or even good) subtree which can be selected. We believe Method
IV is superior to Method II by similar reasoning. Second, we believe that Method [y
will be much less computationally expensive than MethodII in general. By far, the
most computationally intensive part of tree construction is the selection ofthe splits at
the nodes of the trees. Furthermore, the amount of computation in selecting a split at a
node growsrapidly with the size of the data subset at the node(see [2, pp. 163-167]),
The iterative procedure of Method IV generates a nested sequence of optimally pruned
subtrees which, as described above, has the property that if a node is terminal node in
two consecutive pruned subtrees then it is a terminal node in all subsequent pruned
subtrees and never has to be split. Consequently the bulk of the tree is constructed
after a few iterations and thereafter relatively few nodes need to be split and these
nodes contain relatively few samples. The cross validation procedure of Method II,
however, must grow and prune auxiliary large trees from scratch. In Section 5 we
compare the various methods on a waveform recognition problem from [2].

4, TREE PRUNING ALGORITHMS

In this section we consider tee pruning algorithms which are needed to imple-
ment the methods described in Section 3. Wefirst review an algorithm developed in
[2] for generating a parametric family ofoptimally pruned subtrees. This algorithm is
part of the CART methods. We then propose a simple algorithm for generating a par
ticular optimally pruned subtree. This algorithm is used in the proposed methods.

The results in this section actually concern pruning trees which are not neces-
sarily classification trees. Of course, they apply to classification trees as a special
case. Let To be fixed tree. Let R(t), te Tg, be real numbers, and for each real number
a, let Ry (t) = R(t) + @ for teTg. Given a subtree T of Tg set

R(T) = ¥ Rit)
tT

and

Ro(T) = ¥ Ro(t)=R(T) + aT.
teT

Let To(@) be the smallest optimally pruned subtree of Tg with respect to Rg (see Sec-
tion 2). Of course, Tg(0) is the smallest optimally pruned subtree of Tg with respect to
R. Note that To(a), -e° <a <e, is required for the CART methods (for appropriate
choice of Tg and Ry), while To(0) is required for the proposed methods (for
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appropriate choice of To and R).

We now give the CARTpruning algorithm for generating the family of To(c), for
ao<<, and propose a pruning algorithm for generating a particular To(a). Let
T= (ty. tL} with t) <-*<t_. Let «© =left(t), r(t) =right(t), p(t) = parent(t) for
te To. The CART algorithm works with a six-tuple (9(1),1(0),p(),R@, S(),.NW)

while the proposed algorithm works with a four-tuple (9(t), r(t), Rg(t), Sa (t)). Forthe
CARTalgorithm S(t)=R(T,) and N(t)=[T,[, while for the proposed algorithm

Sq(t) = Ro (T;,), where T is the currently considered subtree ofTg at a particular point

in the algorithm.

CARTPruning Algorithm [2]:

For t=tz,--94
{If t¢ To then

{S@ =R@, N() = 1}
Ift € To—To then

{S(t) = S(@()) + S@(O), N(t) = N(9@)) + N@)}}
R(ty) — S(t) THT
— 0B = ho

N(t}) — 1

k=1 .

Repeatuntil |T| =1

{For t=t,...t .

{Ift¢ T-T then

o=

_. RO-SO
{a= min[q, Noli2}

For t=ty,...,tp

(ifte T-Pand SOSSY. = or then

{T=T- (Tig UTy), 8) = 0, 1(t) =0
S() = RO), N() = 1}

Ss = p(t)
Repeat until s = ty

{S(s) = S(9(s)) + S(z(s)), N(s) = N(@(s)) + N@(s))
s=p(s)}}

Qh =a, Ty =T

k=k+1}
K=k-1

To Q<Qy

To=Th & Sa<O,,,, k=1,...,.K—-1

Tk 20K
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Proposed Pruning Algorithm:

T=To
For t=ty,...st

{If t¢ T then
{Sq(t) =Ro(t)}

Ifte T—T then

{Sq(t) = Sa(4(t)) + SaG(Q)
If Ry(t) Sot) then

{(T=T-(TapVTr), §@ =9, 1= 0

So(t) =Reld}))
   

  

 

  
    

   

To(a) =T
0

The CARTalgorithm is essentially a top-down algorithm, in that it starts from the

root node and proceeds down thetree, pruning away branches. Each time it prunes

away a branch to obtain a terminal node t it suitably modifies the six-tuples

(9(s),x(s)p(s), R(s), 5(s), N(s)) correspondingto the ascendents s of t and also t itself. K

passes through the tree are required to generate the nested subtrees Tp 2 Ty 22Tk

and hence the family To(a) for -° < @<ee. In contrast to the CART algorithm, the

proposed algorithm is essentially a bottom-up algorithm,in that it starts from theter

minal nodes and proceeds up the tree, pruning away branches, Each time it prunes

away a branch to obtain a terminal node t it suitably modifies the four-tuple

(9(t),1(t), Ra(t), So(t)). Only one pass through the tree is required to generate To(a).

We remark that the CART algorithm can, ofcourse, be used to generate a particular

To(a) by generating T),...,T, such that 0 SO < 0441. This procedure is, however,

very inefficient comparedto the proposed algorithm.

5. EXPERIMENTAL RESULTS

To illustrate various parts of the methodologyin tree structured classification, the

waveform recognition problem [2, p. 49] was chosen. It is a three-class problem based

on the waveformsh,(t), h(t) and h3(t) shown in Figure 4,

Eachclass consists of a random convex combination oftwo ofthese waveforms

sampled at 21 points with noise added to them. Thus the feature vector is 21 dimen-

sional, X = (X1,...,%21). A class was randomly selected with all classes having equal

probability. A feature vector for the selected class was then generated by indepen:

dently generating a uniformly distributed random variable u on the interval [0,1], and

21 normally distributed random variables€1,...,€21 with zero mean and unit variance,

and combining the waveformsas follows.
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Figure 4 Three waveforms

For class 1,

Xm =uhy(m) + (l-w)ho(m) +em ; m=1,2,...,21

For class 2,

Xm =uhy(m)+ (-wh3(m)+emn 3 m=1,2,...,21

Forclass 3,

Xin = uhp(m) + (1-u)h3(m)+em ; m=1,2,...,21
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According to [2], the Bayes misclassification rate for this waveform recognition prob-

lem is Rp~.14,

The data setLconsisted of 300 feature vectors and class labels with approxi-
mately 100 samples from each class. Trees were grown using splits of the form
S={X:X, <T} for t ranging over all real numbers and m=1,...,21, and the Gini

splitting criterion (see Section 3). Splitting was terminated as soon as a node had pure
class membership. Pruning and error rate estimation were performed based on each of

- the four methods described in Section 3. In Method I (CART Independent Training
and Test Set Method), Method III (Proposed Independent Training and Test Set
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Method), and Method IV (Proposed Iterative Method), the data set L©was divided

into the two setsLandLeach consisting of 150 total samples with approximately ©
50 samples from each class. In Method II (CART Cross Validation Method) a 10-fold

cross validation was performed where the data set L©was divided into 10 sets

Ly,...,L19 each consisting of 30 total samples with approximately 10 samples from
each class. Two independent data sets (each with 300 total samples and approximately
100 samples per class) were generated with different seed values and the results dis-
cussed below were obtained by averaging. Method IV required K =4 growing and
pruning iterations to converge on both of the data sets. An additional set of 5000
independent samples was used to obtain highly accurate estimates of the true
misclassification rates. The algorithms were run on a dual processor VAX 11/780 run-
ning UNIX 4.3 BSD.

In Table 1 we show results for each of the four methods. In each case we show

the numberof terminal nodes |T*]|, the estimated misclassification rate R(T*), the
true misclassification rate R*(T*) (based on 5000 independent samples), and the
required computer time measured in CPU seconds. The results for the CART Methods
I and II ate consistent with results obtained in [2]. The results show that our proposed

Methods III and IV perform better and require less computation than the CART
Methods I and I, at least on the waveform recognition problem. It is particularly
interesting that the proposed Method III which uses independenttraining andtest sets
performsbetter than the CART Method II which uses cross validation, while requiring
only a fraction of the computing time. It seems that selecting the right-sized tree is
indeed a critical issue for the waveform recognition problem. We attribute this
behaviorto the fact that the waveform recognition problem is a difficult problem for
tree classifiers which try to approximate the decision regions with hyperplanes orthog-
onal to the coordinate axes [2].

Table 1

Averaged Results for Waveform Recognition Problem.

Method |T*] R(T*) R*(T*) CPU SECONDS
 

 

I 17 30 31 90

i 23 .29 29 700

il 20 27 27 70

IV 26 26 26 150        
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6. CONCLUSION

Wefirst described and compared classification trees and feedforward neural net-
work classifiers. Wefurther suggested that it might be possible to combine the metho-

dologies in a useful way; in particular we suggested the idea of using small feedfor-
ward nets at the nodes of a classification tree to extract transgenerated features. This

jdea is developed in [7]. We then focused onthecritical issue ofobtaining right-sized
trees, i.e., trees which neither underfit nor overfit the data, This is an important prob-

lem for the design ofclassification trees in general (whether they use transgenerated
features or not). Instead of using stopping rules we followed the philosophy intro-
duced in [2] of growing a large tree with pure (or nearly pure) terminal nodes and
selectively pruning it back. New efficient methods were proposed to grow and prune
classification trees. The first method divides the data set into two independentsubsets,
and uses the first subset to grow a large tree and the second subset to select a pruned
subtree which minimizes an estimate of the misclassification rate overall possible

pruned subtrees. The second method continues this procedure by using the second
subset to grow a large tree off of the terminal nodes of the previously selected pruned
subtree and the first subset to select a new pruned subtree which minimizes an estimate

of the misclassification rate over all possible subtrees, and then iterates this procedure

by successively interchangingtheroles ofthe two subsets. The convergence and other
properties ofthe iterative method have been established. Numerical results were given
which show that our methods perform better and require less computation than the
widely used CART program on a waveform recognition problem.
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Abstract
Decision tree classifiers represent a popular classification methodology that has been

successfully used in many pattern recognition tasks. Noting manysimilarities betweenthe tree
classifiers and the multilayer perceptron classifiers, an artificial neural network based
implementation of decision tree classifiers to enhance their performance is described here
Several issues related to decision tree classifiers are discussed andit is shown how these can be
dealt with following the proposed implementation.

1. INTRODUCTION

Decision tree based classification is a widely used nonparametric method for complex
pattern recognition tasks involving several pattern classes and a large numberof features. A
decision tree classifierutilizes a series of simple decision functions, usually binary in nature, to
determine the identity of an unknown pattern. The evaluation of these decision functionsis
planned in such a way that the outcome ofsuccessive decision functions reduces uncertainty
about the unknownpattern, Each decision function uses only a subset of features, usually a
single feature, as its argument This coupled with the fact that patterns from different classes
are identified using different subsets of the decision functions make decision tree based
classification computationally very attractive. In some sense then, the decisiontree classifier
represents an "optimal" way ofperforming classification by matching the feature subsets with
the pattern class subsets at each step of decision making.

A decision tree inducesa hierarchical partitioning overthe decision space. Starting with the
decision function at the root node, successive internal nodes in a decision tree partition their
associated decision region into two half spaces with the node decision function defining the
dividing boundary. The final decision boundary due to the induced hierarchical pattitioning
can be very complex depending upon the nature of node decision functions and thetree size.
The most common choice for the node decision functions is a threshold comparison on a
componentof the feature vector which results in a feature space partitioning by hyperplanes
parallel or orthogonalto the coordinates axesofthe feature space

An important characteristic of the decision tree induced partitioning is that it is
autonomously configurable from collection of labeled pattern vectors for a given classification
task independently of any a priori information about the functional form ofthe distribution of
pattern vectors in the decision space The procedures to self-configure the hierarchical
partitioning of the feature space are generally referred as automatic tree design proceduresin
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the pattern recognition literature where such tree building procedures have been the focusof

research for several years. These procedures are also well-known in the machine learning

literature where the data-driven construction of decision trees is synonymous with the

acquisition of structured knowledge in the form of concepts and the expert system rules ‘The

successive versions ofthe TDIDT (Top DownInduction ofDecision Trees) family of learning

systems represent a major machine learning approachto the decision tree constr uction [31]

Although decision trees are intuitively appealing and have been successfully used in many

applications, there are several problems that can hamper their use and performance in many

instances These problems relate to issues such as the process of tree design itself,

consequences of hard decision making, missing feature values, and the simultaneous use ofall

the training vectors While many of these issues have been addressed in the past by several

researchers within the framework ofstatistical pattern recognition and machinelearning, it

appears that the performance of decision tree classifiers can be enhanced by exploiting some of

the keys features of multilayer perceptron (MLP) networks which are similar to decision tree

classifiers in certain respects [39,40]. For example, both types of classifiers do not impose any

restriction on the distribution of input observations and are capable ofproducingarbitrarily

complex decision boundariesthat can be learned from

a

set oftraining vectors The aim of the

present chapter is to show the presence of a link between the tree classifiers and multilayer

perceptron (MLP) networks and demonstrate how such a link can be beneficial in enhancing

the performance ofdecision tree classifiers in many ways by implementing them in the form of

a three-layer trainable neuralstructure.

The organization of the chapteris as follows. Section 2 provides an overview of the past

research related to decision tree performance issues. After providing a briefintroductionto the

multilayer perceptron networksin Section 3, a relationship betweenthetree classifiers and the

MLP networksis given in Section 4 which leadsto decision tree implementationin the form of

a three-layer neural network, Section 5 discusses the training and advantages of such an

implementation. Results from some experiments are presented in Section 6 to demonstrate the

performance enhancement dueto the neural network implementation Finally, a summary of the

chapter is given in Section 7.

2. DECISION TREE CLASSIFIER ISSUES

There are some excellent sources on decision tree classifiers {6,10,23] which should be

consulted for more detailed discussions into the various aspects ofthe decision tree design

and performance In this section, only a brief overview is given.

2.1 Classifier Tree Design
Several automatic tree generation algorithmsexist in the pattern recognition literature

where the problem of tree design has been treated in two distinct ways In one approach,the

tree design processis broken into two stages. The first stage yields a set ofprototypes for each

pattern class. These prototypes are obtained from the training set using procedures similar to

clustering, Next, these prototypes are viewedas entries in a decision table which is converted

into a decision tree using somecriterion for optimality Examples of this type of tree design

approachescan be found in [1,17,19,30,36]. The problem offinding prototypes from binary

or discrete-valued patterns is considered in [37,41]. The othertree design approach is more

universal and can be considered as a generalization of the decision table conversion approach

with all the training examples formingentries ofthe decision table. Since eachtraining pattern

is individually used to construct the tree, this approach allows decision boundaries of any

arbitrary shape. Examples of the direct top-downtree design approaches can be found in

[15,26,33,38,43,45] While some ofthese tree generation algorithms can handle only two 
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classes at a time, there are several that are suitable for multifeature, multiclass pattern
recognition problems.

The foremost requirementin a top-down tree design procedure is an evaluation criterion to
determine the goodnessof a particularpartitioning of the training vectors. One popular
approach forselecting successive subgroupingsof the training vectors is based on defining a
oodness measure ofpartitioning in terms of mutual information [15,22,38,43,45}. Consider

a two-class problem with only one feature x. Let x = ¢ define the partitioning of the
one-dimensional feature space. If we view the feature x taking on valuesgreater or less than
threshold f as two outcomes x7 and x2 of an event X , then the amount ofaverage mutual

information obtained about the pattern classes from the observation of eventX can be written
as

2 2

W(CX) => Yre,x) log, { p(c,/ x) | Pc) ] (1)
i=] j=l

where C represents the set ofpattern classes and the p(. )'s are the various probabilities.
Clearly, for better recognition, the choice of the threshold ¢ should be such that we get as much
information as possible from the event X. This means that the value which maximizes (1)
should be selected overall possible values of ¢. Average mutual information thus provides a
basis for measuring the goodnessofa partitioning.

Another popular criterion forpartitioning is the Gini index of diversity used in the CART
(Classification and Regression Trees) procedure [5]. In this criterion, the impurity of a set of
observationsat a partitioning stage s is defined as

Ks) = Yvec, / s)p(c; 1s) (2)
i¢j

where p(cj; / 8) denotes the conditional probability. Data are further split by selecting a

partitioning that yields greatest reduction in the average data impurity. The advantage ofthis
criterion is its simpler arithmetic. The other examplesof the partitioning evaluation criterion
include the use of Kolmogorov-Smirnov distance between estimated cumulative distributions
[33] and the permutationstatistics [26].

Although for a given collection of training vectors a tree can be grownto yield 100%
classification rate on the training vectors, doing so is generally equivalentto "noisefitting”.
Thus knowing when to stop splitting is very important in a top-down recursive tree design
method In the simplest case, the numberoftraining vectorsleft for furthersplit can be used as
a measure for termination, Another possibility is to test the statistical significance ofthe
reduction in uncertainty due to a partitioning. In some cases, the classification error
performance,estimated either empirically ortheoretically, is used to terminate the tree growing
process. For example, the AMIG (Average Mutual Information Gain) algorithm [38] uses the
following inequality [11] that determines the lowerlimit on the average mutual information,
I(C,T), to be provided by thetree forthe specified error performance Pe

H(C,T) 2H(C) - H(Pe) - Pe logz(m-1) (3)

where H(C) and H(P), respectively, represent the pattern class and the error entropy and m
indicates the numberofpattern classes. Recently, Goodman and Smyth [15] have derived
several fundamental bounds for mutual information-based recursive tree design procedures and.
Suggested a new stoppingcriterion whichis claimed to be more robustin the presence of noise

Instead ofusing a stoppingcriterion to terminate the recursive partitioning, CART uses a
Pruning approach In this approach, the recursive partitioning continuestill the tree becomes
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very large This tree is then selectively pruned upwardsto find a best subtree having the lowest

error estimate. Trees obtained using pruning are typically less biased towards the design

samples butthis property is achieved at higher computational expense. Recently, Gelfand and

Delp [13] have developedan efficient pruning procedure wherethe training set is divided into

two subsetsto iteratively grow and prunethetree.In eachiteration, the roles ofthe two subsets

are reversed. Theirresults indicate that the iterative tree growing and pruning requires less

computation compared to the CARTprocedure.
Once a nodeis designated as a terminal node due to the stopping criterion, a decision rule

is set up for that node to assign classification labels to unknown vectors for the future use of

the tree as a classifier. The usual practice is to mark a terminal node with

a

class labelthatis in

majority overits corresponding training vectors Given a partitioning measure, a stopping

criterion and a method to set up a decision rule at each terminal node, the problem of tree

design then essentially reduces to a search problem for finding the best decision function at

eachstep ofthe tree development.It is a commonpractice to simplify the search by enforcing a

binary decision based on a single feature at each of the nonterminal nodes. The AMIG

algorithm is one such exampleof the recursive tree design procedure that seeks to maximize

the amount of mutual information gain at every stage of tree development by essentially

employing a brute force search technique to determine the best feature for that stage along with

its best threshold value. Since the orientation of dividing hyperplanesis restricted, ie only one

feature is used at any internal node, the search space for maximizing the average mutual

information gain is small. The search is made efficient by ordering the labeled patterns along

different feature axes to obtain a small set of possible candidate locations along each axis.

In addition to easing computational burden, another advantage ofusing a single variable

decision function at every nonterminal node is that the resulting trees have better

interpretability. However, the trees obtained using univariate partitioning are generally larger

and occasionally yield poorresults, especially in cases where the tree classification is

attempted with raw measurements without extracting features Although linear discriminant

analysis offers a solution to the problem ofrecursive partitioning using a linear combinationof

several variables [12], its application in the past has been limited due to the fact that as the

partitioning proceeds, the partitioned training vectorsstart residing in the subspacesgivingrise

to almost singular covariance matrices Recently, a modified version of linear discriminant

analysis incorporating severalstatistical techniques including the analysis ofvariance and the

principle componentanalysis has been suggested by Loh and Vanichsetakul [28] to generate

multivariate partitionings, However, the advantages of using multifeature splits are

questionable in nonparametric situations. Brieman and Friedman [6] point out that "in most

applications where recursive partitioning has higher accuracy than traditional methods, that

advantage is achieved through univariate rather than linear combination splitting " In fact,

according to Briemanetal. [5], obtaining a tree of propersize is much more crucial to its

performancethan the choiceofthe partitioning measure used to develop it.

2.2 Missing Features
In manyapplications such as medical diagnosis, one or several components ofa pattern

vectorare often found missing. In such cases, classification using decision trees can not be

ordinarily done because a missing feature may be involvedin

a

test at an internal node. One

solution to this problem, suggested by Bratko and Kononenko [4], is to follow all the decision

tree branches from an internal node requiring the missing feature value. Each branchis

assigned a probability value which approximates the chance of having taken that branchif the

value for the missing feature was known. These probabilities values are compiled at the tree

design time and are taken into accountat terminal nodes to determinethe correct identity ofthe

pattern with missing features. However,the classification performance using this strategy for

handling missing information does not appear to be any better than some even simpler

schemes suchasfilling in the missing value with the most common or median value.  
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CART employsa better strategy for dealing with missing feature values. Each internal
node is assigned twotests: a primary test and a surrogate test. The primarytest is the one that is

normally used The feature variable for the primary test andits threshold value are determined
by the usual partitioning criterion, The feature variable for the surrogate test and its

corresponding thresholdvalues are determined by the additional criterion of having the best
predictive association with the primary split at the node, It has been found that following the
surrogate split strategy there is only a slight deterioration in the classification performance with
the missing data provided the features have good correlation. An additional advantageofusing
the surrogate test technique is that it uncovers some importantfeatures that may never appear
in primary tests but havea role to play by virtue of their strong association with several other

features.

2.3 Hard and Soft Decision Making
The samesplitting process that is key to the decision tree design is perhaps its biggest

drawback whenthetree is later used as a classifier As a result of making a hard choice to
either move downonthe left branchorthe right branch, the decision trees give rise to decision
models that are too simplistic for many applications. As an example, consider the decision
space of Figure 1{a) for some hypothetical machinery where the shaded region represents the
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Figure 1, (a) Temperature and pressure space for a hypothetical machinery. The shaded region
Tepresents the healthy state of the machinery. (b) A decision tree to identify the status of the
machinery. (c) Approximationof the healthy region by the decisiontree.
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healthy state of the machinery in a measurement space of two continuousfeatures, temperature
and pressure. An approximation of the decision region using the decision tree of Figure 1(b)is
shownin Figure 1(c) It can be noticed from these figures that either we must increasethe tree
size or use nonlinear node decision functions to obtain a better approximation of the decision
space.

Anotherconsequence ofhard splitting at the internal nodesis the sensitivity to the noise,
Since the tests at internal nodestypically involve comparing a continuousfeature value against
a threshold to determine branching, a small changein the feature value due to noise can cause a
significant changein the classification. This problem gets exacerbated as thetree structureis
moved from the laboratory environmentto the field environmentfor actual use.It, therefore,
becomes importantto allow for a more flexible or adaptive decision making at each node in a
decision tree One source forflexibility is to replace hard decision makingat eachinternal node
with a soft decision making scheme where none of the descendent terminal nodes are ruled out
as possible class labels; instead each class label is assigned a posteriori probability based on
the outcomeof the test performed at the internal node [9,32,35] These values are passed on to
subsequent descendent nodes. Thefinal decision is made in accordance with the terminal node
having maximum posteriori probability, Such an approach leads to better performance and
more accurate modeling ofthe underlyingrelationship present in the training examples

One simple approach to soft decision making proposed by Quinlan [32] consists of
defining a small interval around each threshold value to assign a probability measure to the
outcomeof each test of the type "is fualue = thrsh " made in thetree. If the observed feature
value lies inside the interval, the probability of the test outcome is made proportional to the
difference of the observed feature value from the threshold value as shown in Figure 2;
otherwise the probability value assigned to the test outcomeis either one or zero depending
upon whether the observed feature value is higher or lower than the threshold Quinlan
suggests a method for determining the interval size which involvesfinding the variation in the
classification error rate with respect to the variation in the threshold value.
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Figure 2. Variation ofthe test outcome probability with respect to the observed feature value.  
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4,4 Simultaneous Useof Training Vectors _ ;
* Onedifficulty with the top-down recursive tree design methods is that they require ail the

“raining vectorsto be present in memoryat once. For pattern classification problems with high
dimensional vectors, it may not be practical to simultaneously store all the training vectors. To
overcome this difficulty, the incremental generation of trees has beenexplored by some
researchers. One example of incremental tree generation approachis the windowing technique
[31]. In this approach, a small subset of the training vectors chosenat random is used as a
design set to develop a decision tree. The remaining patterns from thetraining set are used to
evaluate the quality of the tree.ifthe tree performanceis foundsatisfactory, then thetree
building process terminates; otherwise the designset is enlarged byincorporating those training
vectors that were misclassified in the first instance and the entire tree building process is
repeated. The justification for the windowing approach is based on the assumption of
redundancy presentin a large training set, Wirth and Catlett [48] have done an extensive study
of the decision tree performance with and without windowing formany well known problems
in machine learning literature. According to their experience, windowing does not offer any
overall advantage in tree design and shouldnotbe used unlessthe limitations of memory space
are unavoidable by other means,

Another approach to minimize memory requirements fortree building consists of making
incremental modificationsin the existing tree structure as more and moretraining vectorsare
considered. Similar to the windowing approach, a subset of training vectors is first used to
develop a decision tree. Instead of redesigning the entire tree in the presence of poor
performanceon the remainingtraining vectors, the incremental approach opts for adapting the
existing tree structure either by replacing a subtree with another subtree or by reshaping a
subtree that involves replacing the root node of the subtree with one of its descendent nodes
following certain criterion. Utgoff [44] has shownthat reshaping technique is most cost and
performance effective. However, the main difficulty with this approach is the lack of
well-defined tree modification rules.

3. MULTILAYER PERCEPTRON NETWORKS

Multilayer perceptron (MLP) networks are feedforward networks having several layers of
simple computing elements, called neuronsor perceptrons, with signal flow taking place in the
forward direction only. The interfacing layer on the input side of the network is called the
sensory layer; the one on the outputside is referred to as the outputlayer or the motor control
layer All the intermediate layers are called hidden layers, One of the most importantattribute of
MLPnetworksis their capability to capture input-outputrelationship presentin a set of training
examples.

An example of a MLP network is shown in Figure 3(a). Generally, all neurons in a layer
are connected to all the neurons in the adjacent layers through unidirectional links The
connection strength between two neurons from adjacentlayers is represented in the form of a
weight value. The significance of this weight value is that it acts as a signal multiplier on the
corresponding connection link. Each neuron in the layered network is typically modeled as
shown in Figure 3(b). As indicated in the figure, the inputto a neuron is the linear summation
ofall the incomingsignals on the various connection links. This net summation is compared
against a threshold value, often called bias. The difference arising dueto the comparison drives
an output function to produce a signal at the output line of the neuron. The two common
choices for the output function are sigmoid and hyperbolic tangentfunctions.

Eachlayerin these networks performsa certain transformation onits input signals. Given
a sufficiently large numberoflayers and a capability to manipulate the layer transformations,it
1s possible to achieve any desited input-output mapping or decision boundaryforclassification.
Although a large number of hidden layers perhaps provides more flexibility in terms of
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achieving a mapping, it can be easily shown that two hiddenlayers are sufficient to form

piecewise linear decision boundaries of any complexity [7,27] The first of these two hidden

layers can be considered as the partitioning layer that divides the entire feature space into

several regions The second hidden layer functions as an ANDnglayerthat performs ANDing

ofpartitioned regionsto yield convex decision regions for each class. The output layer can be

considered as the ORing layerthat logically combines the results of the previous layer to

produce disjoint decision regions of arbitrary shape with holes and concavities, if needed
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Figure 3. (a) An example ofa multilayer perceptron network. (b) A typical perceptron model

The network training is done in an incremental fashion by presenting examples of

input-output mapping pairs in a sequence, During the learning process the network

continuously modifies its connection strengths or weights to achieve the mappingpresentin the

examples. Since the input-output training examples specify only the desired output for the

neurons in the outputlayer, the expected response of the neuronsin the intermediate layersis

determined by back propagating the error at the outputlayer to the intermediate layers through a

process of credit assignmentthat takes into account the weights of the various interconnecting

links. The resulting backpropagation algorithm [29,34,46] is a gradient descent procedurethat

minimizes the error at the output layer. Although the convergence of the algorithm has been

proved only under the assumption of infinitely small weight changes, practical

implementations with larger weight changes appearto yield convergence most ofthe time.

Becauseof the use ofgradient search procedure, the backpropagation algorithm occasionally

leads to solutions that represent local minima. Recently, many variations of the

backpropagation algorithm [8, 42} have been proposed to speed up the network learning time.

Because oftheir excellent learning capabilities the MLPnetworks are finding increasing

use as nonparametric pattern classifiers. These networks have been successfully used for: |

classification tasks involving speech, text, and sonardata with performance similarto that of

conventional nonparametric classifiers such as the k-nearest neighbor classifier with the benefit

of inherent parallelism of the neural net structure. One difficulty often encountered in the

successful application of MLP networksis the necessity of matching the network topology, ie.

the numberof neuronsin eachlayer, to the given problem at hand. The network topology is

an important factor that can significantly affect the learning time as well as the overall

input-output mapping performanceas indicated by many experimental studies [7,16,20].

Considering the importance ofnetwork topology, many researchers [2,3] are looking at the

traditional statistical classification techniques to obtain the matching network configuration fora

given set ofinput-output training vectors.  
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4, AN MLP IMPLEMENTATION OF TREE CLASSIFIERS

Oneofthe earliest referencesto the implementation ofa tree classifier as a layered neural
network is the work of Henrichon and Fu [19] who suggested the use of perceptrons with hard
nonlinearity to realize the node decision functions Similar schemes have been proposed again
in the recent literature in the form of neural decision trees [14,25]. However, the
implementation proposed here makes use of a structural transformation [39] that leads to a
decision tree implementation in the form ofa three-layer feedforward network of perceptrons
which can be further trained along thelines of neural network training procedures

In order to see how a decision tree can be transformed into a three layerneural network,let
us consider the decision tree classification procedure Classification using decision tree is
performed by traversing the tree from root node to one of the leaf nodes using the unknown
attern vector. The response elicited by the unknown pattern is the class or decision label

attached to the leaf node that is reached by the unknown vector It is obvious thatall the
conditions along any particular path from the root to the leaf node ofthe decision tree must be
satisfied in order to reach that particular leaf node. Thus, each path ofa decision tree
implements an AND operation ona set of half-spaces that are defined by the intermediate nodes
on that path. If two or more leaf nodes result in the same action or decision then the
correspondingpaths are in OR relationship Since a layered neural network for classification
also implements ANDing ofhyperplanes followed by ORing in the output layer, a decision
tree can be modeled as a layered network by following some transformation rules These rules
can be informally stated as follows:

(i) The numberof neurons in thefirst hidden layer of the layered network equals the
numberof internal nodes ofthe decision tree. Each of these neurons implements one of the
decision functionsofinternal nodes Thislayer is the partitioning layer.

(ii) All leaf nodes have a corresponding neuron in the second hidden layer where the
ANDing is implemented. This layer is the ANDinglayer.

(iii) The number of neurons in the output layer equals the number ofdistinct classes or
actions. This layer implements the ORing of those tree paths that lead to sameaction.

(iv) The connections between the neuronsfrom the partitioning layer and the neurons from
the ANDing layer implementthe hierarchyofthetree.

An example of restructuring following the above rules is shown in Figure 4. Asthis
example shows,it is fairly straightforward to map a decision tree into a layered network of
neurons It should be noted that the mapping rules given above do not attemptto optimize the
numberof neurons in the partitioning layer. However, a better mapping can be achieved by
incorporating checks in the mappingrules forreplications of the node decision functions in
different parts of the tree to avoid the duplication of the neuronsin the partitioning layer.
Moreover, it may not be necessary to have the outputlayer if the number ofneurons in the
ANDing layeris same as the numberofclasses.

While the mapping rules given above allow an implementationof a decision tree as a three
layer network of perceptrons, the full potential ofthis implementation can not be realized unless
the perceptrons are provided with soft nonlinearity and the network is allowed to adaptits
connection strengths to overcomethe rigidity of the decision tree classifiers There are two
possible methods for doing so. Oneis to simply use the backpropagation learning procedure.
However, such a training procedure maytake exceedingly long time as the mapped networkis
partially connected. The other possibility is to exploit the presence of hierarchy in the
transformed network to develop a moresuitable training method. One such methodis described
in the nextsection.
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Figure 4. An example ofa decision tree mapping

5. TRAINING THE TREE MAPPED NETWORK

To be able to adjust weights in the mapped network,it is essential to know the desired

outputofthe neuronsin the partitioning layer and the ANDinglayer as well While the desired

output of the neurons in the intermediate layers is genetally not known, this problem is

tractable in the present case. As can be noticed from the mapping tules, there exists a group of

neurons for every pattern class in the ANDing layerof the network, The membership inthis

group is known from the tree-to-network mapping. Thus given an example pattern from class

¢, it is known that only one neuron from the group ¢ of the ANDinglayer neuron should fire

while the remaining neurons from that group as well as those from other groups should remain

in an inactive state. Therefore, the solution to weight adjustment for the ANDinglayeris very

simple: enhance the response of the neuron producing highest output among the neurons from

group ¢ and suppress the responseof the remaining neurons in the ANDinglayer for a pattern

from class c. This is similarto the winner-take-all approach followed for the neural nettraining

in the self-organizing mode [24]. The reason that this simple approach works is that the

mappednetwork hasa built-in hierarchy ofthe decision tree whichis not present in the other

layered networks exceptfor the counterpropagation network [18] where also a similartraining

procedure is used. Oncethe identity of the firing neuron in the ANDinglayeris established for

a given example pattern, the desited response from the partitioning layer neurons is also

established because of association between a terminal node and internal nodes onits path

Althoughthe presence oftree hierarchy in the mapped network provides a solution to the

problem of knowing desired response for weight adjustmentforthe neurons in the partitioning

layer,it is really not necessary to adjust weights on the incoming connectionsto these neurons

due to the use ofsoft nonlinearity. This is due to the fact that using soft nonlinearities such as

sigmoid or hyperbolic tangent functions causes the difference between the observed feature

value and the threshold value to be carried across different layers in a coded form This in

conjunction with the adaptability provided by the connections between the partitioning layer

and the ANDinglayeris generally sufficient to obtain desirable performance from the mapped

network without a needto adjust the weights on the incominglinksto the partitioning layer.

Based on the above discussion, the procedure for adjusting the weights in the mapped

network can be described in the following way.Let x(p) with class label L(x(p)) be the input

pattern to the mapped networkat the p-th presentation duringthe training Let Rj(x(p)) denote

the response ofthe j-th neuron from the ANDing/ORing layer. Let G(j) represent the group 
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membership ofthe j-th neuron, i.e. the class label of the group of neurons whose memberis
the j-th neuron. Furthermorelet wiz be the connection strength betweenthe j-th neuron and the

i-th neuron of the previous layer. Then

wi(pt1) = my(wilp) + Awy(p)) if Ry(x(p)) >Ry(x(p)) forall k
such that G(k) = L(x(p)) = G(j); and

wi(Ptl) = mik(wig(p) -Awix(p)) for all k #j,

where the amountofchange in the weights is determined by the Widrow-Hoff procedure [47]
or the LMSruleasit is called many times. The term mj;jj is either ‘I’ or ‘0’ indicating whether
a connection exists to the j-th neuron from the i-th neuron or not. It should be notedthat the
presence or the absence of the connections is determined at the time oftree-to-network
mapping. The suggested training procedure is such thatit is possible to train each layer
separately or simultaneously.

Examining the proposed decision tree implementation asa trainable three layer network of
perceptrons, several comments with respect to the decision tree issues raised earlier can be
made, The most important ofthese is that the MLP implementation of the decision trees is
expected to provide a better and more robust classification performance becausethefinal
decision making is delayed to the last layer when information from all the previouslayers is
available. This is in contrast with the usual decision making procedure in a decision tree where
a choice has to be made at each node. Moreover, the use ofsoft nonlinearities in the MLP
implementation allowsperturbations in the feature values to be tolerated which in the usual
decision tree implementation canlead to an entirely different path. Since a soft nonlinearity
retains more information about the input, another important consequence of the MLP
implementation is that the final decision boundaries are expected to be smoother and of
arbitrary orientation leading to better decision models than are possible with the conventional
decision tree implementation. This capability in the MLP implementation ofthe decision trees
also reduces the need forfinding multivariable splits while developing thetree. The capability
to adjust the weights in the proposed implementation also providesa solution to the problem of
simultaneoususe ofall the training vectors while designing a decision tree. With the MLP
implementation,it is possible to design the tree using only a subsetofthe training vectors The
remaining training vectors can be used in an incremental fashion to adjust the weights ofthe
mapped network thus avoiding the need to have all training vectors in the memory at the same
instant. Thesize of the tree also becomesless crucial with the MLP implementation Ordinarily
when a decision tree is grown beyond the appropriate size, the corresponding feature space
partitioning starts getting more and more biased towards noisy training vectors. This later on
leads to poorclassification performance, However whenan overgrowntree is mappedintoits
comesponding MLPstructure, the effect of inappropriate tree size is expected to be minimalas
the ANDing layerwill eliminate or weaken, through the use of competitive training procedure,
neuronsthat correspondto_those terminal nodesofthe tree that are due to inappropriate size
[39]. The issue of missing featuresis also less crucial in the neural implementation because of
the parallel nature and graceful degradation property of the neural networks.

6. PERFORMANCE EVALUATION

A series ofexperiments were performed to compare the performanceof the traditional tree
classifier implementation with the MLP implementation as described earlier. Three well known
data sets were used in these experiments. “he first two data sets simulate data for two
well-known problemsfrom theclassification tree literature [5] Thefirst synthetic data set,
calledLED data, simulates a faulty LED display. Each displayed digit is represented as a seven
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componentbinary vector that forms an inputto the classifier. The classifier outputindicates the

digit represented by the seven component binary inputvector. The fault in the display is such

that it causes a switching from a correct segmentstate to an incorrectstate with a probability of

0.10 for each segmentin an independent fashion. All displayed digits are assumed to have

equal probability. Two hundred patterns of such faulty data were generated to be used as

training patterns while another 5000 patterns were generated to function as test vectors. Figure

5(b) shows the decision tree for recognizing faulty LED display that was obtained using the

training vectors. The numberin each circular node ofthe tree refers to a segmentin the display

as shownin Figure 5(a). If the segmentis found to be turned on, the right branch in the treeis

taken; otherwise the left branch is followed The number in a square box in the tree represents a

digit label This tree as well as the trees forthe other data sets were all obtained following the

average mutual information gain (AMIG)tree design procedure.

1

2 3

4

5 6

7

 

{a) (b)

Figure 5 (a) LED display (b) decision tree for the faulty LED data.

The second simulated data set correspondsto the waveform recognition problem Unlike

the LED data that is binary in nature, the WAVE data consists of 21-dimensional continuous

valued feature vectors coming from three classes Data from each class are generated by

combining two of the three waveformsof Figure 6(a) at equi-spaced 21 sampled positions.

Each componentof the 21-dimensional feature vector is corrupted by random noise drawn: _

from a normal distribution of zero mean and variance 1. The training andtest set sizes are 300

and 5,000, respectively with equal a-priori probability for all classes. The two entries within

each internal node of the tree in this case represent a (feature, threshold) pair with the

convention that the left branch is followed if the observed feature valueis less than the

threshold value: otherwise the right branch is taken up.It is to be noted that only a small

number of the features are actually utilized in constructing the decision tree These are the

features that are considered most discriminatory.  
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Figure 6. (a) Three waveforms(b) decision tree ©

 
Thethird data set is taken from character recognition domain and uses a subset of Munson

handprinted FORTRANcharacterset [21]. The subset, called IMOX data, consists of four
character classes, I, M, O, and X. Each characterclass consists of 48 patterns. Each pattern
is represented as an eight-dimensional feature vector of integer valued components These
features represent the length of eight directional lines in terms ofpixel counts as shown in
Figure 7(a), In the experiment conducted with this data, 36 labeled patterns from each
category were used to develop the decision tree of Figure 7(b), The remaining 12 patterns
from every category were usedto test the relative classification performanceofthe decision tree
and the trained network.

 
(a) (b)

Figure 7. (a) IMOX features (b) decision tree
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After mappingeach tree into its corresponding MLP network,the training ofthe mappeg
network was done using the procedure discussed earlier. The training set consisted ofthe
same vectors that were used to develop decision trees. There are two parameters, p and 'g¢
involved in the training procedure. The parameter p determinestheinitial learning rate and was
set equal to 1.0. In all the experiments, learning rate was decreased in inverse proportion to
the square rootof the iteration number. The other parameter a determines the shapeof the
neural output function which wasrealized through a hyperbolic tangent function. Figute’g
showsthe output function for three different a values of 0.25, 0.50, and 1.0. Since a largé'g
value brings the output function closerto the step function, we call aa generalization constant
that determines the degree offlexibility of the mapped network After experimenting with fey
values, 0.25 was found to be the most suitable a value.
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Figure 8 Plots of hyperbolic tangent function tanh( ax) for three « values

  

  
   

  
  
   

   
   

  

In orderto monitor the learning progress, it was decided to perform classification on the
test data with the mappednetafter every ten iterations of weight adjustment with the training
data The initial choice for the weights was made randomly The training procedure was
repeated many times with differentinitial weight values. No significant differences,either in
termsofthe training time or the classification performance, were observed dueto initial weight
selection. Figure 9 shows an example ofthe learning progress of the mapped networksfor the
LED and WAVEdata sets that was observed in the experiments. It is seen that a stable
classification performance is provided by these networks after going through few tens of
iterations, The numberofiterations in the case of WAVE data is far less than the LED data
and additionally the learning progress curve is much smoother. This is possibly due to the
analog nature of the WAVE data which provides more flexibility as opposed to the binary
nature of the LED data. The learning progress rate for the IMOX data was foundto be similar
to the WAVEdata
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Figure 9. The learning progress curves for the mapped network. a = 0.25 and p= 10

    
The relative classification performanceofthe decision trees and the corresponding MLP

implementations is shown in Figure 10. These performance results were obtained using the test

data in each case. It is seen that the MLP implementation in each case provides an
improvement Over the corresponding decision tree performance. The reason for improvementis
essentially due to the use of soft nonlinearity and the combination of the outputof different
internal nodesof the decision tree that becomespossible through an MLP implementation It is
interesting to note that the improvementfor the LED data is very small compared to the WAVE
data or the IMOXdata. The reason for smaller improvementin the case ofLED data is because
the binary data does not provide as muchflexibility as the continuous data
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Figure 10. Relative recognition performance.

7. CONCLUSIONS

_. Aneural network implementation ofthe decision trees has been described The proposed
implementation is based on a set of mappingrules that transform a decision tree into a three
layer structure of partially connected neurons It has been shownthatthe transformed structure
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can be trained following the winner-take-all strategy. The incorporation ofthe soft
nonlinearities in the neurons has been shown to overcome manyofthe decision tree   
deficiencies. The experimental results that comparethe classification performanceofthe neural
implementation with the traditional tree classifier implementation show that the neural
implementation is able to provide improved performance.
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Abstract

Statistical Pattern Recognition and Artificial Neural Networks provide alternative

methodologies to the classification of patterns represented as feature vectors. This paper

provides a theoretical relationship and an empirical comparison between the Bayes de-

cision rule and the backpropagation model. It is shown that backpropagation performs
least mean square approximation to the Bayes discriminant function. While a three-

layer backpropagation network (one hidden layer) with a sufficient number of hidden

units is known to possess universal mapping ability, gradient-descent based backprop-
agation learning does not guarantee finding the minimum probability of error solution.
Experimental results with handwritten character recognition (digits and letters extracted
from handwritten addresses) are presented. The experiments are with two different rep-
resentations of characters : binary pixel arrays and structural features represented as
binary vectors. With pixel arrays, the backpropagation model performs better than
the first-order Bayes discriminant that assumes statistical independence between pixels

With structural features, the first-order Bayes and backpropagation have similar perfor-

mance, However, training of a backpropagation network is much more involved. Inherent

difficulties with both classifiers are discussed.

1 Introduction

Pattern recognition has been an activefield of research for over thirty years inspiring many

theoretical and experimental results Well-developed statistical approaches to pattern

recognition exist [Fuk72, DH73, TG74] Recently much attention has been diverted to
_ pattern recognition using the artificial neural network approach, with many successful

experiments reported [Fuk88, Bur87, RMS89, DJG*89] Weiss and Kapouleas [WK89]
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have done a thorough empirical comparison of pattern recognition, neur al network, and

machinelearningclassification methods.

