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FOREWORD

The first time I became interested in Neural Nets and Statistical Pattern Recognition was in
early 1958 while I was a graduate student in the Moore School of Electrical Engineering of
the University of Pennsylvania. My student subsctiption to the NEW YORKER magazine
brought many chuckles from cartoons and stories but the only item from all those many
issues that has stayed with me was a column in the December 6, 1958 issue titled "Rival”
This covered an interview with Frank Rosenblatt in which he described his hopes for his
"artificial intelligences" which would rival humans in perception and problem solving. By
the time I read this column I knew a fair amount about Rosenblatt's research on
Perceptrons, since as part of a machine learning and recognition research project and a
search for a dissertation topic, I had spent much time pouring over his Cornell Aeronautical
Laboratory reports. I had also read parts of a book Stochastic Models for Learning by Bush
and Mosteller (Wiley, 1955) and been studying papers on Statistical Discrimination, in
particular papers by C R. Rao and the chapter on Problems of Discrimination in his book
Advanced Statistical Methods in Biometric Research (Wiley , 1952). About the same time
Robert Bush joined the University of Pennsylvania as chairman of Psychology. I chose
Bush as my dissertation advisor, and with some support from R. Duncan Luce did a
dissertation (for the Ph.D in electrical engineering!) on the analysis of some stochastic
processes arising from Luce's nonlinear "Beta" model for learning. This is how learning
models, artificial neural networks, and statistical pattern classification came together in my
cognizance.

Two years later, when I joined General Dynamics/Electronics (GD/E) in Rochester, New
York, as Manager of the Machine Intelligence Advanced Development Laboratory, it seemed
as though every company and university laboratory was working on perception type
machines. At GD/E we also implemented our own version of an adaptive pattern recognizer
which was soon called APE (Adaptive Pattern Encoder). There were many other learning
machines implemented by various organizations, machines with names such as MINOS,
SOCRATES, and of course ADALINE and MADALINE, It was a time for catchy names
and audacious claims [see Kanal, Proc IEEE, October 1972]. Clearly PERCEPTRON and
ADALINE were the key innovations and they had memorable names, although I have it on
good authority that in the 1980' s when the new machine vision company Perceptron was
formed, its founders had no idea that the name they had come up with had a previous
incarnation, Because of simultaneous exposure to papers on learning models, perceptrons,
and statistical discrimination, my attempts at understanding perceptrons and other "bionic”
networks were formulated in terms of statistical classification methods, stochastic
approximation procedures and stochastic models for learning "Evaluation of a class of
Pattern Recognition Networks" presented at the Bionics conference in Ithaca, N.Y in 1961
and reprinted in this book, summarized some of that understanding. It may seem surprising
now, but at that time it had been stated by some of the well known researchers writing in the
engineering literature on pattern recognition, that the use of a weighted sum of binary
variables as done in the perceptron type classification function limited the variables to being
statistically independent.

Rosenblatt had not limited himself to using just a single Threshold Logic Unit but used
networks of such units. The problem was how to train multilayer perceptron networks, A
paper on the topic written by Block, Knight and Rosenblatt was murky indeed, and did not
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demonstrate a convergent procedure to train such networks. In 1962-63 at Philco-Ford,
seeking a systematic approach to designing layered classification nets, we decided to use a
hierarchy of threshold logic units with a first layer of "feature logics" which were threshold
logic units on overlapping receptive fields of the image, feeding two additional levels of
weighted threshold logic decision units. The weights in each level of the hierarchy were
estimated using statistical methods rather than iterative training procedures [L..N.Kanal &
N C. Randall, Recognition System Design by Statistical Analysis, Proc. 19th Conf.
A .CM,1964]. We referred to the networks as two layer networks since we did not count
the input as a layer On a project to recognize tanks in aerial photography, the method
worked well enough in practice that the U.S. Army agency sponsoring the project decided
to classify the final reports, although previously the project had been unclassified. We were
unable to publish the classified results! Then, enamoured by the claimed promise of
coherent optical filtering as a parallel implementation for automatic target recognition, the
funding we had been promised was diverted away from our electro-optical implementation to
a coherent optical filtering group. Some years later we presented the arguments favoring our
approach, compared to optical implementations and trainable systems, in an article titled
"Systems Considerations for Automatic Imagery Screening” by T.J.Harley, L.N. Kanal and
N.C. Randall, which is included in the IEEE Press reprint volume titled Machine
Recognition of Patterns edited by A, Agrawala. In the years which followed multilevel
statistically designed classifiers and AT search procedures applied to pattern recognition
held my interest, although comments in my 1974 survey,"Patterns In Pattern Recognition:
1968-1974" [IEEE Trans. on IT, 1974], mention papers by Amari and others and show an
awareness that neural networks and biologically motivated automata were making a
comeback.

In the last few years trainable multilayer neural networks have returned to dominate research
in pattern recognition and this time there is potential for gaining much greater insight into
their systematic design and performance analysis. Artificial neural networks trained on
sample data are nonparametric statistical estimators for densities and classifiers. This leads
to many questions about ANN's in comparison to alternate statistical methodologies. Such
questions include the information requirements for each approach, the sample sizes for
design and test, the robustness to incomplete data and different types of noise, and the
generalization capability of competing procedures Additional points of comparison concern
the relations of the sizes of feature vectors for each pattern category; the capability for
variable-length vector pattern recognition; the capability for fusion of multiple sources or
sensors; the ability to incorporate domain knowledge; the ability to work with other pattern
recognition paradigms in an integrated fashion; the ability of the methodology to extend to
other types of problem solving, e.g., combinatorial optimization, resource allocation, etc.,
using the same general network architecture; the suitability for easy mapping to VLSI or
other parallel architecture. The capability of neural networks to combine adaptation with
parallelism in an easy and natural fashion and the ability of learning continuously while
working on a problem in a real environment are of particular interest. Finally, the cost of
implementation and of training personnel in the methodology will also be determiners of
comparative success.

Some of the above questions are beginningto be addressed in the literature and the present
volume is also a good start in this direction, I am thankful to Professors Anil K. Jain and
Ishwar K. Sethi for their initiative in assembling and editing this volume and to the authors
of each chapter for their contribution to this volume. The richness of the artificial neural
network paradigm for pattern recognition ensures that, despite the many individuals
working in this area, much work remains to be done to gain a true understanding of ANN
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methodologies and their relation to better understood pattern recognition methods I expect
tha.t gddmonal volumes will be assembled and published in this book series on the subject of
aItlflCl?ll_ neural ne.twolrks.atrlld their relation to and interaction with statistical pattem
recognition, genetic algorithms, expert systems, and other a i

“ . ’ ’ I
recognition of patterns pproaches to the machine

Laveen N. Kanal
College Park, MD






PREFACE

Artificial neural networks (ANNs) are currently enjoying tremendous popularity across
many disciplines. The interest in artificial neural networks is not new; it dates back to
the work of McCulloch and Pitts, who, about forty years ago, proposed an abstract
model of living nerve cells or neurons. Since then, the field of ANN has charted a
bumpy course, with expectations running high in the late 50°s with the publication of
Rosenblatt’s Perceptron model, and going down in the late 60’s with the publication of
Minsky and Pappart’s book, ‘‘Perceptrons’’. While isolated interest in ANNs continued
thereafter, a resurgence of interest came in the early 80’s, with the work of Hopfield and
his associates as well as that of Rummelhart and the parallel distributed processing
(PDP) research group.

Two broad groups of researchers have been drawn to the study of artificial neural
networks. The first group of researchers mainly consists of scientists who are interested
in obtaining answers to some fundamental issues of perception, learning, and memory
organization in the human brain through the study and development of different neuron
models The artificial neural network models espoused by this group of researchers are
required to be as close as possible to the biological neural networks The second group
of ANN researchers is drawn mainly from the engineering community These researchers
are interested in exploiting the learning and parallel processing capabilities of the ANN
to build engineering applications This set of rescarchers takes a pragmatic approach
towards various ANN models; they are not overly concerned about the closeness of the
artificial neural systems with their biological counterparts

Pattern recognition applications have emerged as the main beneficiary of the recent
developments in ANNs. Pattern recognition tasks such as recognizing a familiar face or
voice, identifying objects around us, or noticing relationships in a set of observations that
we perform so effortlessly, have proven to be difficult in unconstrained settings for the
traditional algorithmic approach, even using very powerful computers. In this respect,
ANNs, with their self-organizing and non-algorithmic learning characteristics, offer a
great deal of potential for pattern recognition applications.

The pattern recognition related activities using ANNs can be broadly grouped into two
categories. The first group of activities consists of using the discriminatory or self-
organizing features of various ANN models, such as multilayer perceptrons, neocognitron,
ART series, Kohonen’s self-organizing feature maps, etc to build systems for recognizing
different kinds of shapes, sounds and textures Many such efforts have led to
performance levels that are comparable or superior to the existing levels of performance
achieved by traditional pattern recognition methods. The second group of pattern
recognition 1elated activities centers around mapping traditional pattern classifiers into
ANN architectures The aim of such mappings is to utilize some of the key features of
ANN models to obtain better classification performance in terms of speed or error ate
or both. Most of the commonly used classifiers, such as linear classifiers, quadratic
classifiers, tree classifiers, nearest neighbor classifiers, have been exactly or
approximately mapped into layered ANN architectures.



With the growing complexity of pattern recognition related problems which are being
solved using ANNs, many ANN researchers are grappling with design issues such as the
size of the network, the number of training patterns, and performance assessment and
bounds These researchers are discovering that many of the learning procedures lack the
scaling property, ie these procedures simply fail or produce unsatisfactory results when
applied to problems of bigger size. Phenomena like these are very familiar to researchers
in statistical pattern recognition (SPR), where the “‘curse of dimensionality” is a well-
known problem. Issues related to the training and test sample sizes, feature space
dimensionality, and the discriminatory power of different classifier types have all been
extensively studied in the SPR literature. It appears that many ANN researchers looking
at pattern recognition problems are not aware of the ties between their field and SPR,
and are therefore unable to successfully exploit the past work that has been done in SPR.
Similarly, many pattern recognition and computer vision researchers do not realize the
potential of the ANN approach to solve problems such as feature extraction,
segmentation, and object recognition.

It is in the context of the above remarks that the idea for this volume originated; we are
now delighted to share it with you There are thirteen chapters in this volume, organized
into three groups The theme of the 5 chapters in the first group revolves around the
connections between ANNs and SPR. Familiarity with work in each of these areas can
lead to mutual benefit, as the study of ANNs and SPR share many common goals The
first chapter in this group is a paper by Kanal that was originally published in 1961 It
is included here because it is one of the first papers, if not the first, to discuss the
relationship between perceptrons and statistical classification methods, and also to relate
learning algorithms to stochastic approximation methods. The second chapter, by Werbos,
provides an overview of artificial neural networks research, especially the back-
propagation algorithm for static as well as dynamic situations, and its linkage with
statistical pattern recognition. The third chapter in the first group is by Raudys and Jain,
who investigate the performance of artificial neural networks designed using only a small
set of exemplars, The next two chapters, by Gelfand and Delp, and Sethi, deal with the
relationship between tree classifiers and multiple layer perceptron networks

The second group of 5 chapters is devoted to the application of neural networks to
various pattern recognition problems involving image and speech data, The first chapter
in this group, by Lee, Srihari and Gaborski, provides a theoretical relationship and an
empirical comparison between the Bayes decision rule and the back-propagation network,
using the problem of handwritten character recognition In the second chapter of this
group, Khotanzad and Lu examine the use of multiple layer perceptron networks for
shape and texture recognition, and compare the performance of neural net classifiers with
some conventional classifiers The third chapter in the application group is by Ghosh and
Bovik, who highlight the relationships between conventional and neural techniques for
processing of textured images, and suggest discrete 2-dimensional Gabor transforms using
a neural network implementation. The next chapter in this group, by Rangarajan,
Cheilappa and Manjunath looks at the relationship between the Markov random fields
and neural networks. This relationship is examined in the context of early or low-level
vision processing, suggesting some applications that might benefit from an approach that
combines Markov random fields and neural networks The last chapter in the application
group is by Bengio and De Mori. After surveying the application of different neural
models to automatic speech recognition, Bengio and De Mori present the details of using
radial basis functions network for a particular speech recognition task One consistent
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conclusion in all the five chapters of the application group is that neural net classifiers
can serve as a good alternative to conventional classifiers The maximum advantage in
the use of neural classifiers occurs when the data are noisy and a large number of
training samples are available

The third section of the book deals with the implementation aspects of artificial neural
networks. While the most widely used neural network implementations today are software
simulators, it goes without saying that the full advantage of neural network paradigm
cannot be reaped without hardware implementations. The first chapter in this section, by
Hassoun, deals with the architecture of dynamic associative memories, a class of ANNs
which utilizes supervised learning procedutes to store information as stable memory
states Optical implementations of ANNs hold great promise The second chapter, by
Vijaya Kumar and Wong, describes such implementations for four associative memory
schemes The third and final chapter of the implementation section is on the VLSI
implementation of neural networks Salam, Choi and Wang provide an overview of the
various issues related to the silicon implementation of neural nets Some notable
successes have already been achieved in the silicon implementation of biological devices,
the most notable being the silicon retina and cochlea, by Mead and his group, at
CalTech According to Mead, analog VLSI neural networks running at 10 quadrillion
operations per second are ultimately achievable. .

This book could not have been completed without the whole-hearted cooperation of all
the authors; we are thankful to them. We are also grateful to Professor Laveen Kanal
for his constant encouragement and suggestions We are also thankful to the Plenum
Publishing Corporation for its kind permission to reprint Laveen Kanal’s paper Our
sincere thanks also goes to the staff at Elsevier Science Publishers B.V. for their
cooperation and support. We would consider our goal accomplished if this book is able
to contribute in some way to greater interaction between the two communities of ANN
and SPR researchers. It is to them that this book is dedicated

Ishwar K. Sethi Anil K Jain
Detroit, MI East Lansing, MI
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Artificial Neural Networks and Statistical Pattern Recognition

O1d and New Connecu'_ons .
LK. Sethi and AK. Jain (Editors)
1991 Elsevier Science Publishers B V.

EVALUATION OF A CLASS OF PATTERN-RECOGNITION
NETWORKS

Laveen Kanal

General Dynamics/Electronics, Rochester, New York

INTRODUCTION

The realization of devices to perform a given pattern-recognition task can
be considered in terms of the problem of providing the following specifications.

A, The observables (measurements oOr tests) x;, i=1,2,...,N, by which pat-
terns are to be characterized. ’

B. The form of the classification function, i.e., the manner in which observ-
ables are to be used in assigning a pattern to one of K known groups.

C. The procedures for determining the classification function from samples
of patterns from the K different groups.

In any given instance the results of the measurements may be represented

by x={(x1,%,..+,%,). Then the universe of patterns can be thought of as being an
¥-dimensional space and the recognition task becomes one of dividing this N -
dimensional space into mutually exclusive regions R;, j= 1,2,...,K, such that

when x falls in R,, the pattern is listed under group ;.

Unless an especially auspiciouschoice has beenmade of the ¥ characteristics
which define the observation space, the x; will, in general, have to be treated as
stochastic variables. The recognition task then becomes the application of sta-
tistical inference to the classification of a pattern to one of the K known groups
to which it can possibly belong. Information on the probability distributions of
observables for the various groups can range from complete ignorance of the
functional form of the distribution, to the case where the functional form and all
parameters are known.

1. A CLASS OF PATTERN-RECOGNITION NETWORKS

In some recent articles (see, for example, Hawkins, 1961), work on the appli-
cation of a class of networks to pattern recognition has been reported. Figures
1 and 2 show two networks typical of this class. The measurements x; which

Previously published in Biological Prototypes and Synthetic Systems (Volume 1)
edited by Eugene E Bernard and Morley R. Kare, Plenum Press, New York, 1962
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Fig. 1. Example of a neuron-type pattern-recognition network;
see equation (1),

characterize the pattern are obtained, for instance, by placing the pattern on an
"artificial retina" with the outputs of the retina elements being quantized such
that the x; are either 0 or 1.
In Fig. 1 the classification function takes the form of a weighted sum of the
x;, viz.,
N
Z a;x; > T, i=12,...,K (1)
i=1
where the set of coefficients a;, which is desired is the one which permits the
threshold 7, to be exceeded whenever a pattern from group ; is present and not
otherwise.

In the network of Fig. 2, subsets of the x,, selected perhaps in a random
manner, are connected through fixed weights (+1,-1) to summation units with
thresholds., Let b5,, be the fixed weights between the retina elements and the
summation units, where b, can be 0, Let I, be the thresholds for the summation
units, and y, be the outputs from the summation units, with y_ being 0 when the
thresholds I, are not exceeded, and 1 otherwise. Further, let a,, be weighting
coefficients (variable) between summation units and response units and let 1; be
the thresholds for the response units. Then the classification function used by
the network of Fig. 2 is

M

> Ve >T,  i=12...,K M<N (2)
1

o
with

i

N
s1if 3 bimx> 1,

i=1
Vm = )
0 otherwise
Although the network of Fig. 2 uses the derived variables y,, to characterize

the patterns, the form of the classification function is the same as that for the
network of Fig. 1. ‘An evaluation of this class of networks can be considered in
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Fig. 2. Perceptron-type pattern-recognition network (after Hawkins);
see equation (2).

the context of comparable classification functions which can be derived from
some more or less formal principles proposed in classification theory and

practice.

2. A REPRESENTATION OF THE JOINT DISTRIBUTION

Let X denote the set of all points x = (x1, x2,-.., Xy) With each x;=0 0z 1, and
let p(x)=p(xy,%3...,%5) denote the joint probability of the x; in a given group.
Since there are 2% points in X , any parametric description of an arbitrary proba-
bility distribution will, in general, require (2V - 1) independent parameters, A
particular parametric representation due to Bahadur (1959b) is used here.

Using E, to denote the expected value when the underlying distribution is
p(x), define for each i=1,2,.. ,H,

m; =p(x;=1=E_(x;) 0<m; <1
o Fimm
r;; = E (z,z;) i<j (3)
= Ep(2;2524) i<j<k
ra n=E, (2122 -+, 2x)

Further define

N
p1(Xp, X200, Xy) = 111 mft (1 — )t (4)



so that p; (x1,%2, ..., x5) = p; (x) denotes the probability distribution of the x, when
(1) the x,'s are independently distributed and (2) they have the same marginal
distributions as under the distribution p(x). Itis shown by Bahadur that for every
x=(x1,%3 ..., xy) In X

- (5)
where p(@) = p1(N (%)

f(x)=1+ Z TijZiZj + Z TijkZiZiZk + oot T190es N 212240 Zy (6)
i<i i<j<k

The 2Y¥-¥-1 correlations and the ¥ marginal frequencies m; are the parameters
which determine the probability distribution p(x). In order that an arbitrary set
of 2Y-N~1 real numbers Liptixs --+0 S€Ive as the correlation parameters of a
probability distribution p (x) for any set of numbers m;, 0 <a; <1, it is necessary
and sufficient that f(x) be non-negative for each =x.

The distribution p(x) can now be approximated by distributions of lower
order. Thus p, (x) is a first-order approximation to p(x),

p2(x)=p; (x) [l+ Z r,.,z,»zj] (7)

i<j

is a second-order approximation to p(x), and so on, For 1 <m <N, the approxi-
mation p,, (x) is the only distribution of order not exceeding m under which any
set {x;1,%;2,..., X;,,} of m variables has the same joint distribution as under the
given p(x). Of course, approximations to p(x) may also be obtained by retaining
various selected terms in the expansion for #(x) and dropping the remaining
terms. Because any approximation to p(x) is obtained by dropping terms of f(x),
a classification procedure based on it will not do as well as the same procedure
when p(x) is used.

3. A CLASS OF CLASSIFICATION FUNCTIONS

A well-known theoretical solution to the problem of classifying an unknown
pattern into one of two known groupsin such a way as to minimize the probability
of making an error in the assignment ofinputs to the two groups, or in a manner
which equalizes the errors for the two groups, minimizes the expected loss, or
is best according to some other criterion, is in terms of the likelihood ratio
(see, for example, Anderson, 1958, Chap. 6).

In the present case, the problem is to classify an unknown pattern into one
of the several groups to which it can possibly belong. One way to proceed would
be to set up likelihood ratios for each pair of the K groups (Anderson, 1958)
which would require K(K — 1)/2 classification functions. For the construction of
networks, it is desirable to have only a small number of classification functions
and by representing the K groups by, for example, a binary code, much less than
K classification functions can be considered; each classification function pools
patterns from all X groups into just two groups: those which should produce a 1
and those which should produce a 0. Denote these two groups by group 1 and
group 2 respectively and let p(x/i), i =1,2..., denote respectively the probability
distribution for x under group 1 and group 2. Then the likelihood-ratio regions
for classification are defined by




R, : LG _px/1
1 (%) ——__p(x/2) >t

R,:L(x)S¢

(8)

Thus, if the function L (x) exceeds the threshold ¢, the pattern is classified as
belonging to group 1, otherwise the pattern is classified into group 2. [One way
of deriving such a rule is to consider the conditional probabilities that, given a
pattern having a certain x = (xq,xz,..., Xy), thepatternbelongsto group 1 or group
9. The boundary of the two regions for classification can be defined by the equa-
tion p(1/x)—p(2/x)=0, which gives the expression p(x/1)/p(x/2)=p(2)/p(1) .

The classification functions and corresponding networks which result when
various approximations to p{(x) are used in a likelihood-ratio procedure can now
be derived. If a first-order approximation is used, p(x) is replaced by p; (x).
This implies an assumption of independence of the x,. Letting m; and n; represent
the means of the x; in groups 1 and 2 respectively, the likelihood ratio is

m¥ (1 - m;)t i
=1
L=ty ©)
H af (1 —n)t =%

i=1

taking the logarithm gives

N
Z (a;x; + ¢;)
i=1
where
a; = log R (_1;"*_)_
(1 —my) (10)
and
c;=log a-m)
(1 —11,»)

The summation over c, can be absorbedinthe threshold and a particular weighted
sum is obtained for the classification function, The resulting network is that of
Fig. 1, with the coefficients as defined in equation (10). Let

_ X; —m; x; — 1y
Z; = Vi = e
Vm; (1 —m;) Vn;(1-n)
and let ryj,fijk. .., and s;;, Sik ..., be the correlation parameters for group 1 and

group 2 respectively. Then for a second-order approximation to the joint dis-
tributions, the logarithm of the likelihood ratio is

N
Z a;x; + log <1 + Z r,-,-ziz]-> — log <1 + Z Sinin) ay

i=1 1<j i<i

plus a constant term, Using the approximation log (1+ 6) =6, and letting



i Sij

= and Vi =
Vi (1= m) my (1 - m) Vo, (1 -0,)n; (1~ a,)

uy;

expression (11) can be written as

EN: [ai + E (- muy + njvi,-):] X; + E (u; - V”-) X,%; (13)

i=1 i#e i<j

Similarly, if third-order correlations are retained, the above derivation gives

N
2 a; - E (=myuy +0v,)) + E (m ety = 850, Vi) | X
i=1 i#i ,-;“
k%i
i<k (14)

+ E (11;, - ij)+ E (—mkuiik +nkvijk) XXy + E (“uk — Vijk) XXXy
i<i k#i i<j<k

k%i

The above expressions come from Bahadur (1959a). Here we note that second-,
third-, and higher order approximations give rise to expressions linear in the
x;, under certain conditions, In (18), if u,; = v, the resulting classification func-
tion is represented by a network such as that of Fig. 1, in which the coefficients
are given by

afP =a;+ ; (=m;+m;) vy (15)
I 1

Similarly, (14) will lead to a classification function, linear in the x,, if Ui = Vijics
and

Uy =Viy+ 2 (mx = ne) Vg
kgt
ki

the coefficients of the classification function being

al® = a; + 2 (= myuy; +0,v) + E (mymy — ) vigye (16)
ifi iFi
kgt
i<k

In this manner, a set of classification functions
il

N
Z a;x,, jv_: aPxp e, E al™ x,
i=1 i=1 i=1
corresponding to increasing orders of approximation to the joint distributions
of the x, in the two groups, are obtained when specific assumptions are made
about the relationships between correlation parameters. The network corre-
sponding to each of these classification functions has the form of Fig, 1; a net-




mpted to classify correctly eight groups of patterns could be
constructed from three classification functions of the type used in Fig. 1. The
performance of such networks relative to corresponding networks based on clas-
sification functions of the form (13), (14), and higher order approximations will
pe determined by the extent to which assumptions about relationships between
correlation parameters, necessary to obtain the above linear classification
functions, are true for a given experimental situation.

In addition to the above derivation, one can consider various intuitive pro-
cedures for deriving linear classification functions. An arbitrary linear combi-

work which atte

N
nation of the measurements (x1,%5,-.., xy) is the function Z a;x;, in which the
i=1
coefficients a; are to be chosen to provide maximum discrimination (in some
sense) between the two groups. An example of such a procedure is that due to
Fisher (1936). Let m, and n, represent the means of the x, for group 1 and group
2 respectively, and let d;=m; - n,. The difference in mean values of the linear

N N
function for the two groups is ) ad;. Furthermore, the function ) a;x; has
N N i=1 i=1
the variance z 2 aa;v,y where v, are elements of the covariance matrix,
i=1 j=1
assumed equal for the two groups. The sense in which maximum discrimination
between the two groups isprovided by Fisher's discriminant function is to choose

the coefficients a; such as to maximize the ratio

(S ad)?
N

N
Z Z aa; vy
i=1 j=1
Introducing a Lagrangian multiplier A and differentiating the expression
IXaadd; — A 2T aavy
one obtains a set of linear equations which have the solutions
a;=viidy + o0 + VVidy  i=12,...,N

where vif are elements of the inverse of the common covariance matrix. This
same function results from a likelihood-ratio procedure for the case of continuous
variables with multivariate normal distributions and equal covariance matrices
for the two groups, and so it is the optimum discriminant function only when
these specific conditions hold; without the assumption of equal covariance ma-
trices, a quadratic function would result from the likelihood ratio (Rao, 1952,
Chap. 3; Anderson, 1958, Chap. 6). For the latter case, intuitive procedures
which lead to linear discriminant functions can be considered. Examples are the
Anderson-Bahadur method (1960) which for the case of arbitrary distributions,
maximizes the ratio N

2 adl;

=1

N N Y N N Y
<2 3 a,a,.v,ﬂ> +<z & a,a,v,.ﬂ)
=t =1

i=1 j=1




i.e., the ratio of the difference between means to the sum of the standard devi-
ations and the linear discriminant functions presented by Kullback (1959, Chaps,
9 and 13) obtained by maximizing three measures of information.

4, DETERMINATION OF COEFFICIENTS FROM SAMPLES

From the discussion up to this point it is apparent that, for the most part,
the class of pattern-recognition networks considered in section 1 continue to be
excursions in the realm of linear discriminant functions. It is also clear that
the use of a weighted sum of the x, as the classification function does not, as
some have suggested, limit the x; to being independent, but may imply a variety
of relationships among correlations and covariances of the type present in the
examples of linear discriminant functions given in the last section.

The major departure of the pattern-recognition efforts being discussed from
the work in linear discriminant functions is the manner in which samples are
used. Rather than obtain the coefficients of the classification function from as-
sumptions concerning the functional form of the probability distributions or from
a program of estimation, interest has shiftedto starting from an arbitrary initial
state (ay, aj,..., a,) and using iteration based on experience with one or more
samples on each trial, to go from the initial state to a final state (aj,ay,..., ay)
which will produce a desired result,

The problem of using experience to go from some arbitrary initial state of
coefficients to a final desired state can be approached in many ways; one w ay is
to use complétely random perturbation of the coefficients and some of the adaptive
systems presented at this symposium report using this method. One would gen-
erally desire somewhat more systematic methods which, at least conceptually,
have a better chance of producing a sequence of adjustments which converge in
some meaningful sense. The problem may then be stated as one of finding a set
of transition operators T to apply to the state vector, In this form, varying de~
grees of complexity can be introduced into the formulation of the problem, as is
discussed by Bellman (1961). However, complexity in formulation which intro-
duces complexity in computation is not very helpful: the procedures which are
desirable are those which involve simple calculations after each trial and do not
require the storage of old data for use in future computations, Useful iteration
procedures can be derived from the point of view provided by the techniques used
in stochastic models for learning (Bush and Mosteller, 1955; Bush and Estes,
1959; Luce, 1959; Kanal, 1961; Kanal, 1962) and from the point of view provided
by stochastic approximation methods (Dvoretsky, 1956; Sakrison, 1961; Kushner,
1930; Magee, 1960). Typical of anumber of other efforts is the approach of mini-
mizing a mean-square error criterion (Widrow, 1960; Widrow and Hoff, 1960;
Gabor et al., 1961).

5. SOME COMMENTS ON COMPARING DESIGN PROCEDURES

The embodiment of adaptive procedures in a real-time pattern-recognition
system is most desirable when the environment in which the system operates
can undergo unsuspected changes. However, when the environment is stationary,
the design of a pattern-recognition network corresponding to a given form for
the classification function can be carried out on a computer. In this case the
coefficients can be obtained either by using the data directly in an iterative pro-




cedure, or using statistical estimation of parameters to obtain clas.sification
functions such as outlined in section 3. Computer programs for obtaining Qis—
criminant functions and other classification functions for applicationin a variety
of fields have been used for a number of years. Typical of some recent appli-
cations to speech and character recognition is the work reported in Marill and
Green (1960), Welch and Wimpress (1961), and Keith-Smith and Klem (1961),
from which an idea of the computation involved can be obtained. One point of
comparison between the various methods one may consider is, of course, the
relative complexity of the computation,

The error curve corresponding to a classification function can be obtained
by computing the probabilities of misclassification for different choices of the
threshold. An evaluation of the worth of the classification functions resulting
when iteration based on experience is used to obtain the coefficients from sam-
ples can be provided by comparingtheir error curves with error curves obtained
from the linear functions corresponding to the different orders of approximations
as discussed in section 3, and with the error curves obtained from intuitive

rocedures such as those of Fisher (1936), Anderson and Bahadur (1960), and

Kullback (1959). .

6. SOME COMMENTS ON THE CHOICE OF OBSERVABLES,
AND ON INVARIANCE PROPERTIES

It has been long recognized that a central problem is the choice of a suitable
set of observables and, for the most part, an arbitrary choice has been made,
as for example, the choice of dichotomous variables obtained from the elements
of an "artificial retina."

Experience indicates that when using procedures which are not optimum, a
classification procedure based on dividing the x, into mutually exclusive subsets
s;, deriving classification functions f; based separately on the s;, and using f; to
obtain a final classification function F can, in some situations, do better than a
similar function based directly on all the x, (In most of the work reported on the
type of network represented by Fig. 2, subsets of dichotomous variables have
been chosen in a random manner and arbitrary fixed weights have been used to
form the first set of classification functions {;.)

A discussion of the problem of selecting a small number of dichotomous
variables from an available large set is presented in the paper by Raiffa (1957).

Some comments on the invariance of two measures of information to non-
singular transformations of the observables, and on the connection between the
invariant properties and linear discriminant functions are presented in Kullback
(1959). The paper by Ming-kuei Hu (1961) presents a set of moment-invariants,
It should be noted that for most situations these moments will themselves be
random variables.
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1. Overview

This chapter will try to address the three broad guestions: (1) In what ways do ANNs
differ from the well-known paradigms of SPR? Are there concepts in ANN for which
no counterpart in SPR exists (and vice-versa)?; (2) What benefits can come out of
interaction between ANN and SPR researchers?; (3) What advantages, if any, do ANN
techniques have over SPR methods in dealing with real-world problems?

For the most part, ANNs for pattern recognition are to SPR what poetry is to prose -
- technically a subset, based on the acceptance of certain design constraints of enormous
practical utility, plus an additional source of inspiration which can be very helpful in the
design process. Beyond that, the underlying concepts and paradigms are so close, and
the range of problems under study overlap to such a degree, that greater mutual
communication can minimize duplication of effort and enrich both communities in many
other ways. One area of substantive difference is that some parts of the ANN community
treat pattern recognition as a subset of systems to perform dynamic system identification
and control; this may lead to improvements in pattern recognition, in some cases, when
the pattern to be recognized is essentially dynamic (e g, speech or moving targets). The
attempt to understand intelligence in the brain forces us to keep facing up to difficult
and important questions, such as the question of how a host of more specific designs and
methods can be integrated together in one unified, flexible general-purpose system.

The remainder of this chapter will elaborate on these points. Section 2 will discuss
pattern recognition and neural networks in general terms, Section 3 will discuss a few
alternative neural network paradigms, and their relation to SPR. Section 4 will briefly
discuss dynamic systems and control. The chapter will start on an introductory level, but
will try to build up to current research.

2. Neural Networks and Pattern Recognition -- Generalities

Before discussing the pros and cons of ANNs, 1 should first define just what an ANN
really is. However, neuroengineering -- the field which studies ANNs --is a large and
diverse field, using a wide variety of designs There are popular articles which define
very clearly and explicitly what an ANN is, but which single out only one tool out of a

*The views expressed here are those of the author, not those of NSF. Nevertheless, they
were prepared in the course of government work and are therefore in the public domain



12

range of hundreds. Biologists, especially, tend to object to such articles, because "neural
networks" are often defined in a way which excludes actual physical neurons Section 3
will give examples of a few tools, but this section will give more of an overview.

There are at least two definitions which have been used by different authors, to try
to encompass this field The most common definition emphasizes the prefix "neuro” --
pertaining to the brain. In that definition, neuroengineering is that field which tries to
copy over the known capabilities of the brain into computer hardware and software
More precisely, it develops mathematical designs which could be embodied directly in
hardware or simulated in software; usually it is better to do the testing in software,

In developing these designs, neuroengineering tries to make use of what is known
about how the brain achieves these capabilities. There are actually two schools of
thought here. One school closely follows only what is now known about the brain (in
simplified terms), and looks for "emergent computational properties." This may be
called the bottom-up or biologically-based school. The other school treats our
knowledge of the brain as a very loose constraint, and focuses on the desired capabilities,
making heavy use of statistics and control theory The cooperation between these two
schools is not as close as it might be, but much of the vitality of the field is due to what
cooperation does exist. This vitality is important both as a source of new ideas, and as
a force to attract and motivate a new generation of students.

Before going further, I must admit that [ tend to follow the top-down school. Even
though my initial motivation was to understand the human mind -- and therefore the
brain -- I felt that a top-down approach was essential, in order to complement the vast
accumulation of raw data in neurophysiology In fields like economic modeling, it is now
well-recognized that bottom-up modeling, when based on the desire to explicitly
represent every factory in the country, will usually lead to worse forecasts than a top-
down approach which tries to get the aggregate behavior straight before adding more
micro-level detail. If the dynamics of each and every factory (and factory manager) were
fully and exactly known, this would not be possible, but in the real world it is. In studying
the human mind, the key aggregate behavior of interest is the ability to learn how to
solve complex, real-world problems, using neural-like computational structures, Once
again, the goal is to complement the bottom-up research, not to provide an alternative

Three Subdivisions of Neuroengineering

One way of mapping out the complex field of neuroengineering is by considering
which capabilities of the brain different 1esearchers are trying to replicate. Broadly
speaking, there are three groups One group is trying to understand specific brain
pathways and connections which implement specific abilities, without regard to how these
abilities are learned For example, some researchers have spent most of their time doing
biological experiments on the cochlea of the ear, in order to develop better models of
the actual transfer functions used in adult mammals to preprocess speech data; they then
implement the same transfer functions directly in VLSI chips which can be used to
preprocess speech data.(Shamma 1987, Lyon and Mean 1988) Similar efforts have been
carried out for image processing (Mead 1989), for sonar processing (inspired by the
sonar system of the bat, among others), for motor control, and for other areas. In a
public talk, Bourlard and Wellekens (1988) have reported that the use of more biological
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ors may improve performance in speaker-independent speech recognition,
oven in a situation where it has little effect on speaker-dependent performance.

A second group mimics the ability of the brain to learn the solution to specific

roblems. Traditionally, in neuroengineering, we build systems to perform one of three
kinds of learning: supervised learning; reinfor cement learning; and unsupervised learning

Wdleaming means learning a static mapping from a vector X to a vector Y,
when there is a training set containing data on both vectors If the vector X. contains a
pattern, and the vector X contains a clas.SIflcatlon of that pattern, for each item in the
training set, then supervised learning boils down to a task which people in SPR have
worked on for years Often, however, ANNs are designed to adjust their parameters one
ML_____WiLn_e, in real-time learning, rather than iterating over an entire database,

Reinforcement learning is similar to supervised learning, except that we do not
assume the availability of target vectors, Y, in the training set Instead, we assume the
availability of a performance judge or utility function, which reports how good the
current outputs of the network are  In essence, supervised learning is like telling a child
where to go (in the two-dimensional Y space of a back yard), while reinforcement
learning is like telling him that he is "colder” or “hotter” as he gets closer or farther from
a goal state. Many biologists believe that reinforcement learning is"a better description
of how animals learn than supervised learning, because animals in nature receive
rewards and punishments from the environment but are not told what to do in detail,

Unsupervised learning is often touted as a way of adapting neural networks without
giving them any kind of directive feedback at all  Some researchers are strongly
attracted to this way of describing things, because it suggests the possibility that some
neural networks (like themselves?) may tiuly experience absolute free will, as described
by philosophers of the French existentialist school ~ From an engineering perspective,
however, it is more useful to focus on the specific tasks which networks in this broad
category are actually trained to perform There are at least three main categories of
network here: (1) networks designed as “associative memories” (or, more precisely,
"autoassociative memories") - networks which, when given part of a pattern they have
seen before, will reconstruct the entire pattern; (2) networks designed as feature
extractors, such as "competitive learning" systems (based on clustering) or as "self-
organizing maps" (with analogies to factor analysis and principle components analysis);
(3) networks designed to model the dynamics of the variables they observe (system
identification networks). All three have important applications, and there have been
many efforts to combine these three (and supervised learning and reinforcement learning
and fixed preprocessors) in various combinations, for different applications,

Finally, there is a third group of neural network researchers, besides the fixed-task
group and the learning group Years ago, John Hopfield (Hopfield and Tank 1986)
generated great excitement with the observation that certain ANNs, originally derived
in the biologically-based literature (Grossberg 1988), could also be used to minimize very
complex quadratics or solve even more complicated static optimization problems They
also translate relatively easily into hardware implementations, like new VLSI chips or
optical computers

One of the classic applications of such Hopfield nets is in computer vision. Some
approaches to computer vision would try to identify edges and segments in an image by
minimizing a very complex measuie of the quality of fit of the segmentation scheme;

preprocess
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many authors have used Hopfield nets to perform this minimization, and some propose
to hardwire the networks onto a chip. Hopfield nets are also used in applications like
traveling-salesman problems and problems of placing connections in various kinds of
(nonneural) networks

From a technical point of view, Hopfield nets are continuous-time gradient-based
methods to minimize a user-specified "energy” function. They are often applied to
energy functions which do not have a unique local optimum; their energy surfaces often
define a pock-marked surface, with many local minima, and it is a serious challenge to
find the desired global minimum Two approaches are commonly used to cope with this
problem. In one approach, one tries to find an energy function which satisfies the
application without having local minima, The other approach, uses stochastic search
methods to try to find the global optimum despite the existence of local optima; popular
methods along these lines are simulated annealing (e.g, Sun and Hassoun, 1990) and
genetic algorithms (Ackley 1990).

An Alternative (Hardware-Based) View of Neuroengineering

Many programs in neuroengineering, both in government and in industry, were not
motivated at first by any interest in understanding the brain. For example, a large part
of this activity grew out of hard core research in physics, motivated by a desire to exploit
the unique computational potential of photons compared with electrons. Leading
experts in optics such as Caulfield, Psaltis and Farhat argued that optical computing had
the potential to achieve a million-fold improvement in throughput compared with the
best digital VLSI technology Given the huge size of the computer industry, and the
economic importance of any improvement in throughput, this claim generated very
serious further evaluation Carver Mead (1989), who is regarded as the father of VLSI
technology, replied that analog, parallel, fixed-function VLSI might also achieve a
million-fold increase in throughput, compared with the best general-purpose digital
technology. (After all, even the best digital technology typically runs one process stream
on gue chip, a chip with a million transistors or so; however, an analog multiplication
requires only a handful of transistors )

The critics of optical computing and analog VLSI argued that both of these tech-
nologies are far too restrictive to be useful in anything like general-purpose computing.
They would fit a very tiny fraction at best of the overall computer market. After all, the
vast majority of existing computer programs, in all fields of science and industry, are
loaded down with "IF" statement and "DO" loops and long sequences of multiple types
of instructions; it would be almost impossible to break them up into parallel calculations
performing the same operations (or a tiny choice of operations) over and over again,

The advocates replied that the human brain uses fixed-operation analog distributed
hardware, and that it seems capable of handling a fairly wide range of computational
tasks, Many research managers agreed with this assessment, and concluded that the
challenge before us was to duplicate this kind of capability in computers In brief: the
initial goal of many research programs in this field was simply to develop more broad
general-purpose algorithms which could take advantage of the capabilities of this kind
of computer hardware. The goal was to develop the most efficient possible algorithms -
- drawing on everything we know from existing disciplines like SPR, control theory and
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biology - subject to the constraint that the algorithms must bg inhereptly implementable
in this kind of hardware. From an abstract mathematical point of view, one can always
find a "better” (or equally good) algorthm if one throws out the constraint, and searches
the entire space of all algori.thms whlgh will run on a sequeptlal computer; however,
from & practical point of view, algon.thms which live within the constraint have a
theoretical potential to run at one millionth the cost of those which do not.

This theoretical potential has rapidly become a practical reality, just in the past year
(1989/90). This past year, Intel -- among others —-’has announced the availability of a
new neural network chip, which exploits the potential of analog VLSI David Andes of
the U.S. Navy (China Lake) has stated that one handful of the Intel chips has more
computational power, for what it does, than all of the Crays in the world put together
(The competing chips are also well worth looking at) Factory managers who use
computer vision products often complain that programs exist which could solve many of
their production automation problems, but that the existing products would require a
Cray at every station (which they cannot afford); if you can mimic or duplicate your
existing algorithm with an ANN, you can give such managers the option of buying a
small box with a few chips in it instead Because the same functional form can be used
to perform a wide variety of tasks, one can achieve economies of scale which would not
be possible with more narrow special-purpose chips; one can also reprogram such neural
hardware -- simply by sending in new parameter values -- even after it is installed.
Similar considerations apply to most military or aerospace markets (like China Lake)
In brief, the shift to ANNs could open up enormous new markets for pattern recognition,
because of the economics of new haidware.

Is there a limit to what kinds of algorithm can live within this constraint? Last year,
Stinchcombe and White (1989) proved that simple feedforward networks -- including the
kind of network implemented on the Intel chip -- can work as a "universal approximator"
of and decently behaved nonlinear mapping In more recent, unpublished work, they
have gone on to prove the ability to approximate functions in a way which makes the
derivatives of the approximation match the derivatives of the original function, to any
desired degree of accuracy, to any order of differentiation

3. Some Examples of ANN Paradigms

Background

Are there concepts in ANN for which no counterpart in SPR exists (and vice-versa)?
This is an extremely difficult question, because it requires knowledge of all the "holes"
in both of the two disciplines, as well as a definition of the boundary of both disciplines
(which is an exercise in semantics) Furthermore, good ideas in either discipline can be
assimilated into the other; thus the holes which exist now can still be filled in the future,

I would guess that about 80% of the work now being done with ANNs could be
classified as pattern recognition. In addition to research on image processing and speech
recognition, there has been substantial industrial interest in applications like diagnostics,
sensor fusion and financial risk assessment, In fact, the latter three probably account for
the butk of the substantial real-world applications to date. Applications to target
recognition, sensor fusion and the like account for a majority of current DOD funding
of the field, but NSF is currently trying to put more emphasis on other areas which
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receive less support from DOD

Maren (1990) is making some effort to classify and dissect the full range of
paradigms used here, but the sheer volume of research makes it very difficult to do this
now. Therefore, in this chapter, I will only give a few examples of important paradigms
which T personally happen to know about. For those interested in a broader view, the
Proceedings of the International Joint Conference on Neural Networks serve as
something like an encyclopedia (with index) of this field.

Overview

Most of the applications of ANNs to pattern recognition still involve the use of basic
backpropagation, applied to classical feedforward networks. Therefore, I will begin this
chapter with a review of that method, and discuss a practical application from AT&T
(Guyon et al, 1989) and its connection to Lie Groups in SPR. Next, I will discuss
alternative methods, based on different functional forms Then I will discuss the
statistical basis of basic backpropagation, and introduce some alternative methods (and
research topics) suggested by the theory.

All of the examples here will involve supervised learning, the learning of a mapping
from a vector X(t) to a vector Y(t) Section 4 will deal briefly with control (which
includes reinforcement learning) and neural nets for system identification (a form of
unsupervised learning) In the last year or two, many researchers have also begun to
use feature-extracting neural networks as preprocessors when classifying patterns; for
example, Granger Sutton et al (1990) use a competitive learning (clustering)
preprocessor, Foldiak (1989) uses a design which essentially performs principal
components analysis, and Hrycej (1990) uses a design more like true factor analysis,
related to the work in Werbos (1990d) Grossberg (1987) is probably the most popular
overview of competitive learning methods Kohonen (1988) discusses several different
feature extraction approaches. Kosko (1990) describes some more recent work related
to competitive learning. This chapter will not review any of that work.

Basic Backpropagation: Fundamentals

Guyon et al (1989) provide an excellent example of basic backpropagation, applied
to a real-world classification problem

Guyon et al began with a database of 1200 handwritten digits. (The goal was to
classify individual ZIP code digits after a preprocessor at the post office had performed
the initial segmentation.) In my notation, I would say that the training set consists of
T=1200 observations For each observation, t, the observation consists of two pieces of
information -- the input vector, X(t), and the target vector, Y(t). In this case, X(t) was
a vector consisting of 256 components, X,(t) through X,(t), each referring to the grey-
scale level of a pixel in the 16-by-16 input image. Likewise, Y(t) consisted of 10
components, Y ,(t) through Y ,(t), corresponding to the 10 possible classifications. In my
notation, I would say that the size of the input vector is m=256, and the size of the
target vector is n=10. Our goal is to initialize and then train a neural network to input
X, and output a prediction of Y

The most popular way to set up such a network is to use a three-layer structure --
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with én input layer, & hidden layer, and an output layer. The outputs of the hidden layer
wrle caleulated first, all in parallel, followed by the outputs of the output layer.
?I‘he outputs of the hidden layer are calculated by:

x(t) = stret;©) -1 0

m

net {t) = W, + EVV’X.(I) , i-1, h 2)
1

« g%

where W' is a matrix of weights ot parameters, where h is the number of hidden units,
and where s is the "sigmoid” function:

s(z) = 1/(1+¢%) (3)

The outputs of the hidden layer are:
V@) - s(net ) i=1, »n 4)

g

n
net’(ty = W, + Y W) i=1, ;1 (5)
I

The notation here is designed to be simple for this structure, where a "-" denotes the
lower layer and a "+" denotes the upper or output layer. With more complex ANNG, it
is more usual to define net, x, and W, as more complicated, sparse vectors and matrices,
Intuitively, the yariable "net is thought of as the voltage input which excites neuron
number i; X, Or é, is thought of as the output frequency or activation of a nearon; W, is
thought of as the strength of the synapse connecting neuron j to neuron i. If the weights
become very large, structures like this become more and more like hyperplane classifiers,
the classifiers used in discriminant analysis; again, however, the hidden layers provide
optimal features for use in that classification, and large weights are not always best.

In basic backpropagation, the goal is simply to adapt the weights W so as to
minimize the square error:

1 n

E - Y ¥ wyo-Yony (6)

=1 1=l

From the viewpoint of SPR, what is new here? Certainly not the idea of minimizing
square error! From an abstract, mathematical point of view, this is simply a special case
of nonlinear regression, which has been in existence for decades. It is an interesting
special case, because the functional form here is easy to implement in hardware, and can
serve as a universal approximator (even with a little simplification of the function s)
What is really new, however, is the way in which error is minimized, which I will get to.

To adapt this kind of network, there are two common approaches, which may be
called batch learning and pattern learning (Pattern learning is usually described as
"online" learning, which is misleading, because it is usually done off-line in practice. One
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may also call it observation-by-observation learning.) In both methods, one starts oug
with initial guesses for the weights W, exactly as one does in nonlinear regression,
{(Most neural network researchers use a random number generator here, but it is better
to use prior information, if available and cheap.) One adapts the weights by a
conventional sort of iterative update procedure. In batch learning, one begins each
iteration by calculating the gradient of E based on the current weights, and then one
uses a gradient-based procedure to update the weights. In pattern learning, one cycles
through the observations, t; one begins each iteration by calculating the gradient of:

n

E@) = YwEo -Y©) . (™)

=1

and adapting the weights immediately in response to this gradient, before going on to
analyze the next observation.

The use of pattern learning is somewhat novel; however, there are precedents to this
as well (albeit less well-known) What is really novel is the method of calculating the
gradient of E(t) or E, with respect to all of the weights, in a single pass through the
system. Once again, computational efficiency and economics are the defining features
of what we are doing

In basic backpropagation, we use the following sequences of equations to calculate
the gradients of E(t) with respect to all of the weights in a single pass through the
system:

FY@®n - Y@ - Y@ i=1, »n (8)

Fonet(ty = s'(net’(t)) = F Y () i-1, n (9)
Fx(t) - ?.?WJ + F_net'(t) j=1, 1 (10)
F_Wq‘(t) = x(t) x F_net/(t) i<, n j-0, & (11)
Fonet:(t) = s'(met (1)) = F (1) i=1, \h (12)
FW.(t) - X() * F_net (t) i-1, & j=0, m (13)

(By convention, we assume x,=X,=1) The arrays F_W,~and F_W, contain the desired
gradients. Note that we have to start from equation (8) and work through the other
equations in order to perform these calculations; we are calculating a kind of error
feedback in a direction backwards fiom the original calculations in equations (1) through
(7). ("F_" stands for "feedback to.") For pattern learning, we adjust the weights
immediately in response to these gradients. For batch learning, we simply add these
gradients across all observations t, and then respond. Even though equations (8) through
(13) must be calculated in that order, more or less, the calculations associated with any




one equation can all be do‘ne in parallel, as was true with the origingl system. .
Intuitively, one may think of these F_ . quantities as the derivatives of error with
respect t0 various mterme.dlate. calculations. For very simple neural networks (like the
case above), one may rationalize the feedback equations b‘y appeal to the us-ual chain
rule for differentiation. However, with complex networks, it becomes very tricky to do
this in a safe and rigorous way. ) _ .
Werbos (1974) -- which is now usually cited as the first paper on backpropagation -
. describes a more rigorous way of understanding these calculations, the core of which
has been reprinted in Werbos (1989) These derivatives are understood most easily as
nordered derivatives,” a species of partial derivative defined with respect to the order of
calculations used in a system of differentiable equations (like equations (1) through (7)).
Werbos (1989) shows how a new chain rule for ordered derivatives can be used quite
easily, on any ordered system of differentiable equations, so as to yield the required
gradientina single sweep with a rigorous assurance of a correct result, Backpropagation
i1 this more general sense is not restricted to ANNs, and it can be used to calculate the
derivatives of other things besides error (see Section 4) Indeed, the concept of ordered
derivative provides a coherent and unified way to understand a wide variety of related
but specialized concepts in fields from economics through to nuclear engineering; it is
the kind of concept which belongs in basic calculus textbooks

After calculating a gradient, we still have to decide how to adapt the weights in
response to the gradient. Most workers simply use steepest descent, with a fixed and
arbitrary learning rate used across all the weights, This takes many iterations to
converge, but less time that it might take to hand-craft a set of optimal features for the
hidden layer. Werbos (1988a,1989) discuss a variety of ways to speed up convergence,
and Shanno (1990) has described new numerical methods which may be adapted to do
even better. (There is a huge literature on this subject, but considerably more
fundamental work to be done )

The application of backpropagation to neural networks as such was first put forwards
as an idea in Werbos (1981) and Parker (1982), though it was mentioned briefly in
Werbos (1977), and the crude intuition which led to this idea -- and to certain adaptive
critic control designs - appeared in Werbos (1968). Werbos (1981) -- a condensed
version of a longer paper written under the review authority of Charles Smith -- also
mentioned applications to energy modeling, such as sensitivity analysis, robust time-series
identification, and the like; such possibilities are discussed as well in Werbos (1990e)
Rumelhart, Hinton and Williams (1986) simplified and popularized these ideas, in a
seminal article which had a dramatic effect in encouraging interest in this field (and
which did acknowledge the earlier role of Parker(1982), LeCun (1985) and Charles
Smith). This experience helps to underline the tremendous value of artificial neural
networks as way of communicating and explaining generalized concepts in mathematics
which otherwise might have remained obscure and difficult

In the mid-1970’s, there were many scientists who argued that cheap derivatives were
of little real importance, since they do not change the result which is ultimately
computed, and since computer time was getting cheaper and cheaper. Now, in the
1990’s, we recognize that our ability to handle larger problems becomes ever_mote
sensitive to issues of computational cost and complexity; cost ratios on the order of N
(the number of variables) become ever more important as advanced hardware allows us
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to increase the value of N,

Basic Backpropagation: More on the Example (and Lie Groups)

Guyon et al (1989) -- like most researchers with long experience in ANNs -- did not
rigidly follow the pattern of connections shown in equations (1) through (5). The
transfer function, s(z), was scaled, to make its inputs and outputs vary between -1 and
+1, instead of 0 and 1 The target vector, Y, was recoded to represent comparisons
between alternative classifications (i.e, each Y, represents the notion that some class A
tits the pattern better than some class B),

Before adapting an ANN, they did their best to develop a classical pattern-
recognition scheme (their Networks 1 through 4), represented as neural networks with
fixed weights. They used this classical analysis to give them a starting structure. They
moved on, in the next stage, to a multilayer network, with the lower layers fixed, and the
upper layer adaptive. They did try to use a "fully connected" structure in which (as in
equations (1) through (5)) each layer received input from every other neuron, but they
found that this led to poor results. In general, when people adapt ANNs contammg a
large number of weights, relative to the training set, the networks behave poorly in new
cases outside of the training set (This is called "poor generalization") Problems with
local minima are also more likely to occur. Recognizing this, they used some very
interesting methods to try to reduce the number of weights,

Drawing on their knowledge of image processing, they used hidden neurons limited
to taking input from certain windows in the input grid For example, one might write:
x, = s(net,) (14)

L)

2 12

net, = 3 Y WX, . (15)

ketm2  m-2

where each neuron is now indexed by two integers, representing coordinates in a two-
dimensional grid of pixels Hidden units -- x;, -- were not calculated for every value of
i and j; for example, one might have hidden units defined only for even values of i and
J» s0 that the next layer can be more parsimonious. To reduce the number of weights
even further, one can take the drastic step of replacing equation (15) with:

"2 42

met, =Y} Y, WX, (16)

ket=2  fej-2

In this case, there are only 25 weights in all for this entire layer of neurons” If this is too
drastic, one can define two sets of hidden neurons in parallel, x,r and x,° , each of which
obey equation (16), only with different weights

Guyon et al (1989) did not describe all the details of how they applied these
methods, which led to much fewer weights and better generalization. However, in public
talks, they have presented such details. They have noted that it took about 20-40 passes
through the training set (using pattern learning) to converge. Similar techniques have
been extended by AT&T for pattern recognition; however, at the time of those earlier

x\;’
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1ks. the details were proprietary because of the likelihood of a commercial product.
e ’1,"he chain rule for ordered derivatives can be applied easily to these kinds of
st as it can to equations (1) through (5). Here, the gradient of error with

ctures, ju ) .
S is essentially the sum of the derivatives of error with respect to the

respect to Wi

corresponding W ) . .
These techniques may be seen, more fully, as a way of implementing the notion of

translational invariance, as de}scribed by Kar}al in another chapter of th'is bo‘ok” This is
simply a special case of the'Lle-Group invariance concept. Rgtatlonal invariance could
easily be imposed on equation (16) to go even furthq with this concept (i.e., to enforce
weights which obey the symmetry restriction, by cutting out excess degrees of freedom).
Giles and Maxwell (1987) have applied similar concepts to single-layer, polynomial-based
ANNs. Rumelhart (1990) pointed out that this same kind of architecture could be used
to recognize letters in arbitrary positions in a visual field (because of the property of
translational invariance), thereby avoiding the usual segmentation problem. In general,
this example is one more case where a neural network formulation can be communicated
imore easily than the more general - but more difficult -- mathematics which underly it.
It would be nice if similar symmetry properties could be applied uniformly to all
kinds of patterns, and if higher neural networks in the brain had the ability to detect
such symmetries However, after a few years of looking at this, I could find no really
plausible way that the brain might be doing this, except indirectly, through the use of
explicit symbolic reasoning and building up ANNs which serve as dynamic models of the
external environment It is plausible, after all, that the human use of symbolic reasoning
may help to explain why humans are better at generalization, on some level, that are
other mammals, despite the similarity in brain structure. The retina -- a special-purpose
system -- may be different, because it could enforce symmetries which are unique to
vision. Still, Hebb (1949) stressed the point that even humans lose their ability to
recognize patterns, when movements of the eye are inhibited; dynamic modeling may be
crucial even to our abilities to recognize visual images In this connection, it is
interesting to remember how vision -- more than the other senses -- played a crucial role
in the evolution of the cerebral cortex of mammals and the precursors to it in birds.

Alternative Functional Forms and Pruning

Basic backpropagation, as described above, is simply a matter of minimizing square
error with a particular functional form  As with conventional linear regression, many
users simply dump the input vectors (independent variables) and target vectors
(dependent variables) into a computer package, and let the computer derive the
relationship. Unlike linear regression, however, this procedure is capable of learning any
arbitrary nonlinear relationship, if given enough hidden units.

Despite the practical advantages of this approach, it has at least three theoretical
limitations:

o It uses least squares in a situation where a different error function may be better.

o It does not allow for the possibility of developing more parsimonious networks
which, as in the previous example, can be expected to perform better in
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generalization.

o It does not allow for prior information, which may point towards different
functional forms.

Regarding the first point, the idea of minimizing square error is usually justified by
appeal to maximum likelihood theory, on the assumption that errors are governed by a
normal distribution. However, the normal distribution generates numbers in the whole
range between minus infinity and plus infinity; it is not logically consistent with Y and
Y restricted to the range between 0 and 1 or -1 and +1. If the inputs and outputs are
logically binary, and the outputs can be interpreted as probabilities (e.g. of class
membership), one can simply use the classical Bernoulli measure of error (Wonnacott
and Wonnacott 1977) instead of equation (6):

E@®) - log( YY) + (1 - Y(0)(1 - Y(&)) ) 17
Ditferentiating, this replaces equation (8) by:

2xY(t) - 1
YY) + (1-Y0)(1-Y()

F ¥

(18)

but keeps the rest of the scheme intact. Hinton (1990) has reported good results with
this approach. When the output is not intrinsically binary, some authors prefer to
assume a normal distribution in "net"; in other words, they define:

E(t) = % Y (net, - net’y (19)

where net’ is a target value calculated back from the target output. Many such
alternative error functions are possible, The use of such alternative error functions
changes equation 8 (or even 9), but does not affect the basic feedforward structure of
the network after training; thus it does not interfere with the use of chips like Intel’s for
pattern recognition after training has taken place On-chip learning is a complicated
matter at the present time, with or without these changes

From a statistician’s point of view, these different error functions simply represent
different models of the random disturbance; the only basis for preferring one over
another is prior knowledge about the particular application in hand, or empirical data
showing that one fits better than another. Werbos (1990d) addresses the additional
problem of how to account for correlations in the disturbances across multiple target
variables; this is difficult at present within the cost constraints of ANNs, but may be
unnecessary for most current applications,

Parsimony is a more complex and difficult subject. Even though simple feedforward
nets may be able to approximate any well-behaved function, there is certainly no
guarantee that they will do so in the most parsimonious fashion possible. As in the last
section, it is desirable to achieve more parsimony when this is possible; therefore, in
most applications, a network will generalize better if you choose the particular functional
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forms and structures which are most likely to p.erform well w‘ith the minirpu‘m numbgr
of weights. The cost of do.mg j[hIS may.outwelgh .th'e benefits, when training data is
jentiful and prior information is expensive, but this is not alway§ the case, .

Some naive researchers have written papers suggesting that tbeu new functional form
(or model of the neuron) is "petter" than gnother, ina t.ruly umversal‘ way; however, as
in any statistical m_ode‘ling, different functional forms fit better on dlff'erent problems,
and apriori generalizations across all problems tend to be dangerous, ‘It' is true, however,
that the standard feedforward networks tend to be better at classification problems
where different patterns can be separated easjly by hyper‘planes; when it is better to use
hyperspheres OT ellipses, there can be significant benefits in using a slightly different
functional form. Yau and Manry (1990) and DeClaris (1990) have reported very good
results using backpropagation with functional forms altered in this way, with appeal to
SPR. There is also a literature on "radial basis functions," which do the same sort of
thing, but usually rely on a hand-crafted lower layer with fixed parameters. (Moody and
Darken 1989). In SPR, it is common to use Bayesian methods with the assumption that
patterns in different classes are governed by normal distributions; work on "supervised
competitive learning" addresses a similar situation (Sutton et al 1990, Kohonen 1988).
In general, all of this work illustrates the general principle that it helps to use prior
information whenever such information is available and not too expensive.
Unfortunately, this will complicate the effort to use standardized chips, until the varions
tradeoffs and domains of application are better mapped out.

Some researchers suggest that we may look to the brain, to arrive at alternative
neuron models which may work better in practice One group proposes to use neurons
which calculate crossproducts and even higher-order polynomials in the input variables;
certain neurons in the brain do indeed have "modulatory” (multiplicative) inputs, but
these mainly involve external timing or synchronization inputs rather than a true
calculation of a local quadratic(Foote and Morrison 1987). They also lead to problems
in deciding which crossproducts to use and in hardware implementation. Another group
(Kuperstein 1987) suggests that true zero-to-infinity inputs should be coded in a kind of
logarithmic/decibel scale, which is probably an excellent way to preprocess many forms
of data (It is already common in SPR to represent an intensity I as log(I), but the idea
here is to code an intensity input into several neurons, which respond logarithmically in
their major range but saturate outside that range; different neurons would have different
but slightly overlapping regions ) A third group suggests the use of neural networks with
simultaneous-time recurrence This would allow a network to implement the idea of a
relaxation algorithm easily and naturally, without time-lags It is possible to implement
backpropagation very efficiently for such a network (Werbos 1988b), but the
mathematics are significantly more complex than they are for simple ordered systems.
It is unknown as yet how useful this feature is in practical applications, and it is also
unknown exactly what the brain is doing along these lines.

One final way to achieve parsimony is simply to prune out unnecessary weights in
an ordinary feedforward network. After all, this worked very well for Guyon et al
(1989). The brain itself is clearly a highly sparse structure  Werbos (1987) presented
a few preliminary thoughts on the subject of automatic pruning (and regrowth), but a
large number of researchers -- including DeClaris, McAvoy and DeFiguerido (1990) -
claim success in real applications, based on approaches which should be published in the
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next year or two. From a statistician’s point of view, this is clearly just a nonlinea;
extension of the well-known field of stepwise regression, which statisticians like
Dempster (1977) discussed long ago. Sparse networks can be run on chips simply by
setting a lot of weights to zero; however, there may be more efficient ways to implement
this idea in future generations of chips or optical computers,

Many advocates of neural networks look to ANNs to provide a high degree of fault
tolerance. Unfortunately, a high degree of parsimony tends to reduce fault tolerance,
ceteris paribus. It may well be that certain neural network structures and training
regimes (e.g, adding noise to hidden nodes which are otherwise constrained to be
similar, to simulate faults during training) may help reduce the degree of conflict
between these objectives, but this is basically a topic for future research.

Statistical Issues and Bedrock and Associative Memory

The preceding parts of this section -- like a majority of the work in neuroengineering
and SPR -- is rooted in the classical concepts of maximum likelihood theory and
Bayesian estimation theory (Wonnacott and Wonnacott 1977). In those theories, one
begins by assuming that the classification model (or neural network model) is "true" for
some values of the parameters (or weights) One searches for those values of the
weights which have the maximum probability of being the true weights, More precisely,
one searches for the values of the weights with the highest conditional probability of
being true, conditioned upon the training data One exploits Bayes’ Law to deduce:

Pr(data | weights) Pr(weights)

Pr(weights | data) Pr{data)
r(data

(20)

The first term on the right -- Pr(data|weights), the likelihood term - is a straightforward
computable function of the model, the weights and the data, so long as the model does
include a model of the (probability distribution of the) error disturbances When errors
follow a normal distribution, independent of each other, then maximizing the likelihood
term is essentially equivalent to minimizing square error. The term in the denominator -
- Pr(data) -~ does not affect the relative choice between different sets of weights, and
may be ignored here. The other term -- Pr(weights) -~ is the prior probabilities term,
which has been an embarrassment to students of learning and statistics ever since the
time of Immanuel Kant or earlier; it represents our knowledge about likely values of the
weights before we have access to any empirical data.

In maximum likelihood theory, we usually assume that all possible sets of weights are
equally likely apriori Thus to maximize equation (20), we simply maximize the
likelihood term Some engineers have aigued that this procedure is firmly grounded in
theory and scientific, because it leads to precise and predictable results without relying
on subjective things like prior probabilities, unlike the more "ad hoc" methods used by
some people in SPR and neuroengineering In certain fields, like economics, the
maximum likelihood approach is indeed more practical in most cases than explicit
Bayesian regression (where the computer asks the user to provide Pr(weights)), because
it is easier for a human to trade off empirical data versus prior information in his head
when he knows which is which
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Unfortunately, the assumption of equal probabilities aprior.i is still an a.Ibitrary
assumption, with no more guarantee of. truth than‘ any other arbitrary assumption one
might make. The real world is far messier. Lpast squares can be very useful, when the
training set is larger than the number of welg.hts, as discussed abpve; however, as the
training set grOws smaller,‘or the numb.er of var1able§ Srows la‘rger, it becorr{es’ ever more
important to make our priot assumptions as real1§t1c as possible. No one is immune to
this problem -- engineers, statisticians, neuroengineers ot SPR practitioners. Neuro-
engineers and SPR practitioners have fa‘ced up to this ‘problem more than most groups
have, because we both deal so often with enormous input vectors. Likewise, for very
casons, we need to face up to the issue which statisticians call "robustness” -- the
problem of how to work with m.odels or networks which are unavoidably oversimplifi.ed
representations of external reality Actually, these problems are central to econometrics
45 well, but econometricians have many ad hoc fixes available (Werbos (1990c).

For larger training sets, these issues of prior probabilities and robustness help to
explain the need for parsimony. Long ago, philosophers like the Reverend Occam
argued that humans would be unable to learn from experience without somehow giving
greater credence 10 a simpler model, rather than a complex model, in cases where both
fit experience equally well Solomonoff (1964) formalized this notiomn, and showed how
it is still consistent with notions such as "open-mindedness" which we would want our
Jearning systems to possess. Later workers in complexity theory formulated notions of
estimation which are closely related or even equivalent to Solomonoff’s proposal, and
are working to refine these concepts in the context of neural networks. Sara Solla of
AT&T and Papantoni-Kazakos are working along these lines, but the subject is quite
difficult. (Tishby, Levin and Solla 1989, Papantoni-Kazakos 1989).

In the limit as the training set becomes extremely small, the best way to predict the
classification of a new pattern is usually by analogy (If the input vector is really just one
number, one usually relies on classical interpolation, which is similar,) This helps to
explain the widespread popularity of nearest-neighbor schemes in SPR, and the
popularity of associative memory approaches to supervised learning in ANNs. (Kosko
has called these systems "heteroassociative memory”, and stresses that they converge
faster than backpropagation.) The same principle is at work in both fields.

Classical statisticians have suggested that such situations can still be understood
within the scope of maximum likelihood theory One can formulate a model which
predicts new patterns to be similar to their neighbors, plus noise, and then use
maximum likelihood methods One could even use such methods -- with backpropagation
- to adapt a similarity metric, which may even be modeled as a function of system inputs
rather than a fixed matrix. To make this approach more consistent with conventional
modeling, we could simply use this arrangement to forecast the errors of a more con-
ventional least-squares forecasting network Werbos (1977) described this general
approach, under the name of "syncretism," but no one has had a chance to pursue it as
yet. A good adaptation of the similarity metric would still require a large database, but
the approach may be of value in cases where similarity-based forecasting works better
than ordinary approaches Apriori probabilities would still affect the results, becanse of
the importance of the initial (or default) value of the similarity metric,

There is an interesting similarity between syncretism, on the one hand, and variations
of basic backpropagation in which different weights use different learning rates to

similar r
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respond to gradients Both the weight-specific learning rates and the corresponding
similarity metric terms serve as measures of "attention" -- the degree to which a specific
input is used to explain any errors in classification Most biologists believe that time-
varying attention in some form is essential to learning in higher organisms.

Syncretism is simply one of many ways to try to come up with a more rational,
flexible and technically sound way to reconcile the capabilities of nearest-neighbor
classification and least-squares classification. There are many other ways, and there is
much room for further research, both in the SPR and ANN communities. Werbos
(1987) described another such approach, which generalizes the classical statistical
method of ridge regression (Dempster 1977), in which the norm of the weight vector is
added to the error function E(t).

Among the host of associative memory and vector quantization methods actually
used in engineering applications, the ones encountered most often are related to the
CMAC architecture (Albus 1971) and the ideas of Kohonen (1988). Lukes et al (1990)
used a simple associative memory for a simulated control application, and Miller (Kraft
and Campagna 1990) used a CMAC to control a physicat robot. Both researchers have
reported informally that they have successfully implemented differentiable versions of
these designs, which yield more accurate results and open up new applications. (For
example, one can build a two-layer structure in which the upper, fast layer is an
associative memory, and the bottom layer is adapted by backpropagation. This would
fit the idea that humans learn new patterns quickly and new features more slowly.
There are important control applications as well) Nestor, Inc, of Providence, Rhode
Island, has also found many clients for its memory-based supervised learning system,
Fahlman (1990) has developed a new learning system which is intermediate in spirit
between backpropagation and associative memory.

4. Dynamic Systems and Control

So far we have discussed pattern recognition as a static problem, mapping a vector
X(t) to a vector Y (1). In actuality, there are many classification problems -- like speech
or target recognition in a moving viewscreen -- which are essentially dynamic in nature,
Furthermore, pattern recognition in mammals occurs in subsystems, within the context
of a larger system (brain) whose overall function is one of control. For this reason, the
most important area for fundamental research in neuroengineering involves systems of
ANNGs for control or system identification applications. This work has been mapped out
very carefully and reviewed at length (Werbos 1990b, Miller, Sutton and Werbos 1990).

How does the work in that area impinge upon pattern classification?

At the simplest level, ANNs for speech recognition and the like need to be more
than static maps, in order to classify speech accurately. It is important that the
classification at time t reflect information from earlier times as well. In fact, it is very
easy to modify feedforward networks to include time-lagged inputs or memories (a form
of "recurrence"), and to use backpropagation in training them. Werbos (1990a) gives a
tutorial on how to do this, using the same methods originally discussed in Werbos (1974).
Lang et al (1990) have reported reasonable success in classifying speech based on a
special case of this general approach. Neural networks with this kind of recurrence are
essentially just a nonlinear generalization of the ARMA models which have been used
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in the past in speech recognition.' ' chkwood Reed (1990) -- who organized the
interagency group on speech recognition in the Umted States government -- has argu@d
that conventional approaches to speech recognition have reached a plateau, from which
large improvements will be ever more difficult; he has argued that neural networ.ks
chould be able to get beyond that plateau, after a few years of catching up. Carnegie-
Mellon -- where Lang and Waibel are working -- also maintains the best performing

ublic domain speech recognition programs based on conventional methods (hidden
Markov models, HMM), according to some observers; these methods are said to be
roughly as good as the best proprietary packages, and should make an excellent basis for
comparison as this work progresses.

In actuality, there are certain difficulties in applying these methods directly to speech
data. The information available in speech classification is far less than the information
available in the entire speech process; in other words, the sequence of speech labels has
less information content than does the entire time-series of speech, by far. Thus from
a statistical point of view, it may be desirable to try to exploit the information (variance)
in the speech data itself by developing models of the speech process. In effect, this is
one more case where an unsupervised learning strategy can serve as a feature generator
(at the very least) for a classification process One can do this dynarmic modeling, once
again, by using backpropagation through time, where the target vectors are the state of
the speech process at time t+ 1. Considerably more robust results can them be had by
using more sophisticated approaches (Werbos 1990b), which tend to be better in
generating long-term memories Levin (1990) has shown how a hybrid HMM/neural
system can be built, which can always outperform conventional HMM, by treating part
of the recognition problem as a control problem; this could be extended much further,
using advanced neurocontrol methods,

In those recognition problems which do feed directly into a control problem, there
may be ways to use the control information (Werbos 1987) to focus attention on key
variables, and improve the real-world value of the recognition subsystem; however, I am
not aware of any ANN implementations as yet of this idea.

5. Conclusions

ANNs and SPR are both large, diverse areas of research. They both share a large
number of paradigms, such as least squares estimation, exploitation of symmetry,
clustering, and so on ANNSs in pattern recognition may be viewed as a subset of SPR,
a subset which is carefully designed so as to allow maximum computational efficiency --
something which is of enormous importance to most practical applications, ANN
researchers have also carried out efforts to understand fixed pattern recognition systems
in the brain, which can be useful as preprocessors for ANNs and SPR both. ANN
1esearchers also try to maintain links with our understanding of learning in biological
brains -- a subject of enormous importance In recent work, many ANN researchers
have focused on dynamic systems and control problems, which could allow new and more
powerful approaches to pattern recognition as well,
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Abstract

Small training sample effects common in statistical classification and artificial neural
network classifier design are discussed A review of known small sample results are pre-
sented, and peaking phenomena related to the inciease in the number of features and the
number of neurons is discussed.

1. INTRODUCTION

Artificial neural networks are now widely 1ecognized as a useful classification tech-
nique for pattern recognition [31] A typical artificial neural network (ANN) classifier (a
feedforward network) consists of several layers of neurons (see Figure 1) Each (say **)

input layer hidden layers output layer

Figure 1: An ANN With Two Hidden Layers

1Research supported in part by NSF grant CDA-8806599
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newion has several (say d) inputs 1,22, ..., T4, one output y;, and performs an operation

d
v = [i(> wijz; + wio), (1)

7=1

whete f; is a nondecreasing and differentiable activation function, and w;; is the weight
assigned to the j** input of the i newron Examples of such activation functions are
haid limiting or soft limiting threshold functions and Huber’s and Tukey’s functions [33].
The neurons in the input layer correspond to the components of the feature vector to
be classified. In the feedforward network which will be discussed here, the inputs to the
neuions in each successive layer are the outputs of the preceeding layer The neurons in
the output layer are usually associated with pattern class labels.

The important design issues in building an ANN classifier are to find an appropriate
network topology (number of hidden layers, number of neurons in each layer) and to learn
the weights w;; for each neuron from the given training samples. If an one-layer ANN
classifier with a single neuron and hard limiting threshold activation function (a simple
perceptron [46]) is used, then a linear discriminant function is realized and the resulting
decision surface is a hyperplane [32] On the other hand, a multilayer ANN with soft
limiting threshold activation function can realize an arbitrarily complex decision surface
6,17, 30, 31, 53]. A number of methods exist to train an ANN {18, 31, 32, 47, 52] These
training methods differ in the error function and in the optimization technique-used to
determine the weights in the neural network Let y; be the actual output and o; be the
desited output of the 1** neuron in the output layer of ANN. The most popular error
function is the mean square error function defined as

n P

MSE = iie(w] —o0i) = 2 > (ysi — i)’ (2)

j=11=1 j=11=1

where n is the number of training samples, p is the number of neurons in the output layer,
and () denotes the erzor function

The ANN classifier can be analyzed as a special case of statistical pattern classifiers
which are “data-driven”, in the same spiit as Parzen-window classifiers and K-NN classi-
fiers [8] Tt is well known that, in a finite training sample case, the expected classification
etror EPw of a statistical pattern classifier can increase as numbe:r of features are in-
creased due to the inaccuracies in estimating the parameters of the classifier The finite
number of training samples causes the following practical difficulties and constraints in
designing a classifier [3, 8, 9, 19, 21, 24, 37, 42]:

1 The resubstitution error 1ate has an optimistic bias.

2 A peaking in classification performance is often observed as the number of features
increases

3 A simple classification algoiithm (e.g., a linear discriminant function) may outper-
form a more complex classification algorithm (e g., a quadratic discriminant func-
tion).




35

4 A nonparametric decision rule may outperform a parametiic decision rule even if
the assumed parametric model is correct

5. There is an optimum value of K in the K-NN decision rule

6. The choice of window width is critical in the performance of a Parzen window
classifier.

7 In the case of unequal numbers of training samples per class, the decision boundary
may need to be “balanced”

We believe that ANN classifiers will also encounter similar difficulties and constraints
when the number of training samples is small The purpose of this paper is to analyze
the small sample size effects that occur in the design of ANN classifiers

In Section 2 we present some known results concerning the influence of the number
of training samples on the accuracy of several well known parametric and nonparametric
statistical classifiers. These results will be useful in analyzing similar small sample size
effects for ANN classifiers. In Section 3 we discuss the classification accuracy and training
time of ANN classifiers Section 4 deals with the problem of estimating classification
error. In Sections 5 and 6, we analyze the “peaking” phenomena which arises due to an
increase in the number of inputs and the number of hidden layer nodes in multilayer ANN
classifiers Section 7 consists of discussion, and suggestions for future research.

2. FINITE SAMPLE PROBLEMS IN STATISTICAL PATTERN
RECOGNITION

One of the most popular and simplest statistical pattern classifier is the Fisher linear
discriminant function (LDF)

g(z) = Z w;z; + wo, (3)

7=1

whete z1, 2, ,74 denote the d featutes, and wg, wy, . ,wq are constants

For a two-class problem, if g(z) > 0 then the feature vector z = (z1,%s,.. ,z4)7 is
allocated to class w;, otherwise to class 73 The linear disciiminant function linearly
maps the training patterns from each class on the real line defined by the weight vector
w = (wo, w1, Wy,...,wq)T. Fisher [11] chose the weight vector such that the mean squared
deviation of the projected training patterns around their class mean vectors (within-
class scatter) is minimized with respect to the separation between the projected class
mean vectors (between-class scatter). The weights of this LDF are identical to those
obtained from the “plug-in” decision rule for the case of two Gaussian class-conditional
density functions when the unknown mean vectors and the common covariance matrix
are replaced by their maximum likelihood estimates The same weight vector can also be
obtained by the least-mean-square-error adaptation algorithm with an equal number of
training patterns from both classes [14, 26] Therefore, the linear disctiminant function
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is, in fact, an one-layer perceptron trained by the standard delta 1ule learning algorithm
[47]
The expected probability of misclassification, EPp, of LDF can be written as,

EPy = iP{g(z) < 0z € m} + :P{g(z) > Olz € 72}, (4)

where 1 and go are prior probabilities of classes 7y and 7, respectively The expected
probability of misclassification, £ Py, of the LDF depends on the number of training
samples per class N, and Ny , dimensionality of the feature vector d, and the asymptotic
probability of misclassification, P,

Foo = i, PP

It is not easy to obtain a simple analytic expression for E Py, so Raudys and Pikelis [43]
provided a table showing this dependence for various values of N, d, P, and the Maha-
lanobis distance between the two class-conditional density functions. The relative increase
in the expected probability of misclassification (EPy/Pw) increases with an increase in
dimensionality and the asymptotic probability of misclassification, and decreases with an
increase in the number of training samples.

Pikelis [35] compared a number of asymptotic expansions of the expected probabilty
of misclassification for LDF and found that Deev’s expansion [7] is the most exact. In the
case of Gaussian class-conditional density functions with a common covariance matrix,
the second term on the right hand side of Equation (4) can be computed as follows [7]

(5)

No=Np d—1 , 2(d=1) Nj+Np—d—1
_é I+ 3R + n N2
2 [NytNa-1 N1+N2ﬂ(1+N1+N2 d—l) ’

P{g(X) > 0|X € m} = ¢{
MitN,—d Ni+1V, NN, 82

where N; is the number of training samples from class 7y, ¢(c) is Laplace’s probability
integral and 67 is the squared Mahalanobis distance, 6> = (u1 — p2)t " — p2) The
first term in Equation (4)

P{g(X) <0|X € m} =1— P{g(X)>0}X € m}

can be obtained from Equation (5) by interchanging N; and N;

Equation (5) shows that if d — (N + Na —2), ie when the estimated covariance
mattix becomes singular, the misclassification error increases enormously Due to the
nonlinear nature of the Laplace integral ¢(c), the term -

Ni—N;\ [d—1Y . .

will increase the classification error when N, # N This degradation in classification per-
formance due to unequal numbers of training samples from different classes is significant
when a quadiatic dicriminant function is used in high dimensional cases [38, 42]

In the standard delta learning rule, the weights wo, wn, . ., wq of the linear discriminant
function are found by minimizing the mean-square-error (Equation(2)) Other, mote
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complicated, ciiteria can also be used [48, 49, 50]. For example, a minimization of the

modulus criterion,
e(e) = lel; -

in a second-order perceptron (where new derived features involving quadratic or exponen-
tial terms are used) can 1esult in an optimal Bayes decision boundary [48]

In many learning algorithms, the weights wo, w, .. ,wq are changed only when a train-
ing vector X, is incorrectly classified (error-correction algorithms). For example, in the
relaxation algorithm REL,

)

c?, when X, is incorrectly classified, )
0, otherwise,

and in the fixed increment algorithm FIX

| lel, when X, is incorrectly classified, ©)
e(e) = 0, otherwise

When an empirical probability of misclassification is minimized then we use a hard-
limiting threshold function

e(c) = { 1, when X, is incorrectly classified, )

otherwise.

Smith [49] derived the following approximate formula to calculate the expected prob-
ability of misclassification of MSE, REL and FIX adaptation algorithms for linear dis-
criminant functions

a o 1 @ af g
BPf = P% + 35(A° + BX(d - 1)), (11)

whete parameters A% and B* depend on the type, ¢, of the error function (MSE, REL,
FIX) and on the asymptotic probability of misclassification (see Table 1) Consider a

Table 1: The coefficients A and B in Equation (11) [49]
Algorithm MSE REL FIX
§ P A B A B A B
1.0 0.309 0880 4400 0886 .0441 0152 505
2.0 0.159 1210 2420 1400 2610 1960 317
4.0 0.023 .0540 .0675 .1680 .1820 2180 232

classification problem for which the Mahalanobis distance § = 2, dimensionality d=10, and
training sample size N = Ny = N, = 20 , then Equation (11) results in EPY5E = 0.2165
for the standard delta rule with MSE criterion (the exact value from Pikelis’ table [35]
is 0.219 and Deev’s [7] main term in Equation (5) gives 0.217 ); EPFEE = 0221 for
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the relaxation errox criteria (Equation (8)), and EPEX = 0235 for the fixed increment
ariteria (Equation (9)). With an increase in the Mahalanobis distance é {01 a decrease
in the asymptotic probability of misclassification P, ), the role of training samples in
determining the weights of the linear discriminant function is diminished and, as a result,
the differences between the expected errors EPYSE EPEFL and EPE™ increase When
one uses minimum empirical classification error criteria (Equation (10)), the classification
error is significantly higher than that of the classifiers which use the MSE, REL and FIX
criteria [51] Therefore, the standard delta rule where the mean-square-erzor criterion is
minimized is the most preferable learning rule to design ANN classifiers in terms of its
sensitivity to the training sample size

The above results concerning the linear discriminant function and the mean-square-
error delta adaptation algorithm are valid when only a single-layer ANN performs the
classification, and when a hard-limiting threshold activation function is used in Equation
(1). When one uses a soft limiting activation function in a two-layer ANN, then Equation
(1) in fact performs a feature extraction procedure In other words, the outputs of the hid-
den layer define a new feature space where simple classes can sometimes be comparatively
easily separated by adjusting the weights of neurons in the output layer

Tt is well known that a multi-layer ANN classifier can form complex decision boundaries
similar to nonparametric Paizen window or K-Nearest Neighbor classifiers [17, 30, 31]
Therefore, a knowledge of the sensitivity of the nonparametric statistical classifiers to the
finiteness of the training sample size can serve as a guide in the analysis of multi-layer
ANN classifiers Unfortunately, very little is known about the behavior of nonparametric
statistical classifiers in the finite sample case

Raudys [38] obtained some results by means of simulation studies for nonparametric
Parzen window classifiers. The classification problem involved two multivariate Gaussian
populations with identity covariance matrices. He used the following window function:

X - X,
A

(X - Xp)j (X — Xp)

. b (12

K( Y= C *exp{—
where ) is the window width, X, is a training sample, and C is a constant

The 1elative increase in the classification error (EPy/Po ) is presented in Table 2
for two values of the smoothing parameter (A = 0.1,0 8). The increase in the error
rate of the Parzen window classifier to the training sample size drops when the value of
the smoothing parameter increases. When A — 0, a Parzen window classifier with the
Gaussian window function performs no “smoothing” and its petformance becomes similar
to an 1NN classification rule Thus, values of k¥ = EPyn/Pe presented for A = 01 aie
practically the values of « for the 1-NN classifier Note that the increase in the error rate
of the nonparametric statistical pattern classifiers with an increase in number of features
d is more significant than for parametric MSE adaptation rule [42] The decrease of
the classification error with an increase in the training sample size is also slower for
nonparametric classifiers. Therefore, in order to design complex decision boundaties in
a high dimensional feature space with the help of nonparametric statistical classifiers, a
very large number of training samples is required. We suspect that in a two-category
case, the complex multi-layer neural network classifiers will also have similar behavior.
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Table 2: The values of the relative increase in the expected probability of misclassification
x = EPy/Ps of Parzen window classifier for two Gaussian classes with common identity
covariance matrices [38].

N d=3 N d=5 N d=8
Py 01 0.01 Py 01 001 Py 01 0.01
6 2.56 4.65 6 2.56 4.65 ) 2.56 4.65

5 1907/196 353/351 3 215/212 355/351 5 228226 499/421
3 190/180 292/286 5 198/1.94 324/315 8 213/205 348/341
6 178/168 261/251 10 187/180 3.07/287 16 195/1.90 318/308
15 164/146 232/218 25 171/158 256/2.38 40 191/176 3.72/246
30 150/123 215/171 50 1.66/144 216/190 80 184/165 2.28/2.10
150 1.39/1.06 1.53/1.20 250 1.62/112 1.86/1.27 400 1.81/129 214/1.54

The search for the appropriate aichitecture and the weights of an ANN classifier is an
optimization problem for a given error function. This optimization problem itself in fact
involves selecting a variant of an ANN classifier among an immense number of all possible
ANN classifiers with a given architecture Raudys [41, 44, 45] analyzed a problem where
the best model needs to be selected from an infinite general population (M) of the models.
Let the i model M; € M be characterized by some value of the error function P, and
there exists an estimate P, of P, It is assumed that P, P%,. . are random variables with
a density function f(P) Similarly, pl, pz, are random variables with the conditional
density function f(P;|P)) Due to inaccuracies in the estimates Py, P, ., the selection
of the best model according to the estimates P1, Py,. 1esults in an increase in the value
of the true error function Pi.. compared with the value of the error Pigeq in an ideal
selection procedure which uses the true values Py, Ps, .

In Table 3 we present estimates of the relative mean increase in classification error
& = EPiye/ E Pigear obtained for a mathematical model when true probabilities of misclas-
sification Py, P, . have a generalized Beta distiibution with parameters Ppin, Praz,y =
40,7 = 4 and the best model is selected from 10° models randomly chosen from the gen-
eral population M [41] The estimates P, P,,  were obtained by using n test samples,
where nlf’,- is Binomially distributed with parameters P; and n. This methodology was
also applied to the problem of selecting the best subset of features [45]

The theoretical values of the relative increase in the classification error due to an
inaccurate selection of the best model provide only guidelines for 1eal model selection
tasks, They show, however, that when the sample size is small, the increase in the true
classification error is rather significant and there is only a small chance that a good
model will be selected. The same conclusion is valid for the ANN optimization problem
The petformance of the complex multi-layer ANN classifier trained on a small number
of samples will differ significantly from that of the ANN classifier ideally trained on an
arbitraiily large number of samples

Unfortunately, the above theoretical model does not allow us to evaluate the influ-
ence of dimensionality, number of hidden layers, and other parameters which define the
architecture of ANN classifiers Table 3 also shows that the relative inctease in the clas-
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Table 3: The values of the relative increase in the classification error k = EPyye/FE Pigeal
when inexact sample-based estimates of the classification error [41] were used to select
the best model.

Pmin/Pma:v
N 70.2/0.3 0.1/0.2 0.03/0.5 0.01/0.1
25 23 2.7 45 8.9
50 21 2.5 38 71
100 1.8 2.2 31 52
200 1.5 18 2.4 38
500 1.3 1.5 1.7 2.6

sification erzor due to inexact sample-based optimization criterion depends on the error
1ate of the optimized classifiet Ppin. When Pri, is small, the relative increase is large.
The absolute value of the increase in the classification error is of the same order as the
standard deviation of the estimates ﬁl, P,, . used as the criterion to find the best weights
of an ANN classifier

3. THE CLASSIFICATION ACCURACY AND TRAINING TIME OF
ARTIFICIAL NEURAL NETWORKS

Multi-layer neural network classifiers represent a wide class of classification rules. By
changing the shape of activation function f( ) in Equation (1), and the architecture of
the ANN, one can obtain classification algorithms with different derived features.

It is generally known [31] that traditional multi-layer artificial neural network classi-
fiers trained by the back propagation algorithm require a great number of sweeps of the
training sample data in order to minimize empirical classification error

For a given pattern recognition problem and a given set of training samples, the
complexity of the decision region required to obtain a good classification accuracy of the
training samples is fixed On the other hand, an ANN with a large number of hidden
layers and a large number of neurons in the hidden layers will have more degrees of
freedom and will require less accurate determination of the weights to achieve the desired
classification accuracy. Therefore, for a given set of training samples, it will be easier
to train a complex neural network than a simple one. This observation is supported by
numerous experimental studies [2, 16, 28, 34, 47]. In an analysis of the XOR problem
with a two-layer neural network, Rumelhait et al. [47] propose an empitical equation to
determine the number, S, of presentations of training samples as a function of the number

H of the hidden nodes:
S =280 — 33log, H. (13)

Kung and Hwang [28] present a graph of the convergence time (i.e., number of training
sweeps) versus the number of hidden nodes per layer when various numbers of hidden
layers ate used There were n=8 pairs of randomly generated 12-dimensional input and
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7.dimensional output training patterns They observed that a network with more hidden
nodes per layer and with more layers led to a smaller number of training sweeps. They
also noted an abrupt reduction in the number of training sweeps around n-1 hidden nodes
(n is the number of training patterns). This observation agrees with a well-known fact
in statistical pattern recognition theory, that in a d-dimensional case, a hyperplane can
discriminate perfectly any set of d+1 points with arbitrary class labels [4], Therefore,
when the number of hidden units is equal to n-1 there is no need to adjust the weights of
the hidden layer units! We 1epeat the experiment on two-layer ANN classifiers and show
the result in Figure 2.
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Figure 2: The convergence time (i e , number of training sweeps S) versus the number of
hidden nodes per layer in the two-layer ANN classifiers.

With an increase in the number of training samples, the complexity of the decision
boundaries required for perfect discrimination of the training samples increases There-
fore, “training times are typically longer when complex decision boundaries are required
and when networks have more hidden layers” [31]

We pointed out in Section 2, that in selecting the best classifier on the basis of in-
accurate sample-based estimates Pl,pg, .., the difference between the true (test sample
estimate) classification error of the “best” classifier and the ideal one (obtained when
selection is performed on the basis of exact values Pi, P,, .. ) decreases with an increase
in the number of training samples used to obtain the estimates pl,l%, . Besides the
true classification error Py .. and the ideal classification error Pigeq in the selection pro-
cess, there ex1sts an appatent errol Popparent, 1.€. the minimal value among the estimates
P, by, , Prn (here m is the number of classifiers compared empirically). The mean value
of the apparent e1101 (EPypparent) is less than that of the ideal ertor EP,ge The differ-
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ence, (F Pideal — EPopparent)s decreases with an increase in the training sample size used
to obtain estimates P, b, .. ,pm In the best classifier selection problem, while using the
random optimization search procedure, the values of the true, ideal, and apparent errois
depend on the number m, ie, the size of the set from which the “best” classifier is se-
lected All three error rates decrease with an increase in m; the apparent error decreases
most quickly, and the true error most slowly (see, for example, curves in Figure 3 ob-
tained for the Beta-Binomial distribution model discussed in section 2). In experiments

30

error rate (%)

number of classifiers, m

Figure 3: The mean values of the true error E P e (1,1), ideal error EPigeat (2) and
appatent er1or £ Popparent (3,3) in best classifier selection versus number, m, of classifiers
compared (Beta-Binomial distribution of (P;, P;) [41]).

with feature selection, when the number m is sufficiently large, the true error ceases to
decrease, and merely oscillates [41] Therefore, with finite training sample size, there is
no need to analyze a very lazge number of classifiers if they were randomly chosen from
the set of all possible classifiers The same conclusion can be drawn for ANN optimiza-
tion The optimization itself is a selection of the best classifier from the infinitely many
possible classifiers with a given architecture Simulation studies confitm this theoreti-
cally obtained conclusion In Figure 4, we present two such pairs of graphs obtained by
means of simulation Similar graphs were obtained by le Cun et al  [5] while solving a
handwritten digit recognition problem by means of a 3-layer artificial neural network,
Therefore, in the ANN training problem, an excessive amount of optimization of the
neural network weights is not necessary if the training sample size is small The opti-
mal number of sweeps requited to minimize the true classification error (the test sample
estimate) depends on the number of training samples. It increases with an increase in
sample size; however, theoretically-based recommendations for training effort required in
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60

error rate (%)

number of sweeps, S

Figure 4: Trueerror (1(B),1(C)) and appazent error (2(B),2(C)) versus number of sweeps
in the back propagation algorithm (H = 4,d = 12, N = 100, two spherically Gaussian
populations N(p;, I62) 5 pi = (g1, ., pia)7; data set B pyy = (=1)1/5,62 = 1,1 = 1,25 =
1,. ,d; data set C: py = pg, 67 = 41,1 = 1,2)

practical problems do not yet exist.
The analysis presented above shows that instead of minimizing the apparent (training
sample) erro1, one should minimize the true (test sample) error

4. ESTIMATION OF THE CLASSIFICATION ERROR

A number of techniques exist to estimate the classification error in statistical pattern
recognition [13, 15, 20]; It is well known that the resubstitution estimate is optimistically
biased Use of the resubstitution method to estimate error 1ate of an ANN classifier in
the small training sample case will also result in a biased estimate Therefore, in a finite
design sample case, the hold-out method (where independent test samples are used to
estimate the classification error) is preferable.

Dutta and Shekhar [10] present the following resubstitution (Pg) and hold-out (Py)
estimates, obtained for a three-layer ANN classifier with 6- and 10-dimensional feature
vectors when the total number of training samples from 4 classes was 30 and the test
sample size was 17

Pp =020 for d=6 and Py = 0 076 for d=10,
Py =0.235 for d=6 and Py = 0.176 for d=10
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We notice a significant difference between Pp and Py in the 10-dimensional case. The
difference (P]q - IﬁR) can serve as a criterion to evaluate the sufficiency of the training
sample size. Thus, for d=6 we can conclude that the training sample size is sufficient,
since Pr = 02 and Py = 0235, and for d=10 the training sample size is not sufficient,
since Pp =0 076 and Py = 0.176.

It is important to remember that the estimates P}g and Py ate random variables Their
standard deviations can be approximately evaluated by the following equation [12, 36, 39].

SD(P) = ER(-EF) (14)
n

where E denotes the expection operator and ny is the number of samples used to obtain

the error estimate P, (hete e = R or H)

In solving practical pattern 1ecognition problems, a researcher needs to select the
“hest” classifier and evaluate its performance empirically. Even when independent test
samples are used to estimate the classification error of the best classifier, the result will
still be optimistically biased [41, 44]; the test samples take the 10le of additional training
samples If several classifiers are evaluated and compared, then the bias mentioned above
can become significant; the bias can exceed the standard deviation (Equation (14)) of the
estimate Py used to select the best version [45]. Therefore, one has to remember that in
evaluation of the performance of the ANN classifier, an independent test sample, never
used before, should be used to obtain an unbiased error rate

5. PEAKING IN THE CLASSIFICATION PERFORMANCE WITH
INCREASE IN DIMENSIONALITY

It is well known that introducing additional features never increases the classification
error of the optimal Bayes classifiet However, in a finite training sample case, or when
one uses an inapproptiate statistical model for the real data, the addition of new features
can actually increase the classification error. The additional discriminatory information
provided by the new features is outweighed by the increase in the inaccuracy of parameter
estimates needed in the classification rtule. Thus a peaking phenomenon is observed:
addition of new featuzes decreases the classification error at first, then the error levels
off, and begins to increase [1, 8,9, 19, 22, 24, 29, 37, 40] The peaking phenomenon is
also observed in the design of ANN classifiers A single linear threshold element trained
by the delta rule in a finite training sample case will have the same behaviour as the
standard linear discriminant function. In the latter case, the optimal number of features,
dopt, is a function of the asymptotic probability of error Poo, the number of features d, and
the training sample size N [22]. If “best” features (providing the most discriminatory
information) ate added first and these best features are significantly better than the worst
ones, then dop; will be small If the discriminatory information provided by the individual
features is approximately equal, or if we include them in the classifier in a random order

then dop = N — 1 [22]
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When one uses a piecewise linear classifier with H linear hyperplanes, then the “effec-
tive” number of training samples used to determine the weights of each linear boundary
segment is approximately [23]

N* = N/H, (13)

where N is the number of training samples per class. A two-layer neural network classifier
with a hard-limiting activation function gives a piecewise-linear decision boundary. One
can, therefore, expect that when His small, the number of observations used to adjust the
weights of each hidden layer element will be approximately equal to N* = N/H, where
H is the number of neurons in the hidden layer

In Figure 5 we present several graphs that illustiate peaking phenomena. A two-layer
ANN classifier with H neurons in the hidden layer was trained by back propagation 1ule
with a sigmoidal activation function and was used to classify two spherically Gaussian
pattern classes. A set of 1000 independent test samples was used to estimate the error rate
of the ANN classifier Graphs were obtained by averaging the results of sixty Monte Carlo
trials with different training sample sets of fixed size and different initial weights. Similar
results, which demonstiate the peaking with increase in dimensionality, were obtained by
Kohonen et al [27] Graph B in Figure 5, obtained for a case where the discriminating
power of the features drops very slowly with the increase in the number of features, does
not exhibit the peaking phenomenon
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Figure 5: Expected probability of misclassification E Py versus dimensionality d (Two
classes of spherically Gaussian data N(u;, I62), pi = (g, ., pa)7; data set A: 6; =
Ly = (=1)4,2 = 1,2;5 = 1,. ,d, H = 2; data set B: §; = 1, p; = (=1)'//7,
i=1,27 =1, ,d, H=2; dataset C: py = 1,67 =4"14=1,2, H =8)
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6. EFFECT OF THE NUMBER OF NEURONS IN THE HIDDEN LAYER
ON THE PERFORMANCE OF ANN CLASSIFIERS

Tt is obvious that the classification error of an ideally t1 ained neural network classifier
cannot be increased by introducing new hidden layer neural elements. With an increase
in the number of hidden layer elements, the classification error of the ideally trained ANN
classifier, Pao, will fall sharply at first, then more slowly, and eventually, the addition of
new elements will not effect P, However, for finite number of training samples, numerical
evaluations indicate the existence of the peaking phenomenon as the number of neurons in
the hidden layer increases Several graphs that illustrate the peaking phenomenon while
increasing the number of hidden neurons for two classes of Gaussian data are presented
in Figure 6 Khotanzad and Lu [25] trained a two-layer ANN classifier to recognize the
English alphabet Training data consisted of differently positioned, scaled, and oriented
64 x 64 binary images of each of twenty six English characters, 12 images per character.
The performance of the ANN classifier peaked at approximately 50 neurons (2% error) in
the hidden layer, and with an increase in H, saturated at an error rate of 5%
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Figuie 6: Expected probability of misclassification £ Py versus the number of neurons Hin
the hidden layer (Two classes of spherically Gaussian populations, N(0,1 471), 1=1,2,
nurmber of features d=8, training sample size N=10,50,100)

7. DISCUSSION

Artificial neural network classifiers can be analyzed as a special class of statistical
pattern recognition algorithms In the case of small number of training samples, several
unexpected and counterintuitive behavior can sometimes be observed in the design of the
ANN classifiers Some of these are listed below
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1 Increasein the true (test sample) classification error due to small size of the training

samples;
2. Optimistic bias in the apparent (training sample) error rate;

3. Increase in the number of sweeps required to minimize the true and apparent classi-
fication error rates of the ANN classifier with an increase in the number of training

samples;

4 An optimistic bias in the error 1ate of the best version of an ANN classifier selected
fiom several competing models based on small number of test samples;

5. A peaking in classification performance with an increase in the number of features
and the number of neurons in hidden layers of the ANN classifier.

In spite of the extensive development of ANN theory and applications, many important
theoretical problems are far from being solved, and very few quantitative results are
available There are several small sample problems which need to be solved:

1 The 1ole of the shape of the nonlinear activation function and the number of units
in the hidden layer on the sensitivity of two-layer ANN classifier to the finiteness of
the training sample.

2. Dependence of the true (test sample) erzor and the apparent (training sample) erior
on the training time (number of sweeps) and the architecture of the ANN in the
finite training sample case.

3 Designing fast training algorithms which minimize the tiue error instead of mini-
mizing the apparent erzor.

4 A procedure to determine the optimal number of neurons in the hidden layer, in
accordance with the training sample size and the problem complexity
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Abstract

Classification trees constitute an important and increasingly popular form of
hierarchical classifiers. We first describe and compare classification trees and feedfor-
ward neural network classifiers. We then focus on the specific problem of obtaining
right-sized trees, i.e., trees which neither underfit nor overfit the data. A new efficient
iterative method is proposed to grow and prune classification trees. This method
divides the data sample into two subsets and iteratively grows a tree with one subset
and prunes it with the other subset, successively interchanging the roles of the two
subsets. Numerical results on a waveform recognition problem are presented.

1. INTRODUCTION

The goal of this paper is to examine certain problems with some well-known
methods of constructing classification trees, and to suggest some new methods which
overcome these problems. Although the topic under consideration here is really
classification trees, it is useful to compare classification trees and feedforward neural
network classifiers (some work has already been done along these lines; see [1], [15]).
Both of these methodologies are currently being applied to complex pattern recogni-
tion problems and both are active areas of research. A comparison of classification
trees and neural network classifiers suggests how it might be possible to combine the
two methodologies in such a way that they complement each others capabilities. The
classification tree construction methods described in this paper can be applied to the
design of classification trees in general, and to the design of classification trees which
are used in combination with neural networks in particular. In further work, we
explore the application of these tree construction algorithms to classification trees
which employ neural network feature extraction (see [7]).

This rescarch was partially supported by the Whirlpool Foundation, and by the National
Science Foundation through grant No CDR-8803017 to the Engineering Research Center
for Intelligent Manufacturing Systems
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The pattern tecognition problem we consider in this paper is in the statistical
framework, Hence we are given a data set which consists of a random sample of
feature vectors and their corresponding class labels. These features were presumably
identified based on problem-specific knowledge and exploratory data analysis. The
pioblem is to design a classifier which has appropriate predictive or generalization
capability, i.e, which can accurately classify samples not amongst the training data.
Furthermore, the problem is completely nonparametric as we make no assumptions
concerning the nature of the underlying class distributions.

A typical binary decision tree for classification is shown in Figure 1. The circular
nodes are binary decision nodes whose two descendents are determined by a threshold
Ty on a specified feature value xi. The square nodes are terminal nodes and are
assigned a class label. Note that the same feature may occur in different parts of the
tree associated with a different threshold. Note also that a feature may be a node-
dependent function (linear or nonlinear) of the original features; following [4] we refer
to such functions as transgenerated features. When an unlabelled feature vector is sub-
mitted for classification, the vector is assigned the class label of the terminal node it
lands in. The classification capability of a tree classifier arises from its ability to parti-
tion the feature space into complex regions by making a sequence of simple decisions
at each of its nodes.

y=1 9=3

Figure 1. A classification tree for a 5 dimensional feature space and 3 classes.
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There have been many approaches to constructing classification trees
[2]’[3],[4],[6],[8},[1?],[12],[14],[16]',[17],[18]. Classification trees are usually con-
structed top-down, i.e., an appropriate feature and threshold are first selected at the
root node, and then the data set is propagated down through the root node and
appropriate features and thresholds are selected at the nodes at the second level of the
tree, and so on. Classification tree construction involves three steps: splitting nodes
(selecting features and thresholds), determining which nodes are terminal nodes, and
assigning class labels to terminal nodes. Now it is straightforward to assign class
labels to terminal nodes, and it is generally agreed that for a fixed set of features the
performance of a classification tree does not vary significantly over a wide range of
reasonable splitting criteria (c.f. [2]). Hence there are really two fundamental prob-
lems in classification tree design: extracting good transgenerated features and select-
ing the right-sized uee. With regard to transgenerated features there are certain trade-
offs. An appropriate choice of transgenerated features can lead to simplier trees with
lower ertor rates; however, transgenerated features can also lead to large increases in
the computation required to construct the classification tree, and can reduce or elim-
inate the ability to interpret a split at a node. In previous work, transgenerated features
have typically consisted of linear combinations of the original features [2],[4],[16]. It
seems reasonable that under certain conditions transgenerated features which consist
of nonlinear combinations of the original features might be appropriate. With regard
to right-sized tree selection, the issue here is that trees that are too large or too small
can overfit or underfit the data, respectively. Early approaches to selecting terminal
nodes wete based on stopping rules, e.g., under specified conditions the recursive par-
titioning is simply halted. The difficulty with such approaches is that partitioning is
halted too soon at certain nodes and too late at others. More recent approaches to
selecting terminal nodes involve growing a large tree with pure terminal nodes (i.e.
terminal nodes which contain data samples from only a single class) and selectively
pruning it upwards [2].

Some advantages of classification trees are that they have a form which can be
compactly stored; they efficiently classify new data; and they demonstrate good gen-
eralization capability on a variety of problems. Also, the construction procedure
includes a means of selecting the right-sized tree to avoid overfitting or underfitting
the data. Some disadvantages of classification tiees are that for certain problems the
use of only single or linear combinations of features and a stepwise level-by-level con-
struction methodology can be myopic and lead to large trees and/or poor ertor rates.
Also, most approaches to constructing classification trees are nonadaptive, i.e., the
entire data set of feature vectors and their class labels must be available before con-
struction begins (but see [3],[18]). It would be desirable to have a method for updat-
ing trees as new data becomes available, possibly in real-time.

In contrast to a binary decision tree, a typical multilayer feedforward neural net-
work is shown in Figure 2. The network consists of interconnected identical simple
processing units called neurons (we do not call them nodes heie to avoid confusion
with nodes of a tree). An individual neuron sums its weighted inputs and passes the
tesult through a threshold unit. In a multilayer feedforward network the neurons are
organized into layers with no feedback or lateral connections. Layers of neurons
which are not in the output layer are called hidden layers. The feature values xi are
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the inputs to the network, and the weights and thresholds w; are the parameters which
are adjusted via training. When an unlabelled feature vector is submitted for
classification, the vector is assigned the class label corresponding to the largest output
value. The classification capability of a feedforward net arises from its ability to
implement complex mappings due to its multilayer structure and the use of nonlinear
threshold functions (like the sigmodal nonlinearity).

n
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Figure 2 (a) A single neuron and some threshold functions; (b) a two-layer feed
forward neural network.

The most popular approach to multilayer feedforward network classifiers is to fix
the size of the network (i.e, the number of hidden layers and the number of nodes per
layer), and to train the network using the so-called backpropagation algorithm [10],
[13]. Backpropagation is a (stochastic) gradient algorithm which recursively updates
the weights and thresholds so as to minimize the mean square error between the true
and desired network outputs. There are two fundamental problems in the design of
feedforward net classifiers: finding efficient and reliable training algorithms, and
selecting the right-sized net. With regard to training algorithms, iterative algorithms
related to backpropagation have been proposed to reduce the training time at the cost
of increased complexity. There has also been 1esearch into noniterative algorithms
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which transform the network structure and/or the input data. With regard to right-
sized net selection, the issue is that nets that are too large or too small can oveifit or
underfit the data, respectively. There has been alot of research into the capabilities of
feedforward nets as they depend on the network size, but heuristic approaches are usu-
ally used to select a net for a particular problem [9],

Some advantages of feedforward neural network classifiers are that, like
classification trees, they have small memory requirements; they also efficiently clas-
sify new data and demonstrate good generalization capability. Also, feedforward nets
can be trained by iterative algorithms like backpropagation which are adaptive, i.e.,
each feature vector and class label is successively used to updated weights and thres-
holds in the net. Some disadvantages are the extremely long training times and the
possibility of trapping in local minima. Also, no systematic procedure exists for
selecting the size of the net. Furthermore, these problems become more severe for
large complex problems.

In view of the characteristics of tree and feedforward neural network classifiers as
described above, we suggest that it might be possible to combine the two methodolo-
gies in such a way as to improve the performance obtainable by either alone. Now
from a certain point of view, the advantages and disadvantages of the tree and feedfor-
ward net classifiers can be associated with either too much structure (in the case of the
tree) or too little structure (in the case of the net). If the tree and the net could be com-
bined into a classifier which had some intermediate degree of structure, then perhaps
only the advantages of the two approaches might be retained. One way to do this is to
use a classification tree which has a small multilayer perceptron at each node to extract
a nonlinear transgenerated feature. These small feedforward nets would be of fixed
size with one hidden layer and a single output (corresponding to only a binary decision
at each node). By using such nets the problems of training time, local minima, and
selecting the size of the net might be controlled. At the same time, the nets can gen-
erate rich nonlinear transgenerated features potentially leading to smaller trees and
better classification performance. Also, it might be possible to develop an adaptive
version of such a classification tree, since some version of the back propagation algo-
rithm could be used to train the nets at the nodes of the tree.

The rest of this paper develops some new methods for growing and pruning
classification trees. The methods described here are useful regardless of what type of
transgenerated features are used (including nonlinear features generated by feedfor-
ward nets at the nodes of the tree). However, here we only consider splits on single
feature coordinates. In [7] we have extended these methods to incorporate transgen-
erated neural network feature extraction, along the lines described above; we remark
that the results in terms of decreased tree size and improved classification performance
are very encouraging.

The starting point for our work are two related methods for growing and pruning
(and also estimating the error rate) of classification trees from [2]. In the first method
the data set is divided into independent training and test sets, and a large tree with pure
terminal nodes is grown based on the training set. Then a pruned subtree is selected
by minimizing an estimate of the misclassification rate based on the test set over a
parametric family of pruned subtrees. The test set is also used to estimate the
misclassification rate of the selected subtree. This method is not desirable for small
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data sets because it only uses part of the data to grow the tree and part of the data to
prune it. In the second method a large tree with pure terminal nodes is grown based on
the entire data set. Then a pruned subtree is selected by minimizing a cross validation
estimate of the misclassification rate over a parametric family of pruned subtrees,
These methods are based on an efficient pruning algorithm which generates the
parametric family of pruned subtiees. These methods have been incorporated into a
program known as CART (Classification And Regression Trees) which has achieved
wide-spread popularity.