This paper focuses on the statistically optimal Bayes classifier and a popular neu-

ral network architecture, the backpropagation network, In particular, our interest is

in experimental evaluation for the case of binary feature vectors arising from the prob-

lem of handwritten character recognition. In analyzing these two classifiers from both

theoretical and empirical aspects, we hope to gain some insight into their relationships,

The organization of the paper is as follows. Section 2 introduces the Bayesclassifier

and its approximation for the case of binary feature vectors. Section 3 introduces artifi-

cial neural networks and the backpropagation concept. Section 4 provides a theoretical

analysis of the generalized delta rule used in a backpropagation network andrelatesit to

the error rate achieved by the Bayesclassifier. It is shown that backpropagation performs _

least mean squate error approximation to the Bayes discriminant function. Section 5 de-

scribes experiments with both classifiers trained and tested on a database of more than

20,000 handwritten characters. Comparisons of these classifiers and practical problems

in training them are discussed in section 6.

2 Bayes Classifier

The Bayes decision rule is a well-studied statistical classification method which is de-

fined to be optimal with known a priori and class-conditional probabilities [DH73]. It__

minimizes conditional risks for any loss function.

Let the input x be a vector of d random variables, and let Cy,C2,...,Cn be the n__

classes to which all possible input vectors may belong. Bayes rule states that

P(Cypx) =PIC) (1)

where

P(x) = 32 PlxlC})P(Cs) (2)
t=1

By assigning x to the class with maximum

a

posteriori probability, P(C;|x), the proba-

bility of erzor is minimized. Defining the discriminant function g;(x) for each class Cj as

the a posteriori probability for class j

g(x) = P(Cy|x) (3) 
the mininum probability of error can be achieved by selecting the class whose discriminant

function has the highest value, or
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po = PEDRO. “)

 

Since P(x) is independent ofthe classes, it can be eliminated without affecting the

decisions. We can further reduce this equation by applying a monotonically increasing

function, such as log, on all discriminant functions. The result is

gj(x) = log P(x|C;) + log P(C)). (5)

In orderto use this discriminant function, we need to know the probability density

function of x with respect to each class C;, and the prior probability, of each class C;. In

practical pattern recognition problems, complete knowledgeof either is rare. More often

we are provided with a finite number of samples, and are forced to estimate the a priori

and class-conditional probabilities based on the trainingset.

2.1 Binary Case :

We will nowconsider the case where the components of x are binary. In general, the a

priori probability, P(C;) can be estimated quite accurately if the training set is large
However, approximation of class-conditional probabilities is a challenging task Since

there are 24 possible d-dimensional binary vectors, 2¢ probabilities need to be calculated

for each class. The large dimensionality often encountered in pattern recognition prohibits

us from making such approximations,

2.1.1 First-Order Approximation

Ifthe componentsof x areall statistically independent of each other, the class-conditional
probability can be expressed as the product of conditional probabilities of each compo-

nent, as

a
R

P(x|Cs) = TT P(e), (6)
2 Il e

__ where 2; is the th component of x Therefore, we need to estimate d probabilities for
each class,

If we let

Py = P(x; = 1|C;) (7)

and

1~ Pi; = P(a; = 0|C;) (8)
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then

d -

P(x|C;) =]PG - Py) (9)
i=1

Substituting Equation 9 into Equation 5, it is simple to derive the following.

 
P,;

}=vlogA + Yow 1 — P;j) + log P(C;). (10)

Since this equation is linear in z;, we can rewrite Equation 10 as

d
= > £;wi; + b; (11)

t=1

where

PB,
wij = log T_P.Py

(12)

and

d
b; = }> log(1 — P,;) + log P(C;) (13)

i=1

Therefore, the discriminant function for each class can beefficiently characterized by
a bias factor and a d-dimensional weight vector.

2.1.2 Estimating Parameters

Since the input vector is binary, and its components are independent under our assump-

tion, the class-conditional probabilities can be estimated by building a nxd histogram.

Then P,; can be approximated by the sample mean k,,;/s;, where s; is the numberof sam-

ples for ‘lass Jj, and k,; is the number ofoccurrences of 1’s in the ith component among

all s; samples. One common problem encountered using this approach is to determine

a suitable value for P,; when kj; = 0, s; = 0 or ky; = s;. Any one of those situations

leads to representing either infinity or negative infinity. A useful technique that avoids

this problem is to estimate P,; by (kj; + 1)/(s; + 2). In fact, it has been shown this is
the best estimation in case of a mean squareerror loss function, Good results have also
been observed by assigning P;; the value of 1/3s; when P,; is 0

  

   

  

    

  

With a given set of feature vectors, with complete knowledge ofa priori and condt-
tional probabilities, the Bayes decision rule will provide the minimum error rate The

discriminant function in Equation 10 would be appropriate if the components in the
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feature vectors are indeed statistically independent and all conditional probabilities are

known. In some pattern recognition problems, neither of those assumption can be justi-

fied. Consequently, working under the above assumptions, we run the risk of obtaining

suboptimal performance,

2.1.3 Higher-Order Approximation

There are techniques which allow us to compromise between working under the assump-

tion of strict statistical independence among components and having to estimate 27

probabilities. One technique is to use a generalized decision function which has the form

m

SY aeegi(x), (14)
1=0

where ¢;(x) are orthogonal functions and c; are their coefficients

An example ofa generalized decision function is one based on Bahadur-Lazarsfeld

polynomials [DH73]. The class-conditional probability can be calculated by

P(xIC)) = PrxIC) YO aye), (15)

where

agi = Elbja(x)] (16)

is the expected value of #,;(x), and

1 7=0

y1 t=]

Ya t=d
Yiy2 t=d+l1

bji(x) =

Ya-1Ye t=d+1+d(d—1)/2
YYoys i=d+2+4d(d—1)/2

wy. ye t= 2?-1

and y; is the normalized variable,

a — PF,

os VP— Pi)
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  The weighting function P;(x) is precisely the conditional probability under the indepen:

dence assumption,

=[r‘(1 — pi), (18)
i=1

From the definition of 2, it is clear that ajo = 1 and aj, = aj.-. =@jq = 0. There
fore, the discriminant function in Equation 10 is simply the first order approximation |

by Bahadur-Lazarsfeld expansion. The probability density function can be estimated
more accurately by going into higher order terms. For our database, empirical results

discourage us from such expansion aslittle is gained at a cost of many more coefficients:

Nevertheless, in general this trade off between accuracy andefficiency will depend on the

nature of the problem at hand

3 Artificial Neural Networks and Back Propagation

Artificial neural networks have been used in pattern recognition problems as early as

1957 when Rosenblatt introduced the perceptron [Ros57]. It is well-known that they are

incapable of discriminating between non-lineatly separable classes [MP69].

One major contribution in the revival of neural networks is the generalized delta rule

of Rumelhart et.al. [MRG86], which was discovered independently by Werbos [Wer74|

and Parker [Par85]. This rule provides a learning scheme for a multi-layer perceptron-
like network with non-linear activation functions, thus allowing generation of any type of
decision surface. Of course, other neural network architectures have been attempted for

pattern recognition and other applications. However, we will not give a comprehensive
overview ofall neural network models here. A good introduction to various models can

be found in [MRG86, Lip87].

Although the generalized delta rule can be applied to any network, we will concentrate

on a particularly popular layered feedforward network, the backward error propagation

(BP) model. The network consists of three types of layers, each of which is composed
of various number of units. Units in adjacent layers are connected through links whose

associated weights determine the contributionof units on one end to the overall activation
of units on the other end. There are generally three types of layers, Units in the input

layer bear much resemblance to the sensory units in a classical perceptron. Each of them

is connected to a component in the input vector. The output units, analogous to the

response units in a perceptron, represent different classes of patterns. Arbitrarily many _

hidden layers may be used depending on the desired complexity, Each unit in the hidden

layer is connected to every unit in the layer immediately above and below.

Data flow in a BP can be either in forward or backward direction. In the forward

direction, input data is transmitted from input to output layer, layer by layer, using the

propagation tule.
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0j = f(D, wise+ 95) (19)

 

where the output of unit j, 0;, is determined by the weighted sum of outputsofall units

Gn the preceding layer, 37; wijoi, and a bias term, 8;, applied on an activation function f

‘An example of f suggested in [MRG86] is the sigmoid function,

1
Paty
 (20)

However, any choice of continuous, non-decreasing, differential function will be appro-
priate. The decision of the system is measured at the output layer. For the purpose of

pattern recognition, it is common to assign an input pattern to the class whose corre-

sponding output unit has the highest value among all output units,

The decision surface for a BP is formed during training phase by a series of weight

adjustments. These weight adjustments are determined by the error signals transmitted

in the backward direction. As each labeled pattern is fed in from the input layer and

propagated to the output layer, values of the output units are compared to the desired

output responses. The amount oferror attributed by each unit, 6;, is calculated, layer
by layer, from output to input layer For output units,

5; = (¢; — 0j)0j(1 — 94), (21)

where t; is the ideal output response. For hidden units,

6; = o;(1 _ 0;)S wjrdk, (22)

k

where 6; is the error contributed by each unit in the layer immediately above. After 6 is

calculated for each unit, every weight is adjusted by

Awi(t) = 6;0; + aAwije-1), (23)

where Aw;;(2 is the weight change at iteration t 7, the learning rate and, a, the mo-

mentum, are scaling factors. The choice of these two parameters has great effect on the

convergence rate of the system. In experiments described in Section 5, we used a learning

rate of 0.75 and a momentum of 05. It has also been observed that BP performanceis

influenced by the numberof hidden units available [KH88, GWG89]. For digit recognition
we chose 15 hidden units, and for alphabet recognition we used 70 hidden units.

4 Relationship

Wewill first detive a theoretical relationship between the Bayes decision rule and back-
ward error propagation.
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The Bayes decision rule performance is optimal for a given set of features in the

sense that it minimizes the probability of error and the conditional tisk, As stated,

this requires complete knowledge ofthe underlying probability density function for each

class. However, in practice, finite training samples and high dimensionality compound

this simple decision theory. The difficulty in actuating the class-conditional probability

often makes the performanceless than optimal.

Unlike the empirical approach in the 60’s, the resurgence of neural networks has been

led off by a series of theoretical analysis on their capabilities. Many important works have

demonstrated the universal mapping ability of a backpropagation model under various

constraints [HN89, Ara89, IM88, SW89, Shv90]

In order to understand the theory behind backpropagation, we need to study the

derivation of generalized delta rule, which originates from minimizing the squared error

sum between network and desired output responses over all patterns.

B= Be=¥ 5 Lites ~ oxi)" (24)

where ty; and ox; are, respectively, the desired and actual response of jth output unit

to pattern x To minimize & with respect to each weight w;;, it is necessary to find the

root for its partial derivative,

OL OF

Ow;; x Owi;

 (25)

Thus it is sufficient to minimize By. Gradient descent is the standard technique for

solving such problems An approximation of gradient descent is achieved by making

weight changes proportional to Ex after each presentation, ie.,

Ox

Owij
 Axwi; x-

The detailed derivation can be found in [MRG86], For our purpose,it suffices to state

the result:

Axwyi = 16xj Oxi, (26)

where

bx; = (txj —ox) Wij Oxi + 85) “

for output units and  
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bxj = fO. Wij Oxi + 8;) oxkWh (28)

t k

for hidden units. In Equation 28 and 29, f’ denotes thefirst derivative of f When f is

the sigmoid function in Equation 20, it can be shown that

H(e) = f@)(1 = fe) (29)

and we obtain the formula in Equation 21 and 22.

We should point out that backpropagation performs gradient descent in FE However,
by adjusting the weights after each pattern is presented, we deviate from true gradient

descent. Nevertheless, Rumelhart noted that by selecting sufficiently small learningrate,
,a good approximation of gradient descent can be obtained through sequences of small

movements[MRG86]

The statistical significance of minimizing squared er1o1 can be showninthefollowing

analysis. First, we rewrite the Bayes decision rule for notational convenience

 
 

P(x|C;)P(C;) P(x, C;)
P C; x)= : i d _ +7

(Gib) iat P(x|Cigj)P(Cigj) P(x)

_ Consider a single output unit f;(x,w) and random classification variable ¢;, which is 1

ifx € C; and 0 otherwise.

_ 1 ifxe Cj

ti(x) = { 0 ifx¢C, (30)

Then the criterion function J, is defined.

Jw) = Sofi(x,w) -—t)P

= » [fj(x,w) ~ 1)? + » [fi(x, w) — 0)
xEC, x€c,

n; 1 n—n; 1 2
= May oetie™) ~1P+errr Ji(&, w)*]

__ where n is the total numberof training samples, and n; is the number of samples for
class C;;.

Applying the law of large numbers and Bayes 1ule, we obtain the following result

. 1
dim, > Js(w) = J(x,w)

P(C,)[Uj(,) — APPIC; )dx + P(Cipi) SiGe,WFPICigsox
[Uicew) - PPE, Ci)ax+ fH(WFPCips)axi
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| 40.)P@)ax - 2[ fiew)P(x,C;)ax+ f P(x, C;)dx

|| f(x, w)?P(x)dx - 2| fix, w)P(Cjlx)P(x)dx + / P(C,lx)P(x)dx

[ities- PCiboPPeodx+f P(Cibx)P(Cigil)Pax
ll

UI

In the last equation, since the second term on theright hand side is independentof

w, whatever minimizes J,/n also minimizes thefirst term. Therefore, backpropagation

learning seeks least mean square approximation of the posterior density function in weight

space. This is an extension ofthe analysis of two class linear classifiers given in [DH73].

Knowing that the output of a backpropagation network approximates the posterior
density function, it is reasonable to ask whether a minimum probability of error solu-

tion exists. In [HH90] it has been shown that when the probability density function is
Gaussian, a perceptron with a sigmoid transfer function approximates the a posteriori

probabilities. We will extend this result to multiclass problems without restricting the

form of underlying density functions

Using the criterion function in our previous analysis, we can minimize the total error

by finding the root to the first partial derivative of J(w,x) with respect tow Therefore,

oa afew)w)o = 2P(0})[(0-1)BEpraic;yaxt21-P(G))) [05°BE)P(xjciy,de = 0681

All possible w which achieves local minimum must satisfy this condition. However,
any solution which satisfy this requirement may not be a minimum in F space. Infact,

it may well be a local maximum or saddle point. To ensure the local minimum property,

we need to exam the sign of the second derivative. The solution is a minimum if and
only if

a
aw? >0

Nevertheless, we will proceed to analyze its most obvious solution. This condition

can be satisfied when

PCC;)(1— file)BE)Prxicy) = (1 P(C)))fil, w)-BEE)Peatcigs)

for all x. Under the assumption that 0f;(x, w)/Ow is integrable and nonzero every-
where, the above equation can be simplified to

P(C;)P(x|C;)
P{x)(1 7 f(x, w)) P(x)= fix, w  
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The multiplicative constant P(x), of course, has to be nonzero. By applying Bayes rule
(Equation 1), we obtain

(1 — fi, w))P(Cj lx) = f(x, w)P(Cigs|x)

Thus,

P(Ci|x) = Fix, w)P(Cigjbx) + f(x, w)P(C;|x)

Since

P(Cj[x) + P(Cigj|x) = 1

the following conclusion is reached :

fi(x,w) = P(C;|x) (32)
Not surprisingly, one solution is the posterior density function. The implicit as-

sumption being made in the above analysis is that f is functionally capable of rep-
resenting P(C;|x). A three layer BP model with infinite number of hidden units is
necessary andsufficient to approximate any posterior density function to any degree of
accuracy [HN89, Ara89, SW89]. The diagnosis of a moretealistic feedforward network
with bounded fan in can be foundin [Shv90]. Without any prior knowledge of formsof
the density functions, using a two layer network (no hidden layers) or a linear activation
function will severely limit the representation power of our classifier,

From the above analysis, we make the following conclusion, Backpropagation per-
forms least mean square approximation to the Bayes decision rule. A minimum ptobabil-
ity of error solution indeed exists if the networkis computationally capable of representing
the a posteriori probability function exactly. A three layer backpropagation model (1 hid-
den layer) with sufficient number of hidden units has been shown to possess universal
mapping ability and, therefore, can approximate any (a posteriori density) function to
any degree ofaccuracy [HN89, SW89, Ara89].

However, the gradient descent technique used in backpropagation learning rule doesnot guarantee convergence to this solution. Networks can get trapped in a local mini-
mum. Without an exact representation of the posterior function, this mean-square-error
approximation may not give us the optimalclassifier,

In this section we have shown that a multilayer feed forward network is functionally
equivalent to approximating the a posteriori probability using gradient descent,

5 Experimental Results

Several experiments were conducted on handwritten digits and alphabets using the first
order Bayes approximation and backward error propagation. Original images were di-
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TableI:

95% confidence interval for digit recognition correct rate with 212 PPI images (manual

segmentation)
low estimation high

First-order Bayes (pixel) 914 92.2 92.9

Backprop (pixel) 94.9 95.5 96.0

First-order Bayes (feature) 97.5 97.9 98.3

Backprop (feature) 98.1 98.5 98.8
 

rectly obtained from handwritten addresses on mail samples. The specification of data

and size of training and testing sets will be described in each section.

Input data for those pattern recognition algorithms primarily consisted of two formats.

Thefirst type of input, which wewill refer to as pizel input, was binarized, size normalized

images. Binarization was achieved by global thresholding, and moment normalization

[Cas70] was usedto scale all images to size 16x16.

The second type, which wewill call feature input, was uniform length feature vectors

of 636 binary components obtained by various feature extractors described in [LLS90].

Three types of feature extractors were used in constructing the feature vector : struc-

tural, contour analysis and feature templates. The structural approach was based on the

work of [Pav86]. Several parameters and thresholds were adjusted to adapt the variations

in character styles. The contour analysis based method used chaincodes to extract fea-

tures such as holes and concavities. The third extractor implemented feature templates

[BGJH88]. Detected features are represented in form ofa fixed lengthed binary vector.

5.1 Digit Recognition

Two different experiments were done on handwritten digit recognition. Data from the

first experiment consists of binary images that were scanned by OCR machines at 212

ppi (pixel per inch). These digits were acquired by manually locating the zipcodes on an

envelope, and then segmenting them by a program. Binarization and moment normal-

ization were applied on the images to obtain 16x16 bitmaps. The data has been cleaned

up to eliminate any badly segmented images. The training set used to estimate parame-

ters (section 2 1.2) contained 10,000 images, and the test set was a disjoint set of 5,000

images, Table I shows the 95% confidence interval for the correct rate [Hig62, CP34].

The images used for the second experiment were scanned at 300 ppi with 256 different

gray scale value, and then thresholded to binary and moment normalized. Segmentation

ofdigits were performed by a program. The training set, which was composed of 18,650

images, was cleaned up Whereas the 2711 images in the novel testing set contains an

estimated 3% of improperly segmented images. The performance is shownin Table Il.

Not surprisingly, the performanceis not as good as that in the first experiment. Most of

the errors were caused by poor segmentations.  
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5.2 Alphabet Recognition

The alphabet recognition experiment involvesclassification of all handprinted upper and
lower case alphabets. However, since each individual character is presented without the
baseline information, the following classes are combined : C-c, K-k, O-o, P-p, $-s, U-u,
v-v, W-w, X-x, Z-z. After preliminary experiments, it was observed that much ofthe
substitution error was caused by badly formed characters in class I-i-l, Y-y. Therefore,

those classes are also combined. Thus we have a total of41 classes.

All images in the training and testing set were scanned at 300ppi with 256 gray scale
values and then thresholded and moment normalized to 16x16 binary images. Segmenta-
tion was performed on-line manually The training set consists of 8000 images, unevenly

distributed among classes. The test set contained 2865 previously unseen images. Ex-
perimental results are summarized in Table III,

Samples of images used in both the digit and alphabet recognition problemsare given
in the appendix. These images were extracted from addresses on envelopes,

6 Discussion

From the analysis in section 4, we have seen for a specific target function, outputs of
a backpropagation network approximate the a posteriori probabilities. Therefore, by
assigning the input pattern to the class whose corresponding output unit has the highest
value, we effectively maximize the (estimated) posterior probability, and minimize the
probability of error

In practice, however, the comparison between Bayesianclassifier and backpropagation
is complicated by various factors. In most real-world problems, high-dimensionality and
finite training samples inhibit us from making accurate calculation of probability density
functions. Working reluctantly under an assumptionofstatistical independence or with
low order approximations, we expectedly obtain suboptimal performance.

While backpropagation provides an automated solution to such problems,it also has
its pitfalls. Using a gradient descent technique in a most likely non-parabolic error space,
it is susceptible to local minima In fact, Hecht-Nielsen [HN89] has shown the existenceof

Table IT:
95% confidence intervalfor digit recognition correct rate with 300 PPI images (automatic
segmentation)
 

low estimation high
First-order Bayes (pixel) 84.9 86.2 87.4
Backprop (pixel) 89.1 90.3 91.4
First-order Bayes (feature) 92.7 93.7 94.6
Backprop(feature) 91.9 92.9 93.8
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Table III:
95% confidence interval for alphabetic character recognition correct rate with 300 PPI

images (manual segmentation)
low estimation high

First-order Bayes (pixel) 68.9 70.6 72.2

Backprop (pixel) 72.0 73.7 75.3

First-order Bayes (feature) 89.0 90.1 91.1

Backprop (feature) 87.4 88.6 89.7
 

local minima in backpropagation error surface. Although optimization techniques have

been proposed to find global minimum [Was88, Bab90], their effectiveness in complex

problems remains to be seen. Furthermore, the classical backpropagation is vulnera-

ble to other problems such as slow convergence and generalization, Many tesearchers

have proposed methods to improve the speed of convergence [Fah88, IP90, ST90, Jac88]

However, there is still some dispute in the definition of convergenceitself. It has been

observed that an absolute convergence may not provide the best generalization result.

Theeffect of additional hidden units on generalization has not been thoroughly explored

either. Under such conditions, its performance may also be degraded.

From thetables in section 5, we can make the following observations. Theaccuracies

of Bayesian classifier and BP ate comparable in most cases. BP perform better than the

first order Bayes approximation with pizel input. This is not surprising considering the

second classifier, being a first order approximation, is capable of achieving only linear

decision surfaces. Contrarily, the activation function in a backpropagation networkallows

it to capture higher order relations

In the case of feature vector input, their relative performanceis not clear. The results

in digit and character recognition experiments showed similar accuracy rates for both

classifiers. Although the first-order Bayesian approximation has out performed back-

propagation network in two experiments, their confidenceintervals overlap considerably.

If the feature componentsare indeed statistically independent, the first-order Bayesian

classifier provides optimal decision, and backpropagation network is albe to find good

approximation to such decision. However, it is more likely that the features are not inde-

pendent, and better local minima would have been found had the parameter space been

explored more thoroughly.

Weshould also take into consideration that while the implementation of first order

Bayes discriminantclassifier is straight forward, the optimal configuration for a BP net-

work can only be found with more reseatch. Therefore, backpropagation has much more

potential for improvement.  
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” Conclusion

We have shown for a specific case that the outputs of a backpropagation network are direct

éstimations of a posteriori probabilities. Therefore, this neural network model has the

game computational power as the Bayes decision rule. Empirical results obtained in real

world handprinted characters recognition experiments showed that these twoclassifiers

have compatable performances, A finer comparison would require a detailed analysis of
the nature of input data, It is expected that if the input components are statistically
independent, the Bayes classifier will be optimal. However, if any dependence exists
among input components, backpropagation is likely to out-perform first order Bayesian

classifier. Normally the limitation in computing time and space hinders higher order

approximation of probability density functions. On the other hand, many techniques
have been developed to mitigate the difficulties encounted in training a backpropagation.
Under the circumstance, the neural network approach is a very promising alternative to
Bayesian classification.
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1. INTRODUCTION .

Pattern recognition is an essential part of any high level computer vision sys-
tem. Such systems are now in use in many diverse fields, among them robotics, mili-

tary reconnaissance, remote sensing, document processing, and industrial automa-

tion. Recent developments in thefield of artificial neural networks (ANN) have pro-
vided potential alternatives to the traditional techniques of pattern recognition. An
ANN is composed of many simple nonlinear computational elements operating in
parallel and arranged in patterns reminiscent of biological nervous systems. These
nonlinear elements which are the building blocks of the network play the same role
as the neurons in the brain and thus are usually called "neurons" or "nodes". The
nodes are interconnected via weights that can be adapted and changed aecording to
a, given situation, analogous to synaptic connections to neurons in the brain, It
should be noted that while ANNs are inspired from studies of biological systems,
they are far from mimicking functions of the human brain. The view taken in this
study is that an ANN is a self-consistent model and does not require the correctness
of neural theory to validate its operation, It is only inspired by the tremendous
potential, highly parallel operation, and fault tolerant nature of the br ain, and is not
constrained by the exact details,

ANNs are capable of many functions, among them optimization, clustering,
mapping, and classification. In this study, the net is utilized in the context of a
supervised classifier, This is a decision making process which requires the net to
identify the class or category which best represents an input pattern. It is assumed
that the net has already adapted the classes it is expected to recognize through a
learning process using labeled training prototypes from each category. There are
many traditional techniques fo solution of this problem. One of the contributions
of this chapteris to show the advantages of an ANN classifier over some of the con-
ventional recognition algorithms,

In this chapter, two specific image recognition problems namely,classification of
two-dimensional shapes and texture recognition are addressed. The focus of the
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study is on images containing a single shape or a single kind of texture. Images cop.

taining several objects or those composed of several regions with different texture can

first be divided into several single shape/texture images. Description of several image

and texture segmentation techniques could be found in [6], [12], and [13].

The key step in any classification problem is to represent an image with a set of

numerical features (a feature vector) whose dimension is much lower than theorigi.
nal image data. This removes redundancy from the data and drastically cuts the

computational cost of the classification stage. In a recognition application, the most

important criterion for the extracted features is that they must retain much of the

useful discriminability information present in the original data. Selection of "good"

features is a crucial step in the process since the next stage only sees these features

and acts upon them. "Good" features are those satisfying two requirements. The

first one is small intra-class invariance - slightly different shapes with similar general

characteristics should have numerically close values. The second one is inter-clasg

separation - features from different classes should be quite different numerically,

Additionally, a flexible recognition system must be insensitive to parameters such as

orientation of the object/texture, and scale and location of the object in the field of

view. If the features that are extracted from the imageare invariant to such param-

eters, the classifier is relieved from the difficult task of handling these variations,
This is the approach taken in this study. In the case of shape recognition, rotation,

scale, and translation invariant features recently developed by the authors [14],[15},

[17] are utilized. They are based on a set of complex moments of image termed as

"Jernike Moments". For the texture classification problem, random-field model

based rotation invariant features also developed by one of the authors [10] are used
to characterize the image.

 

The neural network classifier used in this study is a multi-layer feed-forward

ANN which is typically called a “Multi-Layer Perceptron" (MLP), The input to this

net consists of the features extracted from the image. It produces the class label of

the input at its output. Many aspects of the performance of this ANN are experi

mentally studied. They include: (1) comparison with performances of two other

conventional classifiers namely the minimum-mean-distance, and the nearest-

neighbor, (2) effect of changes in the net parameters, (3) noise tolerance, and (4) fault

tolerance. These studies are carried out using two binary shape databases consisting

of a 26-class data set of English characters and a 10-class data set of handwritten

digits. Texture recognition is studied using a 12-class gray level database of natural

textures.

The organization of this chapter is as follows. Section 2 discusses the Zernike

moment-based shape features and their invariance properties. Random field-based

texture features are considered in Section 3. In Section 4 the MLP classifier andits

learning rule are described. The two conventionalclassifiers are discussed in Section

5. Section 6 reports the experimental results on the shape databases. Texture

classification results are presented in Section 7. Some discussions and concluding

remarks are presented in Section 8,
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9, ZERNIKE MOMENT FEATURES FOR SHAPE RECOGNITION

In [22], Zernike introduced a set of complex polynomials which form a complete

orthogonal set over the interior of the unit circle, i.e. x?+y"=1, Let the set of these

polynomials be denoted by { Vam(x.y) }. The form of these polynomialsis :

Vom(%¥) = Vim(P,9) =Ram(e)exp(jmA) (1)

where

nt positive integer or zero

m: positive and negative integers subject to constraints n—[m | even, [m [<n

p: length of vectorfrom origin to (x,y) pixel

6: angle between vector p and x axis in counterclockwise direction

Rym(0}: radial polynomial defined as  
  

 
a-|m|

_ 2 (=1) [ (a=s)! ] ptRum(?) X 5! (eatin |—s)! (ciel —s)! .

a

Note that Ry—m(?) = Ram(e).

These polynomials are orthogonal andsatisfy

f [Vimly)] Voal%¥) dxdy =
xby?<l

T

n+1 bap Sing (2)

with

1 3= b

bab = O otherwise

Zernike moments are the projection of the image function onto these orthogonal

basis functions. The Zernike moment of order n with repetition m for a digital

image, f(x,y), that vanishes outside the unit circle is

n+l
A... ==nm T
 

“> £(x,y)Viim(08), x?ty*<1 (3)
xy

To compute the Zernike moments of a given image, the center of the image is taken

as the origin and pixel coordinates are mapped to the range of unit circle, i.e,

x4y2<1, Those pixels falling outside the unit circle are not used in the computation.
Also note that Avy =A,

The features defined on Zernike moments are derived by using rotational

properties of these moments, Consider a rotation of the image through angle 6. The

n,m’
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relationship between Alin and Aam, the Zernike moment of the rotated image and

the unrotated oneis [20]

Aim = Anmexp(—jm8) (4)

This relation shows that Zernike moments have simple rotational transformation

properties; each Zernike moment merely acquires a phase shift on rotation. This

simple property leads to the conclusion that the magnitudes of the Zernike moments

of a rotated image function remain identical to those before rotation. Thus lnm I

the magnitude of the Zernike moment, can be taken as a rotation invariant feature

of the underlying image function. Note that since A, —in=Athen

[Aum |= |Anin |, thus one can concentrate on lAum | with m=O as far as the

defined Zernike features are concerned. Table 1 lists the rotation invariant Zernike

features and their corresponding numbers from order zero to ordertwelve.

Table 1
Order zero to order twelve Zernike moments whose magnitudes can be used as
features.
 

 

Order Moments No.of
Moments

0 Ago 1
1 Ay 1

2 Ago, Avg 2
3 31, As3 2
4 40> Ags, Ags 3

5 51s 4453) 455 3

6 Ago: Age; Aga, Ags 4

7 71 73, Ags, Azz 4

8 80> Ago; 84) Age; Agg 5

9 91> 4493) 4495, 4497) “499 i)

10 Ajoo. A1o,2, A104, Aros, Ajos, A1o,10 6
ii ip 11,3) “411,55 Ain7, Aug, Au 6
12 12,0 A1g,2, A1a4, Atos, Ars, Are,10 Ayo12 7    

This rotation invarianey property is illustrated by an experiment. Fig. 1 shows

a 64 X 64 binary image of character "A" and five rotated versions of it, with rotation

angles of 30°, 60°, 150°, 180°, and 300°, respectively. Table 2 is the list of the

magnitudes of their Zernike moments for orders two, and three, their respective

sample mean, #, sample standard deviation, o, and o/ %, which indicates the

percentage of spread of the |Aum | values from their corresponding means. It is

observed that rotation invariancy is very well achieved since a/y % values are very

small. The reason for not obtaining exact invariances (i.e. o/4 = 0 %) is that image

function is digital rather than continuous.  
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Table 2
Magnitudes of some of the ZernikeA ed v moments for rotated images shown in
Fig. 1 and their correspondingstatistics

b- Vv Angle

=

|Aso| |Ago} [Agi | [Agg |

; 0° 43962 4179 5797 17257     
30° 43670 4020 6382 17196
60° 44063 4008 6628 16941
150° 43853 4155 6547 17083. 180° 43901 4685 6239 16847Figure 1. The images of character 300° 48843. «3919 +=8577-—«170 84"a" and five rotated versions of it. b 43882 4161 6362 17068From top left to right rotationangles o 132 274 312 153are: 0 , 30° , 60° , 150°, 180° , and of % 030 657 490 090

300° .

  
   

The proposed Zernike features are only rotation invariant. Td achieve scale and
translation invariancy, the image is first normalized with respect to these
parameters, The Zernike features are then extracted from the seale and translation
normalized images, The scale and translation normalization is carried out using the
regular moments of the image. The (ptq)th regular momentof a unitcircle mapped
image is defined as:

+1 +1

Dog = » xP ya f(x,y) (5)
x=~-l y=-1

Translation invariancy is achieved by moving the origin to the centroid of the shape.
This means that the image is transformed into a new one whose first order moments
Mp, and myg are both equal to zero. This is done by transforming original f(x,y)
image into f(x + x,y + ¥) image where ¥ and y are the centroid location of the
original image computed as

. M9 —_ Mox=— y= —— , (6)
Moo Moo

Scale invariancy is accomplished by enlarging or reducing each shape such that
its zeroth order moment, Moo, is set equal to a predetermined value, 8. This task is
achieved by transforming the original image function, f(x,y), into a new function

xX y
(= +},7
aia

1

with a=( 2 )? [17].
00

 

In summary, an image function, f(x,y), can be normalized with respect to scale
and translation by transforming it into g(x,y), where
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eat (x4. Fee
g(x,y) =f ( x+ a ? y+ a )

(7)

Fig. 2 shows six 64x64 scaled and translated images of character "A" along with

their scaled and translation normalized versions using 6 = 800.

A\a| |AIA
visi FN

AA AA

Figure 2. Six scaled and translated images of character "A" along with their scaled

and translation normalized versions using G=800.

 

 

 

 

 

 

      
 

 

The scale and translation normalization process affects two of the Zernike -

features, [Ago | and [Ay |. [ool =2 and |A,,| = 0 forall the normalized

images [14]. Therefore, these two moments are not included in the set of features”

utilized in the classification experiments and only those of second order and higher

are considered.

3. RANDOM FIELD FEATURES FOR TEXTURE RECOGNITION

The textural features introduced in this section are invariant under rotation or

gray scale changes. Two types of noncausal random field models are used. to.

characterize the spatial interactions among neighboring pixels which give rise to the.

notion of perceived texture. The fist kind of models is called Circularly-Symmetri

Autoregressive (CSAR) [10]. Let {g(x,y); x, y = 9, 1, -., M-1} be gray-level values 0.

a discrete MXM image with the top left of the image at (x=0, y=0) and the botto

right at (x=M-1, y=M-1) and with x and y axes representing vertical and horizont

directions, respectively. It is assumed that the sample mean of this image is zero.

g(x,y) obeys a CSAR modeldefined overa MxMtoroidal lattice then;

 

g(x,y) = > > a(x @ i,y @ i) + v(x,y) (8)

(i,j)eNe  
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a where

_ V2 V2 V2 V2
N, = {(0,1), (0,1), (1,0), (1,0), (> =) (— “9°? — >)

(2, _ v2) — v2 M2 i.e. a circular neighbor set containing
2 2 2

eight symmetric coordinates as listed; N, is shown in Fig. 3.

(-1,0)
(-1,-1) ¥ hy)

 

(0,3) ‘ (0,1) 

 

   (L-1) (11)
(1,0)

- Figure 3. Relative spatial locations of the eight members of the circular neighbor

set: N, «

ge Coefficient of the model characterizing the dependence of g(x,y) to those

in its N, neighborhood.

e= addition modulo M. Acts like an ordinary addition except at those (x,y)

points located on or near the edges of image for which a complete

neighbor set cannot be found. In this situation, G operation causes a

wrap around(torus lattice) effect and creates a full neighbor set for each

pixel.

_vxy)= A correlated sequence of identically distributed random variables with

zero mean and variance of v characterizing fluctuations and noise in the

model.

_ Thus, each pixel intensity is modeled as a linear combination of eight other

quantities plus a noise term. Four out of the eight are actual gray levels of the 4-

connected neighbors of (x,y) pixel. The four other ones correspond to locations

which do not fall on the grid corners of a digitized image. Each of these four

quantities are computed as a linear combination of the gray level of its four nearest

grid corner surrounding it. For instance, the value associated with

—-V2
x & za B SS coordinate is computed from g(x,y), g(x,y+1), g(x-lyt1)

and g(x-l,y). The interpolation scheme works as follows. Let (t, tg) be one such

coordinate. Then 
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l 4

g(ty, ty) = 4 » di gj
Xs d, i=1

i=l

  
  
   
   

   

 

  

   

 

   

   

where gj is the gray level of one of the four grid corners surrounding (tj, tg) and dij
. . . 1

the inverse Euclidean distance between (t,, tp) and that corner.

Characterization of a texture by CSAR model requires that its parameters (6, v

be estimated. A least-squares estimation scheme developed in [10] is used to obtaj
these estimates denoted by (¢, /). One can interpret @ as the degree of isotropy 4
the texture and & as the degree of its roughness. A useful property associated wit

the CSAR parameters is their rotation invariance. Since they are obtained using

circularly symmetric neighborhood, they are insensitive to the orientation of ‘th

underlying texture. Fig. 4 shows seven differently oriented images of raffia texture

In the first two columns of Table 3 the estimated (¢, /) parameters and the
corresponding statistics are shown. These entries confirm the rotation invariance

property. :

Table 3
Statistics of texture features for
differently oriented images of

 

 

Fig. 4.

Angle d Lp

0° 1344. 4757
30° 1326 .4834
60° 1326 .4733
90° 1328 .4802
120 1329 4796
150° 1329 4785
200° .1339 4755

UL 1332 .4780
oC 0007 .0084

ofu% 5 1.8

 

  
Figure 4. A 64x64 digitized sample of
each of the seven orientations of raffia
texture. From top and from, left to
right: 0°, 30°, 60°, 90°, 120°, 150°,
and 200°,

In addition to these two features, a third one is developed. Neither $ nor

could capture information about strong directionality that is present in some.

textures. This is the task of the third feature termed & It is obtained by fitting

different random field model to the image. This model is called "Simultaneous.
Autoregressive (SAR)" [7], [8] and is expressed as

e
e
C
D
e
e

e
r
e
e
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g(oy) = x Gi.) 8% Diy © i) + oy) (10)
(ie

where N is a neighbor set which includes only integer coordinates (i.e. grid corners)

excluding (0,0), %,) = %i-;), and {w(-}} is a sequence of iid. Gaussian random
_ yariables with zero mean and variance of py. Thus, the SAR modelrelates the gray

level of @ pixel to those in its neighborhood, N, through @ parameters. The noise

term added to this linear combination accounts for fluctuations throughout the

Image. The model parameters are {9jy} and py. The maximum likelihood

estimates of these parameters are computed by a method described in [8] and [16].

: é is computed as a function of the estimated @ parameters of two different SAR

models. The first one is a model which characterizes g(x,y) as a function of the
- gray-levels of its 4-connected neighbors. . In other words, it uses

N, = {(0,1), (O,—1), (1,0), (—1,0)}. Let @ (9,1) and (19) be the ML estimates of the

corresponding parameters of this model. The second model relates g(x,y) to those of

its: diagonal and off-diagonal neighbors. This is done using
N, = {(L,1), (1), (~1,1), (—1,—1)}. Let Fas and Fa-y* be the ML estimates of

this model. Then € is defined as:

€ = max[ 140) — Foayb 1ar - %a-y Ul (11)

&can be interpreted as the maximum extent of variation of the underlying texture in

the [horizontal, vertical] (captured by the first term) and [diagonal, off-diagonal]

(captured by the second term) directions. Thus it is a measure of directionality. For
highly directional textures € is large and vice versa.

€ is also rotation invariant. The third column of Table 3 shows the computed

values of € corresponding to seven differently oriented raffia images. These entries

show little variation among € values.

To summarize, a textured image is represented by three features d, v, and €.

The utilized classifiers process these features to carry out their decision making task.

4. MULTI-LAYER PERCEPTRON CLASSIFIER

In this study a neural network topology known as ‘Multi-Layer Perceptron”’ or

MLP is used. A MLP is a feed-forward net with one or more layers of nodes between

the input and output nodes. These in-between layers are called hidden layers. A

MLP with one hidden layer is shown in Fig. 5. Connections within a layer or from

higher to lower layers are not permitted. Each node in a layeris connected to all the

nodes in the layer above it. Training is equivalent to finding proper weights for all

the connections such that a desired output is generated for a corresponding input.

Using MLP in the context of a classifier requires all output nodes to be set to zero

except for the node that is marked to correspond to the class the input is from.

That desired output is one. In this study, the inputs are either the Zernike moment
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Output

 

Input

Figure 5. A Multi-Layer Perceptron (MLP) with one hidden layer.

     

  

 

  

   

  
  

features or the random field features extracted from the image to be classified.

MLPs were not used in the past because of the lack of effective training.

algorithms for them. This has recently changed due to development of an iterative.

gradient procedure known as ““Back-Propagation Algorithm” [19]. According to this

algorithm which is outlined next, for each pattern in the training set, learning proper

weights is conducted by (1) computing the discrepancy between the desired and.

actual outputs, and (2) feeding back this error signal level-by-level to the inputs, -

changing the connection weights in such a way as to modify them in proportion to

their responsibility for the output error. The major steps of the algorithm are’as_

follows:

 

Step 1 Initialize all w,s to small random values. wi, is the value of the connection.

weight between unit j and unit i in the layer below.

Step 2 Present an input fiom class m and specify the desired output. The desired

output is O forall the output nodes except the mth node which is 1.

 

Step 3 Calculate actual outputs of all the nodes using the present value of wi

The output of node j, denoted by y; is a non-linear function of its total

input:

1 (12).
y, = ———__.—_.

1 1+ exp(-) vi wij)
1

This particular non-linear function is called a "Sigmoid" function.
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step 4 Find an error term, 6, for all the nodes. If d; and y; stand for desired and

actual values of a node respectively, for an output node

6, = (dj-yj) yj (yj) (13)

and for a hidden layer node

§ =vy) AWjac (14)

where k is over all nodes in the layer above nodej.

Step 5 Adjust weights by

w,(n+l) = wiy(n) + o 6 ¥, + 7 (wi(n)—w(a—-1)) (15)

where (n+1), (n), and (n-1) index next, present, and previous respectively.
ais a learning rate similar to step size in gradient search algorithms. ~y is a

constant between O and 1 which determines the effect of past weight

changes on the current direction of movement in weight space. This

provides a kind of momentum that effectively filters gut high-frequency

variations of the error surface.

Step 6 Present another input and go back to step 2. All the training inputs are

presented cyclically until weights stabilize ( converge ).

It has been shown that a MLP with at most two hidden layers can form any

arbitrarily complex decision region in a feature space [18]. However, no specific rule

for selection of the numberof nodes in the hidden layers has yet been developed.

5. CONVENTIONAL STATISTICAL CLASSIFIERS

To be an acceptable alternative to traditional classifiers, the ANN must either

outperform or at least do as well as them. In this study, two popular non-parametric

statistical classifier were selected for comparison of their performances to that of the

suggested ANN. These twoclassifiers are briefly discussed here.

The first one is the nearest neighbor rule. When an unknown sample

X= [x),xXo,°"* ,Xpl, x} being one of the n utilized features, is to be classified, the
nearest neighbor of X is found among the pool of all the M available training

samples from the C considered classes andits label is assigned to K . When number

of training samples are large, the probability of error for the nearest neighborrule

has an upper bound of twice the Bayeserror [3].

The distance between X and a training sample is measured using city block
distance. This is a mapping from the n-dimensional feature space to a one

dimensional distance space. However, since the feature vector components have

different dynamic ranges, it is possible for one or a subgroup of them to dominate

the distance measure. To prevent this from happening and in order to equally weight
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distances between each component of feature vectors, the distances need to he

normalized. The normalization consists of dividing by summation of the standarg
deviations of the corresponding component for all the C classes. Le

t.==[tystig” ' stk,] denote the k th training feature vector, k=1, .. , M. The

unknowntestt sample X is classified to class i* , where

i? = {class of 6; | d(X,t;) < d(X,t,), k=l, +--+ M } (16)

and

n | xX tien |

dX t)= 4

|

— (17)
mr yy of

i=1

with of representing the sample standard deviation of the m th element of the n-

dimensional training feature vectors of class i.

The second considered classifier is a weighted minimum mean-distance rule. It

characterizes each category by means and standard deviations of the components of

its training feature vectors. The weighted distance between an unknown sample X

and the mean of the features of class i, d(X, i), is then measured. The weighting

factor is again the summation of the standard deviations of the respective

component. The unknown sample is then classified to class ii* for which such distance

is minimum, i.e.