There are some significant problems with the CART methods of growing and
pruning classification trees. The most serious problem with the CART methods is that
a pruned subtree is selected by minimizing over a parametric family of pruned sub-
trees, and this parametric family may not include the optimal (or even a good) pruned
subtree. For reasons which will become clear in the sequel, we believe this is likely to
be the case for difficult classification problems which require large trees to appIoxi-
mate complex decision 1egions. A further problem with the CART cross validation
method is that it can be very expensive computationally as it requires the growing and
pruning of auxiliary trees. Based on these problems we propose two new methods for
growing and pruning classification trees.

In the first proposed method the data set is divided into independent training and
test sets, and a large tree with pure terminal nodes is grown based on the training set.
Then a pruned suburee is selected by minimizing an estimate of the misclassification
rate based on the test set over all pruned subtrees. The test set is also used to estimate
the misclassification rate of the selected subtree. Again, this method is not desirable
for small data sets because it only uses part of the data to grow the tree and part of the
data to prune it. In the second proposed method, the first method is iterated, alter-
nately using the test (training) set to grow a tree off of the terminal nodes of the previ-
ously selected pruned subtree, and the training (test) set to select a new pruned subtree.
It can be shown that this iterative method converges. These methods are based on an
efficient pruning algorithm which generates a particular pruned subtree.

Because the proposed methods select a pruned subtree by minimizing over all
pruned subtrees, as opposed to the CART methods which select a pruned subtree by
only minimizing over a parametric family of pruned subtrees, we expect them to per-
form better, i.e., have a lower misclassification 1ate. In addition, examination of the
various methods suggests that the proposed methods should require much less compu-
tation than the CART methods. We try the various methods on a waveform recogni-
tion problem from [2], which is a difficult problem for classification trees. The results
show that for this problem the proposed methods do infact perform better and require
less computation than CART.

The paper is organized as follows. In Section 2 we develop notation for decision
rules and classification trees. In Section 3 we review the CART methodologies for
growing and pruning classification trees, propose new methodologies for growing and
pruning classification trees, and compare them. In Section 4 we examine and compare
the optimal pruning algorithms which are used in CART and our proposed methods.
In Section 5 we give numerical results for the various methods on a waveform recog:
nition problem.
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2. DECISION RULES AND CLASSIFICATION TREES

Let (X,Y) be jointly distributed random variables with X taking values in IRY and
Y taking values in the integers {1,...,J}. X is a pattern or feature vector and the com-
ponents of X are features, and Y is the associated class label. The problem is to esti-
mate Y based on observing X. In order to do this we shall assume that a random sam-
ple LO = {(Xn Yo, n=1,... ,N(O)} of feature vectors and their associated class

labels are available. Here the (Xn ,Y,)’s are independent identically distributed ran-

dom variables, independent of and distributed like (X,Y). L© will be called the data
set. Hence the problem is to estimate Y based on observing X, given knowledge of
L©

A decision rule is a function d(*) which maps RY into {1,...,J}. When the
feature vector X is observed the estimated class is d(X). Suppose a decision rule d is
to be constructed based on JAVIS ) (0), and to be evaluated based on L@ <L @ n this
case LD and LD will be called the training and test sets, respectively. The frue
misclassification rate of d is .

R'(@)=PUX) #Y)
Let LcL© . The estimated misclassification rate of d based on L is

R(d) = %’I—

where M is the number of samples in L such that d(Xn) # Yy, and N is the total
number of samples in L, When L = L(l), R(d) is a training *sample estimate of R (d),
and when L =L@, R(d) is a test sample estimate of R™(d). Let Rg denote the
(minimum) Bayes misclassification rate.

We briefly describe some necessary terminology for discussing trees (see [2] for
more detail). A tree is a finite nonempty set T of positive integers and two functions
left (*) and right (*) from T to T\W{0} such that
(i) For each teT either left (t)=0 and right (t)=0, or left (t) > t and right (t) > t
(i) For each teT, other than the smallest integer in T, there is a unique se T such that

either t=left (s) or t=right (s)

T will itself be called a tree, and each element of T is a node. Figure 3 shows a tree
and the corresponding values of ¢(t)=left (t) and 1(t)=right ().

Let Tq be a non empty subset of T and let left; (*) and right; () be the restriction
of left(+) and right(*) to Ty, respectively. T; is a subtree of T if the triple Ty, lefty (*),
right; (+), forms a wee. Ty is a pruned subtree of T if Ty is a subtree of T with the
same oot node as T; this is denoted by T; < Tor T2 Ty.

. We now show how to associate a decision rule with a tree. Let T be a tree, and
suppose that U(t)clRY and j(t)e{1,...,J} for teT. Furthermore suppose that
{U(1), te T} is a partition of RY. A classification tree consists of the tree T together
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1 t i) r(t)
1 2 3

2 4 5

2 3 3 6 7

4 8 9

4 5 6 7 [ 10 11
6 0 0

7 0 0

8 9 10 11 8 0 0
9 0] 0
10 12 13

12 13 11 0 0

12 0 0

13 0] 0

Figure 3 A tree and the corresponding values of £(t) = left(t) and 1(t) = right(t)

with the partition {U(t):teT} and class labels {j(t)teT}. T will itself be called a
classification tree. The decision tule d corresponding to the classification tree T is
given by

d(x)=jt) if xeU(M).

Morte generally, we can associate a collection of decision rules with the pruned sub-
trees of a tree. Let T be a tree and suppose that U(t)cR? and j(t)e {1,...,J} for teT.
Furthermore suppose that for every pruned subtree Ty <T, {U(V), teT; } is a partition

of IRY, Then the decision rule d; corresponding to the classification tree Ty is given
by

di) =i if xeUQ), teTy.
We denote the true misclassification rate of a classification tee T by R* (T), and

the estimated misclassification rate based on L by R(T). An important fact is that R(T)
can be expressed as an additive function on T, i.e.,
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R =X RO, R(1) = % , 2.1)

teT

where M(t) is the number of samples in L such that X_n €U(t) and Yy, #j(t), and N is
the total number of samples in L. We will also consider a risk function which penal-
izes the complexity of the classification tree as well as its misclassification rate. The
estimated complexity-misclassification rate of a classification tree T based on L is
defined as

Re(T) =R(D) +a|T| .

Here o is a constant which weights the number of terminal nodes in T, which is a
measure of the complexity of T. Note that R, (T) can also be expressed as an additive

function on T, i.e.,

Ro(T) = X Ra(t) . Ro()=R(H+0r. (2.2)
teT B

Let T and its pruned subtrees be classification trees as described above. Consider
the problem of minimizing the estimated misclassification rate, or more generally the
estimated complexity-misclassification rate, based on L, over the pruned subtrees of T,
i.e. finding a T; < T such that

Ro(T1) = min Ro(T)
T<T

Since the pruned subtrees of T are a finite set, the minimum exists but may not be
unique. Call any such minimizing T an optimally pruned subtree of T with respect to
Rg. In [2, p. 285] it is shown that there exists an optimally pruned subtree T{ < T such
that T} T for any other optimally pruned subtree T <T. Call this Ty the (unique)
smallest optimally pruned subtree of T with respect to R, and denote it by T(a). We
remark that T(a) will exist for any tree T and any cost function Ry(T) which can be
expressed as an additive function on T as in (2.2); there is nothing special about
classification trees and misclassification rates in this regard.

3. CLASSIFICATION TREE CONSTRUCTION AND ERROR RATE ESTIMA-
TION

The basic idea behind most algorithms for generating classification trees is to
recursively partition the feature space in such a way as to recursively generate the tree.
If t is a nonterminal node, let t;, tg be its immediate descendents. At each nontermi-
nal node t the region U(t)clRY is split into two tegions U(ty) and U(tg) which
correspond to the nodes t. and tg, respectively. Splitting continues in this way until
some stopping criterion is met and the node becomes a terminal node. At each termi-
nal node t a class label j(t) is assigned. This procedure yields a classification tree as
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defined in Section 2. In fact, if all nodes (terminal and nonterminal alike) are assigned
a class label then the procedure yields a tree such that every pruned subtree is a -
classification tree, again as defined in Section 2.

The construction of a classification tree requires three steps:
1. The selection of splits (features and thresholds).
2. The decision as to which nodes are terminal nodes.
3. The assignment of class labels.
We assign class labels and select splits as described in [2]. Briefly, we assign a class
label j(t) to each node t € T by minimizing the estimated misclassification rate at node
t. We select a split s(t) at each nonterminal nodete T—T by minimizing the resulting
change in node impurity at nodes t and tg relative to node t; we use the Gini criterion
as our node impurity measure. Our splits consist of thresholds on the individual
features s = {x: X, <1} where T ranges over the real numbers and k=1,...,q. The
effect of using such splits is to partition the feature space with hyperplanes orthogonal
to the component axes. In other words, we do not consider transgenerated features
here. See [2] for a detailed discussion of the Gini and other impurity functions. Also,
see [4],[8].[1121,[14] for other approaches to splitting.

We now consider the problem of deciding whether a node should be terminal or
nonterminal node, and how to estimate the misclassification rate. Suppose we con-
struct the classification tree T based on a data subset L L@ using the splitting and
labelling methods described above, and we continue the splitting until every node has
pure class membership (assume this can be done for the moment). Then T corzectly
classifies every sample in L and R(T) =0. But if class distributions overlap T should
not correctly classify every sample in L and R*(T) 2 Rp > 0. It is seen that relatively
pure terminal nodes will lead to large trees which overfit the data, while relatively
impure terminal nodes will lead to small trees which underfit the data; the problem is
to select a right-sized tree and to obtain honest estimates of its misclassification rate.
Early approaches to selecting terminal nodes were based on stopping rules, In [2} it is
suggested that instead of using stopping rules, it is better to grow a large tree with ter-
minal nodes which have pure (or nearly pure) class membership, and selectively prune
it upwards.

Next, we describe four methods for growing, pruning and estimating the error rate
of classification trees. These descriptions formalize the discussion in the Introduction
(Section 1) We first review the two CART methods from [2]. Based on certain prob-
lems with these methods, we propose two new methods. Let L be a subset of the data
set L. Let N(t) be the number of samples in L which land in node t, and let Nj(t) be
the number of samples in L which land in node t and belong to class j (also recall the
definitions of R(t) and R(T) from Section 2). In the sequel, superscripts on quantities
like Ng‘) g?, N®(), R®(1), and RO(T) mean that the quantities are based on some data
subset LW <L, © instead of LcL@®. Such notation is necessary when we discuss algo-
rithms which operate on multiple data subsets LOcL® eg., when LD js a training
set and L@ is a test set, or when L(l),. a ,L(V) are subsets of L which are used in a
V-fold cross validation procedure.
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Method I: CART Independent Training and Test Set Method [2]

1

2)

3

4)

5

Divide L© into LD and L® such that LD and L® have approximately equal
numbers of samples in each of the classes.

Use LD to generate a tee T b splitting until all terminal nodes teT have
NO@®) =ND (@) for some j, or NV(t) £ Npyin, or min[ND (e ), ND(tg)] =0 for
all possible splits of t, and assign class labels to all nodes.

Let T(ct) be the smallest optimally pruned subtree of T with respect to R,

Generate a nested sequence of pruned subtrees T =T, 2T} 2... 2Tk =root(T) of
T such that T(@)=Ty=T for a<a, T(@)=Tx for ox <0< 0y,; and
k=1,...,K-1, and T(a)=Tg =r1o0t(T) for a=20g, for some numbers
—o< 0] <02 <... <0k <o (CART contains a pruning algorithm for comput-
ing the o ’s and the Ty ’s; see Section 4.)

Select the smallest T* € {Ty,.. ., Tk} such that

RO(T*) = min RD(Ty)
k

Estimate the misclassification 1ate of T* by
R(T*) =R (T*)

O
Method I only uses part of the data to grow the large tree T and part of the data to

prune it. It is desirable, especially for small data sets, to use all of the data to grow the
large tree T and all of the data to prune it. The following cross validation method pro-
vides an alternative.

Method II: CART Cross Validation Method [2]

1)

2)

3)

4

Divide L© into Ly,...,Ly such that Ly,...,Ly have approximately equal
numbers of samples in each of the classes. Let L™ = L-L, forv=1,...,V (typi-
cally V =10).

Use LO 1o generate a tree T by splitting until all terminal nodes teT have
NO@t) =NO(t) for some j, or NO(t) < Npyip, or min[NO(t ), NO(tg)] =0 for
all possible splits of t, and assign class labels to all nodes.

Let T(0) be the smallest optimally pruned subtree of T with respect to R,

Generate a nested sequence of pruned subtrees T =Ty 2T; 2... 2Tk =ro0t(T) of
T such that T(a) = Ty for a< oy, T(a) =Ty for oy S < oyy; and k=1,...K~1,
and T(o) = Tg =root(T) for oo, for some numbers
—eo < Q) <0y <...<0g <o (Use CART pruning algorithm; see Section 4)

Use L™ to generate a tree T™ b splitting until all terminal nodes te ’f‘(v) have
N(1) = N(1) for some j, or NO)(t) € Npyin, or min[NO (1), NW(tg)] =0 for
all possible splits of t, and assign class labels to all nodes, forv=1,...,V.

Let T (q) be the smallest optimally pruned subtree of T™) with respect to RY.
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5) Generate the parametric family of pruned subtrees TM(0), —eo < 0t < 00, Of T,
for v=1,...,V (Use CART pruning algorithm; see Section 4)
Let

1V
RYT =+ X Ry(TO (oo ), k=1,...,K-1
v=1

(R, is the estimate of the misclassification rate based on L., and R® is a cross
validation estimate of the misclassification rate)

6) Select the smallest T* € {Tp,. .. ,Tx } such that
REV(T*) = mkin R (Ty)

7) Estimate the misclassification rate of T* by
R(T*) = RSV(T*)

O

As pointed out in the Introduction there are some significant problems with the
CART methods. First, from our point of view there is no real justification that the
parametric family of pruned subtrees {T(a) : —eo < 0. < oo} is the right set of pruned
subtrees to select the final tree T" from. This problem affects both CART methods.
Second, although it is preferable to use Method II over Method I since it uses ail the
data to grow the large ree T and all the data to select the final tree T*, Method II can
be very expensive computationally as it requires growing the large auxiliary trees ™™
and generating a parametric family of pruned subtrees {TV(0r) : —eo < 0t < o0} for each
one. Based on these problems with the CART methods, we now propose two new
methods for growing, pruning, and estimating the misclassification rate of
classification trees.

Method III: Proposed Independent Training and Test Set Method

1) Divide L into L® and L such that L and L@ have approximately equal
numbers of samples in each class.

2) Use L® o generate a tree T by splitting until all terminal nodes teT have
Nt =ND() for some j, or N D(t) < Nyin, or min[ND (1), NP ()] = 0 for
all possible splits of t, and assign class labels to all nodes

3) Select the smallest pruned subtree T of T such that

R@(T*) = min RA(T)
T<T
(We shall give an efficient pruning algorithm for computing T"; see Section 4)
4) Estimate the misclassification rate of T by

R(T") = RO(T")
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O

‘ Method IV: Proposed Iterative Method
1) Divide LO into LD and LD such that LY and L have approximately equal
numbers of samples in each class.
2) U?le) LD o )genetate a tree T b}/ splitting until all te%gunal nczii)es teT have
)= ND(t) for some j, or N¢ (t)<Nmm or min[NY (1), NV (tg)] =0 for
all possible splits of t, and assign class labels to all nodes
3) Select the smallest pruned subtree To of Ty such that

RA(T() = min RA(T)
TsT,

(Use proposed pruning algorithm in Section 4)
Setk=1
4) Seti=1,j=2ifkiseven,andi=2,j=1ifkis odd.

5) Use LD o generate a tree Tk by sphttm g the terminal nodes Tk_% until all termi-
nal nodes teTy have N{P(®)=NO@t) for some j, or NO(t) <Ny, or
min[N® (), N(I}((tR)] =0 for all possible splits of t, and assign class labels to
nodes in Ty —Tx_; (numbers, splits, and class labels of nodes in Tk 1 are
unchanged).

6) Select the smallest pruned subtree T; of Ty such that

RO(TH) = min RO(TY)

<T,

(Use proposed pruning algorithm in Section 4)
7 If ITItI = IT;_I | then set T* =T;; else setk =k+ 1 and goto 4)
8) Estimate the misclassification rate of T" by

RTH= 3 RPm+ 3 RO
tES(l) 165(2)

where
st = {te T*: t was assigned a class label based on L(Q)} O

There is a modification of Step c) in Method IV which can significantly reduce
the amount of computation. Specifically, it can be shown that if a node is a terminal
node in any two consecutive optimally pruned subtrees, then it is a terminal node in all
subsequent optimally pruned subtrees and Jiever has to be split. It can also be thrown
that the sequence of pruned subtrees {Tk} generated by Method IV is nested (i.e.
Tk < Tk+1 for all k) and converges (i.e. there exists integer K such that Tk =Tk for all
k2K). Proofs of those assertions and additional details on the implementation and
properties of Method IV can be found in [5].

We now make several remarks about how we perceive Methods 111 and IV might
overcome the problems with Methods I and II discussed above. First, note that in
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Method III the pruned subtree T" of T is selected by minimizing an unbiased indepen.
dent test set estimate of the misclassification rate over all pruned subtrees, whereas in
Method 1 the pruned subtree T of T only minimizes this estimate over a parametrig
family of pruned subtrees, and this parametric family is selected using a biased resup.
stitution estimate of the misclassification rate. Hence Method III eliminates the prob.
lem encountered with Method I as to whether the parametric family of pruned subtresg
contains an optimal (or even good) subtree which can be selected. We believe Methog
IV is superior to Method II by similar reasoning. Second, we believe that Method Iy
will be much less computationally expensive than Method II in general. By far, the
most computationally intensive part of tree construction is the selection of the splits 4t
the nodes of the trees. Furthermore, the amount of computation in selecting a split at 3
node grows rapidly with the size of the data subset at the node (see [2, pp. 163-167)),
The iterative procedure of Method IV generates a nested sequence of optimally pruned
subtrees which, as described above, has the property that if a node is terminal node in
two consecutive pruned subtrees then it is a terminal node in all subsequent pruned
subtrees and never has to be split. Consequently the bulk of the tree is constructed
after a few iterations and thereafter relatively few nodes need to be split and these
nodes contain relatively few samples. The cross validation procedure of Method II.
however, must grow and prune auxiliary large trees from scratch. In Section 5 we
compare the various methods on a waveform recognition problem from [2].

4. TREE PRUNING ALGORITHMS

In this section we consider tree pruning algorithms which are needed to imple-
ment the methods described in Section 3. We first review an algorithm developed in
[2] for generating a parametric family of optimally pruned subtrees. This algorithm is
part of the CART methods. We then propose a simple algorithm for generating a par-
ticular optimally pruned subtree. This algorithm is used in the proposed methods.

The results in this section actually concern pruning trees which are not neces-
sarily classification trees. Of course, they apply to classification trees as a special
case. Let Ty be a fixed tree. Let R(t), te T, be real numbers, and for each real number
o, let Ry (t) = R(t) + o for te Ty. Given a subtree T of Ty set

R(T) = 3 R(t)
teT
and
Roy(T)= 3 Ro(®) =R(T) + | T] .
teT

Let To(or) be the smallest optimally pruned subtree of T,y with respect to Ry, (see Sec-
tion 2). Of course, Ty(0) is the smallest optimally pruned subtree of T with respect to
R. Note that To(a), —eo < a < eo, is required for the CART methods (for appropriate
choice of Ty and Rgy), while Ty(0) is required for the proposed methods (for
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 appropriate choice of Ty and R).

we now give the CART pruning algorithm for generating the family of Ty(ar), for
.o <0< oo, and propose a pruning algorithm for generating a particular To(o). Let
To = {ti,...oiL} With t; <--<tr. Let Q(t_) = lefi(t), (t) =right(t), p(t) = parent(t) for
te To. The CART algorithm workg with a six-tuple (9(t),2(t),p(t),R(1),S(t),N(1))
while the proposed algorithm works with a four-tuple (4(t), 1(t), R (t), Sq(t)). For the
CART algorithm S(t) =R(Ty) and N(t) = |T;|, while for the proposed algorithm
Sa()= R (T), where T is the currently considered subtree of Ty at a particular point
in the algorithm.

CART Pruning Algorithm [2]:

Fort=tg,...,f1
{If t € Ty then

{S®=R®), N)=1}
Ifte Tp—Ty then

{S(®) = S(t) + S(®)), N(t) = N(9(1)) + N(t))}}
R(t1) — S(t1) TT
—_— =1

N(t;) -1

k=1 .
Repeat until | T| =1
{FOI t=1t1,...1 ~

{If te T— T then

o=

_ L R@®-S0)
{0 = min[a, m]}}
For t=ty,...,t
{If‘teT—de-}%—f?=athen

{T=T-(Typ YTy, 40 =0,1() =0
S =R(t), N(t) =1}
s =p(t)
Repeat until s =t
{S8(s) = S(4(s)) + S(x(s)), N(s) = N(4(s)) + N(x(s))
s=p(s)}}
Ok =0, Tk =T
k=k+1}
K=k-1

To a<oy
Tol)=Tx oxsa<oy, k=1,...,K-1
Tk azog
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Proposed Pruning Algorithm:

T="Ty
Fort=tp,...,t
{If te T then
{Se() =Ry ()}
Ifte T— T then
{Se(t) = Sa(4(1)) + Sei(x(1)
If Ry (t) < Sq(t) then
(T=T-(TypUTp), 10=0,1(0=0
So(0) = Re(0}1)

To(o)=T
O

The CART algorithm is essentially a top-down algorithm, in that it starts from the
root node and proceeds down the tree, pruning away branches. Each time it prunes
away a branch to obtain a terminal node t it suitably modifies the six-tuples
(2(s),1(s)p(s), R(s), S(s),N(s)) corresponding to the ascendents s of t and also titself. K
passes through the tree are required to generate the nested subtrees Top 2Ty 2 2Tg
and hence the family To(ot) for —o < 0t <eo. In contrast to the CART algorithm, the
proposed algorithm is essentially a bottom-up algorithm, in that it starts from the ter
minal nodes and proceeds up the tree, pruning away branches, Each time it prunes
away a branch to obtain a terminal node t it suitably modifies the four-tuple
(9¢1),1(1), Re (1), Sg(t)). Only one pass through the tree is required to generate To(o).
We remark that the CART algorithm can, of course, be used to generate a particular
To(c) by generating Ty,..., T such that oy <00 < Oig. This procedure is, however,
very inefficient compared to the proposed algorithm.,

5. EXPERIMENTAL RESULTS

To illustrate various parts of the methodology in tree structured classification, the
waveform recognition problem [2, p. 49] was chosen. It is a three-class problem based
on the waveforms hy (t), hy(t) and h3(t) shown in Figure 4,

Each class consists of a random convex combination of two of these waveforms
sampled at 21 points with noise added to them. Thus the feature vector is 21 dimen-
sional, X = (Xi,...,X21)- A class was randomly selected with all classes having equal
probability. A feature vector for the selected class was then generated by indepen-
dently generating a uniformly distributed random variable u on the interval [0,1], and
21 normally distributed random variables €;,...,€21 with zero mean and unit variance,
and combining the waveforms as follows.
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Figure 4 Three waveforms

For class 1,

X =uby{m) + (1-whp(m) +&, ; m=12,...,21
“For class 2,

Xp =uhy(m) + (1-u)hs(m) +e, ; m=1,2,..,21

For class 3,

Xp = uhy(m) + (I-w)hs(m) + &y ; m=1,2,...,21
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According to [2], the Bayes misclassification rate for this waveform recognition prob-

lem is Rg=.14,

The data set L consisted of 300 feature vectors and class labels with approxi-
mately 100 samples from each class, Trees were grown using splits of the form
s = {x:xy €1} for T ranging over all teal numbers and m=1,...,21, and the Gini
splitting criterion (see Section 3). Splitting was terminated as soon as a node had pure
class membership. Pruning and error rate estimation were performed based on each of
- the four methods described in Section 3. In Method I (CART Independent Training
and Test Set Method), Method III (Proposed Independent Training and Test Set
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Method), and Method IV (Proposed Iterative Method), the data set L was divided
into the two sets LY and L® each consisting of 150 total samples with approximately
50 samples from each class. In Method II (CART Cross Validation Method) a 10-fold
cross validation was performed where the data set L was divided into 10 sets
Lq,...,Lyy each consisting of 30 total samples with approximately 10 samples from
each class. Two independent data sets (each with 300 total samples and approximately
100 samples per class) were generated with different seed values and the results dis-
cussed below were obtained by averaging. Method IV required K =4 growing and
pruning iterations to converge on both of the data sets. An additional set of 5000
independent samples was used to obtain highly accurate estimates of the true
misclassification rates. The algorithms were run on a dual processor VAX 11/780 run-
ning UNIX 4.3 BSD.

In Table 1 we show results for each of the four methods. In each case we show
the number of terminal nodes |T*|, the estimated misclassification rate R(T*), the
true misclassification rate R*(T*) (based on 5000 independent samples), and the
required computer time measured in CPU seconds. The results for the CART Methods
I and II are consistent with results obtained in [2], The results show that our proposed
Methods I and IV perform better and require less computation than the CART
Methods I and II, at least on the waveform recognition problem. It is particularly
interesting that the proposed Method III which uses independent training and test sets
performs better than the CART Method II which uses cross validation, while requiring
only a fraction of the computing time. It seems that selecting the right-sized tree is
indeed a critical issue for the waveform recognition problem. We attribute this
behavior to the fact that the waveform recognition problem is a difficult problem for
tree classifiers which try to approximate the decision regions with hyperplanes orthog-
onal to the coordinate axes [2].

Table 1
Averaged Results for Waveform Recognition Problem.

Method | |T*| | R(T*) | R¥(T*) | CPUSECONDS

I 17 .30 .31 90
I 23 .29 .29 700
I 20 27 27 70

v 26 .26 .26 150
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6. CONCLUSION

We first described and compared classification trees and feedforward neural net-
work classifiers. We further suggested that it might be possible to combine the metho-
dologies in a useful way; in particular we suggested the idea of using small feedfor-
ward nets at the nodes of a classification tree to extract transgenerated features. This
idea is developed in [7]. We then focused on the critical issue of obtaining right-sized
trees, 1.6., trees which neither underfit nor overfit the data, This is an important prob-
lem for the design of classification trees in general (whether they use transgenerated
features or not). Instead of using stopping rules we followed the philosophy intro-
duced in [2] of growing a large tree with pure (or nearly pure) terminal nodes and
selectively pruning it back. New efficient methods were proposed to grow and prune
classification trees. The first method divides the data set into two independent subsets,
and uses the first subset to grow a large tree and the second subset to select a pruned
subtree which minimizes an estimate of the misclassification rate over all possible
pruned subtrees. The second method continues this procedure by using the second
subset to grow a large tree off of the terminal nodes of the previously selected pruned
subtree and the first subset to select a new pruned subtree which minimizes an estimate
of the misclassification rate over all possible subtrees, and then iterates this procedure
by successively interchanging the roles of the two subsets. The convergence and other
properties of the iterative method have been established. Numerical results were given
which show that our methods perform better and require less computation than the
widely used CART program on a waveform recognition problem,
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Abstract
Decision tree classifiers represent a popular classification methodology that has been

successfully used in many pattern recognition tasks. Noting many similarities between the tree
classifiers and the multilayer perceptron classifiers, an artificial neural network based
implementation of decision tree classifiers to enhance their performance is described here
Several issues related to decision tree classifiers are discussed and it is shown how these can be
dealt with following the proposed implementation.

1. INTRODUCTION

Decision tree based classification is a widely used nonparametric method for complex
pattern recognition tasks involving several pattern classes and a large number of features. A
decision tree classifier utilizes a series of simple decision functions, usually binary in nature, to
determine the identity of an unknown pattern. The evaluation of these decision functions is
planned in such a way that the outcome of successive decision functions reduces uncertainty
about the unknown pattern, Each decision function uses only a subset of features, usually a
single feature, as its argument This coupled with the fact that patterns from different classes
are identified using different subsets of the decision functions make decision tree based
classification computationally very attractive. In some sense then, the decision tree classifier
represents an "optimal" way of performing classification by matching the feature subsets with
the pattern class subsets at each step of decision making

A decision tree induces a hierarchical partitioning over the decision space. Starting with the
decision function at the root node, successive internal nodes in a decision tree partition their
associated decision region into two half spaces with the node decision function defining the
dividing boundary. The final decision boundary due to the induced hierarchical partitioning
can be very complex depending upon the nature of node decision functions and the tree size.
The most common choice for the node decision functions is a threshold comparison on a
component of the feature vector which results in a feature space partitioning by hyperplanes
parallel or orthogonal to the coordinates axes of the feature space

An important characteristic of the decision tree induced partitioning is that it is
autonomously configurable from a collection of labeled pattern vectors for a given classification
task independently of any a priori information about the functional form of the distribution of
pattern vectors in the decision space The procedures to self-configure the hierarchical
partitioning of the feature space are generally referred as automatic tree design procedures in

IThis work was supported in part by NSF grant IRI-9002087
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the pattern recognition literature where such tree building procedures have been the focus of
research for several years. These procedures are also well-known in the machine learning
literature where the data-driven construction of decision trees is synonymous with the
acquisition of structured knowledge in the form of concepts and the expert system rules The
successive versions of the TDIDT (Top Down Induction of Decision Trees) family of learning
systems represent a major machine learning approach to the decision tree const uction [31]

Although decision trees are intuitively appealing and have been successfully used in many
applications, there are several problems that can hamper their use and performance in many
instances These problems relate to issues such as the process of tree design itself,
consequences of hard decision making, missing feature values, and the simultaneous use of all
the training vectors While many of these issues have been addressed in the past by several
researchers within the framework of statistical pattern recognition and machine learning, it
appears that the performance of decision tree classifiers can be enhanced by exploiting some of
the keys features of multilayer perceptron (MLP) networks which are similar to decision tree
classifiers in certain respects [39,40]. For example, both types of classifiers do not impose any
restriction on the distribution of input observations and are capable of producing arbitrarily
complex decision boundaries that can be learned from a set of training vectors The aim of the
present chapter is to show the presence of a link between the tree classifiers and multilayer
perceptron (MLP) networks and demonstrate how such a link can be beneficial in enhancing
the performance of decision tree classifiers in many ways by implementing them in the form of
a three-layer trainable neural structure.

The organization of the chapter is as follows. Section 2 provides an overview of the past
research related to decision tree performance issues. After providing a brief introduction to the
multilayer perceptron networks in Section 3, a relationship between the tree classifiers and the
MLP networks is given in Section 4 which leads to decision tree implementation in the form of
a three-layer neural network Section 5 discusses the training and advantages of such an
implementation. Results from some experiments are presented in Section 6 to demonstrate the
performance enhancement due to the neural network implementation Finally, a summary of the
chapter is given in Section 7.

2. DECISION TREE CLASSIFIER ISSUES

There are some excellent sources on decision tree classifiers [6,10,23] which should be
consalted for more detailed discussions into the various aspects of the decision tree design
and performance In this section, only a brief overview is given

2.1 Classifier Tree Design

Several automatic tree generation algorithms exist in the pattern recognition literature
where the problem of tree design has been treated in two distinct ways In one approach, the
tree design process is broken into two stages. The first stage yields a set of prototypes for each
pattern class. These prototypes are obtained from the training set using procedures similar to
clustering. Next, these prototypes are viewed as entries in a decision table which is converted
into a decision tree using some criterion for optimality Examples of this type of tree design
approaches can be found in [1,17,19,30,36]. The problem of finding prototypes from binary
or discrete-valued patterns is considered in [37,41]. The other tree design approach is more
universal and can be considered as a generalization of the decision table conversion approach
with all the training examples forming entries of the decision table. Since each training pattern
is individually used to construct the tree, this approach allows decision boundaries of any
arbitrary shape. Examples of the direct top-down tree design approaches can be found in
[15,26,33,38,43,45] While some of these tree generation algorithms can handle only two
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classes at a time, there are several that are suitable for multifeature, multiclass pattern
recognition problems.

The foremost requirement in a top-down tree design procedure is an evaluation criterion to
determine the goodness of a particular partitioning of the training vectors. One popular
approach for selecting successive subgroupings of the training vectors is based on defining a

oodness measure of partitioning in terms of mutual information [15,22,38,43,45]. Consider
a two-class problem with only one feature x. Let x = ¢ define the partitioning of the
one-dimensional feature space. If we view the feature x taking on values greater or less than
threshold ¢ as two outcomes x; and xp of an event X , then the amount of average mutual
information obtained about the pattern classes from the observation of event X can be written

as

2 2
HCX) = Z Zp(ci,x,-) log, [ p(c;/x) [ p(c) ] (1)

i=1 j=1

where C tepresents the set of pattern classes and the p (. )'s are the various probabilities,
Clearly, for better recognition, the choice of the threshold 7 should be such that we get as much
information as possible from the event X. This means that the value which maximizes (1)
should be selected over all possible values of . Average mutual information thus provides a
basis for measuring the goodness of a partitioning.

Another popular criterion for partitioning is the Gini index of diversity used in the CART
(Classification and Regression Trees) procedure [5]. In this criterion, the impurity of a set of
observations at a partitioning stage s is defined as

I(s)= Ep(ci /sip(c;/s) (2)

i#j

where p(c; [ $) denotes the conditional probability. Data are further split by selecting a

partitioning that yields greatest reduction in the average data impurity. The advantage of this
criterion is its simpler arithmetic. The other examples of the partitioning evaluation criterion
include the use of Kolmogorov-Smirnov distance between estimated cumulative distributions
[33] and the permutation statistics [26].

Although for a given collection of training vectors a tree can be grown to yield 100%
classification rate on the training vectors, doing so is generally equivalent to "noise fitting".
Thus knowing when to stop splitting is very important in a top-down recursive tree design
method In the simplest case, the number of training vectors left for further split can be used as
a measure for termination. Another possibility is to test the statistical significance of the
reduction in uncertainty due to a partitioning. In some cases, the classification error
performance, estimated either empirically or theoretically, is used to terminate the tree growing
process. For example, the AMIG (Average Matual Information Gain) algorithm [38] uses the
following inequality [11] that determines the lower limit on the average mutual information,
I(C.T), to be provided by the tree for the specified error performance P,

(C,T) 2H(C) - H(P,) - P loga(m-1) (3)

whete H(C) and H(P,), respectively, represent the pattern class and the error entropy and m

indicates the number of pattern classes. Recently, Goodman and Smyth [15] have derived
several fundamental bounds for mutual information-based recursive tree design procedures and
suggested a new stopping criterion which is claimed to be more robust in the presence of noise

Instead of using a stopping criterion to terminate the recursive partitioning, CART uses a
pruning approach In this approach, the recursive partitioning continues till the tree becomes
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very large This tree is then selectively pruned upwards to find a best subtree having the lowest
error estimate. Trees obtained using pruning are typically less biased towards the design
samples but this property is achieved at higher computational expense. Recently, Gelfand and
Delp [13] have developed an efficient pruning procedure where the training set is divided into
two subsets to iteratively grow and prune the tree. In each iteration, the roles of the two subsets
are reversed. Their results indicate that the iterative tree growing and pruning requires less
computation compared to the CART procedure.

Once a node is designated as a terminal node due to the stopping criterion, a decision rule
is set up for that node to assign classification labels to unknown vectors for the future use of
the tree as a classifier. The usual practice is to mark a terminal node with a class label that is in
majority over its corresponding training vectors Given a partitioning measure, a stopping
criterion and a method to set up a decision rule at each terminal node, the problem of tree
design then essentially reduces to a search problem for finding the best decision function at
each step of the tree development. It is a common practice to simplify the search by enforcing a
binary decision based on a single feature at each of the nonterminal nodes. The AMIG
algorithm is one such example of the recursive tree design procedure that seeks to maximize
the amount of mutual information gain at every stage of tree development by essentially
employing a brute force search technique to determine the best feature for that stage along with
its best threshold value. Since the orientation of dividing hyperplanes is restricted, i ¢ only one
feature is used at any internal node, the search space for maximizing the average mutual
information gain is small. The search is made efficient by ordering the labeled patterns along
different feature axes to obtain a small set of possible candidate locations along each axis.

In addition to easing computational burden, another advantage of using a single variable
decision function at every nonterminal node is that the resulting trees have better
interpretability. However, the trees obtained using univariate partitioning are generally larger
and occasionally yield poor results, especially in cases where the tree classification is
attempted with raw measurements without extracting features Although linear discriminant
analysis offers a solution to the problem of recursive partitioning using a linear combination of
several variables [12], its application in the past has been limited due to the fact that as the
partitioning proceeds, the partitioned training vectors start residing in the subspaces giving rise
to almost singular covariance matrices Recently, a modified version of linear discriminant
analysis incorporating several statistical techniques including the analysis of variance and the
principle component analysis has been suggested by Loh and Vanichsetakul [28] to generate
multivariate partitionings, However, the advantages of using multifeature splits are
questionable in nonparametric situations. Brieman and Friedman [6] point out that "in most
applications where recursive partitioning has higher accuracy than traditional methods, that
advantage is achieved through univariate rather than lincar combination splitting " In fact,
according to Brieman et al. [5], obtaining a tree of proper size is much more crucial to its
performance than the choice of the partitioning measure used to develop it.

2.2 Missing Features

In many applications such as medical diagnosis, one or several components of a pattern
vector are often found missing. In such cases, classification using decision trees can not be
ordinarily done because a missing feature may be involved in a test at an internal node. One
solution to this problem, suggested by Bratko and Kononenko [4], is to follow all the decision
tree branches from an internal node requiring the missing feature value. Each branch is
assigned a probability value which approximates the chance of having taken that branch if the
value for the missing feature was known. These probabilities values are compiled at the tree
design time and are taken into account at terminal nodes to determine the correct identity of the
pattern with missing features. However, the classification performance using this strategy for
handling missing information does not appear to be any better than some even simpler
schemes such as filling in the missing value with the most common or median value.
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CART employs a better strategy for dealing with missing feature values. Each internal
node is assigned two tests: a pIi;n:ny test and a surrogate test. The primary test is the one that is
normally used The feature variable for the primary test and its threshold value are determined
by the usual partitioning criterion, The.feature variab}e for the surrogate test and its
corresponding threshold values are determined by the additional criterion of having the best
predictive association with the primary split at the node. It has been found that following the
surrogate split strategy there is only a slight deterioration in the classification performance with
the missing data provided the features have good correlation. An additional advantage of using
the surrogate test technique is that it uncovers some important features that may never appear
in primary tests but have a role to play by virtue of their strong association with several other

features.

2.3 Hard and Soft Decision Making

The same splitting process that is key to the decision tree design is perhaps its biggest
drawback when the tree is later used as a classifier As a result of making a hard choice to
either move down on the left branch or the right branch, the decision trees give rise to decision
models that are too simplistic for many applications. As an example, consider the decision
space of Figure 1(a) for some hypothetical machinery where the shaded region represents the
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Figure 1. (a) Temperature and pressure space for a hypothetical machinery. The shaded region
represents the healthy state of the machinery. (b) A decision tree to identify the status of the
machinery. (¢) Approximation of the healthy region by the decision tree.
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healthy state of the machinery in a measurement space of two continuous features, temperature
and pressure. An approximation of the decision region using the decision tree of Figure 1(b) is
shown in Figure 1(c) It can be noticed from these figures that either we must increase the tree
size or use nonlinear node decision functions to obtain a better approximation of the decision
space.

P Another consequence of hard splitting at the internal nodes is the sensitivity to the noise,
Since the tests at internal nodes typically involve comparing a continuous feature value against
a threshold to determine branching, a small change in the feature value due to noise can cause a
significant change in the classification. This problem gets exacerbated as the tree structure ig
moved from the laboratory environment to the field environment for actual use. It, therefore,
becomes important to allow for a more flexible or adaptive decision making at each node in a
decision tree One source for flexibility is to replace hard decision making at each internal node
with a soft decision making scheme where none of the descendent terminal nodes are ruled out
as possible class labels; instead each class label is assigned a posteriori probability based on
the outcome of the test performed at the internal node [9,32,35] These values are passed on to
subsequent descendent nodes. The final decision is made in accordance with the terminal node
having maximum a posteriori probability. Such an approach leads to better performance and
more accurate modeling of the underlying relationship present in the training examples

One simple approach to soft decision making proposed by Quinlan [32] consists of
defining a small interval around each threshold value to assign a probability measure to the
outcome of each test of the type "is fvalue > thrsh " made in the tree. If the observed feature
value lies inside the interval, the probability of the test outcome is made proportional to the
difference of the observed feature value from the threshold value as shown in Figure 2;
otherwise the probability value assigned to the test outcome is either one or zero depending
upon whether the observed feature value is higher or lower than the threshold Quinlan
suggests a method for determining the interval size which involves finding the variation in the
classification error rate with respect to the variation in the threshold value.
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Figure 2. Variation of the test outcome probability with respect to the observed feature value.
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2.4 Simultaneous Use of Training Vectors ) '

" One difficulty with the tqp-down recursive tree design methogis~ is ;hat they require all .the

_training vectors to be present in memory at once. For pattern classification problems with high
dimensional vectors, it may not be practical to sunul'taneously store all the training vectors. To
overcome this difficulty, the incremental generation of trees has been explored by some
researchers. One example of incremental tree generation approach is the wmdowmg technique
[31] In this approach, a srpgll subset of the training vectors chosen at r.ar}dom is used as a
design set to develop a decision tree. The remaining patterns ‘from the.trammg set are used to
evaluate the quality of the tree. If the tree performance is found satisfactory, then the tree
building process terrrpnates;.o.ther_wme the design set is enlarged by incorporating those training
vectors that were misclassified in the first instance and the entire tree building process is
repeated. The _]ustlflcatlon for .the w1ndovymg approach is based on the assumption of
redundancy present in a large training set. Wirth and Catlett [48] have done an extensive study
of the decision tree performance with and without windowing for many well known problems
in machine learning literature. According to their experience, windowing does not offer any
overall advantage in tree design and should not be used unless the limitations of memory space
are unavoidable by other means,
Another approach to minimize memory requirements for tree building consists of making
incremental modifications in the existing tree structure as more and more training vectors are
considered. Similar to the windowing approach, a subset of training vectors is first used to
develop a decision tree. Instead of redesigning the entire tree in thé presence of poor
performance on the remaining training vectors, the incremental approach opts for adapting the
existing tree structure either by replacing a subtree with another subtree or by reshaping a
subtree that involves replacing the root node of the subtree with one of its descendent nodes
following certain criterion. Utgoff [44] has shown that reshaping technique is most cost and
performance effective. However, the main difficulty with this approach is the lack of
well-defined tree modification rules.

3. MULTILAYER PERCEPTRON NETWORKS

Multilayer perceptron (MLP) networks are feedforward networks having several layers of
simple computing elements, called neurons or perceptrons, with signal flow taking place in the
forward direction only. The interfacing layer on the input side of the network is called the
sensory layer; the one on the output side is referzed to as the output layer or the motor control
layer All the intermediate layers are called hidden layers, One of the most important attribute of
MLP networks is their capability to capture input-output relationship present in a set of training
examples.

An example of a MLP network is shown in Figure 3(a). Generally, all neurons in a layer
are connected to all the neurons in the adjacent layers through unidirectional links The
connection strength between two neurons from adjacent layers is represented in the form of a
weight value. The significance of this weight value is that it acts as a signal multiplier on the
corresponding connection link. Each neuron in the layered network is typically modeled as
shown in Figure 3(b). As indicated in the figure, the input to a neuron is the linear summation
of all the incoming signals on the various connection links. This net summation is compared
against a threshold value, often called bias. The difference arising due to the comparison drives
an output function to produce a signal at the output line of the neuron. The two common
choices for the output function are sigmoid and hyperbolic tangent functions.

Each layer in these networks performs a certain transformation on its input signals. Given
a sufficiently large number of layers and a capability to manipulate the layer transformations, it
15 possible to achieve any desired input-output mapping or decision boundary for classification.
Although a large number of hidden layers perhaps provides more flexibility in terms of
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achieving a mapping, it can be easily shown that two hidden layers are sufficient to form
piecewise linear decision boundaries of any complexity [7,27] The first of these two hidden
layers can be considered as the partitioning layer that divides the entire feature space into
several regions The second hidden layer functions as an ANDng layer that performs ANDing
of partitioned regions to yield convex decision regions for each class. The output layer can be
considered as the ORing layer that logically combines the results of the previous layer to
produce disjoint decision regions of arbitrary shape with holes and concavities, if needed
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Figure 3. (a) An example of a multilayer perceptron network. (b) A typical perceptron model

The network training is done in an incremental fashion by presenting examples of
input-output mapping pairs in a sequence. During the learning process the network
continuously modifies its connection strengths or weights to achieve the mapping present in the
examples. Since the input-output training examples specify only the desired output for the
neurons in the output layer, the expected response of the neurons in the intermediate layers is
determined by back propagating the error at the output layer to the intermediate layers through a
process of credit assignment that takes into account the weights of the various interconnecting
links. The resulting backpropagation algorithm [29,34,46] is a gradient descent procedure that
minimizes the error at the output layer. Although the convergence of the algorithm has been
proved only under the assumption of infinitely small weight changes, practical
implementations with larger weight changes appear to yield convergence most of the time:
Because of the use of gradient search procedure, the backpropagation algorithm occasionally
leads to solutions that represent local minima. Recently, many variations of the
backpropagation algorithm [8, 42} have been proposed to speed up the network learning time.

Because of their excellent learning capabilities the MLP networks are finding increasing
use as nonparametric pattern classifiers. These networks have been successfully used for.
classification tasks involving speech, text, and sonar data with performance similar to that of
conventional nonparametric classifiers such as the k-nearest neighbor classifier with the benefit
of inherent parallelism of the neural net structure. One difficulty often encountered in the
successful application of MLP networks is the necessity of matching the network topology, ie.
the number of neurons in each layer, to the given problem at hand. The network topology is
an important factor that can significantly affect the Jearning time as well as the overall
input-output mapping performance as indicated by many experimental stadies [7,16,20].
Considering the importance of network topology, many researchers [2,3] are looking at the
traditional statistical classification techniques to obtain the matching network configuration for a
given set of input-output training vectors.
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4. AN MLP IMPLEMENTATION OF TREE CLASSIFIERS

One of the earliest references to the implementation of a tree classifier as a layered neural
network is the work of Henrichon and Fu [19] who suggested the use of perceptrons with hard
nonlinearity to realize the node decision functions Similar schemes have been proposed again
in the recent literature in the form of neural decision trees [14,25]. However, the
implementation proposed here makes use of a structural transformation [39] that leads to a
decision tree implementation in the form of a three-layer feedforward network of perceptrons
which can be further trained along the lines of neural network training procedures

In order to see how a decision tree can be transformed into a three layer neural network, let
us consider the decision tree classification procedure Classification using decision tree is
performed by traversing the tree from root node to one of the leaf nodes using the unknown

attern vector. The response elicited by the unknown pattern is the class or decision label
attached to the leaf node that is reached by the unknown vector It is obvious that all the
conditions along any particular path from the root to the leaf node of the decision tree must be
satisfied in order to reach that particular leaf node. Thus, each path of a decision tree
implements an AND operation on a set of half-spaces that are defined by the intermediate nodes
on that path. If two or more leaf nodes result in the same action or decision then the
corresponding paths are in OR relationship Since a layered neural network for classification
also implements ANDing of hyperplanes followed by ORing in the output layer, a decision
tree can be modeled as a layered network by following some transformation rules These rules
can be informally stated as follows:

(i) The number of neurons in the first hidden layer of the layered network equals the
number of internal nodes of the decision tree. Each of these neurons implements one of the
decision functions of internal nodes This layer is the pariitioning layer.

(i) All leaf nodes have a corresponding neuron in the second hidden layer where the
ANDing is implemented. This layer is the ANDing layer.

(it1) The number of neurons in the output layer equals the number of distinct classes or
actions. This layer implements the ORing of those tree paths that lead to same action.

(iv) The connections between the neurons from the partitioning layer and the neurons from
the ANDing layer implement the hierarchy of the tree.

An example of restructuring following the above rules is shown in Figare 4. As this
example shows, it is fairly straightforward to map a decision tree into a layered network of
neurons It should be noted that the mapping rules given above do not attempt to optimize the
number of neurons in the partitioning layer. However, a better mapping can be achieved by
incorporating checks in the mapping rules for replications of the node decision functions in
different parts of the tree to avoid the duplication of the neurons in the partitioning layer.
Moreover, it may not be necessary to have the output layer if the number of neurons in the
ANDing layer is same as the number of classes.

While the mapping rules given above allow an implementation of a decision tree as a three
layer network of perceptrons, the full potential of this implementation can not be realized unless
the perceptrons are provided with soft nonlinearity and the network is allowed to adapt its
connection strengths to overcome the rigidity of the decision tree classifiers There are two
possible methods for doing so. One is to simply use the backpropagation learning procedure.
However, such a training procedure may take exceedingly long time as the mapped network is
partially connected. The other possibility is to exploit the presence of hierarchy in the
transformed network to develop a more suitable training method. One such method is described
in the next section.
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layer layer layer

Figure 4. An example of a decision tree mapping

5. TRAINING THE TREE MAPPED NETWORK

To be able to adjust weights in the mapped network, it is essential to know the desired
output of the neurons in the partitioning layer and the ANDing layer as well While the desired
output of the neurons in the intermediate layers is generally not known, this problem is
tractable in the present case. As can be noticed from the mapping rules, there exists a group of
neurons for every pattern class in the ANDing layer of the network. The membership in this
group is known from the tree-to-network mapping. Thus given an example pattern from class
¢, it is known that only one neuron from the group ¢ of the ANDing layer neuron should fire
while the remaining neurons from that group as well as those from other groups should remain
in an inactive state. Therefore, the solution to weight adjustment for the ANDing layer is very
simple: enhance the 1esponse of the neuron producing highest output among the neurons from
group ¢ and suppress the response of the remaining neurons in the ANDing layer for a pattern
from class c. This is similar to the winner-take-all approach followed for the neural net training
in the self-organizing mode [24] The reason that this simple approach works is that the
mapped network has a built-in hierarchy of the decision tree which is not present in the other
layered networks except for the counter propagation network [18] where also a similar training
procedure is used. Once the identity of the firing neuron in the ANDing layer is established for
a given example pattern, the desired response from the partitioning layer neurons is also
established because of association between a terminal node and internal nodes on its path

Although the presence of tree hierarchy in the mapped network provides a solution to the
problem of knowing desired response for weight adjustment for the neurons in the partitioning
layer, it is really not necessary to adjust weights on the incoming connections to these neurons
due to the use of soft nonlinearity. This is due to the fact that using soft nonlinearities such as
sigmoid or hyperbolic tangent functions causes the difference between the observed feature
value and the threshold value to be carried across different layers in a coded form This in
conjunction with the adaptability provided by the connections between the partitioning layer
and the ANDing layer is generally sufficient to obtain desirable performance from the mapped
network without a need to adjust the weights on the incoming links to the partitioning layer.

Based on the above discussion, the procedure for adjusting the weights in the mapped
network can be described in the following way. Let x(p) with class label L(x(p)) be the input
pattern to the mapped network at the p-th presentation during the training Let Rj(x(p)) denote

the response of the j-th neuron from the ANDing/ORing layer. Let G(j) represent the group
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membership of the j-th neuron, i.e. the class label of the group of neurons whose member is
the j-th neuron. Furthermore let wijj be the connection strength between the j-th neuron and the

i-th neuron of the previous layer. Then

wijlp+1) = mij(wii(p) + Awiip))  if Ri(x(p)) 2 Ry(x(p)) for all k
such that G(k) = L(x(p)) = G(j); and
wik(p+1) = mip(Wik(p) -Awir(p))  for all k =},

where the amount of change in the weights is determined by the Widrow-Hoff procedure [47]
or the LMS rule as it is called many times. The term m; ;j is either 1" or ‘0" indicating whether

a connection exists to the j-th neuron from the i-th nearon or not. It should be noted that the
presence or the absence of the connections is determined at the time of tree-to-network
mapping. The suggested training procedure is such that it is possible to train each layer
separately or simultaneously.

Examining the proposed decision tree implementation as a trainable three layer network of
perceptions, several comments with respect to the decision tree issues raised earlier can be
made. The most important of these is that the MLP implementation of the decision trees is
expected to provide a better and more robust classification performance because the final
decision making is delayed to the last layer when information from all the previous layers is
available. This is in contrast with the usual decision making procedure in a decision tree where
a choice has to be made at each node. Moreover, the use of soft nonlinearities in the MLP
implementation allows perturbations in the feature values to be tolerated which in the usuaal
decision tree implementation can lead to an entirely different path. Since a soft nonlinearity
retains more information about the input, another important consequence of the MLP
implementation is that the final decision boundaries are expected to be smoother and of
arbitrary orientation leading to better decision models than are possible with the conventional
decision tree implementation. This capability in the MLP implementation of the decision trees
also reduces the need for finding multivariable splits while developing the tree. The capability
to adjust the weights in the proposed implementation also provides a solution to the problem of
simultaneous use of all the training vectors while designing a decision tree. With the MLP
implementation, it is possible to design the tree using only a subset of the training vectors The
remaining training vectors can be used in an incremental fashion to adjust the weights of the
mapped network thus avoiding the need to have all training vectors in the memory at the same
instant. The size of the tree also becomes less crucial with the MLP implementation Ordinarily
when a decision tree is grown beyond the appropriate size, the corresponding feature space
partitioning starts getting more and more biased towards noisy training vectors. This later on
leads to poor classification performance. However when an overgrown tree is mapped in to its
corresponding MLP structure, the effect of inappropriate tree size is expected to be minimal as
the ANDing layer will eliminate or weaken, through the use of competitive training procedure,
neurons that correspond to_those terminal nodes of the tree that are due to inappropriate size
[39]. The issue of missing features is also less crucial in the neural implementation because of
the parallel nature and graceful degradation property of the neural networks.

6. PERFORMANCE EVALUATION

A series of experiments were performed to compare the performance of the traditional tree
classifier implementation with the MLP implementation as described earlier. Three well known
data sets were used in these experiments. "he first two data sets simulate data for two
well-known problems from the classification tree literature [5] The first synthetic data set,
called LED data, simulates a faulty LED display. Each displayed digit is represented as a seven
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component binary vector that forms an input to the classifier. The classifier output indicates the
digit represented by the seven component binary input vector, The fault in the display is such
that it causes a switching from a correct segment state to an incorrect state with a probability of
0.10 for each segment in an independent fashion. All displayed digits are assumed to have
equal probability. Two hundred patterns of such faulty data were generated to be used as
training patterns while another 5000 patterns were generated to function as test vectors. Figure
5(b) shows the decision tree for recognizing faulty LED display that was obtained using the
training vectors. The number in each circular node of the tree refers to a segment in the display
as shown in Figure 5(a). If the segment is found to be turned on, the right branch in the tree is
taken: otherwise the left branch is followed The number in a square box in the tree tepresents a
digit label This tree as well as the trees for the other data sets were all obtained following the
average mutual information gain (AMIG) tree design procedure.

1
2 3
4

5 6
7

@) ()
Figure 5 (a) LED display (b) decision tree for the faulty LED data.

The second simulated data set corresponds to the waveform recognition problem Unlike
the LED data that is binary in nature, the WAVE data consists of 21-dimensional continuous
valued feature vectors coming from three classes Data from each class are generated by
combining two of the three waveforms of Figure 6(a) at equi-spaced 21 sampled positions,
Each component of the 21-dimensional feature vector is corrupted by random noise drawn.
from a normal distribution of zero mean and variance 1. The training and test set sizes are 300
and 5,000, respectively with equal a-priori probability for all classes. The two entries within
each internal node of the tree in this case represent a (feature, threshold) pair with the
convention that the left branch is followed if the observed feature value is less than the
threshold value; otherwise the right branch is taken up. It is to be noted that only a small
number of the features are actually utilized in constructing the decision tree These are the
features that are considered most discriminatory.
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Figure 6. (a) Three waveforms (b) decision tree *

The third data set is taken from character recognition domain and uses a subset of Munson
handprinted FORTRAN character set [21]. The subset, called IMOX data, consists of four
character classes, I, M, O, and X. Each character class consists of 48 patterns. Each pattern
is represented as an eight-dimensional feature vector of integer valued components These
features represent the length of eight directional lines in terms of pixel counts as shown in
Figure 7(a). In the experiment conducted with this data, 36 labeled patterns from each
category were used to develop the decision tree of Figure 7(b). The remaining 12 patterns
from every category were used to test the relative classification performance of the decision tree
and the trained network,
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Figure 7. (a) IMOX features (b) decision tree
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After mapping each tree into its corresponding MLP network, the training of the mappeg
network was done using the procedure discussed earlier. The training set consisted of the
same vectors that were used to develop decision trees. There are two parameters, p and g
involved in the training procedure. The parameter p determines the initial learning rate and was
set equal to 1.0. In all the experiments, learning rate was decreased in inverse proportion to
the square root of the iteration number. The other parameter ¢ determines the shape of the
neural output function which was realized through a hyperbolic tangent function. Figure §
shows the output function for three different a values of 0.25, 0.50, and 1.0. Since a large 4
value brings the output function closer to the step function, we call « a generalization constant
that determines the degree of flexibility of the mapped network After experimenting with fey
values, 0.25 was found to be the most suitable o value,

tanh(oix)
14 o=10
~0.5
0 5- a=0.25
6 -4 -2 2 4 6 X
-1

Figure 8 Plots of hyperbolic tangent function tanh( ax) for three e values

In order to monitor the learning progress, it was decided to perform classification on the
test data with the mapped net after every ten iterations of weight adjustment with the training
data The initial choice for the weights was made tandomly The training procedure was
repeated many times with different initial weight values. No significant differences, either in
terms of the training time or the classification performance, were observed due to initial weight
selection. Figure 9 shows an example of the learning progress of the mapped networks for the
LED and WAVE data sets that was observed in the experiments. It is seen that a stable
classification performance is provided by these networks after going through few tens of
iterations, The number of iterations in the case of WAVE data is far less than the LED data
and additionally the learning progress curve is much smoother. This is possibly due to the
analog nature of the WAVE data which provides more flexibility as opposed to the binary
nature of the LED data. The learning progress rate for the IMOX data was found to be similar
to the WAVE data
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Figure 9. The learning progress curves for the mapped network. a=025and p=10

The relative classification performance of the decision trees and the corresponding MLP
implementations is shown in Figure 10. These performance results were obtained using the test
data in each case. It is seen that thq MLP implementation in each case provides an
improvement over the corresponding decision tree performanc':c‘ The reason for improvement is
essentially due to the use of soft nonlinearity and the combination of the output of different
internal nodes of the decision tree that becomes possible through an MLP implementation Itis
interesting to note that the improvement for the LED data is very small compared to the WAVE
data or the IMOX data. The reason for smaller improvement in the case of LED data is because
the binary data does not provide as much flexibility as the continuous data

IMOX.Net
IMOX.Tree
WAVE Net
WAVE.Tree
LED Net
LED.Tree

1 1 ]

0 10 20 30 40 50 60 70 80 90 10

Figure 10. Relative recognition performance.

7. CONCLUSIONS

- Anpeural network implementation of the decision trees has been described The proposed
implementation is based on a set of mapping rules that transform a decision tree into a three
layer structure of partially connected neurons It has been shown that the transformed structure
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can be trained following the winner-take-all strategy. The incorporation of the soft
nonlinearities in the neurons has been shown to overcome many of the decision tree
deficiencies. The experimental 1esults that compare the classification performance of the neura]
implementation with the traditional tree classifier implementation show that the neura]
implementation is able to provide improved performance.
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‘Abstract

Statistical Pattern Recognition and Artificial Neural Netwoiks provide alternative
methodologies to the classification of patterns represented as feature vectors. This paper
provides a theoretical relationship and an empirical comparison between the Bayes de-
cision rule and the backpropagation model. It is shown that backpropagation performs
least mean square approximation to the Bayes discriminant function. While a three-
layer backpropagation network (one hidden layer) with a sufficient number of hidden
units is known to possess universal mapping ability, gradient-descent based backprop-
agation learning does not guarantee finding the minimum piobability of error solution.
Experimental results with handwritten character recognition (digits and letters extracted
from handwritten addresses) are presented. The experiments are with two different 1ep-
resentations of characters : binary pixel arrays and structural features represented as
binary vectors. With pixel arrays, the backpropagation model performs better than
the first-order Bayes discriminant that assumes statistical independence between pixels
With structural features, the first-order Bayes and backpropagation have similar perfor-
mance, However, training of a backpropagation network is much more involved. Inherent
difficulties with both classifiers are discussed.

1 Introduction

Pattern recognition has been an active field of research for over thirty years inspiring many
theoretical and experimental results Well-developed statistical approaches to pattern
recognition exist [Fuk72, DH73, TG74] Recently much attention has been diverted to
_ Dattern recognition using the artificial neural network approach, with many successful
experiments reported [Fuk88, Bur87, RMS89, DJG+89] Weiss and Kapouleas [WK89]
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have done a thorough empirical comparison of pattern recognition, neur al network, and
machine learning classification methods.

This paper focuses on the statistically optimal Bayes classifier and a popular neu-
ral network architecture, the backpropagation network. In particular, our interest is
in experimental evaluation for the case of binary feature vectors arising from the prob.
lem of handwritten character recognition. In analyzing these two classifiers from both
theoretical and empirical aspects, we hope to gain some insight into their relationships.

The organization of the paper is as follows. Section 2 introduces the Bayes classifier
and its approximation for the case of binary feature vectors. Section 3 introduces artifi-
cial neural networks and the backpropagation concept. Section 4 provides a theoretical
analysis of the generalized delta rule used in a backpropagation network and relates it to
the error rate achieved by the Bayes classifier. It is shown that backpropagation performs
least mean squate error approximation to the Bayes discriminant function. Section 5 de-
scribes expetiments with both classifiers trained and tested on a database of more than
20,000 handwritten characters. Comparisons of these classifiers and practical problems
in training them are discussed in section 6. ‘

2 Bayes Classifier

The Bayes decision rule is a well-studied statistical classification method which is de-
fined to be optimal with known a priori and class-conditional probabilities [DH73]. It
minimizes conditional risks for any loss function. ‘

Let the input x be a vector of d random variables, and let C1,Cy,...,Cn be the n.
classes to which all possible input vectors may belong. Bayes rule states that ‘

P(oype = TELZLE) OF
where
P(x) = 3 P(xIC;)P(C}) 0

=1
By assigning X to the class with maximum a posteriori probability, P(C4|x), the proba-

bility of error is minimized. Defining the discriminant function g;(x) for each class Cj as
the a posteriori probability for class j

gi(x) = P(Cjlx) 3)

the mininum probability of error can be achieved by selecting the class whose discriminant
function has the highest value, or
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g0 = TG (1

Since P(x) is independent of the classes, it can be eliminated without affecting the
Jecisions. We can further reduce this equation by applying a monotonically increasing
function, such as log, on all discriminant functions. The result is

gj(x) =log P(x|C;) + log P(C;). (5)

In order to use this discriminant function, we need to know the probability density
function of x with respect to each class C;, and the prior probability of each class C;. In
practical pattern recognition problems, complete knowledge of either is rare. More often
we are provided with a finite number of samples, and are forced to estimate the a priori
snd class-conditional probabilities based on the training set.

2.1 Binary Case .

We will now consider the case where the components of x are binary. In general, the a
priori probability, P(C;) can be estimated quite accurately if the training set is large
However, approximation of class-conditional probabilities is a challenging task Since
there ate 2% possible d-dimensional binary vectors, 2¢ probabilities need to be calculated
for each class. The laige dimensionality often encountered in pattein recognition prohibits
us from making such approximations.

2.1.1 First-Order Approximation

If the components of x are all statistically independent of each other, the class-conditional
probability can be expressed as the product of conditional probabilities of each compo-
nent, as

.

P(|C;) = T P(iCy), ®)

I3

1l
-

_ where z; is the #h component of x Therefore, we need to estimate d probabilities for
each class.

If we let

Py = P(z; = 1/|C)) (7

1- P,'j = P(.’E, = 0|Cj) (8)
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then
d .
P(x|C;) = [[ PE(1 — Py)t—= ©)

i=1

Substituting Equation 9 into Equation 5, it is simple to detive the following,

P
Zz,logl_P' +Zlog 1 — P;) + log P(Cj). (10)

Since this equation is linear in z;, we can rewrite Equation 10 as

d
= Z z;w;; + b; (11)
i=1
where
P
w;; = log 1-P. ipii )
and
d
b; = > log(1 — P;) +log P(C;) (13)

=1

Therefore, the discriminant function for each class can be efficiently characterized by
a bias factor and a d-dimensional weight vector.

2.1.2 Estimating Parameters

Since the input vector is binary, and its components are independent under our assump-
tion, the class-conditional probabilities can be estimated by building a nxd histogram.
Then P;; can be approximated by the sample mean k;;/s;, whete s; is the number of sam-
ples for class J, and k;; is the number of occurrences of 1’s in the ith component among
all s; samples. One common problem encountered using this approach is to determine
a suitable value for P;; when k;; = 0, s; = 0 or k;; = s;. Any one of those situations
leads to 1epresenting either infinity or negative infinity. A useful technique that avoids
this problem is to estimate F;; by (ki; + 1)/(s; + 2). In fact, it has been shown this is
the best estimation in case of a mean square error loss function. Good results have also
been observed by assigning P;; the value of 1/3s; when P;; is 0

With a given set of feature vectors, with complete knowledge of a priori and condi-
tional probabilities, the Bayes decision rule will provide the minimum error rate The
discriminant function in Equation 10 would be appropriate if the components in the
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feature vectors are indeed statistically independent and all conditional probabilities are
know2. In some pattern recognition problems, neither of those assumption can be justi-
fied. Consequently, working under the above assumptions, we run the risk of obtaining
Suboptimal performance,

5.1.3 Higher-Order Approximation

There are techniques which allow us to compromise between working under the assump-
tion of strict statistical independence among components and having to estimate 2¢
probabilities‘ One technique is to use a generalized decision function which has the form

m

3 edi(x), (14)
=0

where ¢;(x) are orthogonal functions and ¢; are their coefficients

An example of a generalized decision function is one based on Bahadur-Lazarsfeld
polynomials [DH73]. The class-conditional probability can be calculated by

PIC;) = Pi(xIC) Y- ai(x) (15)
where
aji = E[ji(x)] (16)

is the expected value of 1;;(x), and

1 1=0
n 1=1
Yd 1=d
Y1y2 t=d+1

Pi(x) =

Ya-1Yd i=d+1+dd-1)/2
Y1Y2ya i=d4+2+d(d-1)/2

niya - oy 1=29—1
and y; is the normalized variable,

z; — Py

" VFi(1 = Py)
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The weighting function P;(x) is precisely the conditional probability under the indepen:
dence assumption,

Hp (1 —-p)' (18)

i=1

From the definition of 4, it is clear that ajo = 1 and a;; = aj2-- = ajqo = 0. There
fore, the discriminant function in Equation 10 is simply the first order approximation
by Bahadur-Lazarsfeld expansion. The probability density function can be estimated
more accurately by going into higher order terms. For our database, empirical results
discourage us from such expansion as little is gained at a cost of many more coefficients:
Nevertheless, in general this trade off between accuracy and efficiency will depend on the
nature of the problem at hand

3 Artificial Neural Networks and Back Propagation

Artificial neural networks have been used in pattern recognition problems as early as
1957 when Rosenblatt introduced the perceptron [Ros57] It is well-known that they are
incapable of discriminating between non-lineatly separable classes [MP69].

One major contribution in the revival of neural networks is the generalized delta rule
of Rumelhart et.al. [MRG86], which was discovered independently by Werbos [Wer74]
and Parker [Par85]. This rule provides a learning scheme for a multi-layer perceptron-
like network with non-linear activation functions, thus allowing generation of any type of
decision surface. Of course, other neural network architectures have been attempted for
pattern 1ecognition and other applications. However, we will not give a comprehensive
overview of all neural network models here. A good introduction to various models can
be found in [MRG86, Lip87].

Although the generalized delta rule can be applied to any network, we will concentrate
on a particularly popular layered feedforward network, the backward error propagation
(BP) model. The network consists of three types of layers, each of which is composed
of various number of units. Units in adjacent layers are connected through links whose
associated weights determine the contribution of units on one end to the overall activation
of units on the other end. There are generally thiee types of layers. Units in the input
layer bear much resemblance to the sensory units in a classical perceptron. Each of them
is connected to a component in the input vector. The oufput units, analogous to the
response units in a perceptron, represent different classes of patterns. Arbitrarily many
hidden layers may be used depending on the desited complexity. Each unit in the hidden
layer is connected to every unit in the layer immediately above and below.

Data flow in a BP can be either in forward or backward direction. In the forward
direction, input data is transmitted from input to output layer, layer by layer, using the
propagation rule,
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0j = f(2_wiioi +65) (19)

k Where the output of unit j, 0;, is determined by the weighted sum of outputs of all units
inthe preceding layer, 3=; wy;0;, and a bias term, 6;, applied on an activation function f.
An example of fsuggested in [MRG86] is the sigmoid function,

1
I=13e

(20)

However, any choice of continuous, non-decreasing, differential function will be appro-
priate. The decision of the system is measured at the output layer. For the purpose of
pattern recognition, it is common to assign an input pattern to the class whose corre-
sponding output unit has the highest value among all output units.

The decision surface for a BP is formed during training phase by a series of weight
adjustments. These weight adjustments are determined by the error signals transmitted
in the backward direction. As each labeled pattern is fed in from the input layer and
propagated to the output layer, values of the output units are compared to the desired
output responses. The amount of error attributed by each unit, é;, is calculated, layer
by layer, from output to input layer For output units,

8; = (t; — 05)0;(1 — 0j), (21)
where t; is the ideal output response. For hidden units,

57' = 07'(1 —_— 07‘) Z wikék, (22)
k

where 6y is the error contributed by each unit in the layer immediately above, After 6 is
calculated for each unit, every weight is adjusted by

Aw,','(t) =nb;0; + aAwi;‘(t—-l), (23)

where Awj(y) is the weight change at iteration ¢; 5, the learning rate and, «, the mo-
mentum, are scaling factors. The choice of these two parameters has great effect on the
convergence rate of the system. In experiments described in Section 5, we used a learning
rate of 0.75 and a momentum of 0 5. It has also been observed that BP performance is
influenced by the number of hidden units available [KH88, GW(G89]. For digit recognition
we chose 15 hidden units, and for alphabet recognition we used 70 hidden units.

4 Relationship

We will first detive a theoretical relationship between the Bayes decision rule and back-
ward error propagation.
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The Bayes decision rule performance is optimal for a given set of features in the
sense that it minimizes the probability of error and the conditional tisk. As stated,
this requires complete knowledge of the underlying probability density function for each
class. However, in practice, finite training samples and high dimensionality compound
this simple decision theory. The difficulty in actuating the class-conditional probability
often makes the performarnce less than optimal.

Unlike the empirical approach in the 60’s, the resurgence of neural networks has been
led off by a series of theoretical analysis on their capabilities. Many important works have
demonstrated the universal mapping ability of a backpropagation model under various
constraints [IN89, Ara89, IM88, SW89, Shvi0]

In order to understand the theory behind backpropagation, we need to study the
derivation of generalized delta rule, which originates from minimizing the squared error
sum between network and desired output responses over all patterns.

E=Yh=% 5 b = oxy)° (24)

where ty; and oy; are, respectively, the desired and actual response of jth output unif
to pattern x To minimize £ with respect to each weight wy;, it is necessary to find the
root for its partial derivative,

oL O0Fx (25)

611)“‘ X 6w1‘7‘

Thus it is sufficient to minimize Ey. Gradient descent is the standard technique for
solving such problems An approximation of gradient descent is achieved by making
weight changes proportional to Ex after each presentation, ie.,

OEx

dw;;’

Axw,‘]‘ X —

The detailed derivation can be found in [MRGS86]. For our purpose, it suffices to state
the result:

Aiji = 775xj0xi, (26)

where

bxj = (txj — Oxj)f/(z: wij0x; + 0;) &

for output units and
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bxj = f' O wijoxi + 0;) D Sxiwy; (28)
; %

for hidden units. In Equation 28 and 29, f’ denotes the first derivative of f When f is
the sigmoid function in Equation 20, it can be shown that

f(#) = 1@~ /(=) (29)

and we obtain the formula in Equation 21 and 22.

We should point out that backpropagation performs gradient descent in £ However,
by adjusting the weights after each pattern is presented, we deviate from true gradient
descent. Nevertheless, Rumelhart noted that by selecting sufficiently small learning rate,
;& good approximation of gradient descent can be obtained through sequences of small
movements[MRG86]

The statistical significance of minimizing squared error can be shown in the following
analysis. First, we rewrite the Bayes decision rule for notational convenience

_ PIC)PC)  P(x,Cy)
P(Cjlx) = i P(x|Cig)P(Cigj)  P(x)

_ Consider a single output unit f;(x,w) and random classification variable ¢;, which is 1
ifx € C; and 0 otherwise.
ti(x) - { 0 ifx g C,‘ (30)

Then the criterion function J; is defined.

J(w) = Y [fi(x,w) — ;]

= Z [fi(x,w) =1 + Z [fi(x,w) —0]?
xel, x€C,
n; 1 n—n; 1 2
= n[;;;xgj[fj(xaw) -1+ T;I’:zj%, filx, w)?]

_ where n is the total number of training samples, and n; is the number of samples for
class C;.

Applying the law of large numbers and Bayes 1ule, we obtain the following result

.1
nl_l_{r&;h(w) = J(x,w)

P(C,) [Ufix,w) = 1P PGIC )ix + P(Cigi) [ 1i(x,w) Px{Cigs)ix

J Ui w) = PP, i+ [ 1w PO, Co i

1l
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/fj(x,w)zP(x)dx— 2/fj(X,W)P(X,C7‘)dX+./ P(x,C;)dx
| / e W) P()dx 2 / £i(x, W) P(C;]x) P(x)dx + / P(C;1%)P(x)dx
[Uix,w) = P3P P + [ P(Cx)P(Cogs ) P(x)ax

Il

Il

In the last equation, since the second term on the right hand side is independent of
w, whatever minimizes J,/n also minimizes the first term. Therefore, backpropagation
learning seeks least mean square approximation of the posterior density function in weight
space. This is an extension of the analysis of two class linear classifiers given in [DH73].

Knowing that the output of a backpropagation network approximates the posterior
density function, it is reasonable to ask whether a minimum probability of error solu-
tion exists. In [HH90] it has been shown that when the probability density function is
Gaussian, a perception with a sigmoid transfer function approximates the a posteriori
probabilities. We will extend this result to multiclass problems without restricting the
form of underlying density functions

Using the criterion function in our previous analysis, we can minimize the total error
by finding the root to the first partial derivative of J(w,x) with 1espect to w Therefore,

a (9f](x w)

2 =2p(0) [ (01 2L pixicp i 2(1-P(Cy)) [ 02 P = 03

All possible w which achieves local minimum must satisfy this condition. However,
any solution which satisfy this requirement may not be a minimum in F space. In fact,
it may well be a local maximum or saddle point. To ensure the local minimum property,
we need to exam the sign of the second derivative. The solution is a minimum if and
only if

*J

Fw? >0

Nevertheless, we will proceed to analyze its most obvious solution. This condition
can be satisfied when

PG~ fi(w) 2O pixie) = (1 PG w) P pixicig)

for all x. Under the assumption that 8f;(x,w)/dw is integrable and nonzero every-
where, the above equation can be simplified to

P(C;)P(x|C;)
P(x)

(1 - fi(wi)) P(X)

= fi(wi)
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The multiplicative constant P(x), of couise, has to be nonzero. By applying Bayes rule
(Equation 1), we obtain

(L= fi(x, W))P(C;|x) = f;(x,wW)P(Cig;|x)
Thus,

P(Ci[x) = fi(x,w)P(Cig;|x) + f;(x,w)P(C}|x)
Since

P(Cjlx) + P(Cigj|x) =1

the following conclusion is 1eached :
fi(x,w) = P(Cj|x) (32)

Not surprisingly, one solution is the posterior density function. The implicit as-
sumption being made in the above analysis is that f is functionally capable of rep-
resenting P(Cj[x). A three layer BP model with infinite number of hidden units is
necessary and sufficient to approximate any posterior density function to any degree of
accuracy [HIN89, Ara89, SW89]. The diagnosis of a more realistic feedforward network
with bounded fan in can be found in [Shv90]. Without any prior knowledge of forms of
the density functions, using a two layer network (no hidden layers) or a linear activation
function will severely limit the representation power of our classifier.

From the above analysis, we make the following conclusion, Backpropagation per-
forms least mean square approximation to the Bayes decision rule. A minimum probabil-
ity of error solution indeed exists if the network is computationally capable of 1epresenting
the a posteriori probability function exactly. A three layer backpropagation model (1 hid-
den layer) with sufficient number of hidden units has been shown to possess universal
mapping ability and, therefore, can approximate any (a posteriori density) function to
any degree of accuracy [[IN89, SW89, Ara89].

However, the gradient descent technique used in backpropagation learning rule does
not guarantee convergence to this solution. Networks can get trapped in a local mini-
mum. Without an exact representation of the posterior function, this mean-square-error
approximation may not give us the optimal classifier.

In this section we have shown that a multilayer feed forward network is functionally
equivalent to approximating the a posterioti probability using gradient descent.

5 Experimental Results

Several experiments were conducted on handwritten digits and alphabets using the first
order Bayes approximation and backward error propagation. Original images were di-
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Table I:
95% confidence interval for digit recognition correct rate with 212 PPI images (manual
segmentation)

low estimation high
First-order Bayes (pixel) 914 92.2 92.9

Backprop (pixel) 94.9 95.5 96.0
First-order Bayes (feature) 975 97.9 98.3
Backprop (feature) 98.1 98.5 98.8

tectly obtained from handwritten addiesses on mail samples. The specification of data
and size of training and testing sets will be described in each section.

Input data for those pattern recognition algorithms primarily consisted of two formats.
The first type of input, which we will efer to as pizelinput, was binarized, size normalized
images. Binarization was achieved by global thresholding, and moment normalization
[Cas70] was used to scale all images to size 16x16.

The second type, which we will call feature input, was uniform length feature vectors
of 636 binary components obtained by various feature extractors described in [LLS90].
Three types of feature extractors were used in constructing the feature vector : struc-
tural, contour analysis and feature templates. The structur al approach was based on the
wotk of [Pav86]. Several parameters and thresholds were adjusted to adapt the variations
in character styles. The contour analysis based method used chaincodes to extract fea-
tures such as holes and concavities. The third extractor implemented feature templates
[BGJHSS]. Detected features are represented in form of a fixed lengthed binary vector,

5.1 Digit Recognition

Two different experiments were done on handwritten digit recognition. Data from the
first experiment consists of binary images that were scanned by OCR machines at 212
ppi (pixel per inch), These digits were acquired by manually locating the zipcodes on an
envelope, and then segmenting them by a program. Binarization and moment normal-
ization were applied on the images to obtain 16x16 bitmaps. The data has been cleaned
up to eliminate any badly segmented images. The training set used to estimate parame-
ters (section 2 1.2) contained 10,000 images, and the test set was a disjoint set of 5,000
images, Table I shows the 95% confidence interval for the correct rate [Hig62, CP34].

The images used for the second experiment were scanned at 300 ppi with 256 different
gray scale value, and then thresholded to binary and moment normalized. Segmentation
of digits were performed by a program. The training set, which was composed of 18,650
images, was cleaned up Whereas the 2711 images in the novel testing set contains an
estimated 3% of improperly segmented images. The performance is shown in Table 1L
Not surprisingly, the performance is not as good as that in the first experiment. Most of
the errors were caused by poor segmentations.




101

5.2 Alphabet Recognition

The alphabet 1ecognition experiment involves classification of all handprinted upper and
lower case alphabets. However, since each individual character is presented without the
baseline information, the following classes are combined : C-c, K-k, O-o, P-p, S-s, U-u,
V-v, W-w, X-x, Z-z. After preliminary experiments, it was observed that much of the
substitution ertor was caused by badly formed characters in class I-i-1, Y-y, Therefore,
those classes are also combined. Thus we have a total of 41 classes.

All images in the training and testing set were scanned at 300ppi with 256 gray scale
values and then thresholded and moment normalized to 16x16 binary images. Segmenta-
tion was performed on-line manually The training set consists of 8000 images, unevenly
distributed among classes. The test set contained 2865 previously unseen images. Ex-
perimental results are summarized in Table II1.

Samples of images used in both the digit and alphabet recognition problems are given
in the appendix. These images were extracted from addresses on envelopes,

6 Discussion

From the analysis in section 4, we have seen for a specific target function, outputs of
a backpropagation network approximate the a posteriori probabilities. Therefore, by
assigning the input pattern to the class whose corzesponding output unit has the highest
value, we effectively maximize the (estimated) posterior probability, and minimize the
probability of error

In practice, however, the comparison between Bayesian classifier and backpropagation
is complicated by various factors. In most real-world problems, high-dimensionality and
finite training samples inhibit us from making accurate calculation of probability density
functions. Working reluctantly under an assumption of statistical independence or with
low order approximations, we expectedly obtain suboptimal performance.

While backpropagation provides an automated solution to such problems, it also has
its pitfalls. Using a gradient descent technique in a most likely non-parabolic error space,
it is susceptible to local minima In fact, Hecht-Nielsen [HN89] has shown the existence of

Table 11:
95% confidence interval for digit recognition correct rate with 300 PPI images (automatic
segmentation)

low estimation high
First-order Bayes (pixel) 84.9 86.2 874
Backprop (pixel) 89.1 90.3 91.4
First-order Bayes (feature) 92.7 93.7 94.6
Backprop (feature) 91.9 92.9 93.8
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Table IIL:
95% confidence interval for alphabetic character 1ecognition correct rate with 300 PPI
images (manual segmentation)
low estimation high
First-order Bayes (pixel) 63.9 70.6 72.2

Backprop (pixel) 72.0 73.7 75.3
First-order Bayes (feature) 89.0 90.1 911
Backprop (feature) 87.4 88.6 89.7

local minima in backpropagation error surface. Although optimization techniques have
been proposed to find global minimum [Was88, Bab90], their effectiveness in complex
problems remains to be seen. Furthermore, the classical backpropagation is vulnera-
ble to other problems such as slow convergence and generalization. Many researchers
have proposed methods to improve the speed of convergence [Fah88, IP90, ST90, Jac88)
However, there is still some dispute in the definition of convergence itself. It has been
observed that an absolute convergence may not provide the best generalization result.
The effect of additional hidden units on generalization has not been thoroughly explored
either. Under such conditions, its performance may also be degraded.

From the tables in section 5, we can make the following observations. The accuracies
of Bayesian classifier and BP are comparable in most cases. BP perform better than the
first order Bayes approximation with pizel input. This is not surprising considering the
second classifier, being a first order approximation, is capable of achieving only linear
decision surfaces. Contrarily, the activation function in a backpropagation network allows
it to capture higher order relations

In the case of feature vector input, their relative performance is not clear. The 1esults
in digit and character recognition experiments showed similar accuracy rates for both
classifiers. Although the first-order Bayesian approximation has out performed back-
propagation network in two experiments, their confidence intervals overlap considerably.
If the feature components are indeed statistically independent, the first-order Bayesian
classifier provides optimal decision, and backpropagation network is albe to find good
approximation to such decision. However, it is moze likely that the features aze not inde-
pendent, and better local minima would have been found had the parameter space been
explored more thoroughly.

We should also take into consideration that while the implementation of first order
Bayes discriminant classifier is straight forward, the optimal configuration for a BP net-
work can only be found with more research. Therefore, backpropagation has much more
potential for improvement.
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¥  Conclusion

We have shown for a specific case that the outputs of a backpropagation network are direct
astimations of a posteriori probabilities. Therefore, this neural network model has the
same computational power as the Bayes decision rule. Empirical results obtained in 1eal
world handprinted characters recognition experiments showed that these two classifiers
have compatable performances. A finer compazison would require a detailed analysis of
the nature of input data. It is expected that if the input components are statistically
independent, the Bayes classifier will be optimal. However, if any dependence exists
among input components, backpropagation is likely to out-perform first order Bayesian
classifier. Normally the limitation in computing time and space hinders higher order
approximation of probability density functions. On the other hand, many techniques
have been developed to mitigate the difficulties encounted in training a backpropagation.
Under the circumstance, the neural network approach is a very promising alternative to
Bayesian classification.
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1. INTRODUCTION .

Pattern recognition is an essential part of any high level computer vision sys-
tem. Such systems are now in use in many diverse fields, among them roboties, mili-
tary reconnaissance, remote sensing, document processing, and industrial automa-
tion. Recent developments in the field of artificial neural networks (ANN) have pro-
vided potential alternatives to the traditional techniques of pattern recognition. An
ANN is composed of many simple nonlinear computational elements operating in
parallel and arranged in patterns reminiscent of biological nervous systems. These
nonlinear elements which are the building blocks of the network play the same role
as the neurons in the brain and thus are usually called "neurons” or "nodes". The
nodes are interconnected via weights that can be adapted and changed according to
a given situation, analogous to synaptic connections to neurons in the brain, It
should be noted that while ANNs are inspired from studies of biological systems,
they are far from mimicking functions of the human brain. The view taken in this
study is that an ANN is a self-consistent model and does not require the correctness
of neural theory to validate its operation. It is only inspired by the tremendous
potential, highly parallel operation, and fault tolerant nature of the br ain, and is not
constrained by the exact details.

ANNs are capable of many functions, among them optimization, clustering,
mapping, and classification. In this study, the net is utilized in the context of a
supervised eclassifier, This is a decision making process which requires the net to
identify the class or category which best represents an input pattern. It is assumed
that the net has already adapted the classes it is expected to recognize through a
learning process using labeled training prototypes from each category. There are
many traditional techniques fo1 solution of this problem. One of the contributions
of this chapter is to show the advantages of an ANN classifier over some of the con-
Vventional recognition algorithms.

In this chapter, two specific image recognition problems namely, classification of
two-dimensional shapes and texture recognition are addressed. The focus of the
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study is on images containing a single shape or a single kind of texture. Images cop-
taining several objects or those composed of several regions with different texture cagy
first be divided into several single shape/texture images. Description of several image
and texture segmentation techniques could be found in [6], [12], and [13].

The key step in any classification problem is to represent an image with a set of
numerical features (a feature vector) whose dimension is much lower than the origi.
nal image data. This removes redundancy from the data and drastically cuts the
computational cost of the classification stage. In a recognition application, the most
important criterion for the extracted features is that they must retain much of the
useful discriminability information present in the original data. Selection of "s00d"
features is a crucial step in the process since the next stage only sees these features
and acts upon them. "Good" features are those satisfying two requirements. The
first one is small intra-class invariance - slightly different shapes with similar general
characteristics should have numerically close values. The second one is inter-clasg
separation - features from different classes should be quite different numerically,
Additionally, a fexible recognition system must be insensitive to parameters such as
orientation of the object/texture, and scale and location of the object in the field of
view. If the features that are extracted from the image are invariant to such param-
eters, the classifier is relieved from the difficult task of handling these variations:
This is the approach taken in this study. In the case of shape recognition, rotation,
scale, and translation invariant features recently developed by the authors [14],[15],
[17] are utilized. They are based on a set of complex moments of image termed as
"Zernike Moments". For the texture classification problem, random-field model
based rotation invariant features also developed by one of the authors [10] are used
to characterize the image.

The neural network classifier used in this study is a multi-layer feed-forward
ANN which is typically called a "Multi-Layer Perceptron” (MLP). The input to this
net consists of the features extracted from the image. It produces the class label of
the input at its output. Many aspects of the performance of this ANN are experi
mentally studied. They include: (1) comparison with performances of two other
conventional classifiers namely the minimum-mean-distance, and the nearest-
neighbor, (2) effect of changes in the net parameters, (3) noise tolerance, and (4) fault
tolerance. These studies are carried out using two binary shape databases consisting
of a 26-class data set of English characters and a 10-class data set of handwritten
digits. Texture recognition is studied using a 12-class gray level database of natural
textures.

The organization of this chapter is as follows. Section 2 discusses the Zernike
moment-based shape features and their invariance properties. Random field-based
texture features are considered in Section 3. In Section 4 the MLP classifier and its
learning rule are described. The two conventional classifiers are discussed in Section
5. Section 6 reports the experimental results on the shape databases. Texture
classification results are piesented in Section 7. Some discussions and concluding
remarks are presented in Section 8,
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9, ZERNIKE MOMENT FEATURES FOR SHAPE RECOGNITION

In [22], Zernike introduced a set of complex polynomials which form a complete
orthogonal set over the interior of the unit circle, i.e. X2+y2=1. Let the set of these
polynomials be denoted by { V,(%,¥) }. The form of these polynomials is :

Vnm(X7Y) =Vnm(p’9) =an(p)eXp(jm9) (1)

where

n: positive integer or zero

m: positive and negative integers subject to constraints n— [m | even, |m |<n
p: length of vector from origin to (x,y) pixel

- angle between vector p and x axis in counterclockwise direction

Rym(p): radial polynomial defined as

n—|m |
- ¥ (=1F [(n—s)! ] "%
Run(#) S%% s!(n+|m|_s)!(n-|ml~s)!.

p

Note that Ry _m(0) =Rpn(p).

These polynomials are orthogonal and satisfy

f [V;m(xay)] qu(xyy) dXdy = Lé‘npé‘mq (2)
¥+y*<1 o+l

with

1 a= b
0y = .
ab™ |0 otherwise

Zernike moments are the projection of the image function onto these orthogonal
basis functions. The Zernike moment of order n with repetition m for a digital
image, {(x,y), that vanishes outside the unit circle is

n+1

A =
Tim -

ZZ f(X,y)V;m(p,é’), X2+y2gl (3)
Xy

To compute the Zernike moments of a given image, the center of the image is taken
as the origin and pixel coordinates are mapped to the range of unit circle, i.e.
x*4y2<1. Those pixels falling outside the unit circle are not used in the computation.
Also note that A, =A

n,-m-"
The features defined on Zernike moments are derived by using rotational
properties of these moments, Consider a rotation of the image through angle 8. The
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relationship between Agm and A, the Zernike moment of the rotated image anq
the unrotated one is [20] ‘

A{im = AnmeXp(—jme) (4)

This relation shows that Zernike moments have simple rotational transformation
properties; each Zernike moment merely acquires a phase shift on rotation. This
simple property leads to the conclusion that the magnitudes of the Zernike moments
of a rotated image function remain identical to those before rotation. Thus |Anm |,
the magnitude of the Zernike moment, can be taken as a rotation invariant feature
of the underlying image function. Note that since A, —m=Anm, then
AL |= |An,_m |, thus one can concentrate on |Anm| with m >0 as far as the
defined Zernike features are concerned. Table 1 lists the rotation invariant Zernike
features and their corresponding numbers from order zero to order twelve.

Table 1
Order zero to order twelve Zernike moments whose magnitudes can be used as
features.

Order Moments No. of
Moments
0 Ago 1
1 Ay 1
2 Agg, Age p
3 31, Asg p
4 407 A427 A44 3
5 515 4353) 1355 3
6 AGOI A627 A64x AGS 4
7 71 373, A5, D7 4
8 805 A82) 847 A867 A88 5
9 91 4393, 4395, 4397, 4399 5
10 Ao Ao Arog Ao Asgs A0 6
11 11,1 21,3 Aa1s S, Ae A 6
12 12,00 A12,2, Aragy Aros, Args Atz o Ao 7

This 10tation invariancy property is illustrated by an experiment. Fig. 1 shows
a 64 X 64 binary image of character "A" and five rotated versions of it, with rotation
angles of 30°, 60°, 150°, 180°, and 300°, respectively. Table 2 is the list of the
magnitudes of their Zernike moments for orders two, and three, their respective
sample mean, u, sample standard deviation, o, and ofp %, which indicates the
percentage of spread of the IAnmI values from their corresponding means. It is
observed that rotation invariancy is very well achieved since of/u % values are very
small. The reason for not obtaining exact invariances (l.e. o/u = 0 %) is that image
function is digital rather than continuous.
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Table 2

Magnitudes of some of the Zernike
A h v moments for rotated images shown in

Fig. 1 and their corresponding statistics

P v 7 Angle  |Agp | [Agp| [Ag| [Ass|

0° 43962 4179 5797 17257
30° 43670 4020 6382 17196
60° 44063 4008 6628 169 41
150° 43853 4155 6547 17083
. 180° 43901 4685 6239 168 47
Figure 1. The images of character 300° 43843 3919 6577 17084
A" and five rotated versions of it. 1 43882 4161 6362 170 68
From top left to right rotation angles o 132 274 312 153
are: 00, 307 , 60° |, 1507, 180° , and o/u % 030 657 490 090
300° .

The proposed Zernike features are only rotation invariant, To achieve scale and
translation invariancy, the image is first normalized with respect to these
parameters. The Zernike features are then extracted from the scale and translation
normalized images. The scale and translation normalization is carried out using the

regular moments of the image. The (p+q)th regular moment of a unit circle mapped
image is defined as:

+1 +1
Mpq = > > xPyd f(X:Y) (5)
¥=~1 y=-1

Translation invariancy is achieved by moving the origin to the centroid of the shape.

This means that the image is transformed into a new one whose first order moments

my; and myy are both equal to zero. This is done by transforming original f(x,y)

image into f(x +X, y +¥) image where X and v are the centroid location of the

original image computed as

k myq — _ g

U TN (©)
Mg Moo

Scale invariancy is accomplished by enlarging or reducing each shape such that

its zeroth order moment, My, is set equal to a predetermined value, 8. This task is

achieved by transforming the original image function, f(x,y), into a new function

Xy
(_' —)7

H
a a

1
With 2= mﬁ )2 [17].
00

In summary, an image function, f(x,y), can be normalized with respect to scale
and translation by transforming it into g(x,y), where
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Nt (75 L
g(X,))—~f(X+a,y+a ): (7)

Fig. 2 shows six 64%64 scaled and translated images of character "A" along with
their sealed and translation normalized versions using [ = 800.

AAl AA
v X 7TX
AA AA

Figure 2. Six scaled and translated images of character "A" along with their scaled
and translation normalized versions using (=800.

The scale and translation normalization process affects two of the Zernike
features, |Agy| and [|Ay ] |A00|=é and |A;;| = O for all the normalized

images [14]. Therefore, these two moments are not included in the set of features
utilized in the classification experiments and only those of second order and higher

are considered.

3. RANDOM FIELD FEATURES FOR TEXTURE RECOGNITION

The textural features introduced in this section are invariant under rotation or
gray scale changes. Two types of noncausal random field models are used to
charactelize the spatial interactions among neighboring pixels which give rise to the
notion of perceived texture. The flist kind of models is called Circularly-Symmetri
Autoregressive (CSAR) [10]. Let {g(x¥); x, ¥y =0, 1, ..y M-1} be gray-level values o
a discrete MXM image with the top left of the image at (x=0, y=0) and the botto
right at (x=M-1, y=M-1) and with x and y axes representing vertical and horizont
directions, respectively. It is assumed that the sample mean of this image is zero.
g(x,y) obeys a CSAR model defined over a MxXM toroidal lattice then;

g(Xay) =¢ 2 g(X @ i’y @ ]) +V(X!Y) (8)

(i,1)eNg
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where _
“ Nc = {(031)’ (O’*l)’ (1a0)$ (—1’0)’ (‘“\g‘g’ —\'/2‘_2_)? ("‘ %’ - %)’
V2 V2 V2 V2

(—7—, - ——Qi), -5 T)}, i.e. a circular neighbor set containing
eight symmetric coordinates as listed; N, is shown in Fig. 3.

{-1,0)

(-1-1} % (-L1)

{0.-1) ' ©.1)

{1-1) (L1)

(1.0)
Tligure 3. Relative spatial locations of the eight members of the circular neighbor
set IV, .

Coefficient of the model characterizing the dependence of g(x,y) to those
in its N, neighborhood.

addition modulo M. Acts like an ordinary addition exeept at those (x,y)
points located on or near the edges of image for which a complete
neighbor set cannot be found. In this situation, P operation causes a
wrap around (torus lattice) effect and creates a full neighbor set for each
pixel.

= A correlated sequence of identically distributed random variables with
zero mean and variance of v characterizing fluctuations and noise in the
model.

_ Thus, each pixel intensity is modeled as a linear combination of eight other
quantities plus a noise term. Four out of the eight are actual gray levels of the 4-
connected neighbors of (x,y) pixel. The four other ones correspond to locations
which do not fall on the grid corners of a digitized image. Each of these four
quantities are computed as a linear combination of the gray level of its four nearest
grid  corner surrounding it. [For instance, the value associated with

‘ -2
x & — Y ) ——éz) coordinate is computed from g(x,v), g(x,y+1), gx-1,y+1)

and g(x-1,y). The interpolation scheme works as follows. Let (ty, t5) be one such
coordinate. Then



116

1 4
glby to) = | [_2 d; gi]
>d, |t
i=1

where g; is the gray level of one of the four grid corners surrounding (¢, t5) and di;
. . . 1
the inverse Euclidean distance between (ty, t5) and that corner.

Characterization of a texture by CSAR model requires that its parameters (6, 1)
be estimated. A least-squares estimation scheme developed in [10] is used to obta;
these estimates denoted by (¢, ). One can interpret ¢ as the degree of isotropy 4
the texture and © as the degree of its roughness. A useful property associated wit
the CSAR parameters is their rotation invariance. Since they are obtained using
circularly symmetric neighborhood, they are insensitive to the orientation of i}
underlying texture. Fig. 4 shows seven differently oriented images of raffia texture
In the first two columns of Table 3 the estimated (¢, ) parameters and thy
corresponding statistics are shown. These entries confirm the rotation invariane
property. -

Table 3
Statistics of texture features for
differently oriented images of

Fig. 4. 1
Angle ¢ 17
0 1344 4757

30° 1326 .4834
60° 1326 .4733
90° 1328 .4802
120° 1329 4796
150° 1329 4785
200° 1339 4755

T

1 1332 .4780
o 0007  .0084
o/ 1% 5 1.8 !

Figure 4. A 64Xx64 digitized sample of
each of the seven orientations of raffia
texture. From top and from left to
right: 0°, 30°, 60°, 90°, 120°, 150,
and 200°.

In addition to these two features, a third one is developed. Neither & mnor
could capture information about strong directionality that is present in some
textures. This is the task of the third feature termed £. It is obtained by fitting
different random field model to the image. This model is called "Simultaneous
Autoregressive (SAR)" [7], [8] and is expressed as

LY D et b e 1 el g
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) = %N Qi e ® Ly @ 1)+ wxy) (10)
()¢

where Nis 2 neighbor set which includes only integer coordinates (i.e. grid corners)
excluding (0,0), 90';) = 9(_1'_”, and {w(')} is a sequence of 1.i.d. Gaussian random
_ ariables with zero mean and variance of py. Thus, the SAR model relates the gray
Jevel of a pixel to those in its neighborhood, N, through § parameters, The noise
 term added to this linear combination accounts for fluctuations throughout the
_image. The model parameters are {ﬁ(j’j)}, and pn.  The maximum likelihood
estimates of these parameters are computed by a method described in [8] and [16].

; £is computed as a function of the estimated 8 parameters of two different SAR

models. The first one is a model which characterizes g(x,v) as a function of the
gray_levels of its 4-connected ne*ighbor& i In other words, it uses
N, = {(0,1), {0,~1), (1,0, (~1,0)}. Let (0,1) and "1 gy be the ML estimates of the
corresponding parameters of this model. The second model relates g(x,y) to those of
its© diagonal  and  off-diagonal  neighbors. This is  done  using
N, = {(1,1), (1,—-1), (=1,1), (—1,-1)}. Let 9*(1,1), and 9*(1,_1)* be the ML estimates of
this model. Then £ is defined as:

¢ = max| Ie*(l,o) - 9*(0,1) l, |9*(1,1) - 9*(1,—1) ” (11)

£-¢an be interpreted as the maximum extent of variation of the underlying texture in
the [horizontal, vertical] (captured by the first term) and [diagonal, off-diagonal]
(captured by the second term) directions. Thus it is a measure of directionality. For
highly directional textures € is large and vice versa.

¢ is also rotation invariant. The third column of Table 3 shows the computed
values of € corresponding to seven differently oriented raffia images. These entries
show little variation among & values.

To summarize, a textured image is represented by three features <Aﬁ, i, and €.
The utilized classifiers process these features to carry out their decision making task.

4. MULTI-LAYER PERCEPTRON CLASSIFIER

In this study a neural network topology known as “Multi-Layer Perceptron’ or
MLP is used. A MLP is a feed-forward net with one or more layers of nodes between
the input and output nodes. These in-between layers are called hidden layers. A
MLP with one hidden layer is shown in Fig. 5. Connections within a layer or from
higher to lower layers are not permitted. Each node in a layer is connected to all the
nodes in the layer above it. Training is equivalent to finding proper weights for all
the connections such that a desired output is generated for a corresponding input.
Using MLP in the context of a classifier requires all output nodes to be set to zero
except for the node that is marked to correspond to the class the input is from.
That desired output is one. In this study, the inputs are either the Zernike moment
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Output

Input

Figure 5. A Multi-Layer Perceptron (MLP) with one hidden layer.

features o the random field features extracted from the image to be classified.

MLPs were not used in the past because of the lack of effective training
algorithms for them. This has recently changed due to development of an iterative
gradient procedure known as ‘“‘Back-Propagation Algorithm” [19]. According to this
algorithm which is outlined next, for each pattern in the training set, learning proper
weights is conducted by (1) computing the discrepancy between the desired and
actual outputs, and (2) feeding back this error signal level-by-level to the inputs,
changing the connection weights in such a way as to modify them in proportion fo.
their responsibility for the output error. The major steps of the algorithm are as
follows:

Step 1 [Initialize all wys to small random values. wj; is the value of the connection,

weight between unit j and unit 1 in the layer below.

Step 2 Present an input fiom class m and specify the desired output. The desired
output is O for all the output nodes except the mth node which is 1.

Step 3 Calculate actual outputs of all the nodes using the present value of wj
The ocutput of node j, denoted by y; is a non-linear function of its total

input:
I ” (12)
1+ exp(=3] ¥i W)
1

Y =

This particular non-linear function is called a "Sigmoid" function.
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Step 4 Find an error term, 5]-, for all the nodes. If d; and y; stand for desired and
actual values of a node respectively, for an output node

b = (dj—v;) v (1—y)) (13)
and for a hidden layer node

5= Yj(l—yj)EkJ O Wi (14)
where k is over all nodes in the layer above node j.

Step 5 Adjust weights by
wii(n+1) = wij(n) + & § v + ¥ (wij(n)—w;(n—1)) (15)

where (n+1), (n), and (n-1) index next, present, and previous respectively.
« is a learning rate similar to step size in gradient search algorithms. ~vis a
constant between O and 1 which determines the effect of past weight
changes on the current direction of movement in weight space. This
provides a kind of momentum that effectively filters Qut high-frequency
variations of the error surface.

Step 6 Present another input and go back to step 2. All the training inputs are
presented cyclically until weights stabilize { converge ).

It has been shown that a MLP with at most two hidden layers can form any
arbitrarily complex decision region in a feature space [18]. However, no specific rule
{or selection of the number of nodes in the hidden layers has yet been developed.

5. CONVENTIONAL STATISTICAL CLASSIFIERS

To be an acceptable alternative to traditional classifiers, the ANN must either
outperform or at least do as well as them. In this study, two popular non-parametric
statistical classifier were selected for comparison of their performances to that of the
suggested ANN. These two classifiers are briefly discussed here.

The first one is the nearest neighbor rule. When an unknown sample
X = [x1,%9, * " * ,Xy], X; being one of the n utilized features, is to be classified, the
nearest neighbor of X is found among the pool of all the M available training
samples from the C consideied classes and its label is assigned to X . When number
of training samples are large, the probability of error for the nearest neighbor rule
has an upper bound of twice the Bayes error [3].

The distance between X and a training sample is measuted using city block
distance. This is a mapping from the n-dimensional feature space to a one-
dimensional distance space. However, since the feature vector compomnents have
different dynamic ranges, it is possible for one or a subgroup of them to dominate
the distance measure. To prevent this from happening and in oider to equally weight
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distances between each component of feature vectors, the distances need to he
normalized. The normalization consists of dividing by summation of the standarg
deviations of the corresponding component for all the C classes. Tt
ty=[ty st~ st,] denote the k th training feature vector, k=1, ... , M. The

unknown test sample X is classified to class i*, where

i* = {class of t; | d(X,t) < d(X ), k=1, -- - .M 1 (16)

and

n l Xn — tkm I
AX )= | ——— 17)
m=t ]S o)

i=1

with Ut(rin) representing the sample standard deviation of the m th element of the n-
dimensional training feature vectors of class i.

The second considered classifier is a weighted minimum mean-distance rule. It
characterizes each category by means and standard deviations of the components of
its t1aining feature vectors. The weighted distance between an unknown sample X
and the mean of the features of class i, d(X, i), is then measured. The weighting
factor is again the summation of the standard dev1at10ns of the respective
component. The unknown sample is then classified to class i i* for which such distance
is minimum, i.e.

— Min, d(X, i) i=1,2,--,0C (18)
and
. 4 | Xm — tm(i) I
dX, 1) = ) c (19)
S

with t() representing the sample mean of the m th element of the n-dimensional
training feature vectors of class i. Again, weighting by the sum of the standard
deviations is to balance the effect of all m feature vector components on distance d.

6. EXPERIMENTAL STUDY ON SHAPE CLASSIFICATION

In this section, the results of application of the MLP neural network classifier to
two shape databases are reported. For one of the shape databases the performance
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on noisy images with varying SNRs are also examined. In addition, the two
described traditional classifiers are applied to each of the considered problems and
their performances are compared to that of the ANN.

8.1. Description of the Shape Databases

The first shape database consists of 64 X 64 binary images of all twenty-six
upper case English characters from "A™ to "Z". Twenty-four different images from
four slightly different silhouettes of each character are generated {for a total of 624).
The set of twenty-four images per character consists of six images with arbitrary
varying scales, orientations, and translations from each of the four considered
silhouettes per character. Fig. 6 shows the twenty-four images of character "A". In
Fig. 7 the four silhouettes of each of the other characters are shown,

In addition to the above noiseless image set, five other sets of noisy images with
respective SNR of 50, 25, 12, 8, and 5 dB are also constructed from the normalized
images of the noiseless set. This is done by randomly selecting some of the 4096
pixels of a noiseless binary image and reversing their values from 0 to 1 or vice verse.
The random pixel selection is done according to a uniform probability distribution

between 1 and 4096. The SNR is computed using 20 log[———4ogL6_L], where L is the

number of pixels which are different between a noisy image and clean version. Fig. 8
shows one image of character "A" with different SNRs.

The second shape data set is an extensive handwritten numeral data set
obtained from Recognition Equipment Incorporation. These data are gathered from
3000 forms from a United States government agency. It has approximately 86000
characters with size 32 X 24 written by approximately 3000 people selected at
random from general public. Fig. 9 shows four characters per class of this data set.

6.2. Data Partitioning

An important parameter in any pattern classification problem is the estimation
of the classification error. To compute it, the available samples are divided into two
sets, one for training, and one for testing. For English character experiments, three
¢ases are considered. In the first case, the available samples from each character are
divided into halves such that each half contains images of each silhouette. The first
half is then used for training and the second half for testing. Therefore, there are 12
training images and 12 testing images per character.

In the second case, the training is limited to four unrotated images per
character. These four are the four different silhouettes of each character (i.e. images
shown in Fig. 7). The remaining twenty images per class are used for testing. This
way, the classifier does not see the rotated, translated, and scaled versions during
learning but has to deal with them during testing.

In the third case, the 12 images of only two silhouettes per character are used
for training and the remaining 12 per character which are from the other two
sithouettes are tested. This way, the classifier does not see all silhouettes of each
character during training but has to deal with them during testing.
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Figure 6. The twenty-four scaled, Figure 8. One sample of image of
translated, and rotated images of character "A" with different levels
character "A" in the data set. Note of noise. From top left to right are:
the slight variations in shapes of noiseless, 50, 25, 12, 8, and 5 dB.
the images shown in the first

column.
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Figure 7. Four out of the twenty-four images of letters "B" to "Z" in the data set.
’I“he remaining twenty images per character are rotated, scaled, and translated ver-
sions.

In experiments with noisy images, the classifier is trained with noiseless image
and tested with the noisy ones. Therefore, no noisy images are used for training.

For the handwritten numeral character experiments, a training set of 1325
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Figure 9. Four samples of each of the 10 handwritten numeral characters in the
database.

images was generated by selecting 1325 characteis of each numeral at random from
database. A test set of 3300 characters was created by randomly selecting 330
characters of each numeral from the remaining characters in the data base. Thus,
the training set is separated from the test set.

The estimation of the error 1ate is done by finding the ratio of the number of
misclassified testing samples to the total number of tested samples,

6.3. Results

Utilizing Zernike moment features requires the selection of the maximum order,
i.e., the highest n. Two different synthesis based methods for doing so are presented
in [14],[15]. Using those procedures, it was decided that up to 12th order Zernike
moments are required for the considered data sets, That means that 47 Zernike
features are utilized (see Table 1)

The selected value of parameter F for English character database and
handwiitten numeral characters is 800 and 150 respectively.

The selected parameters for the MLP classifier are as follows: initial weight
assignment randomly selected from [-0.5, 0.5] interval, step size o = 0.2, learning
rate Y = 0.7. The number of input nodes is 47, the number of output nodes is 26 for

the case of English characters and 10 for the case of handwritten numeral characters,
and finally, the number of hidden layer nodes are varied from 5 to 200 in unequal
increments for some cases. Instead of testing for convergence of the weights, 500
passes over the training set is used for all cases.

The MLP and the back-propagation rule were simulated on a SEQUENT
SYMMETRY S81 MIMD parallel computer utilizing 6 processors each performing 3
MIPS. The learning for the case of 47 inputs, 50 hidden layer nodes and 312 training
_ samples took around 65 minutes.
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The training features are normalized to have zero mean and unit variance befyy,
being input to the MLP. This is necessary in order to ensure that a subgroup of tj,
features do not dominate the weight adjustment process during training. The m ¢
feature is normalized by

where jo—m and Oy, are the sample mean and standard deviation of the m th training j

features of all samples. During the testing phase each test sample is also normalizeg
in a similar manner. ‘

Fig.s 10 to 12 show the performances of the MLP as well as the other tw
classifiers with varying number of hidden layer nodes on the noiseless and noisy daty
sets for the three different data partitioning schemes considered. The Mrp
performance is shown as a function of the number of utilized hidden layer nodes,
The obtained classification accuracy rates using the other two classifiers are shownin
the form of legends with NM and MM standing for the nearest-neighbor and the
minimum-mean-distance classifier respectively.

These results indicate that in all three cases, the performance of the nearest
neighbor classifier and the MLLP are very close to each other for images that are not
very noisy. However, for SNR of below 12 db, the MLP performs better. In all the
cases, the minimum-mean-distance classifier yields the lowest accuracy rate. One
other point to be noted is that in nearly all the examined cases, a number in the
range of [20,50] for hidden nodes gave the best (or very close to best) classification
accuracy. Utilizing larger than 50 hidden nodes did not alter the results
significantly, especially for high SNR images.