=Min, d(X,i) i=1,2,°°°,C (18)

and

: a | Xm tmnt |
dX i)= G (19)

my Sal

with 4) representing the sample mean of the m th element of the n-dimensional

training feature vectors of class i. Again, weighting by the sum of the standard

deviations is to balance the effect of all m feature vector components on distance d.

6. EXPERIMENTAL STUDY ON SHAPE CLASSIFICATION

In this section, the results of application of the MLP neural network classifier to

two shape databases are reported. For one of the shape databases the performance 
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  on noisy images with varying SNRs are also examined. In addition, the two

described traditional classifiers are applied to each of the considered problems and

their performances are comparedto that of the ANN.

6.1. Description of the Shape Databases

The first shape database consists of 64 x 64 binary images of all twenty-six
upper case English characters from "A" to "Z". Twenty-four different images from
four slightly different silhouettes of each character are generated (for a total of 624).

The set of twenty-four images per character consists of six images with arbitrary

varying seales, orientations, and translations from each of the four considered

silhouettes per character. Fig. 6 shows the twenty-four images of character "A". In
Fig. 7 the four silhouettes of each of the other characters are shown.

In addition to the above noiseless imageset, five other sets of noisy images with

respective SNR of 50, 25, 12, 8, and 5 dB are also constructed from the normalized
images of the noiseless set. This is done by randomly selecting some of the 4096

pixels of a noiseless binary image and reversing their values from 0 to 1 or vice verse.

The random pixel selection is done according to a uniform probability distribution

between 1 and 4096. The SNR is computed using 20 logEE, where L is the

number of pixels which are different between a noisy image and clean version. Fig. 8
shows one image of character "A" with different SNRs.

The second shape data set is an extensive handwritten numeral data set

obtained from Recognition Equipment Incorporation. These data are gathered from

3000 forms from a United States government agency. It has approximately 86000

characters with size 32 x 24 written by approximately 3000 people selected at

random from general public. Fig. 9 shows four characters perclass of this data set.

6.2. Data Partitioning

An important parameter in any pattern classification problem is the estimation

of the classification error. To compute it, the available samples are divided into two

sets, one for training, and one for testing. For English character experiments, three

cases are considered. In the first case, the available samples from each character are

divided into halves such that each half contains images of each silhouette. The first

half is then used for training and the second half for testing. Therefore, there are 12
training images and 12 testing images per character.

In the second case, the training is limited to four unrotated images per

character. These fourare the four different silhouettes of each character(i.e. images
shown in Fig. 7). The remaining twenty images perclass are used for testing. This
way, the classifier does not see the rotated, translated, and scaled versions during
learning but has to deal with them during testing.

In the third case, the 12 images of only two silhouettes per character are used
for training and the remaining 12 per character which are from the other two
silhouettes are tested. This way, the classifier does not see all silhouettes of each
character during training but has to deal with them during testing.
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Figure 6. The twenty-four scaled, Figure 8. One sample of image of

translated, and rotated images of character "A" with different levels

character "A" in the data set. Note of noise. From top left to right are:

the slight variations in shapes of noiseless, 50, 25, 12, 8, and 5 dB.

the images shown in the first

column.
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Figure 7. Four out of the twenty-four images of letters "B" to "Z" in the data set.

The remaining twenty images per character are rotated, scaled, and translated ver-

sions.

In experiments with noisy images, the classifier is trained with noiseless image

and tested with the noisy ones. Therefore, no noisy images are used for training.

For the handwritten numeral character experiments, a training set of 1325 
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Figure 9. Four samples of each of the 10 handwritten numeral characters in the
database.

                    
  

images was generated by selecting 1325 characteis of each numeral at random from

database. A test set of 3300 characters was created by randomly selecting 330
characters of each numeral from the remaining characters in the data base. Thus,

the training set is separated from the test set.

The estimation of the erro: 1ate is done by finding the ratio of the number of

misclassified testing samples to the total number of tested samples,

6.3. Results

Utilizing Zernike moment features requires the selection of the maximum order,

ie., the highest n. Two different synthesis based methods for doing so are presented

in [14],[15]. Using those procedures, it was decided that up to 12th order Zernike
moments are required for the considered data sets, That means that 47 Zernike

features are utilized (see Table 1)

The selected value of parameter @ for English character database and

handwritten numeral characters is 800 and 150 respectively.

The selected parameters for the MLP classifier are as follows: initial weight

assignment randomly selected from [-0.5, 0.5] interval, step size w= 0.2, learning
tate y = 0.7. The numberof input nodes is 47, the numberof output nodes is 26 for

the case of English characters and 10 for the case of handwritten numeral characters,

and finally, the number of hidden layer nodes are varied from 5 to 200 in unequal

increments for some cases, Instead of testing for convergence of the weights, 500

passes over the training set is used for all cases.

The MLP and the back-propagation rule were simulated on a SEQUENT

SYMMETRY S81 MIMD parallel computer utilizing 6 processors each performing 3

MIPS. The learning for the case of 47 inputs, 50 hidden layer nodes and 312 training

_ samples took around 65 minutes.
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The training features are normalized to have zero mean and unit variancebefgy,
being input to the MLP. This is necessary in order to ensure that a subgroup ofth

features do not dominate the weight adjustment process during training. The m ¢

feature is normalized by

where ton and Oty, BFE the sample mean and standard deviation of the m th training

features of all samples. During the testing phase each test sample is also normalized.

in a similar manner. :

Fig.s 10 to 12 show the performances of the MLP as well as the other tw

classifiers with varying numberof hidden layer nodes on the noiseless and noisy data.

sets for the three different data partitioning schemes considered. The MIP.

performance is shown as a function of the number of utilized hidden layer nodes,

The obtained classification accuracy rates using the other two classifiers are shown jn.

the form of legends with NM and MM standing for the nearest-neighbor and the

minimum-mean-distance classifier respectively.

These results indicate that in all three cases, the performance of the nearest
neighborclassifier and the MLP are very close to each other for images that are not.

very noisy. However, for SNR of below 12 db, the MLP performs better. In all the.

cases, the minimum-mean-distance classifier yields the lowest accuracy rate. One

other point to be noted is that in nearly all the examined cases, a numberin the

range of [20,50] for hidden nodes gave the best (or very close to best) classification

accuracy. Utilizing larger than 50 hidden nodes did not alter the results.

significantly, especially for high SNR images.

For the experiments dealing with the handwritten numeral characters, 50.

hidden layer nodes are used for the MLP classifier. The obtained accuracy rates are

83.8%, 83.45%, and 58.31% for the MLP, nearest-neighbor, and min.-mean-distance
respectively, Considering the large amount of variations and distortions within.

samples of each class and noting that the Zernike features are global statistical ones,

the obtained results are actually quite good. Combining Zernike features with other

topological features which capture local structure of the image will certainly improve.

the recognition rate,

6.4. Fault Tolerance

One of the advantages of the neural networks is that the processing is

distributed among many nodes. This provides a good degree of fault-tolerance and

graceful degradation to the system. Even if some of the nodes fail to function

properly, the effect on the overall performance of the system will not be much. This.

assertion was examined by turning off m randomly selected hidden layer nodes and

observing the resulting effect on the system performance.
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Fig. 10. Classification results of the
English characters database using 47

_ Zernike features. Twelve images per
class (three from each of the four
silhouettes per class) are used for

training and the remaining twelve for
NM and MM stand for

and
mean-distanceclassifiers, respectively.

minimum-

Fig. 11.

No. of hidden foyer nodes No of hidden fayer nodes

Classification results of the
English characters database using 47
Zernike features. Four images per
class (one from each of the four
silhouettes per class) are used for
training and the remaining 20 for
testing.
nearest-neighbor
mean-distance classifiers, respectively.

NM and MM stand for
and minimum-

The MLP with 30 hidden layer nodes using the first data partitioning method

was considered for this purpose. After training the net with all 30 nodes functioning,

the classification of test images was carried out with m of the hidden nodes not

functioning (i.e. their output were set to zero); m was varied from 1 to 20 in
increments of one and for each m,fifteen different combinations of m out of 30 nodes

were considered. The result is plotted in Fig. 13 which shows a very graceful

_ degradation of the performance.
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Fig. 12. Classification 1esults of the
English characters database using 47
Zernike features. Twelve images of
two silhouettes per class are used for
training and the remaining twelve
from the other two silhouettes for
testing. NM and MM_ stand for
nearest-neighbor and minimum-
mean-distance classifiers, respectively.

7, EXPERIMENTAL STUDY ON TEXTURE CLASSIFICATION

A similar approach to the one described in the previous section is taken toward

the study of texture recognition. Each gray-level textured image is represented by.

three rotation invariant real-valued features. The MLP and the other two classifiers

only see these features and act upon them. In the following sections, the utilized.

database and the obtained results are reported.

7.1. Description of the Texture Database

A database consisting of twelve different natural textures, all taken from

Brodatz [1] (a photo album which has become a standard data source for texture
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researchers) is constructed. Seven differently oriented 128X128 images with relative
angles of 0°, 30°, 60°, 90°, 120°, 150° and 200° are taken from each texture. Each

image has a (0-255) gray level range. Each 128x128 image is then segmented into
four 64x64 imagesresulting in 28 samples for each class. A 64x64 0° oriented sample
of each texture is shownin Fig. 14.

 
Figure 14. A 64x64,0° digitized sample of each texture of database. From left to
tight: first row: calf leather, wool, sand; second row: pigskin, plastic bubbles, her-
ringbone weave; third row: raffia, wood, grass; fourth row: straw, brick wall, bark
of.tree. 
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To 1emove the vauiability caused by differences in illumination, each 64X64

image is, first histogram equalized. Next, the histogram equalized image is

normalized to have ze1o empirical mean and unit empirical variance. In other words.
each pixel value is replaced by .

4 (21)

where ft, and o, are the sample mean and sample standard deviation of ‘the

histogram equalized image and gy is the pixel value of the normalized image. Note

that gy is no longer an integer and is not in the (0-255) range.

7.2. Data Partitioning

Several data paititioning schemes are considered. In the first case, the available

samples are divided into two halves, one for training and one for testing. The

division is in such a way that each half contains 14 samples from each class. These
14 samples consist of two samples from each of the seven orientations. Thus, the

classifier "sees" instances of each texture at each o1ientation. In this scheme there are

168 tiaining and 168 test samples. In the rest of the considered cases, the classifier js

tiained on samples fiom three out of the seven orientations and tested onthe

samples from the remaining four orientations which it has not seen during training,

Thus, there are 144 training and 192 test samples for each of these cases.

7.3. Results

The only difference between the topology of the utilized MLP in this case and

the one discussed fo: shape recognition is in the numberof input and output nodes,

For this application, only three input nodes corresponding to 9, %, and € are needed,

The number of output nodes is also reduced to 12. The numberof hidden nodesis

fixed at 20. The parameters of the learning rule are kept the same.

The obtained results for the MLP and the other two classifiers are shown in

Table 4. Again, note that on the average the ANN does better than minimum-

mean-distance classifier and about as well as the nearest-neighbor.

8. DISCUSSIONS AND CONCLUSIONS

In this chapter, the effectiveness of a feed-forward fully connected multilayer

ANN fo supervised classification of two-dimensional shape and texture was studied.

The ANN was viewed as a new classification tool operating on features extracted

from the images. For shapes, a set of scale, rotation, and translation invariant

features based on the Zernike moments of the image was introduced. Fortextures,

three random field model-based features which are rotation invariant were discussed
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fablet ; ;
Texture classification results using all three classifiers and different data partitioning

. schemes.
 

[ Orientation of Orientation of |Recog. Rate Recog. Rate Recog. Rate

Training Samples Test Samples MLP Nearest-Neig Min.-Mean

 

[All seven All seven 93 93 91
| 9.30,60 90,120,150,200 91 94 87

30,60,90 0,120,150,200 92 92 88
_ 60,90,120 0,30,150,200 88 91 88

| 90,120,150 0,30,60,200 93 93 89
| 120,150,200 0,30,60,90 88 92 86

| 0,60,120 30,90,150,200 92 93 91
| 30,90,150 0,60,120,200 91 92 90
| 0,90,200 30,60,120,150 87 85 90

0,150,200 30,60,90,120 93 90 91
30,150,200 0,60,90,120 89 90 - 90

Average 90.4 91.2 89   
The ANN classifier and two other conventional classifiers namely the minimum-

mean-distance and the nearest-neighbor rule were trained and tested with similar

data. and thei: recognition accuracy rates were compared. The conclusion that is

_yeached is that the MLP does better than the minimum-mean-distance and performs

very similar to the nearest-neighbor for clean images. However, as noise is

introduced into the images, the ANN becomes a muchbetteralternative. This is due

to the generalization ability of the ANN.

. A point that needs to be stressed when comparing the ANN and the nearest-

neighbor rule is the computational complexity. The main computational

“requirement of an ANN is during its training phase which can usually be performed

offline. The difference in the computational demand of a trained ANN and the

‘nearest-neighboris striking. Take the example of recognition of a handwritten digit

_pepresented by 47 features as discussed. A trained MLP with 50 hidden nodes makes

a decision by performing 2,910 (48X50 + 51X10) multiplications, 2,910 additions, 60

sigmoid transformations and 10 comparisons. On the other hand, the nearest-

neighbor classifier must search among all the 13250 training images. Each image

comparison roughly requires 47 subtractions, 47 additions and 47 divisions or 141

operations. This translates into a total of 1.9x10° operations for the entire database.

_ Then, 13250 comparisons are needed to reach a decision. This represents several

hundred times more computation compared to the ANN. Thus, it can be concluded

_ that regardless of the noise level, the ANNclassifier is a better choice over the other

two classifiers.
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Of course, the main difficulty with the MLP is the absence of a systematic
method for selection of the appropriate number of hidden nodes. However, as the

empirical results indicate, there seems to be a threshold for such a number beyong

which the performance is not altered significantly. The other problem is the slow

rate of convergence of the back-propagation learning rule and the fact that it does

not guarantee a global minimum when searching for the best weights.

In summary, the presented material in this chapter shows that the neupaj

network can serve as a good alternative to the considered conventional classifiers. [fp _

the data is noisy or the number of training samples are large, it becomes the best

choice.
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Neural Networks for Textured Image Processing

J. Ghosh and A C. Bovik
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_ Abstract
We review key conventional and neural network techniques for processing of textured

images, and highlightthe relationships among different methodologies and schemes. Texture,

which provides useful information for segmentation of scenes, classification of surface

materials and computation ofshape, is exploited by sophisticated biological vision systems for

image analysis. A brief overview ofbiological visual processing providesthe setting for this

study of textured image processing. We explain the use of multiple Gaborfilters for

__ segmentation of textured images based on locally quasimonochromatic image texture model.
This approach is compared to the functioning of localized neuronal receptive fields.

____ Cooperative neural processes for perceptual grouping and emergent segmentationare reviewed

next, and related to relaxation labelling. The recently developed SAWTAneural network for

texture-based segmentation is then presented Finally, techniques for describing and
processing texture as a constrained optimization problem areoutlined.

1. INTRODUCTION

In order to visually reconstruct the world that projects itself as an image on a 2-D surface,

__one needsto not only analyze the image but also have a model ofthe nature ofthat world and

__ of the imaging process. A plausible model might assume, for example, that objects are rigid,

surfaces are smooth and boundaries are continuous. Optical illusions are perceived when the

___ assumptions underlying our internal models about the imaged world fail However, almost

___ always we are unawarenot only ofthese internal models but also of the temendous amountof

__ computation needed for preprocessing and recognition of images, so that vision seems

___ effortless On the other hand, even the basic step of detecting edges poses a problem for

__ machine vision, since any kind of textured image gives a multitude of noisy edge segments with variations in reflectance and illumination [43]

The tremendous amountof research in image processing and computervision overthe past
three decades has been influenced not only by physiological or psychophysical discoveries and

psychological observations about perception among living beings, but also by advancesin

_ Signal processing, computational mathematics, pattern recognition andartificial intelligence

_ Someresearchersin the recently rejuvenated field of neural networks are also attempting to
develop useful models of biological and machine vision With the human visual system

__ Serving as a commonsourceofinspiration,it is not surprising that neural network approaches
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to image processing/ understanding often have commonalities with more traditional techniques,

However, they also bring fundamentally different elements of adaptation and learning, and

promise breakthroughs through massively parallel and distributed implementations in

VLSI[18]

In this chapter, we present both conventional and artificial neural network (ANN)

techniques for the processing oftextured images. The goal is not only to compare different

methodologies, but also to highlight the relationships among them so that more comprehensive

techniques incorporating the best of the diverse approaches can be developed. For our

purposes, an ANNis

a

collection of computing cells (artificial neurons) interconnected

through weight links (synapses with varying strengths). The cells compute asynchronously

and in parallel using information available locally or from topologically adjacent cells through

the weighted links. The knowledge of the system is embodied in the pattern of interconnects

and their strengths which vary as the system learns or adapts itself. This learning can be

supervised by an external "teacher" orthrough some local rule such as Hebb's rule [25].

Section 2 reviews the best accepted computational schemesfor detecting edges, and then

introduces self-organizing neural networksgiving rise to cells that are sensitive to particular

orientation and position of edges These neural networks use simple local learning rulesto yield

cell behavior similarto those foundin the striate cortex of mammals In Section 3, we examine _

different models of textured images and the corresponding paradigms for their analysis. A

localized filtering approach to texture processing thatis inspired both by its computational

properties and biological plausibility, is examined in some detail. Section 4 presents several

neural network modelsthat are pertinent to processing oftextured images, and compares them |

to those presented in earlier sections.

The interested reader can find a good coverage ofthe more conventional techniquesin

image understanding and machinevision in the texts by Ballard and Brown [4] and Horn [29], |

and in the collection of papers by Rosenfeld [51] and Fischler & Firschein [16]. .A

comprehensivelist of papers published annually on computer vision and image processing is

provided by Rosenfeld [52], and indicates the enormous amount of research in these areas.

Moreinterdisciplinary works include Arbib & Hanson [2] which provides a broad overview of

problems in vision from neurophysiological, psychophysical and computer science |

perspective. Theories of visual cognition are expounded in several books such as Pinker [50].

A good collection of seminal papers on neural networks can be found in Anderson &

Rosenfeld [1].

1.1 Biological Visual Processing.

Wefirst briefly outline key features of the mammalian visual system in order to define _

some terms and characteristics that are alluded to in the following sections Details can be _

obtained from Kandel & Schwartz [35] or Van Essen [54]

Asindicated in Fig. 1, visual patterns impinging on the retina are encoded and conveyedto

the visual cortex via the lateral geniculate nucleus (LGN) Processing takes place concurrently _

in all these three segments Theretina contains over 100 million photoreceptors, namely the _

rods and conesthat are sensitive to light intensity and wavelength (color) respectively Bipolar.

cells establish conduction lines from the rods and conesto the ganglion cells, while the

horizontal and amacrinecells establish inhibitory crosslinks among these conduction lines.

This results in each ganglion cell collecting the outputof a localized group of photoreceptors

that formsits receptive field. Ganglion cell receptive fields tend to have center-surround |

profiles such that a uniform illumination on the receptivefield elicits no response from a 
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Figure 1: The mammalian visual system [46]

ganglion, but some form ofcontrast does. The long axons from all the ganglioncells are

bundled togetherto form the optic nerve, which follows two separate pathwaysto the brain.

One leads to the superior colliculus in the midbrain, presumably for controlling eye

movements, while the other leads to the visual cortex via the LGN,

The visual cortex has been subdivided into several areas according to function and/or

neural structure. Each area is essentially a 2-D layered sheet of neurons. Interconnections

among the areas are invariably bi-directional. Area V1, also known as area 17 orthe striate

cortex, contains a more or less topographic map ofthe visual field, just like the LGN It

contains simple cells, complex cells and hypercomplex cells A simple cell fires at maximum

_ frequency in response to a small edge with a specific angular orientation and position in the

visual field. Its response falls dramatically for small shifts from this position, or for a change
of more than 20 degrees in orientation Complex cells, while remainingorientation sensitive,
are more tolerant to position changes, Hypercomplex cells have been observed to respond to

_ lime terminations and corners. These three types ofcells are believed to be organized in a
_ Toughly hierarchical fashion. A simple cell receives input from a group of LGN cells

Tesponding to the same edge; the receptive field of a complex cell is a group of neighboring

simple cells with the sameorientation preference, and a hypercomplex cell receives excitatory
_ input from some complex cells and inhibitory inputs from others.

Structurally, the cells of V1 are organized in a columnar fashion accordingto orientation
preference or eye preference. Cells lying in a column perpendicular to the surface ofthe cortex

are found to respondpreferentially to the same angular orientation and same eye. Moving from

One column to the next across the cortex, one finds that the preferred orientation changes

continuously, about 10 degrees every 50mm, and the eye preference alternates betweentheleft



136

and right eyes in an orthogonal direction

In the middle temporal area and the medial superior temporal area, neuronsare found tp

be highly selective to speed and direction of motion, However, they exhibit little or yg
sensitivity to shape or color. A columnar organization similar to the V1 is found exceptthatthe
cells are now grouped according to the direction of motion Thecells of the inferotemporaj__
cortex (IT) have very large receptive fields, and seem to besensitive to extremely complex _

shapes. For example,cells that respond selectively to the silhouette of a monkey's handorto
particular faces, have been reported

2. DETECTION OF EDGES IN COMPUTER AND HUMANVISION

An imageis a distribution oflight intensity values. An edge in an imageis characterized

by a rapid, sustained changein intensity as one traverses in a direction orthogonal to it. Thus

an edge can be described byits location, its direction (orthogonal to the local intensity

gradient), and its magnitude which is a measure ofthe intensity change Edgesare useful in
defining boundaries, characterizing texture, and for detecting shapes The detection ofedges

is central to image preprocessing in biological systems, wherein the retina, LGN andvisual

cortex seem to be actively involved in some forms of contrast enhancementoredge detection. _

In this section, we review the best accepted computational schemesfor detecting edges, and

then introduce self-organizing neural network models that lead to developmentofcells that are _

sensitive to particularorientation and position of edges These neural networks use simple local
learningrulesto yield cell behavior similar to those found in the striate cortex of mammals.

2.1 Edge Detection: Computational Techniques.

Most computational schemes for edge detection use operators for detecting gradient .

maximaofthe intensity surface [44] or for estimating the parameters of an assumed edge

model [24]. Since edges in actual images deviate substantially from ideal step discontinuitiés,

some form ofpostprocessing is required to eliminate the edges caused by noise andother _

effects. In natural images, edges can occurovera wide range ofscales or resolutions Marr _

and Hildreth showed that filtering an image with a Gaussian filter restricts the range of

resolutions over which intensity changes can occur while maintaining the spatial location of _

detected discontinuities in a near-optimal fashion. After an image has been Gaussianfiltered at __

several resolutions by adjusting the variance ofthe Gaussian function, the Laplacian operatoris

applied to detect intensity change maxima, indicated by the zero crossings in the output. The _

effect of the Gaussian function and Laplacian operator can be combinedto yield single

Laplacian of Gaussian or LOGfilter. An edge is indicated by a segmentof zero-crossingsthat

occurat the same positions for more than oneresolution.

In a quantitative model of humanspatial vision proposed by Wilson & Bergen [59], the

authors relied on neuroanatomical studies to suggest that the receptive fields in the fovea have

four different sizes for any point in the visual field, and that each receptive field has a profile

similar to a "Difference of Gaussian” or DOGfilter This filter is remarkably similar to the

LOGfilter. In an attempt to relate his model to the human visual system, Marr postulated that

the LGN computes the zero-crossings of a LOG filter while simple cells detect lines ofzero

crossings that indicate an edge.

The directional edge-detector of Canny [6] is also based on detecting the zero-crossings

of a 2-D Gaussian but is more computationally efficient than the Marr-Hildreth detectorasit is 
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able to combinethe differentiation and smoothing steps, andis less sensitive to noise.It is
_ interesting that the Gaborfilters that are describedin detail in Section 3, also haveattractive- properties for detecting certain types of localized contrasts in an image.

4.2 Development of Orientation-Selective Cells in Self-Organizing Neural

Networks.
Through their studies of the visual striate cortex (area 17) of the cat and monkey, Hubel

and Weisel [31,32] found neuronsthat are selectively sensitive to light bars and edges of a

certain orientation. They also detected "functional columns" in which neurons within a
column are sensitive to the sameorientation, and neighboring columnstend to respondto
stimuli ofsimilar orientation Malsburg [40] succeeded in developing a neural network model

that could evolve to exhibit behavior similar to those found experimentally by Hubel and
Weisel. This model consisted of a 2-D "cortical plane", containing excitatory (E) and

inhibitory (I) cells of uniform and equal density. The E cells had excitatory connections to
nearby E and I ceils, with connection strengths decreasing with distance, while the I cells
would inhibit E cells over a wider area. Bell-shaped functions were used to describe the
decreasing intracortical strengths with cell distance forboth cell types. The input image was

_ projected onto the “retina”, a plane ofA cells that wereinitially connected to thecells in the

__ cortical plane through synapses of random strengths. Only the connectionsafferent to the E

_ cells were modified using Hebb's rule [25] and renormalized so thatthe net strength of afferent
connectionsto a cell remained constant. In Malsburg's model,V,(t), the excitatory state of cell

k, evolves accordingto:

{Vy@=- a Vi) + YpyV,0 + YoAO.dt Fi ; qd)

_ where Si,Pj, are Connection strengths, A*(0) is the signal ofafferent fiber i The output

__ signal Vio {t) ofcell & is givenby:

VQ =Vit)-9,, if Vy) > O,;

= zero otherwise.
(2)

__ Note that Eq. 2 brings about a non-linearity that is essential for suppression ofnoise.
In one experiment, a retina of 19 cells was stimulated with lines at 9 different angular

orientations The cortex was a hexagonal arrangement of 338 E and 338 I cells For each input
line, the steady state responsesof the cells were noted The cells were then labeled with the
line orientation to which they responded most strongly. Figure 2 showsthe results after 100
learning steps. The bars indicate the responseorientation of each E cell. The dots markscells
which never reacted to the standard set of stimuli. Malsburg's results indicate that cortical
Organization is not genetically predetermined Theseresults are also commensurate with the
findings of dramatic experiments such as those conducted by Hirsh & Spinelli [26], who raised
kittens wearing goggles so that they could only see horizontal line segments in one eye and
Vertical line segments with the other A rewiring ofthe visual cortex took place so that cells
connected to the first eye only developed horizontal receptive fields, cells connected to the

_ Secondonly had vertical orientation, and the number ofbinocular cells that responded to both
eyes decreased dramatically
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Figure 2: View of Malsburg's “cortex” after 100 learning trials. The bars indicate the

orientation selectivity ofthe E-cells in the cortex [40]

A completely different and enlightening model proposed by Linsker[39] demonstratesthat

experience is not necessary to develop the edge-detection function of either LGN-typecells or

simple cells. He uses a multilayer feedforward network with linear units. Each unit within a

layer receives inputs from a local area of units in the previous layer, and performsa linear

summation ofthe weighted inputs. The weights ofthe network are modified using a variant of

Hebb's rule, which is shown to maximize the variance in a layer's response to the input

patterns from the previous layer. Note that in his model, the adaptive afferent connection

weights to a layer ofcells are allowed to settle down before the output ofthose cells are used to

modify the connections to the next layer. If random noise is used as the input to Linsker's

network, then center-sutroundcells that respond maximally to a bright spot centered on the

cell's receptive field against a dark background (or to a dark spot on a bright background)

emergein the third layer. Orientation-selective cells develop in the seventh layer. Moreover,

iflateral interactions are added to this layer, then a columnat-type otganization similar to that in

the striate cortex is found to develop Otherself-organizing approaches to feature detection

have been discussed by Grossberg [23] and Kohonen [37]

3. TEXTURE ANALYSIS USING MULTIPLE CHANNEL FILTERS

In this section, we first describe various approaches to the modeling and analysis of

textured images. Subsequently, we focuson a computational framework for analyzing image

textures using the class of two-dimensional image processing filters known collectively as

Gabor functions These functions have played an importantrole both in the development of

models ofbiological visual information processing and in the developmentof computer vision

algorithms for low-level image processing and analysis.

3.1 Modeling of Textured Images.
Texture can be used in the analysis of images in several ways: in the segmentation of

scenesinto objects, in the classification ofsurface materials, and in the computation of shape. 
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However, an exact definition of texture as either a surface property or as an image property has

never been adequately formulated While the concept of a surface texture as a pattern of

variations in macroscopic surface topology is easy to accept, real-world surface textures are

_ difficult to model. Attributes giving rise to a sense of perceptual homogeneity have been

construed to include such spatio/temporal surface properties as color, relative depth, motion,

and flicker rate [34]. Even for static, monocular, monochromatic images, modeling texture is

quite complex, since an accurate model mustincorporate descriptions of both the optical
properties ofthe surface materials and ofthe geometriesofthe lighting sources and imaging
system However, much progress has been made towards developing texture analysis
techniques recently, by examining the problem in the post-image formation setting. Here, an

image texture is consideredasa local arrangementof imageitradiances projected from a surface

patch of perceptually homogeneousradiances. A technique that use such a characterization are
highlighted in Section 3.3.

Early efforts at texture analysis were largely motivated by the need for classifying aerial

images, such as those obtained from remote sensing, into categories based on their textural

properties [24], Texture was described by (1) the local tonal primitives out of which the image

texture is composed, and (2) the number and types of these primitives and their spatial

organization. A tonal primitive is a maximally connectedset of pixels with a commontonal
property, and is characterized by its area, shape, averagetone,etc. Spatial organization was
typically characterized by the structural, probabilistic or functional dependenceofoneprimitive
on its neighbors This leadsto statistical approaches using autocorrelation functions, optical

transforms, digital transforms, gray tone co-occurrence, run lengths and autoregressive

methods [57]. Somestructural approaches based on more complex primitives than gray tone
were also attempted, assumingthat a texture is made up ofprimitives which appear in near-
regular, repetitive spatial arrangements. Then, a textured image could be described in terms of
the primitives and the placementrules that encapsulated the dependencyofa particular primitive
being placed at a given location onthe positioning ofotherprimitives The structural techniques
were found to be of limited applicability.

A fundamentally different type of model for preattentive texture perception has been
proposed by Julesz and others [34]. They contend that texture processing involvesthe
computation ofthe densities of fundamental texture features called "textons " Textonsthat
have been considered so far include elongated blobs (line segments, ellipses, etc.) of various
orientations, sizes and aspect ratios, line terminations, and crossing of line segments,
Segregation of textures proceeds by comparisonofrelative texton densities [55]. Texton
detection is consistent with the feature detection model of early visual processing that involves
the responsesofthe bar- and edge-sensitive receptive fields There is substantial evidence that
the visual system regards texton-type features as important, and that visual discrimination of
textures coincides with differences in texton density. However, there is no apparent
mechanism that suggests that textons are resolvedfirst and theirdensities are computedlater.

The use of direct Fourier analysis for analyzing texture dates from Bajcsy [3], who
suggested dividing images into smaller subimages within which textural information could be
derived from local Fourier spectra. Several other authors extended this conceptby using the
outputs of multiple frequency-selectivefilters applied to textured imagery as features attributes
in ‘classical pattern recognition paradigms configured to allow texture discrimination/
classification [38]. The fact that granularity (or texture coarseness) and orientation are
Meaningful low-level texture descriptors led researchers to consider den sity- and orientation-
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selective mechanisms for analyzing texture Segmentation/discrimination algorithms were

reported for detecting periodic and oriented image regions by partitioning the image spectrum,

into bins or by locating spectral peaks. A multi-channel segmentation algorithm using both
orientation-sensitive and moderately narrow channel bandwidths wasintroduced in [9]. Again,

segmentation is augmented by clustering the channel outputs.

The use ofspace-frequencylocalizedfilters was further explored by several authors[5,53]

all of whom suggesta class of functions known as Gaborfilters for analyzing, discriminating,

and segmenting images based on texture. The general framework for Computationaltexture

analysis using Gabor functions which developed from this research, and more recent
extensions, is described in Sections 3.3. First, however, we will discuss the importantrole that _

Gabor functions have played in recent models of biological visual processing

3.2 Gabor Functions and Neuronal Receptive Fields.

Computational models of low-level biological vision often derive from physiological and

psychophysical investigations ofthe structure and function of neuronal receptive fields in the

post-retinal ganglion cells, the LGN, and the striate cortex. Until recently, two schools of

thought dominatedtheories of early biological vision or neuronal image processing: the feature
detection paradigm as exemplified by the early work of Hubel and Weisel [30,31] and the

Fourier decomposition paradigm as exemplified by the somewhat later work of Pantle and _

Sekular [47]. Briefly, the first school of thought held the view that early visual information

processing entailed the detection ofspecific features processed by higher abstract mechanisms;

the second held that early visual image analysis could be likened to local spectrum analysis

techniques.

Morerecent work suggests that, at the cortical level, both interpretations may be correct,

Recent models of neural receptivefields in the striate cortex, in conjunction with the functional
version ofthe uncertainty principle, suggest that biological neurons have evolved to bé

sensitive to elementary features occurring over a range ofscales (frequency ranges), or

equivalently, that images are decomposed by the cortical neurons into narrowband frequency

channelsthat are highly spatially localized (sensitive to local features).

Marcelja [42] observed the highly-oriented simple cell receptive fields in the cortex can be

accutately modeled by 1-D Gaborfunctions, which are Gaussian modulated sine wave

functions. The Gaborfunctions play an importantrole in functional analysis and in physics,

since they are the unique functionsthatsatisfy the uncertainty principle, whichis a measure of

the function's simultaneouslocalization in space and in frequency [17]

Daugman [11] successfully extended Marcelja's neuronal model to 2-D, also extending

Gabor's result by showing that the 2-D Gabor functions are the unique minimum-uncertainty.

2-D functions. The implication of this for texture analysis purposes, and perhaps for neuronal

processing of textured images,is that highly accurate measurements oftextured image spectra

can be made on a highly localized spatial basis This simultaneous localization is important,

since then it is possible to accurately identify sudden spatial transitions between texture types,

which is important for segmenting images based on texture, and for detecting gradual

variations within a textured region, which is important for computing deformationsarising

from surface defects, or from effects arising from the projection of 3-D textured surfaces into

2-D images. Other researchers have independently confirmed the validity of the Gabor

receptive field model.  
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3.3. Multiple Channel Texture Segmentation.

Wenow describe a texture analysis model motivated in large part by the Gabor receptive

field model, It is important to observe that the model is advocated only as a convenient
computational formalism, not as a probable model of cortical processing. Nevertheless,it is not

__ unreasonableto suggestthat the simple cells play an importantrole in the early stages of visual

 

textural processing,

The convolution version of the complex 2-D Gaborfunctionstake the general form (where

jis the square root of-1)

n(x, y) = 8 (*y )- exp [ 2mj(Uox + Voy) ] (3)

where (x, y ) = (K cosa + sina, -x sin a+ y cos a) are rotated coordinates, and

a(x, y)=(1/ 2nls*) | exp {-[ox)? +y]/ 2s? } (4)

Thus, h(x, y) is a complex sine grating modulated by a 2-D Gaussian function with aspect ratio
I, scale parameter s, and majoraxis oriented at an angle a from thex-axis. If 1 = 1, a need not

be specified since g(x, y) is circularly symmetric The spatial frequency responseof the Gabor
function (3) is then

H (u,v) = exp {-2ns?[(u - Up)? + (v - Voy] }, (5)

a bandpass Gaussian with radial center frequency wo = VUl+ V3 (cycles/image) and

_ orientation qo = tan"!(Vo/Uo) (degrees or radians measured from the u-axis)
Assumethatt(x,y) is a real-valued, continuousintensity image that locally contains only

narrow ranges ofspatial frequencies:

t(x, y) = Ix, y) {1+ 2. C(x, y) cos [2m W(x, yy] }. 6)

Here the 2-D function I(x, y) 2 0 represents a slowly-varying ambient image intensity function,
2-C(x, y) & [0, 1] is an amplitude or texture contrast function, and W(x,y) is a 2-D texture
phase function For simplicity, assume C(x, y) = C andI(x, y) =I to be so smooth that they
may be regardedlocally constant If W(x, y) is assumed to vary smoothly neatly everywhere,
then (6) can be used to model an image intensity function thatis highly coherent orspatially
correlated. More specifically, the image t(x, y) may be regarded as narrowband or
quasimonochromatic on a local basis: at each (x, y), the local frequency contentof the image
away from the frequency origin will be concentrated about —W(x, y) = [U(x, y), V(x, yl,

0where the gradient components U(x, y) = 2 W(x, y) and V(x, y) = ay Wx y) are
instantaneous texturefrequencies.

The model (6) admits a computational model for textured image analysis by isolating local
image frequencies using tuned narrowbandchannelfilters. By using the logarithmic image and
temoving the low-frequency termsbyfiltering, the model can be simplified to:
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t(x, y) = 2C cos [2m We,y)] (7)

The concept of emergent texture frequencies, given by the responses of Gabor channe]

filters [5], can be used for estimating the locally dominantor instantaneous image frequencies
in t(x, y). We now describe a simple method for segmenting image textures by simple

comparison of the responses ofthese Gaborfilters. The success of the technique is quite

impressive, given that there no use is made of any sophisticated pattern classification

superimposed on the basic segmentation structure However,it is important that a large set of

channelfilters be used to sample the frequency plane densely, to ensure thata filter exists that

will respond strongly to any dominant texture frequency component

In the examples given here, an implementation utilizing forty unity aspect ratio Gabor

filters is used, with filter orientations ranging over 8 evenly spaced angles in the right-half

frequency plane,5 filters along each orientation The radial centerfrequencies form a geometric

progression with commonratio 1 8, ranging from 9.6 cycles/image to 100 cycles/image. The

filters are spaced approximately 1 octave apart with responsesintersecting well above half-

peak A single additional Gaborfilter centered at the frequency origin (a Gaussianfilter)is also

applied, yielding a total of 41 responses: m)(x, y) = | t(x, y) * hy(x, y) I; n=1,..., N, where

N = 41, and where hy(x, y) are Gabor functions indexed by center frequencies (Up, Va) and
space constants s,. The set offilters used is depicted by Fig. 3, which shows the spatial

frequency responsesof all 41 filters

 

Figure 3 Plotofspatial frequency responses of Gabor functions used to analyze texture.

By choosing the filter amplitude response m,,(x, y) that is maximum at(x, y), a rough —

estimate (U,:, V,-) is obtained, i e., we choose:

n'= arg [max {ma(x, y)} ] 8)  
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A simple anduseful segmentation ofthe image is then obtained by the region assignment

(@y) Ey, ifn =n (9)

Usually, direct application of(9) leads to segmentation errors arising ftom modelingerrors,
noise, and local irregularities in the textures. These can often be effectively ameliorated by
smoothing each ofthe channel amplitude responses with a Gaussian smoothing filter having
the same shapeas the corresponding channelfilters but a greater spatial extent, prior to making
region assignments. Thus, the alternate definition

   
n’ = arg [max. {En(x/g, y/g) * ma(x, y)} ] (10)

will yield a smoother segmentation when used with the segmentation paradigm (9). We have
found the value g = 2/5 to be effective in most instances.

 

(a) (b) (c)

Fig. 4 Segmentation of a synthetic texture (a) Original texture; (b) segmentation using (8) and
(9); (c) Segmentation using (10) and(9).

Figure 4 depicts an example of the segmentation approach (9) as applied to a simple
narrowband textured image. Later, in Section 4, we will study a cooperative-competitive
feedback mechanism to further improve the segmentations that are achieved using (9), as
originally described in [19]. A method for using the intantaneous texture frequencyto estimate
surface orientation is given in [20].

4. NEURAL NETWORK APPROACHES

Cooperative processes such as relaxation labeling have been explored by the vision
community for over a decade, without explicitly casting them in a neural network framework.
These mechanisms are very akin to neural network models such as the Boundary Contour
System [23], which is described in Section 42. This section also presents a hierarchical
network thatfirst extracts relevant features and then performstexture segmentation based on
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these features. Then we consider the SAWTAnetwork thatiteratively combines smoothing

and categorizing functions to yield a versatile segmentation algorithm based on the

multichannel modelof texture given in Section 3.3. An alternative approach is to consider _

texture segmentation as an optimization problem, and maximize the a posteriori distribution of |

the intensity field based on a Markov random field model of texture This method is outlined

in Section 4.5.

4.1 Cooperative Processes.

Local intensity edges typically form a part of a global line or boundary rather than

occurring in isolation Thus the presence or absence of a nearby edge of similar angular

orientation would tendto reinforce the hypothesis of the existence of an edge at a given pointin

the intensity field This idea is the basis of a cooperative process called relaxation labelling

[13] that can be used to enhancelines and curve in an image First, a bank offilters that detect

small lines at different orientations are used to generate an array of nodes, with each node

corresponding to a location in the image, and having a line-orientation label assignedtoit,

These labels are updated by a relaxation process, such that they become more compatible with

neighboring labels. Thus adjacent "no-line" labels support one another, and so do lines with

similar orientation, while two adjacent labels corresponding to orthogonal orientations

antagonize each other. A refined relaxation-labeling algorithm with associated convergence

conditionsis given in [33] Cooperative processes have also been used to obtain curvature

estimates, for detecting corners in dotted line drawings, and for enhancing perceptually

significantfeatures [56]

A cooperative-competitive scheme called the boundary contour system (BCS) has been

proposed by Grossberg and Mingolla [21] to explain how edgesare filled in when part of.a

boundary is missing, and how illusory contours can emerge from appropriately positioned

line-terminations. This scheme is elaborated on in the next section, which also presents:a

hierarchical network for texture segmentation that uses BCS

4.2 Perceptual Grouping and Emergent Segmentation.

A teal-time visual processing model has been developed by Grossberg and Mingolla [21]

to analyze and explain a variety of perceptual grouping and segmentation phenomena,including

the grouping oftextured images. A key componentof this model is the Boundary Contour

System (BCS). The BCSconsists of a hierarchy of locally-tuned interactions that controls the

emergence of image segmentation andalso detects, enhances and completes boundaries. The

interaction of BCS with a feature contour system and an object recognition system, as

developedin [23] attemptsto attain a unifying precept for form, color and brightness. While

the BCSis largely preattentive, the model does allow feedback from the object recognition

system to guide the segmentation process.

The BCS consists of several stages arranged in an approximately hier archical

organization. The imageto be processed formsthe input to the earliest stage Here, elongated

and oriented receptive fields called masks are employed for local contrast detection at each

image position and each orientation. Thusthere is a family of masks centered at each location,

and responding to a prescribed region aroundthat location These elliptical masks respond to

the amountofluminance contrast over their elongated axis of symmetry, regardless of whether

image contrasts are dueto differencesin textural distribution,a step change in luminance or a

smoother intensity gradient. The elongated receptive field makes the masks less sensitive to

differences in average contrast in a direction orthogonalto the majoraxis. However, the  
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penalty for making them sensitive to contrasts in the preferred orientation is the increased

uncertainty in the exact locations of contrast. This positional uncertainty becomes acute during
the processing of imageline ends and corners. The authorsassertthat all line-endsare illusory

in the sense that they are notdirectly extracted from theretinal image, but are created by some
process that generates line terminations. One such mechanism that is hypothesized by them is

based on two short-range competitive stages followed by long-range cooperation, as described

next.

Firstly, each pair of masks at the samelocation that are sensitive to the same orientation

but opposing direction of contrasts, input to a commoncell. The output ofsuch a cell at

position (i,}) and orientation & is Jjj,, which is related to the two directional mask outputs,

Usk and Vijk , by:

_ Uijn- & Vijxl+ [Vije- ©Ui

1+B Ui, + Vijx)
Tsk , (1)

where the notation [p]* stands for max(p,0)
These oriented cells are sensitive to the amountof contrast, but not the direction They in

tun feed two short-range competitive stages. In the first stage, there is on-center, off-

surround competition between a cell and all othercells of the same orientation and within a

small neighborhoodof that cell. Subsequently, push-pull opponentprocesses are activated at

each position for the second competitive stage, resulting in competition between orthogonally

oriented masksat each position. Let Wijk Tepresent the output signal for the cell corresponding

to position (i,j) and orientation k, and WijK be the output for the cell at the same location but

with orientation orthogonal to &, at the end of the first stage. The Wijkate obtained from:

Swi -Wijx C +BY Boye Apgi +1 + BUijx 2)
(p.q) ER

In Eq. 12, I is a tonic input, R a neighborhoodof(i,j), and Apgij the inhibitory interaction

strength between positions (p,q) and (i,j). The activity potentials Yijk of cell outputs in the

second stage are governed by:
d
ap Yiik = AVijx + E - yijn) Oijx- Yijx > Oiim » (13)

mk

where Oijk = Clwijx -W ijkl" , and A, C and E ate constants.