For the experiments dealing with the handwritten numeral characters, 50
hidden layer nodes are used for the MLP classifier. The obtained accuracy rates are
83.8%, 83.45%, and 58.31% for the MLP, nearest-neighbor, and min.-mean-distance
respectively, Considering the large amount of variations and distortions within
samples of each class and noting that the Zernike features are global statistical ones,
the obtained results are actually quite good. Combining Zernike features with other
topological features which capture local structure of the image will certainly improve
the recognition rate.

6.4. Fault Tolerance

One of the advantages of the neural networks is that the processing is
distributed among many nodes. This provides a good degree of fault-tolerance and
graceful degradation to the system. Even if some of the nodes fail to function
properly, the effect on the overall performance of the system will not be much. This
assertion was examined by turning off m randomly selected hidden layer nodes and
observing the resulting effect on the system performance.
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Fig. 10. Classification results of the Fig. 11. Classification results of the
English characters database using 47 English characters database using 47

_ Zernike features. Twelve images per Zernike features. Four images per
_class (three from each of the four class (one from each of the four
sithouettes per class) are used for silhouettes per class) are used for
_training and the remaining twelve for training and the remaining 20 for

testing. NM and MM stand for testing. INM and MM stand for
nearest-neighbor and  minimum- nearest-neighbor and minimum-
mean-distance classifiers, respectively. mean-distance classifiers, respectively.

The MLP with 30 hidden layer nodes using the first data partitioning method
was considered for this purpose. After training the net with all 30 nodes functioning,
the classification of test images was carried out with m of the hidden nodes not
functioning (i.e. their output were set to zero); m was varied from 1 to 20 in
increments of one and for each m, fifteen different combinations of m out of 30 nodes
- were considered. The result is plotted in Fig. 13 which shows a very graceful
degradation of the performance.
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7. EXPERIMENTAL STUDY ON TEXTURE CLASSIFICATION

A similar approach to the one described in the previous section is taken toward
the study of texture recognition. Each gray-level textured image is represented-by
three rotation invariant real-valued features. The MLP and the other two classifiers
only see these features and act upon them. In the following sections, the utilized
database and the obtained results are reported.

7.1. Description of the Texture Database

A database consisting of twelve different natural textures, all taken from:
Brodatz [1] (a photo album which has become a standard data source for texture
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researchers) is constructed Seven dlfferently orlented 128%X128 images with relative
angles of 0°,30°, 60°, 90°, 120°, 150° and 200° are taken from each texture. Each
image has a (0 255) gray level range. Each 128x128 image is then segmented into
four 6464 images resulting in 28 samples for each class. A 64x64 0° oriented sample
of each texture is shown in Fig. 14.

Figure 14. A 64x64,0° digitized sample of each texture of database. From left to
right: first row: calf leather, wool, sand; second row: pigskin, plastic bubbles, her-
rlfntgbone weave; third row: raflia, wood grass; fourth row: straw, brick wall, bark
of tree.



128

To 1emove the vailability caused by diflerences in illumination, each 64x64
image is, first histogram equalized. Next, the histogram equalized image r
normalized to have zeio empirical mean and unit empirical variance. In other worgs
each pixel value is replaced by .

__'U_ (1)

where (4, and ¢, are the sample mean and sample standard deviation of ‘the
histogram equalized image and gy is the pixel value of the normalized image. Nota

that gy is no longer an integer and is not in the (0-255) range.

7.2. Data Partitioning

Several data paititioning schemes are considered. In the fiist case, the available
samples are divided into two halves, one for training and one for testing, The
division is in such a way that each half contains 14 samples from each class. These
14 samples consist of two samples from each of the seven orientations. Thus, the
classifier "sees" instances of each texture at each oiientation. In this scheme there are
168 t1aining and 168 test samples. In the rest of the considered cases, the classifier is
tiained on samples fiom three out of the seven orientations and tested on the
samples from the remaining four orientations which it has not seen during training,
Thus, there are 144 training and 192 test samples for each of these cases.

7.3. Results

The only difference between the topology of the utilized MLP in this case and
the one discussed for shape recognition is in the number of input and output nodes.
For this application, only three input nodes corresponding to ¢, &, and & are needed.
The number of output nodes is also reduced to 12. The number of hidden nodes is
fixed at 20. The parameters of the learning rule are kept the same. k

The obtained results for the MLP and the other two classifiers are shown in
Table 4. Again, note that on the average the ANN does better than minimum-
mean-distance classifier and about as well as the nearest-neighbor.

8. DISCUSSIONS AND CONCLUSIONS

In this chapter, the effectiveness of a feed-forward fully connected multilayer
ANN fo1 supervised classification of two-dimensional shape and texture was studied.
The ANN was viewed as a new classification tool operating on features extracted
from the images. TFor shapes, a set of scale, rotation, and tianslation invariant
features based on the Zernike moments of the image was introduced. For textures,
three random field model-based features which are rotation invariant were discussed.
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Tabled : .
Texture classification results using all three classifiers and different data partitioning

schemes.

Orientation of Oriientation of  Recog. Rate  Recog. Rate  Recog. Rate
Training Samples Test Samples MLP Nearest-Neig Min.-Mean

All seven All seven 93 93 91
10,30,60 90,120,150,200 91 94 87
30,60,90 0,120,150,200 92 92 88

- 160,90,120 0,30,150,200 88 91 88
190,120,150 0,30,60,200 93 93 89
120,150,200 0,30,60,90 88 92 86
0,60,120 30,90,150,200 92 93 91
30,90,150 0,60,120,200 91 92 90
10,90,200 30,60,120,150 87 85 90
0,150,200 30,60,90,120 93 90 91
30,150,200 0,60,90,120 89 90 . 90
Average 90.4 91.2 89

The ANN classifiet and two other conventional classifiers namely the minimum-
mean-distance and the nearest-neighbor rule were trained and tested with similar
_data and theil recognition accuracy rates were compared. The conclusion that is
. reached is that the MLP does better than the minimum-mean-distance and performs
_very similar to the nearest-neighbor for clean images. However, as mnoise is
_introduced into the images, the ANN becomes a much better alternative. This is due
_to the generalization ability of the ANN.

A point that needs to be stressed when comparing the ANN and the nearest-

eighbor rtule is the computational complexity. The main computational
requirement of an ANN is during its training phase which can usually be performed
ofiline. The difference in the computational demand of a trained ANN and the
nearést-neighbor is striking., Take the example of recognition of a handwritten digit
represented by 47 features as discussed. A trained MLP with 50 hidden nodes makes
~_adecision by performing 2,910 (48%50 + 51X10) multiplications, 2,910 additions, 60
siemoid transformations and 10 comparisons. On the other hand, the nearest-
neighbor classifier must search among all the 13250 training images. Each image
comparison roughly requires 47 subtractions, 47 additions and 47 divisions or 141
_operations. This translates into a total of 1.9x10% operations for the entire database.
_ Then, 13250 comparisons are needed to reach a decision. This represents several
_hundred times more computation compared to the ANN, Thus, it can be concluded
 that regardless of the noise level, the ANN classifier is a better choice over the other
two classifiers.
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Of course, the main difficulty with the MLP is the absence of a systemati,
method for selection of the appropriate number of hidden nodes. However, as t}
empirical results indicate, there seems to be a threshold for such a number beyong
which the performance is not altered significantly. The other problem is the sigy
rate of convergence of the back-propagation learning rule and the fact that it does
not guarantee a global minimum when searching for the best weights.

In summary, the presented material in this chapter shows that the neyps
network can serve as a good alternative to the considered conventional classifiers, [t
the data is noisy or the number of training samples are large, it becomes the best
choice.
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_ Abstract
We review key conventional and neural network techniques for processing of textured

k images, and highlight the relationships among different methodologies and schemes. Texture,
which provides useful information for segmentation of scenes, classification of surface
materials and computation of shape, is exploited by sophisticated biological vision systems for
image analysis. A brief overview of biological visual processing provides the setting for this
study of textured image processing. We explain the use of multiple Gabor filters for
__segmentation of textured images based on a locally quasimonochromatic image texture model.
This approach is compared to the functioning of localized neuronal receptive fields.
 Cooperative neural processes for perceptual grouping and emergent segmentation are reviewed
next, and related to relaxation labelling. The recently developed SAWTA neural network for
texture-based segmentation is then presented Finally, techniques for describing and
processing texture as a constrained optimization problem are outlined.

1.. INTRODUCTION

In order to visually reconstruct the world that projects itself as an image on a 2-D surface,
. one needs to not only analyze the image but also have a model of the nature of that world and
_ of the imaging process. A plausible model might assume, for example, that objects are rigid,
surfaces are smooth and boundaries are continuous. Optical illusions are perceived when the
. assumptions underlying our internal models about the imaged world fail However, almost
_ always we are unaware not only of these internal models but also of the temendous amount of
computation needed for preprocessing and recognition of images, so that vision seems
effortless On the other hand, even the basic step of detecting edges poses a problem for
_ machine vision, since any kind of textured image gives a multitude of noisy edge segments
with variations in reflectance and illumination [43]
The tremendous amount of research in image processing and computer vision over the past
three decades has been influenced not only by physiological or psychophysical discoveries and
psychological observations about perception among living beings, but also by advances in
- signal processing, computational mathematics, pattern recognition and artificial intelligence
Some researchers in the recently rejuvenated field of neural networks are also attempting to
develop useful models of biological and machine vision With the human visual system
Serving as a common source of inspiration, it is not surprising that neural network approaches
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to image processing/ understanding often have commonalities with more traditional techniqueg;
However, they also bring fundamentally different elements of adaptation and learning, and
promise breakthroughs through massively parallel and distributed implementations in
VLSI[18]

In this chapter, we present both conventional and artificial neural network (ANN)
techniques for the processing of textured images. The goal is not only to compare different
methodologies, but also to highlight the relationships among them so that more comprehensive
techniques incorporating the best of the diverse approaches can be developed. For our
purposes, an ANN is a collection of computing cells (artificial neurons) interconnected
through weight links (synapses with varying strengths). The cells compute asynchronously
and in parallel using information available locally or from topologically adjacent cells through
the weighted links. The knowledge of the system is embodied in the pattern of interconnects
and their strengths which vary as the system learns or adapts itself. This learning can be
supervised by an external "teacher” or through some local rule such as Hebb's rule [25]. ‘

Section 2 reviews the best accepted computational schemes for detecting edges, and then
introduces self-organizing neural networks giving rise to cells that are sensitive to particular
orientation and position of edges These neural networks use simple local learning rules to yield
cell behavior similar to those found in the striate cortex of mammals In Section 3, we examine
different models of textured images and the cortesponding paradigms for their analysis. A
localized filtering approach to texture processing that is inspired both by its computational
properties and biological plausibility, is examined in some detail. Section 4 presents several
neural network models that are pertinent to processing of textured images, and compares them
to those presented in earlier sections.

The interested reader can find a good coverage of the more conventional techniques in
image understanding and machine vision in the texts by Ballard and Brown [4] and Horn [29],
and in the collection of papers by Rosenfeld [51] and Fischler & Firschein [16]. A
comprehensive list of papers published annually on computer vision and image processing is
provided by Rosenfeld [52], and indicates the enormous amount of research in these areas.
More interdisciplinary works include Arbib & Hanson [2] which provides a broad overview of
problems in vision from neurophysiological, psychophysical and computer science
perspective. Theories of visual cognition are expounded in several books such as Pinker [50}.
A good collection of seminal papers on neural networks can be found in Anderson &

Rosenfeld [1].

1.1 Biological Visual Processing. ‘

We first briefly outline key features of the mammalian visual system in order to define
some terms and characteristics that are alluded to in the following sections Details can be
obtained from Kandel & Schwartz [35] or Van Essen [54]

As indicated in Fig. 1, visual patterns impinging on the retina are encoded and conveyed o
the visual cortex via the lateral geniculate nucleus (LGN) Processing takes place concurrently
in all these three segments The retina contains over 100 million photoreceptors, namely the
rods and cones that are sensitive to light intensity and wavelength (color) respectively Bipolar
cells establish conduction lines from the rods and cones to the ganglion cells, while the
horizontal and amacrine cells establish inhibitory crosslinks among these conduction lines.
This results in each ganglion cell collecting the output of a localized group of photoreceptors
that forms its receptive field. Ganglion cell receptive fields tend to have center-surround
profiles such that a uniform illumination on the receptive field elicits no response from a
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Figure 1: The mammalian visual system [46]

ganglion, but some form of contrast does. The long axons from all the ganglion cells are
bundled together to form the optic nerve, which follows two separate pathways to the brain.
One leads to the superior colliculus in the midbrain, presumably for controlling eye
movements, while the other leads to the visual cortex via the LGN,

The visual cortex has been subdivided into several areas according to function and/or

neural structure. Each area is essentially a 2-D layered sheet of neurons. Interconnections
among the areas are invariably bi-directional. Area V1, also known as area 17 or the striate
cortex, contains a more or less topographic map of the visual field, just like the LGN It
contains simple cells, complex cells and hypercomplex cells A simple cell fires at maximum
- frequency in response to a small edge with a specific angular orientation and position in the
visual field. Its response falls diamatically for small shifts from this position, or for a change
of more than 20 degrees in orientation Complex cells, while remaining orientation sensitive,
are more tolerant to position changes. Hypercomplex cells have been observed to respond to
 line terminations and corners. These three types of cells are believed to be organized in a
. toughly hierarchical fashion. A simple cell receives input from a group of LGN cells
responding to the same edge; the receptive field of a complex cell is a group of neighboring
simple cells with the same orientation preference, and a hypercomplex cell receives excitatory
. Input from some complex cells and inhibitory inputs from others,
Structurally, the cells of V1 are organized in a columnar fashion according to orientation
preference or eye preference. Cells lying in a column perpendicular to the surface of the cortex
are found to respond preferentially to the same angular orientation and same eye. Moving from
one column to the next across the cortex, one finds that the preferred orientation changes
continuously, about 10 degrees every S0mm, and the eye preference alternates between the left
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and right eyes in an orthogonal direction

In the middle temporal area and the medial superior temporal area, neurons are foundyy
be highly selective to speed and direction of motion. However, they exhibit little or g
sensitivity to shape or color. A columnar organization similar to the V1 is found except that the
cells are now grouped according to the direction of motion The cells of the inferotemporg]
cortex (IT) have very large receptive fields, and seem to be sensitive to extremely compley
shapes. For example, cells that respond selectively to the silhouette of a monkey's hand or g
particular faces, have been reported ‘

2. DETECTION OF EDGES IN COMPUTER AND HUMAN VISION

An image is a distribution of light intensity values. An edge in an image is characterizeq
by a rapid, sustained change in intensity as one traverses in a direction orthogonal to it. Thyg
an edge can be described by its location, its direction (orthogonal to the local intensity
gradient), and its magnitude which is a measure of the intensity change Edges are usefulin
defining boundaries, characterizing texture, and for detecting shapes The detection of edges
is central to image preprocessing in biological systems, wherein the retina, LGN and visual
cortex seem to be actively involved in some forms of contrast enhancement or edge detection,
In this section, we review the best accepted computational schemes for detecting edges, and
then introduce self-organizing neural network models that lead to development of cells that are
sensitive to particular orientation and position of edges These neural networks use simple local
learning rules to yield cell behavior similar to those found in the striate cortex of mammals. k

2.1 Edge Detection: Computational Techniques. ‘

Most computational schemes for edge detection use operators for detecting gradient
maxima of the intensity surface [44] or for estimating the parameters of an assumed edge
model [24]. Since edges in actual images deviate substantially from ideal step discontinuities;
some form of postprocessing is required to eliminate the edges caused by noise and other
effects. In natural images, edges can occur over a wide range of scales or resolutions Marr
and Hildreth showed that filtering an image with a Gaussian filter restricts the range of
resolutions over which intensity changes can occur while maintaining the spatial location‘of
detected discontinuities in a near-optimal fashion. After an image has been Gaussian filtered at
several resolutions by adjusting the variance of the Gaussian function, the Laplacian operatoris
applied to detect intensity change maxima, indicated by the zero crossings in the output. The
effect of the Gaussian function and Laplacian operator can be combined to yield a single
Laplacian of Gaussian or LOG filter. An edge is indicated by a segment of zero-crossings that
occur at the same positions for more than one resolution,

In a quantitative model of human spatial vision proposed by Wilson & Bergen [59], the
authors relied on neuroanatomical studies to suggest that the receptive fields in the fovea have
four different sizes for any point in the visual field, and that each receptive field has a profile
similar to a "Difference of Gaussian" or DOG filter This filter is remarkably similar to the
LOG filter. In an attempt to relate his model to the human visual system, Marr postulated that
the LGN computes the zero-crossings of a LOG filter while simple cells detect lines of zero
crossings that indicate an edge.

The directional edge-detector of Canny [6] is also based on detecting the zero-crossings
of a 2-D Gaussian but is more computationally efficient than the Marr-Hildreth detector as it is
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able to combine the differentiation and smoothing steps, and is less sensitive to noise. It is
interesting that the Gabor filters that are described in detail in Section 3, also have attractive
properties for detecting certain types of localized contrasts in an image.

' 3.2 Development of Orientation-Selective Cells in Self-Organizing Neural
Networks.

Through their studies of the visual striate cortex (area 17) of the cat and monkey, Hubel
and Weisel [31,32] found neurons that are selectively sensitive to light bars and edges of a
. ¢ertain orientation. They also detected "functional columns” in which neurons within a
column are sensitive to the same orientation, and neighboring columns tend to respond to
stimuli of similar orientation Malsburg [40] succeeded in developing a neural network model
that could evolve to exhibit behavior similar to those found experimentally by Hubel and
Weisel. This model consisted of a 2-D "cortical plane”, containing excitatory (E) and
inhibitory (I) cells of uniform and equal density. The E cells had excitatory connections to
nearby E and I cells, with connection strengths decreasing with distance, while the I cells
would inhibit E cells over a wider area. Bell-shaped functions were used to describe the
decreasing intra-cortical strengths with cell distance for both cell types. The input image was
_ projected onto the "retina”, a plane of A cells that were initially connected o the cells in the
cortical plane through synapses of random strengths. Only the connections afferent to the E
 cells were modified using Hebb's rule [25] and renormalized so that the net strength of afferent
connections to a cell remained constant. In Malsburg's model, Vi (t), the excitatory state of cell
k, evolves according to:

%Vk(t)= -0y Vi + an(V;k ®+ D s Ai* ®, "
1 :

_ where sji pji are connection strengths, A*i(t) is the signal of afferent fiber i The output

_ signal Vk* (t) of cell k is given by:
Vi =Vi®-8, i Vi) >0,;

= zerto otherwise.

@

_ Note that Eq 2 brings about a non-linearity that is essential for suppression of noise.

In one experiment, a retina of 19 cells was stimulated with lines at 9 different angular
orientations The cortex was a hexagonal arrangement of 338 E and 338 I cells For each input
line, the steady state responses of the cells were noted The cells were then labeled with the
line orientation to which they responded most strongly. Figure 2 shows the results after 100
learning steps. The bars indicate the response orientation of each E cell. The dots marks cells
which never reacted to the standard set of stimuli. Malsburg's results indicate that cortical
organization is not genetically predetermined These results are also commensurate with the
findings of dramatic experiments such as those conducted by Hirsh & Spinelli [26], who raised
kittens wearing goggles so that they could only see horizontal line segments in one eye and
vertical line segments with the other A rewiring of the visual cortex took place so that cells
connected to the first eye only developed horizontal receptive fields, cells connected to the
- second only had vertical orientation, and the number of binocular cells that responded to both
eyes decreased dramatically
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Figure 2: View of Malsbuig's "eortex” after 100 learning trials. The bars indicate the
orientation selectivity of the E-cells in the cortex [40]

A completely different and enlightening model proposed by Linsker [39] demonstrates tha
experience is not necessary to develop the edge-detection function of either LGN-type cells or
simple cells. He uses a multilayer feedforward network with linear units. Each unit within a
layer receives inputs from a local area of units in the previous layer, and performs a linear
summation of the weighted inputs. The weights of the network are modified using a variant of
Hebb's rule, which is shown to maximize the variance in a layer's response to the input
patterns from the previous layer. Note that in his model, the adaptive afferent connection
weights to a layer of cells are allowed to settle down before the output of those cells are used to
modify the connections to the next layer. If random noise is used as the input to Linsker's
network, then center-surround cells that respond maximally to a bright spot centered on the
cell's receptive field against a dark background (or to a dark spot on a bright background)
emerge in the third layer. Orientation-selective cells develop in the seventh layer. Moreover,
if lateral interactions are added to this layer, then a columnar-type or ganization similar to thatin k
the striate cortex is found to develop Other self-organizing approaches to feature detection
have been discussed by Grossberg [23] and Kohonen (37}

3. TEXTURE ANALYSIS USING MULTIPLE CHANNEL FILTERS

In this section, we first describe various approaches to the modeling and analysis of
textured images. Subsequently, we focus on a computational framework for analyzing image
textures using the class of two-dimensional image processing filters known collectively as
Gabor functions These functions have played an important role both in the development of
models of biological visual information processing and in the development of computer vision
algorithms for low-level image processing and analysis.

3.1 Modeling of Textured Images.
Texture can be used in the analysis of images in several ways: in the segmentation of
scenes into objects, in the classification of surface materials, and in the computation of shape.
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However, an exact definition of texture as either a surface property or as an image property has
never been adequately formulated While the concept of a surface texture as a pattern of
variations in macroscopic surface topology is easy to accept, real-world surface textures are
. difficult to model. Attributes giving rise to a sense of perceptual homogeneity have been
construed to include such spatio/temporal surface properties as color, relative depth, motion,
and flicker 1ate [34]. Even for static, monocular, monochromatic images, modeling texture is
quite complex, since an accurate model must incorporate descriptions of both the optical
properties of the surface materials and of the geometries of the lighting sources and imaging
system However, much progress has been made towards developing texture analysis
techniques recently, by examining the problem in the post-image formation setting. Here, an
image texture is considered as a local arrangement of image irradiances projected from a surface
patch of perceptually homogeneous radiances. A technique that use such a characterization are
highlighted in Section 3.3.

Early efforts at texture analysis were largely motivated by the need for classifying aerial
images, such as those obtained from 1emote sensing, into categories based on their textural
properties [24]. Texture was described by (1) the local tonal primitives out of which the image
texture is composed, and (2) the number and types of these primitives and their spatial
organization. A tonal primitive is a maximally connected set of pixels with a common tonal
property, and is characterized by its area, shape, average tone, etc. Spatial organization was
typically characterized by the structural, probabilistic or functional dependence of one primitive
on its neighbors  This leads to statistical approaches using autocorrelation functions, optical
transforms, digital transforms, gray tone co-occurrence, run lengths and autoregressive
methods [57]. Some structural approaches based on more complex primitives than gray tone
were also attempted, assuming that a texture is made up of primitives which appear in near-
tegular, repetitive spatial arrangements. Then, a textured image could be described in terms of
the primitives and the placement rules that encapsulated the dependency of a particular primitive
being placed at a given location on the positioning of other primitives The structural techniques
were found to be of limited applicability.

A fundamentally different type of model for preattentive texture perception has been
proposed by Julesz and others [34]. They contend that texture processing involves the
computation of the densities of fundamental texture features called "textons " Textons that
have been considered so far include elongated blobs (line segments, ellipses, etc.) of various
orientations, sizes and aspect ratios, line terminations, and crossing of line segments.
Segregation of textures proceeds by comparison of relative texton densities [55]. Texton
detection is consistent with the feature detection model of early visual processing that involves
the responses of the bar- and edge-sensitive receptive fields There is substantial evidence that
the visual system regards texton-type features as important, and that visual discrimination of
textures coincides with differences in texton density. However, there is no apparent
mechanism that suggests that textons are resolved first and their densities are computed later.

The use of direct Fourier analysis for analyzing texture dates from Bajcsy [3], who
suggested dividing images into smaller subimages within which textural information could be
derived from local Fourier spectra. Several other authors extended this concept by using the
outputs of multiple frequency-selective filters applied to textured imagery as features attributes
in classical pattern recognition paradigms configured to allow texture discrimination/
classification [38]. The fact that granularity (or texture coarseness) and orientation are
meaningful low-level texture descriptors led researchers to consider density- and orientation-
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selective mechanisms for analyzing texture Segmentation/discrimination algorithms were
reported for detecting periodic and oriented image regions by partitioning the image spectryp,
into bins or by locating spectral peaks. A multi-channel segmentation algorithm using bot;
orientation-sensitive and moderately narrow channel bandwidths was introduced in [9]. Again
segmentation is augmented by clustering the channel outputs.

The use of space-frequency localized filters was further explored by several authors [5,53;
all of whom suggest a class of functions known as Gabor filters for analyzing, discriminating’
and segmenting images based on texture. The general framework for computational texture
analysis using Gabor functions which developed from this research, and more recent
extensions, is described in Sections 3.3. First, however, we will discuss the important role that
Gabor functions have played in recent models of biological visual processing

3.2 Gabor Functions and Neuronal Receptive Fields.

Computational models of low-level biological vision often derive from physiological and
psychophysical investigations of the structure and function of neuronal receptive fields in the
post-retinal ganglion cells, the LGN, and the striate cortex. Until recently, two schools of
thought dominated theories of early biological vision or neuronal image processing: the fearure
detection paradigm as exemplified by the early work of Hubel and Weisel [30,31] and the
Fourier decomposition paradigm as exemplified by the somewhat later work of Pantle and
Sekular [47]. Briefly, the first school of thought held the view that early visual information
processing entailed the detection of specific features processed by higher abstract mechanisms;
the second held that early visual image analysis could be likened to local spectrum analysig
techniques.

More recent work suggests that, at the cortical level, both interpretations may be correct.
Recent models of neural receptive fields in the striate cortex, in conjunction with the functional
version of the uncertainty principle, suggest that biological neurons have evolved to be
sensitive to elementary features occurring over a range of scales (frequency ranges), or
equivalently, that images are decomposed by the cortical neurons into narrowband frequency
channels that are highly spatially localized (sensitive to local features).

Matcelja [42] observed the highly-oriented simple cell receptive fields in the cortex can be
accurately modeled by 1-D Gabor functions, which are Gaussian modulated sine wave
functions. The Gabor functions play an important role in functional analysis and in physics,
since they are the unique functions that satisfy the uncertainty principle, which is a measure of
the function's simultaneous localization in space and in frequency [17]

Daugman [11] successfully extended Marcelja's neuronal model to 2-D, also extending
Gabor's result by showing that the 2-D Gabor functions are the unique minimum-uncertainty
2-D functions. The implication of this for texture analysis purposes, and perhaps for neuronal
processing of textured images, is that highly accurate measurements of textured image spectra
can be made on a highly localized spatial basis This simultaneous localization is important,
since then it is possible to accurately identify sudden spatial transitions between texture types,
which is important for segmenting images based on texture, and for detecting gradual
variations within a textured region, which is important for computing deformations arising
from surface defects, or from effects arising from the projection of 3-D textured surfaces into
2-D images. Other researchers have independently confirmed the validity of the Gabor
receptive field model .
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3.3. Multiple Channel Texture Segmentation.

We now describe a texture analysis model motivated in large part by the Gabor receptive
field model. It is important to observe that the model is advocated only as a convenient
. computational formalism, not as a probable model of cortical processing, Nevertheless, it is not
_ ynreasonable to suggest that the simple cells play an important role in the early stages of visual
textural processing,

The convolution version of the complex 2-D Gabor functions take the general form (where
jis the square root of -1)

hxy) =g &5y ) exp[ 2mj(Uox + Voy) ] (3)

where (x,y )= (X cosa +ysina,-xsin a+y cos a) are rotated coordinates, and

o, y) = (1/2m1s2) - exp {-[x/1)? + y2] / 252} @)

Thus, h(x, y) is a complex sine grating modulated by a 2-D Gaussian function with aspect ratio
I, scale parameter s, and major axis oriented at an angle a from the x-axis.Jf 1 = 1, a need not
be specified since g(x, y) is circularly symmetric The spatial frequency response of the Gabor
function (3) is then

H(u,v) = exp {-2n%2[(u - Up)? + (v - V)2 }, )

a bandpass Gaussian with radial center frequency wqg = VU(2)+ V(2) (cyclesfimage) and

 orientation qg = tan"}(V/Up) (degrees ot radians measured from the u-axis)
Assume that t(x,y) is a real-valued, continuous intensity image that Jocally contains only
narrow ranges of spatial frequencies:

tx, y) =16, {1+ 2 Cx, ) cos [2n Wix, ]} ®

Here the 2-D function I(x, y) = 0 represents a slowly-varying ambient image intensity function,
2:C(x, y) & [0, 1] is an amplitude or texture contrast function, and W(x, y) is a 2-D texture
phase function For simplicity, assume C(x, y) = C and I(x, y) = I to be so smooth that they
may be regarded locally constant If W(x, y) is assumed to vary smoothly nearly everywhere,
then (6) can be used to model an image intensity function that is highly coherent or spatially
correlated. More specifically, the image t(x, y) may be regarded as narrowband or
quasimonochromatic on a local basis: at each (x, y), the local frequency content of the image

away from the frequency origin will be concentrated about —W(x, y) = [U(x, y), V(x, y)],

J
where the gradient components U(x, y) = % W(x, y) and V(x, y) = 3y W(x, y) are
Instantaneous texture frequencies.
The model (6) admits a computational model for textured image analysis by isolating local
image frequencies using tuned narrowband channel filters. By using the logarithmic image and
removing the low-frequency terms by filtering, the model can be simplified to:
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t(x, y) = 2 C cos [ 21 W(x, y)] )

The concept of emergent texture frequencies, given by the responses of Gabor channe]
filters [5], can be used for estimating the locally dominant or instantaneous image frequencies
in t(x, y). We now describe a simple method for segmenting image textures by simple
comparison of the responses of these Gabor filters. The success of the technique is quite
impressive, given that there no use is made of any sophisticated pattern classification
superimposed on the basic segmentation structure However, it is important that a large set of
channel filters be used to sample the frequency plane densely, to ensure that a filter exists that
will respond strongly to any dominant texture frequency component

In the examples given here, an implementation utilizing forty unity aspect 1atio Gabor
filters is used, with filter orientations ranging over 8 evenly spaced angles in the right-half
frequency plane, 5 filters along each orientation The radial center frequencies form a geometric
progression with common ratio 1 8, ranging from 9.6 cycles/image to 100 cycles/image. The
filters are spaced approximately 1 octave apart with responses intersecting well above half-
peak A single additional Gabor filter centered at the frequency origin (a Gaussian filter) is also
applied, yielding a total of 41 1esponses: my(x, y) = | t(x, y) * hp(x, y) |; n=1,.,N, where
N = 41, and where hy(x, y) are Gabor functions indexed by center frequencies (Up, Vy) and
space constants s;. The set of filters used is depicted by Fig. 3, which shows the spatial
frequency resporses of all 41 filters

Figure 3 Plot of spatial frequency responses of Gabor functions used to analyze texture.

By choosing the filter amplitude response m,-(x, y) that is maximum at (x, y), a rough
estimate (U, V) is obtained, i e., we choose:

o' = arg [ max {ma(x 1)} ] )
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A simple and useful segmentation of the image is then obtained by the region assignment
@ y) By ifn=n’ 9)

Usually, direct application of (9) leads to segmentation errors arising from modeling errors,
noise, and local irregularities in the textures. These can often be effectively ameliorated by
smoothing each of the channel amplitude responses with a Gaussian smoothing filter having
the same shape as the corresponding channel filters but a greater spatial extent, prior to making
region assignments. Thus, the alternate definition

n'=arg [ max {gn(x/g, y/g) * mu(x, 1)} ] (10)

will yield a smoother segmentation when used with the segmentation paradigm (9). We have
found the value g = 2/5 to be effective in most instances.

(a) (&) (©)

Fig. 4 Segmentation of a synthetic texture (a) Original texture; (b) segmentation using (8) and
(9); (¢) Segmentation using (10) and (9).

Figure 4 depicts an example of the segmentation approach (9) as applied to a simple
narrowband textured image. Later, in Section 4, we will study a cooperative-competitive
feedback mechanism to further improve the segmentations that are achieved using (9), as

originally described in [19]. A method for using the intantaneous texture frequency to estimate
surface orientation is given in {20].

4. NEURAL NETWORK APPROACHES

Cooperative processes such as relaxation labeling have been explored by the vision
community for over a decade, without explicitly casting them in a neural network framework.
These mechanisms are very akin to neural network models such as the Boundary Contour
System [231, which is described in Section 4 2. This section also presents a hierarchical
network that first extracts relevant features and then performs texture segmentation based on
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these features. Then we consider the SAWTA network that iteratively combines smoothing
and categorizing functions to yield a versatile segmentation algorithm based on the
multichannel model of texture given in Section 3.3 An alternative approach is to consider
texture segmentation as an optimization problem, and maximize the a posteriori distribution of -
the intensity field based on a Markov random field model of texture This method is outlined
in Section 4.5.

4.1 Cooperative Processes.

Local intensity edges typically form a part of a global line or boundary rather than
occurring in isolation Thus the presence or absence of a nearby edge of similar angular
orientation would tend to reinforce the hypothesis of the existence of an edge at a given point in
the intensity field This idea is the basis of a cooperative process called relaxation labelling
[13] that can be used to enhance lines and curve in an image First, a bank of filters that detect
small lines at different orientations are used to generate an array of nodes, with each node
corresponding to a location in the image, and having a line-orientation label assigned to it
These labels are updated by a relaxation process, such that they become more compatible with
neighboring labels. Thus adjacent "no-line" labels support one another, and so do lines with
similar orientation, while two adjacent labels corresponding to orthogonal orientations
antagonize each other. A refined relaxation-labeling algorithm with associated convergence
conditions is given in [33] Cooperative processes have also been used to obtain curvature
estimates, for detecting corners in dotted line drawings, and for enhancing perceptually
significant features [56]

A cooperative-competitive scheme called the boundary contour system (BCS) has been
proposed by Grossberg and Mingolla [21] to explain how edges are filled in when part of a
boundary is missing, and how illusory contours can emerge from appropriately positioned
line-terminations. This scheme is elaborated on in the next section, which also presents-a
hierarchical network for texture segmentation that uses BCS

4.2 Perceptual Grouping and Emergent Segmentation.

A real-time visual processing model has been developed by Grossberg and Mingolla [21]
to analyze and explain a variety of perceptual grouping and segmentation phenomena, including
the grouping of textured images. A key component of this model is the Boundary Contour
System (BCS). The BCS consists of a hierarchy of locally-tuned interactions that controls the
emergence of image segmentation and also detects, enhances and completes boundaries. The
interaction of BCS with a feature contour system and an object recognition system, as
developed in [23] attempts to attain a unifying precept for form, color and brightness. While
the BCS is largely preattentive, the model does allow feedback from the object recognition
system to guide the segmentation process.

The BCS consists of several stages arranged in an approximately hierarchical
organization. The image to be processed forms the input to the earliest stage Here, elongated
and oriented receptive fields called masks are employed for local contrast detection at each
image position and each orientation. Thus there is a family of masks centered at each location,
and responding to a prescribed region around that location These elliptical masks respond to
the amount of luminance contrast over their elongated axis of symmetry, regardless of whether
image contrasts are due to differences in textural distribution, a step change in luminance or
smoother intensity gradient The elongated receptive field makes the masks less sensitive to
differences in average contrast in a direction orthogonal to the major axis. However, the
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penalty for making them sensitive to contrasts in the preferred orientation is the increased
ancertainty in the exact locations of contrast. This positional uncertainty becomes acute during
the processing of image line ends and corners. The authors assert that all line-ends are illusory
in the sense that they are not directly extracted from the retinal image, but are created by some
process that generates line terminations. One such mechanism that is hypothesized by them is
based on two short-range competitive stages followed by long-range cooperation, as described
next.

Firstly, each pair of masks at the same location that are sensitive to the same orientation
but opposing direction of contrasts, input to a common cell. The output of such a cell at
position (i,]) and orientation k is Jiji, which is related to the two directional mask outputs,

Ui and Vijk , by:
’ +
U= o Vigel + [Vijge- @ U l”

1+B (U + Vi)

, (11

Jijk

where the notation [p]* stands for max(p,0)

These oriented cells are sensitive to the amount of contrast, but not the direction They in
tun feed two short-range competitive stages. In the first stage, there s on-center, off-
surround competition between a cell and all other cells of the same orientation and within a
small neighborhood of that cell. Subsequently, push-pull opponent processes are activated at
each position for the second competitive stage, resulting in competition between orthogonally
oriented masks at each position. Let Wijk Tepresent the output signal for the cell corresponding
to position (i,j) and orientation k, and WiiK be the output for the cell at the same location but

with orientation orthogonal to %, at the end of the first stage. The Wijk$ are obtained from:

(%wijk:-wijk(l +B Y Blg Ay )+T +Bl 1)
(. eR

In Eq. 12, I is a tonic input, R a neighborhood of (i,j), and quij the inhibitory interaction

strength between positions (p,q) and (i,j). The activity potentials Yijk of cell outputs in the

second stage are governed by:

d
3t Yiik= A1+ € - yiji) Oijie- yijk > Oijm » 13)
m#k

where Oijk = C[Wijk -w in]"‘ ,and A, C and E are constants.

The behavior of the orientation field is shown in Figure 5, in which adjacent lattice points
are one unit apart. Each mask has a total exterior dimension of 16 x 8 units Figure 5(b)
shows the Yijk tesponses at the end of the second competitive stage for the same input
stimulus The two competitive stages together have generated end cuts as can be seen clearly
on comparing with Fig. 5(a). Note that the second competitive stage is tonically active, that is,
inhibition of a vertical orientation excites the horizontal orientation at the same position.

The outputs of the second stage are also used for the boundary completion process that
involves long-range cooperation between similarly oriented pairs of input groupings This
mechanism is able to complete boundaries across regions that receive no bottom-up inputs
from the oriented receptive fields, and thus accounts for illusory line phenomena such as the
completion of the square edges in a reverse-contrast Kanisza square The process of boundary
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(a) Response of oriented masks. (b) Response of second competitive layer

Figure 5: (Adapted from Grossberg & Mingolla [21}) (@) Shows the output of the oriented
masks superimposed on the input pattern (shaded area). Lengths and orientations of lines

encode the relative sizes of the activations and orientations of the masks at the corresponding
positions. 5(b) shows the output of the second competitive stage for the same input as in 5(a).

completion occurs discontinuously across space, using the gating properties of the cooperative
cells to successively interpolate boundaries within progressively finer intervals. Unlike a low
spatial frequency filter, this process does not sacrifice spatial 1esolution to achieve a broad
spatial range. The cooperative cells used in this stage also provide positive feedback to the
cells of the second competitive stage so as to increase the activity of cells of favored orientation
and position, thereby providing them with a competitive edge over other orientations and
positions. This feedback helps in reducing the fuzziness of boundaries. The detailed
architecture, equations and simulation results can be found in [21,22].

A hierarchical neural network for texture segmentation and labelling has been proposed by
Dupaguntla and Vemuri [14]. The underlying premise of their approach is that textural
segmentation can be achieved by recognizing local differences in texels. The architecture
consists of a feature extraction network whose outputs are used by a texture discrimination
network. The feature extraction network is a multilayer hierarchical network governed by the
BCS theory The image intensities input is first preprocessed by an ariay of cells whose
receptive fields correspond to a difference of Gaussian filter (see Sec. 2 1), and which follow
the feed-forward shunting equations of Grossberg. The output of this array of cells form the
input to 2 BCS system and are processed by oriented masks according to Eq (11). These .
masks then feed into the two competitive stages of the BCS theory, and governed by Eq. (12).
and (13). However, the long-range cooperative processes described above are not used.
Instead, the outputs of the second competitive stage activate region encoding (RE) cells at the
nextlevel Each RE cell gathers its activity froma region of orientation masks of the previous
layer, as well as from a neighborhood of adjacent RE nodes of the same orientation

The activity potential of an RE node is given by the following equation, where the Yy, S

are obtained from the previous layer according to Eq. (13), (1,m) is in the neighborhood of
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(0.9) and the activation function, f, is sigmoidal:

g—zijk= - Bziger 1Y (EZpqe) - i) + D, Yimk- (14)
t ®9 (Lm)

The RE cells are functionally analogous to the complex cells in the visual cortex, with the intra-
Jayer connections helping to propagate orientation information across this layer of cells.

The outputs (Zijks) of the feature extraction network are used by a texture discrimination

network which is essentially Kohonen's single-layered self-organizing feature map [37]. At
each position, there are T outputs, one for each possible texture type, which is assumed to be
known a priori. Model (known) textures are passed through the feature extraction network
For arandomly selected position (1,j), the output cell of the texture discrimination network that
responds maximally is given the known texture-type label The weights in the texture
discrimination network for that position are adapted according to the feature-map equations.
Since these weights are the same for all positions, one can simply replicate the updated
weights for all positions. The hierarchical scheme described above has been applied to natural
images with good results. However, it is very computationally intensive, since there are cells
corresponding to each orientation and position at every hierarchical level.

4.3 Discrete 2-D Gabor Transforms using neural networks.

This section explains how a three-layered network can be used to obtain the expansion
coefficients for expressing two-dimensional discrete signals in terms of a set of basis
functions, which need not be complete or orthogonal. In particular, a complete 2-D Gabor
transform is of interest, because the desirable properties of Gabor functions, elaborated in
Section 3.2, lead to viable image segmentation based on clustering the coefficients obtained
The approach given below is adapted from Daugman [12].

We wish to represent a two dimensional signal I(x,y), which can be the image intensity values
at pixel points (x,y) for example, in terms of a set of 2-D elementary functions, {G; (x,y)}
I(x,y) is approximated by H(x,y), which is a linear combination of the elementary functions,
ie.,

n
H(xy) = Y 2, G;(x.y)
i=1
If the n elementary functions form a complete orthogonal set, then projection coefficients {a;}

that lead to an exact representation can be easily determined. Otherwise, one can choose the {a
i}s so as to minimize the squared error:

E = Y [I(xy) - Hx,y)]2 (15)

X,y
The desired {a;}s are obtained by setting 9E/da = 0, which yields a system of n simultaneous
equations in n unknowns:

I Gy =Y, [ a6 x)] G; (k). (16)
Xy

XY k=1

If we choose the elementary functions to be a set of Gabor functions, each characterized by the
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position (xg,yg)» frequency (ug,vg) and scale (a,b) coordinates, then the inner products Gi-
Gi will be non-zero in general. For this non-orthogonal case, Eq. (16) could still be solved
by algebraic means, but it becomes computationally prohibitive even for moderately sizegq:
images.

a . 2. function
11
- ™ bank

Image I (x,y)

Fixed
Weights

1 n X
. . I layer of N cells
1G;
' Fixed
Weights
+ >4

Figure 6 A three-layered network for determining the optimal coefficients of arbitrary image
transforms

Fortunately, E given by Eq (15) is quadratic in each of the g;s This means thata
unigue global minimum for E exists and can be reached by a gradient descent along the error
surface expressing this cost function’s dependencies on all of the {a;} coefficients and realized
using the "neural network” architecture of Fig 6 This network has three layers of cells. All
cells perform linear surnmation of their weighted inputs The efferent connections from the
image have fixed weights dictated by the elementary functions chosen, and provide input
activation for a layer of n units The output of the ith unit of this layer is simply‘frl G, e,
the inner product of the ith elementary function with the image. This is analogous to the
neurophysiological concept of a (linear) neuron's receptive field profile, which refers to the
spatial weighting function by which a local region of the retinal image is multiplied and

integrated to generate that neuron's response strength.

Let the image be of size N. The second layer has N cells, one for each image position.
The cell (x,y) gets input from the z units of the function bank, corresponding to G(x.y)
through G (x,y), through adaptive connection strengths that are the estimated {a;}s The
outputs of this layer provide input activation to another layer of n cells, through the same set
of fixed weights that are used between the image and the first layer The weight change to¢;

isDa;, given by:

Aa; =1 ( TIxy) Gy - X [DaGixnIGiy)) (D
X,y

X,y k=1
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Note that the adaptation of weights does not require an external teacher Rather, the
control signal arises only from the interlaminar network interactions. From Eq.(15) and (17),

it can be seen that A a; = —% ; E , which means that a gradient descent in weight space is
i

approximated by the weight adjustments. At equilibrium, the cost function reaches its

minimum. An elaborate discussion of gradient descent is given in Widrow & Stearns [58]

Indeed, the architecture of Fig. 6 is really an adaptive linear combiner couched in a "neural"

framework. Daugman [12] has used the above architecture with Gabor functions for the G;s
to perform image compression and segmentation based on clustering of the expansion
coefficients obtained. In the following section, we describe a different approach to textured
image segmentation that is based on the multiple channel model of Section 3 3.

4.4 The SAWTA Mechanism.

A cooperative-competitive feedback network called Smoothing, Adaptive Winner-Take-
All Network (SAWTA) has been developed recently for performing texture-based
segmentation using the same texture model, but with improved results [19]. The network
consists of n layers of cells, with each layer corresponding to one Gabor filter, as shown in
Fig 7. On the presentation of an image, a feedforward network using local receptive fields
enables each cell plane to reach an activation level corresponding to the amplitude envelope of
the Gabor filter that it represents, as outlined in the preceeding paragraphs Letm;(x,y), I <
i <n, be the activation of the cell in the ith layer with retinotopic coordinates (x,y)

Initially, the n cell activations at each point (x,y) are set proportional to the amplitude

responses of n Gabor filters.
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Figure 7: The SAWTA network for segmentation of textured images.
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To implement the SAWTA mechanism, each cell receives constant inhibition from all other
ceils in the same column, along with excitatory inputs from neighboring cells in the same row
or plane. The synaptic strengths of the excitatory connections exhibit a 2D Gaussian profile
centered at (x,y). The network is mathematically characterized by shunting cooperative-
competitive dynamics [21] that model on-center off-surround interactions among cells which
obey membrane equations [35] Thus, at each point (x,y), the evolution of the cell in the jth
layer is governed by:

r%(mi)=-mi+(A-mi)J+-(B+Cmi)J', (18)

where J*, J- are the net excitatory and inhibitory inputs respectively, and are given by
2 2
Ax xp) + -yl
I=a Y  m.yde 26” sand J = ) £(mG&y)
(. Yn)ER j=i

Here, R is the neighboring region of support and f is a sigmoidal transfer function. The
convergence of a system described by Eq. (4.9) has been shown for the case when the region
of support R consists of the single point (x,y) The network is allowed to run for 1,

iterations before region assignment is performed using Eq. ©).

Figure 8: Segmentation of the synthetic texture of Fig. 4(a), using the SAWTA network
(clockwise from top left): (a) segmentation after 10 iterations of the SAWTA network;
(b) after 10 iterations, but with C=73; (c) after 50 iterations; (d) after 100 iterations.

Figure 8 shows experimental 1esults using the SAWTA network for segmentation The
256x256 gray level images are prefiltered using a bank of Laplacian-of-Gaussians to remove
high dc components, low-pass phase functions, and to suppress aliasing. Then, only sixteen
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circularly-symmetric Gabor filters are used to detect narrow-band components. Sets of three
filters with center frequencies increasing in geometric progression (ratio = 2:1) are arranged in
a daisy-petal configuration along 5 orientations, while the sixteenth filter is centered at the
origin. Figure 8 shows the segmentation achieved for the synthetic texture of Fig. 4(a). The
constants A, B and C in Eq (18) wete taken to be 1, 0 and 10 respectively. The activation
fanction used is f(x) = tanh(2x). The results are seen to be superior to that shown in Fig 4(b)
ot (c), using Eq.(8) or Eq (10). Figure 8(b), (c) and (d) show the effect of varying the number
of iteration steps #,,, and the inhibition factor C, on the segmentation obtained. We observe
that the SAWTA network achieves a more smooth segmentation in regions whetze the texture
shows small localized variations, while preserving the boundaries between drastically different
textuzes. Usually, 10 iterations suffice to demarcate the segment boundaries, and any changes
after that are confined to arbitration among neighboring filters.

The SAWTA network does not require a feature extraction stage as in [14] or
computationally expensive masking fields. The incremental and adaptive nature of the SAWTA
network enables it to avoid making early decisions about texture boundaries. The dynamics of
each cell is affected by the image characteristics in its neighborhood as well by the formation of
more global hypotheses. It has been observed that usually four spatial frequencies are dominant
in human visual systems This suggests the use of a mechanism for post-inhibitory response
that suppress cells with activation below a threshold and speeds up the convergence of a
SAWTA network The adaptive learning network of Kohonen [37] can be used to change both
excitatory and inhibitory synaptic strengths (J ¥,J 7 ), in response to a teaching input. Also,
the SAWTA network can be easily extended to allow for multiple "winners". Then, it can
cater to multicomponent textures, since a region that contains two predominant frequencies of
comparable amplitude will not be segmented but rather viewed as a whole.

4,5 An Optimization Framework for Texture Segmentation.

The use of Markov Random Field (MRF) models for modeling texture has been
investigated by several researchers [10,8] It can be used to model the texture intensity process
as well as to describe the texture labelling process. In this framework, segmentation of
textured images is posed as an optimization problem. Two optimality criteria considered in
Manjunath et al [41] are (i) to maximize the posterior distribution of the texture label field
given the intensity field, and (ii) to minimize the expected percentage of misclassification per
pixel by maximizing the posterior marginal distribution Corresponding to each criteria, an
energy (cost) function can be derived that is a function of MxMxK binary labels, one for each
of the K possible texture labels that a pixel in an MxM can take.

The energy function can be minimized through deterministic relaxation using the discrete
Hopfield-Tank formulation [27]. In general, an algorithm based on MRF models can be
mapped trivially onto neural networks with local interconnections. While the deterministic
relaxation algorithm is simple and usually converges in 20-30 iterations, its quality is quite
sensitive to initial conditions as it has a penchant for settling into local optima Alternatively,
a stochastic algorithm such as simulated annealing can be used to minimize the energy function
Indeed, any problem formulated in terms of minimizing an energy function can be given a
probabilistic interpretation by use of the Gibbs distribution [48] The two approaches are
related in that a mean field approximation of the stochastic algorithm yields the Hopfield
equations, with the free parameter, 1, being proportional to the inverse of the annealing
temperature [28]
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For the segmentation problem, a constraint on a valid solution is that each image position
should have only one of the K labels "on". This constraint is usually incorporated in a soft
fashion by adding bias terms to the energy function Peterson & Soderberg [48] have
incorporated the 1-of-K constraint in a Potts glass, and derived a mean field solution for that
formulation. It has been shown recently that the alternative of putting global constraints on the
set of allowable states in the corresponding stochastic formulation leads to significantly better
solutions [61] An iterated hill climbing algorithm that combines fast convergence of the
deterministic relaxation with the sustained exploration of the stochastic approach has also been
proposed in [41] for the segmentation problem. Here, two-stage cycles are used, with the
equilibrium state of the relaxation process providing the initial state for a stochastic learning
autornaton within each cycle. The relation between neural network techniques and MRFs is

explored in detail in Chapter 6 of this book.
5. CONCLUDING REMARKS

Texture can provide useful cues for segmenting scenes into objects, and for determining
their shape and surface properties Statistical approaches to texture analysis have only achieved
limited success, partly because the texture modelling problem itself is very difficult Neural
network approaches to analysis of textured images are amenable to a massively parallel
implementation in VLS, and hold forth the promise of real-time visual processing The recent
progress in developing a silicon retina is particularly exciting [45]. Analog VLSI chips
described in Mead [45] use networks of resistive grids and operational amplifiers to perform
edge detection, smoothing, segmentation, compute optic flow, etc. Such chips have been
incorporated in toy autonomous vehicles that can track edges or movements [36]. Further
progress towards the development of low-power, real-time vision hardware requires an
integrated approach encompassing image modeling, parallel algorithms and the underlying
implementation technology.
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Abstract

The current resuigence of interest in Neutal Networks has opened up several ba-
gic issues In this chapter, we explore the connections between this area and Matkov
Random Fields We aie specifically conceined with early vision problems which have
already benefited from a parallel and distiibuted computing perspective  We exploie
the 1elationships between the two fields at two different levels of a computational ap-
proach. Applications highlighting specific instances whete ideas fiom the two appioaches
intertwine are discussed

1 INTRODUCTION

Markov Random Fields (MRFs) and Newal Networks (NNs) have a history dating back
over thitty years. While MRFs primaiily serve as tools for model building, NNs are
much more ambitious; their applications 1ange from computing least square estimates
to building parallel computers. However, both fields offer paradigms for the constiuction
of early vision modules and there aie numerous connections between them

We a1e primaiily interested in exploiing the 1elationships between the two fields as
they relate to the constiuction of eatly vision modules. In this 1egard, we suggest that
the framewoiks and principal ideas be compared at different levels of a computational
approach Man [1] was the first to suggest that theie aie thiee levels of a computa-
tional approach; computational, algoiithmic and hardware. We feel that comparisons
at the first two levels aie appropriate and illuminating for this audience. In 1eview, the
computational level conceins itself with what is being computed. The specific scheme
of computation is not of interest, only the goal of computation is impoitant. The algo-
rithmic level concerns itself with how the goal is computed An example of the goal of
computation is the Tiaveling Salesman Problem arid an example of a method of solution
is the Hopfield network [2] We will not be discussing the 1elationships at the level of
hardware implementation; it is impoitant albeit premature

MRFs are an impoitant class of stochastic models and have been applied to p1oblems
like image estimation and texture segmentation Once the model variables have been
chosen, an MRF is completely specified by the joint distribution over these variables
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The important characteristic of MRFs in early vision is that the conditional densities ap¢
dependent only on a small neighborhood surrounding the variable of interest. When thig
is the case, the conditional densities ate called local characteristics. In order to perfory
feature extraction, the joint density is usually specified over a set of variables which
aie closely 1elated to the data and a fuither set of attribute variables which categorize
the data. The attiibute variables are termed unobservable since they aie not part of
the observed data The joint density of the data vaiiables (computed by integrating
out the unobservables) is usually fully connected [3]. This property suggests that fully
connected, non trivial models can emerge f1om an intuitive choice of attiibutes and loca]
characteristics, thereby allowing us to create hierarchical models which are capable of
extracting higher order featuies The higher order featuies constitute an efficient internal
repiesentation. The unobseivables are specified by the designer 1endering the interna]
representation immutable The goal of computation is the minimum mean squaie error
estimate (MMSE), maximum a posterior: (MAP) estimate or in general any estimate
based on minimum expected cost At the algoiithmic level, there are several methods;
both deterministic and stochastic, of solving the problem However, in addition to the
state estimation problem, we have to solve the paiameter estimation problem The
joint distribution is a function of these parameters which have to be specified aprion
before the cost minimization is done. The long-term goal is 1apid feature extiaction and
classification with continual adaptation to incoming data

Thete ate a large number of NN 1elated models. The basic idea drawn from biology
and neurobiology is to have netwoiks with neuion-like processing elements with simple
dynamics and massive inteiconnections which are capable of paiallel, global computation
and learning internal 1epresentations In most newial net schemes, the aim is to let the
internal 1epresentation of the data emerge fiom a set of hidden units which ate connected
to the data The connections seive as the long term memory and are modified in oider
to better approximate the distribution of the incoming data. Higher order statistics are
represented by inteiconnections (which aie second-order) and hidden units In order to
take decisions, neuronal dynamics have to be non-linea1 [4] The goal of computation is
decided by a teacher who then trains the network (with a given number of hidden units)
on a set of training samples [4] Thete is no need to restiict the interconnections to
second-order Higher-order interconnections can more closely apptoximate the incoming
distribution [5] In self-supervised schemes, self-o1ganization plays the 1ole of the ex-
teinal teacher [6] Category foimation and knowledge representation ate now machine
diiven with no supervision The goal of the computation is for the machine to discover
the intrinsic complexity (or the information needed for a minimal description) of the
data [7]. The algorithmic level problems are the choice of the number of hidden units,
the leaining algorithm etc. The long tetm goal once again is 1apid feature extiaction
and classification with continual adaptation to incoming data

The two paradigms are stiongly intetielated Several ideas aie common due to
mutually dependent co-origination a few years ago We wish to 1e-examine the basic
ideas and suggest the different levels at which the two apptoaches can continue to benefit
each other Section 2 is devoted to this issue In Section 3, we present two applications
highlighting some of the ideas presented in Section 2. Conclusions are presented in
Section 4.
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2 RELATIONSHIP BETWEEN THE TWO
FIELDS

2.1 PRELIMINARIES

In this section, we examine the basic ideas in MRFs and NNs,

2.1.1 MARKOV RANDOM FIELDS

An MRF can be completely specified by the joint distribution over the vaiiables We
denote the data by Y Associated with the data, we have the process X and in addition,
we have the attiibute process L One of the most interesting aspects of MRFs is that the
joint distribution is an MRF if and only if it is also Gibbsian [3]. The Gibbs distiibution
is wiitten as follows

PX =% L=1fY =) = 7 exp(~FH(x,1y)) 1)
where Z is the partition function, g = % and T is the temperature, and H is the en-
ergy function defined over all the processes. The paitition function is a function of the
obsaved data y and the parameters involved in the specification of H Adopting a
Bayesian viewpoint, it is easy to switch between the various distiibutions. Equation (1)
is the posterzor distiibution aiising fiom the degradation model P(Y = y|X =x,L =1)
and the prior distiibution P(X = x,L = 1) The piio1 distiibution encodes omr be-
liefs about the processes X and L and is Gibbs The degiadation model is specified
by the (usually) known transfoimation fiom the repiesentation to the obseived data
and is also Gibbs. In piinciple, the 1ecipe {or inference is clear once these distiibutions
have been specified. The parameters are estimated using maximum likelihood (ML) on
the marginal density of the data (which is a function of the parameters) and then the
expected cost is minimized with respect to X and L In piactice, both problems (patam-
eler estimation and cost minimization) aie intiractable in theii puie form. For example,
if cost minimization reduces to finding the MAP estimate, then the pioblem is usually
NP-complete and only simulated annealing (SA) is guaranteed to asymptotically 1each
the optimum solution In the case of paiameter estimation, ML cannot be peiformed
due to the intiactability of the distiibution of Y

In 1ecent years, several alteinatives have been pioposed It is possible to design
efficient deterministic algorithms that obtain good sub-optimal MAP or MMSE esti-
mates. For instance, the Iterated Conditional Mode (ICM) [8] algoiithm iteratively
maximizes the conditional density of each variable with the others held fixed. Similarly
the Iterated Conditional Expectations (ICE) algorithm [9] iteratively computes the con-
ditional expectation of each variable with the others held fixed ICM and ICE yield
good, sub-optimal MAP and MMST estimates respectively Both methods exploit the
Maikov stiuctwie In addition, continuation methods [10] have been developed which
ale akin to some foim of deterministic annealing since they involve the giadual change
of a control parameter. The problem of patameter estimation has been paitially solved
by the introduction of pseudo-likelihood (PL) [11] techniques which maximize the prod-
uct of the conditional densities with 1espect to the unknown parameters, This avoids



158

the intractable problem of having to compute the partition function. Unfortunately, P,
requires prior knowledge of X and L which is unavailable, The well known Expectation:
Maximization (EM) algorithm [12] has been adapted to jointly solve for the parameters
and states.

2.1.2 NEURAL NETWORKS

Thete are several models of learning and perceptual inference in the Neural Network
literature. In this section, we explore the fundamental ideas of the some of these models
and of the Boltzmann Machine (BZM) [13] in particular. The BZM has very close ties
to the general area of MRFs,

The BZM consists of two phases, a fixed phase and a fiee phase. As previously
mentioned, internal representations aie generated by a set of hidden binary units and
learning is accomplished by modifying the interconnections between the units In the
fixed phase, the environmental patterns clamp the input/output units and the hidden
units are relaxed using SA In the free phase, all units (sometimes the inputs are clamped)
are 1elaxed using SA. Co-occurrence statistics are collected in both phases and the
weights are modified based on the difference between the statistics [t can be shown
that this kind of weight modification coriesponds to giadient descent on the Kullback
information gain [14] which measures the distance between the distiibutions generated
duting the fixed and free phases. In essence, the iee phase mimics the distiibution over
the incoming patterns and the weights ate modified in order to better approximate the
incoming distribution. The order in which the patterns are piesented to the system is
unimportant, but obviously their fiequency is A pue implementation is infeasible in
vision problems due to the excessive computational 1equirements of the SA algotithm,

The most impottant alternative that has emerged so far is the Mean Field Theory
(MFT) Learning Algorithm [15]. MFT involves tracking the expected value of the units
instead of generating their values using a piobabilistic (heat bath) algorithm. A very
interesting point in 1elation to all that has already transpired is that MFT exploits an
approximation to the partition function (for binary units) that was fiist formulated in
statistical physics With this approximation in place, a deterministic relaxation algo-
Lithm 1esults in place of SA and the equation for the weight change is left intact MFT
has close ties to ICE in the context of MMSE estimation since the expected value of
the state vaiiables can be obtained fiom the partition function Recall that the MMSE
estimate involves computing the conditional expectations of the variables given the data.

The BZM is a supervised pattern classifies There exist several alternatives to clas-
sical unsupervised classifiers in the NN literature The most notable are Adaptive Res-
onance Theory (ART) and its variants [6], the Neocognition [16] and most competitive
learning models [4] The key in most of these models is that leaining and category
formation are conducted by leaining rules which ate not obtained by matching the in-
ternal 1epresentation with an enviionmentally imposed set of associations. Instead, the
leaining rules are specified as a dynamical system on the weights Unsupervised leaining
results in an organization of the data into categoties or features This process is called
self-o1ganization since the system discovers the categories without supervision
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2.2 RELATIONSHIP AT THE COMPUTATIONAL LEVEL

The key differences emerging at the computational level are as follows. MRF's rely heavily
on conditional distributions whose local characteristics have small neighborhoods. Also,
the models are usually adopted in advance and held fixed In addition, the models are not
restricted to second-order distributions. There is no restriction on the range space of the
variables. In NNs, the network is typically fully connected with very simple neuron-like
digital processing elements In the BZM, only second-order connections are allowed and
it is hoped that adequate representation emerges from a reasonable number of hidden
units. Fixed models are not specified; the network learns from a set of examples In the
case of unsupervised learning, only the learning rules aie specified in advance. These
learning rules are hewistically specified o1 are deiived fiom furthe:r principles in some
cases.

However, there are several common themes. Specifically in BZM, the distributions
(incoming and generated) are Gibbsian, Theie also exists a close analogy between the
hierarchical attribute process L in the MRF setup and the hidden units. This should
come as no surplrise since the inspiration for the hidden units did come fiom the atea
of Hidden MRFs (HMRF) [17] The clea difference heie is that NNs implicitly build
distributed, internal representations using hidden units and inteirconnections, wheieas
MRFs build explicit 1epresentations using attiibute vaiiables and model parameters
The improvement of the model in NNs arises through leaining where the long term
memory (in the interconnections) is modified taking into account all past and present
exchanges between the network and the envitonment. This is analogous to parameter
estimation in MRFs if it is not performed off-line but adaptively as more information
is present to the system The EM algorithm is an aichetype of adaptive parameter

estimation

MRFs and NNs answer the question of what is to be computed in different ways.
While MRF's exploit the structuie of the local chaiacteristics, NNs mostly use fully con-
nected networks with second-order connections Both paradigms build internal 1epiesen-
tations on hidden (unobservable) units, MRFs explicitly and NNs implicitly Adaptation
to new data is provided for in both models with NNs incoipoiating leaining and MRFs
performing adaptive parameter estimation

In MRFs, prior distributions typically constiain the number of all possible distiibu-
tions and are sometimes counter-intuitive A proper choice of attiibute variables and
prior distributions is crucial to the success of MRFs. Important aieas wheie NNs can
be useful in MRFs are adaptive parameter and state estimation. Similarly, NNs can
benefit from the results of MRF based modeling The choice of the number of hidden
units can be made mote assuredly with the knowledge of explicit modeling using MRF's
Another important topic is highei-oider connections MRTFs utilize local, higher-order
connections to obtain better models Although, in principle, hidden characteristics can
be approximated using hidden units (inteigiating out the hidden units generates higher-
oider distiibutions), it is not clear how well hidden units and second-order connections
perform with 1espect to this point in vision tasks Mote work needs to be done with
higher-order, paitially connected NNs [5, 18]

We now move to the algorithmic level of desciiption
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2.3 RELATIONSHIP AT THE ALGORITHMIC LEVEL

The main problems in MRFs can be divided into two sub-problems; state estimatiop
and parameter estimation Once the criteria have been imposed on the system, state
estimation is usually cast into a MAP or MMSE problem o1 their vaiiants The impetyg
in MRFs diamatically increased with the introduction of SA [3] and it has not waned
even after the computational limitations of SA have been pointed out There ale several
alternatives to SA especially for MAP estimation. These range fiom general purpose
techniques like ICM (not confined to MAP) to deterministic annealing techniques of
continuation methods Interestingly enough, Hopfield networks and MFT (the two are
equivalent for MAP estimation) have been quite successful in eatly vision problems
like image estimation and surface reconstruction It is impoitant to realize that MAP
estimation performed in isolation is not the goal We also need to perform parameter
estimation. Due to the intractability of the partition function, EM like techniques have
become popular.

Deterministic networks for MAP estimation have boriowed heavily fiom neural net:
works, MFT in particulas MFT as applied to MAP estimation uses apptoximations o
the partition function and ends up minimizing a cost function which in some ways is
a smoother version of the o1iginal cost function As a contiol patameter is vatied, the
original cost function is better approximated. Also, new methods of solving the winner-
take-all {WTA) problem (which also suffers from local minima) have emerged {19]. The
impetus in NNs began with a novel appioach to the TSP pioblem Thete is tiemendous
potential in further applications of NN related ideas for MAP and MMSE estimation of
MRFs In Section 3, we present different NN 1elated approaches for solving well known
problems in early vision

The parameter estimation pioblem can be successfully tackled using PL techniques
and the EM algorithm The consistency of these estimatois has been proven for very
general Gibbs distiibutions [20] BZM leaining algorithms ate very closely 1elated to ML
techniques This is because the BZM minimizes the Kullback information gain [14] which
is 1elated to ML. The difference is that ML specifies the paiameters by maximizing the
dist1ibution of the data whereas the Kullback information gain minimizes the distance
between the distributions of the fixed and fiee phases with respect to the weights.

3 APPLICATIONS

In this section, we concentiate on two applications which illustiate some of the comments
made in Section 2 3

The first application is in image estimation and segmentation. The problem can be
succintly stated as follows We wish to obtain an estimate of a noisy image which at the
same time yields a convenient 1epresentation in terms of piecewise, homogeneous regions.
Adopting the MRF viewpoint, the degiadation is assumed to be coriuption by additive
noise and the piior belief is that the image is composed of piecewise, homogeneous
regions Then the goal of the computation is conveniently expiessed as a MAP estimation
problem The noisy image is the D process, the ptio1 is the F process and the boundaties
ate the attribute process L The MAP estimation pioblem is NP-complete and we
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suggest continuation methods which find good, sub-optimal solutions We show that
our algorithm is equivalent to those of other 1eseachers when several constraints on the
boundary process L are removed (the uninteresting case) Specifically, our continuation
method has close ties to SA, MFT and other non NN 1elated methods

The second application is in texture segmentation The problem of interest is to
locate the boundaries of the textures present in an image As in the case of image
estimation, we set up the problem as a MAP estimation of the textuie labels L when
we know the texture intensities Y. This problem is also NP-complete and we present
several algorithms, stochastic and deterministic which solve the problem Of particular
interest is a learning algorithm adapted from the stochastic approximation literature
which refines the optimization algorithm by experience Comparisons with SA and
others are provided which facilitate choice of any algorithm in a particular situation

3.1 IMAGE ESTIMATION AND SEGMENTATION

3.1.1 A GENERALIZED FRAMEWORK FOR IMAGE ESTIMATION
AND SEGMENTATION

When Gibbs distributions aie used for piior and degiadation models, the posterior
dist1ibution is still Gibbs. The attiactive feature of a Gibbs distribution is in the con-
venience of its specification; it can be completely specified by an energy function. The
energy function is defined over the intensity (f), the vertical (v) and horizontal (h) line
PIOCESSES

H(f,v,h) = {E(l‘(i’i) —d(i,j)* + E}(X"ff(h (A =v(i,5)) + av(i, j))
4,7} {4,
4,7}

where d is the observed data, v(i, j), b(,j) € {0,1}, f(1,7) & f1+1,5)— (i, ) and
fy(iJ) d:ef f(ZJ + 1) - f(27 ])

When the H.(.) tetm (corresponding to prior knowledge of image contours) is ab-
sent, this energy function reduces to the popular weak membrane [21] The term weak
membrane atises from the physical nature of this energy function If discontinuities are
absent, the reconstruction would be like a membiane which is continuous everywhere
Our objective is to construct a continuation method which finds good suboptimal MAP
estimates. The energy function paiameters ate A and «

The weak membiane ene1gy function can be wiitten in a mote compact foim.

H(f) = {Z}(f(i,j) —d(i, 7)) + {Z}g*(fz(% N+ Z}g*(/‘y(i,f)) (3)
i i {ij

whete the new function g*(f,) atises fiom the elimination of the line processes and fpis
the generic symbol used for the intensity giadient The ¢* function is written as;

XNfE N < a

9*(4](1?):{ a /\2)(-3 > a (4)
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We also define g7 (f,, 2) DY fz(l —z)+az, z € {0,1} where z is the geneiic symhg]

for the line process.

The energy function (3) as it stands is non-convex due to the nature of the g* functiop:
Several reseatchers [9, 10, 21] have proposed a variety of continuation methods or convex
formulations to deal with this problem A continuation method essentially tracks minimjs
thiough the variation of a control parameter; the original eneigy function is increasingly
closely approximated during this variation. All of these approaches can be conceptually
synthesized by replacing the ¢g* function by either a solitary g function or by a sequence
of ¢'® functions; the integer k is the index of the sequence. Henceforth, we will refer to
this sequence simply by the g function since our generalized framework is valid for alj
members of a given sequence

We define a new sequence of gi(tk) functions which ate related to the old sequence g{*)
as follows

gl = o) + L (12 ) (5

whete u is a new process
The new sequence of g, functions is derived fiom the ¢ sequence using the basic

idea that elimination of the u processes in g, should yield g¢
Examining g,(f, ¥) as a function of u?, we get

9:(t,5) = ga(s) + ga(s)(t — 5) (6)

where t = f2, 5 = u® and gy (u®) = g(u).

Obviously, ¢s(t,s) is just a Taylor series expansion in ¢ aiound s tiuncated at the
first tetm The interesting point is that both ¢ and s emerge as full-fledged processes on
which relaxation is performed. Considering g,(¢,s) as a function of s, we can find the
minimum with 1espect to s keeping ¢ constant

gs(t,s)

T=92(5)(t"‘5):0 Q)
One of the solutions is s = ¢ which can be 1eformulated as u® = f7 When this is
substituted back into (6), we obtain

95(t,1) = g2(t) = g(f») (8)

The sufficient condition fo1 the minimum is
g2(t) < 0 9)

Interpreting our technique as a first order Taylor series expansion giving rise to a new
process s has important consequences The unobseivable piocess s emerges from the
Taylor series expansion The condition for a minimum to exist at s = ¢ requires g(?) to
be concave When s is eliminated dynamically by 1esubstitution, we obtain the original
function ga(t). Constraints can be added in the s space. The consequence of this result
is that the sequence g{") and ¢®) are equivalent when no fuither constraints aie added
in the space of u Further constraints aid in the organization of the u process which as
we show in Section 3 1 2 has the pioperties of a boundaiy process
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3.1.2 RECOVERY OF THE LINE PROCESS

The 1elationship t = s o1 v = f, immediately confers the notion of a gradient upon
u. We refer to v as the gradient (GRAD) process The line process can be recovered
from the GRAD process keeping in mind that equal, positive and negative values of u
must map to the same points in 2 We find it convenient to fitst transform the energy
function using ugam = |ul, the Gradient-Magnitude (GMAG) pirocess. The criteria for
a minimum wit UGM become, UGgM = lfpl and (gl(uGM) - uGMg"(uGM)) > 0 The
sufficient condition arises from rewriting the concavity condition in terms of ugpy. A
transformation from the GMAG process to the line process z = z(ugar) can be obtained.
The transformation should not cause the formation of spurious minima. Every minimum
of ugar should be a minimum of z and vice versa It is easy to show that this condition
is satisfied when z = z(ugar) is monotonic and dud;M is finite.

We suggest two transformations; zy = 1 — i (uenm), and 22 = l(ugn) The mono-
tonicity condition requires

J , B y
71 _ (9 (uon) uc;Mg (ugnr)) > 0 (10)
duGM 2/\2uGM ©

for the flist transformation, and
d22

1 i "
Taom (9 (uan) — uemg (uenr)) > 0 (11)

for the second Note that the relation (g’(uGM) — ugng (uear)) also shows up in the
sufficient condition for a minimum. Combining the conditions for monotonicity and for
a minimum to exist, we get

g (ugar) — uemyg (uam) > 0 (12)

Each of the {1ansformations suggested have cotiesponding energy functions that aie now
defined over the intensity and the analog line processes.

3.1.3 A CONTINUATION METHOD USING THE GMAG PROCESS

The continuation method used is based on Blake and Zisserman’s Graduated Non-
Convexity (GNC) algorithm [21] The sequence of g functions used here is derived
fiom the GNC criterion The fi1st function in the sequence is constructed to make the
energy function convex with 1espect to the intensities Successive ¢ functions push the
energy function closer to the weak membiane. The functions are cieated out of piecewise
polynomials and are gradually modified by a contiol patameter ¢ until the function g*
is reached. The ¢ function sequence is shown below
AZy? 0 < |y
9Py =< a=sr—1lu)? ¢ < |u l
a lul >
where ¢ = ¢,2¥, kK =0,1, and:?= a(% + /\%), ¢ = 35- c. is the initial value of the

control parameter The other parameters ¢ and r aiise as a consequence of cieating a
convex energy function (corresponding to ¢ = ¢,)

TANZAN

(13)
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Proceeding as outlined above we can obtain the two functions l(uea) and L(ugy),
The 1elations can be simplified by modifying the definition of the GMAG process

The GMAG process ugps is now defined over the interval [¢,7] Note that the interva]
does not stay fixed but keeps shrinking as c is increased. Now the two functions I (ugy,)
and l;(ugp) can be written as

e T muem) o) = = (uonm ~ q)
2/\2 UGM ) 2eM 2/\2 q ’
We check if relation (12) is satisfied.

lLi(uem) = g < uom <1 (14)

g'(uenr) — uemy (vom) =2¢cr > 0 (15)
We drop the subscript on ugas since the GRAD process plays no role in subsequent
discussions. The line process can be obtained from either of the two transfoimations.

3.1.4 THE GENERALIZED GRADUATED NON-CONVEXITY ALGO-
RITHM

We now suggest introducing interactions on the GMAG process All line interactions
can be transfered to the GMAG domain

We choose two basic kinds of interaction terms This has been inspired by the work of
Geiger and Girosi {9] and by Geige: and Yuille {19] Consider the following modification

of (2)
Heeno = 30 ((F0,7) = (i, 1)) + (9ulf2(07) w5, 7)) + gu(fo s 1), unis 1))

{i,7}
——612 )— @) (uu(z, 7+ 1) — ¢q) —622 Q(ult +1,7) —q)
{7} {i,5}
¢ . , ) ¢ . .
—ge ) (un(i,)) = @)l +1,7) —g) + 5622 (un(is 1) = 9)(wnlis j + 1) ~ )(16)
{i,7} {i,i}

where all the indices are analogous to the eatlier line process case Physically, we are
trying to decrease the penalty on a vertical (hotizontal) line if its vertical (horizontal)
neighbors are “on” and inciease the penalty on a veitical (hotizontal) line if its adjacent
vertical (horizontal) neighbors ate “on”. This corresponds to encouraging hysteiesis
which leads to the formation of unbioken contours and non-maximum supptession which
prevents the formation of multiple edges and adjacent parallel lines The penalty is
controlled by the parameters ¢ and €

We now proceed with the algorithm itself The improved line piocess in the GNC
formulation prompted us to call this algorithm the Generalized GNC o1 G2NC algorithm
We first solve for u keeping the intensities fixed. Now, u becomes a function of the
neighbors as well as the intensity gradient. We choose to 1un ICM on the u process.
This requires a black and white updating scheme since ICM is guaranteed to converge
only when the updating is asynchionous

In order to1un ICM on the GMAG piocess, we have to solve for u when interactions
are present The criterion for a minimum for the vertical GMAG process is:

OHeane

D) (17)
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© (d)

Figuie 1: (a) Original image of Mission Bay (San Diego), (b) noisy image, (c) restored
image using the G?NC algorithm, and (d) line process image using the GZNC algorithm
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From this we get

| fo(2,5) |
\/1 el -0-2(E6)-1)

r

(18)

uv(i) ]) =

and m (uv(ij+1) q)+(uv(’1] -1)— and m uy(i+1,4)—¢ + o (1=1, 7)<
The formula for the horizontal GMAG process can be similarly derived Thls solution
for u is not guaranteed to be within [¢,7] If the solution lies outside, the end point
energies are again compated and the solution with the lower energy is chosen The
solution depends heavily on e and ;. We have used the generic symbol € for both ¢,
and ¢; when they assume the same value.

We have chosen to run the Conjugate Gradient (CG) algorithm with an optima)
step on the intensities This is because the CG algorithm converges much faster thay
steepest descent (SD) The course we pursue is to apply ICM on the GMAG processes
until they converge We alteinate between ICM on the GMAG processes and CG on the
intensities. We have noticed that ICM takes very few (one to five) iterations to converge
(for our case studies) The algorithm is as follows

1 Set ¢ = ¢, (usually ¢, = 0 25)

2 Run the CG algorithm on the intensities

3 Update GMAG processes using ICM until convergence

4 Retwin to Step 2 till convergence

5 Increase ¢, usually ¢ = 2%¢,, k = 0,1,.

6 Return to Step 2 until conveirgence of the GMAG processes

More details on our approach can be found in [22]

We show 1esults for our energy function and compaie it to the GNC algorithm.
Figutes 1{a) and 1(b) contain an aerial view of Mission Bay, San Diego and the corre-
sponding noisy image Figuies 1(c) and 1(d) show the 1esults of applying ow algotithm
with the interaction texms. The patameter « was set to 676, the parameter A to 8 and
cto 05

The technique we have used to incoiporate interaction terms is a geneial one and
not 1estiicted to the GNC algotithm.

3.2 TEXTURE SEGMENTATION
3.21 IMAGE MODEL

We use a fourth order Gauss-Markov Random Field (GMRF) to model the conditional
probability density of the image intensity ariay given its texture labels The texture
labels ale assumed to obey a fitst o1 second oider disciete Matkov model with a single
paiameter 3, which measuies the amount of clustering between adjacent pixels
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Let Q denote the set of grid points in the M x M lattice, ie, & = {(1,5) ,

0,7 < M} Following Geman and Graffigne [20] we construct a compos1te model Wthh
accounts for texture labels and gray levels. Let {L; , s € 2} and {¥;, s € Q } denote
the labels and gray level arrays respectively. Let N, denote the symmetric fomth oide:
neighborhood of a site s Then assuming that all the neighbors of s also have the same
label as that of s, we can write the following expression for the conditional density of
the intensity at the pixel site s:

e~ UYs=ys | Yr=y; 1€N.,L.=l)
(19)
Z(l|y7’ r e Ns)
whete Z(l[y:,7 € N,) is the partition function of the conditional Gibbs distribution and

P()/;:ysli/; :ynreNs,Ls:l):

U( —ysli =y, 7T € Ng, Ly —l) _2265793% (20)
2 7€Ns

In (20), oy and ©' are the GMRF model parameters of the -th texture class. The model
palameters satisfy @f =0 _ =0 _ =0

We view the image intensity a11ay as composed of a set of oveitapping k x k windows
W,, centered at each pixel s € Q. In each of these windows we assume that the texture
label L, is homogeneous (all the pixels in the window belong to the same textuie} and
compute the joint distribution of the intensity in the window conditioned on L, The
cortesponding Gibbs energy is used in the 1elaxation process for segmentation Let YT
denote the 2-D vector representing the intensity array in the window W,. Using the
Gibbs formulation and assuming a free boundary model, the joint probability density in
the window W, can be wiitten as

U1 (Y 31Le=0)

PY; =yilLs=1)= ESAURE

where Z;(1) is the partition function and

" 1
Ul(Yles = l) = 5 o2 Z {972 - Z @i—y7(y7+r + yv*‘r)} (21)

[ reW: TEN* | +rEW,
N* is the set of shift vectors corresponding to a fou1th order neighborhood system:
N* = {7m,7,7, ,Tw0}
{(0,1),(1,0),(1,1),(=1,1),(0,2),(2,0),(1,2),(2,1),(~1,2), (=2,1)}
The label field is modeled as a fizst o1 second oirder disciete MRF. It NS denotes the

appioptiate neighborhood for the label field, then we can wiite the distiibution function
for the texture label at site s conditioned on the labels of the neighboiing sites as:

. o=Ua(Ls | Ly)
P(LJL, , 7 € Ny) = ————
2y
where Z, is a normalizing constant and
Up(Ly | Ly 1 € Ny = =8 6(L L B>0 (22)

TeN,
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In (22), B determines the degree of clustering, and (¢ — 7) is the Kionecker delta USing
the Bayes rule, we can write
P(Y: | L) P(L | L, 1 € K1)

P(Y3) (23)

‘P(LS | Y:a LT? LS NS) =

Since Y7 is known, the denominator in (23) is just a constant. The numeiator is 4
product of two exponential functions and can be expressed as,

N 1 « 3
P(Ls | Y5, Ly v € Ny) = m e Oolbe 1 X0 Erorelly) (24)
P

where Z, is the partition function and Up,( ) is the posteiior energy corresponding to
(23). From (21) and (22) we write

Up(Ls | Y%, L, v € N)) = w(L,) + Uy (Y? | L) + Up(L, | L,, 7 € N,) (25)

Note that the second teim in (25) relates the observed pixel intensities to the textue Ia
bels and the last terxm specifies the label distribution The bias term w(L,) = log Z4 (L)
is dependent on the texture class and it can be explicitly evaluated for the GMRF mode]
considered here using the toroidal assumption (the computations become very cumber:
some if toroidal assumptions are not made) An alternate appioach is to estimate the
bias from the histogram of the data as suggested by Geman and Graffigne {20] Finally,
the posterior distribution of the texture labels for the entire image given the intensity
array is

P(Y"|L) P(L)

(26)

Maximizing (26) gives the optimal Bayesian estimate. We note that a stochastic
1elaxation algorithm 1equires only the computation of (24) to obtain the optimal solution,
The deterministic 1elaxation algorithm given in the next section also uses these values
and performs descent on a related energy function

3.2.2 A NEURAL NETWORK FOR TEXTURE CLASSIFICATION

We desciibe the network architecture used for segmentation and the implementation
of deteiministic 1elaxation algorithms Let Ui(z,7,0) = Ui(Y5, L, = 1) + w(l) where
s = (i,7) denotes a pixel site and U;( ) and w(!) aie as defined in (25). The network
consists of K layers, each layer aiianged as an M x M airay, where K is the numbet
of texture classes in the image and M is the dimension of the image. The elements
(neurons) in the network are assumed to be binary and aie indexed by (i, 7,[) where
(¢,j) = s 1efeis to their position in the image and [ 1efers to the layer The (z,7,!)-th
neuron is said to be ON if its output Vj;; is 1, indicating that the coiresponding site
s = (t,j) in the image has the textuie label

A solution for the MAP estimate can be obtained by minimizing (26) We appioxi-
mate the posterior eneigy by

ULIY™) = 3 {U(YIIL,) + wr, + Ua(Ls)} (27)
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and the corresponding Gibbs energy to be minimized can be written as

LM MK A M M
S DI IARRIE D 9 Sp DD DR A (2)
i=1 j=1 I=1 210 =1 5= =1 (i")eN,

where Nij is the neighborhood of site (¢,7) In (28), it is implicitly assumed that each
pixel site has a unique label, i.e. only one neuron 1s active in each column of the network
For the deterministic relaxation algorithm, a simple method is to use a WTA circuit for
each column so that the neuron receiving the maximum input is turned on and the
others aie turned off

The network model is a version of the ICM algorithm of Besag [8]. We observe that
in general any algorithm based on MRF models can be easily fnapped on to neural
networks with local interconnections.

3.2.3 STOCHASTIC ALGORITHMS FOR TEXTURE SEGMENTATION
The MAP rule searches for the configuration L that maximizes the posterior piobability
distribution. This is equivalent to maximizing P(Y™ | L) P(L) as P(Y*) is independent
of the labels and Y~ is known The 1ight hand side of (26) is a Gibbs distiibution.

To maximize (26) we use simulated annealing [3]. It samples from the conditional
distribution

—TIEUP(LS | Y3, Ln”eﬁs)

Zn,

in order to maximize
e~Us(L | Y*)
Z

T} being the time varying parameter, referred to as the temperature The process
is guaranteed to converge to a uniform distiibution over the label configuration that
corzesponds to the MAP solution

"The choice of the objective function fo1 optimal segmentation can significantly affect
its result. In many implementations, the most 1easonable objective function is the
one that minimizes the expected percentage misclassification per pixel The solution
to the above objective function can be obtained by maximizing the marginal posterior
distiibution (MPM) of L, given the observation Y*, for each pixel s

P{Li=1|Y" =y} « ) P(Y =y |L=1lPL=])
1| Le=l,

The summation above extends over all possible label configurations keeping the Jabel at
site s constant. To find the optimal solution we use the stochastic algorithm suggested
n [23] The algorithm samples out of the posterior distribution of the textuie labels
given the intensity at 7' =1 The Markov chain associated with the sampling algorithm
converges with probability one to the posterior distribution
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3.2.4 STOCHASTIC LEARNING AND NEURAL NETWORKS

The texture classification discussed in the previous sections can be treated as a relaxation
labelling problem and stochastic automata can be used to learn the texture lahels:
A stochastic automaton is a decision maker operating in a random environment [24}
and is assigned to each of the pixel sites in the image. The actions of the automafy
correspond to selecting a label for the pixel site to which it is assigned Thus for a2
class problem each automaton has K actions and a probability distribution over thjy
action set, Initially the labels are assigned 1andomly with equal piobability Singe
the number of automata involved is very large, it is not practical to update the actioy
probability vector at each iteration Instead we combine the iterations of the neura]
network described in the previous section with the stochastic learning algorithm Aftey
each convergence of the deterministic relaxation algorithm, the action probabilities (p, )
are updated as follows

P (t+1) = por(t) +a AMt) 1= psu(t)]
poy(t+1) = p()1—a A2)], Vi#£ 1, and V s (29)

where [, denotes the label of site s at equilibrium and p,(t) is the probability of choosing
label [ for site s at time ¢. The 1esponse A(t) is derived as follows: Suppose the piesent
label configuration 1esulted in a lower energy state compared to the pievious one, then
it results in a A(%) = A; and if the energy increases we have A(t) = A2 with Ay > Ay, In
our simulations we used A\; = 1 and Ay = 0.25 A new configuration for the 1elaxation
netwotk is then generated fiom the updated action probabilities

Thus the system consists of a 1elaxation netwoik and a learning netwoik The relax-
ation network is similaz to the one in Section 3.2 2, except that the initial state is decided
by the learning network This 1esults in an iterative hill climbing type algorithm which
combines the fast convergence of deterministic 1elaxation with the sustained exploration
of the stochastic algotithm. The stochastic part prevents the algorithm from getting
trapped in local minima and at the same time “leains” from the search by updating the
state probabilities. Each cycle now has two phases: the fiist consists of the deterministic
relaxation network conveiging to a solution; the second consists of the learning network
updating its state Foi further details, the 1eader is referied to {25].

3.2.5 EXPERIMENTAL RESULTS

The segmentation results using the above algoiithms are given on one example. The
least-square estimates (LSE) of the paiameters o; and ©; coiresponding to the fourth
ordet GMRF for each textuie class weie pire-computed from 64 x 64 images of the
textures.

Figure 2(a) shows a 256 x 256 image having six textuies: leather, giass, wool, wood,
pig skin and sand The maximum likelihood solution is shown in Figure 2(b) and Fig-
uze 2{c) is the solution obtained by the deteiministic 1elaxation netwoik with the 1esult
in Figure 2(b) as the initial condition The MAP solution using simulated annealing is
shown in Figuie 2(d). Figuie 2(e) shows the MPM 1esult. As indicated in Table 1, sim-
ulated annealing has the lowest peicentage erior in classification Introducing learning
into deterministic 1elaxation considerably improves the peifoimance (Figuie 2(f))
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(¢) (d)

Figure 2: (a) Original image consisting of six textuies, (b) maximum likelihood solu-
tion, (c) deterministic relaxation with (b) as initial condition, (d) MAP estimate using
simulated annealing
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(e) (0

Figure 2: (contd.) (¢) MPM solution and (f) netwoik with stochastic learning

Table 1

Peicentage misclassification for the six class problem
Algorithm Percentage Erton
Maximum Likelihood Estimate 2217
Neural network (MLE as initial state) 1625
Simulated annealing (MAP) 672
MPM algorithm 705
Neural network with leaining 87

4 CONCLUSIONS

We have presented two applications which highlight the close links between MRF's and
NNs Thete are several issues which have not been addiessed and are beyond the scope
of this chapter. We biiefly mention a few of these issues The use of MRFs in integrating
visual modules [26] has been an important aiea of investigation in 1ecent years. Density
function estimation [27] is an impoitant aiea wheie NNs and MRFs can be 1elated
Finally, the important problem of binding syntactical stiuctutes is addiessed by the
Dynamic Link Aichitecture [28] which uses a fast synaptic plasticity tetm in addition
to the mote conventional slow weight modification term This is an alternative to using
either higher-order connections o1 additional hidden units to model hidden structural
relationships in scenes




173

References

[1]

[10]

[11]

(12]

[13]

D Marr, “Vision a computational investigation into the human representation
and processing of visual information”, W. H Freeman and Co , San Francisco, CA,
1982.

J J. Hopfield, “Neuions with giaded 1esponse have collective computational prop-
erties like those of two-state neurons”, Proc Natl Acad Sci, USA., 81, pp
3088-3092, 1984.

S Geman and D Geman, “Stochastic 1elaxation, Gibbs Distributions and the
Bayesian restoiation of Images”, IEEE Trans on Pattern Analysis and Machine
Intelligence, vol. PAMI-6, pp. 721~741, November 1984,

D E Rumelhart, ] L. McClelland, and the PDP Reseaich Group, editots, “Parallel
Dustributed Processing - Erploirations in the Microstructure of Cognition Volume
1" Foundations”, MIT Piess, Cambridge, MA, 1986

T Maxwell, C. L Giles, and Y. C Lee, “Nonlinear Dynamics of Autificial Neu-
1al Systems”, In Proceedings of the Neural Networks for Computing Conference,
Snowbird, Utah, Aptil 1986

G A. Carpenter and S Grossberg, “A Massively Paiallel Aichitectuie for a Self-
Organizing Neural Pattern Recognition Machine?, Computer Vision, Graphics and
Image Processing, 37, pp 54-115, 1987

S Lloyd and H R. Pagels, “Complexity as Theimodynamic Depth”, Annals of
Physics, vol 188, pp 186-213, 1988

J. Besag, “On the statistical analysis of diity pictuies”, Journal of the Royal
Statistical Society B, vol. 48(3), pp 259-302, 1986.

D. Geiger and F' Girosi, “Parallel and deterministic algorithms for MRFs: suiface
reconstruction and integiation”, A T Memo, No 1114, Astificial Intelligence Lab,
MIT, June 1989

Y G Lecleic, “Constiucting Simple Stable Desciiptions for Image Partitioning”,
International Journal of Computer Vision, vol 3, pp 73-102, 1989

T Besag, “Efficiency of Pseudo-likelihood Estimation for Simple Gaussian Fields”,
Biometrika, 64, pp 616-618, 1977

A P Dempster, N M Laitd, and D B Rubin, “Maximum Likelihood fiom in-
complete data via the EM algorithm®, Journal of the Royal Statistical Society B,
39, pp 1-38, 1977

D H. Ackley, G E Hinton, and T J Sejnowski, “A learning algorithm for Boltz-
mann machines”, Cognilive Science, 9, pp 147-169, 1985



174

(14]

[15)

(16]

(23]

(24]

[25]

S Kullback, “Information Theory and Statistics”, Dover Publications, New York,
NY, 1968.

C Peterson and J. R. Anderson, “A mean field theory learning algorithm for neura] -
networks”, Complez Systems, 1, pp 995-1019, 1987.

K Fukushima, “Neocognitron: A self-organizing neural network model for a mech-
anism of pattern recognition unaffected by shift in position”, Biological Cybernetics,
36(4), pp. 193-202, 1980

L R. Rabiner and B.-H Juang, “An Introduction to Hidden Markov Models”,
IEEE ASSP Magazine, vol. 3(1), pp 4-16, January 1986.

H Haken, “Information and Self-Organization: a macroscopic approach to complex
systems”, volume 40 of Springer Series in Synergetics, Springer-Verlag, 1989

D Geiget and A L Yuille, “A Common Framework for Image Segmentation”, In
Proceedings of the International Conf. on Pattern Recognition, [CPR-90, Atlantic
City, NJ, June 1990

S Ceman and C Graffigne, “Markov 1andom fields image models and their appli-
cation to computer vision”, In Proc. of the Int. Congress of Mathematicians 1986,
Ed A.M. Gleason, American Mathematical Society, Providence, 1987

A Blake and A. Zisserman, “Visual Reconstruction”, MIT Press, Cambridge, MA,
1987

A. Rangarajan and R Chellappa, “Generalized Graduated Non-Convexity Algo-
1ithm for Maximum A Posteriori image estimation”, In Proceedings of the Interna-
tional Conf on Pattern Recognition, JCPR-90, Atlantic City, NJ, June 1990

J. L Marroquin, S Mitter, and T. Poggio, “Pyobabilistic solution of ill-posed
problems in computational vision”, J. Am Stat Assoc., 82, pp. 76-89, 1987.

K S Narendra and M A. L Thathachar, “Learning Automata = an introduction”,
Prentice-Hall, Englewood Cliffs, NJ, 1989.

B S Manjunath, T Simchony, and R Chellappa, “Stochastic and Deterministic
Networks for Texture Segmentation”, IEEE Trans on Acoust., Speech and Sig.
Proc , vol ASSP-38(6), pp 1039-1049, June 1990

T. Poggio, . B. Gamble, and J J Little, “Parallel Integration of Vision Modules”,
Science, vol 242, pp. 436-440, October 1988

T. Kchonen, “Self-Organization and Associative Memory”, volume 8 of Springer
series in Information Sciences, Springet-Verlag, New York, NY, 31d edition, 1989

C von der Malsbuig and E Bienenstock, “Gtatistical coding and short-term synap-
tic plasticity: A scheme for knowledge 1epresentation in the brain”, In E Bi
enenstock, F Fajelman Soulié, and G Weisbuch, editors, Disordeied Systems and
Buological Organization, Springe1-Veilag, Berlin, 1986




Artificial Neural Networks and Statistical Pattern Recognition

old and New Connections

1.K. Sethi and AK Tain (Editors) 175
© 1991 Elsevier Science Publishers B.V Al rights reserved

Connectionist Models and their Application to Automatic Speech
Recognition

Yoshua Bengic and Renato De Moti

School of Computer Science, McGill University, 3480 University str., H3A2A7,
Montreal, Que., Canada

Abstract

The purpose of this chapter is to study the application of some connectionist
models to automatic speech recognition. Ways to take advantage of a-priori
knowledge in the design of those models are first considered. Then algorithms for
some recurrent networks are described since they are well-suited to handling
temporal dependences such as those found in speech. Some simple methods that
accelerate the convergence of gradient descent with the back-propagation
algorithm are discussed. An alternative approach to speed-up the networks are
systems based on Radial Basis Functions (local representation). Detailed results of
several experiments with these networks on the recognition of phonemes for the
TIMIT database are presented. In conclusion, a cognitively relevant model is
proposed. This model combines both a local representation and and a distributed
representation subnetworks to which correspond respectively a fast-learning and a
slow-learning capability.

1. INTRODUCTION

Artificial neural networks are simplified models of neural computation simulated
in computers, Connectionist models are models of computation based on
massively parallel networks of simple computational units, inspired by the
organization of the brain, simulated in order to help construct and explain
connectionist theories of cognition [Rumelhart & McClelland 86]. A lot of recent
research results [e.g. Bengio ef al. 89a; LeCun et al. 89; Lippman 89; Waibel et al
88; Giles et al. 90; Pomerleau 89] indicate that they could be useful in addressing
several artificial intelligence problem areas, in particular those relating to
perception, such as for example automatic speech recognition [Lippman 89].

One of the advantages of connectionist models is that they can integrate learning
from examples with some a-priori knowledge. In section 2 we consider several
aspects of the design of neural networks systems which can benefit from a-priori
knowledge by improving generalization.

A class of neural network models of special interest for the problem of speech
recognition is the class of recurrent neural networks which contain cycles enabling
them to retain and use some information about their past history. This feature
seems well suited to the problem of speech recognition: transform a sequence (of
undetermined length) of vectors of acoustic descriptors into a corresponding
sequence of symbols representing speech units (e g., phonemes, diphones, words)
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or alternatively, into a sequence of degrees of evidence for those symbols. In
section 3 some learning algorithms for recurrent neural network are described: g
general purpose training algorithm for discrete-time networks of arbitrary
connectivity which bufters past activations, as well as an algorithm for a
constrained type of network allowing only self-loops but for which it is not
necessary to keep the past history and which has the same computation time and
space complexity as the backpropagation algorithm for feedforward networks,

Some simple methods that can greatly accelerate the convergence of gradient
descent with the back-propagation algorithm are discussed in section 4. In
particular we introduce an original technigue that provides a different learning rate
to different layers of a muiti-layered sigmoid network. It is based on the idea that
each layer should be allowed to modify itself independently of the damping of the
gradient due to layers closer 1o the outputs of the network. The experiments
described in this section show the significant acceleration obtained with this
technique.

A large section (5) of this chapter is devoted to a particular type of connectionist
model based on a local representation and often called Radial Basis Functions
network (RBF). Each unit in the network may be understood as representing a
prototypical input pattern while the outputs are formed by interpolating between
these prototypes, i.e., by combining lineatly the gaussian-shaped outputs of the
hidden units. This type of model has several advantages: solid mathematical
foundations [Poggio & Girosi 89], neurological [Mel & Koch 90] and psychological
[Kruschke 90] plausibility as well as fast implementation. Implementation can be
fast for several reasons: the netwotks can be initialized with prototypes rather than
with random values, and, because of the local nature of their responses, the small
subset of hidden units that respond significantly can be found rapidly with a fast
search. We propose in section 5.5 a simple algorithm to implement that search. The
results of several comparative phoneme recognition experiments performed on the
TIMIT database of continuous speech are described in section 5. In particular the
advantage of using information about the classes in the preprocessing is seen (to
find the prototypes), the effect of architecture and the representation of contexton
generalization are explored with several experiments, concluding with an
experiment with a recurrent network which combines RBF units with sigmoid units.

Sigmoid networks - which imply a distributed internal representation - and RBF
networks - which are based on a local representation - both have advantages that
seem to be complementary. In the last section (6), we propose a new idea on ways
to construct networks that combine those two types of representations. A
constructive algorithm for a network made of a local and a distributed
representation subsystem is described, in order to implement respectively fast and
slow learning. This algorithm is characterized by a reorganization phase in which
the distributed subsystem tries to incorporate what is represented in the local

subsystem.

2. USE OF A-PRIORI KNOWLEDGE

We are seeking in our research effort the advantages of combining the flexibility
and learning abilities of neural networks with as much knowledge from speech .
science as possible in order to advance the construction of a speaker independent
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gpeech recognition system. A-priori knowledge can be used in many steps of this
construction, e.g., preprocessing, input coding, input representation, output coding,
output supetrvision, and architectural design.

2.1 Preprocessing

Previous work had indicated that the choice of preprocessing significantly
influences the performance of a neural network recognizer [e.g., Bengio & De Mori
89]. Different types of preprocessing processes and acoustic features can be
utilized at the input of a neural network. Experiments with various acoustic features
were performed, using fillers derived from the Fast Fourier Transform (FFT),
cepstrum transforms, energy levels (of both the signal and its derivative), counts of
zero crossings and energy ratios [Bengio, Gori & De Mori 89], as well as an ear
model and synchrony detector [Cosi, Bengio & De Mori 90].

2.1.1 Cepstral vs Spectral parameters

Previous experiments had shown that speciral representations produced better
results than cepstrum coefficients with neural networks of sigmoid units [Bengio et
al, NIPS 89]. It seems to be alsc the case for RBF networks, as was shown in an
experiment where the task was the same as defined in section 5.4, i.e., the
recognition of 39 TIMIT phonemes. The networks had 25 input units with 4 delays
(0, 1, 2 and 3) between the inputs and the hidden units and 78 hidden units (2
clusters/ class) initialized with k-means and with 3 delays (0, 2 and 4) between the
hidden and the output units for the 39 classes. The output weights were obtained
with the pseudo-inverse method [Penrose 55; Broomhead & Lowe 88]. The frame
by frame error on the test set was 54.5% for the cepstral input and 46.5% for the
spectral input. In both cases, we used a mel scale with 24 filters and provided the
frame energy to the system, i.e,, the network had 25 inputs. With a slightly different
architecture, with additional direct connections from inputs to outputs, the errors
were reduced but the spectrum still produced better generalization: the error on the
test set with cepstral input was 48.1% and the error with the spectral input was
45.6%.

2.1.2 Ear model vs. FFT

In recent years, basilar membrane, inner cell and nerve fiber behavior have
been extensively studied by auditory physiologists and neurophysiologists and
knowledge about the human auditory pathway has become more accurate. A
number of studies have been accomplished and a considerable amount of data
has been gathered in order to characterize the responses of nerve fibers in the
eight nerve of the mammalian auditory system using tone, tone complexes and
synthetic speech stimuli [Seneff 85; Delgutte & Kiang 84].

Experiments on the speaker-independent recognition of 10 English vowels were
performed on isolated words, comparing the use of an ear model with an FFT as
Preprocessing [De Mori, Bengic & Cosi 89; Cosi, Bengio & De Mori 90]. The FFT
was computed using a mel scale and the same number of filters (40) as for the ear
moedel. The ear model was derived from the one proposed by Seneff (1985).
Performance was significantly better with the ear model than with the FFT: the error
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on the test set with the ear model was 4.6% while with the FFT, the error was 13.0%
[Bengio et al. 89b; De Mori, Bengic & Cosi 89]. However, the ear model requireqd -
about two orders of magnitude more processing time.

2.2 Output coding

If each output of the network is interpreted as representing a phonetic property,
then an output value can be seen as a degree of evidence with which that property
has been observed in the data. We have explored the use of an output coding
scheme based on phonetic features defined by the way speech is produced. This is
generally more difficult to learn but results in better generalization, especially with
respect to new sounds that had not been seen by the network during the training.
This was demonstrated in expetiments on vowel recognition in short isolated words
in which the networks were trained to recognized the place and the manner of
articulation [De Mori, Bengio & Cosi 89; Cosi, Bengio & De Mori 90]. In addition, the
resulting representation is more compact than when using one output for each
phoneme. However, it was much more difficult to apply such a coding based on
articulatory features to the recognition of continuous speech. Experiments on the
TIMIT [Garofolo 88] database showed that the target (ideal) values for place of
articulation of phonemes in continuous speech do not correspond well to the
acoustic signal. Coarticulation effects and the short duration of phonemes in
continuous speech often prevent the place of articulation to reach its (stable) target
value. Instead, the piace of articulation is continuously changing and is strongly

influenced by the context.

2.3 Architectural design

Hypothesis about the nature of the processing to be performed by the network
based on a-priori knowledge of speech production and recognition processes
enables to put constraints on the architecture. These constraints result in a network
that generalizes better than a fully connected network [Baum & Haussler 89]. Here
are several examples of application of modularization: the same architectural
constraints do not have to apply to all of the subtasks. One can modularize
according to acoustic context (different networks are triggered when various
acoustic contexts are detected)[Bengio, Cardin, De Mori, Merlo 89]. Another
solution is modularization by independent articulatory features (vertical and
horizontal place of articulation) [in De Meri, Bengio & Cosi 89]. Another type of
modularization, by subsets of phonemes, was explored in [Waibel 89]. ~

A striking example of the influence ot architecture on recognition performance is
demonstrated in the case of nasals recognition in [Bengio et al. 90}. In this
experiment the architecture of the network was modified in order to consider a
speech theory stating that very significant discriminatory information is to be found
in the transition between the vowel and the nasal This resulted in a drastic.
improvement in generalization (from 15% to 2.6% error).

3. RECURRENT BACK-PROPAGATION NETWORKS

Feedforward networks have less expressive power than recurrent networks:
However recurrent networks are more complicated, because of their learning
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algorithms which must consider the influence of past events on future errors, and
pecause of their dynamics, which can be unstable or even chaotic.

3.1 Time Unfolding

The idea of time unfolding was proposed in [Rumelhart, Hinton & Williams 86]. It
consists in considering back-propagation of gradients to previous times by
unfolding the network into an equivalent network with a different layer for each time
slice.

Let us consider the general case of a network with multiple links between pairs
of units (associated to multiple discrete delays) and units that can compute any
differentiable parametric function of their inputs. In particular we will consider the
following functions:

- asymmetric sigmoid of the weighted sum of the inputs,
- symmetric sigmoid of the weighted sum of the inputs,
- linear weighted sum of the inputs,

- product of the inputs,
- elliptic gaussian function (radial basis function).

The operation of the network can be divided into a forward phase - to compute
the outputs of each unit and the outputs of the network - and a backpropagation
phase, to compute the gradient of a cost function (explicitly expressed in terms of
the outputs of the output units) w.r.t. all the parameters of the system. The forward
phase operation is defined as follows:

Xi(t) = Mi(Y().Y(t-1),Y(-2),..) (1)
Yit) = fi(xit) (2)

where Y(1) is the vector of outputs of all the units in the network at time t, i.e.,
Y()=[Y1(1),Y2(t),...Yn(D)]'. Xi(t) is an intermediate variable sometimes called
activation and which might be considered to be related to the activation potential of
a neuron while Yj(t) corresponds to its firing rate. We will consider the following

cases for () and f() , however, any continuous differentiable function is acceptable:

Table 1: Various neuron transfer functions.

h() = Xi(t) Yi(t) = f(Xi(t)
asymmetric sigmoid Zj W Y t-clp) Yi(t) = 1/(1+eXi)
symmetric sigmoid W Ysij(f*dij) tanh(X(t))
lmejr Zj W; Y, (t-d) Xi(t)
product Xi(t)

TG Ys;(t-dy)

| Xt
gaussian 2w - Ys;(t-di))? By -
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Here sjj is the node number of the source unit for the jth input link of unit i and d;
is the discrete delay associated to that link. For gaussian units B is the inverse o
the variance of the gaussian, assuming a diagonal covariance matrix. We coulgd
also consider B fixed for all dimensions (spherical gaussian) or a full covariancs
matrix.

For the backward phase, the basic idea of this algorithm is to compute aE/awijh In
order to do so one computes recursively in a backpropagation phase 0E/dXi(t) for
all units i, starting from the last time frame L and going backward in time until the
first frame of the input sequence, again starting for each time t from the last unit N§
down to the first unit (note that this order does not matter if all links have a positive
delay).

First we compute 0E/9Xi(t) recursively using back-propagation:

oE/oXi(t) = ZKZSKJ‘:i aE/an(t+dkj) an(t+dkj>/aYi(t) aYi(t)/oXi(t)+
Sgisanoutputunty (Yi(1)-Yi* (1)) aYi(t)aXi(t)) 3y

where the term on the second line of (3) is only for output units at times when
there is supervision. It is shown here for the case of minimization of the Least Mean
Squares ctiterion:

E =05 24 2i (Yilt)}-Yi(1)2 (4)

where Yi*(t) is the target output for unit i at time t. 9Y;(t)/dX;(t) is different for
different types of units, it depends on the choice of fi() while an(t+ko~)/8Yi(t)
depends on the choice of gi():

Table 2: Derivatives for the various types of neurons.

aY{t)/oXi(t) o Xk(t+dy)/dYilt)
asymmetric sigmoid Yit) (1 - Yi(t)) Wi
symmettic sigmoid 0.5 (1+Yi(t))(1-Yi(t)) Wi
linear 1 Wi
product 1 Xk(t+dk1-5/Y i(t)
gaussian - Yi(t) -2 (Wi Yi(t) By

The gradient of the ctiterion w.r.i. the parameters can then be computed as
follows:

E/IW; = 24 E/RXI() IXi(t)/BW; (5)
and for gaussian units one also needs to compute
OE/aBy = D4 E/XI(t) IXi(t)/aBy (6)

where 9Xi(t)/0W;; and dXi(t)/oB; depend on the choice of gj():
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. asymmetric sigmoid, symmetric sigmoid, linear:
 OXi(t)oWy = Ygy(t-dy) )

. gauSSIan
Xi(t)y/oWy =2 (WIJ YSu(t dlj)) Bjj=- oxXi(t )/aYs”(t d,]) (8)
oXi(t )/aBu (Wu YSu(t -djj )) 9)

This algorithm has a time complexity of O(L . Nw) for both the forward and the
backward phase and needs space O(L . Nu) in order to store the activation of all
units for the whole sequence. L is the length of a sequence, Nw is the number of
weights and Nu is the number of units. Back Propagation (BP) for feedforward
networks needs O(Nu) space and O(Nw) time per frame or O(L . Nw) time per
sequence of length L. Hence this algorithm has the same time complexity (per
gpoch) as ordinary BP for feedforward networks but needs L times more space.

3.2 BPS
BPS (originally, Back-Propagation for Sequences) is a learning algorithm for a
certain type of constrained recurrent networks that was proposed in [Bengio, Gori &

De Mori 89]. It applies to networks which have the following architectural
characteristics:

- the network has a multi-layer architecture
- static and dynamic neurons are distinguished. The former are as in static BP

whereas the latter have a local feedback connection, thus their activation evolves
as follows:

Xi(t+1) = Wy Xi(t) + 2 Wy f(Xj(t+1)) (10)
- the input connections from dynamic neurons only come from the input layer
The learning algorithm is based on the forward recurrent computation of aXi(t)/aWij:

OXi(t+1)RWy = (Xj(t+1)) + Wy Xi(/QW;  for iz,
Xi(t+ )/awIJ Xift) + Wy 2Xi(t)/aW for i=j (11)

The rest of the algorithm follows exactly the same lines as for the algorithm for
strictly feedforward networks:

BE/RWi; = 24 E (1AW = D4 JEQVAXI() IXI()AW, (12)

where JE(t)/0Xi is computed with the backpropagation recursion as follows,
assuming a Least Mean Squares criterion:

For output units i: AE(t)/aXi = (Yi(t) - Yi(t)*) aYi()/exit) (13)
For hidden units j: DE()/aX] = Dy SEM/AXK() aXK(B/AY]M) AYj(RXiM) (14)
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Depending on the type of unit, the partial derivatives aYi(t)/aXi(t), aXk(t)/aYj(t) and
aXi(t)/oWij are computed for example as shown in table 2 and equation?.

The cost of running the learning algorithm is the same as for a feedforward back:
propagation network. Furthermore this algotithm has the advantage that it is locq
in time: one does not need to keep a buffer of past events in order to take intg
account influences from the past in the calculation of the gradient. This algorithm
can be seen as a compromise between unfolding in time (using only backwarg
recursion) and full feedforward (using only forward recursion) [Williams & Zipser
88: Kuhn 87]. However it has the drawback of being limited to a certain type of
architectures. On the other hand this constraint could be appropriate to some
problems of speech recognition [Bengio, Gori & De Mori 89] and in that case help
to improve generalization.