The behavior ofthe orientation field is shown in Figure 5, in which adjacentlattice points

are one unit apart. Each mask hasa total exterior dimension of 16 x 8 units Figure 5(b)

shows the Yijk Tesponsesat the end of the second competitive stage for the same input

stimulus The two competitive stages together have generated end cutsas can be seen clearly

on comparing with Fig. 5(a). Note that the second competitive stage is tonically active, thatis,

inhibition ofa vertical orientation excites the horizontal orientation at the sameposition.

The outputs of the second stage are also used for the boundary completion process that

involves long-range cooperation between similarly oriented pairs ofinput groupings This

mechanism is able to complete boundaries across regions that receive no bottom-up inputs

from the oriented receptive fields, and thus accounts for illusory line phenomenasuch as the

completion of the square edges in a reverse-contrast Kanisza square The process of boundary
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(a) Responseof oriented masks. (b) Response of second competitive layer

Figure 5: (Adapted from Grossberg & Mingolla [21]) (@) Showsthe output of the oriented

masks superimposed on the inputpattern (shaded area). Lengths and orientations of lines

encodetherelative sizes ofthe activations and orientations of the masksat the corresponding

positions. 5(b) showsthe output ofthe second competitive stage for the same input as in 5(a).

completion occurs discontinuously across space, using the gating properties ofthe cooperative

cells to successively interpolate boundaries within progressively finer intervals. Unlike alow

spatial frequency filter, this process does not sacrifice spatial resolution to achieve a broad

spatial range. The cooper ative cells used in this stage also provide positive feedbackto the

cells of the second competitive stage so as to increase the activity ofcells of favored orientation

and position, thereby providing them with a competitive edge over other orientations and

positions. This feedback helps in reducing the fuzziness of boundaries. The detailed

architecture, equations and simulation results can be found in [21,22].

A

hierarchical neural network fortexture segmentation and labelling has been proposed by

Dupaguntla and Vemuri [14]. The underlying premise of their approach is that textural

segmentation can be achieved by recognizing local differences in texels. The architecture

consists of a feature extraction network whose outputs are used by a texture discrimination

network. The feature extraction network is a multilayer hierarchical network governed by the

BCS theory The image intensities input is first preprocessed by an artay of cells whose

receptive fields correspond to a difference of Gaussianfilter (see Sec. 2 1), and which follow

the feed-forward shunting equations of Grossberg. The outputofthis array of cells form the

input to a BCS system and are processed by oriented masks according to Eq (11). These

masks then feed into the two competitive stages ofthe BCStheory, and governed by Eq. (12):

and (13). However, the long-range cooperative processes described above are not used.

Instead, the outputs ofthe second competitive stage activate region encoding (RE)cellsat the

next level Each RE cell gathersits activity froma region of orientation masks of the previous _

layer, as well as from a neighborhood ofadjacent RE nodesofthe sameorientation

The activity potential of an RE nodeis given by the following equation, where the Yyng§

are obtained from the previouslayer according to Eq. (13), (i,m)is in the neighborhood of 
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(p.q)> and the activation function,f, is sigmoidal:

© ijn ~ Hziack HD ( fZpqk) - fi) + DL Yimk- (14)
(P.q) (Lm)

The RE cells are functionally analogousto the complexcells in the visual cortex, with the intra-

layer connections helping to propagate orientation information acrossthis layerofcells.

The outputs (ZijkS) ofthe feature extraction network are used by a texture discrimination

network whichis essentially Kohonen's single-layered self-organizing feature map [37]. At

each position, there are T outputs, one for each possible texture type, which is assumed to be

known @ priori. Model (known) textures are passed through the feature extraction network

For a1andomly selected position (i,j), the output cell ofthe texture discrimination network that

responds maximally is given the known texture-type label, The weights in the texture

discrimination networkfor that position are adapted according to the feature-map equations.
Since these weights are the samefor all positions, one can simply replicate the updated
weights for all positions. The hierarchical scheme described above has been applied to natural
images with good results. However,it is very computationally intensive, since there are cells
corresponding to each orientation and position at every hierarchical level.

4.3, Discrete 2-D Gabor Transforms using neural networks.

This section explains how a three-layered network can be used to obtain the expansion

coefficients for expressing two-dimensional discrete signals in terms of a set ofbasis

functions, which need not be complete ororthogonal. In particular, a complete 2-D Gabor

transform is ofinterest, because the desirable properties of Gabor functions, elaborated in
Section 3.2, lead to viable image segmentation based on clustering the coefficients obtained
The approach given below is adapted from Daugman[12].
Wewish to represent a two dimensional signal I(x,y), which can be the image intensity values

at pixel points (x,y) for example, in terms of a set of 2-D elementary functions, {G; (&y)}

I(x,y) is approximated by H(x,y), which is a linear combination of the elementary functions,
i.e.,

n

H(x,y) = Ya; GiGy)
i=1

If the n elementary functions form a complete orthogonal set, then projection coefficients {a;}

that lead to an exact representation can be easily determined. Otherwise, one can choosethe {a
i}s sO as to minimize the squarederror:

E= }[1«xy) -H@y)]2 (15)
XY

Thedesired {a;}s are obtained by setting JE/da = 0, which yields a system ofn simultaneous
equations in nz unknowns:

Yiwy) Gi &y) =>, [ ¥a,Gyxy)] G; (xy), (16)
XY XY k=l

Ifwe choosethe elementary functionsto be a set of Gabor functions, each characterized by the
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position (x9,Y¥o); frequency (ug,VQ) and scale (a,b) coordinates, then the inner products G;.

Gj will be non-zero in general. Forthis non-orthogonal case, Eq. (16) could still be solveg

by algebraic means, but it becomes computationally prohibitive even for moderately sizeq:.

images.
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Figure 6 A three-layered networkfor determining the optimal coefficients of arbitrary image

transforms

Fortunately, E given by Eq (15) is quadratic in each ofthe ajs This means that a

unique global minimum for E exists and can be reached by a gradient descent alongthe error

surface expressing this cost function's dependencies on all of the {a;} coefficients and realized

using the “neural network" architecture of Fig 6 This network has three layers ofcells. All

cells perform linear summation of their weighted inputs The efferent connections from the

image have fixed weights dictated by the elementary functions chosen, and provide input

activation for a layer of n units The outputof the ith unit of this layer is simplyy/ Gj, Le,

the inner product ofthe ith elementary function with the image. This is analogousto the

neurophysiological concept ofa (linear) neuron's receptive field profile, which refers to the

spatial weighting function by which a local region ofthe retinal image is multiplied and

integrated to generate that neuron's response strength.

Let the image be ofsize N. The second layer has N cells, one for each image position.

The cell (x,y) gets input from the # units ofthe function bank, corresponding to G1(,y)

through G,,(x,y), through adaptive connection strengths that are the estimated {a;}s The

outputs of this layer provide input activation to another layerof# cells, through the sameset

of fixed weights that are used between the image and the first layer The weight change to 4;

is Da; , given by:

Aa =n ( XIayGy) - YL YaGiayIGi@y)) aD
xy X,Y kel  
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Note that the adaptation of weights does not require an external teacher Rather, the

control signal arises only from the interlaminar network interactions. From Eq.(15) and (17),

it can be seen that A a; =+ :- , which means that a gradient descent in weight space is
i

approximated by the weight adjustments. At equilibrium, the cost function reaches its
minimum. An elaborate discussion ofgradient descent is given in Widrow & Stearns[58]

Indeed, the architecture of Fig. 6 is really an adaptive linear combiner couched in a "neural"

framework. Daugman [12] has used the above architecture with Gabor functions for the Gjs

to perform image compression and segmentation based on clustering of the expansion

coefficients obtained. In the following section, we describe a different approachto textured
image segmentation that is based on the multiple channel model of Section 3 3.

 

4.4 The SAWTA Mechanism.

A cooperative-competitive feedback network called Smoothing, Adaptive Winner-Take-
All Network (SAWTA) has been developed recently for performing texture-based

segmentation using the same texture model, but with improved results [19]. The network

consists of n layers ofcells, with each layer corresponding to one Gaborfilter, as shown in

Fig 7. On the presentation of an image, a feedforward network usinglocal ‘receptive fields

enables each cell plane to reach an activation level corresponding to the amplitude envelopeof

the Gaborfilter that it represents, as outlined in the preceeding paragraphs Let m,(x.y),1 <

i <n, be the activation ofthe cell in the ith layer with retinotopic coordinates (x,y)

Initially, the n cell activations at each point (x,y) are set proportional to the amplitude
responses ofn Gaborfilters.

Segmented Image,

 

3 layer
feed-forward
neural
network n layers  Initialize

i
i
i
i
i
i
i
'
!
i
i
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I
I
'
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SAWTAnetwork

Figure 7: The SAWTA networkfor segmentation of textured images.
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To implement the SAWTA mechanism,each cell receives constantinhibition from all other

cells in the same column,along with excitatory inputs from neighboringcells in the same row

ot plane. The synaptic strengths of the excitatory connections exhibit a 2D Gaussian profile

centered at (x,y). The network is mathematically characterized by shunting cooperative-

competitive dynamics [21] that model on-center off-surround interactions among cells which

obey membrane equations [35] Thus, at each point (x,y), the evolution ofthe cell in the ith

layer is governed by:

t£(m,)=-m,+A-m) I" B+Cm)T, (18)

where J+, J- are the net excitatory and inhibitory inputs respectively, and are given by

(xp)+-Yn)1
Pea SY mye do? Sis and T= HFC my).

Ga Yo&R j=i

Here, R is the neighboring region of support and f is a sigmoidal transfer function. The

convergence ofa system described by Eq. (4.9) has been shown forthe case whenthe region

of support R consists of the single point (x,y) The network is allowed to run for ty

iterations before region assignmentis performed using Eq.(9).

 

Figure 8: Segmentation ofthe synthetic texture ofFig. 4(a), using the SAWTA network

(clockwise from topleft): (a) segmentation after 10 iterations ofthe SAWTAnetwork;

(b) after 10 iterations, but with C = 3; (c) after 50 iterations; (d) after 100 iterations.

Figure 8 shows experimental results using the SAWTAnetwork for segmentation The

256x256 gray level imagesare prefiltered using a bank of Laplacian-of-Gaussians to remove

high dc components, low-pass phase functions, and to suppressaliasing. Then, only sixteen 
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circularly-symmetric Gaborfilters are used to detect narrow-band components. Sets of three
filters with center frequencies increasing in geometric progression (ratio = 2:1) are arranged in

a daisy-petal configuration along 5 orientations, while the sixteenth filter is centered at the

origin. Figure 8 shows the segmentation achieved for the synthetic texture ofFig. 4(a). The

constants A, B and C in Eq (18) were taken to be 1, 0 and 10 respectively. The activation

function used is f(x) = tanh(2x). The results are seen to be superior to that shown in Fig 4(b)

ot (c), using Eq.(8) or Eq (10). Figure 8(b), (c) and (d) show the effect of varying the number

of iteration steps ¢,, and the inhibition factor C, on the segmentation obtained. We observe

that the SAWTAnetwork achieves a more smooth segmentation in regions where the texture

shows small localized variations, while preserving the boundaries betweendrastically different
textures. Usually, 10 iterations suffice to demarcate the segment boundaries, and any changes

after that are confined to arbitration among neighboringfilters.
The SAWTA network does not require a feature extraction stage as in [14] or

computationally expensive maskingfields. The incremental and adaptive nature of the SAWTA

network enablesit to avoid making early decisions about texture boundaries. The dynamicsof

each cell is affected by the imagecharacteristics in its neighborhood as well by the formation of

more global hypotheses. It has been observed that usually fourspatial frequencies are dominant

in human visual systems This suggests the use of a mechanism for post-inhibitory response
that suppress cells with activation below a threshold and speeds up the convergence ofa

SAWTAnetwork Theadaptive learning network of Kohonen[37] can be used to change both

excitatory and inhibitory synaptic strengths (J +, J ~ ), in response to a teaching input. Also,

the SAWTAnetwork can be easily extended to allow for multiple "winners". Then,it can

cater to multicomponenttextures, since a region that contains two predominant frequenciesof

comparable amplitude will not be segmented but rather viewed as a whole.

4.5 An Optimization Framework for Texture Segmentation.

The use of Markov Random Field (MRF) models for modeling texture has been

investigated by several researchers [10,8] It can be used to model the texture intensity process

as well as to describe the texture labelling process. In this framework, segmentation of

textured images is posed as an optimization problem. Twooptimality criteria considered in

Manjunath et al [41] are (i) to maximize the posterior distribution of the texture labelfield

given the intensity field, and Gi) to minimize the expected percentage of misclassification per

pixel by maximizing the posterior marginal distribution Corresponding to eachcriteria, an

energy (cost) function can be derived that is a function of MxMkxKbinary labels, one for each

of the K possible texture labels that a pixel in an MxMcan take.

The energy function can be minimized through deterministic relaxation using the discrete
Hopfield-Tank formulation [27]. In general, an algorithm based on MRF models can be

mappedtrivially onto neural networks with local interconnections. While the deterministic
relaxation algorithm is simple and usually converges in 20-30 iterations, its quality is quite

sensitive to initial conditions as it has a penchantfor settling into local optima Alternatively,

a stochastic algorithm such as simulated annealing can be used to minimize the energy function

Indeed, any problem formulated in terms of minimizing an energy function can be given a
probabilistic interpretation by use of the Gibbs distribution [48] The two approaches are

telated in that a mean field approximation ofthe stochastic algorithm yields the Hopfield

equations, with the free parameter, 1, being proportional to the inverse of the annealing

temperature [28]
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For the segmentation problem, a constraint on a valid solution is that each image position

should have only one ofthe K labels "on". This constraint is usually incorporated in a soft

fashion by adding bias terms to the energy function Peterson & Soderberg [48] have

incorporated the 1-of-K constraint in a Potts glass, and derived a mean field solution for that

formulation. It has been shownrecently thatthe alternative ofputting global constraints on the

set ofallowable states in the corresponding stochastic formulation leads to significantly better

solutions [61] An iterated hill climbing algorithm that combines fast convergenceof the

deterministic relaxation with the sustained exploration ofthe stochastic approachhasalso been

proposed in [41] for the segmentation problem. Here, two-stage cycles are used, with the

equilibrium state of the relaxation process providing the initial state for a stochastic learning

automaton within each cycle. The relation between neural network techniques and MRFsis

exploredin detail in Chapter 6 ofthis book.

5. CONCLUDING REMARKS

Texture can provide useful cues for segmenting scenesinto objects, and for determining

their shape and surface properties Statistical approachesto texture analysis have only achieved

limited success, partly because the texture modelling problem itself is very difficult Neural

network approaches to analysis of textured images are amenable to a massively parallel

implementation in VLSI, and hold forth the promise of real-time visual processing The recent

progress in developing a silicon retina is particularly exciting [45]. Analog VLSIchips

described in Mead [45] use networksof resistive grids and operational amplifiers to perform

edge detection, smoothing, segmentation, compute optic flow, etc. Such chips have been

incorporated in toy autonomous vehicles that can track edges or movements [36]. Further

progress towards the development of low-power, real-time vision hardware requires an

integrated approach encompassing image modeling,parallel algorithms and the underlying

implementation technology.
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Abstract

The current resuigence of interest in Neural Networks has opened up several ba-

sic issues In this chaptel, we explore the connections between this area and Markov

Random Fields Weaie specifically concerned with early vision problems which have

already benefited from a parallel and distiibuted computing perspective We explore
the relationships between the twofields at two different levels of a computational ap-

proach. Applications highlighting specific instances where ideas fiomthe two appioaches

intertwine are discussed

1 INTRODUCTION

Markov Random Fields (MRF's) and Neuial Networks (NNs) have a history dating back
over thirty years. While MRFs primazily serve as tools for model building, NNs are
much mote ambitious; thei: applications iange from computing least square estimates

to building parallel computers. However, bothfields offer paradigms for the constauction

of early vision modules and there are numerous connections between them

We aie primazily interested in exploiing the 1elationships between the twofields as

they relate to the constiuction of eaily vision modules. In this regard, we suggest that
the frameworks and principal ideas be compared at different levels of a computational

approach Mazi [1] was the first to suggest that there are thiee levels of a computa-

tional approach; computational, algorithmic and hardware. Wefeel that comparisons

at the first two levels a1e appropriate and illuminating for this audience. In 1eview, the
computational level conceins itself with what is being computed. The specific scheme

of computation is not of interest, only the goal of computation is important. The algo-

rithmic level conceins itself with how the goal is computed An example of the goal of

computation is the Tiaveling Salesman Problem arid axi example of a method of solution

is the Hopfield network [2] We will not be discussing the 1elationships at the level of

hardware implementation; it is impoitant albeit premature

MRFsare an importantclass of stochastic models and have been applied to problems

like image estimation and texture segmentation Once the model variables have been

chosen, an MRF is completely specified by the joint distribution over these variables
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The important characteristic of MRFs in earlyvisionis that the conditional densities are

dependent only on a small neighborhood surrounding the variable of interest. Whenthi

is the case, the conditional densities ate called local characteristics. In order to perform

feature extraction, the joint density is usually specified over a set of variables which

aie closely elated to the data and a further set of attribute variables which categorize

the data. The attiibute variables are termed unobservable since they aie not part of

the observed data The joint density of the data variables (computed by integrating

out the unobservables) is usually fully connected [3]. This property suggests that fully

connected, non trivial models can emerge from an intuitive choice of attributes and local

characteristics, thereby allowing us to create hierarchical models which are capable of

extracting highe: orde: features The higher order features constitute anefficient internal

1epresentation. The unobservables are specified by the designer 1endering the internal

representation immutable The goal of computation is the minimum mean squate error

estimate (MMSE), maximum a posterior: (MAP) estimate or in general any estimate

based on minimumexpected cost At the algorithmic level, there are several methods,

both deterministic and stochastic, of solving the problem However, in addition to the

state estimation problem, we have to solve the parametei estimation problem The

joint distribution is a function of these parameters which have to be specified apriori

before the cost minimization is done. The long-term goalis 1apid featme extraction and

classification with continual adaptation to incoming data

There are a large number of NN 1elated models. The basic idea drawn from biology
and neuobiology is to have netwoiks with neuion-like processing elements with simple

dynamics and massive interconnections which aie capable of parallel, global computation

and learning internal :epresentations In most neural net schemes, the aim is to let the
internal representationof the data emerge fiom a set of hidden units which are connected

to the data The connections seive as the long term memory and are modified in o1der

to better approximate the distribution of the incoming data. Higher onder statistics are

represented by interconnections (which are second-oider) and hidden units In order to

take decisions, neuronal dynamics have to be non-lineai [4] The goal of computation is
decided by a teacher who thentiains the network (with a given number of hiddenunits)

on a set of training samples [4] There is no need to restrict the interconnections to

second-order Higher-order interconnections can more closely approximate the incoming

distribution [5] In self-supervised schemes, self-oiganization plays the tole of the ex-

teinal teacher [6] Category formation and knowledge representation a1e now machine
diiven with no supervision The goal of the computation is for the machine to discover

the intrinsic complexity (or the information needed for a minimal description) of the
data [7]. The algorithmic level problems are the choice of the number of hidden units,
the leaning algorithm etc, The long term goal once again is 1apid feature extiaction

and classification with continual adaptation to incoming data

The two paradigms are strongly intetielated Several ideas aie common due to

mutually dependent co-o1igination a few years ago We wish to 1e-examine the basic

ideas and suggest the different levels at which the two approaches can continueto benefit

each othe: Section 2 is devoted to this issue In Section 3, we present two applications

highlighting some of the ideas presented in Section 2. Conclusions are presented in

Section 4.  
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2 RELATIONSHIP BETWEEN THE TWO

FIELDS

2.1 PRELIMINARIES

In this section, we examine the basic ideas in MRFs and NNs.

3.1.1 MARKOV RANDOM FIELDS

An MRF can be completely specified by the joint distribution over the variables We

denote the data by Y Associated with the data, we have the process X and in addition,

we have the attribute process L One of the most interesting aspects of MRFsis that the

joint distribution is an MRFif and onlyif it is also Gibbsian [3]. The Gibbs distribution

is written as follows

P(X =x,L=l¥ = y) = Zexp(-BH(x, Ly) (1)
where Z is the partition function, B = z and T is the temperature, and H is the en-

ergy function defined over all the processes. The partition function is a function of the

observed data y and the parameters involved in the specification of H Adopting a

Bayesian viewpoint, it is easy to switch between the various distiibutions. Equation (1)

is the posterior distribution arising from the degradation model P(Y = y[X = x,L =1)
and the przor distribution P(X = x,L = 1) The prior distiibution encodes ou be-

liefs about the processes X and L and is Gibbs The degiadation model is specified

by the (usually) known transformation fiom the representation to the obseived data

and is also Gibbs. In principle, the recipe for inference is cleai once these distributions

have been specified. The parameters are estimated using maximum likelihood (ML) on

the marginal density of the data (which is a function of the parameteis) and then the

expected cost is minimized with respect to X and L In practice, both problems (param-

eter estimation and cost minimization) aie intractable in thei pure form. For example,

if cost minimization reduces to finding the MAP estimate, then the problemis usually

NP-complete and only simulated annealing (SA) is guaranteed to asymptotically 1each
the optimum solution In the case of parameter estimation, ML cannot be pe:fo1med

due to the intiactability of the distiibution of Y

In 1ecent years, several alte:natives have been pioposed It is possible to design

efficient. deterministic algorithms that obtain good sub-optimal MAP or MMSEesti-
mates. For instance, the Iterated Conditional Mode (ICM)[8] algouithm iteratively
maximizes the conditional density of each variable with the others held fixed. Similarly
the Iterated Conditional Expectations (ICE) algorithm [9] iteratively computes the con-
ditional expectation of each variable with the others held fixed ICMand ICEyield

good, sub-optimal MAP and MMSEestimates respectively Both methods exploit the

Maikov stiuctue In addition, continuation methods [10] have been developed which
aie akin to some form of deterministic annealing since they involve the gradual change
of a control parameter. The pioblem of parameter estimation has been paitially solved

by the introduction of pseudo-likelihood (PL) [11] techniques which maximize the piod-

uct of the conditional densities with 1espect to the unknown parameters, This avoids
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the intractable problem of having to compute the partition function. Unfortunately, PT;

requires prior knowledge of X and L whichis unavailable. The well known Expectation:

Maximization (EM) algorithm [12] has been adapted to jointly solve for the parameters

and states.

2.1.2 NEURAL NETWORKS

There are several models of learning and perceptual inference in the Neural Network

literature. In this section, we explore the fundamentalideas of the some of these models

and of the Boltzmann Machine (BZM)[13] in particular. The BZM hasverycloseties

to the general area of MRFs.

The BZM consists of two phases, a fixed phase and a fiee phase. As previously

mentioned, internal representations aie generated by a set of hidden binary units and

learning is accomplished by modifying the interconnections between the units In the

fixed phase, the environmental patterns clamp the input/output units and the hidden

units are relaxed using SA Inthe free phase,all units (sometimes the inputs are clamped)

are 1elaxed using SA. Co-occurrence statistics are collected in both phases and the

weights are modified based on the difference between the statistics It can be shown

that this kind of weight modification corresponds to gradient descent on the Kullback

information gain [14] which measures the distance between the distributions generated

duting the fixed and free phases. In essence, the fee phase mimics the distiibution over

the incoming patterns and the weights are modified in ode: to better approximate the

incoming distribution. The order in which the patterns are presented to the system is

unimportant, but obviously their frequency is A puie implementation is infeasible in

vision problems due to the excessive computational 1equirements of the SA algorithm,

The most important alternative that has emerged so faz is the Mean Field Theory

(MFT) Learning Algorithm [15]. MFT involves tracking the expected value of the units

instead of generating their values using a probabilistic (heat bath) algorithm. A very

interesting point in relation to all that has already tianspired is that MFT exploits an

appioximation to the partition function (for binary units) that was first formulated in

statistical physics With this approximation in place, a dete1ministic relaxation algo-

Lithm 1esults in place of SA and the equation for the weight change is left intact MFT

has close ties to ICE in the context of MMSEestimation since the expected value of

the state vatiables can be obtained fiom the partition function Recall that the MMSE

estimate involves computing the conditional expectations of the variables given the data.

The BZM is a supervised patternclassifier There exist several alternatives to clas-

sical unsupervised classifiers in the NN literature The most notable are Adaptive Res-

onance Theoiy (ART) andits variants [6], the Neocognition [16] and most competitive

learning models [4]. The key in most of these models is that leaining and category

formation are conducted by learning rules which are not obtained by matching the in-

ternal representation with an environmentally imposed set of associations. Instead, the

learning rules are specified as a dynamical system on the weights Unsupervised learning

results in an organization of the data into categories or features This process is called

self-organization since the system discovers the categories without supervision  
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2.2 RELATIONSHIP AT THE COMPUTATIONAL LEVEL

The key differences emerging at the computational level are as follows. MRFrely heavily

on conditional distributions whose local characteristics have small neighborhoods, Also,
the models are usually adopted in advance and held fixed In addition, the models are not

restricted to second-order distributions. There is no restriction on the range space of the

variables. In NNs, the network is typically fully connected with very simple neuron-like

digital processing elements In the BZM,only second-order connections are allowed and
it is hoped that adequate representation emerges from a reasonable number of hidden

units. Fixed models are not specified; the network learns from a set of examples In the

case of unsupervised learning, only the learning rules aie specified in advance. These

learning rules are heuristically specified o1 are derived from furthe: principles in some

cases.
However, there are several common themes. Specifically in BZM, the distributions

(incoming and generated) are Gibbsian. There also exists a close analogy between the

hierarchical attribute process L in the MRF setup and the hidden units. This should

come as no surprise since the inspiration for the hidden units did come from the area

of Hidden MRFs (HMRF) [17] The cleai difference here is that NNs implicitly build
distributed, internal representations using hidden units and interconnections, wheieas

MRFsbuild explicit 1epresentations using attiibute variables and model parameters

The improvement of the model in NNsarises through learning where the long term

memory (in the interconnections) is modified taking into account all past and present
exchanges between the network and the environment. This is analogous to parameter

estimation in MRFsif it is not performed off-line but adaptively as more information

is present to the system The EM algorithm is an archetype of adaptive paramete1

 
estimation

MRFs and NNs answer the question of what is to be computed in different ways.

While MRFexploit the structure of the local characteristics, NNs mostly use fully con-

nected netwo1ks with second-orde1 connections Both paradigms build internal 1epiesen-

tations on hidden (unobservable) units, MRFs explicitly and NNs implicitly Adaptation

to new data is provided for in both models with NNs incorporating learning and MRFs

performing adaptive parameter estimation

In MRPs,prior distributions typically constiain the number of all possible distiibu-

tions and are sometimes counter-intuitive A prope: choice of attribute variables and

ptior distributions is crucial to the success of MRFs. Important areas wheie NNs can

be useful in MRFs are adaptive paramete: and state estimation. Similarly, NNs can

benefit from the results of MRF based modeling The choice of the number of hidden
units can be made mote assuredly with the knowledgeof explicit modeling using MRFs

Another important topic is highei-o1der connections MRFs utilize local, higher-order
connections to obtain bette: models Although, in principle, hidden characteristics can

be approximated using hidden units (intergiating out the hidden units generates higher-
order distributions), it is not clear how well hidden units and second-order connections

perform with respect to this point in vision tasks More work needs to be done with

higher-order, partially connected NNs[5, 18]

We now moveto the algorithmic level of description
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2.3 RELATIONSHIP AT THE ALGORITHMIC LEVEL

The main problems in MRFs can be divided into two sub-pioblems; state estimation

and parameter estimation Once the criteria have been imposed on the system, state

estimation is usually cast into a MAP or MMSEproblem oi their variants ~The impetus

in MRFs diamatically increased with the introduction of SA [3] and it has not waned

even after the computational limitations of SA have been pointed out’ There ate several]

alternatives to SA especially for MAP estimation. These range fiom general purpose

techniques like ICM (not confined to MAP) to deterministic annealing techniques of

continuation methods Interestingly enough, Hopfield networks and MFT (the two are.

equivalent for MAP estimation) have been quite successful in eaily vision problems

like image estimation and surface reconstruction It is important to realize that MAP

estimation performed in isolation is not the goal We also need to perform parameter

estimation. Due to the intractability of the partition function, EM like techniques have

become popula.

Deterministic networks for MAP estimation have bor1owed heavily from neural net:

works, MFT in particulaa MFT as applied to MAP estimation uses approximationsto

the partition function and ends up minimizing a cost function which in some waysis

a smoother version of the original cost function As a contiol paramete: is varied, the

o1iginal cost. function is better approximated, Also, new methods of solving the winner-

take-all (WTA) problem (which also suffers from local minima) have emeiged [19]. The

impetus in NNs began with a novel approach to the TSP problem There is tremendous

potential in fuithe: applications of NN related ideas fo. MAP and MMSEestimation of

MRFs In Section 3, we present different NN 1elated approaches for solving well known

problems in early vision

The parameter estimation problem can be successfully tackled using PL techniques

and the EM algorithm The consistency of these estimatois has been proven for very

general Gibbs distributions [20] BZMleaining algorithmsate very closely 1elated to ML
techniques This is because the BZM minimizes the Kullback information gain [14] which

is related to ML. The difference is that ML specifies the parameters by maximizing the

distribution of the data whereas the Kullback information gain minimizes the distance

between the distributions of the fixed and free phases with respect to the weights.

 3 APPLICATIONS

In this section, we concentiate on two applications whichillustrate some of the comments

madein Section 23

The first application is in image estimation and segmentation. The problem can be

succintly stated as follows We wishto obtain an estimate of a noisy image whichat the

same timeyields a convenient 1epiesentation in terms of piecewise, homogeneous regions.

Adopting the MRF viewpoint, the degradation is assumed to be coriuption by additive

noise and the puior belief is that the image is composed of piecewise, homogeneous

regions Then the goal of the computation is conveniently expressed as a MAP estimation

pioblem The noisy image is the D process, the prion is the F process and the boundaries

ate the attribute process L The MAPestimation problem is NP-complete and we
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suggest continuation methods which find good, sub-optimal solutions We show that

our algorithm is equivalent to those of other 1eseachers when several constraints on the

boundary process L are removed (the uninteresting case) Specifically, our continuation

method has close ties to SA, MFT and other non NN ielated methods

The second application is in texture segmentation The problem of interest is to

locate the boundaries of the textures present in an image As in the case of image

estimation, we set up the problem as a MAPestimation of the texture labels L when

we know the texture intensities Y. This problem is also NP-complete and we present

several algorithms, stochastic and deterministic which solve the problem Of particulai

interest is a learning algorithm adapted from the stochastic approximation literature

which refines the optimization algorithm by experience Comparisons with SA and

others ate provided whichfacilitate choice of any algorithm in a particular situation

3.1 IMAGE ESTIMATION AND SEGMENTATION

3.1.1 A GENERALIZED FRAMEWORK FOR IMAGE ESTIMATION

AND SEGMENTATION :

When Gibbs distributions are used for prio. and degiadation models, the posterior

distiibution is still Gibbs. The attractive feature of a Gibbs distribution is in the con-

venience of its specification; it can be completely specified by an energy function. The

energy function is defined over the intensity (f), the veitical (v) and horizontal (h) line
processes

H(f,v,h) = LUG) — d(i,j))? + DOF j)(1 — v(%, 3)) + a v(2, j))
a7} {7

ag}

where d is the observed data, v(i, j), A(i,j) € {0,1}, fo(t,7)@ fG41,7)— f(é, j) and
Fults 3) s FG,7 + 1) ~ f, j).

When the #,(.) term (corresponding to prio. knowledge of image contours) is ab-
sent, this energy function reduces to the popular weak membrane [21] The term weak
membrane arises from the physical nature of this energy function If discontinuities are
absent, the reconstruction would be like a membiane which is continuous everywhere
Our objective is to construct a continuation method whichfinds good suboptimal MAP
estimates. The energy function parameters are \ and a

The weak membrane energy function can be written in a mote compactform.

H(f) = 2,(ME) — d(i,j))? +2alei+ dF(l3) (3)
i a (ii

where the new function g*(fp) arises fiom the elimination of the line processes and fp is
the generic symbol used for the intensity gradient The g* function is written as;

NP MPR <a
rh) ={ a vp? >a (4)
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Wealso define g*( fp, z) def 2 PC —z)+az,z € {0,1} where z is the generic symbo|

for the line process.

The energy function (3) as it stands is non-convex due to the natureof the g* function,

Several researchers [9, 10, 21] have proposed a variety of continuation methods or convex

formulations to deal with this problem A continuation methodessentially tracks minima

thiough the variation of a contiol parameter; the original eneigy function is increasingly

closely approximated during this variation. All of these approaches can be conceptually
synthesized by replacing the g* function by either a solitary g function or by a sequence

of gfunctions; the integer & is the index of the sequence. Henceforth, we will refer to

this sequence simply by the g function since our generalized framework is valid for al}

members of a given sequence
We define a new sequence of gf*) functions which aierelated to the old sequence g(*)

as follows

gel fore) = o(u) + SD p2 — ut) (6)
where u is a new plocess

The new sequence of gy functions is derived from the gsequence using the basic

idea that elimination of the u processes in g, should yield g

Examining g,(fp,u) as a function of u*, we get

gs(t, 8) = g2(s) + g2(s)(t— 5) (8)

where t = {2,8 =u? and g2(u?) = g(u).
Obviously, g,(t,s) is just a Taylor series expansion in t aiound s tiuncated at the

first term The interesting point is that both t and s emerge as full-fledged processes on

which relaxation is performed. Considering g,(t,s) as a function of s, we can find the

minimum with 1espect to s keeping ¢ constant

 

Ogs(t,$) on
9, = Jalsl(t~ s) = 0 (7)

One of the solutions is s = ¢ which can be reformulated as u? = f? Whenthisis

substituted back into (6), we obtain

gs(t,t) = go(t) = 9(fo) (8)

Thesufficient condition foi the minimum is

go(t) < 0 (9)

Interpreting our technique as a first o1der Taylor series expansion giving rise to a new

process s has impoitant consequences The unobservable piocess s emerges fiom the

Taylor series expansion The condition for a minimum to exist at s = t requires g(t) to

be concave When is eliminated dynamically by 1esubstitution, we obtain the original

function g2(t), Constraints can be added in the s space. The consequenceof this result
is that the sequence g") and g) are equivalent when no fuither constraints are added

in the space of u Furthe: constraints aid in the organization of the u piocess which as
we show in Section 3 1 2 has the pioperties of a boundaiy process  
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3.1.2 RECOVERY OF THE LINE PROCESS

The 1elationship t = s or u = f, immediately confers the notion of a gradient upon

u. We refer to u as the gradient (GRAD) piocess The line process can be recovered
from the GRAD process keeping in mind that equal, positive and negative values of u

must map to the same points in z Wefind it convenient to first transform the energy
function using ugw = |u|, the Giadient-Magnitude (GMAG) process. The criteria for
a minimum wit uem become, UGM = | fol and (g'(uem) ~ uemg(uem)) > 0 The

sufficient condition arises from rewriting the concavity condition in terms of ugy. A

transformation from the GMAGprocessto the line process z = z(ugag) can be obtained.

The transformation should not cause the formation of spurious minima. Every minimum

of ug should be a minimum of z and vice versa It is easy to show that this condition

is satisfied when z = z(ugas) is monotonic and ow is finite.

We suggest two transformations; z, = 1 — (ugar), and z2 = lo(ugm) The mono-

 

 

tonicity condition requires

dzy (g (uem) — uemg (uen)) > 0 (10)
duom Dr uzrg

 

for the first transformation, and

dz 1 i we

duom alg (uem) — uemg (uam)) > 0 (11)

for the second Note that the relation (g'(ugw) — ucmg’(ucm)) also shows up in the

sufficient condition for a minimum. Combining the conditions for monotonicity and for
a minimum to exist, we get

g(uem) - ucmg(uam) > 0 (12)

Each of the transformations suggested have corresponding energy functions that aie now
defined ove: the intensity and the analog line processes.

3.1.3 A CONTINUATION METHOD USING THE GMAG PROCESS

The continuation method used is based on Blake and Zisserman’s Graduated Non-

Convexity (GNC) algorithm [21] The sequence of g functions used here is derived
from the GNC criterion The first function in the sequence is constructed to make the

energy function convex with respect to the intensities Successive g functions push the

eneigy function closet to the weak membiane. The functions are created out of piecewise

polynomials and are gradually modified by a contiol parameter c until the function g*

is reached. The g function sequence is shown below

Pw 0 < |ul <q
g(u) = a—F(r—lul)? gq < jul <1 (13)

a [ul >

where ¢ = ¢,2*, k = 0,1, andi? = a(2 + xz), q = 33 Cx is the initial value of the

contiol parameter The othe: parameteis g and r aise as a consequence of creating a

convex energy function (co1responding to c = ¢.)
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Proceeding as outlined above we can obtain the two functions (uesz) and lo(uem).

The relations can be simplified by modifying the definition of the GMAGprocess

The GMAGprocess ugy is now defined over the interval [q,r] Note that the interval}
does not stay fixed but keeps shrinkingas c is increased. Now the twofunctions 1(ugqy)
and Ip(ugar) can be written as

  
c (7 — ue) c (uem ~ 4)—i] eS < <rD? uaa” a(uem) = >y3 7g S uom St (14)

We checkif relation (12) is satisfied.

Li(uem) =

g (wom) — uemg’(uem) = 2er > 0 (15)

We drop the subscript on ugay since the GRAD process plays no role in subsequent

discussions. The line process can be obtained from either of the two transfo1mations,

3.1.4 THE GENERALIZED GRADUATED NON-CONVEXITY ALGO.-

RITHM

We now suggest introducing interactions on the GMAGprocess All line interactions
can be transfered to the GMAG domain

We choose two basic kinds of interaction terms This has been inspired by the work of

Geiger and Girosi [9] and by Geige: and Yuille [19] Conside: the following modification
of (2)

Hoeane = > (fli, i) = di, 1)? + (Gul fois 3), Molt, 1)+ Gul ful@, 1), alts 7)))
{i,7}

SaDw J-qg(wi,j7+1)-9@ +5D (us q)(ue(t +1,7) — 9)

{i,7} {ig}
¢ _ . ¢ , _
per (unlt3) — g)(ualt + 19) - 9) + 52 2 (unlis 1) — a)(ualt, 7 + 1) ~ 9)(16)

{i,j} {i,j}

where all the indices are analogous to the earlier line process case Physically, we are

trying to decrease the penalty on a vertical (horizontal) line if its vertical (horizontal)
neighbors are “on” and inciease the penalty on a vertical (horizontal) line if its adjacent
vertical (horizontal) neighbors are “on”. This corresponds to encowaging hysteresis
whichleads to the formation of unbioken contows and non-maximumsuppression which

prevents the formation of multiple edges and adjacent parallel lines The penalty is

controlled by the parameters « and €,

We now proceed with the algorithm itself The improved line piocess in the GNC

formulation prompted us to call this algorithm the Generalized GNC o G*NCalgorithm

Wefirst solve for u keeping the intensities fixed. Now, u becomes a function of the
neighbors as well as the intensity gradient. We choose to 1un ICM on the u process.

This requires a black and white updating scheme since ICM is guaranteed to converge

only when the updating is asynchionous

In order to 1un ICM on the GMAGpiocess, we haveto solve for u wheninteractions

ale present Thecriterion for a minimum for the vertical GMAG puocess is:

OHeanc
Bu(i,j) (17)
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 (c)

Figure 1: (a) Original image of Mission Bay (San Diego), (b) noisy image, (c) restored
image using the G’NCalgorithm, and (d) line process image using the G?NC algorithm
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From this we get

| f(t, 3)|
2( es (ud (i,j) —9) —€2 (ub (4,9) —9)

Uy(t, 9) = (18)
     j-

   

  

  

  
  

   
  

   

 

   

  

  

 

  

and (u“Ci,) 9g) = v(tj+l)—9 + wv(iJ—1)—-9) and (uk (2, 7) _ Q= ur(it1,j)—4 + uy (i-1,7) 9

The formula for the horizontal GMAG process can be similarly derived This solution

for u is not guaranteed to be within [g,7] If the solution lies outside, the end point
eneigies are again compared and the solution with the lower energy is chosen The

solution depends heavily on € and €, We have used the generic symbol ¢ for both ¢,

and €,; when they assume the samevalue.

We have chosen to run the Conjugate Gradient (CG) algorithm with an optimal

step on the intensities This is because the CG algorithm converges muchfaster than

steepest descent (SD) The course we pursue is to apply ICM on the GMAGprocesses

until they converge Wealternate between ICM on the GMAGprocesses and CG on the

intensities. We have noticed that ICM takes very few (one to five) iterations to converge

(for our case studies) The algorithm is as follows

1 Set c= c, (usually c, = 0 25)

2 Run the CGalgorithm on the intensities

3 Update GMAGprocesses using ICM until convergence

4 Return to Step 2 till convergence

5 Increase c, usually ¢ = 2*c,,k = 0,1,.

6 Return to Step 2 until convergence of the GMAGprocesses

More details on our approach can be found in [22]

We show results for our energy function and compaie it to the GNC algorithm.

Figures 1{a) and 1(b) contain an aerial view of Mission Bay, San Diego and the coure-
sponding noisy image Figures 1(c) and 1(d) showthe 1esults of applying oui algorithm

with the interaction terms. The parameter a was set to 676, the parameter 4 to 8 and

eto05

The technique we have used to incorporate interaction terms is a gene1al one and

not testiicted to the GNC algorithm.

3.2 TEXTURE SEGMENTATION

3.2.1 IMAGE MODEL

We use a fourth order Gauss-Markov Random Field (GMRF) to model the conditional
piobability density of the image intensity ar1ay given its texture labels The texture

labels aie assumed to obey a fiist 01 second oider discrete Markov model with a single

paiameter 8, which measures the amountof cluste:ing between adjacent pixels
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Let 92 denote the set of grid points in the M x M lattice, ie, A = {(i,j) ,
LIS M} Following Geman and Graffigne [20] we construct a composite model ‘which

accounts for texture labels and gray levels. Let {£, , s € 2} and {Y, , s € 2 } denote
the labels and gray level arrays respectively. Let N, denote the symmetric fomth oider

neighborhood of a site s Then assuming that all the neighbors of s also have the same

label as that of s, we can write the following expression for the conditional density of

the intensity at the pixelsite s:

e-UWs=us | Yeu €Ne,Le=l)

Z(llys,7 € Ne)

where Z(lly,,7 € N,) is the partition function of the conditional Gibbs distribution and

PY =y¥ | =y,r EN,L=D= (19)

UY =ys | Y; =yr,r EN, Ds =D= y, —2 > OLysys) (20)
2a? TENS

In (20), o and ©! are the GMRF model parametersof the /-th texture class. The model

paiameters satisfy Ol. =@,-oe!=o

We viewthe image intensity a1ray as composed of a set of overlapping k x k windows

W,, centered at each pixel s € 9. In each of these windows we assumethat the textwe

label L, is homogeneous(all the pixels in the window belong to the same texture) and

compute the joint distribution of the intensity in the window conditioned on L, The

corresponding Gibbs energy is used in the 1elaxation piocess fo. segmentation Let Y*

denote the 2-D vector representing the intensity array in the window W,. Using the

Gibbs formulation and assuming a free boundary model, the joint probability density in

the window W, can be written as

 
 

py yo eet)
* = * Ls = ==

where Z,(l) is the partition function and

. 1
UY SIL. = i) = 2 a2 » {s _ Ss Oy (Yrer + vo} (21)

oT pew, TEN*|) +r EW,

N* is the set of shift vectors corresponding to a fouith order neighborhood system:

N* = {11,72,7:, Tio}

{(0, 1), (1, 0), (1, 1), (—1, 1), (0,2), (2,0), (1,2), (2, 1), (-1,2), (2, 1)}

The label field is modeled as a first o1 second order discrete MRF. It N, denotes the

appiopiiate neighborhood for the label field, then we can write the distribution function

for the texture label at site s conditioned on the labels of the neighboringsites as:

2 @UalLs | Le)
P(L,|L, , 1 € N,) = ——~———

22

where Z is a normalizing constant and

U,(L. | Lr, 1 €N,) = —B > AL ,B>0 (22)
TEN,
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In (22), 8 determines the degree of clustering, and 6(i — 7) is the Kronecker delta Using
the Bayes rule, we can write

P(Ls| Yi, Lr 1 EN) = Ba) (23)

Since Y} is known, the denominator in (23) is just a constant. The numerator is q
product of two exponential functions and can be expressedas,

a 1 * .
P(Ls| V3, Ln, € Na) = GeUe | Nor Bre eRe) (24)

Pp

where Z, is the partition function and U,() is the posterior energy corresponding to

(23). From (21) and (22) we write

U,(L. | ¥%, L,, r © N,) = w(L,) + Ui(Y% | L,) + Uo(L, | L,, 1 € Ns) (25)

Note that the second term in (25) relates the observed pixel intensities to the textela.
bels and the last term specifies the label distribution The bias term w(L,) = log Z, (Ls)

is dependent on the texture class and it can be explicitly evaluated for the GMRF model

considered here using the toroidal assumption (the computations become very cumber:

some if toroidal assumptions are not made) An alternate approach is to estimate the

bias from the histogram of the data as suggested by Geman and Graffigne [20] Finally,

the posterior distribution of the texture labels for the entire image given the intensity

airay is

PY" | L) PL) (26)
Maximizing (26) gives the optimal Bayesian estimate. We note that a stochastic

relaxation algorithm 1equizes only the computationof (24) to obtain the optimal solution,
The deterministic relaxation algorithm given in the next section also uses these values
and performs descent on a related energy function

3.2.2) A NEURAL NETWORK FOR TEXTURE CLASSIFICATION

We describe the network architecture used for segmentation and the implementation

of deteiministic relaxation algoithms Let U,(7,j,J) = Ui(¥%,L, = 1) + w(l) where
s = (i,j) denotes a pixel site and U,(_) and w(I) are as defined in (25). The network

consists of K layers, each layer a1ranged as an M x MMairay, where Kis the number

of texture classes in the image and M is the dimension of the image. The elements
(neurons) in the network are assumed to be binary and ate indexed by (i,7,/) where

(t,j) = s 1efeis to their position in the image and I 1efe1s to the layer The (2,7, /)-th

neuron is said to be ONif its output V,,;. is 1, indicating that the coiresponding site

s = (i,j) in the image has the texture label /

A solution for the MAP estimate can be obtained by minimizing (26) We approxi-

mate the posterior energy by

U(L|Y") = DU {U(Y3|L,) + wr, + Ua(Ls)} (27) 
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MM K AR MM

le, 9,4) Vin2 So Vain Vig (28)
2 ta is1j==l GtaeM,

where Nj; is the neighborhood ofsite (¢,7) In (28), it is implicitly assumed that each
pixel site has a uniquelabel, i.e. only one neuronis active in each columnof the network

For the deterministic relaxation algorithm, a simple methodis to use a WTAcircuit for

each column so that the neuron receiving the maximum input is turned on and the

others aie turned off

The network model is a version of the ICM algorithm of Besag [8]. We observe that
in general any algorithm based on MRF models can be easily mapped on to neural

networks with local interconnections.