By expressing the Wii as a bounded function of another parameter Di, one can
force stability of the network and put arbitrary bounds upon the magnitude of Wii:

W;(Di) = B (1 - exp(-Di))/(1 + exp(-Di)) (15)
with OE/ODi = OE/OWii 0W;/dDi (18)

4. FAST IMPLEMENTATION OF BP

One of the main criticisms of Back-Propagation (BP) algorithms with gradient
descent has been the slowness of their convergence. However, several simple
techniques can significantly accelerate the training. The most common observation
concerns the use of stochastic weight updates rather than batch weight updats.
With stochastic weights update one adapts the weights after each pattern, whereas
with batch update one accumulates the gradients from all the patterns and only.
then the weights are updated. Stochastic update was found to be significantly
faster than batch update [see Bottou et al 90], especially in pattern recognition
problems (e.g., speech recognition, written digits recognition). Yann Le Cun (1989)
suggested as an explanation that for such problems one might explain this
improvement by the redundancy present in the training set. Since the gradient
gives only the slope of the error function, if many gradient contributions (from
different patterns) all point in a similar direction then batch update wastes a lot of
time in order to refine that direction when a gross estimate might have been
sufficient (since at the next step we might have to chose a different direction
anyway). Another advantage of stochastic gradient descent is that it may allow to
escape from local minima or from regions of the weight space from which straight
gradient descent might need a lot of iterations to escape. Randomness is
introduced by the noisy evaluation of the gradient based on very little data (e.g:;
one pattern). This noise is proportional to the size of the leamning rate. Hence if one
starts with a large learning rate and slowly decreases it (for example as 1/) then
one might approach the global minimum and escape local minima in a way thatis.
perhaps similar to simulated annealing [L. Bottou 90, personal communication].

Many schemes have been proposed to accelerate convergence by 1) adapting
the learning rate, and 2) using different rates for different weights. For example,
Robert Jacobs [Jacobs 88] proposes such a method, called the delta-bar-delta ruie,
which basically increases the rate associated to a weight when the current gradient
for that weight has the same sign as a decaying average of previous gradients and
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decreases this rate if the signs are opposite. However, this method, like many
acceleration methods (e.g., momentum, use of second order information) rely on an
exact evaluation of the gradient, i.e., on batch update. Consequently the
advantages they bring are often offset by the disadvantage of using batch update,
especially for large pattern recognition problems.

4.1 Layer-dependent weight change

One of the reasons for the slowness of gradient descent for multilayer networks
is that the gradient tends to become exponentially smaller for layers that are far
from the outputs. Let's consider the backpropagation step to compute the gradient
w.r.t. to the activations at layer | given the gradient w.r.t. the activations of layer I+1
(layer O is the input):

8E/8X| = f'(Xl) Wt|+1,‘ aE/ax|+1 (1 7)

where WY, | is the transpose of the matrix of weights from layer | to layer I+1, E is
the error to minimize, () is the derivative of the sigmoid-function () (e.g., defined in
(6)), and X, is the vector of activations of layer |. The decrease of the magnitude of
JdE/0X, as | decreases may come from the weight matrix (e.g., in general for
pyramidal networks: size of layer | > size of layer 1+1) producing a dispersion of the
gradient and from the derivative of the sigmoid. In the case of the asymmetric
sigmoid (in [0,1]) f'() has a maximum value of 0.25 (0.5 for symmetric sigmoid in
[-1,1]) and decreases almost exponentially with the magnitude of the activations
(getting away from O activation). However, 1) the gradient represents direction
information, i.e., what is important is the relative value of the gradient for different
units, and 2) a reasonable conjecture is to assume that the relative magnitude of
the gradient for two different layers is not an important information: the most
important information concerns the relative change that each unit's activation within
a layer should take in order to decrease the error.

According to that idea, we developped an algorithm that adapts the learning rate
of each layer so as to make the average weight change for that layer equal to a
user defined value (or one that may decrease with time, similarly to the learning
rate for ordinary BP). Derthick (1984) had already proposed an algorithm in which
each weight is updated by a fixed amount depending on the sign of the weight's
derivative. However, in his case, one loses completely the information about the
relative impact of changing one weight w.r.t. another one, On the other hand, with
the layer-dependent learning rates, information about the relative importance of
changing one weight vs another one on the same layer is kept and permits very
fast convergence. Here is simple implementation of this idea for rate update:

AW 4 (1) = &t) OE/OW 4 (1) (18)
Dift) = w Dit) + (1-p) < | AW 14(t) | > (19)
() = &(t1) . Yt) / Dyt (20)

where is g(t) the learning rate of layer | at iteration t, D|(t) is a decaying average of <
| AW, 1(1) | >, the average absolute value of the weight change for layer |, u is the
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decay factor of Di(t) (between 0 and 1, typically 0.5), and Y(t) is the target average’ ‘

weight change, which can be set by the user, or automatically reduced as training
progresses.

In experiments with the XOR function, using a network with two inputs, ong
hidden and one output unit, and stochastic weight updates, the following resulis
were obtained:

Table 3: Comparison of constant learning rate vs constant weight change per layer
for the XOR problem. The standard deviation of the number of epochs is given in
parenthesis The percentage of failures is the ratio of trials which had not converged
after 1000 epochs.

€=05 £€=05 <|AW[|>=.05 <[AW|>=10 <]AW|>=0.15
<#epochs> — 622(238) _ 401(197)  3509(18)  26.0(9.7)  34.9(22)
% failures 55% 15% 0% 0% 0%

All experiments were performed 20 times. The first two use the standard gradient
descent with a fixed global learning rate. The last three use the above-described
layer-dependent weight change, with a fixed target average weight change.

5. RADIAL BASIS FUNCTIONS MODELS

Radial Basis Function (RBF) units produce an output which depends on the
distance between the input point and a prototype point in the input space (which is
defined by the parameters of the RBF unit). The output of the network can be written
as the weighted sum of the outputs of those RBF units:

Fi(X) = 2 Wy h(ll X - Py [} (21)

h(r) = e1? (22)

where X is the input pattern vector, Pj is the prototype point associated to RBF unit
and we can choose for h() for example a gaussian, as in {(22). The norm in (21) can
be weighted by a covariance matrix. Poggio and Girosi show [Poggio & Girosi 89]
that if our objective is function approximation (approximate a [F(X) with F(X, some
parameters)), seen as hypersurface reconstruction, given a noisy training set of
example patterns {Ep(Xp),Xp} and a-priori knowledge that the resuiting mapping
should be smooth, then generalized RBFs satisfy sufficient conditions to be used
for this approximation problem. These generalized RBFs are mathematically
related to the well-known RBFs used for strict interpolation tasks. However, there
are less RBF units in the proposed network than examples in the training set.
These generalized RBFs are also closely related to methods such as Parzen
windows, generalized splines and vector quantization. Note that the network
defined by (21) constitutes a network with two layers of weights and can be shown
to approximate arbitrarily well any smooth function [Poggio & Girosi 89].
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5.1 Relation to Neurobiological Models

A multidimensional gaussian can be represented as the product of lower
dimensional gaussians. This property suggests a way for neurons to possibly
compute RBFs. Gaussian radial basis functions in one or two dimensions can be
implemented as coarse coded receptive fields /.e., one dimension is represented
by an array of neurons, each reacting only to values of the variables in a certain
range. These kinds of representations actually exist and were found in the visual
system. Some special type of synapse has two incoming inputs and perform a kind
of product of the two incoming signals [Durbin & Rumelhart 89]. Hence a RBF
could be implemented with gaussian receptive fields and product synapses without
explicitly computing the norm of the exponential [Mel & Koch 90]. New work by
Kruschke (1990) seem to indicate that such local models have also some
psychological plausibility.

5.2 Relation to Vector Quantization

RBFs are related to vector quantization (VQ) [Gray 84]: VQ partitions the input
space into mutually disjoint regions (for example Voronoi polygons, separated by
line segments at equal distance between each two neighboring cluster centers).
VQ encoding approximates each input point by the nearest cluster center. This
would be like having RBFs with all-or-none output, with only the closest RBF
responding. Instead, RBF networks represent the input point by a vector of
proximity measures between 0 and 1 for all the RBF units in the network.

RBFs are thus also related to Kohonen's neural network models for vector
quantization [Kohonen 88]. These algorithms can be seen as special forms of the k-
means algorithm [MacQueen 67] (often used for VQ) for finding the centers of n
clusters in a set of points. In Kohonen's algorithms, which are examples of
competitive learning algorithms, only one output unit is active at a time, the one
"closest" to the input vector. In some of his algorithms (feature maps), the
competitive units are laid out in a spatial structure in which a neighborhood is
defined so that adjacent units wili respond to similar vectors.

5.3 Implementation advantages of RBFs

The basic implementation advantages of RBFs detive from their representation:
parameters have a simple meaning w.r.t. the pattern examples. Here is a possible
fast training method to take advantage of this fact in simulations (see [Poggio &
Girosi 89)):

1) Initialize the parameters of the gaussian units (Pj in (21)) with a random
subset of the examples, or with the results of a cluster analysis, such as the cluster
centers produced by the k-means algorithm or Kohonen's LVQ2 algorithm
[Kohonen et al. 89]. This step can be interpreted as an unsupetvised, competitive
learning step which encodes the input pattern in a local representation.

2) Find the output weights of the RBF network (Wij in (21)) with a matrix pseudo-
inverse calculation, ot with gradient descent. This step is a supervised learning
step and can be accomplished rapidly since it is a linear problem, with no local
minimum.
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3) All the parameters of the system can be tuned to improve performance ang
perform a global optimization, using gradient descent since the RBF units outputs
can be differentiated w.r.t. the parameters of these units (mean and possibly
variance of the gaussian). See section 5.4.2 where it is shown that this step indeeg
improves performance.

5.4 Experiments of phoneme recognition with RBFs

The results of several experiments are presented here to evaluate the
performance of RBFs in a difficult speech recognition problem. The task wag
phoneme recognition on the TIMIT [Garofolo 88] database, with 39 phoneme
classes (as [Lee & Hon 89]). We used regions 2, 3 and 6 of TIMIT (135 speakers
and 292623 frames for training and 28 speakers and 61428 frames for test). The
input preprocessing produced 24 mel scaled spectral coefficients plus the energy
for each frame of 20 ms, with a step of 10 ms. This resulted in a flow of 25
parameters per frame of 10 ms coming into the network, For the architectures
presented below the hidden units look at 4 consecutive frames i.e., a 100
dimensional input. Output units are sigmoid units rather than linear units as in (34),
Note that this is equivalent since the sigmoid is invertible but it has the advantage
that the outputs are limited to the range [0,1]. In all nets there was a bias unit
feeding all sigmoid units in the net a constant 1.0 value.

It is difficult to compare directly the results obtained here with those reported by
other researchers for phoneme recognition on TIMIT. The best resuit reported here
was 41.8% error on the test set (section 5.4.5). This is a frame by frame error
obtained by scanning the network on the preprocessed input sentence, and not
using any language model, known segmentation, bigrams or duration information:
Lee & Hon (1989) obtained 41.3% error with HMMs and no language model and
26.2% using a context-dependent bigram model. Leung and Zue (1990) obtained
30% error but used the known segmentation and phoneme duration (network is not
placed across phoneme boundaries: it is centered on each phoneme). Robinson
and Fallside (1990) obtained 24 9% error with a recurrent network plus a dynamic
programming postprocessor using a bigram and duration model (the error is about
twice that amount without the postprocessor).

5.4.1 Supervised vs unsupervised initialization

For the initialization of the gaussian units parameters, the k-means clustering
algorithm was chosen. It generates a set of clusters with input patterns associated
to each cluster. The variance of patterns within each cluster is used to initialize the
spread (variance) of the gaussian units.

Should one use a completely unsupervised algorithm to find those
parameters? What if some points from two classes form two clusters that mostly
overlap? K-means will probably choose to represent them with only one cluster. A
simple but not optimal solution to that problem is to apply k-means separately for
each of the classes. For simplicity, the same number of cluster centers per class
was always used. An experimental comparison of the use of k-means with no class
information vs k-means per class showed a significant improvement with k-means
per class. A simple experiment was performed with 78 gaussian hidden units.
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output weights were found with pseudo-inverse computation [Penrose 55]. The
result with 78 clusters (no class information) was 58.1% error on the test set, while
using class information, with 2 clusters per class (39 classes), the error was 52.2%.
All other expetiments with RBFs described in this chapter henceforth used k-means
~per class.

5.4.2 RBFs vs Sigmoid Units

The next set of experiments are comparative experiments in order to verify if the
time gained with RBF networks instead of sigmoid units (mostly because of the
non-random initialization) is not lost in performance. Experiments were performed
on the same task (recognition of TIMIT phonemes) with the same inputs, same
targets and same architecture for both a network of RBF units and one of sigmoid
units. The networks had 78 hidden units.

The network with sigmoid hidden units was initialized with random weights and
trained with BP for 22 epochs. The error on the test set was 51.2 % error. The
network with gaussian hidden units was initialized with k-means, (2 clusters/class,
39 classes). The output weights were found with the pseudo-inverse. The error on
the test set was 52.2 %. After doing 10 epochs of gradient descent.on the RBF net,
i.e., optimizing all the parameters (output weights, cluster centers and cluster
spreads), the error on the test set was reduced to 47,8 %.

Hence for much less CPU time (no gradient descent) the RBF network did almost
as well as the sigmoid networks. However, with additional training (gradient
descent) representing less than half of the CPU time used to train the sigmoid
network, the RBF network performed better.

5.4.3 Effect of Context and Architecture

It is well known that successive speech spectra are not independent. Watrous
(1989) showed in some simple examples how the addition of context can make
feasible the separation of two classes which would otherwise overlap. However, a
very large input window implies a large number of free parameters and may result
in poor generalization on unseen data [Baum & Haussler 89]. Another problem lies
with the non-linear distortions in time that occur among instantiations of a given
phoneme. Various architectures are thus explored here in order to optimize
generalization on the phoneme recognition problem, for example, using multiple
delays between the hidden layer and the output layer (as in Waibel's TDNNs
[Waibel et al 87]).

Table 4: Performance on the TIMIT 39 phonemes recognition task for various sets
of delays between the hidden layer and the output layer, using a static netwotk of
gaussian hidden units and initialization with k-means per class.

clusters/class delays error on test set
2 0 52.2%
2 0,4 48.6%
2 0,4,8 47.7%
2 0.2,4 46.5%
3 0,24 45.6%
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Figure 1. Recurrent neural network with Radial Basis Functions.

5.4.4 Adding a Recurrent Hidden Layer

The improvement shown in table 4 by providing more context with delay links
show the importance of context for the recognition of phonemes. However, it seems
natural to consider recurrent networks as a more powerful way to represent context
(see section 3). This motivated the next experiment, in which a layer was added to
the best net obtained in the previous section. The initial network had 3
clusters/class, ie., 117 gaussian hidden units, and delays of 0, 2 and 4 frames
between these gaussian hidden units and the output units. The input units feed
both the gaussian units and the output units with delays of 0, 1, 2 and 3 frames. The
architecture after the addition of a second hidden layer with 40 sigmoid units is
shown in figure 1. In the resulting network, the gaussians feed the hidden sigmoids
with 3 delays (1, 3 and 5) and the outputs with 3 delays (0, 2 and 4) while the 40
hidden sigmoids feed the outputs with 3 delays (0, 6, and 12). Cycles are
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introduced in the network by the outputs feeding the hidden sigmoids with 2 delays
(2, 4), and the hidden sigmoids having self-loops with a fixed decay weight of 0.93
which means a time constant (half-life) of 9.5 frames. This represents a very large
network with about 54000 weights. The weights of the connections between the
hidden sigmoid units and the output units were initialized to low values (in the
range [-0.01, 0.01]) so as to not disturb too much the network by the introduction of
this layer. However, after a few cycles of training, significant improvement was
observed. After 11 epochs on the training set the error obtained with this network
on the training set was 40.9% and the error and the test set was 41.8%.

5.5 Acceleration with a Fast Search

This acceleration is obtained by taking advantage of the local nature of the
response of the RBF units by searching rapidly for the subset of those units that can
respond with an output significantly greater than zero. The chosen method is based
on the use of a grid and table look-ups to find the appropriate subset of clusters.
The major problem when using a grid method is that the size of the grid grows
exponentially with the number of dimensions of the patterns. Thus the number of
dimensions represented in the grid was reduced by using only the first few
principal components of the input patterns (from the training set) to build the grid. A
principal component analysis is performed once and for all on the training set and
used to map input patterns to a low dimensional space in which it is much easier to
perform the search. This mapping can be expressed as follows:

1) normalization: X'ip = (Xip - >-(—i)/<5xi (23)

where Xip is the ith dimension of a pattern p, X is the average over the training
patterns and Oy; is the standard deviation of the training patterns (per dimension).

2) linear mapping through the principal components: X" = A X' (24)

where A is the matrix formed by concatenating the first few eigenvectors with
highest eigenvalues of the matrix B, and B is formed by concatenating all the X'p
(i.e., all the normalized input patterns of the training set) as computed in (33). Note
that X" has only of few dimensions (typically we chose about 3 dimensions,
corresponding to the first 3 principal components).

In order to use gtid cells more efficiently information about the pattern density in
each of the reduced dimensions was taken into account in order to use storage
more uniformly. The gtid representation was improved by translating positions
computed with (23) and (24) to the physical grid by using the following map. For
sach of the reduced dimensions d, a new position is computed from the old
position as follows:

X"'d = Fd(X"d) (25)
where Fyq(X"g) = Zi<X"d densityq(i) (26)
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where densityq(i) is the fraction of cluster centers falling in the ith interval for
dimension d of the principal components space. Hence a very fine quantization of
the principal components space is performed in order to compute the density array.
It only requires storage space linearly proportional to the number of dimensiong
(rather than exponential) because we consider each dimension independently.
The approximate cumulative probability density F() is implemented as an array ang
(25) requires only one table look-up per dimension to produce the appropriate ce||
in the physical grid. The resulting grid is regular in the transformed space (after
transformation by (25)) but is not regular in the principal components space.
Instead, it attempts to use density information to produce less empty cells and g
more uniform distribution of clusters among the cells. With this method, the
initialization of the search data structure takes O(N) time and the search ig
proportional to the size of the retrieved list, i.e., the number of selected RBF units,

"free” units pool

90
000
: 5 prototype
Local | units
N Subsgstem : —
I (o}
n u
p t
u p
t u
s t
N/ W,

Target of distributed
subsystem = output of
whole net during the
reorganization phase

Figure 2. Network combining both a local and a distributed subsystem.

6. COMBINING LOCAL AND DISTRIBUTED REPRESENTATIONS

In section 5.4.4 gaussian units and sigmoid units were combined in one network.
This was motivated by the desire to combine the advantages of both
representations (local and distributed). In this section we consider a more
cognitively motivated alternative to combine these two complementary kinds of
representations in the same network.

With a local representation, units respond to a specific and localized subset of
the input patterns, i e, each unit represents a prototype and responds to patterns
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close in some metric space to that prototype (for example: Radial Basis Functions
(RBF), Kohonen's LVQ and LVQ2 algorithms [Kohonen et al. 89] and other
competitive learning algorithms). Usually, learning algorithms for these local
representation networks are very fast. On the other hand, with a distributed
representation, each hidden unit usually represents a "global" feature and it is the
activation pattern over all the hidden units which represents an input pattern. These
representations are thus more compact than local representations but in general
this means that the learning task is more complex and needs more time, i.e., many
iterations on a training set (for example: backpropagation for networks of units
computing the sigmoid of the weighted sum of their inputs).

It is interesting to note that humans appear to possess both a fast-learning and a
slow-learning ability. We can remember for a long time a pattern seen only once
(fast-fearning), for example something seen at a highly emotional moment, but we
may need a very long training petiod and a lot of drill to learn some other tasks
(slow-learning), such as for professional expertise. These more difficult tasks
probably involve creating compact internal representations that attempt to
extrapolate and generalize over many situations.

Our current research work involves the design of constructive learning
algorithms for architectures that combine both local and distributed
representations, We consider a system with a "local representation” subsystem and
a "distributed representation” subsystem. The whole network's output is formed by
combining (e.g., linearly) the outputs of both subsystems in such a way that the
local subsystem has much more weight and thus has priority (whenever it produces
a significantly non-zero output). Both subsystems take their input from the same set
of units. The local subsystem is constructive and allocates new units when a new
pattern generates a large error. The local subsystem however does not grow
indefinitely because of a reorganization phase in which information about the
input/output distribution that is represented in the local subsystem is compressed
and gradually transferred from the local to the distributed subsystem.

A simple solution to implement this reorganization phase is the following. The
fraction of the training set which has already been learnt by the network is sampled.
In order to transfer information from the local to the distributed representation, the
distributed subsystem alone should, without forgetting the examples it has already
learnt, learn the examples "known" by the local subsystem. Thus the distributed
subsystem is supervised by giving it as target the output of the whole network. As
the distributed subsystem evolves a more complex model of the environment, local
units which are redundant with the behavior of the distributed subsystem (within
their local area of response) are made available to "store" new outlier patterns. The
general organization of the network is depicted in figure 2.

7. CONCLUSION

In this chapter we have described some connectionist models and their
application to speech recognition. We have described with examples some of the
important phases of the design of these models that can take advantage of a-priori
knowledge. We compared several preprocessing alternatives for connectionist
models and found that a spectral representation produced better results than a
cepstral representation and that an ear model yielded better results than the FFT,
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Because speech recognition is an inherently sequential problem we have detaileqy
several algorithms to train recurrent networks with back-propagation. We haye
discussed some considerations about accelerating convergence with gradient
descent. In particular we have introduced a new method in which the average
weight change of each layer is individually controlled. We have studied an
alternative to the traditional networks of sigmoid units: RBF networks. For this locy
representation network we presented the resuits of several experiments gp
phoneme recognition which permit us to draw several conclusions. Whanp
initializing the RBF units with k-means, it is preferable to take into account
information about the class of each pattern and perform k-means separately for
each class. RBF networks performed as well or better than sigmoid networks byt
required less CPU time. Combining RBF units and sigmoid units in a recurrent
network resulted in even better performance. This has brought us to propose in the
last section a new algorithm that combines RBF units {local representation) ang
sigmoid units (distributed representation) in a way that is cognitively relevant,

REFERENCES

Baum E.B & Haussler D (1989), "What size net gives valid generalization?", Neural Computation
1, pp 151-160.

Bengio Y. & De Mori R (1988a), "Use of Neural Networks for the Recognition of Place of
Articulation", ICASSP-88, pp 103-106

Bengio Y. & De Mori R (1988b), "Speaker Normalization and Automatic Speech Recognition Using
Spectral Lines and Neural Networks", Proceedings of the Canadian Conference on Attificial
Intelligence (CSCSI-88), pp 213-220

Bengio Y , De Mori R & Cardin R (1988),"Data-Driven Execution of Mutti-Layered Networks for
Automatic Speech Recognition”, Proceedings of the American Association for Artificial Intelligence
(AAAL-88). :

Bengio Y, Cardin R, De Mori R & Merfo E. (198¢a), "Programmable Execution of Multi-Layered
Networks for Automatic Speech Recognition”, in Communications of the Association of Computing
Machinery, February 1989, vol 32, number 2, pp. 195-199

Bengio Y, Cosi P, Cardin R. & De Mori R. (1989b),"Use of Multi-Layered Networks for Coding
Speech with Phonetic Features", in Advances in Neural Information Processing Systems 1, ed D.S.
Touretzky, Morgan Kaufmann Publishers, pp 224-231

Bengio Y., Gori M & De Mori R. (1989¢),"BPS: a Learning Algorithm for Capturing the Dynamic.
Nature of Speech”, in the Proceedings of the International Joint Conference on Neural Networks
1989, pp H-417 - {-424

Bengio Y & De Mori R (1989),"Use of Multilayer Networks for the Recognition of Phonetic
Features and Phonemes", in Computational Intelligence, 5, pp 134-141 .

Bengio Y, Cardin R., De Mori R (1990),"Speaker independent Speech Recognition with Neural
Networks and Speech Knowledge", in Advances in Neural Information Processing Systems 2,ed.
D S Touretzky, Morgan Kaufmann Publishers

Bengio Y & De Mori R. (1990),"Recurrent Networks with Radial Basis Functions for Speech
Recognition”, presented at the Neura! Networks for Computing, Snowbird, UTAH.



193

Bottou L, Fogelman F , Blanchet P, Lienard J S (1990), "Speaker-independent isolated digit
recognition: multilayer perceptrons vs. dynamic time warping”, Neural Networks 3(4), pp.453-465

Broomhead D S. & Lowe D. (1988), "Multivariable functional interpolation and adaptive networks",
complex Systems, 2: pp 321-355

Cosi P, Bengio Y. & De Mori R (1990), "Phonetically-based multi-layered neural networks for vowel
classification”, in Speech Communications, 9, 1990, pp 15-29.

Delgutte B & Kiang N.Y S (1984),"Speech coding in the auditory nerve", Journal of the
Acoustical Society of America, no 75, pp 866-907

De Mori R., Bengio Y & Cosi P (1889),"On the Generalization Capability of Multi-Layered Networks
in the Extraction of Speech Properties", in the Proceedings of the international Joint Conference on
Artificial Intelligence (IJCAI-89), pp.1531-1536.

Derthick M. (1984), "Variations on the Boltzmann machine learning algorithm®, tech rep CMU-CS-
84-120, Pittsburgh, PA; Carnegie-Mellon University

Durbin R & Rumelhart D E (1989),"Product Units: A Computationally Powerful and Biologically
Plausible Extension to Backpropagation Networks", Neural Computation, 1(1), pp 133-142.

Garofolo J S (1988),"Getting started with the DARPA TIMIT CD-ROM: an acoustic phonetic
continuous speech database", National Institute of Standards and Technology (NIST), Gaithersburgh,
MD.

GilesCL.,SunGZ,ChenHH, Lee Y C & Chen D. (1990),"Higher Order Recurrent Networks &
Grammatical Inference”, in Advances in Neural Information Processing Systems 2, D S. Touretzky
(ed), Morgan Kaufmann.

Gray R M (1984), “Vector Quantization", IEEE ASSP Magazine, April 1984, pp.4-29

Jacobs R.A, (1988), "Increased rates of convergence through learning rate adaptation", Neural
Networks, vol. 1, no 4, pp 295-307

Kohonen T (1988), "Self-Organization and Associative Memory", Springer-Verlag, New-York,
Second Edition

Kohonen T, Barna G & Chrisley R, (1989) "Statistical Pattern Recognition with Neural Networks:
Benchmarking Studies”, Technical Report, Laboratory of Computer and Information Science, Helsinki
University of Technology, Finland

Kuhn G. (1987), " A first look at phonetic discrimination using a connectionist network with
recurrent links", SCIMP working paper No 4/ 87, Communications Research Division, Institute for
Defence Analysis, Princeton, NJ

Kruschke J.K. (1990), " ALCOVE: a connectionist model of category learning", Technical Report
19, Cognitive Science Program, indiana University

LeCun Y (1889), "Generalization and network design strategies", in Connectionism in Perspective
(Pieifer, Schreter, Fogelman & Steels eds ), North-Holland, pp.143-155

LeCun Y, Boser B, Denker J S, Henderson D., Howard R E, Hubbard W & Jackel L D,
(1989),"Backpropagation Applied to Handwritten Zip Code Recognition", Neural Computation, 1(4):
pp 541-551

Lee KF. & Hon HW (1989), "Speaker-Independent Phone Recognition Using Hidden Markov
Models", IEEE Trans. on ASSP, vol. 37, no 11, pp 1641-1648.



194

Leung H C. & Zue V (1990}, "Phonetic classification using multi-layered perceptrons", ICASSp
90, pp 525-528.

Lippmann R P, (1987), "An introduction to computing with neural nets", IEEE ASSP Magazing
4(2), pp 4-22 :

Lippman R P. (1989),"Review of Neural Networks for Speech Recognition”, Neural Computation
1(1), pp 1-38 :

MacQueen J. (1967),"Some methods of classification and analysis of multivariate observations”, in
L M. LeCam & J Neyman eds , Proc 5th Berkeley Symposium on Math., Stat., and Prob., page 281
U California Press, Berkeley CA

Mel B W. & Koch C (1990), "Sigma-Pi Learning: A Model for Associative Learning in Cerebra]
Cortex", Advances in Neural Networks Information Processing Systems 2, ed D.S. Touretzky,
Morgan Kauffman

Penrose R. (1955), "A generalized inverse for matrices", Proc. Cambridge Philos. Soc., 51:
pp 406-513.

Poggio T & Girosi F (1989), "A Theory of Networks for Approximation and Learning", MIT A,
Memo No. 1140.

Pomerleau D A (1989),"ALVINN: An Autonomous Land Vehicle in a Neural Network", Advances in
Neural Networks Information Processing Systems 1, ed D § Touretzky, Morgan Kauffman, pp 305-
313

Robinson T. & Fallside F. (1990), "Phoneme recognition from the TIMIT database using recurrent
error propagation networks", CUED/F-INFEG/TR 42, Cambridge University Engineering dept

Rumelhart D E., Hinton G, Williams R J. (1986), "Learning internal representation by error
propagation ", in Parallel Distributed Processing, vol 1, (eds Rumelhart & McClelland), Bradford
Books / MIT Press

Rumelhart D E & McClelland (eds )(1986), Parallel Distributed Processing, vol 1, Bradford Books /
MIT Press

Seneff S. (1985),"Pitch and spectral analysis of speech based on an auditory synchrony model?,
RLE Technical report 504, MIT.

Waibe! A, Hanazawa T., Hinton G, Shikano K. & Lang K. (1987),"Phoneme Recognition using
Time Delay Neural Networks®", Technical Report TR-I-0006, ATR Interpreting Telephony Research
Laboratories

Waibel A (1989),"Modularity in neural networks for speech recognition”, Advances in Neural ‘
Networks information Processing Systems 1, ed. D.S. Touretzky, Morgan Kauffman, pp 215-223.

Waibel A., Hanazawa T. & Shikano K. (1988),”Phoneme recognition: neural networks vs hidden k
Markov models”, ICASSP-88, pp 107-110.

Watrous R (1989), "Context-Modulated Discrimination of Similar Vowels using Second-Order
Connectionist Networks", tech rep University of Toronto

williams R J. & Zipser D (1988),"A Learning Algorithm for Continuously Running Fully Re_current
Neural Networks", ICS Report 8805, Institute for Cognitive Science, University of California, San
Diego.



Artificial Neural Networks and Statistical Pattern Recognition

0Old and New Connections

LK. Sethi and AK Tain (Editors) 195
© 1991 Elsevier Science Publishers B,V All rights reserved

DYNAMIC ASSOCIATIVE MEMORIES

Mohamad H. Hassoun

Department of Electrical and Computer Engineering
Wayne State University
Detroit, Michigan, 48202, USA

1. INTRODUCTION

Associative learning and retrieval of information in parallel neural-like systems is a
powerful processing technique with a wide range of applications ranging from content
addressable memories to robust pattern classification and control. Dynamic associative
memories (DAMs) are a class of artificial neural networks which utilize a supervised
recording/learning algorithm to store information as stable memory states, thus realizing
mapping between a set of key/target memory pairs. The retrieval of the stored memories is
accomplished by first initializing the DAM state with a noisy or partial input pattern (key) and
then allowing the memory to perform a collective relaxation search to find the closest
associated stored memory.

DAMs are characterized by a regular layered architecture of highly distributed and densely
interconnected processing layers with feedback. Each processing layer consists of a set of
non interacting nodes; each node receives the same set of data (input pattern or output from a
preceding layer), processes this data, and then broadcasts its single output to the next
processing layer. The transfer function of a given DAM node can vary in complexity;
however, all nodes are assumed to have the same functional form. The most common node
transfer function is equivalent to a weighted sum of the input data followed by a nonlinear
activation function. The weighted sum processing step represents a local identification of the
input data based on a similarity computation (or projection) between the data vector and a
locally-stored weight vector. The nodes' weight vectors also describe an interconnection
(communication) pattern between the nodes of adjacent layers. The node weights are
assumed to be synthesized, during a learning/recording session, from a given training set.
On the other hand, a node's activation function is usually a monotone-increasing function
with saturation (e g., a tanh or a unit-step function) which can be thought of as implementing
a "local decision" on the preceding similarity computation. In theory, DAM mapping
dynamics can be understood and controlled through the network architecture, the
learning/recording algorithm used, and the encoding of stored associations.

Several associative neural memories have been proposed over the last two decades
[1-10]. These memories can be classified in various ways depending on their retrieval mode
(dynamic vs. static andfor synchronous vs. asynchronous), the nature of the stored
associations (autoassociative vs. heteroassociative and/or binary vs. continuous), the type of
training algorithm (adaptive vs. nonadaptive), or the complexity and capability of the training
algorithm. In this chapter, dynamic synchronous binary-state neural memories are
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emphasized. These memories have been extensively studied and analyzed by several
researchers [11-31].

This chapter is intended as a review of the fundamental concepts relating to basic DAM
architectures, the various training algorithms and recording strategies, and DAM capacity and
performance. Section 2 presents the basic architectures, transfer characteristics, and general
retrieval dynamics for auto- and heteroassociative DAMs. Section 3 summarizes several
desirable characteristics of associative memories which serve as DAM performance
measures. Several DAM recording/learning algorithms, including correlation, generalized
inverse, and Ho-Kashyap training algorithms and variations, are presented and analyzed in
Section 4, General training strategies for controlling and enhancing DAM dynamics are
discussed in Section 5. In Section 6, DAM capacity and retrieval dynamics are presented and
compared for several recording/learning techniques.

2. DAM ARCHITECTURES AND GENERAL MEMORY DYNAMICS

The simplest associative neural memory architectures exhibiting dynamical behavior are
considered and their transfer characteristics are formulated. Potential DAM state-space
trajectories are also outlined. This section deals with two basic DAM architectures:
autoassociative and heteroassociative. Some important effects of various activation functions
and state update strategies on DAM stability and dynamics are also presented.

2.1 Autoassociative DAM

The autoassociative DAM is basically a Hopfield [14] memory employing a single-layer
of perceptrons with hard-clipping activations. The perceptrons are fully interconnected
through a feedback path, as shown in Figure 1(a), and are assumed to operate in a
synchronous (parallel) retrieval mode Figure 1(b) depicts a block diagram of such an
autoassociative DAM. Theoretically, the interconnection weight matrix W has real valued
components wy; connecting the jth perceptron to the ith perceptron. It is to be noted that, due
to the hard-clipping nature of the activation function operator F and the presence of feedback,
the memory can only store and retrieve binary memories.
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Figure 1. (a) Interconnection pattern for an n-perceptron autoassociative
DAM. (b) A block diagram representation of the DAM in (a).
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Let the DAM output of Figure 1 be represented by an n-dimensional binary valued
pattern (column vector) xS and call it the state of the DAM at discrete time "s." Hence, the
DAM state evolves according to the difference equation:

x* = wx] @.1.1)

where F operates component-wise on its n-dimensional vector argument. The operator F[W
x(.)]is referred to as the state transition operator. The weight matrix and the threshold
activations are computed during a training session in such a way as to store a set of m binary
(bipolar or unipolar) patterns {X;, X5, ..., Xg, ..., Xy} satisfying the condition xs+! = xs =
Xg; 1.¢., synthesized W and F guarantee that x; is a fixed DAM state, The training pattern
xg Wwill be referred to as a fundamental memory. All other fixed states which are not
fundamental memories will be referred to as spurious memories. In addition to the above two
types of dynamics, the DAM can also converge to a limit cycle. It has been shown by
Fogelman [32] that if W is symmetric, the above DAM has limit cycles of period 2, at most.

The autoassociative mapping performed by the above DAM may seem trivial. However,
the DAM is intended to act as a filter which corrects noisy, distorted, and/or partial input
versions, X'y, of the fundamental memories xy. Theoretically, the DAM converges to X,
when initialized with x0 = x' . This suggests that a basin of attraction exists around each one
of the fundamental memories Under certain conditions, discussed later in this chapter, the
above DAM is capable of realizing such basins of attraction. Unfortunately, the complex
dynamics of the DAM also give rise to attractor spurious memories, thus degrading
performance. These and additional DAM characteristics are considered in Section 3.

2.2 Heteroassociative DAM

A heteroassociative DAM [8-10,28] may be thought of as an extension of the
autoassociative DAM described above. Here, two single-layer feed-forward neural nets are
connected in a closed loop as shown in Figure 2 . This architecture allows for simultaneous
hetero- and autoassociative recollection of stored data, Ideally, a heteroassociative DAM
realizes the two mappings M and M* between a set of m binary input patterns {xy, xo, ...,
Xk, .., Xy} and another corresponding set of m output patterns Y, %2 s Yo <o Y}
according to:

M: x, =y, and M*: Yi=Xx:k=1,2,...,m 221

The above DAM consists of a forward processing path and a feedback processing path.
The forward path, considered alone, constitutes a unidirectional (static) heteroassociative
memory that is potentially capable of realizing the mapping M of equation (2.2.1) by
recalling yy from x; according to :

Ye=F[W;x]:k=1,2,..,m (2.2.2)

where yy and xy are assumed to be binary column vector patterns of dimensions L and n,
respectively, and W1 is an L x n weight matrix which is assumed to be computed during a
training session. F is the same activation function operator defined earlier.
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Figure 2. A block diagram representation of a dynamic heteroassociative
neural memory.

One of the most appealing features of an associative memory is its ability to tolerate noisy
and/or partial input; that is, given an input x; that is similar to the pattern xy of the stored
association pair {x;,yx ), the memory will respond with the correct association yy according
to:

Y= F[ W, xk] (2.23)

However, the above equation may not hold true when relatively large numbers of
associations are stored and/or the test input pattern is slightly similar to xy. This problem can
be partially alleviated in the case of autoassociative retrieval ( yi = Xg) by feeding the output
of the unidirectional memory directly into the input and simultaneously removing the original
input x'.. This gives rise to the autoassociative DAM architecture of Figure 1. However, in

the heteroassociative case ( Xy has a different size and/or encoding than yy), direct feedback
is not compatible and a natural and simple remedy would be to feed the output back through
the inverse M mapping, M*, defined in Equation (2.2.1) or, explicitly, by the equation:
xk=F[W2yk] :k=1,2,...,m (2.2.4)
where W, is an n x L real valued matrix. The resulting DAM is the one shown in Figure 2

Now we are ready to write the nonlinear difference equations governing the dynamics of
the heteroassociative DAM. These equations are given by:

y*= F[ WIF[Wz ys]] @2.2.5)
X+ F[ W W, x| 2.2.6)

where s is the iteration number, x0 is the initial state, and yO is given from xO through
equation (2.2.2). The DAM dynamics can also be completely described through equations
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(2.2.4) and (2.2.5) or (2.2.2) and (2.2.6). These equations suggest that the DAM is a
two-output (yy,Xi) dynamic system, as shown in Figure 2. The first output represents
heteroassociative recollections and the second output represents autoassociative recall. The
physical interpretation of these two outputs is determined by the application at hand. This
class of DAMs is potentially powerful in robust pattern classification and pattern
identification applications. Here, the output y; may encode a classification of the test input x'
or it may encode a specific acrion or decision. On the other hand, the output xg gives a
reconstruction/correction of the input pattern; this output may be used as an identification
output which verifies the classification/action output by acting as a confidence measure. The
X output process may also be viewed as a filtering process.

2.3 Other DAM Variations

In the above, the architectures of the synchronous (parallel update) discrete DAM were
described, for both auto- and heteroassociative retrieval. Variations on such architectures for
autoassociative DAMs have been proposed and analyzed in the literature. These variations
deal with DAM state update strategies, and assume various types of activation functions, The
dynamics and stability of such DAMs are highly affected by these variations.

In his original neural memory model, Hopfield [14] employs asynchronous (random)
updating in the autoassociative DAM of Figure 1 Each perceptron is assumed to update its
binary state stochastically independent of the times of firing of the other n - 1 neurons in the
network. This asynchrony was introduced in order to model the propagation delays and noise
in real neural systems. The discrete dynamics of this model are given by:

s+1

Xi

= f‘(Wxs-l-Ii) (2.3.1)

where I; is an external bias, which exists for all times "s." The perceptron label "i" in
equation (2.3.1) is stochastically determined, and thus allows only one perceptron to change
its activity in the transition from time s to s+1 Hopfield, by employing a discrete-time energy
function approach, showed that a sufficient condition for the stability (no oscillations) of
DAMs with the dynamics of equation (2.3.1) is to have a symmetric zero-diagonal
interconnection matrix W. Fogelman [32] arrived at a similar result, which states that it is
sufficient to have a symmetric non-negative diagonal W for stability, assuming random or
sequential (elements change state one at a time in a prescribed fixed order) perceptron update.

It was also shown by Fogelman that when the sharp threshold activation function (Figure
3(a)) is replaced by a saturation piece-wise linear function, shown in Figure 3(b), the
resulting randomly or sequentially updated DAM is also stable if W is symmetric with a
non-negative diagonal. Golden [33] and Greenberg [34] extend the above stability results to
the "brain-state-in-a-box" (BSB) [35] DAM described by the dynamics:

x*= F[pw x°*+ xs] (2.3.2)

where p is a positive constant (step size) and F is the activation function operator shown in
Figure 3(b). It was shown by Greenberg that if W is symmetric and diagonal-dominant (Wij
is larger than the sum of the absolute value of all off-diagonal elements Wij» forj=1,2, ..,
n) then the BSB DAM is stable and that the only stable points are the corners of the n-cube.
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Figure 3. Various types of perceptron activation functions employed in
DAMs: (2) hard clipping, (b) saturation piece-wise linear, and
(c) sigmoidal activations,

In his continnous DAM model, Hopfield [36] assumes an analog electronic amplifier-like
implementation of a perceptron which results in the following deterministic DAM retrieval
dynamics:

pd‘:i(tt) =Wx(t)-ov(t)+1I; with v = F o) (2.3.3)

where p and G are positive constants and the activation operator F takes the form of a

sigmoid function (e.g , tanh(Bv)) as depicted in Figure 3(c) above. Here, F-1is the inverse
of F; that is, the ith component of v is given by v; = f-1(x;). Hopfield has shown that if W is
symmetric, then the continuous autoassociative DAM is stable, Furthermore, if the amplifier
gains (slopes of the activation functions) are very large, then the only stable states of the
continuous DAM have a simple correspondence with the stable states of the stochastic
Hopfield DAM described above. Marcus and Westervelt [37] have investigated a
synchronous discrete-time variation of the continuous Hopfield model having the same form
as equation (2. 1.1). It was shown that if W is symmetric and if the activation functions are
single-valued, monotonically increasing, and rise less rapidly than linearly for large
arguments, then all attractors are either fixed points or period-two oscillations. Furthermore,

if the system obeys the condition B < [1/ Ay;,l, where >0 is the maximum slope of the

activation function and Ap;, the most negative eigenvalue of W, then all period-two
oscillations are eliminated and convergence to stable atiractors is guaranteed.

3. CHARACTERISTICS OF A HIGH-PERFORMANCE DAM

A trained DAM is expected to exhibit a number of characteristics, such as noise and/or
distortion tolerance, high capacity of stored associations, and well-behaved dynamics. In
general, after training a DAM, a set of fundamental memories are recorded which are
expected to behave as stable attractive states of the system. However, and in addition to the
recorded fundamental memories, spurious and/or oscillatory attractors can exist which
negatively affect the performance of a DAM. A spurious attractor is a stable memory which
is not part of the recorded memories, These spurious memories are not desirable, yet they
exist in all of the DAMs discussed above. Therefore, if one cannot train a DAM to exhibit no

spurious states, then it is highly desirable to have them exist in a region of state-space thatis
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far from regions of fundamental memories. Oscillations may be controlled by employing
some of the DAM variations discussed in Section 2.3

A set of performance characteristics must be met in order for a DAM to be efficient for
associative processing applications. Depending on the encoding of the training memory
associations, two classes of DAM mappings are distinguished: linearly separable and
nonlinearly separable. Due to its single-layer architecture, the autoassociative DAM of Figure
1 can realize only linearly separable mappings; i.e., it can only store linearly separable
memory vectors. This is also true for the heteroassociative DAM of Figure 2, since the
stability of a given association pair hinges on the ability of the single-layer forward and
backward subnets 1o realize perfectly the m xy-to-yy and yj-to-xy associations, respectively.
On the other hand, multiple-layer architectures [38-40] are needed to store a set of
nonlinearly separable associations (auto- or heteroassociations). Multiple-layer DAMs are
more difficult to analyze than single-layer ones and are not considered here. In the rest of this
chapter, training associations are assumed to be linearly separable.

The following is a summary of some of the important characteristics of a DAM: (1)
Tolerance to noisy, partial, and distorted inputs. This implies a high probability of
convergence to fundamental memories. (2) High capacity of stored memories. (3) Existence
of relatively few spurious memories and few or no orbits, and a low convergence to such
states. (4) Convergence within a few retrieval cycles. (5) Provision for a no decision state.
DAM inputs with relatively low signal-to-noise ratios must have a high probability of
convergence to this state. (6) Autoassociative and heteroassociative processing capabilities.
Depending on the nature of the application, association of identical or distinct data vectors
may be required. Some of these desirable dynamics are depicted in Figure 4(a) for an
autoassociative DAM. On the other hand, Figure 4(b) depicts the state-space of a
low-performance DAM.

These characteristics can be used to compare different DAM architectures andfor
recording (or learning) algorithms. It is to be noted that, with given memory associations
and architecture, all of the above characteristics are dependent on the recording algorithm
used.

(2) B no decision state (®)

Figure 4. A conceptual diagram comparing (a) high-performance and
(b) low-performnce autoassociative DAMs,
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4. ASSOCIATIVE LEARNING IN A DAM

In theory, there exist an infinite number of interconnection matrices and thresholds that
realize the mapping of a fixed set of associations in a DAM. However, different solutiong
may lead to different DAM dynamics that affect storage capacity, convergence rates to
fundamental memories, number and location of spurious attractors, number and location of
orbits, robustness, and other DAM characteristics. For high-performance DAMs, the best
solution is the one that gives rise to the desirable characteristics discussed in Section 3. Such
a solution is very difficult to achieve, since it requires an optimization process that involves
many constraints and parameters and which may be too complicated and computationally
expensive to implement. Another alternative is to synthesize interconnection weights that will
guarantee a perfect recording of only the {xy} memories ({Xy,yx} associations in the
heteroassociative case) and hope that such a solution will also give rise to acceptable DAM
performance. In fact, all of the existing DAM recording/learning techniques proposed in the
literature are based on this latter approach.

The training phase is responsible for synthesizing the interconnection matrix W from a
training set of associations of the form {xy,yx}, for k = 1, 2, ..., m, for the
heteroassociative case (notice that autoasociative training can be arrived at as a special case of
heteroassociaitve training by setting yi = xy). Here, xi and y belong to the n and L
dimensional binary spaces, respectively. Therefore, the objective hete is to solve the set of
equations

Yx=Wxy; k=1,2,...,m CXINY

Y=WX (4.0.2)

or in matrix form,

whete Y =[y; ¥y .. ¥k .. ¥m ] and X =[Xq X3 ... Xg ... X, ]. The assumption of binary

valued associations and the presence of a clipping nonlinearity F operating on WX relaxes
some of the constraints imposed by equation (4.0 2); that is, it is sufficient to solve the

equation:
Z=WX; ad Y = FZ] (4.0.3)
Next, several DAM training techniques will be derived and analyzed.
4.1 Correlation Recording
One of the earliest associative memory recording techniques is the correlation technique

[2-4] which was originally proposed for the synthesis of a linear associative memory (LAM).
This is a simple recording technique for generating W according to:

w=vx" @4.1.1)

where "T" is the transpose operator. This is a direcr method for computing the correlation
weight matrix W which assumes that all the associations are present simultaneously during
recording. A more practical method for computing the cotrelation matrix is to use the
following equivalent form of equation (4.1.1):

m
W= Y yexi 4.12)
k=1
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where the term inside the summation is the outer product of the vectors ¥k and xg. This in
turn allows us to derive the adaptive correlation recording technique according to:

new

W"=Wty, x.; fork=1,2,...,m (4.1.3)

where WC is the current weight matrix (initialized as the zero matrix). This makes it very
convenient, if at some time after the initial recording phase is complete, we want to add a
new memory or delete an already recorded memory.

Let us now investigate the requirements on the {Xk.¥x) associations which will guarantee
the successful retrieval of all recorded memories ¥k from perfect key inputs x;.. Employing
equation (4.0.1) and (4.1.2) and assuming that the key input X}, is one of the x; vectors, we
get an expression for the retrieved pattern as:

m m m
Yu= Zykka Xp = Z(YkaT)Xh +YhXhTXh = Z(kakah)+Yh”xh”2 (4.1.4)
k=1 k%h k=h

The first term in equation (4.1.4) represents the "cross-talk” between the input key x;, and
the remaining m - 1 x; patterns, This term can be reduced to zero if the xi vectors are
orthogonal. The second term is proportional to the desired memory yp, with a proportionality
constant equal to the square of the norm of the key vector xp. Hence, the necessary and
sufficient condition on the retrieved memory to be the desired perfect recollection is to have
orthonormal key vectors x, and is independent of the encoding of the Yx (note how the yi
affects the cross-talk if the x; are not orthogonal), However, recalling the nonlinear nature of
the DAM reflected in equation (4.0.3), perfect recall of the binary yy vectors is in general
possible even when the key vectors are only pseudo-orthonormal. The correlation recording
of autoassociations is identical to the above but with Yk = X

Hopfield [14] uses a slightly modified correlation technique for recording his proposed
autoassociative DAM, for improved performance. The Hopfield memory recording recipe
transforms the unipolar binary x, vectors into bipolar vectors before recording, and assumes
no perceptron self-connections (i.e., W has zero diagonal), according to:

W= i(ZXk- 1){2x-1) - ding i(Zxk- 1)(2x,- 1) (4.1.5)
k=1 k=1

where 1 is an n-dimensional column vector of 1's. Here, a hard-clipping nonlinearity with a
threshold of zero may be used as the perceptron activation function, Weisbuch and Fogelman
[41] propose an optimal off-line method for choosing these thresholds.

4.2 Generalized-Inverse Recording

The correlation associative recording technique is restrictive in many applications, due to
the requirement that the x, be orthonormal. This technique does not make optimal use of the
DAM interconnection weights. A more optimal recording technique is the generalized-inverse
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recording technique proposed by Kohonen [S]. The generalized inverse technique wag
originally proposed for the synthesis of the W matrix of the optimal linear associative
memory (OLAM) [15], employing perceptrons with linear activations and no feedback
Starting from equation (4.0.2) and multiplying both sides of the equation by XT one gets:

YX'=wxx' 2.1

The motivation behind the choice of the multiplier XT is that it makes equation 4.2.1)
consistent with the correlation solution for W (equation 4.1.1) for the special case of
orthonormal xy, which make XXT =1 It can also be shown [42] that the W which satisfies
equation (4.2.1) is the mean-square-error (MSE) solution (here we assume that the training
set has more associations than the number of components of x; i.e., m > n) that minimizes
the objective function J(W) given by:

m L 2
W) =1Y-WX I =tr[(Y- wx)(y - WX)] = Z(ef) 4.22)
k=1li=1

where ||.lig is the Euclidian norm, “tr" is the trace operator, and g is the etror between the ith
components of the estimated and desired vector yi. Going back to equation (4.2.1) and

multiplying both sides of the equation by the inverse of XXT, the following solution for W
is achieved:

w=vxT(xx") = yx* (4.2.3)

where X* is the pseudo- or generalized-inverse of X. This solution is only valid if the
inverse of XXT exists, which requires that the rows of XXT be linearly independent. Also,
note that for an arbitrary Y, a sufficient condition for an exact solution for W is that X+X
=1, which means that the xy are linearly independent (compare this to the more restrictive
orthonormal condition on xy for correlation recording). However, if binary associations are
assumed, then the use of hard-clipping according to equation (4.0.3) can relax the linear
independence condition on x, for an exact solution.

Next, let us investigate the retrieval characteristics of the OLAM, presented by an input
Xy, by substituting equation (4.2.3) in (4 0.1) and arrive at:

Yo=Wx,=YX"

(x XT)-lxh] (4.2.4)

which shows that the OLAM can be viewed as a correlation recorded associative memory
with a preprocessing stage attached, as shown in Figure 5. The preprocessing stage performs
an orthogonal projection [15], defined by the term inside brackets in equation (4.2.4), of xp
onto the space spanned by the x vectors. Again, if the x; are linearly independent, then the
preprocessing block in Figure 5 maps the hth training vector x; into a vector x'y which is
orthogonal to the xi (k different from h) vectors stored in the correlation memory block and
with xpT X'y, = 1, thus outputting yj.

It was assumed in the above discussion that the training set is over-determined, m>n. It
is shown later in Section 6 that the number of distinct memories m must be smaller than the
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Figure 5. A block diagram of the OLAM showing its decomposition
into a correlation associative memory in cascade with an
orthogonalization transformation.

dimension n, if DAM overloading is to be avoided. Therefore, it is important also to consider
the problem of recording an under-determined (m <n) set of associations. When m < n,
equation (4.0.2) has multiple exact solutions W#*. Here, the minimum-norm solution W =
min IW*Ilg is selected as the solution leading to the most robust associative retrieval [15].

Assuming that the x; are linearly independent, adirect computation of W is given by:
-1
w=v(x"x) xT-yx* (4.2.5)

Again, for this under-determined case, associative retrieval can be thought of as that of a
correlation-recorded memory with preprocessed inputs. To see this, the identity Xt =
XT(XXTy* is used in equation (4.2 5), which upon substitution in equation (4.0.1) gives:

Vo=Wx,= YXT[(X XT)+th (4.2.6)

whete the term inside the brackets is the n-dimensional preprocessed input vector. Since
XT(XXT)*X =1, it can be concluded that the operator (XXT)* maps the hth training
vector Xy, which is linearly independent from the temaining m - 1 training vectors x into a
vector X'y which is orthogonal to the x; vectors and has an inner product of unity with the
Xy, vector. On the other hand, if one inputs a noisy version of one of the training key vectors,
say Xp, then the preprocessed output x'y will be rotated more in the direction of xp, and at
the same time made more ortho gonal to the remaining training vectors.

When the dimensions m and/or n are large, the direct method for solving for the
generalized-inverse in equations (4.2.3) and (4.2.5) becomes impractical from a
computational point of view. Furthermore, in many practical applications, the nature of the
training key vectors is such that the matrix XXT (or XTX for the under-determined case)
may be ill-conditioned, leading to numerical instabilities when computing the inverse.
Therefore, it is desirable to replace the direct computation of the generalized-inverse with a
more practical-to-compute stable method. This can be achieved by using gradient descent on
J(W) in equation (4.2.2) and iteratively solving equation (4.0 2), Here, the weight matrix is
incremented (starting from a zero-valued W mafrix) according to the following equation:
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new c 1 aI(W) c T
AW =W™ - W =-gp— = we=p[¥-W x| x 427
where the value of p for practical problems should be in the range 0<p << 1. We will refer
to this algorithm as the batch-mode adaptive generalized-inverse training technique,
Convergence can be speeded by initializing W€ as the correlation matrix YXT since it can be
shown [15,43] that this correlation term is the lowest-order term in a von Neumann
expansion of the matrix YX* given by:

o i
YX+=OLYZ [I- ozXTX]XT 42.8)
i=0
Equation (4.2.7) may also be modified further into continuous- or local-mode which
allows for adaptive updating of the interconnection weights every time a new association
{X.¥x) is presented The following are two versions of this type of continuous adaptive
generalized-inverse training:

weY = we . p[yk-chk]ka 4.2.9)
and
wiv = ws - p[yli(-wka]ka (4.2.10)

where w; is the ith row of matrix W representing the weight vector of the ith perceptron (i=
1,2, ..., L) and y;k is the ith bit of the kth association vector yj. In these equations, k is

incremented after each iteration and the whole training set is cycled through multiple times
until convergence is achieved. Equation (4.2.10) is used to synthesize the L. memory

perceptrons separately, and is known in the literature as the W-LMS or Widrow-Hoff learning
rule {44,451 (in fact, the LMS rule differs slightly from equation (4.2.10) in that it employs
an additional perceptron bias bit which results in an extra weight that could be used in

adjusting the threshold of the hard-clipping nonlinearity in a DAM). The choice of p is critical

in determining stability and convergence time of the LMS algorithm. Choosing a large p
speeds convergence, but can lead to instability. Horowitz and Senne [46] prove that the

choice 0 < p < 1/[6 t(XTX)] guarantees the stability of equation (4.2.10), for xy patterns
generated by a zero-mean Gaussian process independent over time.