3.2.3 STOCHASTIC ALGORITHMS FOR TEXTURE SEGMENTATION

The MAPrule searches for the configuration L that maximizes the posterio: probability

distribution, This is equivalent to maximizingP(Y* | L) P(L) as P(Y*) is independent
of the labels and Y* is known The 1ight hand side of (26) is a Gibbs distiibution.
To maximize (26) we use simulated annealing [3]. It samples from the conditional
distribution

~FUe(Ls | Y3, £,,reENs)

ZT,

in order to maximize

e-Up(L | ¥*)
Z

T, being the time varying parameter, referred to as the temperatute The process

is guaranteed to converge to a uniform distribution over the label configuration that

corresponds to the MAP solution

The choice of the objective function fo1 optimal segmentation can significantly affect

its result. In many implementations, the most 1easonable objective function is the

one that minimizes the expected percentage misclassification per pixel The solution

to the above objective function can be obtained by maximizing the marginal posterior

distribution (MPM) of L, given the observation Y*, for each pixel s

P{L,=1,|Y¥"=y"} x SO P(Y*=y*|L=)) PL =))
\Le=l,

The summation above extendsoverall possible label configurations keeping the labelat

site s constant. To find the optimal solution we use the stochastic algorithm suggested

n [23] The algorithm samples out of the posterior distribution of the textuie labels

given the intensity at T= 1 The Markov chain associated with the sampling algorithm

converges with probability one to the posterior distribution
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3.2.4 STOCHASTIC LEARNING AND NEURAL NETWORKS

The texture classification discussed in the previous sections can be treated as a relaxation
labelling problem and stochastic automata can be used to learn the texture labels.
A stochastic automaton is a decision maker operating in a random environment [24]

and is assigned to each of the pixel sites in the image. The actions of the automata

coirespond to selecting a label for the pixel site to which it is assigned Thus for a'k

class problem each automaton has Kactions and a probability distribution over this

action set. Initially the labels are assigned 1andomly with equal probability Since

the number of automata involved is very large, it is not practical to update the action

probability vector at each iteration Instead we combine the iterations of the neural

network described in the previous section with the stochastic learning algorithm After

each convergenceof the deterministic relaxation algorithm, the action probabilities (p,)
are updated as follows

psis(t+1) = psu.(t) + A(t) [1 — psy (4)]
pst +1) = psa(t)[l[—@ A@)], Vi Al, and V s (29)

where J, denotes the labelof site s at equilibrium and p,,)(t) is the probability of choosing

label / for site s at time t, The response X(t) is derived as follows: Suppose the piesent

label configuration 1esulted in a lower energy state compaied to the previous one, thea

it results in a A(t) = A, and if the energy increases we have A(t) = A2 with Ay > Ag. Tn

our simulations we used jy; = 1 and Ay = 0.25 A new configuration for the 1elaxation

network is then generated from the updated action probabilities

Thus the system consists of a 1elaxation network and a learning network Therelax-

ation networkis similai to the one in Section 3.2 2, except that the initial state is decided

by the learning netwoik This results in an iterative hill climbing type algoiithm which

combines the fast convergence of deterministic 1elaxation with the sustained exploration

of the stochastic algorithm. The stochastic part prevents the algorithm from getting

trapped in local minima and at the same time “leains” from the search by updating the

state probabilities. Each cycle now has two phases: thefirst consists of the dete: ministic
relaxation network converging to a solution; the second consists of the learning network

updating its state Foi further details, the reader is referred to [25].

3.2.55 EXPERIMENTAL RESULTS

The segmentation results using the above algoiithms are given on one example. The

least-square estimates (LSE) of the parameters a and ©; coiresponding to the fourth
order GMRF for each texture class weie pre-computed from 64 x 64 images of the

textures.

Figure 2(a) shows a 256 x 256 image having six textures: leather, giass, wool, wood,

pig skin and sand The maximum likelihood solution is shown in Figure 2(b) and Fig-
ure 2(c) is the solution obtained by the deterministic relaxation network with the result
in Figure 2(b) as the initial condition The MAPsolution using simulated annealing is
shown in Figure 2(d), Figure 2(e) shows the MPM result. As indicated in Table 1, sim-

ulated annealing has the lowest percentage erior in classification Introducing learning

into deterministic 1elaxation considerably improves the pe:foimance (Figure 2(f))
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 (c) (d)

Figure 2: (a) Original image consisting of six textures, (b) maximum likelihood solu-
tion, (c) deterministic relaxation with (b) as initial condition, (d) MAP estimate using
simulated annealing
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(e) (f)

Figure 2: (contd.) (e) MPM solution and (f) network with stochastic learning

 

 

Table 1
Peicentage misclassification for the six class problem

Algorithm Percentage E1101

Maximum Likelihood Estimate 2217

Neural network (MLEasinitial state) 16 25

Simulated annealing (MAP) 6 72

MPMalgorithm 705

Neural network with learning 87
 

4 CONCLUSIONS

We have presented two applications which highlight the close links between MRF's and

NNs There are several issues which have not been addressed and are beyond the scope

of this chapter. We briefly mention a few of these issues The use of MRF's in integrating

visual modules [26] has been an important atea of investigation in recent years. Density

function estimation [27] is an impo:tant aiea where NNs and MRFscan betelated

Finally, the important problem of binding syntactical structures is addiessed by the

Dynamic Link Architecture [28] which uses a fast synaptic plasticity term in addition

to the more conventional slow weight modification term This is an alternative to using

either higher-order connections o1 additional bidden units to model hidden stiuctural

relationships in scenes
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Abstract

The purpose of this chapter is to study the application of some connectionist
models to automatic speech recognition. Ways to take advantage of a-priori
knowledgein the design of those models are first considered. Then algorithms for
some recurrent networks are described since they are well-suited to handling
temporal dependencessuch as those found in speech. Some simple methodsthat
accelerate the convergence of gradient descent with the back-propagation
algorithm are discussed. An alternative approach to speed-up the networks are
systems based on Radial Basis Functions (local representation). Detailed results of
several experiments with these networks on the recognition of phonemesfor the
TIMIT database are presented. In conclusion, a cognitively relevant model is
proposed. This model combines both a local representation and and a distributed
representation subnetworks to which correspond respectively a fast-learning and a
slow-learning capability.

1. INTRODUCTION

Artificial neural networks are simplified models of neural computation simulated
in computers. Connectionist modeis are models of computation based on
massively parallel networks of simple computational units, inspired by the
organization of the brain, simulated in order to help construct and explain
connectionist theories of cognition [Rumelnart & McClelland 86]. A lot of recent
research results [e.g. Bengio etal. 89a; LeCun etal. 89; Lippman 89; Waibel et a/
88; Giles et a/, 90; Pomerleau 89] indicate that they could be useful in addressing
several artificial intelligence problem areas, in particular those relating to
perception, such as for example automatic speech recognition [Lippman 89].

Oneof the advantages of connectionist models is that they can integrate learning
from examples with some a-priori knowledge. In section 2 we consider several
aspects of the design of neural networks systems which can benefit from a-priori
knowledge by improving generalization.
A class of neural network models of special interest for the problem of speech

recognition is the class of recurrent neural networks which contain cycles enabling
them to retain and use some information about their past history. This feature
seems well suited to the problem of speech recognition: transform a sequence (of
undetermined length) of vectors of acoustic descriptors into a corresponding
sequence of symbols representing speech units (e.g., phonemes, diphones, words)
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or alternatively, into a sequence of degrees of evidence for those symbols. In

section 3 some Jearning algorithms for recurrent neural network are described: gq

general purpose training algorithm for discrete-time networks of arbitrary

connectivity which buffers past activations, as well as an algorithm for qa

constrained type of network allowing only self-loops but for which it is not

necessary to keep the past history and which has the same computation time and

space complexity as the backpropagation algorithm for feedforward networks.

Some simple methods that can greatly accelerate the convergence of gradient

descent with the back-propagation algorithm are discussed in section 4. In

particular we introduce an original technique that provides a different learning rate

to different layers of a multi-layered sigmoid network.It is based onthe idea that

each layer should be allowed to modify itself independently of the damping ofthe

gradient due to layers closer to the outputs of the network. The experiments

described in this section show the significant acceleration obtained with this

technique.
A large section (5) of this chapter is devoted to a particular type of connectionist

model based on a local representation and often called Radial Basis Functions

network (RBF). Each unit in the network may be understood as representing a

prototypical input pattern while the outputs are formed by interpolating between

these prototypes, i.e., by combining linearly the gaussian-shaped outputs of the

hidden units. This type of model has several advantages: solid mathematical

foundations [Poggio & Girosi 89], neurological [Mel & Koch 90] and psychological

[Kruschke 90] plausibility as well as fast implementation. Implementation can be

fast for several reasons: the networks can be initialized with prototypes rather than

with random values, and, because of the local nature of their responses, the smail

subset of hidden units that respond significantly can be found rapidly with a fast

search. We proposein section 5.5 a simple algorithm to implement that search. The

results of several comparative phoneme recognition experiments performed on the

TIMIT database of continuous speech are described in section 5. In particular the

advantage of using information about the classes in the preprocessing is seen (to

find the prototypes), the effect of architecture and the representation of context on _

generalization are explored with several experiments, concluding with an

experiment with a recurrent network which combines RBFunits with sigmoid units.

Sigmoid networks - which imply a distributed internal representation - and RBF

networks - which are based on a local representation - both have advantages that

seem to be complementary.In the last section (6), we propose a new idea on ways __

to construct networks that combine those two types of representations. A

constructive algorithm for a network made of a local and a distributed

representation subsystem is described, in order to implement respectively fast and

slow learning, This algorithm is characterized by a reorganization phase in which

the distributed subsystem tries to incorporate what is represented in the local

subsystem.

2. USE OF A-PRIORI KNOWLEDGE

We are seekingin our research effort the advantages of combining the flexibility _

and learning abilities of neural networks with as much knowledge from speech _

science as possible in order to advance the construction of a speaker independent 



177

speech recognition system. A-priori knowledge can be usedin many steps of this
construction, @.g., preprocessing, input coding, input representation, output coding,
output supervision, and architectural design.

9.1 Preprocessing

Previous work had indicated that the choice of preprocessing significantly
influences the performance of a neural network recognizer[e.g., Bengio & De Mori
89]. Different types of preprocessing processes and acoustic features can be
utilized at the input of a neural network. Experiments with various acoustic features
were performed, using filters derived from the Fast Fourier Transform (FFT),
cepstrum transforms, energy levels (of both the signal and its derivative), counts of
zero crossings and energy ratios [Bengio, Gori & De Mori 89], as well as an ear
model and synchrony detector [Cosi, Bengio & De Mori 90).

2.1.1 Cepstral vs Spectral parameters

Previous experiments had shownthat spectral representations produced better
results than cepstrum coefficients with neural networks of sigmoid units [Bengio et
al, NIPS 89]. It seems to be also the case for RBF networks, as was shownin an
experiment where the task was the same as defined in section 5.4, i.e., the
recognition of 39 TIMIT phonemes. The networks had 25 input units with 4 delays
(0, 1, 2 and 3) between the inputs and the hidden units and 78 hidden units (2
clusters/ class)initialized with k-means and with 3 delays (0, 2 and 4) betweenthe
hidden and the output units for the 39 classes. The output weights were obtained
with the pseudo-inverse method [Penrose 55; Broomhead & Lowe 88]. The frame
by frame error on the test set was 54.5% for the cepstral input and 46.5% forthe
spectral input. In both cases, we used a melscale with 24 filters and provided the
frame energy to the system, i.e, the network had 25 inputs. With slightly different
architecture, with additional direct connections from inputs to outputs, the errors
were reduced but the spectrum still produced better generalization: the error on the
test set with cepstral input was 48.1% and the error with the spectral input was
45.6%.

2.1.2 Ear model vs. FFT

In recent years, basilar membrane, innercell and nerve fiber behavior have
been extensively studied by auditory physiologists and neurophysiologists and
knowledge about the human auditory pathway has become more accurate. A
number of studies have been accomplished and a considerable amount of data
has been gathered in order to characterize the responses of nerve fibers in the
eight nerve of the mammalian auditory system using tone, tone complexes and
synthetic speechstimuli [Seneff 85; Delgutte & Kiang 84].

Experiments on the speaker-independent recognition of 10 English vowels were
performed onisolated words, comparing the use of an ear model with an FFT as
preprocessing [De Mori, Bengio & Cosi 89; Cosi, Bengio & De Mori 90]. The FFT
Was computed using a mel scale and the same numberoffilters (40) as for the ear
model. The ear model was derived from the one proposed by Seneff (1985).
Performancewassignificantly better with the ear modelthan with the FFT:the error
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on thetest set with the ear model was 4.6% while with the FFT, the error was 13.0%

[Bengio et al. 89b; De Mori, Bengio & Cosi 89]. However, the ear model required .

about two orders of magnitude more processing time.

2.2 Output coding

if each output of the network is interpreted as representing a phonetic property,

then an output value can be seen as a degree of evidence with which that property

nas been observed in the data. We have explored the use of an output coding

scheme based on phonetic features defined by the way speechis produced.Thisis

generally more difficult to learn but results in better generalization, especially with

respect to new soundsthat had not been seen by the network during the training.

This was demonstrated in experiments on vowel recognition in short isolated words

in which the networks were trained to recognized the place and the mannerof

articulation [De Mori, Bengio & Cosi 89: Cosi, Bengio & De Mori 90]. In addition, the

resulting representation is more compact than when using one output for each

phoneme. However, it was much more difficult to apply such a coding based on

articulatory features to the recognition of continuous speech. Experiments on the

TIMIT [Garofolo 88] database showed that the target (ideal) values for place of

articulation of phonemes in continuous speech do not correspond well to the

acoustic signal. Coarticulation effects and the short duration of phonemesin

continuous speech often preventthe place of articulation to reachits (stable) target

value. Instead, the place of articulation is continuously changing andis strongly

influenced by the context.

 
2.3 Architectural design

Hypothesis about the nature of the processing to be performed by the network

based on a-priori knowledge of speech production and recognition processes _

enables to put constraints on the architecture. These constraints result in a network |

that generalizes better than

a

fully connected network [Baum & Haussler 89]. Here

are several examples of application of modularization: the same architectural

constraints do not have to apply to all of the subtasks. One can modularize

according to acoustic context (different networks are triggered when various

acoustic contexts are detected)[Bengio, Cardin, De Mori, Merlo 89]. Another _

solution is modularization by independent articulatory features (vertical and

horizontal place of articulation) [in De Mori, Bengio & Cosi 89]. Another type of

modularization, by subsets of phonemes, was explored in [Waibel 89].

A striking example of the influence of architecture on recognition performanceis

demonstrated in the case of nasals recognition in [Bengio et al. 90]. In this

experiment the architecture of the network was modified in order to consider a

speechtheory stating that very significant discriminatory information is to be found

in the transition between the vowel and the nasal. This resulted in a drastic.

improvement in generalization (from 15% to 2.6% error).

3. RECURRENT BACK-PROPAGATION NETWORKS

Feedforward networks have less expressive powerthan recurrent networks.

However recurrent networks are more complicated, because of their learning _
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algorithms which must consider the influence of past events on future errors, and
pecause of their dynamics, which can be unstable or even chaotic.

3.1 Time Unfolding

The idea of time unfolding was proposed in [Rumelhart, Hinton & Williams 86].It
consists in considering back-propagation of gradients to previous times by
unfolding the network into an equivalent network with a different layer for each time
slice.

Let us Consider the general case of a network with multiple links between pairs
of units (associated to multiple discrete delays) and units that can compute any
differentiable parametric function of their inputs. In particular we will consider the
following functions:

- asymmetric sigmoid of the weighted sum of the inputs,
- symmetric sigmoid of the weighted sum of theinputs,
- linear weighted sum ofthe inputs,
- product of the inputs,

- elliptic gaussian function (radial basis function).

 
The operation of the network can be divided into a forward phase - to compute

the outputs of each unit and the outputs of the network - and a backpropagation
phase, to compute the gradient of a cost function (explicitly expressed in terms of
the outputs of the output units) w.r.t. all the parameters of the system. The forward
phase operation is defined as follows:

Xi(t) = hi(¥(t), ¥(t-1), Y(t-2),...) (1)
Yitt) = fi0XiCt) (2)
where Y(t) is the vector of outputs of all the units in the network at time t, ie.,

Y(t)=[Y1(t), Yo(t),... Yn(i)]’. Xi(t) is an intermediate variable sometimes called
activation and which might be considered to be related to the activation potential of
a neuron while Yj(t) corresponds to its firing rate. We will consider the following

cases for h() and f() , however, any continuousdifferentiable function is acceptable:

Table 1: Various neuron transferfunctions.

 

oo h() = Xi(t) Yi(t) = *(Xi(t))
asymmetric sigmoid > WiYj(t-d) Yi(t) = /(1+e%0)

symmettic sigmoid j Wi Yoj(t-dy) tanh(X((t))

et i Wi Ygi(t-dj) Xi(t)
product Xi(t)

TU Yg,(t-dj) xi
e |gaussian Dj Wy - Ygj(t-dj))? By
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Here sj is the node numberof the source unit for the jt input fink of unit i and di

is the discrete delay associatedto that link. For gaussian units 8 is the inverse of
the variance of the gaussian, assuming a diagonal covariance matrix. We could

also consider 8 fixed for all dimensions (spherical gaussian) or a full covariance

matrix.
For the backward phase, the basic idea ofthis algorithm is to compute dE/oW;,In

order to do so one computes recursively in a backpropagation phase 0E/dX((t) for

all units i, starting from the last time frame L and going backward in time until the
first frame of the input sequence, again starting for each time t from the last unit Nu
downtothefirst unit (note that this order does not matterif all links havea positive
delay).

First we compute dE/dX((t) recursively using back-propagation:

dE/oXi(t) = Dk:sg=i dE/AXk(t+djj) OXk(t+d,j)/0Y i(t) AYi(t)/OXi(t)+

Sis an output unity (Y{(t)-¥F*(t)) AYi(tVoXi(t)) (3).

 

where the term on the secondline of (3) is only for output units at times when

there is supervision.It is shown here for the case of minimization of the Least Mean

Squarescriterion:

E=05 dt Di (Vilt-¥r()? (4)
where Y;*(t) is the target output for unit i at time t. dYj{(t)/AXi(t) is different for

different types of units, it depends on the choice of fi) while OXk(t+dyj)/0Y)(t)

depends onthe choice of gj():

Table 2: Derivatives for the various types of neurons.
 

 

OYi(t/OXi(t) OXK(t+d,)/OVilt)
asymmetric sigmoid Yi(t) (1 - Yi(t)) Wij
symmetric sigmoid 0.5 (1+Yi(t))(1-Yi(t)) Wy
linear 1 WK
product 1 Xk(tedg)/Vilt)

gaussian - Yi(t) -2 (WigYilt)) Bui
 

The gradient of the criterion w.r.t. the parameters can then be computed as

follows:

JE/AWi= Dt BE/OXi(t) AXi(t)/OW;
6

and for gaussian units one also needs to compute

JE/9By =2 JE/OXi(t) dXi(t)/2B;
&

where oXi(t)/dWand dXi(t)/08; depend on the choice of Gj():  
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«asymmetric sigmoid, symmetric sigmoid,linear:

_ AXi(t/OWg = Ysi(t-di) (7)

. gaussian:

aXi(t)/OW 4 = 2 (Wi - Y¥g;(t-oi) Bij = - OXitYOYsi(t-dj) (8)

axi(tOB; == (Wj “Ygi(t-dij)? (9)

This algorithm has a time complexity of O(L . Nw) for both the forward and the
backward phase and needs space O(L . Nu)in order to store the activation ofall
units for the whole sequence. L is the length of a sequence, Nw is the numberof
weights and Nu is the numberof units. Back Propagation (BP) for feedforward
networks needs O(Nu) space and O(Nw) time per frame or O(L . Nw) time per
sequence of length L. Hence this algorithm has the same time complexity (per
epoch) as ordinary BP for feedforward networks but needs L times more space.

 

3.2 BPS

BPS (originally, Back-Propagation for Sequences) is a learning algorithm for a
certain type of constrained recurrent networks that was proposedin [Bengio, Gori &
De Mori 89]. It applies to networks which have the following architectural
characteristics:

- the network has a multi-layer architecture
- static and dynamic neuronsare distinguished. The former are as in static BP

whereasthe latter have a local feedback connection, thus their activation evolves
as follows:

Xi(t+1) = Wi Xi(t) + 24j Wy 10(t+1)) (10)

- the input connections from dynamic neurons only comefrom theinput layer

The learning algorithm is based on the forward recurrent computation of OXi(t)/aW;;:

OXi(t+-1 )/OWy= f(Xj(t+1)) + Wy OXi(t)/OWy forix,
aXi(t+1/OW; = Xi(t) + Wj OXi(t)/aW; for i=j (11)

The rest of the algorithm follows exactly the same lines as for the algorithm for
strictly feedforward networks:

BE/OW,= Dit JE(t\/OWy = Dt DE(LY/AXI(t) AXI(t\/aW, (12)

where dE(t)/oXi is computed with the backpropagation recursion as follows,
assuming a Least Mean Squarescriterion:

For outputunits i: dE(taxi= (Yi(t) - Yi(t)*) dYi(tV/OXitt) (13)
For hidden units j: GE (t)/OX) = Dy, IE(t/AXK(t) IXK(t)/OY|(t) AV|(tVXi(t) (14) 
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Depending on the type of unit, the partial derivatives OY i(t)/aXi(t), AXK(tV/OY|(t) and

dXi(t)/aWij are computed for example as shownin table 2 and equation7.

The cost of running the learning algorithm is the same as for a feedforward back:

propagation network. Furthermorethis algorithm has the advantagethatit is local

in time: one does not need to keep a buffer of past events in order to take into

account influences from the past in the calculation of the gradient. This algorithm

can be seen as a compromise between unfolding in time (using only backward

recursion) and full feedforward (using only forward recursion) [Williams & Zipser

88; Kuhn 87]. Howeverit has the drawback of being limited to a certain type of

architectures. On the other hand this constraint could be appropriate to some

problems of speech recognition [Bengio, Gori & De Mori 89] and in that case help

to improve generalization,
By expressing the Wii as a bounded function of another parameter Di, one can

force stability of the network and put arbitrary bounds upon the magnitude of Wii:

Ww;(Di) = B (1 - exp(-Di))/(1 + exp(-Di)) (15)

with JE/ADi = DE/IWii OWj/ODi (16)

4. FAST IMPLEMENTATION OF BP

One of the main criticisms of Back-Propagation (BP) algorithms with gradient

descent has been the slownessof their convergence. However, several simple

techniques can significantly accelerate the training. The most commonobservation

concerns the use of stochastic weight updates rather than batch weight update.

With stochastic weights update one adapts the weights after each pattern, whereas

with batch update one accumulates the gradients from all the patterns and only |

then the weights are updated. Stochastic update was found to be significantly

faster than batch update [see Bottou ef a/ 90], especially in pattern recognition _

problems (e.g., speech recognition, written digits recognition). Yann Le Cun (1989)

suggested as an explanation that for such problems one might explain this

improvement by the redundancy present in the training set. Since the gradient

gives only the slope of the error function, if many gradient contributions (from

different patterns) ali point in a similar direction then batch update wastesa lotof

time in order to refine that direction when a gross estimate might have been |

sufficient (since at the next step we might have to chose a different direction

anyway). Another advantage of stochastic gradient descentis that it may allow to

escape from local minima orfrom regions of the weight space from whichstraight

gradient descent might need a lot of iterations to escape. Randomness is

introduced by the noisy evaluation of the gradient based on verylittle data (¢.9:;

one pattern). This noise is proportional to the size of the learning rate. Henceif one

starts with a large learning rate and siowly decreases it (for example as 1/t) then

one might approach the global minimum and escape local minima in a waythat is

perhapssimilar to simulated annealing [L. Bottou 90, personal communication].

Many schemes have been proposed to accelerate convergence by 1) adapting

the learning rate, and 2) using different rates for different weights. For example,

Robert Jacobs [Jacobs 88] proposes such a method, called the delta-bar-delta rule,

which basically increases the rate associated to a weight when the current gradient

for that weight has the same sign as a decaying average of previous gradients and 
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decreases this rate if the signs are opposite. However, this method, like many

acceleration methods (e.g., momentum, use of second orderinformation) rely on an
exact evaluation of the gradient, j.e., on batch update. Consequently the
advantages they bring are often offset by the disadvantage of using batch update,
especially for large pattern recognition problems.

4.1 Layer-dependent weight change

One of the reasons for the slowness of gradient descent for multilayer networks
is that the gradient tends to become exponentially smaller for layers that are far
from the outputs. Let's consider the backpropagation step to compute the gradient
w.r.t. to the activations at layer | given the gradient w.r.t. the activations of layer I+1
(layer 0 is the input):

dE/oX, = P(X) Whe dE/OX,4 (1 7)

where W!\,,, is the transpose of the matrix of weights from layer| to layer I+1, E is

the error to minimize, 7() is the derivative of the sigmoid. function f() (e.g., defined in
(6)), and X; is the vectorof activations of layer |. The decrease of the magnitude of
dE/dX, as | decreases may come from the weight matrix (e.g., in general for
pyramidal networks:size of layer| > size of layer 1+1) producing a dispersion of the
gradient and from the derivative of the sigmoid. In the case of the asymmetric
sigmoid (in [0,1]) f\() has a maximum value of 0.25 (0.5 for symmetric sigmoid in
[-1,1]) and decreases almost exponentially with the magnitude of the activations
(getting away from 0 activation). However, 1) the gradient represents direction
information, /.e., what is important is the relative value of the gradient for different
units, and 2) a reasonable conjecture is to assumethat the relative magnitude of
the gradient for two different layers is not an important information: the most
important information concernsthe relative change that each unit's activation within
a layer should take in order to decrease the error,
According to that idea, we developped an algorithm that adapts the learning rate

of each layer so as to make the average weight change for that layer equal to a
user defined value (or one that may decrease with time, similarly to the learning
rate for ordinary BP). Derthick (1984) had already proposed an algorithm in which
each weight is updated by a fixed amount depending on the sign of the weight's
derivative, However, in his case, one loses completely the information about the
relative impact of changing one weight w.r.t. another one. On the other hand, with
the layer-dependent learning rates, information about the relative importance of
changing one weight vs another one on the samelayer is kept and permits very
fast convergence. Here is simple implementation of this idea for rate update:

AW,,4 :(t) = E(t) OE/OW,,, j(t) (18)
Dy(t) = 4 Dit) + (1-4) < | AWy.4(t) | > (19)

E(t) = |(t-1) . Y(t) / Dit) (20)

whereis €(t) the learning rate of layer| at iteration t, D,(t) is a decaying average of <

| AW, ;.4(t) | >, the average absolute value of the weight change for layerI, is the
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decayfactor of D,(t) (between 0 and 1, typically 0.5), and Vit) is the target average

weight change, which can be set by the user, or automatically reduced as training
progresses.

In experiments with the XOR function, using a network with two inputs, one

hidden and one output unit, and stochastic weight updates, the following results
were obtained:

Table 3: Comparison of constant learning rate vs constant weight change perlayer
for the XOR problem. The standard deviation of the numberof epochsis givenin
parenthesis The percentageoffailures is the ratio of trials which had not converge
after 1000 epochs.

 

€=05 E=05 <|AW|>=.05  <|AW|>=.10_ <|AW|>=0.15
<#epochs> ~622(238) 401(197) 35.9(18)  26.0(9.7)  34,9(22)
% failures 55% 15% 0% 0% 0%
 

All experiments were performed 20 times. Thefirst two use the standard gradient
descent with a fixed global learning rate. The last three use the above-described
layer-dependent weight change,with a fixed target average weight change.

5. RADIAL BASIS FUNCTIONS MODELS

Radial Basis Function (RBF) units produce an output which depends on the
distance betweenthe input point and a prototype point in the input space (which is
defined by the parameters of the RBFunit). The output of the network can be written
as the weighted sum of the outputs of those RBFunits:

 
Fi(X) = oj Wy RII X - Pi fl) (21)

h(r) = e-f@ (22)

where X is the input pattern vector, Pj is the prototype point associated to RBF unit j
and we can choosefor h() for example a gaussian, as in (22). The norm in (21) can
be weighted by a covariance matrix. Poggio and Girosi show [Poggio & Girosi 89]

that if our objective is function approximation (approximate a [F(X) with F(X, some
parameters)), seen as hypersurface reconstruction, given a noisy training set of

example patterns {Fp(Xp),Xp} and a-priori knowledge that the resulting mapping

should be smooth, then generalized RBFs satisfy sufficient conditions to be used
for this approximation problem. These generalized RBFs are mathematically
related to the well-known RBFsusedforstrict interpolation tasks. However, there
are less RBF units in the proposed network than examples in the training set.

These generalized RBFs are also closely related to methods such as Parzen

windows, generalized splines and vector quantization. Note that the network

defined by (21) constitutes a network with two layers of weights and can be shown

to approximate arbitrarily well any smooth function [Poggio & Girosi 89].  
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5.1 Relation to Neurobiological Models

A multidimensional gaussian can be represented as the product of lower

dimensional gaussians. This property suggesis a way for neurons to possibly
compute RBFs. Gaussian radial basis functions in one or two dimensions can be
implemented as coarse coded receptive fields i.e, one dimension is represented

by an array of neurons, each reacting only to values of the variables in a certain
range. These kinds of representations actually exist and were found in the visual

system. Some special type of synapse has two incoming inputs and perform a kind

of product of the two incoming signals [Durbin & Rumelhart 89]. Hence a RBF

could be implemented with gaussian receptive fields and product synapses without
explicitly computing the norm of the exponential [Mel & Koch 90]. New work by

Kruschke (1990) seem to indicate that such local models have also some

psychological plausibility.

5.2 Relation to Vector Quantization

RBFsare related to vector quantization (VQ) [Gray 84]: VQ partitions the input
space into mutually disjoint regions (for example Voronoi polygons, separated by
line segments at equal distance between each two neighboring cluster centers).

VQ encoding approximates each input point by the nearest cluster center. This

would be like having RBFs with all-or-none output, with only the closest RBF

responding. Instead, RBF networks represent the input point by a vector of
proximity measures between 0 and 1 forall the RBF units in the network.
RBFs are thus also related to Kohonen's neural network models for vector

quantization [Kohonen 88]. These algorithms can be seen as special formsof the k-
means algorithm [MacQueen 67] (often used for VQ) for finding the centers of n
clusters in a set of points. In Kohonen's algorithms, which are examples of
competitive learning algorithms, only one output unit is active at a time, the one
"closest" to the input vector. In some of his algorithms (feature maps), the
competitive units are laid out in a spatial structure in which a neighborhoodis
defined so that adjacent units will respond to similar vectors.

5.3 Implementation advantages of RBFs

The basic implementation advantages of RBFs derive from their representation:
parameters have a simple meaning w.r.t. the pattern examples. Here is a possible
fast training method to take advantage of this fact in simulations (see [Poggio &

Girosi 89}):

1) Initialize the parameters of the gaussian units (Pj in (21)) with a random
subset of the examples, or with the results of a cluster analysis, such as the cluster
centers produced by the k-means algorithm or Kohonen'’s LVQ2 algorithm
[Kohonen et a/. 89]. This step can be interpreted as an unsupervised, competitive
learning step which encodesthe input pattern in a local representation.

2) Find the output weights of the RBF network (Wij in (21)) with a matrix pseudo-
inverse calculation, of with gradient descent. This step is a supervised learning
step and can be accomplished rapidly since it is a linear problem, with no local
minimum.
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3) All the parameters of the system can be tuned to improve performance ang

perform a global optimization, using gradient descent since the RBF units outputs

can be differentiated w.r.t. the parameters of these units (mean and possibly

variance of the gaussian). See section 5.4.2 whereit is shown that this step indeed

improves performance.

5.4 Experiments of phoneme recognition with RBFs

The results of several experiments are presented here to evaluate the

performance of RBFsin a difficult speech recognition problem. The task was

phonemerecognition on the TIMIT [Garofolo 88] database, with 39 phoneme

classes (as [Lee & Hon 89]). We used regions 2, 3 and 6 of TIMIT (135 speakers

and 292623 frames for training and 28 speakers and 61428 framesfor test). The

input preprocessing produced 24 melscaled spectral coefficients plus the energy

for each frame of 20 ms, with a step of 10 ms. This resulted in a flow of 25

parameters per frame of 10 ms coming into the network, For the architectures

presented below the hidden units look at 4 consecutive frames /.e., a 100

dimensional input. Output units are sigmoid units rather than linear units as in (34),

Note that this is equivalent since the sigmoid is invertible but it has the advantage

that the outputs are limited to the range [0,1]. In all nets there was a bias unit

feeding all sigmoid units in the net a constant 1.0 value.

It is difficult to compare directly the results obtained here with those reported by

other researchers for phoneme recognition on TIMIT. The best result reported here

was 41.8% error on the test set (section 5.4.5). This is a frame by frame error

obtained by scanning the network on the preprocessed input sentence, and not

using any language model, known segmentation, bigrams or duration information:

Lee & Hon (1989) obtained 41.3% error with HMMs and no language model and

26.2% using a context-dependent bigram model. Leung and Zue (1990) obtained

30% error but used the known segmentation and phonemeduration (networkis not

placed across phoneme boundaries:it is centered on each phoneme). Robinson

and Fallside (1990) obtained 24 9% error with a recurrent network plus a dynamic

programming postprocessor using a bigram and duration model(the error is about —

twice that amount without the postprocessor).

 
5.4.1 Supervised vs unsupervisedinitialization

Forthe initialization of the gaussian units parameters, the k-means clustering

algorithm was chosen.It generates a set of clusters with input patterns associated

to each cluster. The variance of patterns within each cluster is usedtoinitialize the

spread (variance) of the gaussian units.

Should one use a completely unsupervised algorithm to find those

parameters? What if some points from two classes form two clusters that mostly

overlap? K-meanswill probably choose to represent them with only one cluster. A

simple but not optimal solution to that problem is to apply k-means separately for

each of the classes. For simplicity, the same numberof cluster centers per class

was always used. An experimental comparisonof the use of k-means with no class

information vs k-means per class showed

a

significant improvement with k-means

per class. A simple experiment was performed with 78 gaussian hidden units. _
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Output weights were found with pseudo-inverse computation [Penrose 55]. The
result with 78 clusters (no class information) was 58.1% error on the test set, while
using class information, with 2 clusters per class (39 classes), the error was 52.2%.

All other experiments with RBFs described in this chapter henceforth used k-means
per class.

5.4.2 RBFs vs Sigmoid Units

The next set of experiments are comparative experiments in orderto verify if the
time gained with RBF networks instead of sigmoid units (mostly because of the
non-random initialization) is not lost in performance. Experiments were performed
on the same task (recognition of TIMIT phonemes) with the same inputs, same
targets and same architecture for both a network of RBF units and one of sigmoid
units. The networks had 78 hidden units.
The network with sigmoid hidden units wasinitialized with random weights and

trained with BP for 22 epochs. The error on the test set was 51.2 % error. The
network with gaussian hidden units wasinitialized with k-means,(2 clusters/class,
39 classes). The output weights were found with the pseudo-inverse. The error on
the test set was 52.2 %. After doing 10 epochs of gradient descent.on the RBFnet,
i.@., optimizing all the parameters (output weights, cluster centers and cluster
spreads), ihe error on the test set was reduced to 47.8 %.
Hence for much less CPU time (no gradient descent) the RBF network did almost

as well as the sigmoid networks. However, with additional training (gradient
descent) representing less than half of the CPU time used to train the sigmoid
network, the RBF network performedbetter.

5.4.3 Effect of Context and Architecture

it is well known that successive speech spectra are not independent. Watrous
(1989) showed in some simple examples how the addition of context can make
feasible the separation of two classes which would otherwise overlap. However, a
very large input window implies a large numberof free parameters and mayresult
in poor generalization on unseen data [Baum & Haussler 89]. Another problem lies
with the non-linear distortions in time that occur among instantiations of a given
phoneme. Various architectures are thus explored here in order to optimize
generalization on the phonemerecognition problem, for example, using multiple
delays between the hidden layer and the output layer (as in Waibel's TDNNs
[Waibel et a/ 87)).

Table 4: Performance on the TIMIT 39 phonemesrecognition task for various sets
of delays betweenthe hidden layer and the output layer, using a static network of
gaussian hidden units andinitialization with k-means perclass.
 

 

clusters/class delays error on test set
2 0 52.2%
2 0,4 48.6%
2 0,4,8 47.7%
2 0,2,4 46.5%
3 0,2,4 45.6%
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Figure 1. Recurrent neural network with Radial Basis Functions.  5.4.4 Adding a Recurrent Hidden Layer

The improvement shownin table 4 by providing more context with delay links

show the importanceof context for the recognition of phonemes. However, it seems

natural to considerrecurrent networks as a more powerful way to represent context

(see section 3). This motivated the next experiment, in which a layer was added to

the best net obtained in the previous section. The initial network had 3

clusters/class, ie., 117 gaussian hidden units, and delays of 0, 2 and 4 frames

between these gaussian hidden units and the output units. The input units feed

both the gaussian units and the output units with delays of 0, 1, 2 and 3 frames. The

architecture after the addition of a second hidden layer with 40 sigmoid units is

shownin figure 1. In the resulting network, the gaussians feed the hidden sigmoids

with 3 delays (1, 3 and 5) and the outputs with 3 delays (0, 2 and 4) while the 40

hidden sigmoids feed the outputs with 3 delays (0, 6, and 12). Cycles are
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introduced in the network by the outputs feeding the hidden sigmoids with 2 delays
(2, 4), and the hidden sigmoids having self-loops with a fixed decay weight of 0.93
which meansa time constant(half-life) of 9.5 frames. This represents a very large
network with about 54000 weights. The weights of the connections between the
hidden sigmoid units and the output units were initialized to low values (in the
range [-0.01, 0.01]) so as to not disturb too much the network by the introduction of
this layer. However, after a few cycles of training, significant improvement was
observed. After 11 epochs on the training set the error obtained with this network
on the training set was 40,9% and the error and the test set was 41.8%.

5.5 Acceleration with a Fast Search

This acceleration is obtained by taking advantage of the local nature of the
response of the RBFunits by searching rapidly for the subset of those units that can
respond with an output significantly greater than zero. The chosen methodis based
on the use of a grid and table look-ups to find the appropriate subset of clusters.
The major problem when using a grid method is that the size of the grid grows
exponentially with the numberof dimensions of the patterns. Thus the numberof
dimensions represented in the grid was reduced by using only the first few
principal components of the input patterns (from the training set) to build the grid. A
principal component analysis is performed once and for all on the training set and
used to map input patterns to a low dimensional space in which it is much easierto
perform the search. This mapping can be expressed asfollows:

1) normalization: X'ip = (Xip - XiV/oy; (23)

where Xip is the ith dimension of a patiern p, X is the average overthetraining

patterns and ox;is the standard deviation of the training patterns (per dimension).

2) linear mapping through the principal components: X" = A X' (24)

where A is the matrix formed by concatenating the first few eigenvectors with
highest eigenvalues of the matrix B, and B is formed by concatenating all the X'p
(i.@., all the normalized input patterns of the training set) as computed in (33). Note
that X" has only of few dimensions (typically we chose about 3 dimensions,
corresponding to the first 3 principal components).

In orderto use gtid cells more efficiently information about the pattern density in
each of the reduced dimensions was taken into account in order to use storage
more uniformly. The gtid representation was improved by translating positions
computed with (23) and (24) to the physical grid by using the following map. For
each of the reduced dimensions d, a new position is computed from the old
position as follows:

x" = Fa(X"q)

(25)

where Fg(X"g) = diex'y densitya(i) (26)
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where densityg(i) is the fraction of cluster centers falling in the ith interval for
dimension d of the principal components space. Hence a very fine quantization of
the principal components spaceis performedin order to compute the density array,
It only requires storage space linearly proportional to the numberof dimensions
(rather than exponential) because we consider each dimension independently,
The approximate cumulative probability density F() is implemented as an array ang
(25) requires only one table look-up per dimension to produce the appropriate cell
in the physical grid. The resulting grid is regular in the transformed Space(after
transformation by (25)) but is not regular in the principal components space.
Instead, it attempts to use density information to produce less empty cells anda
more uniform distribution of clusters among the cells. With this method, the
initialization of the search data structure takes O(N) time and the searchis
proportionalto the size of the retrievedlist, i.e., the number of selected RBFunits,

"free" units pool
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Figure 2. Network combining both a local and a distributed subsystem.

6. COMBINING LOCAL AND DISTRIBUTED REPRESENTATIONS

In section 5.4.4 gaussian units and sigmoid units were combined in one network.

This was motivated by the desire to combine the advantages of both

representations (local and distributed). In this section we consider a more

cognitively motivated alternative to combine these two complementary kinds of

representations in the same network,
With a local representation, units respond to a specific and localized subset of

the input patterns, i e@, each unit represents a prototype and respondsto patterns 
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(RBF), Kohonen's LVQ and LVQ2 algorithms [Kohonen et al. 89] and other
competitive learning algorithms). Usually, learning algorithms for these local
representation networks are very fast. On the other hand, with a distributed
representation, each hidden unit usuaily represents a "global" feature and it is the
activation pattern overall the hidden units which represents an input pattern. These
representations are thus more compact than local representations but in general
this means that the learning task is more complex and needs moretime, i.e., many
jterations on a training set (for example: backpropagation for networks of units
computing the sigmoid of the weighted sum of their inputs),

It is interesting to note that humans appearto possess both a fast-learning and a
slow-learning ability, We can rememberfor a long time a pattern seen only once
(fast-learning), for example something seen at a highly emotional moment, but we
may need a very long training period and lot of drill to learn some other tasks
(slow-learning), such as for professional expertise. These more difficult tasks
probably involve creating compact internal representations that attempt to
extrapolate and generalize over manysituations.
Our current research work involves the design of constructive learning

algorithms for architectures that combine both local and distributed
representations, We consider a system with a “local representation" subsystem and
a "distributed representation" subsystem. The whole network's output is formed by
combining (e.g., linearly) the outputs of both subsystems in such a waythat the
local subsystem has much more weight and thus haspriority (wheneverit produces
asignificantly non-zero output). Both subsystemstake their input from the same set
of units. The local subsystem is constructive and allocates new units when a new
pattern generates a large error. The local subsystem however does not grow
indefinitely because of a reorganization phase in which information about the
input/output distribution that is represented in the local subsystem is compressed
and gradually transferred from the local to the distributed subsystem.
A simple solution to implement this reorganization phase is the following. The

fraction of the training set which has already been learnt by the network is sampled.
In order to transfer information from the local to the distributed representation, the
distributed subsystem alone should, without forgetting the examples it has already
learnt, learn the examples "known" by the local subsystem. Thus the distributed
subsystem is supervised by giving it as target the output of the whole network. As
the distributed subsystem evolves a more complex modelof the environment, local
units which are redundant with the behavior of the distributed subsystem (within
their local area of response) are made available to "store" new outlier patterns. The
general organization of the networkis depictedin figure 2.

7. CONCLUSION

In this chapter we have described some connectionist models and their
application to speech recognition. We have described with examples some of the
important phases of the design of these models that can take advantage of a-priori
knowledge. We compared several preprocessing alternatives for connectionist
models and found that a spectral representation produced better results than a
cepstral representation and that an ear model yielded better results than the FFT.
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Because speech recognition is an inherently sequential problem we have detaileg
several algorithms to train recurrent networks with back-propagation. We have
discussed some considerations about accelerating convergence with gradient
descent. In particular we have introduced a new methodin which the average

weight change of each layer is individually controlled. We have studied an

alternative to the traditional networks of sigmoid units: RBF networks.Forthis local
representation network we presented the results of several experiments on

phoneme recognition which permit us to draw several conclusions. When

initializing the RBF units with k-means,it is preferable to take into account

information about the class of each patiern and perform k-means separately for

each class. RBF networks performed as weil or better than sigmoid networksbut

required less CPU time. Combining RBF units and sigmoid units in a recurrent

network resulted in even better performance. This has brought us to proposein the

last section a new algorithm that combines RBF units (local representation) and

sigmoid units (distributed representation) in a waythatis cognitively relevant.
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1. INTRODUCTION

Associative learning andretrieval of information in parallel neural-like systems is a
powerful processing technique with a wide range ofapplications ranging from content
addressable memories to robust pattern classification and control. Dynamic associative
memories (DAMs) are a class of artificial neural networks which utilize a supervised
recording/learning algorithm to store information as stable memory states, thus realizing
mapping between set of key/target memorypairs. Theretrieval of the stored memoriesis
accomplished byfirst initializing the DAM state with a noisy orpartial inputpattern (key) and
then allowing the memory to perform collective relaxation search to find the closest
associated stored memory.

DAMSare characterized by a regular layered architecture ofhighly distributed and densely
interconnected processing layers with feedback. Each processing layer consists of a set of
non interacting nodes; each node receives the samesetofdata (input pattern or output from a
preceding layer), processes this data, and then broadcastsits single output to the next
processing layer. The transfer function of a given DAM node can vary in complexity;
however,all nodes are assumed to have the samefunctional form. The most common node
transfer function is equivalent to a weighted sum ofthe input data followed by a nonlinear
activation function. The weighted sum processing step representsa local identification of the
input data based on a similarity computation (or projection) between the data vector and a
locally-stored weight vector. The nodes' weight vectors also describe an interconnection
(communication) pattern between the nodes ofadjacent layers. The node weights are
assumed to be synthesized, during a learning/recording session, from a given trainingset.
On the other hand, a node's activation function is usually a monotone-increasing function
with saturation (e g., a tanh or a unit-step function) which can be thoughtof as implementing
a "local decision" on the preceding similarity computation. In theory, DAM mapping
dynamics can be understood and controlled through the network architecture, the
learning/ecording algorithm used, and the encoding ofstored associations.

Several associative neural memories have been proposed overthe last two decades
[1-10]. These memories can be classified in various ways depending ontheirretrieval mode
(dynamic vs. static and/or synchronous vs. asynchronous), the nature of the stored
associations (autoassociative vs. heteroassociative and/orbinary vs. continuous), the type of
training algorithm (adaptive vs. nonadaptive), or the complexity and capability ofthe training
algorithm. In this chapter, dynamic synchronous binary-state neural memories are
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emphasized. These memories have been extensively studied and analyzed by several
researchers [11-31].

This chapter is intended as a review ofthe fundamental concepts relating to basic DAM
architectures, the varioustraining algorithmsand recording strategies, and DAM capacity and
performance. Section 2 presents the basic architectures, transfer characteristics, and general
retrieval dynamics for auto- and heteroassociative DAMs. Section 3 summarizes several
desirable characteristics of associative memories which serve as DAM performance
measures, Several DAM recording/learning algorithms, including correlation, generalized
inverse, and Ho-Kashyaptraining algorithms andvariations, are presented and analyzed in
Section 4, General training strategies for controlling and enhancing DAM dynamicsare
discussed in Section 5. In Section 6, DAM capacity and retrieval dynamics are presented and
compared forseveral recording/learning techniques.

2. DAM ARCHITECTURES AND GENERAL MEMORY DYNAMICS

The simplest associative neural memory architectures exhibiting dynamical behaviorare
considered and their transfer characteristics are formulated. Potential DAM state-space
trajectories are also outlined. This section deals with two basic DAM architectures:
autoassociative and heteroassociative. Some importanteffects of various activation functions
and state update strategies on DAM stability and dynamicsarealso presented.

2.1 Autoassociative DAM

The autoassociative DAMisbasically a Hopfield [14] memory employinga single-layer
of perceptrons with hard-clipping activations. The perceptrons are fully interconnected
through a feedback path, as shown in Figure 1(a), and are assumed to operate in a
synchronous(parallel) retrieval mode Figure 1(b) depicts a block diagram of such an
autoassociative DAM.Theoretically, the interconnection weight matrixW has real valued
components wj connecting the jth perceptron to the ith perceptron.It is to be noted that, due

to the hard-clipping nature ofthe activation function operator F and the presence offeedback,
the memory canonly store and retrieve binary memories.
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Figure 1. (a) Interconnection pattern for an n-perceptron autoassociative
DAM.(b) A block diagram representation of the DAM in(a).        
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Let the DAM output of Figure 1 be represented by an n-dimensional binary valued
pattern (column vector) xS andcall it the state of the DAMat discrete time "s," Hence,the
DAM state evolves according to the difference equation:

xLew’ (2.1.1)
where F operates component-wise onits n-dimensional vector argument. The operator F[W
x(.)] is referred to as the state transition operator. The weight matrix and the threshold
activations are computed during a training session in such a wayas to store a set ofm binary
(bipolaror unipolar) patterns {x1, x9,..., X,, .... Xm} Satisfying the condition xS+! = xs =
X,; Le., synthesized W and F guarantee that x; isa fixed DAM state, The training pattern
X, will be referred to as a fundamental memory, All otherfixed states which are not
fundamental memorieswill be referred to as spurious memories.In addition to the above two
types of dynamics, the DAM can also convergeto a limit cycle. It has been shown by
Fogelman [32] that ifW is symmetric, the above DAMhaslimit cycles of period 2, at most.

The autoassociative mapping performed by the above DAM may seem trivial. However,
the DAMisintended to act as a filter which corrects noisy, distorted, and/or partial input
versions, x’, of the fundamental memoriesx,. Theoretically, the DAM converges to xx,
wheninitialized with x0 = x',. This suggests that a basin of attraction exists around each one
ofthe fundamental memories Undercertain conditions, discussed later in this chapter, the
above DAM is capableof realizing such basins of attraction. Unfortunately, the complex
dynamics of the DAM also give rise to attractor spurious memories, thus degrading
performance. These and additional DAM characteristics are considered in Section 3.

2.2 Heteroassociative DAM

A heteroassociative DAM [8-10,28] may be thought of as an extension of the
autoassociative DAM described above. Here, two single-layer feed-forward neural nets are
connected in a closed loop as shown in Figure 2 . This architecture allows for simultaneous
hetero- and autoassociative recollection of stored data. Ideally, a heteroassociative DAM
realizes the two mappings M and M* betweena set of m binary inputpatterns {x1,x9,...,
Xk, +.» Xm} and another corresponding set of m output patterns CY 1) Yas eo Ves os Ym}
according to:

M: x,>y, and M*: y,>xX,3k=1,2,...,m (2.2.1)

The above DAM consists ofa forward processing path and a feedback processing path.
The forward path, considered alone, constitutes a unidirectional (static) heteroassociative
memory that is potentially capable of realizing the mapping M of equation (2.2.1) by
recalling yy from x, accordingto:

Ye= FLW) xy] :k=1,2,...,m (2.2.2)

where yy and x; are assumed to be binary column vectorpatterns of dimensions L and n,
respectively, and W, is an L x n weight matrix which is assumed to be computed during a
training session. F is the sameactivation function operatordefined earlier.
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Figure 2. A block diagram representation of a dynamic heteroassociative

neural memory.

Oneof the mostappealing features ofan associative memory is its ability to tolerate noisy

and/orpartial input; that is, given an inputx,’ that is similar to the pattern x, ofthe stored

association pair {x,,y,}, the memory will respond with the correct association y, according

to:

Y= F| Wi x, (2.2.3)

However, the above equation may not hold true when relatively large numbers of

associations are stored and/orthetest inputpattern is slightly similar to x,. This problem can

be partially alleviated in the case of autoassociative retrieval ( yy, = X,) by feeding the output

ofthe unidirectional memory directly into the input and simultaneously removingthe original

input x',. This givesrise to the autoassociative DAM architecture of Figure 1. However,in

the heteroassociative case (x; has a different size and/orencoding than y,), direct feedback

is not compatible and a natural and simple remedy would be to feed the output back through

the inverse M mapping, M*,defined in Equation (2.2.1)or, explicitly, by the equation:

x,= FlWoy; -k=1,2,...,m (2.2.4)

where W>is ann x L real valued matrix. Theresulting DAMisthe one shownin Figure 2

Now weare ready to write the nonlinear difference equations governing the dynamicsof

the heteroassociative DAM. These equations are given by:

yrs F| w.F|W, y'|| (2.2.5)

xt ¥|ww, x'| (2.2.6)

where

s

is the iteration number, xis the initial state, and y® is given from x? through

equation (2.2.2). The DAM dynamics can also be completely described through equations  
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(2.2.4) and (2.2.5) or (2.2.2) and (2.2.6). These equations suggest that the DAM is a
two-output (y,,X,) dynamic system, as shown in Figure 2. The first output represents

heteroassociative recollections and the second output represents autoassociative recall. The
physical interpretation of these two outputs is determined by the application at hand. This
class of DAMsis potentially powerful in robust pattern classification and pattern
identification applications. Here, the output y, may encode a classification ofthe test inputx'

or it may encode a specific action or decision. On the other hand, the output x, gives a
reconstruction/correction ofthe input pattern; this output may be used as an identification
output which verifies the classification/action outputby acting as a confidence measure. The
X,, output process mayalso be viewedasa filtering process.

2.3 Other DAM Variations

In the above, the architectures of the synchronous(parallel update) discrete DAM were
described, for both auto- and heteroassociative retrieval. Variations on such architectures for
autoassociative DAMshave been proposed and analyzed in the literature. These variations
deal with DAM state update strategies, and assumevarioustypes ofactivation functions. The
dynamics andstability of such DAMsare highly affected by these variations.

In his original neural memory model, Hopfield [14] employs asynchronous (random)
updating in the autoassociative DAM of Figure 1 Each perceptron is assumed to update its
binary state stochastically independentof the timesoffiring of the other n - 1 neurons in the
network, This asynchrony wasintroducedin orderto model the propagation delays and noise
in real neural systems. The discrete dynamicsof this modelare given by:

s+1

Xj = s(wx'+ 1, (2.3.1)

where J; is an external bias, which exists for all times "s." The perceptron label "i" in

equation (2.3.1) is stochastically determined, and thus allows only one perceptron to change
its activity in the transition from time s to st+1 Hopfield, by employing a discrete-time energy
function approach, showedthata sufficient condition forthe stability (no oscillations) of
DAMs with the dynamics of equation (2.3.1) is to have a symmetric zero-diagonal
interconnection matrix W. Fogelman [32] arrived at a similarresult, which states thatit is
sufficient to have a symmetric non-negative diagonal W forstability, assuming random or
sequential (elements change state one at a time in a prescribed fixed order) perceptron update.

It was also shown by Fogelman that when the sharp threshold activation function (Figure
3(a)) is replaced by a saturation piece-wise linear function, shown in Figure 3(b), the
resulting randomly or sequentially updated DAM is also stable ifW is symmetric with a
non-negative diagonal. Golden [33] and Greenberg [34] extend the above stability results to
the "brain-state-in-a-box" (BSB) [35] DAM described by the dynamics:

xT Flow x°+ x| (2.3.2)

where p is a positive constant(step size) and is the activation function operator shown in
Figure 3(b). It was shown by Greenberg that ifW is symmetric and diagonal-dominant (Wij

is larger than the sum ofthe absolute value ofall off-diagonal elements Wij for j = 1, 2, ...,

n) then the BSB DAM isstable andthat the only stable points are the comers ofthe n-cube.
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Figure 3. Various types of perceptron activation functions employed in

DAMs:(a) hardclipping, (b) saturation piece-wiselinear, and

(c) sigmoidal activations.

 

In his continuous DAM model, Hopfield [36] assumes an analog electronic amplifier-like

implementation ofa perceptron whichresults in the following deterministic DAM retrieval

dynamics:

 ofi) = Wx()- ov) +1; with v= F(x) (2.3.3)

where p and

o

are positive constants and the activation operator F takes the form ofa

sigmoid function (e.g , tanh(Bv)) as depicted in Figure 3(c) above. Here, F-] is the inverse

of F;thatis, the ith componentofv is given by vj = f1(x;). Hopfield has shown that ifW is

symmetric, then the continuous autoassociative DAM isstable. Furthermore, if the amplifier

gains (slopes of the activation functions) are very large, then the only stable states of the

continuous DAM have a simple correspondence with the stable states ofthe stochastic

Hopfield DAM described above. Marcus and Westervelt [37] have investigated a

synchronousdiscrete-time variation of the continuous Hopfield model having the same form

as equation (2. 1.1). It was shownthatifW is symmetric andif the activation functionsare

single-valued, monotonically increasing, and rise less rapidly than linearly for large

arguments, then all attractors are either fixed points or period-two oscillations. Furthermore,

if the system obeysthe condition B <I1/ Amin! Where B > 0 is the maximum slopeofthe

activation function and A,,;, the most negative eigenvalue of W,then all period-two

oscillations are eliminated and convergenceto stable attractors is guaranteed.

3. CHARACTERISTICS OF A HIGH-PERFORMANCE DAM

A trained DAMis expected to exhibit a numberof characteristics, such as noise and/or

distortion tolerance, high capacity ofstored associations, and well-behaved dynamics. In

general, after training a DAM, a set of fundamental memories are recorded which are

expected to behaveas stableattractive states of the system. However, and in addition to the

recorded fundamental memories, spurious and/oroscillatory attractors can exist which

negatively affect the performance of a DAM.A spurious attractor is a stable memory which

is not part of the recorded memories. These spurious memoriesare not desirable, yet they

exist in all of the DAMsdiscussed above. Therefore,if one cannottrain a DAMto exhibit no

spuriousstates, then it is highly desirable to have them exist in a region ofstate-spacethatis 
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far from regions of fundamental memories. Oscillations may be controlled by employing
some of the DAM variations discussed in Section 2.3.

A set of performance characteristics must be met in order for a DAM to be efficient for
associative processing applications. Depending on the encoding ofthe training memory
associations, two classes of DAM mappings are distinguished: linearly separable and
nonlinearly separable. Dueto its single-layerarchitecture, the autoassociative DAM of Figure
1 can realize only linearly separable mappings; ie., it can only store linearly separable
memory vectors. This is also true for the heteroassociative DAM of Figure 2, since the
stability of a given association pair hinges on the ability ofthe single-layer forward and
backward subnetsto realize perfectly the m x,-to-y, and y,-10-x, associations, respectively.

On the other hand, multiple-layer architectures [38-40] are needed to store a set of
nonlinearly separable associations (auto- or heteroassociations). Multiple-layer DAMsare
more difficult to analyze than single-layer ones and are not considered here. In therest ofthis
chapter, training associations are assumed to be linearly separable.

The following is a summary of some ofthe importantcharacteristics of a DAM:(1)
Tolerance to noisy, partial, and distorted inputs. This implies a high probability of
convergence to fundamental memories. (2) High capacity ofstored memories. (3) Existence
of relatively few spurious memories and few orno orbits, and a low convergence to such
states. (4) Convergence within a few retrieval cycles. (5) Provision for a no decisionstate.
DAM inputs with relatively low signal-to-noise ratios must have a high probability of
convergence to this state. (6) Autoassociative and heteroassociative processing capabilities.
Depending on the nature ofthe application, association of identical or distinct data vectors
may be required. Some of these desirable dynamics are depicted in Figure 4(a) foran
autoassociative DAM. On the other hand, Figure 4(b) depicts the state-space of a
low-performance DAM.

These characteristics can be used to compare different DAM architectures and/or
recording (or learning) algorithms. It is to be noted that, with given memory associations
and architecture, all of the above characteristics are dependent on the recording algorithm
used.

 

(a) NY no decision state (b)

Figure 4. A conceptual diagram comparing (a) high-performance and
(b) low-performnce autoassociative DAMs.
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4. ASSOCIATIVE LEARNING IN A DAM

In theory,there exist an infinite number of interconnection matrices and thresholdsthat
realize the mapping of a fixed set of associations in a DAM. However, different solutions
may lead to different DAM dynamics that affect storage capacity, convergencerates to
fundamental memories, numberandlocation of spurious attractors, numberand location of
orbits, robustness, and other DAM characteristics. For high-performance DAMs,the best
solution is the one that givesrise to the desirable characteristics discussed in Section 3. Such
a solution is very difficult to achieve, since it requires an optimization process that involves
many constraints and parameters and which may be too complicated and computationally
expensive to implement. Anotheralternative is to synthesize interconnection weights that will
guarantee a perfect recording ofonly the {x,} memories ({x,,yy} associations in the

heteroassociative case) and hopethat such a solution will also give rise to acceptable DAM
performance.Infact, all of the existing DAM recording/learning techniques proposedin the
literature are based on this latter approach.

The training phase is responsible for synthesizing the interconnection matrixW froma
training set of associations of the form {x,,y,}, for k = 1, 2, ..., m, for the
heteroassociative case (notice that autoasociative training can be arrived at as a special case of
heteroassociaitve training by setting y, = x;). Here, x, and yy belong to the n and L

dimensional binary spaces,respectively. Therefore, the objective here is to solve theset of
equations

y,=Wx,; k=1,2,...,m (4.0.1)

Y=WXx (4.0.2)
or in matrix form,

where Y =[y] Yo... Yess Ym land X =[xy X9....X, ... Xm ]. The assumption of binary
valued associations and the presenceofa clipping nonlinearity F operating on WX relaxes
someof the constraints imposed by equation (4.0.2); that is, it is sufficient to solve the
equation:

Z=WX; and Y=F{Z] (4.0.3)

Next, several DAM training techniqueswill be derived and analyzed.

4.1 Correlation Recording

One ofthe earliest associative memory recording techniquesis the correlation technique
{2-4] which wasoriginally proposed forthe synthesis ofa linear associative memory (LAM).
This is a simple recording technique for generatingW according to:

w=yx' (4.1.1)

where "T"is the transpose operator. This is a direct method for computing the correlation
weight matrixW which assumesthatall the associations are present simultaneously during
recording. A more practical method for computing the correlation matrix is to use the
following equivalent form of equation (4.1.1):

m

W= dyexe (4.1.2)
k=1  
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where the term inside the summation is the outer product of the vectors yx and x,. This in
turn allows us to derive the adaptive correlation recording technique accordingto:

newWe’ = Wty, x,3 fork=1,2,...,m (4.1.3)
where WCis the current weight matrix (initialized as the zero matrix). This makesit very
convenient, if at some time after the initial recording phase is complete, we want to add a
new memory ordelete an already recorded memory.

Let us now investigate the requirements on the {X,,¥,} associations which will guarantee
the successful retrieval of all recorded memories Yx from perfect key inputs x,. Employing
equation (4.0.1) and (4.1.2) and assuming that the key input Xp is one ofthe x, vectors, we
get an expressionforthe retrieved pattern as:

m m m

Yu=| Vex[Xp = d vax) x, +YpXnXp = D (vexea) + ya leal? (4.1.4)k=1 keh keh

Thefirst term in equation (4.1.4) represents the "cross-talk" between the input key x, and
the remaining m - 1 x, patterns, This term can be reduced to zero if the x, vectors are
orthogonal. The secondterm is proportional to the desired memory yp with a proportionality
constant equal to the square of the norm ofthe key vector x. Hence, the necessary and
sufficient condition on the retrieved memory to be the desired perfect recollection is to have
orthonormal key vectors x,, and is independentofthe encoding ofthe Yq (note how the y,
affects the cross-talk if the x, are not orthogonal), However,recalling the nonlinearnature of
the DAMreflected in equation (4.0.3), perfect recall ofthe binary y, vectors is in general
possible even whenthe key vectors are only pseudo-orthonormal. The correlation recordingof autoassociationsis identical to the above but with Ye=X

Hopfield [14] uses a slightly modified correlation technique for recording his proposedautoassociative DAM,for improved performance. The Hopfield memory recording recipetransformsthe unipolar binary x, vectors into bipolarvectors before recording, and assumes
no perceptron self-connections(i.e., W has zero diagonal), accordingto:

We= ¥ 0x,- 1)(2x,.- 1)’ diag ¥ (ox,- 1} (2x,- 1)" (4.1.5)
k=1 k=1

where 1 is an n-dimensional column vector of1's. Here, a hard-clipping nonlinearity with athreshold of zero may be used as the perceptron activation function, Weisbuch and Fogelman[41] propose an optimal off-line methodfor choosing these thresholds.

4.2 Generalized-Inverse Recording

The correlation associative recording techniqueis restrictive in many applications, due to
the requirementthat the x, be orthonormal. This technique does not make optimal use ofthe
DAMinterconnection weights. A more optimal recording techniqueis the generalized-inverse
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recording technique proposed by Kohonen [5]. The generalized inverse technique wag
originally proposed for the synthesis of the W matrix of the optimal linear associative
memory (OLAM)[15], employing perceptrons with linear activations and no feedback:
Starting from equation (4.0.2) and multiplying both sides of the equation by XT onegets:

YX'=wxx' (4.2.1)

The motivation behind the choice of the multiplier XT is that it makes equation (4.2.1)
consistent with the correlation solution for W (equation 4.1.1) for the special case of
orthonormal x,, which make XXT =I. It can also be shown [42] that theW whichsatisfies
equation (4.2.1) is the mean-square-error (MSE)solution (here we assumethatthe training
set has more associations than the number of components ofx;; i.e., m > n) that minimizes

the objective function J(W) given by:

m L 2

I(W) = 1Y - WX I = try - Wx)ly - wx] => ¥(e'} (4.2.2)
k=li=1

whereIl.llg is the Euclidian norm, “tr" is the trace operator, and ej is the error betweenthe ith

components of the estimated and desired vector y,. Going back to equation (4.2.1) and

multiplying both sides of the equation by the inverse of XXT, the following solution forW
is achieved:

w=¥x"(xx") =yx* (4.2.3)

where X* is the pseudo- or generalized-inverse of X. This solution is only valid if the
inverse of XXT exists, which requires that the rows of XXT be linearly independent, Also,
note that for an arbitrary Y, a sufficient condition foran exact solution for W is that X+X
= I, which meansthat the x, are linearly independent (compare this to the more restrictive

orthonormal condition on x, for correlation recording). However,ifbinary associationsare
assumed, then the use of hard-clipping according to equation (4.0.3) can relax the linear
independence condition on x,, for an exact solution.

Next, let us investigate the retrieval characteristics of the OLAM,presented by an input
Xp, by substituting equation (4.2.3) in (40.1) andarrive at:

Yu= Wx,=YX"

 

(x x") (4.2.4)

which shows that the OLAM canbe viewedas a correlation recorded associative memory
with a preprocessing stage attached, as shown in Figure 5. The preprocessing stage performs
an orthogonal projection [15], defined by the term inside brackets in equation (4.2.4), of xp

onto the space spanned by the x, vectors. Again,if the x, are linearly independent, then the

preprocessing block in Figure 5 maps the hth training vector x} into a vector x', whichis

orthogonal to the x, (k different from h) vectors stored in the correlation memory block and

with x,T x', = 1, thus outputting yy.

It was assumedin the above discussion that the training set is over-determined, m > n.It
is shownlater in Section 6 that the number of distinct memories m must be smaller than the  
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Orthogonal Correlation-projection . recordedpreprocessing memory vx,SS Se t pats Vn
wi =(x xy] W = YX       

Figure 5. A block diagram of the OLAM showing its decomposition
into a correlation associative memory in cascade with an
orthogonalization transformation.

dimension n, ifDAM overloadingis to be avoided, Therefore,it is importantalso to considerthe problem ofrecording an under-determined (m <n) set of associations. When m < n,equation (4,0,2) has multiple exact solutions W*. Here, the minimum-norm solution W =
min I[W*llg is selected as the solution leading to the most robust associative retrieval [15].
Assumingthatthe x, are linearly independent, a direct computation ofW is given by:

“1
w=y(x"x) x?=yx?* (4.2.5)

Again, for this under-determinedcase, associative retrieval can be thoughtofas that ofacorrelation-recorded memory with preprocessed inputs. To see this, the identity Xt =XT(XXT)+ is used in equation (4.2 5), which upon substitution in equation (4.0.1) gives:

7n= Wx, = vx"(x x"), (4.2.6)
where the term inside the brackets is the n-dimensional preprocessed input vector. SinceXT(XXT)+*X =I, it can be concluded thatthe operator (XXT)+ mapsthe hth trainingvector Xp whichis linearly independent from the Temaining m - 1 training vectors x, into a
vector x', which is orthogonalto the X, vectors and hasan inner product ofunity with the
Xp vector. On the otherhand,if one inputs a noisy version ofone ofthe training key vectors,
Say X,, then the preprocessed output x"), will be rotated morein the direction of X}, and at
the same time made more orthogonalto the remainingtraining vectors.

Whenthe dimensions m and/or n are large, the direct method forsolving for thegeneralized-inverse in equations (4.2. 3) and (4.2.5) becomes impractical from acomputationalpoint of view. Furthermore, in manypractical applications, the nature of thetraining key vectors is such that the matrix XXT (or XTX forthe under-determined case)may be ill-conditioned, leading to numerical instabilities when computing the inverse.Therefore, it is desirable to replace the direct computation ofthe generalized-inverse with amore practical-to-compute stable method. This can be achieved by using gradient descent onJ(W)in equation (4.2.2) and iteratively solving equation (4.0 2). Here, the weight matrix isincremented (starting from a zero-valuedW matrix) accordingto the following equation:
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new c 1 aJ(W) c T

AW =WW =-7p we =P ¥-W x]x (4.2.7)

where the value of p forpractical problems should be in the range O<p << 1. Wewill refer

to this algorithm as the batch-mode adaptive generalized-inverse training technique.

Convergence can be speeded byinitializing W° as the correlation matrix YXTsinceit can be

shown [15,43] that this correlation term is the lowest-order term in a von Neumann

expansion ofthe matrix YX+ given by:
eo i

yx*=ay , [r- ox7x]x" (42.8)
i=0

Equation (4.2.7) may also be modified further into continuous- or local-mode which

allows for adaptive updating of the interconnection weights every time a new association

{x,,Y,} is presented The following are two versions ofthis type of continuous adaptive

generalized-inverse training:

wr’ = W- plyWoxx, (4.2.9)

and

wh = wi - plyf-winact (4.2.10)

where wyis the ith row of matrixW representing the weight vector ofthe ith perceptron (i=

1, 2, ..., L) and y;k is the ith bit of the kth association vectoryy. In these equations, k is

incremented after each iteration and the whole training set is cycled through multiple times

until convergence is achieved. Equation (4.2.10) is used to synthesize the L memory

perceptronsseparately, and is knownintheliterature as the Lt-LMSor Widrow-Hofflearning

rule [44,45] (in fact, the LMSrule differs slightly from equation (4.2.10) in that it employs

an additional perceptron bias bit which results in an extra weight that could be used in

adjusting the threshold ofthe hard-clipping nonlinearity in a DAM). The choice ofp is critical

in determining stability and convergence time ofthe LMS algorithm. Choosing a large p

speeds convergence, but can lead to instability. Horowitz and Senne [46] prove thatthe

choice 0 < p < 1/[6 tr(XTX)] guaranteesthe stability of equation (4.2.10), for x, patterns

generated by a zero-mean Gaussian process independent over time.

     
A closely related recording technique to the under-determined generalized-inverse

technique of equation (4.2.5), for the recording of autoassociative DAMs, is the spectral

technique proposed by Personnazet al. [47] and Venkatesh and Psaltis [48,49]. Here, the

weight matrix is defined as follows:

“ll
w=xpb(x'x) x™=ypx* (4.2.11)

where D = diag[A,, Ao,---s Ayo vos Aqq] is the mx m diagonal matrix ofpositive eigenvalues

(A, > 0). Note thatW is well defined ifthe inverse of XTX exists; i.e., if the x, vectors are

lineatly independent. Furthermore, W is symmetric if 4, =A fork = 1, 2, ..... m.

Multiplying equation (4.2.11) by X gives
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WxX=xXD or Wx, =A,x,, k=1,2,...,m (4.2.12)

Assuming arbitrary positive 2,, the above equation is a weighted minimum-norm solution

where a fundamental memory (eigenvector) x, having a large eigenvalue A, tends to have an
enlarged basin of attraction compared to other memories with corresponding smaller
eigenvalues; that is, more attention is shifted towards Xk.

4.3 Ho-Kashyap Recording

HigherDAM performance can be accomplishedifthe perceptron activation functionsare
taken into account during the recording phase. An optimal recording technique employing the
above feature has been proposed by Hassoun and Youssef [26,27] and Hassoun [28] for
autoassociative and heteroassociative DAMs, respectively. This technique is based on the
Ho-Kashyap algorithm [50] for the optimal MSEsolution ofa set oflinear inequalities. One
majordifference between the Ho-Kashyap recordingrule andthe earlier recording techniques
is that the weight vector and the activation function threshold are independently optimized for
each neuron.

According to the Ho-Kashyap algorithm, the ith row ofthe weight matrix W andits
corresponding threshold Tj are formulated as the weight vector Wi = [wig Wi Wi...
Winl!, where T; = - wio. Then, and upon the presentation of the kth association pair, the ith
perceptron can betrained to classify a given training set {x,,y,} correctly by computing the
(n+1)-dimensional weight vectorw; satisfying the following set of m inequalities:

[>0 ify*=1x Ww Mi 5 fork =1,2,....m (4.3.1)
\<o ify,“=0

where the vectorx, is derived from theoriginal X, by augmenting it with a bias of"1"asits
Xq component. Next, if we define a set ofm new vectors z, according to

+x, if y=myaf KY ORS fork =1,2,...,m (4.3.2)
“Xx, if y, =0

andlet

Z=[21 2... Z| (4.3.3)

then equation (4 3.1) may be rewritten as (the subscript "i" is dropped in order to simplify
notation)

Z'w>0 (4.3.4)
Nowifwe define an m-dimensionalpositive valued margin vectorb (b > 0) anduseit in

equation (4.3.4), we arrive at the following equivalent form of equation (4.3.1)

Z'w=b>0 (4.35)
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Thus, the training of the perceptron is now equivalent to solving equation (4.3.5) for w,

subject to the constraint b > 0. Ho and Kashyap have proposed an iterative algorithm for

solving equation (43 5). In the Ho-Kashyap algorithm, the components of the margin vector

are first initialized to small positive values and the Moore-Penrose pseudoinverseis used to

generate an MSEsolution for w (based on the initial guess for b) which minimizes the

objective function J(w,b) = IIZTw - bl?
+

w-=(z")b (4.3.6)

Next, a new estimate for the margin vector is computed by performing the constrained (b >

0) descent
b™”=b°+ple+lel]; withe=Z"w-b (4.3.7)

where |.| denotes the absolute value of the components of the argument vector. A new

estimate of w can now be computed using equation (4.3.6) and employing the updated

margin vectorfrom equation (4 3.7). This processis iterated until all the components of€ are

zero (or are sufficiently small and positive), which is an indication ofthe linear separability of

the training set, or until e¢ <0, which in this case is an indication of the nonlinear

separability ofthe training set (no solution is found). It can be shown [50,51] that the

Ho-Kashyap procedure convergesin a finite numberofsteps if the training setis linearly

separable. A sufficient condition for convergence is 0 <p < 1. Wewill refer to the above

algorithm as the direct Ho-Kashyap (DHK)algorithm.

Whenthe training set is under-determined (m < n+1), the Ho-Kashyap recording

algorithm converges in oneiteration [27]. Thatis, equation (4.3.6) leadsto a perfect solution

for w and no margin update is needed. This solution is identical to the LMSsolution

discussed in Section 4.2, if the initial margin vector was chosen to have equalpositive

components. Therefore, the full benefits of the Ho-Kashyap recording technique are achieved

with over-determined training sets (m > n+1), which leads to optimized weights and

margins. Section 5 discuses waysof extending originally under-determined trainingsets into

over-determined ones which are well suited for harvesting the full benefits of the

Ho-Kashyaprecording technique.

The direct synthesis of the w estimate in equation (4.3.6) involves a one-time

computation of the pseudoinverse of ZT, However, such direct computation can be

time-consuming, and it requires special treatment when ZZT (or ZZ, for the

under-determined case m < n+l) is singular, An alternative algorithm that does not require

the computation of (Z1)* can be derived based on gradient descentprinciples

Starting with the objective function J(w,b) = iIZTw - bil2, gradient descent may be

performed [51] in b and w spacesso thatJ is minimized subjectto the constraint b > 0. The

gradients of J with respect to w and b are given by equations (4.3 8) and (4.3 9),

respectively

Vi Jew, Dye po = al Zw°- b°| ; subject to b > O (4.3.8)

VJcw , byly® mew =22(Z'w°-| (4.3.9)

One analytic method for imposing the constraint b > 0 is to replace the gradient in (4.3.8) by     
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-(€ + lel) with the vector © as defined in equation (4.3.7), This leads to the following gradientdescent formulation of the Ho-Kashyap procedure:

=°+ 2(lelee); withe=Z™w°-b° (4.3.10)

tel" (4.3.11)
Pi

with p, and py belonging to ] 0, 1]. We will refer to the above procedure in equations(4.3.10) and (4.3.11) as the batch-mode adaptive Ho-Kashyap (AHK)procedure, because ofthe requirementthat all training vectors Z (of X,) must be present and included in Z, Acontinuous-mode adaptive Ho-Kashyap procedure for solving equation (4.3.5) is arrived atby replacing the Z in the batch-mode procedure ofequations (4.3.10) and (4. 3.11) by z,and thusarrivingat the following continuous-mode update rule

new
b

¢

E

  

whe =w*- p,Z(Zw°- b™™} = w°4 PiP> 2|

2

 

  

¢| Cj c

bir” = of + 24([e Jeed; with € =z,w°—b> . (4.3.12)

Ccwm =w°-pyzylatwe- be|=w°s PiPo be (!ae (4.3.13)
2 Pi

where by represents a margin scaler associated with the x, input. In all ofthe aboveHo-Kashyaptrainingstrategies, the margin values and the perceptron weights are initializedto small positive and zero values, respectively. If full margin errorcorrection is assumedin
equations(4.3.12) and (4 1.13) (ie, P; = 1), then the above AHK procedure reduces to theheuristically derived procedure reported earlier by Hassoun and Clark [53] and Hassoun[54]. An alternative way of writing equations (4.3.12) and (4.3.13) is [52]

c
Cc cAb,=p,€ and Aw=p,(p,- ie 2, if © > 0 (4.3.14)

c Cc

Ab, =0 and Aw=~p,€ z, if © <0 (4.3.15)

Wewill referto this procedure as the AHK I learning rule.

The constraint by > 0 in equations (4.3.12) and (4.3.14) wasrealized by starting with a
positive initial margin and restricting the changein Abto positive real values. Analternative
way to realize this constraint is to allow both positive and negative changes in Ab, except forCases where a decrease in by results in a negative margin, This modification results in thefollowingalternative AHK II learning rule:

c
¢cAb, =p,€ and Aw =p,(p,-t)ezy if be+p,e >0 (4.3.16)

c CcAb, =0 and Aw=—p,¢ 2 if byt+p,e <0 (4.3.17)
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A furthermodification of the above equation results in the AHK III rule [52], which is

capable of fast convergence to approximate solutionsin the case of nonlinearly separable

mappings. However,this is beyond the scopeofthis chapter andis not considered further.

 

5. RECORDING STRATEGIES

The encoding, dimension, and number ofstored patterns highly affects the performance

of a DAM.Therecording strategy of a given number ofassociations is also ofcritical

importancein the robustness and dynamics of a DAM.For example, DAM performance can

be enhanced by augmentingthe training set with an additional set of specialized associations,

Here, we present three examples of recording str ategies: (1) training with perfect

associations, (2) training with an extended set ofnoisy/partial associations, and (3)training

with the aid of a specialized set of associations.

The first training strategy is employed when only perfect associations are present. The

training set consists of the m input/target pairs {x,,y,} and is shown in Figure 6(a). This

represents the simplest training strategy possible, and relies on intrinsic DAM dynamicsto

realize the needed basinsof attraction around each recorded association. This strategy works

if the numberofassociationsis relatively small compared to the smallest of the dimensions n

and L, andif the degree ofcorrelation between the m associationsis relatively low. With this

strategy, the training set is usually under-determined (m < n).

The secondrecording strategy is employed whenthe training set consists of a number of

clusters with each cluster having a uniquelabel or target. This strategy is commonin pattern

classification applications and is useful in defining large basins of attraction around each

recorded memory, thus increasing DAM error tolerance. Figure 6(b) illustrates this case. In

general, the inclusion ofthe noisy/partial associations increases the size ofthe training set and

leadsto an over-determined set of associations (m > n).
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Figure 6. Examples of DAM recording strategies. (a) Simple recording,

(b) training with noisy/partial associations, and (c) training with

the aid of specialized associations.
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be introduced oreliminated. Onepossibility of employing this strategy is when a ground state
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associations encoded such that sparse vectors nj have low information content, augmenting

the original training set with associations of the form {nj,0} leads to the creation ofa

no-decision state 0 which attracts highly corrupted or noisy inputs and prevents them from
being classified erroneously or mapped into spurious memories. Simulationsillustrating the
use and benefits of the abovefirst and third recording strategies are presented in the next
section, employing various recording algorithms.

6. DAM CAPACITY AND PERFORMANCE

In the following, the capacity and performance ofautoassociative DAMsare discussed.
Capacity is defined as a measureofthe ability of a DAMto store a set of unbiased random
binary patterns (probability that a 1/0 or +1/-1 bit equals to .5) {x,} at given errorcorrection
and recall accuracy levels. Earlier proposed capacity measures [16,19-25,41,47,49] have
defined capacity as equivalent to a tight upper boundonthepattern ratio (r = m/n) for which
all stored memories are fixed states, with a probability approaching one. Measuring capacity
as the ability to correct key pattern errors, with guaranteed convergenceto the closest stored
memory, has also been recently advanced.

The two most-used DAM capacity measures intheliterature are the-absolute capacity
(Cg) andrelative capacity (C,) measures, C, is defined as the least upper bound onthe
pattern ratio (m/n) such that the m stored memories areretrievable in one pass through the
DAM;i.e., the DAM is capable of memorizing m patterns as equilibria points. Cy is a least

upper bound on m/n such that the stored memories are approximately retrievable. For
correlation-recorded autoassociative DAMs employinghard-clipping activation,therelative
capacity is approximately equal to .15, fora retrieval error (between an exact input and
one-passnoisy output) < 10 percent [11,14,16,20]. The requirementforerror-free memory
recall severely limits the capacity of correlation-recorded DAMSto Ca = 1/[Alog(n)]

[21-25,41], which approacheszero for large n (log is the natural logarithm).

Another, more useful, DAM capacity measure gives an upper bound on m/n in terms of
attraction radius and memorysize [21,41]. According to this measure,a correlation-recorded

DAMhas a maximumpattern ratio m/n = (1 - 2p)2/[4 log(n)] which guarantees error-free
fundamental memory retrieval, in the limit oflarge n, ftom key patterns lying inside the
Hamming sphere ofradius pn (p < .5). This capacity result is only approximate forthe

limiting case p = 0, and it has been shown [24] that, when the numberof stored patterns
approachesn/[4 log(n)], the fundamental memories have a basin ofattraction of normalized
radius p = 0.024, and convergence to such memories is achieved in O(log log n) parallel
iterations. Recently, Amari [22,31] applied a statistical neurodynamics approach in the
analysis ofcorrelation-recorded DAM unbiased random errorcorrection capability. The plot
in Figure 7 depicts the single-pass error correction curves predicted for a parallel updated

DAMinthe limit oflarge n, where p;,, and Pout ate the probabilities of input and output
noise, respectively, and r is the pattern ratio. Note how the ability of the DAM toretrieve
fundamental memories from noisy inputs is reduced as r approachestherelative capacity of
0.15. These results cannot be applied to describe the second and higherpasses through the
DAM,sincethe first pass output is correlated with the W matrix (and hence the stored X)
andits noise content is not random anymore. However, Amari [22] has extended this theory
to predict the complete retrieval behavior from noisy inputs.
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Figure 7. Single-passerrorcorrection in a correlation-recordedDAM
as a function ofpattern ratio r = m/n.

Amari also extends the above capacity measures to the case of a correlation-recorded
DAMwith sparsely encoded memories [29], where he showsthat C,is of order 1/log?(n)
which is much larger than that of non-sparsely encoded memory. In another DAM variation,
Yanai and Sawada [30] derive the expression C,= (1+h)2/[2 log(n)] for a
correlation-recorded DAM with unbiased random memories and with perceptrons employing
a hysteric hard-clipping activation function with a hysteric range [-h,+h]. Otherinteresting
extensions are reported by Marcuset al. [55], who have studied the retrieval dynamics of
parallel updated continuous DAMs employingcorrelation and generalized-inverse recording
of unbiased random bipolar memories with large n. Phase diagrams depicting various DAM
dynamics(recall, oscillatory, spin glass, and ground regions) in the space ofpattern ration r

and activation function gain B (a tanh(Bz) activation function was assumed) were derived for
the correlation and generalized-inverse DAMs;for instance, it was shownthat period-two

limit cycles are eliminated from the DAM for both recording techniques when B < I/r = n/m,

andthatthe originis the only attractor ofthe correlation DAM when B < 1/[1+2 (9) -/] and

for the generalized-inverse DAM whenB < 1/(1 - 1).

Let us turn our attention back to parallel updated autoassociative DAM employing
hard-clipping activation and unbiased random high-dimensional binary memories.It can be
shown [56] that for an under-determinedtraining set of unbiased random binary vectors, and
in the limit as n approachesinfinity, the probability of linear independenceofthe training
vectors approaches one.This makesthe single-layer DAM appropriate forthe realization of
such training sets Little theoretical work has been done on the capacity and performanceof
these DAMsrecorded with generalized-inverse or Ho-Kashyap techniques. Youssef and
Hassoun [57] report Monte Carlo simulations for 16 < n < 128 where the retrieval
performance and capacity of various recording/learning techniques, including the
generalized-inverse and Ho-Kashyap, were investigated. They propose a
capacity/performance measure similar to Cy given above, with one additional DAM

performance parameter:recall accuracy (RA). Here, capacity is computed underthestrict
requirementthatall fundamental memoriesare perfectly retrievable and that retrieval is not
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restricted to a single pass. Figure 8(a) shows plots for p vs. m/n where p is an upperboundon the normalized basin radius around fundamental memories, guaranteeing a RA > 99percent. Three curves are shownforthe correlation (Hopfield), generalized-inverse (GD, andHo-Kashyap (HK) DAMs, respectively, with n = 64. A fourth curveis shown (dotted line)for the Ho-Kashyap and generalized-inverse DAM,with n = 128. These curves clearly depictthe superiority of the GI and HK recording techniquesoverthe correlation technique. It canalso be concludedthat the GI- and HK-recorded DAMshavea relatively large operatingregion where error correction is possible, This range is defined, roughly, as 0 < m/n <.5,From the simulationsin [57] it is to be noted that the synthesized weight matrix becomes adiagonal-dominant matrix in the limit as m approaches n/2 at which pointall fundamentalmemories lose theirbasin ofattraction, At m=.15n with large n, the GI and HK algorithmslead to DAMscapable of correctingin excess of 25 percent unbiased random noise. On theother hand, and at a loading level of m = -l5n, the correlation DAM is not capable ofretaining the exact fundamental memories, northeirbasin ofattraction. Figure 8(b) extendsthe results just discussed for cases of reduced recall accuracy constraints (RA > 95percent,85 percent) for the Gl-recorded DAM. The Ho-Kashyap-recorded DAM exhibits similarcharacteristics,

It is interesting to note the similarity between the GI and HK DAM retrieval performance.This should not be surprising, since the training set assumed above is.under-determinedwhere, according to the discussion in Section 4.3, the HK solution is equivalent to the GIsolution except for the added bias bits. The effects of the bias bits disappear whenhigh-dimensional unbiased-random memories (associations) are used, However, whennon-random memories are used, the GI and HK DAMs exhibit substantially differentdynamics, as is shown next.

 
 

    

  

   

 

Figure 8. (a) Capacity/performance curves comparing the correlation,generalized-inverse, and Ho-Kashyap DAMsforn = 64,Dashed curverepresentthe cases of GI and HK DAMwithn= 128. (b) Generalized-inverse performance curves forvarious values ofrecall accuracy (RA).

_Weconcludethis chapter by presentinga limited but illustrative simulation comparing thevarious direct and adaptive recording techniques discussed in Section 4. We also illustrate
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the advantages of employing specialized recording strategies in improving the retrieval
characteristics of a DAM. Four 16-dimensional binary patterns are chosen such that any two

distinct patterns have a Hamming distanceof 8, as shown in Figure 9(a,b).

A=X,: 1111000011110000

B = x, : 1010101010101010
C=x,: 1610010110100101
D = x,: 1001011001101001
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Figure 9. (a) Four memoryvectors used to train an autoassociative DAM.

(b) 2-D representation ofthe vectors in (a).
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Twosets ofsimulations were performed, and the results are tabulated in Tables 1 and2,
respectively. The first simulation assumesa direct recording strategy employing the four
memories (m = 4 <n = 16). The second set of simulations employs an over-determined
training set consisting of the four memories of Figure 9 and sixteen additional
heteroassociations representing the mapping of the rowsof the 16-dimensional unit matrix
into the 16-dimensionalzero pattern. In both cases, the DHK,GI, correlation (HOP), LMS,
AHK I, and AHK Ii recording/learning algorithms were employed in DAM synthesis.
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i DAMtested with 1000 inputvectors having uniformly random binary bits

Training was performed with the original set of 4 memories
Training and testing were performed assuming bipolar memories

Table 1. Retrieval dynamics of various DAMs
trained with the memoriesof Figure 9.

*
+
DAMtested with 1000 input vectors having uniformly random binary bits.
Training was performed employing sparse memory-to- ground mapping

Trainingandtesting were performed assuming bipolar memories

Table 2. Retrieval dynamics ofDAMs
with specialized associations.
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The DAMsin these simulations were tested with 10,000 unbiased pseudo random
vectors. Unipolar encoding was assumed for the Ho-Kashyap and GI DAMs. Onthe other
hand, bipolar encoding was assumed for the Hopfield and LMS DAMs,for both training
andretrieval phases (the LMS DAMalso employed bias). In addition, all adaptive learning
algorithms (LMS, AHKI, and AHK ID) wereinitialized with zero weight matrices. The

learning rates were 0.1 for LMS,0.1 for direct HK and p, = 1 and p, = 0.01 for AHK I

(with margin vectorinitialized to all "+1" components), and p, = 0.1 and py = 0.05 for

AHKII (with initial margin vectors of "+.1" components). Learning stopped afterfifty
iterations for DHK and AHKI. For LMS and AHK II, learning stopped after reducing the
error function J(W) to 0.0001. All weight matrices were normalized and rounded to integer
weights in the range [-99, +99].

The three Ho-Kashyap recording algorithms have comparable performances which
exceed those of generalized-inverse, Hopfield, and LMS. Thefirst row depicts the formation
of large basins of attraction around fundamental memories for the HK algorithms. Noisy
inputs which do not converge to fundamental memories are attracted by spurious memories
forHK recording. The GI and LMS DAMsresulted in relatively large numberof spurious
memories which attracted about 65 percent ofthe test vectors. The GI DAM wasthe only
DAM with a no-decision state (ground state), which attracted 6 percent of the input. As
expected, the worst performanceis that ofthe Hopfield DAM,which has a low convergence
rate to fundamental memories and a high convergencerate to period-two oscillations(these
oscillations can be eliminatedif stochastic update is employed; however, this will result in an
increased convergence rate to spurious states). It is also interesting to note that even though
the W matrix of the HK-recorded DAMis not symmetric and thatparallel updating is used,
no oscillations were encountered, This phenomenonis duein part to the weight normalization
and rounding employed, and to the low memory loading level (m = 4) [57]. The use of
sparse memory-to-ground mapping enhancesthe performance of the DHK DAM,as depicted
in the first column of Table 2. Here, the number of spuriousstates is reduced to seven and
the convergence of highly noisy inputs is directed from spurious and fundamental memories
to a groundstate whichattracts about half of the test inputs. In addition,only five noisy
inputs (0.05 percent) converged to period-two oscillations. The GI also showsslight
improvementin performance compared to the under-determined recording case in Table 1.
On the other hand, this recording strategy does not seem to be adequate for the Hopfield
DAM (fundamental memories were notretrievable) or for the adaptive LMS and AHK
recording techniques.

Heteroassociative DAM performance and dynamics are less understood. Kosko [8,10]
has analyzed the stability and capacity of correlation-recorded heteroassociative DAM (or
bidirectional associative memory (BAM)) andits extension to general Hebbian learning.
Hassoun [28] employs simulationsin the analysis of the capacity and performance ofparallel
updated GI- and HK-recorded heteroassociative DAMs employing hard-clipping activations.

The dynamics and capacity of continuous ordiscrete updated DAMs employing
multi-layerarchitectures have not received adequate attention in the past. Multi-layer DAMs
are important, since single-layer DAMsarelimited to the realization oflinearly-separable
mappings;in practice, many interesting problems are nonlinearly-separable. The training of
DAMsalso needs to be developed further, in such a way that the dynamical nature ofthe
architecture is taken into account during the learning/recording synthesis phase, which can
result in more predictable retrieval dynamics. Also, computationally efficient methods of
controlling the shape and size of the basinsof attraction of fundamental and spurious
memories are desirable (see [58] for a recent attemptto addressthis problem).
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Abstract

Fou: associative memo1y schemes (Hopfield associative memory, generalized fnveise associative

memoly, spectial associative memory and Ho-Kashyap associative memory) that ate suitable

for optical p1ocessoi implementation aie described Numerical 1esults are presented that com-
pare the capabilities of these 4 associative memolies.

1 INTRODUCTION

Artificial Neural Networks (ANNs) have captuwied the imagination of many 1eseaicheis be-

cause of their apparent ability to solve complex problems for which no algouithmic solutions
appear to be feasible However, a iealistic evaluation of the advantages and the limitations

of ANNs requires the ability to investigate the performance of ANNs with a large numbei of

neurons Such lage scale ANNs can be implemented only with advancesin optical o1 electionic

neural networks. Anothe: chapter in this book exploies the issues in electionic neural network

implementations This chapte: investigates the 1ole of optical processing in ANNs

ANNsate chaiacteiized by potentially full inte: connectivity among a laige numberof simple

neutons (processing elements) These features aie ideally matched to the attributes of optical

processois. Full interconnectivity among thousands of neurons would be viitually impossible

in electionic haidwaie where each connection 1equiies a wire In optical neural computes,

inteiconnections ale i1epiesented by light beams which can fieely cross each othe: Also, as will

be detailed late, use of volume hologiams allows the packing of a large numbei of neuions
in small volumes Finally, the simplicity of the piocessing elements (usually equivalent to a

summing amplifier followed by a nonlinearity) ensuies that the limited dynamic 1ange of the

optical processois would not be a pioblem Moviedetailed discussion about the suitability of

optical processing for neural netwoiks can be found elsewhere [1,2,3]

Applications of ANNsso far have been mainly in thiee aieas Thefirst among these aie the

optimization pioblems Hopfield [4,5] showed inhis pioneering woikthat a suitably configured
ANNconverges to the local minimumof an eneigy function This can be used to advantage

in solving minimization pioblems [6,7,8] A second aiea of popula: application of ANNsis

patternclassification [9]. The ability of ANNs to learn [10] suitable discriminant functions fiom
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available tiaining data is thei major advantage in pattern 1ecognition applications The third

application a1ea for ANNsis as associative memories [11,12]

In conventional storage methods, each piece of information is stored in a unique slot and

is 1etiieved by invoking the addiess of that slot In contrast, associative memories store the

information in a distributed manne: throughout the entiie memoty. Information is usually

recalled by probing the associative memory with an input that is eithe: an incomplete or a

noisy veision of one of the stored pieces. The distributed nature of the information sto1age

appears to provide more tolerance to defects and damage in the memo1y Anothe1 1eason for

interest in associative memoties is that human memoly appeals to be mote akin to associative

memoties than to conventional memories

In this chapter, we discuss the 10le of optical associative memories [13-28] Since associative

memonuies aie designed to 1et1ieve complete sto1ed information fiom paitial o1 noisy versions of

it, they are useful for pattern classification also Because of that, we will confine ow attention

to optical associative memoties only

The next section discusses some basic issues related to associative memoties Section 3

then provides details about four models for associative memoiy Sofat, thiee main types

of optical associative memoties appeai to have emeiged The first type utilize the ability of

optical processors to peiform matiix/vector multiplications, and these aie discussed in Section4.

Optical processors aie also very good at performing vector inner products, and associative

memory implementations based on these are desciibed in Section 5 Section 6 discusses the role

of holograms in synthesizing optical associative memoties In Section 7, we outline a simple

methodology that can be used for comparing the many associative memory models Finally,

Section 8 provides some concluding 1emazks.

2 BASICS OF ASSOCIATIVE MEMORIES

The basic concept of an associative memory can be desciibed using Figue 1 The memory

is synthesized fiom the set {(xi,yi), 7 = 1,2, MM}, where M vecto1 pais are to bestored.

Here x; denotes the i-th “key” vector and y; denotes the conesponding “1ecollection” vector.

Both x; and y; are column vectors and can be of different sizes Foi convenience, we will assume

that both x; and y; are columnvectors containing N elements A properly designed associative

memory should store the associations between the key vectots and the recollection vectois For

example, if x3 is the input to the associative memo1y in Figure 1, the output should be y3

 

Associative Memory

Inputx=
> Output y

{@i,%) t= 1,2, Ad}  
Figuie 1: A block diagiam description of the basic associative memo1y

We are using vecto1 notation since it allows us to utilize many iesults from linear algebra.

Any input containing a finite number of elements can be 1epresented using vecto1 notation.

For example, x; may 1epiesent the social security number of a person and y; may 1epiesent @ 
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raster scannedversion of that individual’s photogiaph This is an example of Hetero Associative
Memory (HAM), wherethe key vectors and 1ecollection vectors areof different type In contrast,
an Auto Associative Memory (AAM) uses y, = x;, 2 = 1,2, >A, so that the key vectors
and 1ecollection vectois aie the same Fiom now on, we will focus ow attention onAAM

In AAM, we want y; = x;, i= 1,2, ,M Obviously, this can be easily achieved if we
represent the AAM by the NWx Nidentity matrix I, and we obtain output y by mattix/vector
multiplication of input vector x by memory matiix I Such a memory matiix does produce the
couect associations between the stored keys and t1ecollections However, it is not a desi1able
AAM for severalreasons First of all, it has no tolerance for e1101s in the input Ifthe input isa
vector different from the M stored keys, the output will not correspond to a stored 1ecollection
Also, if the memory matrix is damaged (eg, some of the diagonal 1’s in I ate set to ze1o), the
output y will not be the conect recollection vector This indicates that this simple AAMis not
fault tolerant Hence, a 1obust AAM must exhibit the following desirable teatures:

e Whenthe input x = x, (one of the stored keys), the output must be y = x;

@ Whenthe input x = %; (where the cap indicates an incomplete o1 noisy versionof Xi),
the output should be x; provided %;is closer to it {using some distance measute) than to
any other stored key vector

e When the memoryis damaged, we should still be able to recollect associations This fault
tolerance is not available in conventional memoties without explicit coding

Wok is cuzrently undeiway to make the these concepts mole piecise and to design AAMs
capable of achieving the aboveob jectives

The ability of associative memoties to stole and 1etiieve information in a fault tolerant
manner proves useful in many applications Examples include content-addiessable storage [11],
database seaiching [29], and statistical pattern 1ecognition [9] The similiazity of associative
memouies to pattein classifies is1athe: obvious Both attemptto find the output in 1esponse to
an input that is a noisy or an incomplete version of stored key vectors (prototypes o1 exemplais)
In pattern classifiers, the output will be the class label whereas in associative memoties, it
may be a “cleaned-up” input vector (as in AAMs) o1 a different recollection vector (as in
HAMs) The difference usually is that conventional statistical pattein 1ecognition schemes use
statistical models of the unceitainty to design optimal classifies Tn contiast, most associative
memory designs are non-paiametiic and thus do not use explicit noise models ‘This may be
a disadvantage (when good,tealistic noise models aie available) o1 an advantage (when input
noise is unpiedictable) The next section introduces fou models foi associative memo1y

3 FOUR ASSOCIATIVE MEMORY MODELS

Several models have been pioposed to stoie M paits of vectois in an associative memory
All these models have two stages of operation Inthe fist stage, the associative memorylearns
the associations between inputs and outputs This may be done by an explicit set of linea
algebia operations as in the Hopfield memory [4] o1 by an iterative minimization of an e11o1
measuie as in the back-piopagation algorithm[10] In the second stage, the associative memo1y
pioduces a stable output vector in lesponse to an input piobe vector This output vector may
be obtained by a single operation on the input o1 by aniterative sequence of operations This
second stage is knownas the retrieval process In this section we describe briefly four different
models for associative memonjes
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3.1 Hopfield Associative Memory [4]

Let x1,.. ;Xar be the M column vectors (each with NV elements) to be stoied in the Hop-

field memory We will confine our attention to the case in which vector elements aie either +1

ot —L These vectors aie stored in an N x N memory matiix W defined as below:

W = XxX? — MI (1)

where X = [xi X2 | xm] isan N x M data matrix whose columns are the vectors to be stored

and where I is the N x N identity matiix The subtraction of MI from the outer pioduct

matrix XX7 in eq (1) ensuies that the diagonal elements of W aie all zeio

Once the memory matrix W is constiucted,it is used for 1etiieval as follows Let x° be the

piobe vector with N elements in it Next, the following iterative procedure is used:

ith Sen[Wx* —t]
(2)

whee t is an N’-dimensional columnvectoi containing the thresholds (assumed to be ze1o unless

specified otherwise) and the superscript k indicates the iteration index The Sgn{x] results in

a vector with entiies equal to +1 (if the original elements weie non-negative) and to —1 (if

the original elements we1e negative). Hopfield [4] proved that an asynchionous veision of the

update 1ule in eq (2) will always conveige to a stable vector A stable vectoi is 1eached if

xt! — x* for some k After this, updates stop

Empitical investigations 1evealed that only M <0 15Nvectors can be stored ieliablyinthis

associative memory, which is rather inefficient However, the vectors aie stored in a distributed

manner in W, so we expect to achieve good fault tolerance Theoretical studies [30,31,32]

have been carried out to characterize the storage capacity of Hopfield associative memories. In

addition to its poo storage capacity, Hopfield associative memory suffers from several other

weaknesses [33] when viewed as a pattern classifier, some of which azelisted here:

e When we constiuct a storage matiix Wfioma set of vectors {X1,X2; _xar}, it is quite

likely that several othe: spurious vecto1s also become stored memories

Theie is no guaiantee that a W constiucted fiom the set {x,, .Xar} will have these

vectois as its stable vectois

e Examples can be constructed where a probe vecto1 converges to a vectol other thanits

nearest neighboi (in the Hamming distance sense)

However, we must emphasize that the Hopfield associative memory sto1es information in a

distuibuted manner, thus providing a deguee of fault tolerance Modifications proposed to im-

prove the performance of Hopfield memouies include: layering the networks [34], using non-zero

diagonal terms [35], modifying the threshold condition [36], and using limited interconnections

between neurons [37].

3.2 Generalized Inverse Memory [11]

The Generalized Inverse memory proposed by Kohonen [11] is based on the minimization

of mean squared e11o1 (MSE) in the output Let x, i=1,2, ,M, denote the key vectors 
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and y; denote the co1iesponding 1ecollections Then the MSE is defined by

M
1MSE = = $0 | yi — Woe |)? (3)M @=1

where W is the memory matiix and {| ||? zepresents the squaied norm of the vector We can
show that the MSE is minimized if we use

W = YX*
co)

where Y isan N x M matiix with yi; as its 7-th column and Xt is the genezalized inveise of X
This generalized inverse is given by (X?TX)-1X?if the columns of X are linearly independent
and by X7(XX7)~! if the 10ws of X aie lineaily independent Fou the special case where X is
invertible, X* is the same as X~! and the MSEis zero

It is easy to see that retrieval can be accomplished in a single step To obseive this, let us
compute the following assuming that the columns of X aie lineaily independent:

wx iI (YX+)x
(5)

Y(XTX)-1xTx
Y

il

For the special case of AAMs, Y = X and we get the coiect 1ecollection vectois in one shot
Geneialized Inverse memorystores the associations in a distiibuted manne: and is thus

expected to be fault tolerant It is also attractive in the sense that there is no need foi iterations
and that the stored vectors aie not limited to binaiy vectois However, its ability to 1econstiuct
complete information fiom partial inputs has not been investigated thoroughly Theoretical
analyses have been cartied out [38-42] to understandtheeffects of input noise on the recollection
ability of Generalized Inverse memouies

3.3 Spectral Neural Network [43]

One of the difficulties with the Hopfield associative memory is its limited sto1age capacity.
This may be due in pait to the constiuction method of the Hopfield memory matiix, in which
no explicit attempts are made to control the locations of stable states in the energy space,
As a 1esult, the stoied states tend to cluster which makes it difficult to distinguish one state
fom another The Spectial algorithm [43] alleviates this problem by constiucting the memory
matiix in a mannet that “spreads” out the stable states

Suppose the thieshold vectoi t in eq (2) is anall zero vector and suppose x* is an eigen-
vector of the matiix W Since Wx* = \x* where A is the eigenvalue, then x*+! = x* ag long
as A > 0 and x* is a vector containing +1 and -1 only The Spectial algoiithm is based on
this obsei vation. In this method, wefirst determine eigenvalues \,, 1 <7 < M, as below:

M
1

A= N-5 > <X,,X5 > (6)
s=l,ser
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where < X,,X; > indicates the innet product between the two vectois Let A denote the Mx yy

diagonal matiix where A; is the i-th diagonal element Then the memory matiixW is given by

 

W = XA(X7X)TX? (7) |

It is easy to verify that WX = XA,and since all the eigenvalues aie positive, Sgn[WX] = x.

Therefore, this matiix can 1ecollect the stored vectors coiectly It is interesting to compare

the memory matiices in eqs (4) and (7) Fo. AAMs, the only difference is the extra diagonal

matiix A introduced in the Spectral algorithm

3.4 Ho-Kashyap Associative Memory [44-47]

This procedure has 100ts in classical pattein 1ecognition theory [44,45] whereit is used-to

design linear discriminant functions. Hassoun and Youssef [46,47] modified it to construct a

new associative memo1y matiix To see the equivalence between the two pioblems, consider

eq (2) wheie both x® and x*+1 are N-dimensional column vectois with entiies +1 01 -1)- Jf

we consider the i-th 1ow of W as wi, we can rewrite eq (2) as below:

lm= Sen[wixn —t], 1<i<N, leams M (8)

where the supersciipt T denotes the transpose. Since @m,i is eithe: +1 01 —1, each (wi, t;)

represents one linear discriminant function capable of classifying M vectois {x1,X2,  , Xa}

into 2 classes Thus Nlinea: disciiminant functions wi, i=1, ,N, ate designedto find the

memory matiix W Once again the ietiieval operation is catiied out in a single step

It has been shown [45] that this algorithmwill always conveige in a finite number of steps

if the underlying vectorsaie “linearly separable” However, this is computationally demanding

because N linear discriminant functions must be determined and each iequires many matrix

opetations.

3.5 Other Associative Mappings

Several other schemes have been pioposed fo1 associative mappings These include: higher

orde: neural networks [48,49,50], exponential associative memories [51], and polynomial mem-

oties [52] It is not ow intention to piovide a discussion of all these models We included

the above four since they appeai to be moteeasily implemented on optical aichitectures than

otheis

4 OUTER PRODUCT ASSOCIATIVE MEMORIES

As discussed in Section 3, the memory matrix W is obtained from the oute: pioducts of

the M vectors {x1,x2, Xa} to be stored It we allow the diagonal elements of W to be

nonze1o, we can obtain W as below: :

M

w= Sixx (9)
i=l
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Once the memory mattix W is synthesized, information can be 1etrieved using eq (2), Since
this W is constiucted from the outer products of memory vectois, this method is known asthe outer pioduct associative memoiy The main operation involved hereis the matiix/vectormultiplication In this section, we will discuss how outer product associative memories can beimplemented using optical matiix/vector multipliers.

The basic optical matrix/vectoi multiplier [53] is shown in Figue 2 Here the vector x*at the k-th iteration is :epiesented by a laser diode o1 light emitting diode aiay in plane Py,This array is then imaged ho1izontally and expanded vertically onto the mask in plane P»The mask encodes the matrix W The light leaving plane P» is then imaged vertically andfocused horizontally onto the photodetector array in plane P3. Hence, the vector detected bythe array in plane P3is given by Wx* Manyother architectures for and applications of opticalmatiix/vector multipliers can be found elsewhere [54]

 

Figure 2: Basic optical matiix/vector multiplier
Once Wx*is obtained, we can cat1y out the 1equiied subtiaction of the thieshold vector tand the hard clipping operationin electronic hardware This produces x*+! which can be usedas the input for the aziay in plane P, for the next iteration. The basic iteative optical ma-tiix/vector multiplier has been the focus of muchattention for several years A good summaryof its applications, algorithms, and aichitectues can be found elsewhere [55]Any of the associative memo1y schemes using eq (2) for ietrieval can be implementedusing the matrix/vecto1 multiplier in Figuie 2. In fact, the first optical implementation [14] ofthe Hopfield memory was catied out this way However, there are several limitations to thisaichitecture The need for conversion between optics and electionics slows down the systemeven though the computationally intensive matiix/vecto: multiplications can be caiiied outtapidly The encoding of the mask W in plane Py 1equiies that it be computedoff-line Thus,every time a new input is to be stoied, we need to 1ecompute the entiie W If W is goingto change frequently, we need to use tlansmittance masks which can be externally addiessedSuch devices are known as Spatial Light Modulators (SLMs) What we need for plane Po isalage sized, iapidly addiessable, 2-D SLM While these exist, they are expensive Advances in2-D SLMs such as the magneto-optic spatial light modulator [56] and the Texas InstiumentsDeformable Min1o1 Device [57] ae definitely going to help this implementationA significant advantage ofthe outei pioduct associative memonies is that the vectors alestored in the entiie matiix W ina distiibuted fashion Therefore, damage to W (eg, setting



226   some elements ofW to ze1o) degradesthe 1etiieval gracefully Similarly, quantizing the dynainie

ange of W to a few bits may not be a big problem Since some of the available real-time 2:7)

SLMs can accommodate only two levels, this is certainly convenient.

5 INNER PRODUCT ASSOCIATIVE MEMORIES

In Section 4, we showed howthe Hopfield associative memoiy can be implemented using an

outer product scheme However, it can also be implemented using an inne: pioduct method:

To see this, let us substitute eq (9) in eq (2):

x't1 = SonfWx* — t]
M

Sen[{>~ xix!}x* — t]
i=l

M
Sen[>_ abx; — tl (10)

wl

{I

where thecoefficient af, i= 1,2, ,M, is given by the inner product (x? x") betweenthei-th

stored vector and the estimate of the recollection vector at the k-th iteration In this approach,

we obtain Wx* by first determining the inne: pioducts a¥ for i= 1,2,  ,M and thenusing

these in forming the linear combination yi, akx; A basic optical implementation of thisis

shown in Figuie 3.

 

Figure 3: A basic optical implementation of inner product associative memoly

The probe vector x is placed in the laser diode atiay in plane Py This light is then imaged

hotizontally and expanded vertically onto the mask in plane Py» This mask has M 10ws and

N columns with each 10ow 1epiesenting one of the stored memory vectois The light leaving

plane P, is imaged veitically and focused horizontally onto the detector allay in plane P3 The

vector detected by P3 is given bya = [a a2 . au)! The inner products aie then used to

modulate a source atiay in plane Pg Thelight fiom plane P3 is imaged vertically and expanded
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ho1izontally onto the mask in plane P4. The masks in planes Py and Py, ate identical Finally,

the light leaving plane Py is focused vertically and imaged hoiizontally, yielding Wx as desi1ed

The subtiaction of the threshold vectoi t and the nonlineai haid clipping operation are catzied

out electionically. Since the same masks aie used in planes Py and Py, we can use a miior in

plane P3 to avoid needing two 2-D spatial light modulators
Considei the case where we set the maximum among {a1,@2, , az} to one and the others

to zeto. Whenthe stoied vecto1s and input piobe ate binary bipolai (eg , elements aie +1 o1

~{), maximizing the inne pioducts is equivalent to minimizing the Hamming distance between

the probe x and the stored vectois. Thus, the inne: product associative memory will select

the nearest neighbot from among the set of stored vectors This obseivation was used [24] to
suggest an associative memory schemethat is guaranteed to converge to the neaiest neighbor.

Selecting the maximumfiomthe inner products is only one example of a nonlinearity Other

nonlinearities [27,58] have been pioposed for use in this architectuie

One of the advantages of the inne: product associative memory is that it is easy to add

new vectois and delete old ones simply by adding 10ws and deleting 1ows In contiast, we need

to compute new memory matiices fo1 outer product implementations Howeve1, each stored

vectol is in a separate row of the mediumandis thus not 1epiesented in a distiibuted manner.

Hence, inner product associative memoties do not provide good fault tolerance The storage

capacity, on the other hand, can be large compaied to that of outer product memories

Higher o1de1 associative memoties [48,49,50] can provide increased sto1age capacity because

of the increased numberof degiees of freedom available These higher o1dei associative memonies

can be implemented using the inne: product method in Figure 3 provided the inne1 products

aj, 1=1,2, ,M, are passed thiougha suitable nonlinearity Using a squaie-law nonlineaiity

produces quadiatic associative memonies [59,60] and using a maximumfinding nonlineatity

produces neaest-neighbo: finding associative memoties [24] Howeve1, as stated befoie, inner

product associative memories ale unattiactive since they do not provide the fault tolerance that

is characteristic of useful aitificial neural networks

6 HOLOGRAPHIC ASSOCIATIVE MEMORIES

The use of hologiams as associative memoties has been well knownto optical processing 1e

searches for. many yeais Muchof the eailie: use of holograms wasintheiability to 1econstiuct

3-D images and thei: ability to encode complex-valued spatial functions on a medium capable

of 1epiesenting only positive-valued functions This latte: propeity was paiticularly useful for

optical matched filteiing [61] Here oui interest is in the hologiam’s ability to 1econstiuct one

of two wavefionts when given the othe:

Let us considei 3 simplified version of the hologiam synthesis process As shown in Figure 4,

imagine two wavefionts incident on the medium in plane Py Oneof these is a plane wave of

light (at an angle to the optical axis) indicated by Ke7?¢”, where a is 1elated to the angle The

othe: wavefiont S(x,y) contains the complex variations to be encoded on the hologiam
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A exp{—jaz} —,

S(,¥)CI

Figure 4: Hologram 1ecoiding piocess

To be able to form a useful hologiam in plane Pj, the two wavefronts must be coherent
Roughly speaking, this means that the light is monochromatic and both wavefionts must have

the sameoriginal light source Also, the two paths must have appioximately the samelength

Otherwise, we do not get inte:ference in plane Py; Whenall the above conditions aie met, the

intensity incident on plane P; is given by:

| S(a,y) + Keni
|S(a,y) 2 + K? + KS*(a,yeF? + KS(o,y)etio (14)

I(x,y) tl
tt

where the superscript aste1isk indicates complex conjugation The intensity I(z,y) in eq (11)

is positive, yet it encodes the complex wavefront S(x,y) The medium used in plane P, will

have a transmittance t(2, y) that is propoitional to I(z, y)

Hologram

Kexp{-jaa}

5 (2,4)

(K? + |S(2,y)[?) exp{-jaz}

t(z,y)

S*(2,y) exp{-72a2}

Figure 5: Rettieval fiom a hologiam using the 1eference as the probe wavefiont.

To retrieve the wavefront S(z,y) from the hologram t(2,y), we 1eilluminate it by the plane

wave Ke-/*® (same 1eference wavefiont that was used in the hologram recording process) The

light leaving the hologram in Figure 5 is then given by:

t(2,y) Kee

K(x, ye???

K(K+ | S(x,y) Pe" + KPS*(2,ye" + KPS(e,y) (12)

O(z,4) il
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where we have ignoied some piopoitionality constants As can be seen fiom Figme 5, the desired

complex wavefiont S(2,y) emerges separated fiom the otheis In somesense, the hologiam has

recorded the association between the 1eference wavefiont Ke—/** and the object wavefiont
S(z,y) Thus, we can1etiieve the object S(a, y) by using the reference as the probe wavefiont

Onthe other hand, if S(x,y) is used as the piobe, then the output will have thiee terms, one of

which is K| S(2,y) [? e?¢* This is a distorted version of the reference wavetiont Thus, we

can use either of the two wavefionts to generate the othe: Howeve1, only plane wave probes

lead to undistoited 1ecollections These ideas were o1iginally suggested by Gabor [62,63,64]
The above explanationof the use of hologiamsas associative memoties treats the hologiams

as static Howevel, it is essential that we use dynamic hologiams in order to learn newassocia-

tions Also, it is impoitant to use volume hologiams [65,66,67] to take advantage of the packing

density in optics and to utilize the 3-D attiibutes of optics

The best materials for use as dynamic hologiams aie photorefractive crystals [68,69,70] In

these crystals, the 1efiactive index of the mateiial changes as a function of the incident inten-

sity. Thus, the weights to be used for associative mappings can be easily changed externally

However, one setious pioblemis that these weights may change duting the1etiieval stage This

can result in “forgetting” of the associations duiing ietiieval Also, the cu1ient generation of

phototefiactive ciystals suffer from ciosstalk (noise) between stored mappings and 1equite high

light intensities for adequate speed performance Much 1esearcheffort is underway to alleviate

these problems

7 A COMPARISON OF FOUR ASSOCIATIVE MEMORY
MODELS[71]

Associative memories are attiactive because they can provide fault tole1ance and exhibit the

ability to retiieve complete information fiom incomplete o1 noisy versions of stored information,

In this section, we present an abbieviated version of a detailed study[71] conducted to compare

fou associative memoiy models fiom the above conside1ation These models aie: Hopfield as-
sociative memory, Generalized Inverse, Spectial method, and Ho-Kashyap associative memory,

All these were introduced in Section 3, and here we confine ow attention to compaiing them
using compute: simulations We have not induded many othe: important memo1y models in

owt comparison since that would make this too long Ou main objective is to provide a simple

methodology for compaiing these associative memory networks

7.1 Details of the Simulations

The goal of the simulations was to determine the ietiieval performance as a function of

the number of stored vectors M, the coiuption level (added noise) of the probe vectoi, and

damage to the memo1y matiix The memoty matiix W was damagedin two different ways. In

the first, some matiix elements (:andomly selected) were set to zeio This simulated the loss of

interconnections In the second, the matiix elements were quantized to various number of bits

Wefelt that this was a mote iealistic simulation of the haidwaie sto1age 1equiiements for an
associative memory

The evaluation of the 1etrieval performance of associative memories is 1ather tiicky Two

different evaluation stiategies were used In the first (called Test Piogiam - Strict or TP-S),

we examined the maximum numbei of bits we could coirupt in a piobe vectoi andstill achieve
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  100% ietiieval The results fiom TP-S give some idea of how each memoiy model would perform
in situations that demand perfect 1et1ieval In the second test (called Test Piogiam - Loose

o1 TP-L), we determined the percentage of probe vectois that converged to within a specified
Hamming distance of the coirect output vector: TP-Lis a moreiealistic measure for evaluating

neuial network associative memoties

The memory vectois to be stored were of length N = 50, and each bit wasset landomly: to

+1 or —1 with equal piobability A total of 30 vectois weie used, with an average Hamming
distance of 24 79 and a standaid deviation of 3 44. If two binary, bipolai vectors of length 50
aie orthogonal, thei1 Hamming distance would be 25 Therefore, the vectois represent a set of
almost orthogonal vectois.

For TP-S evaluations, we selected one of the stored vectors as the probe vector and inverted

k bits iandomly The value of k 1anged fiom 0 to 30 We probed the network 25 times with

the chosen probe vector If the coizect vecto1 was 1etiieved in all 25 attempts, we moved on

to a higher & value Foi any k, even if one of the 25 trials 1esults in a wiong recollection,
then that & value indicated the maximum piobe vectoi co1uption tolerable Afte all possible

piobe vectois were tested, we averaged the k values for each choice of AZ, the number ofvectors

stored.

In TP-L evaluations, the probe vecto1 was corrupted just as above However, when the

network converged to a vector, its Hamming distance fiom the co1ect 1ecall vector was de.

termined This was used to detive the percentage of probe vectois that fell within a specified

Hamming distance of the correct stored vectot1

7.2 Discussion of Results

In this subsection, we piovide an abbieviated discussion of the results presented elsewhere

[71] To stait with, we show in Figure 6 the maximum number of bits that can be cor1upted
in the probe vector andstill achieve 100% ietiieval In Figuie 7, we showsimilai 1esults when

the matiix was damaged by 50% (ie, half the elements weie set to zeio) The 1esults obtained

when the matiix elements were quantized to one bit (ie, 2 levels) are shown in Figuie 8 The

50% damage and 1 bit quantization were combined and the results aie shown in Figwe 9

The tesults in Figuies 6-9 suggest that the fault tolerance to probe vector co1luption de:

cleases as we tiy to pack moie vectors into the memo1y As the memo1y matiix is damaged;

the 1etzieval fidelity diops as mote vectois aie stored With no quantization o1 damage (Figure

6), the Ho-Kashyap method seems to provide a definite fidelity and capacity advantage over

the othe: schemes The Generalized Inveise and Spectial method peifoirmslightly below the

Ho-Kashyap, while the Hopfield model displays a substantially lowe: sto1age capacity As the

amount of matiix damage and quantization incieases, all the networks begin to exhibit a de-

giaded 1esponse cuive, with the Ho-Kashyap deteriorating most At the one bit quantization

level, the Hopfield network has a slightly bette: 1esponse cuive than the othe1s However, the
stoiage capacity is so low that small differences in 1etiieval fidelity have little meaning

In Figuie 10, we showthe petcentage of piobe vectors that converged to within five units

(Hamming distance) of the co1rect vector when the probes were co1upted by0 bits, 6 bits,

and 12 bits We showsimilai results in Figuie 11 (when the matiix is damaged 50%), Figure

12 (when the matzix is quantized to one bit), and Figuie 13 (when the matiix is damaged 50%

and quantized to one bit)
On the average, the number of vectois that converged to withinfive units of the cor1ect

recollection decieases as M is incieased As seen before, the Ho-Kashyap method perfoimed

well in the absence of memory damage and quantization However, its pesformance degiaded
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236   significantly in the presence of noise Overall, the performance of all four methods appears

to be similai in the piesence of severe matiix damage and quantization Theiefote, the many
associative memoiy models proposed appeai to piovide no appreciable advantages ovethe
Hopfield method when we take into account the desirable fault tolerance attributes.

8 CONCLUSIONS

In this chapte1, we presented the basic methods and motivations foi the use of optical asso:

ciative memories The motivations include: possibility of laige sized neural networks because of

the 3-D natureof optics, full global inte:connectivity, and the compatibility of the low accu acy

of optical piocessois to the 1equirements of neuial networks Howeve1, there ale many othe;

issues and methods [72-79] we did not discuss here for 1easons of bievity We advise the 1eade;

to consult the extended reference list we have piovided

The success of optical neural computets will critically depend on advances in the following

areas

e Impioving photoiefiactive SLMs.

e Bette: undeistanding of the associative memory algo1ithms

e Impioving the inteiface between optical and electionic haidwaie
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1. INTRODUCTION

Models for neural nets have been proposed since the work of McCulloch and Pitts[25] in 1943. A new turning point of modeling ofneural nets came in the early 80’s withthe publication of the works of Hopfield and his coworkers [15, 16, 17, 18, 19] and theworks of Rumelhart et al [30]. These works evolved from earlier works*[1, 8], but havegiven the field a broad exposure and motivated (or convinced) new (engineering) research-ers of the potential and feasibility of Artificial Neural Nets (ANNs). The cumulativeefforts have led to the formulation of a basic configuration of a class of feedforward andof feedback neural nets [1, 5, 8, 15-19, 30] with certain interesting properties. Variousanalytical methods have been reported in the literature with a high degree of mathematicaltigor [27-29, 36, 38, 41, 44]. These particular analyses have led to proper designs of feed-forward and of feedback neural nets. Yet implementation in large scale have continued tobe an obstacle to the practical utility of ANNs. It is believed that implementation in largescale will be the vehicle through which the computational powersattributed to neural net-works would be revealed.

The crux of the point is that it is essential to ensure that the models and analyticalmethods introduced for neural networks are suitable for the medium of implementation.Conversely, models which lend themselves naturally to implementation via some chosenmedium, ought to have sound analytical support for their dynamic properties. Conse-quently, one should merge and adopt discoveries and tools from neuro-biology, dynamicalsystems theory and mathematics, computer science and engineering, physics, and the likes,in order to develop information/image processing machines inspired by neurobiology thatmimic the neural net capability in real time.
From an engineering prospective, implementation may be viewed in two ways: viasoftware and/or via hardware. In our view hardware implementation is superior becausethe mechanisms driving (models of) neural networks would then be directly realized, andsuitably adapted, into parallel large scale integrated hardware. Consequently, the mediumof implementation would be exploitedto its optimum limit,
In hardware implementations, there are now two obvious media: (i) optics, (ii) elec-tronics or silicon. In addition, one may consider any appropriate combination ofthe twomedia known underthe name electro-optics. Our implementation focus here is on electron-ics, and specifically on the well-developed and standard technology of MOS siliconintegrated circuits We shall restrict our discussions to particular digital and/or analogVLSI/LSI implementations. In doing so, werealize that we will not, and cannot covermany otherinteresting and promising implementations,
The interest in hardware implementation has been revived, to a large degree, by thework of Hopfield and his coworkers [15-19]. In [19], Hopfield and Tank proposed theapplicability of feedback ANNsto the design of A/D converters, signal decision circuits,



244   and linear programming circuits. The ANN is realized as a numberof Operational
amplifiers connected via variable (linear) resistors. The input of each operational amplifier;
is connected via a resistor to the non-inverting (inverting) output of another Operational
amplifier if the latter amplifier is excitatory (inhibitory). Consequently, for each neuron
there are non-inverting and inverting amplifiers. Also, in general, the number of variable
(programmable) resistors (referred to as the synaptic weights) is equal to the Square of the
numberof neurons, That is, for an n—neuron interconnected ANN there are 2n amplifiers
and n? variable resistors or potentiometers.

It has been emphasized that large numberof neurons are needed in an ANN to pro-
duce emergent useful computations in the neural network sense. Since then, many workers
have sought to implement the feedback (and the feedforward) ANNs using VLSI/LSI Sili-
con electronics. The input-output function of a neuron, which is usually a (differentiable)
monotone sigmoid function, can be easily implemented in VLSI/LSI by an amplifier or bytwo logical inverters in series. A majorobstacle, however, has been the VLSI/LSI imple-
mentation of the variable linearresistors (orartificial synapses).

ANN hardware based on the silicon MOS VLSI/LSItechnologyis actively being pur-
sued by several research groups. Hubbard et al. [20] demonstrated a thin film synaptic
attay in submicron feature size fabricated by e-beam lithography. Selectively deposited
amorphoussilicon resistive elements at the nodes provide the resistive array synaptic con:
nections which will be useful as an associative read-only memory. Sivilotti et al. [48]
had fabricated a programmable neural network chip with twenty-two neurons and +1, 0,
and -1 synapses. This circuit is designed to perform on-chip learning by employing a
truncated version of Hebb’s rule. Pursuing a different approach, Mead ef al. [26] have
integrated sensor arrays and processing elements to emulate some ofthe spatial and tem.
poral properties of neural networks in the retina of the (human) eye. Researchers at Bell
Labs [11] have fabricated a 54-neuron CMOS chip with programmable +i, 0, and -1
synapses. Such an implementation uses static RAM cells as prespecified memories. The
desired data are stored as the synaptic weights of the rows ofthe interconnect (matrix).
The circuit will perform the inner product of the incoming data and the rowsof the synap-
tic weight matrix. The resulting inner products are passed through respective sigmoidal
nonlinearities. The resulting largest output indicates that the incoming data is closest to the
desired vector stored in the corresponding row ofthe synaptic weights. (This is a winner-
take-all circuit.) Sage et al, [28] at MIT Lincoln Laboratory developed chips based on
Metal-Nitride-Oxide-Semiconductor (MNOS) and Charge-Coupled Devices (CCDs) tech-
nology, Such an implementation would achieve analog synaptic weights via variable
charge storage. Recently, one VLSI chip from Intel [14] was implemented with fully ana-
log circuitry operating in a deterministic manner. Since digital circuits have proven them-
selves in standard VLSI, there is another chip [58] which was implemented with fully
digital circuitry operating in a stochastic manner. Learning, however, is delegated to off-
chip algorithms in the last two chips.

Here we describe our prospective regarding some research activities on the silicon
implementation of ANNs. Our prospective has transpired from ourextensive review of
reports, papers, and products pertaining to aspects of neural theory, analysis, implementa-
tion, and developments. Based on ourextensive review ofthe literature as well as our own
activities, we delineate some observations in the following remarks:
(1) There are still some problems pertinentto silicon VLSI implementation of ANNs. For

instance, in orderto retain robustness to imperfections, to noise, and to temperature
effects, the (analyzed) neural models must be faithfully mapped onto the VLSIelec-
tronic chips. If models are not (or cannot) be mapped faithfully, on the other hand,
then it is essential that the introduced modifications are consistent with the formula-
tion and the "spirit" of the analytically verified neural models. Such consistency
would ensure the robustness and preservation of the functionality and the properties
attributed to neural networks.
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(2) Most ofthe existing implementations have not faithfully mapped the neural modelsinto the domain of implementation, be it digital, analog, or hybrid silicon electroniccircuits. Some researchers also appearto minimize or totally ignore the serious desta-bilizing and damaging effects of some introduced modifications, More often than not,the final designed product does not and cannot exhibit neural-like behaviors.
This, we believe, will have negative consequences. It would generate wrong andsweeping conclusions about the whole area of neural nets and its implementationsMany, who may be unfamiliar with the dynamics of neural nets, will attribute thelimitations and the shortcomings of the (unjustified and/or unfaithful) implementa-tions to limitations and shortcomings of the theory of neural nets.

(3) The above two remarks are of a serious nature when one considers dynamic (non-linear) neural net models (andall the silicon VLSI implementations are dynamic dueto the ever-present parasitic capacitances). The statements are even more seriouswhen oneincludes learning algorithms into these implementations.
(4) It is appealing, but also necessary, to build neural modules which will be compatibleand may be integrated into a functioning system. However, because of the presenceof feedback (which occurs in the structure in feedback neural nets and via the learn-ing in feedforward neural nets), systems issues of stability, convergence, and robust-ness will be dominant.
(5) One may suggest models without any learning We believe that such suggestionwould not lead us too far, We believe, neural network research is unique because,among otherthings, it introduced dynamic changes to data or becauseit incorporateslearning in the process, Learning thus is an essential attribute of the area of neuralnet which ought to be emphasized. It is the one subject that is needed the most, yetitis understood theleast.

Our own research has focused on developing basic cells in all-MOS analog subcir-cuits as building blocks for the analog silicon implementation of ANNs. Someof our pub-lished works has adopted a systems-level approach whereby modules are built to beintegrated into a neural network system, e.g., see [59]. We have focused on all-MOSdesign of vector-vector multipliers ‘as basic cells, see e.g. [35] and Section 3. We havedesigned layouts for all-MOS feedforward ANNs with learning capability based on thevector analog multiplier cell [43]
The chapteris organized as follows. Section 2 presents a digital CMOS VLSI imple-mentation of a 4-neuron circuit. We use the static RAM cells to store the synaptic weightsand off-chip learning rules on a host (Personal) computer. This section describes our firstexperiments with implementation which enhanced our understanding and suggested thenecessity of the analog pads as Opposed to the conventional digital pads common in digi-tal circuits. Section 3 presents our implementation of ANNs employing the basic cell ofthe all-MOS analog vector-vector multiplier. We have successfully demonstrated theimplementation of our modified learning rule [44, 47] which is suitable for the siliconimplementation. Section 4 presents our focus on the natural building block of the CMOSsilicon technology, namely, the MOS Transistor. We use the (nonlinear) fout-terminaltransistor as the building block or the basic analog cell for constructing artificial neuralcircuits. The main neural circuit was proposed and constructed based on solid analyticalbase [33, 37, 42] while other implementations are demonstrated via SPICE Simulations ofprototype circuits [59]. Due to space limitations, we focus on the latter implementationsand referthe readerto the literature and Section 4 for the former implementations. Section5 summarizes our conclusions.
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  2. A DIGITAL CMOS VLSI IMPLEMENTATION OF A 4-NEURON
CIRCUIT

A Hopfield-type neural network has been implemented and fabricated using standarg
CMOS VLSI technology with MOSIS 20 tm, n-well process in a 40-pin TINYCHIp.
This chip is implemented with the mixture of the analog and digital VLSI technology.
neuron is implemented with two CMOS push-pull inverters in series and a connection is
implemented with a CMOSpass-transistor, which is controlled by its own T;; cell. T,,

cells are implemented by using static RAMs (SRAM). Learning is performed by a host
computer, After learning, synapse weights are loaded through input pins and stored at T;;
cells with -1, 0, and +1 correspond to the inhibitory, open, and excitatory operations,
respectively. We have used various learning rules [45], including the Hebbianrule.

2.1. Artificial Electronic Neural Circuit

A silicon implementation of the neural network proposed by Hopfield is described.
Anartificial neural circuit has been implemented using standard CMOS VLSItechnology;
A block diagram of an artificial neural circuit is shown in Figure 2.1. This contains 4 sub:
blocks: control circuits and a column decoder, amplifiers, T;; cells, and a tow decoder.
The control circuits and a column decoder subblock is used to store a synapse weight in a
Tj; cell, to initialize an input of a neuron, and to read the output of a neuronafter conver-
gence. This subblock is very crucial to implement the neural circuit since the large number
of neurons in a typical neural circuit usually exceeds the numberof pins on a standard
chip.

Control Signals & Address

 
Control Circuits &

Inputs & external inputs Goiamn Decoder pont Chitpuls
   

Amplifier & Buffer

 

 

nxn

   
Figure 2.1 The block diagram of a neural circuit

For example, if a neural circuit is designed with 32 neurons, then more than 20 pins can
be saved by using 4//O pins with one 3x8 column decoderinstead of 32 I/O pins. The
T,; cell subblock consists of CMOS analog pass transistors and 2n? SRAMcells for an
n-neuron circuit. The row decoderpart has k address inputs and one k x 2* row decoder
for n-neuron circuit, where 2 > 2n and the decoderis used to select the corresponding
row T,,-cell, An amplifier is used to function as a cell body and is implemented with two
cMos inverters in series, In the next subsections, the implementation of a 4-neuron cir-
cuit is discussed in detail.   
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2.2. Implementation of a 4-Neuron Circuit

An artificial electronic neural circuit with 4 neurons is designed with MAGIC
(University of California at Berkeley) VLSI tools and is fabricated by MOSIS (University
of Southern California) 20 microns, n-well process in a 40-pin TINYCHIP padframe 34
ins out of 40 pins are used in order to test this chip more conveniently after fabrication;

It should be mentioned that 23 pins suffice for our circuit design, however. Figure 2.2
shows the 40-pin TINYCHIP padframe including the design project; there are approxi-
mately 630 transistors in this project

Vdd V2 El, El, V3 Gnd ly Ely Ih Va Vdd

aren esas      

 

hy 2 $2

Ly ey sel

El, BEM|) 4

Vi eG dy

ex_sel | eo dy

ag BE 4;
ay oe dy
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Gnd Uy U2 Uz Vdd Or U4 d; Gnd

Figure 22 The 4-neuron circuit on a 40-pin TINYCHIP padframe

2.3. The Architecture of the 4-Neuron Circuit

The architecture of the 4-neuron circuit contains control circuits, 4 amplifiers, one
3x8 row decoder, and 16 programmable T;, cells. Each amplifier consists of two push-pull
inverters connected in series, which are used for excitatory and inhibitory processing and
each T;; cell is composed of 2 static RAMs (SRAMs) and CMOSanalogpasstransistors.
A 3x8 row decoder is used to select one column of 4 Tj; cell columns and each 7;; cell
column consists of two columns, one for excitatory connection storage and the other for
inhibitory one (See Table 2.1). For example, when (a2 a, dg) = (1 0 0), the input vector
dy Io Ts Ty is stored in the Tj cell column, (T 13 Tx T33 T 43)-

Learning is performed by a host computer. After learning, a host computerstores the
modified synapse weights into the corresponding Tj, cells with three different interconnec-
tion weights (-1, 0, +1), where —1 corresponds to inhibitory processing, +1 to excitatory
processing and 0 to an open connection. Through these T;,; cells, the output of an
amplifier can be connected to the input of any amplifier in the circuit. Figure 2.3 shows
the connection between the output of the amplifier j and the input of the amplifier i with
a pass transistor and SRAMs. Here the stored datum in each Tj; cell is applied to the gate
of the pass transistor to allow proper connection between the output of the amplifier j and
the input of the amplifier i, where the pass transistor works as a resistive device between
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Table 2,1 Selection of 3x8 Row Decoder
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two amplifiers. In case of excitatory connection, T;; = 1, the noninverting output of the
amplifier j, V;, is connected to the input of the amplifier i, u;, for inhibitory processing,
T;; =—1, the ‘inverting output of the amplifier 7, —-V;, is connected to the input of the
amplifier i, u;, and for open connection, Tj; = 0, the output of the amplifier j is not con-
nected to the input of the amplifieri.

Uj

 

 

   

  
SRAM SRAM

Tj= +1 Te=-1       
Figure 23. A SRAM cell interconnect (Ti)

The voltage of an input line of an amplifier is determined by the sum of the currents
flowing into the line, which is zero here since the input of each amplifiercircuit is a gate
of a transistor.

A threshold value is adjusted by choosing an aspect ratio (W/L) of the nMOS and
the pMOStransistors of the inverters since the input/output characteristic of an inverter is
a function of the aspect ratio of MOS transistors, Here 3.0/3.0 and 4.0/2.0 are chosen for
the aspect ratio of nMOStransistors and the pMOStransistors, respectively.

2.4. SPICE Simulation and Chip Test

SPICE is used to simulate this 4-neuron circuit and the results for 2-neuron, 3-
neuron, and 4-neuron circuits are shown in Table 2.2. Table 2 2 shows that these neural
circuits act like majority-vote when the T,; cells are set to 1 forall the off-diagonal terms
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and 0 for the diagonal terms. In this simulation, this 4-neuron circuit converges to logical
value (0000), when it is initialized with two 5 volts and two zero volts. This is due to the
threshold voltage of the double inverter, which is 2.65 volts in this design. If a different
aspect ratio is chosen, then a different threshold value will be obtained since this threshold
voltage is a function of the aspect ratio. For example, if the threshold value is chosen to
be less than 2.5 volts, then the circuit will converge to logical value (1111) wheninitial-
ized with only two logical high.

The fabricated chip has been tested with the TOPAZ VLSIdigital testing system and
its results were compared to the SPICE simulation. First, this chip is tested with each sub-
block (Figure 2.1): the amplifier part, the external input part, and the 3x8 decoder part.
The test of the amplifier part results in 0 output for 0 input and 1 output for 1 input. This
showsthat the amplifier part works correctly. The test of the external input part is done by
measuring the input of a neuron by applying external inputs. This part works correctly
since the expected output values are measured. The 3 x 8 decoder part has been tested by
measuring the outputs of the decoder by applying all the possible addresses This part
works correctly also since the corresponding output of the decoder is 1 and all the other
outputs are 0.

Finally, the whole circuit is tested by applying test vectors. Table 2.2 shows the
results of the chip test and those of the SPICE simulation. This shows that the expected
outputs can not be measured by applying test vectors, There are three possible situations
where this chip might generate errors. One possible source oferror is that the SRAM may
not function properly by either not storing the synapse weight orfailing to supply the
weight to turn on the pass-transistor connection. However, the SPICE simulations, based
on the parameters provided by MOSIS, verify that the well-understood SRAM operation
cannot be the source oferrors. Eventually, after numerous tests, we concluded that the
source of error may be due to the use of conventional digital pads forthe fabrication of, in
reality, an analog neural circuit. We note that digital pads consist of protection and buffer
circuitry. When initialized (then disconnected), the buffer circuitry retains the initial vol-
tages and interacts with the neural circuit to generate transient dynamics of the coupling
which may differ from the transient dynamicsof the neural circuit alone. This finding had
prompted us to use analog padsin all of our subsequent designs.

2.5. Discussion

A 4neuron circuit has been simulated, implemented, and tested, in order to under-
stand how a neural circuit works, what kind ofrelationship exists between computing ele-
ments and conductance elements, and what sizes of transistors are more suitable. This
understanding has encouraged us to pursue and propose larger designs which would
include analog pads.

3. ANNs USING ANALOG VECTOR MULTIPLIER BASIC CELLS

A crucial element in implementing the available models of ANNsin silicon hardware
is the implementation of the programmable (linear) synaptic weights, In addition to imple-
menting synaptic weights, vector-vector multipliers are also useful in realizing components
of certain learning algorithms. We describe a successful implementation based on analog
vector-vector multipliers. We first describe the design of the vector-vector multiplier as a
basic cell. Then we incorporate the basic cell multiplier in the implementation of feedfor-
ward ANNswith learning.
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Table 2.2 Chip
and 0(7)0(7) meansthat there are two pos:

a) 2-Neuroncircuit with T = [4 7 |

 

 

 

    
 

 

 

 

    
 

Test using TOPAZ and Circuit Simulation using SPICE (unit: hex number
sible states, i.c., 00 or 77.)

 

 

 

Initial Condition TOPAZ SPICE

ijig UuyUo ViVo Uypuo viv

0 0 0 0 0

1 0 0 1 1

2 0 0 2 2

3 0 0 0 0
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b) 3-Neuron circuit with T =| 1 0 1
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Initial Condition TOPAZ SPICE
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Moko  ¥2V1V

0 0 0

1 007) Oo”) 0 0

2 0 0 0 0

3 7(0) 70) 7 7

4 077) 07) 0 0

5 0(7) 07) 7 7

6 0(7) 077) 7 7

7 7 7 7 7

0111

c) 4-Neuron circuit with T = i t } i

1110

Initial Condition TOPAZ SPICE

ight ito U3l ol jig V3V2V1V0 U3UoU pho VaVoV)V

0 0H) 0) 0 0

1 0) Of) 0 0

2 0 0 0 0

3 FO) FO) 0 0

4 FO) FO) 0 0

5 F F 0 0

6 0 0 0 0

7 F F F F

8 0 0 0 0

9 0) OW) 0 0

A FO) F(O) 0 0

B F F F F

Cc F(O) F(O) 0 0

D F F F F

E F F F F

F F F F F   
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3.1. A Simple Tunable Analog All-MOS Vector Multiplier
A simple tunable analog all-MOS vector-vector multiplier is implemented [32, 35] for

an artificial neural network with learning [43]. This multipliercircuit is suitable to imple-

ment a synapse in the neural nets since it is simple and can execute a linear multiplication

with small error. The multiplier is depicted in Figure 3.1 and its output is represented by

(35, 43]

(WIL); eS yzi iyeyi i
Ym = WIL), (V., - Ve.) 2 Wa AO Mads “?
with the following operating constraints

X;*-W,;*2V,; >0 forall i,j =1,2, and k =1,2,..,n

 

 

V., - Vr 2 Vin for all i = 1,2. (3.2)
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Figure 3.1 All-MOS n-D analog multiplier

To satisfy the operating constraints (3.2), the output range of the multiplier would not
match the operating input range. We have designed the multiplier to operate in a small
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operating tange in order to reduce errors caused by the variation ofthe mobility. The
operating range of the multiplier is required to be compatible with the operating range of a
neuron in order to use the multiplier as an artificial synapse.

There are two problems to be considered for this multiplier in order to implementit
as a synapse in ANNs: Oneis the multiplier’s driving input to the drain of a floating MOS
transistor, whose input impedanceis low; the otheris the operating range of the multiplier
and its input-output compatibility, The first problem is solved by employing a voltagefol-
lower. In order to make the operating input range match the output range of the multiplier
and/or increase the operating input range of the multiplier, voltage shifters/attenuators are
employed.

The vector multiplier basic cell, consequently, is designed with additional circuitry
that include voltage followers and voltage shifters/attenuators, which are depicted in Fig-
ure 3.2.

Vx, Vx

i Voltage-Vow —>[esti] MY
Multiplieri Volta;Vv [whiter

 

   

 

 
Figure 3.2 A 1-D multiplier cell

Two simple level shifter/attenuator circuits are designed: one is for the w; input,
named w_shifter, and the other is for the x; input, named x_shifter. The w_shifter is
designed using four MOS transistors with one bias voltage and the x_shifter is designed
using four MOStransistors. These circuits are simulated using the PSPICE circuit simula-
tor and the results show that these level shifters/attenuators have sufficiently small errors.

3.2. MOS Programmable Feedforward ANN Circuits

3.2.1. A Modified Learning Rule for Feedforward ANNs

A modified learning rule [44], which removes all of the sigmoidal derivative func-
tions, is realized with circuits using MOS multiplier basic cells. The circuit is simulated
using the PSPICE circuit simulator for a prototype two-layer feedforward ANN with leam-
ing using standard CMOS VLSI/LSItechnology.

Two learning circuits are introduced for the implementation ofthe modified learning
rule. Each circuit is described in a block diagram and its PSPICE simulation results are
summarized. In order to save time and render executable simulations, PSPICE simple
models as well as some detailed models are employed for some of the amplifiers and for
some ofthe level shifters. The complexity and size of the overall ANN circuit model ren-
dered the PSPICE simulatorinefficient to execute when the complete detailed models of
all components are included.

The governing static equation of each neuron in a feedforward ANN is expressed as
[30  
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N _

y= SjLids + 0;). (3.3)

Here ¥; is the output of the j-th neuron in the present layer, Wj; is the synaptic weight
connecting the output y; ofthe i-th neuron from the previous layerto the input ofthe j-th
neuron in the present layer, 0; is the bias weight connected to the j-th neuron in the
present layer, and S, is the sigmoidal function.

Theerrorfunction is defined as usual as
1 a

E, = 2 a (tp; ~Ypjiys (3.4)
je

where f,; is the value ofthe desired target p for the j-th output component and Yp; is the
j-th output of the final layer when the external input associated with the target p is
applied.

The modified learning rule, given in [43, 44, 47], is expressed for any weight w,; as:

Os; OE
we =—NS) Ls
# ou; p OW;

 —Bewe =D epj Yi — Way (3.51)
P

where if the neuron / is in the output layer, then

€pj = tj — Ypj (3.5)
and if the neuron / is in any hidden layer, then

sf asi
Cj = ma Ck Wy, SitiPi « dif, pk OUR;

where k is the index for the elements in the immediate subsequentlayer, 5, is the nonde-
creasing differentiable monotone sigmoid function of neuron &_in the immediately subse-
quent layer. It is also shown that the derivative terms (dS,/dii, in (3.S5iii)) may be
removed without loss ofstability and convergence of the update (learning) law (3 5),

3.2.2. The Sequential-Learning Circuit for Feedforward ANNs

Two different sequential-learning circuit implementations are introduced for two-layer
feedforward ANNs. We discuss these circuits focusing on PSPICE simulation results of
prototype ANN circuits.

The Sequential-Learning ANN Circuit #1

The sequential-learning ANN circuit #1 is discussed in the context of a two-layer
prototype, see Figure 3.3. The realized prototype circuit includes a feedforward static
model and a dynamic learning circuitry implementing the modified learning rule. The cir-
cuit implementation ofthe static model results in the governing equations

Yo1 = Sako W1j%pj)) (3.63)
i

Yp2 = SnKo W2j%Xpj)) (3.6ii)
J

¥, = Sikod W1j¥pj))> (3.6iii)
J

where S,,(.) is a sigmoid function of a neuron and k; is a constant associated with an 1-
dimensional vector-multiplier basic cell. In (3.6), Ypj and x,,; are defined as follows:

Ypj = Ypj — 2.5
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Figure 3.3 The feedforward ANN with the sequential learning circuit #1

Xpj = Xpj — 25,

where Y,; is an actual output of the hidden layer, Y, is an actual output ofthe output
layer, and X,, is an actual input of the input layer for pattern p. This notation is used
throughout this chapter.

The implemented learning circuitry of the feedforward ANN is a realization ofthe
dynamic update equations. The circuitry is governed by:

RCW= ky (Cy - FiYul - Wy (3.71)

RCW= ky On - Jw Yul - W12 (3.7ii)

RCwy = ky Wy FO — Fu) Xu - wr (3.8i)

RCW) = ky Wy [1 — Fay) Xv) — wa (3. 8ii)

RCWy, = ky Wy [Oy — Fu) Xl — wa (3.8iii)

RCW99 = ky Wy Er, — Far) X12] — W2. (3.8iv)

This learning feedforward ANN circuit is simulated using PSPICE. Fourlearning
tasks using fourdistinct input-output patterns are executed separately following this pro-
cedure:

1, Forall the executed PSPICE simulation tasks, initialize the dynamic ANN circuit
using the sameinitial condition. In the case reported here, we set (W14 Wy. Wo1 Wo
Wy Wy) = (-0.5 0.6 -0.5 0.5 0.7 0.5).

2. Each input data and its desired target (ie., the input-output pattern) are applied and
PSPICEtransient analysis is then executed. We then measure the steady state weight
values and the output error, namely, t — y.

3. PSPICE dc analysis is executed by setting the weights to the steady state weight
values. Then, we again measure the output error tT — y.

The results, summarized in Table 3.1, show that this ANN circuit succeeds in learn-
ing each applied desired input-output pattern, When the four input-output pairs are applied
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sequentially, we found that the overall ANN circuit did not retain all prior input-output
patterns which it learned. We also performed sequential PSPICE runs as follows: we ini-
tialize the ANN circuit for an input-output pattern which it would learn successfully by
converging to a set of (equilibrium) weights. We then use the attained (equilibrium)
weights as initial weights for the next input-output pattern. Continuing this process, until
we employ all the input-output patterns and reapply the first pattern again. In this process,
we found that the ANN circuit would learn each pattern that is presently applied, but it
does not necessarily retain other input-output patterns that it has previously learned. The
ANN circuit is also simulated using the PSPICE transient analysis by applying voltage
waveforms forthe external inputs X,, X>, and the desired t, whose result concurs with the
result in Table 3 1.

Table 3.1 The PSPICE transient analysis results of the feedforward ANN with the sequential learn-

ing Circuit #1. The initial and steady state weights are tabulated for each pattern (units are in

volts).

 

 

 

 

 

Xy 0.5 0.5 45 45

X2 05 45 05 45

t 1.0 45 4.5 1.0

y 1.81 5.0 5.0 1.81

tT -0.81 -0.5 -0.5 -0.81

weights init. SS, init. Ss. init. S.S. init. S.S.
 

wi -05 0053 -05 oo2 -05 -0.019 -05 -0.052
Wir 0.6 0.053 06 -0.019 06] 002 06 -0.052
wo 0.5 0.053 -05 002 -05 -0019 -05 -0052
W 0.5 0.053 05 0019 05 002 05 -0.052
Wi 0.7 0.276 07 0168 07] 0168 0.7 0.276
Pi 05 0276 05 0168 05] 0168 05 0.276           

S.s means steady state and init. means initial value.

The Sequential-Learning Circuit #2

The block diagram ofthe sequential-learning circuit #2 is depicted in Figure 3.4. This
circuit incorporates bias weights and nonlinear terms in the weight equations, in addition
to the circuitry in the sequential-learning circuit #1. The circuit implementation is
governed by the following equations:

RC Ty =ky tu-¥y yn -Tiu (3.93)

RC Ty = ky fn-Y) yo - Tu (3.9ii)

RC Ty = ky Wy Gu-Yoeu- Tu (3.101)
RC Ty = ky Wy CyVx - Ty (3 10ii)

RC Toy = ky Hy (Cy-Yye - Ty (3. 10iii)
RC To) = ky Wy Cy-Vx12 - Tx (3. 10iv)

and
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Figure 3.4 The feedforward ANN with the sequential learning circuit #2

Wij =S§ (Tj; ).

The (incorporated) modified learning circuits for (bias) weights are governed by:

0, + RC 0; =k, Wy, G, -¥,) 1 (3.111)

+ RC 0, = ky Wy (ty -¥,)1 3.114)

0, +RC 0, =k, @, -¥,)1 (3.1 1iii)

and

©; = $(8;).

The circuit implementation of the governing equations results in

¥p1 = S,( k3(X w1j%pj + Oy) (3.124)
j

Yn. = 5,6 R30 WjXpj + Qo) (3.12ii)
j

Y, =5,¢ k3(y W1jYpj + Oy), (3. 12iii)
j

where S,,(.) represents a nonlinearity for ©; and Wiz.

This learning circuit is tested using the PSPICE circuit simulator. Learning tasks are
again executed sequentially as follows (Tables 3.2 and 3.3 summarize the results):

1. Initialize the overall ANN circuit with the initial condition given at the top of each
table.

2. The first input-output pattern is applied and the PSPICE transient analysis is exe-
cuted. Then, measure the steady state (equilibrium) weight values.

3. Use this last steady state weight values asinitial conditions and run the PSPICEtran-
sient analysis for the next input-output pattern.

 



257

Table 3.2 (a) The PSPICE transient analysis results of the feedforward ANN with the sequential
learning circuit #2 (w/o amplification) (units are in volts). 1 is a target and ¥ is an actual output.
The initial conditions are given by

( L11€) F120) Pn) Tx(0) Tix(0) T2(0) 01(0) 0,(0) 6,(0) ) = 0.5 -0.5 -0.5 05 0.5 0.5 -05 05 0,5)
(110) #1200) w21(0) w22(0) #110) 712(0) 810) B2(0) 61(0) ) = (10 10 -10101010-10 -16 1.0),

 

 

Column #1 Column #2 Column #3 Column #4 Column #5
 

 

 

 

x1 45 10 10 45 45
x2 45 1,0 4.5 10 45

t 05 0.5 45 45 0.5

y 0.5002 0.4999 4.501 4.501 0.5002

TY -0.002 0.001 -0.001 -0.001 -0.002
 

Ty 4210E-04 -2.511E-04 -2.901E-04 3817E-04 4565E-04

Ty 4.210E-04 -2.511E-04 3.817E-04 -2901E-04 4565E-04

Tx 4210E-04 -2.511E-04 -2901E-04 3.817E-04 4565E04

Tn 4210E-04 -2,511E-04 3.817E-04 -2.901E-04 4565E-04

Ti 3 410E-03 3.411E-03 3.410E-03 3.410E-03 3 410E-03

Ti2 3.410E-03 3.411E-03 3.410E-03 3.410E-03 3.410E-03 .

e 4.210E-04 3304E-04 3.817E-04 3.817E-04 4565E-04

& 4.210E-04 3304E-04 3817E-04 3817E04 4565E-04

6; -3,269E-03 2.739E-03 -2.723E-03 -2.723E-03 -3.771E-03

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        
wu

ff

-L -1 -l -l -1

Wr -1 -l -l -l -1

wa 1 -l I a -l
wx -l -1 -l -l -1

Wy -0.1393 0.1396 -0,1663 -0.1663 -0,.1393

Wi. -0.1393 0 1396 -0,1663 -0.1663 -0 1393

@ a al “l al -l
@, -1 -l -l -l -1

6, a A A “i “1
 

Table 3.2(b) The PSPICE DC analysis results of the feedforward ANN circuit with the convergent
weights in Table 3.2(a), 7 is a target, y,; is an output ofthe hidden layer, and ¥ is an outputof the
output layer.

 

 

  

 

 

     

Column #1,5 Column #2 Column #3,4

x1 x2 T Yr} ye y ty yf ee y Hy yr ye y Ly
10] 10 ]05 750] 50 00 0.5 5.0 5.0 0.4995 0.005 50 50 0.0 0.5

10 45 45 00 00 05002 3.998 0.0 00 00 45 0.0 00 4501 -0,001

45 10] 45 00 00 05002 3998 00 00 00 45 0.0 00 4501 -0 001

45 45 05 00 00 05002 -0.002 0.0 00 00 05 0.0 00 4501 4001            
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Table 3.3(a) The PSPICE transient analysis results of the feedforward ANN with the sequential
learning circuit #2 (w/o amplification) (units are in volts) is a target and Y is an actual output,

The initial conditions are given by

(L110) L120) Zn) L220) F110) T12(0) @1(0) €2(0) 6,(0) ) = (0 0 0.0 00 0.000 00 0.0 0000)
(1100) W120) w21(0) Ww22(0) WO) W12(0) B10) B20) (0) ) = (10 1.0 10101010101010)

 

Column #1 Column #2 Column #3 Column #4 Column #5
 

 

 

xy 45 10 10 45 45

X2 45 10 45 1.0 45

t 0.5 0.5 45 4.5 0.5

y 0 5099 0 4928 451 451 0,509

TY -0.099 0.0072 -0.01 0.01 -0.099
 

Tu 4 607E-04 -2507E-04 -2.85E-04 3 284E-04 4,535E-04

Ty 4607E-04 -2507E-04 3751E-04 -2906E-04 4535E-04

Ty 4607E-04 -2507E-04 -2 85E-04 3 284E-04 4535E-04

Tn 4 607E-04 -2.507E-04 3,751E-04 -2906E-04 4535E-04

Tu 3 410E-03 3.411E-03 3,410E-03 3 410E-03 3 410E-03

Ti 3 410E-03 3,411E-03 3410E-03 3 410E-03 3.410E-03

a 4607E-04 3.300E-04 3751E-04 3,824E-04 4535E-04

O 4,607E-04 3300E-04 3751E-04 3,824E-04 4,535E-04

6, -3.804E-03 2.748E-03 -2.723E-03 -2.723E-03 -3.739E-03

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        
wu

ff

-l -l -1 -l ~1

we a -l “1 “1 “1

wa 1 “1 “1 “I “1
wa -1 “1 -I - “1

Wi -0,1396 0.1394 -0 1663 -0,1663 -0 1396

Wi. -01396 0.1394 -0 1663 -0,1663 -0,1396

e; -1 -l -1 -l -1

ea, - -l “i -l “1

& -1 -1 -1 -1 -1
 

Table 3 3(b) The PSPICE DC analysis results of the feedforward ANN circuit with the convergent

weights in Table 3 3(a). 7 is a target, y, is an output of the hidden layer, and y is an output of the

output layer

 

 

 

 

 

        

Column #1,5 Column #2 Column #3,4

Xi %2 + yi ye y TTY yr ye y tT-¥ yi Ye ¥ t-¥

10410] 05 50 50} 00 05 5.0 5.0 0.4931 0.0069 5.0 5.0 00 05

10} 45 45 00 00 05107 3.9893 00 00 0.0 4.5 0.0 00 4.511 -0.011

45} 10 45 00 00 05107 39893 00 0.0 0.0 45 0.0 60 4,511 -O011

45 45 05 06 00 05107 00107 06.0 00 00 05 00 00 4.511 -4.011          
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4. After executing the learning tasks for all the input-output patterns, the PSPICE dc
analysis is executed by setting the weights to the steady state weight values. We then
measure their error t — Vy.

Tables 3.2 and 3.3 summarize the results. The simulation results indicate that this
ANN circuit does not learn all the desired targets concurrently.

For example, let’s consider Table 3,2. Table 3.2(a) contains the set of (equilibrium)
connection weights of the feedforward ANN with sequential learning after executing the
PSPICE transient analysis With these weights, the PSPICE dc analysis is executed and
their results are summarized in Table 3.2(b). Note that in Table 3.2(b), column #1,5 means
that the dc analysis is performed using the data of column #1 and the data of column #5
of Table 3.2(a), separately; the identical dc analysis results are summarized in the same
column. In column #1,5, the pattern (X, X2 D)=(4.5 4.5 0.5) is learned with an error
equals -0,002 and (X,; X2 t)=(1 0 1.0 0.5) is learned with an error equal to 0.5. In column
#3,4, the patterns (X,; X>2 T)= (1.0 4.5 4.5) and (4.5 1.0 4.5) are learned with an error
equals to -0.001, and (X; X2 1)=(1.0 1.0 0.5) is learned with an error equals to 0.5; note,
however, that the pattern (X, X> t) = (4.5 4.5 0.5) is not simultaneously learned.

3.2.3. Silicon MOS Implementation of Feedforward ANNs with Learning

A module chip is designed to implement feedforward ANNs with learning. This
module chip can be used as a building block which may be expanded into a large scale
feedforward ANNs with learning. To increase the number of neurons in a layer (or the
number ofthe layers), a number of these module chips are connected togethervertically
(respectively, horizontally),

The sequential-learning circuit #2 is employed to build this module chip. Figure 3.5
depicts the block diagram of an n x m module chip, where n is the number ofinputs and
m is the numberof outputs. Its block representation is shown in the box ofFigure 3.5,
where x is an n-dimensional input vector, y is an m-dimensional output vector, e is an
m-dimensional error vector from the next higher layer, and @ is an n-dimensional back-
propagated error vector to the previous lower layer.

This module chip consists of two sub-circuits: a feedforward sub-circuit and an
error-back-propagation sub-circuit. The feedforward sub-circuit generates m outputs,
indexed as y;. These outputs are applied as the inputs to the next higherlayeror, in the
event they are in the final layer, are used to modify the connection weights, wj and the
bias weights, 0;, in the error-back-propagation sub-circuit. These modified weights are
applied to generate the back-propagated error signals for the previous lower layer and also
applied to the feedforward sub-circuit.

Figure 3.6 illustrates a simple example of how this module chip can be used to
expand vertically and horizontally. Three nxm module chips are used to implement a
nx2mxm_ two-layer feedforward ANN with learning. Similarly, when n =km, a
nxkmxm two-layer feedforward ANN with learning can be implemented using kxn xm
module chips.

The input layer consists of just the input voltage nodes, x. The module chips in the
middle form (a) hidden layer(s). All the input vectors in the hidden layer are fed directly
from the external input voltage nodes. The outputs of the hidden layer are applied to the
inputs of the output layer. In the output layer, the desired target vector is applied through
the error vector, e. Then a back-propagated error vector is generated and applied to the
error vector node, e, of the module chips in the hidden layer.

The design of this module chip is critically dependent upon the numberofpins ofthe
MOSIS standard chip package and the design project area. Table 3.4(a) lists the four
MOSISstandard chip sizes for a 2 um process. Table 3.4(b) summarizes the n xm module
chips when the only limitation is given by the numberofpins. The module chip has been
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designed with the restriction that n is at least three times larger than m.

3.2.4, Remarks and Conclusions

The modified learning rule [44] is employed to implement feedforward ANNs with
learning. Two sequential-learning ANN circuits are implemented and simulated using the
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Table 3.4(a) The four MOSISstandard chip sizes for a 2 tm process

mm

x

x7 4

2x7

x 7. 4

 

Table 3.4(b) nx m Module Chip vs. the numberof pins of MOSIS standard chip

Chip 40 Tiny 40 64 84 108 132
nxm 4x1 4x2} 12x4 21x6 30x10 40x 10

 

 

        
 

PSPICEcircuit simulator. The PSPICE results infer that the sequential-learning circuits do
not enable the ANN circuits to learn all the desired input-output patterns concurrently.

We now remark on the possible reasons for the observed inability ofthe sequential-
learning to concurrently learn multiple input-output patterns. Consider the total squared
error function:

eE=+y8,, (3.13i)
2 >

where each E, denotes the squared error function for the desired target p given as

1 +sEp = > L (yj~Ypi” (3.13ii)
i

The sequential-learning ANN circuits are a realization ofthe error function (3.13ii) for the
particular pattern p considered at that instant, As the pattern p is changed, the resulting
error function E, may or may not retain previous patterns as minima. Consequently, the
weight values that the ANN circuit would converge to are only expected to minimize the
error due to the latest supplied pattern p. This explains the results of the PSPICE simula-
tions where the sequential-learning ANN circuit maynot retain all previously learned pat-
terns. It also justifies the necessity of the simultaneous-learning ANN circuits in the analog
implementation of feedforward ANNs. However, simultaneous-learning ANN circuits may
diminish the possibility of implementing such networksin large scale. Consequently, the
choice between the sequential-learning and simultaneous-learning ANN circuits becomes
dependent on a trade-off among basically subjective factors,

4. ANALOG VLSI IMPLEMENTATION OF SYNAPTIC WEIGHTS
VIA SIMPLE MOSFETs

We have used a single nMOSFET as a programmable nonlinear synaptic weight in
the VLSI/LSI MOS implementation of a certain class of artificial neural networks [33, 34,
35]. This nonlinear programmable synaptic weight can be utilized in both feedback and
feedforward neural nets. Particularly, it was first introduced for a new feedback neural
architecture which was proposed in [33, 42]; the proposed ANN circuits have been shown
to exhibit the dynamicsof continuous-time gradient feedback neural systems,

4.1. Implementation of feedforward neural nets via simple MOSFETs as synaptic
weights

To implement an all-MOS feedforward (ANNs), a single nMOS tansistor is
employed for the connection (synapse) element [40]. Note that the synapse is nonlinearas
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intended. A one-layer feedforward ANN circuit is depicted in Figure 41, where X;
denotes the output of the previous layer, V; denotes a connection weight voltage, and ¥
denotes the output of a neuron ofthe present layer.

 

 

Figure 4 1 A one-layer feedforward ANN with nonlinear elements

A single nMOS transistor is used as a nonlinear, controllable resistive element by
controlling its gate voltage. Its substrate voltage is connected to the lowest (global) vol-
tage level, V,,. Consequently, depending on their voltage magnitudes, the roles of the
source and the drain of floating nMOStransistor may be interchanged due to the MOS
transistor symmetric structure.

One pMOS and one nMOStransistors emulate the bias (weight) circuit; the two
MOStransistors are connected to the input of each neuron. The source of the pMOS
transistor is connected to the highest (global) voltage, V,,, and the source of the nMOS
transistor is connected to the lowest voltage, V,,. To generate a more positive bias,
V, = V,, is set to low; and to generate a more negative bias, V, = V,, is set to high.

A synaptic weight is taken to be the value of the gate voltage of the MOSFET con-
nections. This value may be stored in an analog storage device in order to supply its vol-
tage to the gate of the corresponding floating nMOS transistor. (Few popular analog
storage devices include: (1) a large capacitance connected to a very large impedanceor(2)
the so-called floating-gate device.) The learning process may be executed on a host com-
puter using a suitable learning algorithm. Then the updated weights may be stored in digi-
tal form in memory and loaded to a digital-to-analog converter by its memory controller.
The analog gate voltages are then stored in local analog memories (such as capacitors) and
applied to the gate of each floating nMOStransistor.

This simple “floating” nMOStransistor is suitable for analog VLSI implementation.
Wehave decoupled the design ofthe architecture of the network from the development of
a learning scheme that would obtain a set of control gate voltages which would achieve a
certain mapping. Consequently, the learning scheme may be developed off-line or on-line,
via analog/digital VLSI or using a host computer whichever the case may be.

The capability of this feedforward ANN is illustrated by solving the XOR problem.
Two different architectures are used for this problem using two-layer feedforward ANNs
(Figure 4.2). The architecture of these two examples are analogous to the ones described
by Rumelhart et al for the linear weight feedforward ANNs [30].

Figure 4.2 shows two different architectures for solving the XOR problem using
two-layer feedforward ANNs andalso includes all the gate voltages for the proper connec-
tion weights, The gate voltage values of the MOStransistors are properly chosen forthe
corresponding weights. This two-layer feedforward ANN consists of one input layer, one
hidden layer, and one output layer. The input layer can produce inverting and noninvert-
ing outputs of the external inputs by using double inverters. The hidden layer has one
neuron for one architecture and two neurons for the other. A bias is applied to the hidden
layer and the output layer in order to supply properthreshold value of each neuron.
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(b)

Figure 4.2 Two different architectures for the XOR problem using
two-layer feedforward ANNs

PSPICE simulation is executed to show that these two two-layer feedforward ANNs
can solve the XOR problem correctly. Table 4.1 summarizes the results of the PSPICE
simulation.

Table 4.1 The output of the circuit in Figure 4.2(a) and the expected output of the XOR problem

 

 

 

(unit: volts)

The output ofthe circuit ||The expected output

X_ |X, Yi Y Y, Y,

00 |00 0.45 0.45 0.0 00

00 |50 0.67 5.0 5.0 5.0

501] 0 50 067 5.0 5.0

5.0 |5.0 045 0.45 0.0 0.0        
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4.2. Implementation of feedback neural nets via simple MOSFETs as synaptic
weights: A Hopfield-type neural net

Simple nMOSFETsused as programmable synaptic weights in the VLSI implementa-
tion of a certain class of ANN has been described in [33, 34, 42]. Here we describe our
use of this (nonlinear) programmable synaptic weights for the VLSI/LSI implementation of
feedback ANNs of the Hopfield model. We remark on the outset that there are yet no
theoretical justifications that preserve the gradient dynamic feature of these new implemen-
tations. As of yet, one can not theoretically rule out the possibility of oscillations or
chaotic dynamics when gate voltages are not constrained by symmetry. One can ensure
the presence of stable equilibria, however. Each synaptic weight in the Hopfield neural
network is implemented by a simple nMOSFET conductance element instead of a pure
resistor. In addition, the neuron is simply realized by CMOS double inverters. The
synaptic weight can now be adjusted via the gate control voltage of the (nonlinear) nMOS-
FET conductance element. The negative synaptic weights can be implemented via con-
necting the complement of the outputs of the neurons instead. Figure 4.3 depicts a proto-
type 3-neuron Hopfield neural network when the connections are nMOSFETs.
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Figure 4.3 A prototype 3-neuron Hopfield ANN using simple MOSFETs

4.2.1. SPICE Simulations

SPICE simulations have been conducted for 2-neuron Hopfield ANNs with nMOS-
FETinterconnects. The power supplies of this neural network circuit, Vpp and Vos, were
set at 2.5v and -2.5v, respectively. The parameters chosen forthis simulation are set at

V.= [2 2.5 |
GL 2.5 -2.5)

where Ve, denotes the gate voltage of the interconnect nMOSFET in Figure 4.3 and

 



  
 
  

265

C; =1.0 microfarads G=1,2). This circuit preserves the same qualitative dynamic
behavior of the circuit with analog multipliers; and all initial conditions eventually con-
verge to one oftwo stable equilibrium points with the logical representations (+1,+1) and
(-1,-1). Table 4.2 summarizes the SPICE simulation results.

Table 4.2 The SPICE simulation results of 2 neuron Hopfield ANN with nMOSFETinterconnects

 

Initial States
 

V@ matrix (19V,12V)

|

(-1.9V,1.2V)

|

(.9V,-12V) CL9V,-1.2V)
 

Steady States (measured at input nodes)
 

 

[33 35] (185,117)

|

2.50,-2.50)

|

(185,117)

|

(-2.50,2.50)

[25 35] (185,117)

|

(2501.17)

|

(185,25)

|

(25,25)       
A 3-neuron prototype of the Hopfield neural network with nMOSEET interconnects

has also been simulated using SPICE. By adjusting the gate voltages ofthe interconnectnMOSFETs, we have been able to obtain different numberof stable equilibrium points,from the minimum of twodistinct stable equilibria to the maximum of eight distinct stableequilibria, In addition, the circuit also exhibits the dynamic behaviordiscussed in [36]:there are two distinct stable equilibria co-existing within a single quadrant ofthe statespace.

4.2.2, Experiments using discrete components
In orderto verify the SPICE simulation, the discrete-componentrealization of a 3-neuron prototype of the Hopfield ANNs with nMOSFETinterconnects was built in ourlaboratory. Every CMOSinverter is one inverter of CD4069UBE chips, which is singleStage and is not buffered. Every n-channel MOSFET conductance elementis realized viaa 2N4351 transistor. Table 4.3 summarizes the experimental results. In Table 4.3 we usebinary representation for both outputs of the CMOS inverterforall possible initial condi-tions. Then we interpret any analog voltage greater than 2.5 volts as binary value 1 andless than 2.5 volts as binary value 0.

The experimental results are consistent with the SPICE simulations qualitatively.They show that this ANN circuit has multiple stable equilibria and the numberof stableequilibria can be changed by adjusting the gate voltages of the interconnect MOSFETs.

5. CONCLUSIONS

Wehave presented the implementation of a 4-neuron circuit using digital CMOScir-cuits. SRAM cells are used to store the synaptic weights, a double inverter is used as aneuron cell, and a CMOSswitch is used as a resistive element. This circuit has beendesigned using the MAGIC VLSIeditor and fabricated via MOSIS. The 4-neuron chip hasbeen tested using the TOPAZ VLSI digital testing system and its results are comparedwith the SPICE simulation results.
We have presented implementable realizations of ANN circuits in MOS siliconVLSYLSI. We developed a building block comprised of an analog vector-vector multiplierwhich is viewed as a basic cell for ANN MOSsilicon implementation. We describe alearning rule for updating the weights particularly suitable for MOS silicon circuit
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Table 4.3. The laboratory test result for a 3-neuron prototype of the Hopfield architecture

with nMOSFETinterconnects.
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implementation. The new rule removesall derivatives of the sigmoidal function which are

present in the usual form of the back-propagation update rule. Yet, the rule guarantees

convergence of the update law to minima.It should be mentioned that the implementation

of the derivative ofthe sigmoidal function can not be guaranteed to be the exact analytical

derivative of the implemented. sigmoidal function employed. It should also be stressed that

no analytical support is available for such imperfection except unjustifiable hope that

imperfections in the implementation is likely to retain stability and convergence of the

dynamic weight update law.

We also describe the radically different view of implementing the nonlinear MOS

element to emulate the functionality of the synapse No existing theory supports this type

of nonlinear synapse for the conventional feedback ANN of the Hopfield type or the con-

ventional feedforward multilayer ANN. Our motivation arises from our use of the non-

linear synapse in the proposed new model [33, 34, 37, 42] where analytical justification is

provided. The use of the MOStransistor as a nonlinear synapse here does not necessarily
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retain the gradient-like characteristics of the conventional model. The use, however,preserves the programmable mapping and/or dynamic system features which are the essen-
tial aspect of ANNs[36].

Due to space limitations, we were not able to include the material on our proposednovel ANN architecture; the references [33, 34, 37, 42] provide a description and analysis
of this new ANN model, however.

Forthe novel ANN architecture [33], we have designed a layout for a Tiny-Chip andhad it fabricated via MOSIS (in May 1989). The architecture of the TinyChip network
adheres to the rigorous mathematical analysis of its model (37, 42] and it appears to emu-late the connectivity of the Horizontal and Bipolar cells in the retina. The TinyChip is
capable of [34, 59]:

(1) preprocessing data using nonlinear averaging to restore/enhance images when it isconfigured in the hexagonal/retinal architecture, and
(2) storing (and retrieving) distinct multiple analog data of any numberbetween 0 and 2",
where n is the numberof neurons.

We have extensively tested the TinyChip overthe course ofa year and found thatitperforms the two tasks ((1) and (2) above). We have also developed learning algorithmsthat accurately ensure the storing (and retrieving) of a given set of data.
Recently, we have designed a layout of our all-MOS analog VLSI neural circuitwhich will contain 50 neurons and will have on-chip learning for the (nonlinear) weights.The small standard chip will be able to process 7x7 sub-images or 50-d feature-space datavectors. This small chip is a direct expansion ofourearlier TinyChip.
Finally, we conclude that standard MOS technology will in fact enable us to produceworking integrated neural network chips in the very near future. These chips will betailored for specific tasks, will include in the order of 100 neurons with possible digitalon-chip learning, and will operate in the order of micto seconds. For the long term, newmaterial and new technologies may be needed to meetthe requirements of more complex

and versatile tasks.
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