A closely related recording technique to the under-determined generalized-inverse
technique of equation (4.2.5), for the recording of autoassociative DAMs, is the spectral
technique proposed by Personnaz et al. [47] and Venkatesh and Psaltis [48,49]. Here, the
weight matrix is defined as follows:

1
w=xp(x"x) x"=yDX* 42.11)

where D = diag[A{, Ay, ...s M ...» Ayl is the m x m diagonal matrix of positive eigenvalues
(y > 0). Note that W is well defined if the inverse of XTX exists; i.e., if the Xy vectors are

linearly independent. Furthermore, W is symmetric if Ag=Afork=12,..,m
Multiplying equation (4.2.11) by X gives
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WX =XD or Wx =4, x, k=1,2,...,m 4.2.12)

Assuming arbitrary positive &, the above equation is a weighted minimum-norm solution

where a fundamental memory (eigenvector) x, having a large eigenvalue A, tends to have an

enlarged basin of attraction compared to other memories with corresponding smaller
eigenvalues; that is, more attention is shifted towards Xg.

4.3 Ho-Kashyap Recording

Higher DAM performance can be accomplished if the perceptron activation functions are
taken into account during the recording phase. An optimal recordin g technique employing the
above feature has been proposed by Hassoun and Youssef [26,27] and Hassoun [28] for
autoassociative and heteroassociative DAMs, respectively. This technique is based on the
Ho-Kashyap algorithm [50] for the optimal MSE solution of a set of linear inequalities. One
major difference between the Ho-Kashyap recording rule and the earlier recording techniques
is that the weight vector and the activation function threshold are independently optimized for
each neuron.

According to the Ho-Kashyap algorithm, the ith tow of the weight matrix W and its
corresponding threshold Tj are formulated as the weight vector wi = [wig Wi Wy ..
winlT, where T} = - wio. Then, and upon the presentation of the kth association pair, the ith
perceptron can be trained to classify a given training set {X.¥x} correctly by computing the
(n+1)-dimensional weight vector w; satisfying the following set of m inequalities:

ek
TW/>0 ify; =1

Xy . ; fork=1,2,...,m 4.3.1)
\<o ity =0

where the vector x is derived from the original xx by augmenting it with a bias of "1" as its
xo component. Next, if we define a set of m new vectors 7y according to

+xy if yi(:l

Zy = . ; fork=1,2,...,m (4.3.2)
- Xk if yl = 0
and let
z=[z1z2.‘.. zm] 4.3.3)

then equation (4 3.1) may be rewritten as (the subscript "i" is dropped in order to simplify
notation)

ZTw>0 (4.3.4)

Now if we define an m-dimensional positive valued margin vector b (b > 0) and use it in
equation (4.3.4), we arrive at the following equivalent form of equation (4.3.1)

Z'w=b>0 (435)
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Thus, the training of the perceptron is now equivalent to solving equation (4.3.5) for w,
subject to the constraint b > 0. Ho and Kashyap have proposed an iterative algorithm for
solving equation (4 3 5). In the Ho-Kashyap algorithm, the components of the margin vector
are first initialized to small positive values and the Moore-Penrose pseudoinverse is used to
generate an MSE solution for w (based on the initial guess for b) which minimizes the
objective function J(w,b) = IZTw - bli2

+

w=(z") b (4.3.6)

Next, a new estimate for the margin vector is computed by performing the constrained (b >
0) descent

™ = b+ ple+|e|]; wihe=2"w-b 4.3.7)

where || denotes the absolute value of the components of the argument vector, A new
estimate of W can now be computed using equation (4.3.6) and employing the updated

margin vector from equation (4 3.7). This process is iterated until all the components of € are
zero (or are sufficiently small and positive), which is an indication of the linear separability of
the training set, or until & <0, which in this case is an indication of the nonlinear

separability of the training set (no solution is found). It can be shown [50,51] that the
Ho-Kashyap procedure converges in a finite number of steps if the training set is linearly

separable. A sufficient condition for convergence is 0 <p < 1. We will refer to the above
algorithm as the direct Ho-Kashyap (DHK) algorithm.

When the training set is under-determined (m < n+1), the Ho-Kashyap recording
algorithm converges in one iteration [27]. That is, equation (4.3.6) leads to a perfect solution
for w and no margin update is needed. This solution is identical to the LMS solution
discussed in Section 4.2, if the initial margin vector was chosen to have equal positive
components. Therefore, the full benefits of the Ho-Kashyap recording technique are achieved
with over-determined training sets (m > n+1), which leads to optimized weights and
margins. Section 5 discuses ways of extending originally under-determined training sets into
over-determined ones which are well suited for harvesting the full benefits of the
Ho-Kashyap recording technique.

The direct synthesis of the w estimate in equation (4.3.6) involves a one-time
computation of the pseudoinverse of Z7T However, such direct computation can be
time-consuming, and it requires special treatment when ZZT (or ZTZ, for the

under-determined case m < n+1) is singular. An alternative algorithm that does not require
the computation of (ZT)* can be derived based on gradient descent principles

Starting with the objective function J(w,b) = 1IZTw - bli2, gradient descent may be
performed [51] in b and w spaces so that J is minimized subject to the constraint b > 0. The
gradients of J with respect to W and b are given by equations (4.3 8) and (4.39),
respectively

VoJw, b)lycpe= -2( z'w- b°) ; subject tob > 0 (4.3.8)

T ¢ new)

V, Jw, b)l,e pnev = 2z{ 2% b (43.9)

One analytic method for imposing the constraint b > 0 is to replace the gradient in (4.3.8) by
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-(¢ + lel) with the vector € as defined in equation (4.3.7). This leads to the following gradient
descent formulation of the Ho-Kashyap procedure:

C (4 [
p™¥ =b°+£l”e l+e); withe =2 w°—p° (4.3.10)

3
+e°(1 i)] 4.3.11)

<]
€

Wnew - Wc_ P2 7 (ZTWC_ bnew)= Wc+ @Z{

2 1
with p; and p, belonging to ] 0, 1]. We will refer to the above procedure in equations
(4.3.10) and (4.3.11) as the batch-mode adaptive Ho-Kashyap (AHK) procedure, because of
the requirement that all training vectors 7y (or Xy) must be present and included in Z. A
continuous-mode adaptive Ho-Kashyap procedure for solving equation (4.3.5) is arrived at
by replacing the Z in the batch-mode procedure of equations (4.3.10) and (4.3.11) by z,
and thus arriving at the following continuous-mode update rule

(4
bﬂew=b§+%l('e '+ ec); withe = Zaw —bS . (4.3.12)
c
e Pzzk[zlwc‘ b}r:eW}=wc+Rl_p_2 [ e ve (1 __2_)}11( (4.3.13)
2 Pi

where by represents a margin scaler associated with the x; input. In all of the above
Ho-Kashyap training strategies, the margin values and the perceptron weights are initialized
to small positive and zero values, respectively. If full margin error correction is assumed in

equations (4.3.12) and (4 1.13) (i.e, p; = 1), then the above AHK procedure reduces to the

heuristically derived procedure reported earlier by Hassoun and Clark [53] and Hassoun
[54]. An alternative way of writing equations (4.3.12) and (4.3.13) is [52]

c c c
Abe=pie and Aw =py(p,~1)e z, if € > 0 (4.3.14)
(4 <
Aby =0 and Aw=-~p,e z, if € <0 (4.3.15)

We will refer to this procedure as the AHK I learning rule,

The constraint by > 0 in equations (4.3.12) and (4.3.14) was realized by starting with a
positive initial margin and restricting the change in Ab o positive real values. An alternative

way to realize this constraint is to allow both positive and negative changes in Ab, except for
cases where a decrease in by results in a negative margin. This modification results in the
following alternative AHK 1T learning rule:

c C
Abi=pie and Aw=p,(p,~ 1)z if bS+p,e >0 (4.3.16)

c c
Aby =0 and Aw=-p,e z, if by+p, e <0 (4.3.17)
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A further modification of the above equation results in the AHK III rule [52], which is
capable of fast convergence to approximate solutions in the case of nonlinearly separable
mappings. However, this is beyond the scope of this chapter and is not considered further,

5. RECORDING STRATEGIES

The encoding, dimension, and number of stored patterns highly affects the performance
of a DAM. The recording strategy of a given number of associations is also of critical
importance in the robustness and dynamics of a DAM. For example, DAM performance can
be enhanced by augmenting the training set with an additional set of specialized associations.
Here, we present three examples of recording str ategies: (1) training with perfect
associations, (2) training with an extended set of noisy/partial associations, and (3) training
with the aid of a specialized set of associations.

The first training strategy is employed when only perfect associations are present. The
training set consists of the m input/target pairs {xy,yx} and is shown in Figure 6(a). This
represents the simplest training strategy possible, and relies on intrinsic DAM dynamics to
realize the needed basins of attraction around each recorded association. This strategy works
if the number of associations is relatively small compared to the smallest of the dimensions n
and L, and if the degree of correlation between the m associations is relatively low. With this
strategy, the training set is usually under-determined (m < n).

The second recording strategy is employed when the training set consists of a number of
clusters with each cluster having a unique label or target. This strategy is common in pattemn
classification applications and is useful in defining large basins of attraction around each
recorded memory, thus increasing DAM error tolerance. Figure 6(b) illustrates this case. In
general, the inclusion of the noisy/partial associations increases the size of the training set and
leads to an over-determined set of associations (m > n).

.
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Input Vectors Target Vectors Input Vectors Target Vectors Input Vectors Target Vectors

A A B

(a) )] ©

Figure 6. Examples of DAM recording strategies. (a) Simple recording,
(b) training with noisy/partial associations, and (c) training with
the aid of specialized associations.
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The third recording strategy is employed when specific additional DAM associations must
be introduced or eliminated. One possibility of employing this strategy is when a ground state
must be introduced to act as a no-decision state, as depicted in Figure 6(c). For example, for

s
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associations encoded such that sparse vectors nj have low information content, augmenting
the original training set with associations of the form {n;,0} leads to the creation of a
no-decision state 0 which attracts highly corrupted or noisy inputs and prevents them from
being classified erroneously or mapped into spurious memories. Simulations illustrating the
use and benefits of the above first and third recording strategies are presented in the next
section, employing various recording algorithms.

6. DAM CAPACITY AND PERFORMANCE

In the following, the capacity and performance of autoassociative DAMs are discussed.
Capacity is defined as a measure of the ability of a DAM to store aset of unbiased random
binary patterns (probability that a 1/0 or +1/-1 bit equals to .5) {x;} at given error correction
and recall accuracy levels. Earlier proposed capacity measures [16,19-25,41,47,49] have
defined capacity as equivalent to a tight upper bound on the pattern ratio (r = m/n) for which
all stored memories are fixed states, with a probability approaching one. Measuring capacity
as the ability to correct key pattern errors, with guaranteed convergence to the closest stored
memory, has also been recently advanced.

The two most-used DAM capacity measures in the literature are the-absolute capacity
(Cy) and relative capacity (C;) measures, C, is defined as the least upper bound on the
pattern ratio (m/n) such that the m stored memories are retrievable in one pass through the
DAM,; i.e., the DAM is capable of memorizing m patterns as equilibria points. C; is a least
upper bound on m/n such that the stored memories are approximately retrievable. For
correlation-recorded autoassociative DAMs employing hard-clipping activation, the relative
capacity is approximately equal to .15, for a retrieval error (between an exact input and
one-pass noisy output) < 10 percent [11,14,16,20]. The requirement for error-free memory
recall severely limits the capacity of correlation-recorded DAMs to Cy = 1/[4log(n)]

[21-25,41], which approaches zero for large n (log is the natural logarithm).

Another, more useful, DAM capacity measure gives an upper bound on m/n in terms of
attraction radius and memory size [21,41]. According to this measure, a correlation-recorded
DAM has a maximum pattern ratio m/n = (1 - 2p)2/[4 log(n)] which guarantees error-free
fundamental memory retrieval, in the limit of large n, from key patterns lying inside the

Hamming sphere of radius pn (p < 5). This capacity result is only approximate for the

limiting case p = 0, and it has been shown [24] that, when the number of stored patterns
approaches n/[4 log(n)], the fundamental memories have a basin of attraction of normalized

radius p = 0.024, and convergence to such memories is achieved in O(log log n) parallel
iterations. Recently, Amari [22,31] applied a statistical neurodynamics approach in the
analysis of correlation-recorded DAM unbiased random error correction capability. The plot
in Figure 7 depicts the single-pass error correction curves predicted for a parallel updated

DAM in the limit of large n, where p; and Pout &1 the probabilities of input and output

noise, respectively, and r is the pattern ratio. Note how the ability of the DAM to retrieve
fundamental memories from noisy inputs is reduced as r approaches the relative capacity of
0.15. These results cannot be applied to describe the second and higher passes through the
DAM, since the first pass output is correlated with the W matrix (and hence the stored Xg)
and its noise content is not random anymore. However, Amari [22] has extended this theory
to predict the complete retrieval behavior from noisy inputs.
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Figure 7. Single-pass error correction in a correlation-recorded DAM
as a function of pattern ratio r = m/n.

Amari also extends the above capacity measures to the case of a correlation-recorded
DAM with sparsely encoded memories [29], where he shows that C, is of order 1/log?(n)
which is much larger than that of non-sparsely encoded memory. In another DAM variation,
Yanai and Sawada [30] derive the expression C, = (1+h)2/[2 log(n)] for a
correlation-recorded DAM with unbiased random memories and with perceptrons employing
a hysteric hard-clipping activation function with a hysteric range [-h,+h]. Other interesting
extensions are reported by Marcus et al. [55], who have studied the retrieval dynamics of
parallel updated continuous DAMs employing correlation and generalized-inverse recording
of unbiased random bipolar memories with large n. Phase diagrams depicting various DAM
dynamics (recall, oscillatory, spin glass, and ground regions) in the space of pattern ration r

and activation function gain P (a tanh(Bz) activation function was assumed) were derived for
the corelation and generalized-inverse DAMs; for instance, it was shown that period-two

limit cycles are eliminated from the DAM for both recording techniques when B < 1/r = n/m,
and that the origin is the only attractor of the cotrelation DAM when B < 1/[1+2 (r) "1/2] and
for the generalized-inverse DAM when § < 1/(1 - 1).

Let us turn our attention back to parallel updated autoassociative DAM employing
hard-clipping activation and unbiased random high-dimensional binary memories. It can be
shown [56] that for an under-determined training set of unbiased random binary vectors, and
in the limit as n approaches infinity, the probability of linear independence of the training
vectors approaches one This makes the single-layer DAM appropriate for the realization of
such training sets Little theoretical work has been done on the capacity and performance of
these DAMs recorded with generalized-inverse or Ho-Kashyap techniques. Youssef and
Hassoun [57] report Monte Carlo simulations for 16 < n < 128 where the retrieval
performance and capacity of various recording/learning techniques, including the
generalized-inverse and Ho-Kashyap, were investigated. They propose a
capacity/performance measure similar to C, given above, with one additional DAM
performance parameter: recall accuracy (RA). Here, capacity is computed under the strict
requirement that all fundamental memories ate perfectly retrievable and that retrieval is not
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restricted to a single pass. Figure 8(a) shows plots for p vs. m/n where p is an upper bound
on the normalized basin radius around fundamental memories, guaranteeing a RA > 99
percent. Three curves are shown for the correlation (Hopfield), generalized-inverse (GI), and
Ho-Kashyap (HK) DAMs, respectively, with n = 64. A fourth curve is shown (dotted line)
for the Ho-Kashyap and generalized-inverse DAM, with n = 128. These curves clearly depict
the superiority of the GI and HK recording techniques over the correlation technique. It can
also be concluded that the GI- and HK-recorded DAMs have a relatively large operating
region where error correction is possible. This range is defined, roughly, as 0 < m/n < .5,
From the simulations in [57] it is to be noted that the synthesized weight matrix becomes a
diagonal-dominant matrix in the limit as m approaches n/2 at which point all fundamental
memories lose their basin of attraction. At m =.15n with large n, the GI and HK algorithms
lead to DAM:s capable of correcting in excess of 25 percent unbiased random noise. On the
other hand, and at a loading level of m = .15n, the correlation DAM is not capable of
retaining the exact fundamental memories, nor their basin of attraction. Figure 8(b) extends
the results just discussed for cases of reduced recall accuracy constraints (RA > 95 percent,
85 percent) for the Gl-recorded DAM. The Ho-Kashyap-recorded DAM exhibits similar
characteristics,

It is interesting to note the similarity between the GI and HK DAM retrieval performance.
This should not be surprising, since the training set assumed above is.under-determined
where, according to the discussion in Section 4.3, the HK solution is equivalent to the GI
solution except for the added bias bits. The effects of the bias bits disappear when
high-dimensional unbiased-random memories (associations) are used. However, when
non-random memories are used, the GI and HK DAMs exhibit substantially different
dynamics, as is shown next,

Figure 8. (a) Capacity/performance curves comparing the cotrelation,
generalized-inverse, and Ho-Kashyap DAMs forn = 64,
Dashed curve represent the cases of GI and HK DAM with
n=128. (b) Generalized-inverse performance curves for
various values of recall accuracy (RA).

‘We conclude this chapter by presenting a limited but illustrative simulation comparing the
various direct and adaptive tecording techniques discussed in Section 4. We also illustrate
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the advantages of employing specialized recording strategies in improving the retrieva]
characteristics of a DAM. Four 16-dimensional binary patterns are chosen such that any two
distinct patterns have a Hamming distance of 8, as shown in Figure 9(a,b).

A= X! 1111000011110000

B = X, 1010101010101010

C = X, ! 10100610110100101

D =x,:1001011001101001
(a)
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Figure 9. (a) Four memory vectors used to train an autoassociative DAM.
(b) 2-D representation of the vectors in (a).
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Two sets of simulations were performed, and the results are tabulated in Tables 1 and 2,

respectively. The first simulation assumes a direct recording strategy employing the four
memories (m = 4 < n = 16). The second set of simulations employs an over-determined
training set consisting of the four memories of Figure 9 and sixteen additional
heteroassociations representing the mapping of the rows of the 16-dimensional unit matrix
into the 16-dimensional zero pattern. In both cases, the DHK, GI, correlation (HOP), LMS,

AHK 1, and AHK 1I recording/learning algorithms were employed in DAM synthesis.

Recording/Learning Algorithm+

Recording/L earning Algorithm+

Retreival Dynamics* | PHK | GI 10D | LM’ [AHKT|AFKY | Reroival Dynamics® |PHK| GI HOP | LS |AmKT KT
e e am oy | 545|283 (185|347 |61 71531 | | (R s oy [3465\ 247 | 12728l
Comergencoraiolo oy |as5 |657|230 653383 469| | o memories ) [102|604 |- 836709628
Mo Seesied 2| 51|10 7918 [16 | | Nimones. deteced 74| 12738 16
Comvergenceraield 1 0 160 [00 [ 0000 |00 | | goumd: memorieswy [551|149) |37 43 |361
Comegencersie o 1o |0 |ses| 0 [0 | 0 || ccilasymemoies® [005] 0 |- oo |o

_’:_ DAM tested with 1000 input vectors having uniformly random binary bits

Training was performed with the original set of 4 memories
Training and testing were performed assuming bipolar memories

Table 1. Retrieval dynamics of various DAMs
trained with the memories of Figure 9.

*
+

DAM tested with 1000 input vectors having uniformly random binary bits.
Training was performed employing sparse memory-to-ground mapping

Training and testing were performed assuming bipolar memorics

Table 2. Retrieval dynamics of DAMs
with specialized associations,

R i




|
S 4
.
-
é
|
:
|
§
g

R

215

The DAMs in these simulations were tested with 10,000 unbiased pseudo random
vectors. Unipolar encoding was assumed for the Ho-Kashyap and GI DAMs. On the other
hand, bipolar encoding was assumed for the Hopfield and LMS DAMs, for both training
and retrieval phases (the LMS DAM also employed bias). In addition, all adaptive learning
algorithms (LMS, AHK I, and AHK II) were initialized with zero weight matrices. The

learning rates were 0.1 for LMS, 0.1 for direct HK and p; = 1 and p, = 0.01 for AHK I

(with margin vector initialized to all "+1" components), and p; = 0.1 and p, = 0.05 for

AHK II (with initial margin vectors of "+.1" components). Learning stopped after fifty
iterations for DHK and AHK 1. For LMS and AHK 1I, learning stopped after reducing the
error function J(W) to 0.0001. All weight matrices were normalized and rounded to integer
weights in the range [-99, +99].

The three Ho-Kashyap recording algorithms have comparable performances which
exceed those of generalized-inverse, Hopfield, and LMS. The first row depicts the formation
of large basins of attraction around fundamental memories for the HK algorithms. Noisy
inputs which do not converge to fundamental memories are attracted by spurious memories
for HK recording. The GI and LMS DAMs resulted in a relatively large number of spurious
memories which attracted about 65 percent of the test vectors. The GI DAM was the only
DAM with a no-decision state (ground state), which attracted 6 percent of the input. As
expected, the worst performance is that of the Hopfield DAM, which has a low convergence
rate to fundamental memories and a high convergence rate to period-two oscillations (these
oscillations can be eliminated if stochastic update is employed; however, this will result in an
incieased convergence rate to spurious states). It is also interesting to note that even though
the W matrix of the HK-recorded DAM is not symmetric and that parallel updating is used,
no oscillations were encountered. This phenomenon is due in part to the weight normalization
and rounding employed, and to the low memory loading level (m = 4) [57]. The use of
sparse memory-to-ground mapping enhances the performance of the DHK DAM, as depicted
in the first column of Table 2. Here, the number of spurious states is reduced to seven and
the convergence of highly noisy inputs is directed from spurious and fundamental memories
to a ground state which attracts about half of the test inputs. In addition, only five noisy
inputs (0.05 percent) converged to period-two oscillations. The GI also shows slight
improvement in performance compared to the under-determined recording case in Table 1.
On the other hand, this recording strategy does not seem to be adequate for the Hopfield
DAM (fundamental memories were not 1etrievable) or for the adaptive LMS and AHK
recording techniques.

Heteroassociative DAM performance and dynamics are less understood. Kosko [8,10]
has analyzed the stability and capacity of correlation-recorded heteroassociative DAM (or
bidirectional associative memory (BAM)) and its extension to general Hebbian learning.
Hassoun [28] employs simulations in the analysis of the capacity and performance of parallel
updated GI- and HK-recorded heteroassociative DAMs employing hard-clipping activations.

The dynamics and capacity of continuous or discrete updated DAMs employing
multi-layer architectures have not received adequate attention in the past. Multi-layer DAMs
are important, since single-layer DAMs are limited to the realization of linearly-separable
mappings; in practice, many interesting problems are nonlinearly-separable. The training of
DAMs also needs to be developed further, in such a way that the dynamical nature of the
architecture is taken into account during the learning/recording synthesis phase, which can
result in more predictable retrieval dynamics. Also, computationally efficient methods of
controlling the shape and size of the basins of attraction of fundamental and spurious
memories are desirable (see [S58] for a recent attempt to address this problem),
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Abstract

Fou: associative memory schemes (Hopfield associative memo1y, generalized mveise associative
memoty, spectial associative memory and Ho-Kashyap associative memory) that ate suitable
for optical processor implementation aie desciibed Numerical 1esults are presented that com-
pare the capabilities of these 4 associative memoiies.

1 INTRODUCTION

Axtificial Neural Netwoiks (ANNs) have captuied the imagination of many 1eseaichers be-
cause of their apparent ability to solve complex problems for which no algoiithmic solutions
appear to be feasible However, a 1ealistic evaluation of the advantages and the limitations
of ANNs requires the ability to investigate the performance of ANNs with a laige number of
neutons Such laige scale ANNs can be implemented only with advances in optical o1 electionic
neural netwoiks. Another chapter in this book exploies the issues in electionic neural network
implementations This chapte:r investigates the 10le of optical piocessing in ANNs

ANNs are charactelized by potentially full intezconnectivity among a lazge number of simple
neutons (processing elements) These features aie ideally matched to the attiibutes of optical
processots. Full inteiconnectivity among thousands of neuions would be virtually impossible
in electionic hardwale where each connection tequiies a wite In optical neuial computers,
inteiconnections a1e 1epiesented by light beams which can fieely cioss each other Also, as will
be detailed late1, use of volume hologiams allows the packing of a laige number of neuions
in small volumes Finally, the simplicity of the piocessing elements (usually equivalent to a
summing amplifier followed by a nonlinearity) ensuies that the limited dynamic 1ange of the
optical processois would not be a pioblem Moie detailed discussion about the suitability of
optical piocessing for neural netwoiks can be found elsewhere [1,2,3]

Applications of ANNs so far have been mainly in thiee aieas The first among these aie the
optimization pioblems Hopfield [4,5] showed in his pioneering work that a suitably configuied
ANN conveiges to the local minimum of an eneigy function This can be used to advantage
in solving minimization pioblems [6,7,8] A second aiea of popular application of ANNs is
pattein classification [9]. The ability of ANNs to learn {10] suitable disciiminant functions fiom
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available tiaining data is thei1 major advantage in pattein 1ecognition applications The third
application aiea for ANNs is as associative memories [11,12]

In conventional storage methods, each piece of information is stored in a unique slot and
is 1etijeved by invoking the addiess of that slot In contrast, associative memoties store the
information in a distributed manner thioughout the entiie memouy. Infoimation is usually
tecalled by piobing the associative memory with an input that is either an incomplete or a
noisy veision of one of the stored pieces. The distiibuted natuie of the information storage
appears to provide moie tolerance to defects and damage in the memory Another 1eason for
interest in associative memoiies is that human memo1y appeais to be moie akin to associative
memoties than to conventional memories

In this chapter, we discuss the 10le of optical associative memoties [13-28] Since associative
memoties aie designed to 1etiieve complete stored information fiom paitial o1 noisy veisions of
it, they aie useful for pattein classification also Because of that, we will confine our attention
to optical associative memoiies only

The next section discusses some basic issues related to associative memoties Section 3
then provides details about {our models for associative memoiy So fai, thiee main types
of optical associative memoiies appeal to have emeiged The fitst type utilize the ability of
optical processors to perform matiix/vector multiplications, and these ale discussed in Section 4.
Optical piocessors aie also very good at perfoiming vector inner products, and associative
memoty implementations based on these aie desciibed in Section 5 Section 6 discusses the role
of holograms in synthesizing optical associative memoiies In Section 7, we outline a simple
methodology that can be used for compaiing the many associative memory models Finally,
Section 8 provides some concluding 1emaiks.

2 BASICS OF ASSOCIATIVE MEMORIES

The basic concept of an associative memory can be desciibed using Figuie 1 The memoy
is synthesized fiom the set {(x;,y:), 1= 1,2, M}, where M vectol paiis aie to be stored.
Heie x; denotes the i-th “key” vector and y; denotes the corresponding “1ecollection” vector.
Both x; and y; ate column vectois and can be of diffetent sizes For convenience, we will assume
that both x; and y; aie column vectors containing N elements A propeily designed associative
memoty should store the associations between the key vectois and the 1ecollection vectors For
example, if x3 is the input to the associative memoiy in Figure 1, the output should be y3

Associative Memory
Inputy — ————> Output y
{(1'i7y1)»li 1727 7-A'/[}

Figute 1: A block diagiam desciiption of the basic associative memoty

We ate using vectol notation since it allows us to utilize many Lesults fiom linear algebra.
Any input containing a finite number of elements can be 1epresented using vectol notation.
For example, x; may 1eplesent the social secuiity number of a person and y; may 1epiesent &

e
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raster scanned version of that individual’s photograph This is an example of Hetero Associative
Memory (HAM}, wheie the key vectors and 1ecollection vectors ale of different type In contrast,
an Auto Associative Memory (AAM) uses y, = x;, 2= 1,2, , M, so that the key vectors
and 1ecollection vectois aie the same Fiom now on, we will focus ow attention on AAM

In AAM, we want y; = x;, i = 1,2, .M Obviously, this can be easily achieved if we
represent the AAM by the N x N identity matiix I, and we obtain output y by matiix/vector
multiplication of input vector x by memory matiix I Such a memory matiix does produce the
correct associations between the stored keys and 1ecollections However, it is not a desitable
AAM for several reasons Fiist of all, it has no tolerance for e1101s in the input If the input is a
vector different from the M stored keys, the output will not coriespond to a stored 1ecollection
Also, if the memory matiix is damaged (e g, some of the diagonal 1’s in I aze set to ze10), the
output y will not be the correct 1ecollection vector This indicates that this simple AAM is not
fault tolerant Hence, a 1obust AAM must exhibit the following desiiable teatures:

e When the input x = x; (one of the stored keys), the output must be y = x;

o When the input x = %; (where the cap indicates an incomplele o1 noisy version of Xi),
the output should be x; provided %; is closer to it {using some distance measuie) than to
any other stored key vector

e When the memory is damaged, we should still be able to 1ecollect associations This fault
tolerance is not available in conventional memoiies without explicit coding

Woik is currently undeiway to make the these concepts more precise and to design AAMs
capable of achieving the above ob jectives

The ability of associative memoiies to store and 1etiieve information in a fault tolerant
manner proves useful in many applications Examples include content-addiessable storage [11],
database seaiching [29], and statistical pattein 1ecognition [9] The similia1ity of associative
memotlies to pattein classifiers is rather obvious Both attempt to find the output in 1esponse to
an input that is a noisy or an incomplete version of stored key vectors (prototypes o1 exemplais)
In pattern classifiers, the output will be the class label wheieas in associative memoiies, it
may be a “cleaned-up” input vector (as in AAMs) o1 a different 1ecollection vector (as in
HAMs) The difference usually is that conventional statistical pattein 1ecognition schemes use
statistical models of the uncertainty to design optimal classifiers In contrast, most associative
memory designs ate non-parametiic and thus do not use explicit noise models This may be
a disadvantage (when good, 1ealistic noise models aje available) o1 an advantage (when input
noise is unpiedictable) The next section intioduces four models fo1 associative memiory

3 FOUR ASSOCIATIVE MEMORY MODELS

Several models have been proposed to store M paits of vectois in an associalive memory
All these models have two stages of operation In the fiist stage, the associative memory learns
the associations between inputs and outputs This may be done by an explicit sct of linea:
algebia operations as in the Hopfield memory [4] o1 by an iteiative minimization ol an e1101
measuie as in the back-propagation algorithm [10] In the second stage, the associative memory
produces a stable output vector in lesponse 1o an input piobe vector This output vector may
be obtained by a single operation on the input o1 by an iterative sequence of operations This
second stage is known as the retrieval process In this section we desciibe biiefly fows different
models for associative memories
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3.1 Hopfield Associative Memory [4]

Let x1,. ,Xar be the M column vectos (each with N elements) to be stoled in the Hop-
field memory We will confine our attention to the case in which vector elements aie either +1
or —1 These vectors aie stored in an N x N memoty matiix W defined as below:

W =xXXT - MI (1)

whete X = [x1x2 .. Xar] is an N x M data matiix whose columns are the vectois to be stored
and whete I is the N x N identity matiix The subtraction of MI from the outer product
matrix XX7 in eq (1) ensutes that the diagonal elements of W aie all zeio

Once the memory matiix W is constiucted, it is used for 1etiieval as follows Let x° be the
probe vector with NV elements in it Next, the following iterative procedure is used:

xkL = Sgn[ka —t] (2)

whee t is an N-dimensional column vector containing the thresholds (assumed to be zeiro unless
specified otheiwise) and the supersciipt & indicates the iteration index The Sgn[x] 1esults in
a vector with entiies equal to +1 (if the oliginal elements weie non-negative) and to —1 (if
the original elements weie negative). Hopfield [4] proved that an asynchionous version of the
update 1ule in eq (2) will always conveige to a stable vector A stable vecto1 is 1eached if
xE+1 = x¥ fo1 some k After this, updates stop

Empizical investigations 1evealed that only M < 0 15N vectors can be stored 1eliably in this
associative memoty, which is rather inefficient However, the vectors aie stored in a distributed
manner in W, so we expect to achieve good fault tolerance Theotetical studies [30,31,32]
have been cairied out to chaiactetize the storage capacity of Hopfield associative memoties. In
addition to its poo1 storage capacity, Hopfield associative memory suffeis from several other
weaknesses [33] when viewed as a pattein classifier, some of which aie listed heze:

o When we constiuct a storage matiix W from a set of vectors {x1,X2, ,Xaf}, it is quite
likely that several other sputious vectois also become stored memories

Thete is no guaiantee that a W constiucted fiom the set {xy, .xas} will have these
vecto1s as its stable vectois

o Examples can be constructed where a probe vector converges to a veclol other than its
neaiest neighboi (in the Hamming distance sense)

Howeve:, we must emphasize that the Hopfield associative memory stoies information in a
dist1ibuted manmer, thus providing a degiee of fault tolezance Modifications proposed to im-
prove the performance of Hopfield memoiies include: layeiing the networks [34], using non-zero
diagonal texms [35], modifying the thieshold condition [36], and using limited intelrconnections
between neurons {37].

3.2 Generalized Inverse Memory [11]

The Generalized Inveise memory proposed by Kohonen [11] is based on the minimization
of mean squared ertor (MSE) in the output Let x;, i=1,2, ,M, denote the key vectors
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and y; denote the corzesponding recollections Then the MSFE is defined by

M
1
MSE = = > [ yi - Wx; ||? ()
M i=1
where W is the memory matiix and {| 1|2 1epiesents the squaied noim of the vector We can

show that the MSE is minimized if we use
W =YX+ (4)

whete Y is an N x M matiix with ¥;: as its i-th column and X7 is the generalized inverse of X
This generalized inverse is given by (XTX)~1XT if the columns of X are lineaily independent
and by XT(XX7T)~1 if the 10ws of X ate lineatly independent TFor the special case wheie X is
inveitible, X+ is the same as X~! and the MSE is zero

It is easy to see that 1etrieval can be accomplished in a single step To observe this, let us
compute the following assuming that the columns of X are lineaily independent:

WX

Il

(YXH)X (8)
Y(XTx)-1xTx
Y

il

For the special case of AAMs, Y = X and we get the coirect 1ecollection vectors in one shot

Geneialized Inveise memoty stores the associations in a dishiibuted manne: and is thus
expected to be fault tolerant It is also attiactive in the sense that there is no need fo1 iterations
and that the stored vectors are not limited to binary vectors However, its ability to 1econstiuct
complete information fiom partial inputs has not been investigated thoioughly Theoretical
analyses have been cariied out [38-42] to understand the eflects of input noise on the 1ecollection
ability of Generalized Inverse memories

3.3 Spectral Neural Network [43]

One of the difficulties with the Hopfield associative memory is its limited stolage capacity.
This may be due in part to the construction method of the Hopfield memory matiix, in which
no explicit attempts are made to contiol the locations of stable states in the eneigy space,
As a 1esult, the stored states tend to cluster which malkes it difficult to distinguish one state
from another The Spectial algorithm [43] alleviates this problem hy constiucting the memory
matrix in a manner that “spreads” out the stable states

Suppose the thieshold vector t in eq (2) is an all zero vector and suppose x* is an eigen-
vector of the matiix W Since Wx* = Ax* wlere A is the eigenvalue, then x*+1 = x* as long
as A > 0 and x* is a vector containing 41 and —1 only The Spectial algorithm is based on
this obseivation. In this method, we first determine eigenvalues A,, 1 <1 < M, as below:

M
1
)\7:1\7__m Z <Xy, Xg > (6)
s=1,s#r
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where < %,,%, > indicates the inner product between the two vectois Let A denote the M x 31
diagonal matiix where A; is the i-th diagonal element Then the memoty matiix W is given by

W = XAXTX) X! (7) |

It is easy to verify that WX = XA, and since all the eigenvalues ale positive, Sgn[WX] =X
Therefore, this matiix can 1ecollect the stored vectors cottectly It is interesting to compare
the memory matiices in eqs (4) and (7) For AAMs, the only difference is the extra diagoua]
matiix A introduced in the Spectral algorithm

3.4 Ho-Kashyap Associative Memory [44-47]

This proceduie has 100ts in classical pattein 1ecognition theory [44,45] wheie it is used to
design linear disciiminant {unctions. Hassoun and Youssef [46,47] modified it to construct
new associative memoiy matiix To see the equivalence between the two pioblems, consider
eq (2) wheie both xF and x*+! aie N-dimensional column vectois with entiies +1 o1 =171
we consider the i-th 1ow of W as w;, we can 1ewtite eq (2) as below:

Ty = Sen[wlx, —t], 1<i<N, 1<m< M (8)

whete the supersciipt T denotes the transpose. Since @m; is either +1 o1 —1, each (wi,i;)
1epresents one linear discriminant function capable of classifying M vectois {x1,%x2, ,xpm}
into 2 classes Thus N linear disciiminant functions wi, i=1, ,N,ate designed to find the
memoty matiix W Once again the 1etiieval operation is cariied out in a single step

It has been shown [45] that this algorithm will always conveige in a finite number of steps
if the underlying vectois are “lineaily sepatable” However, this is computationally demanding
because N linear disciiminant functions must be determined and each 1equizes many matrix
opetations.

3.5 Other Associative Mappings

Several other schemes have been proposed fo1 associative mappings These include: higher
order newial networks [48,49,50], exponential associative memoiies [51], and polynomial mem:
oties [52] It is not ow intention to provide a discussion of all these models We included
the above four since they appeat to be moie easily implemented on optical aichitectures than
otheis

4 OUTER PRODUCT ASSOCIATIVE MEMORIES

As discussed in Section 3, the memory matiix W is obtained fiom the outer pioducts of

the M vectors {xj,xa, ,Xa} to be stored If we allow the diagonal elements of W to be
nonzelo, we can obtain W as below: :

M

W= S xd )
i=1
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Once the memory matiix W is synthesized, information can be 1etiieved using eq (2), Since
this W is constiucted from the outer products of memory vectois, this method is known as
the outer product associative memoty The main operation involved hete is the matiix/vector
multiplication In this section, we will discuss how oute: product associative memories can be
implemented using optical matiix/vector multipliess.

The basic optical matiix/vector multiplier [53] is shown in Figuie 2 Here the vector x*
at the k-th iteration is 1epiesented by a laser diode o1 light emitting diode ai1ay in plane Py,
This array is then imaged hoiizontally and expanded vertically onto the mask in plane P,
The mask encodes the matrix W The light leaving plane P; is then imaged vertically and
focused hotizontally onto the photodetector ariay in plane P3. Hence, the vector detected by
the array in plane Pj is given by WxF Many other architectuzes for and applications of optical
matiix/vector multipliers can be found elsewhere [54]

Figuie 2: Basic optical matiix/vector multiplier

Once Wx* is obtained, we can cairy out the tequited subtiaction of the thieshold vector t
and the hard clipping operation in electronic hardware This produces x*1 which can be used
as the input for the ariay in plane Py for the next iteration. The basic iteiative optical ma-
tuix/vector multiplier has been the focus of much attention for several years A good sumiary
of its applications, algorithms, and aichitectutes can be found elsewhete [55]

Any of the associative memory schemes using eq (2) for 1etrieval can be implemented
using the matrix/vector multiplier in Figuie 2. In fact, the fisst optical implementation [14] of
the Hopfield memory was caitied out this way However, theie ate several limitations to this
architecture The need for conversion between optics and electionics slows down the system
even though the computationally intensive matiix/vector multiplications can be caitied out
1apidly The encoding of the mask W in plane Py 1equites that it be computed off-line Thus,
every time a new input is to be stored, we need to tecompute the entiie W If W is going
to change frequently, we need to use transmittance masks which can be externally addressed
Such devices ate known as Spatial Light Modulatois (SLMs) What we need for plane Py is a
lage sized, 1apidly addiessable, 2-D SLM While these exist, they ate expensive Advances in
2-D SLMs such as the magneto-optic spatial light modulato: [56] and the Texas Instiuments
Deformable Miiror Device (57] are definitely going to help this implementation

A significant advantage of the outes product associative memouies is that the vectols aie
stoted in the entite matiix W in a distiibuted fashion Therefore, damage to W (e g, setting
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some elements of W to ze1o) degrades the 1etiieval gracefully Similaily, quantizing the dynainiq
1ange of W to a few bits may not be a big pioblem Since some of the available 1eal-time 9.7y
SLMs can accommodate only two levels, this is certainly convenient.

5 INNER PRODUCT ASSOCIATIVE MEMORIES

In Section 4, we showed how the Hopfield associative memoiy can be implemented using an
outer product scheme However, it can also be implemented using an inner pioduct method:
To see this, let us substitute eq (9) in eq (2):

<FL = Gen[WxF — t]

M
Sgal{d xx D 3x* — ]

=1

M
Sgn[z afx; — t] (10)

=1

i1

whete the coefficient a¥, i=1,2, ,M,isgiven by the inne: product (x7x*) between the i-th
stored vector and the estimate of the 1ecollection vector at the k-th iteration In this appioach,
we obtain Wx* by fitst determining the inne: pioducts af for i=1,2, ,M and then using
these in foiming the linear combination ™M, aFx; A basic optical implementation of this is
shown in Figuie 3.

Figure 3: A basic optical implementation of inner product associative memory

The piobe vector x is placed in the laser diode aniay in plane Py This light is then imaged
hotizontally and expanded veitically onto the mask in plane Py This mask has M 1ows and
N columns with each 10w 1epiesenting one of the stoied memory vectois The light leaving
plane P is imaged vertically and focused horizontally onto the detector a11ay in plane Pg The
vector detected by P3 is given by a = [a3 az . ap)T The inner products are then used to
modulate a soutce atiay in plane P3 The light fiom plane P3 is imaged vei tically and expanded
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hoiizontally onto the mask in plane P4. The masks in planes Py and P4 aie identical Finally,
the light leaving plane Py is focused veitically and imaged hoiizontally, yielding Wx as desited
The subtraction of the thieshold vector t and the nonlinea:r hard clipping operation aie cariied
out electionically. Since the same masks aie used in planes P9 and Py, we can use a mitor in
plane P3 to avoid needing two 2-D spatial light modulators

Consider the case where we set the maximum among {a1,a2, ,an} to oneand the others
to zeto When the stoled vectors and input piobe aie binary bipola: (e g , elements ate +1 o1
—1), maximizing the inne1 pioducts is equivalent to minimizing the Hamming distance between
the ptobe x and the stored vectois. Thus, the inner product associative memory will select
the nearest neighbor fiom among the set of stored vectors This obseivation was used [24] to
suggest an associative memory scheme that is guaranteed to conveige to the neaiest neighbor.
Selecting the maximum fiom the inner products is only one example of a nonlineaiity Other
nonlinearities [27,58] have been pioposed for use in this aichitecture

One of the advantages of the inner product associative memoty is that it is easy to add
new vectois and delete old ones simply by adding 10ws and deleting 1ows In contiast, we need
to compute new memory matiices for outer product implementations However, each stored
vectol is in a sepatate 10w of the medium and is thus not 1epiesented in a distiibuted manner.
Hence, inner product associative memoties do not provide good fault tolerance The storage
capacity, on the other hand, can be laige compared to that of outer product memories

Highe1 o1der associative memoties [48,49,50] can provide increased storage capacity because
of the increased number of degiees of fieedom available These higher o1der associative memoties
can be implemented using the inner product method in Figuie 3 provided the inner piroducts
a;, 1=1,2, ,M,aiepassed thiough a suitable nonlinearity Using a squaie-law nonlineaiity
produces quadiatic associative memories [59,60] and using a maximum finding nonlinealily
produces neaiest-neighbo: finding associative memoiies [24] Howevel, as stated befoie, inner
product associative memoiies are unattiactive since they do not provide the fault tolerance that
is characteristic of useful aitificial neuzal networks

6 HOLOGRAPHIC ASSOCIATIVE MEMORIES

The use of holograms as associative memoties has been well known to optical processing 1e-
searchers for many years Much of the eailier use of holograms was in their ability to 1econstiuct
3-D images and their ability to encode complex-valued spatial functions on a medium capable
of 1epresenting only positive-valued functions This latter piopeity was paiticulaily useful for
optical matched filtering [61] Ieie our interest is in the hologiam’s ability to 1econstiuct one
of two wavefionts when given the other

Let us consider o simplified version of the hologiam synthesis process As shown in Figue 4,
imagine two wavefionts incident on the medium in plane Py One of these is a plane wave of
light (at an angle to the optical axis) indicated by Ke=7%%, whete o is 1elated to the angle The
other wavefiont S(z,y) contains the complex vaiiations to be encoded on the hologiam
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Figuie 4: Hologram 1ecoiding piocess

To be able to form a useful hologiam in plane Py, the two wavefionts must be coherent
Roughly speaking, this means that the light is monochiomatic and both wavefionts must have
the same original light soutce Also, the two paths must have appioximately the same length
Otherwise, we do not get inteiference in plane P; When all the above conditions aie met, the
intensity incident on plane Py is given by:

| S(z,y) + Keie= |2
|S(z,y) 2 + K? + KS*(a,y)e7’® + ES(z,y)et™* (11)

Iz, y)

it

It

whete the supersciipt asteiisk indicates complex conjugation The intensity I(z,y) in eq (11)
is positive, yet it encodes the complex wavefront S(z,y) The medium used in plane Py will
have a t1ansmittance t(z,y) that is proportional to I(z, y)

Hologram

Kexp{-jouz}

5(z,v)

(I(? +15 (=, y)l2> exp{-jaz}
t(z,y)
5*(2,y) exp{-j20z}
Figure 5: Rettieval fiom a hologram using the 1eference as the piobe wavefiont.

To 1etrieve the wavefront S(2,y) fiom the hologram t(z,y), we 1eilluminate it by the plane
wave [(e=1%® (same 1eference wavefiont that was used in the hologram recording process) The
light leaving the hologram in Figuie 5 is then given by:

t(z,y) Ke io®
K1(z, y)e‘j”
K(K*+ | S(z,y) |P)e 7% + K28(x,y)e %% + K2S(w,y) (12)

O(z,9)

il

It

il




229

where we haveignoled some piopoitionality constants As can be seen fiom Figuie 5, the desized
complex wavefiont $(z,y) emerges sepatated from the others In some sense, the hologiam has
1ecorded the association hetween the 1eference wavefiont Ke 7%% and the object wavefiont
S(z,y) Thus, we can 1etiieve the object S(z,y) by using the 1eference as the piobe wavefront
On the other hand, if S(z,y) is used as the piobe, then the output will have thiee terms, one of
which is K| §(z,y) [? e7%® This is a distorted version of the 1eference wavefiont Thus, we
can use either of the two wavefionts Lo generate the other However, only plane wave probes
lead to undistoited 1ecollections These ideas were o1iginally suggested by Gaboi [62,63,64]

The above explanation of the use of hologiams as associative memoties tieats the hologiams
as static However, it is essential that we use dynamic hologiams in order to leain new associa-
tions Also, it is impoztant to use volume hologiams [65,66,67] to take advantage of the packing
density in optics and to utilize the 3-D attiibutes of optics

The best mateiials fo1 use as dynamic hologtams aie phototefiactive ciystals [68,69,70] In
these crystals, the 1efiactive index of the mateiial changes as a function of the incident inten-
sity. Thus, the weights to be used fo1 associative mappings can be easily changed externally
However, one setious problem is that these weights may change duting the 1etiieval stage This
can tesult in “forgetting” of the associations duting ietiieval Also, the cuiient generation of
phototetiactive caystals sufler fiom crosstalk (noise) between stored mappings and 1equite high
light intensities fo1 adequate speed perfoimance Much 1eseaich effort is underway to alleviate
these pioblems

7 A COMPARISON OF FOUR ASSOCIATIVE MEMORY
MODELS [71]

Associative memories ate attiactive because they can provide fault tolerance and exhibit the
ability to1etzieve complete information from incomplete o1 noisy versions of stored information,
In this section, we present an abbieviated version of a detailed study {71] conducted to compate
four associative memoiy models 1om the above consideration These models aie: Hopfield as-
sociative memory, Generalized Inveise, Spectial method, and Ho-Kashyap associative memory,
All these were intioduced in Section 3, and heie we confine ow attention to compaiing them
using computer simulations We have not induded many other impoitant memoly models in
oul compatison since that would make this too long Ou1 main objective is to provide a simple
methodology for comparing these associative memaory networks

7.1 Details of the Simulations

The goal of the simulations was to deteimine the 1etiieval performance as a {unction of
the number of stored veclors M, the corruption level (added noise) of the probe vector, and
damage to the memory matiix The memoty matiix W was damaged in iwo different ways. In
the fizst, some matiix elements (1andomly selected) weie set to zero This simulated the loss of
interconnections In the second, the matiix elements wete quantized to vatious number of bits
We felt that this was a more 1ealistic simulation of the hatrdwaie storage 1equitements for an
associative memoty

The evaluation of the 1etiieval peiformance of associative memouies is 1ather tiicky Two
different evaluation stiategies were used In the fitst (called Test Piogiam - Strict or TP-S),
we examined the maximum number of bits we could corrupt in a piobe vector and still achieve
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100% 1etrieval The results from TP-S give some idea of how each memory model would perform
in situations that demand peifect 1etiieval In the second test (called Test Piogiam - Loose
o1 TP-L), we determined the percentage of piobe vectors that converged to within a specified
Hamming distance of the coirect output vector TP-L is a more 1ealistic measuie for e"'&hlating
neutal network associative memotries

The memory vectois to be stored wete of length N = 50, and each bit was set tandomly. to
+1 o1 —1 with equal piobability A total of 30 vectois weie used, with an average Hamming
distance of 24 79 and a standaid deviation of 3 44. If two binary, bipolar vectors of length 50
ate orthogonal, their Hamming distance would be 25 Therefore, the vectois 1epiesent a set of
almost orthogonal vectois.

For TP-S evaluations, we selected one of the stoled vectors as the piobe vector and inverted
k bits 1andomly The value of & 1anged fiom 0 to 30 We probed the network 25 times with
the chosen piobe vector If the coirect vector was 1etiieved in all 25 atiempts, we moved on
to a higher & value Fo1 any k, even if one of the 25 tiials results in a wiong 1ecollection;,
then that & value indicated the maximum piobe vector corruption tolerable After all possible
piobe vectois wete tested, we averaged the k values for each choice of M, the number of vectoyg
stored.

In TP-L evaluations, the pirobe vector was corrupted just as above However, when the
network converged to a vector, its Hamming distance friom the correct 1ecall vector was de:
tetmined This was used to deiive the percentage of probe vectois that fell within a specified
Hamming distance of the cortect stored vector

7.2 Discussion of Results

In this subsection, we piovide an abbieviated discussion of the 1csults presented elsewhere
[71] To stait with, we show in Figue 6 the maximum number of bits that can be corrupted
in the probe vector and still achieve 100% 1etiieval In Figuie 7, we show simila: 1esults when
the matiix was damaged by 50% (i e , half the elements weie set to zero) The 1esults obtained
when the matiix elements were quantized to one bit (i e, 2 levels) aie shown in Figuie 8 The
50% damage and 1 bit quantization weie combined and the tesults are shown in Figuie 9

The results in Figuies 6-9 suggest that the fault tolerance to piobe vector corruption de-
creases as we t1y to pack moie vectors into the memory As the memory matiix is damaged;
the 1etrieval fidelity diops as mozie vectols ate stored With no quantization o1 damage (Figure
6), the Ho-Kashyap method seems to piovide a definite fidelity and capacity advantage over
the other schemes The Generalized Inveise and Spectial method peiform slightly below the
Ho-Kashyap, while the Hopfield model displays a substantially lower stoiage capacity As the
amount of matiix damage and quantization incieases, all the networks begin to exhibit a de-
graded 1esponse cuive, with the Ho-Kashyap detetiotating most At the one bit quantization
level, the Hopfield netwoirk has a slightly better 1esponse cuive than the otheis However, the
stolage capacity is so low that small differences in 1etiieval fidelity have little meaning

In Figute 10, we show the peicentage of piobe vectors that converged to within five units
(Hamming distance) of the coitect vector when the piobes wete coriupted by 0 bits, 6 bits,
and 12 bits We show similai 1esults in Figuie 11 (wheun the matiix is damaged 50%), Figure
12 (when the matiix is quantized to one bit), and Figuie 13 (when the matiix is damaged 50%
and quantized to one bit)

On the average, the number of vectors that conveiged to within five units of the correct
1ecollection decieases as M is incieased As seen before, the Ho-Kashyap method peirfoimed
well in the absence of memoiy damage and quantization However, its peifoimance degiaded
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significantly in the piesence of noise Owveiall, the performance of all four methods appeays
to be similal in the presence of severe matiix damage and quantization Therefote, the many
associative memoty models pioposed appeai to piovide no appieciable advantages over t}e
Hopfield method when we take into account the desirable fault tolerance attiibutes.

8 CONCLUSIONS

In this chapter, we piesented the basic methods and motivations fo1 the use of optical asse:
ciative memories The motivations include: possibility of laige sized neural netwoiks because of
the 3-D nature of optics, full global inteiconnectivity, and the compatibility of the low acculacy
of optical piocessois to the 1equirements of neuial networks However, thele ale many other
issues and methods [72-79] we did not discuss heie for 1easons of bievity We advise the 1eade;
to consult the extended 1eference list we have provided

The success of optical neural computers will ciitically depend on advances in the following
areas

¢ Impioving photoiehiactive SLMs,
e Betler understanding of the associative memory algorithms

e Impioving the inteiface between optical and electionic hardwaie
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ARTIFICIAL NEURAL NETS IN MOS SILICON
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1. INTRODUCTION

Models for neural nets have been proposed since the work of McCulloch and Pitts
{25] in 1943. A new turning point of modeling of neural nets came in the carly 80’s with
the publication of the works of Hopfield and his coworkers [15, 16, 17, 18, 19] and the
works of Rumelhart et al [30]. These works evolved from earlier works*[1, 8], but have
given the field a broad exposure and motivated (or convinced) new (engineering) research-
ers of the potential and feasibility of Artificial Neural Nets (ANNs). The cumulative
efforts have led to the formulation of a basic configuration of a class of feedforward and
of feedback neural nets [1, 5, 8, 15-19, 30] with certain interesting properties. Various
analytical methods have been reported in the literature with a high degree of mathematical
rigor [27-29, 36, 38, 41, 44]. These particular analyses have led to proper designs of feed-
forward and of feedback neural nets. Yet implementation in large scale have continued to
be an obstacle to the practical utility of ANNs. It is believed that implementation in large
scale will be the vehicle through which the computational powers attributed to neural net-
works would be revealed.

The crux of the point is that it is essential to ensure that the models and analytical
methods introduced for neural networks are suitable for the medium of implementation.
Conversely, models which lend themselves naturally to implementation via some chosen
medium, ought to have sound analytical support for their dynamic properties. Conse-
quently, one should merge and adopt discoveries and tools from neuro-biology, dynamical
systems theory and mathematics, computer science and engineering, physics, and the likes,
in order to develop information/image processing machines inspired by neurobiology that
mimic the neural net capability in rea! time.

From an engineering prospective, implementation may be viewed in two ways: via
software and/or via hardware. In our view hardware implementation is superior because
the mechanisms driving (models of) neural networks would then be directly realized, and
suitably adapted, into parallel large scale integrated hardware. Consequently, the medium
of implementation would be exploited to its optimum limit,

In hardware implementations, there are now two obvious media: (i) optics, (ii) elec-
tronics or silicon. In addition, one may consider any appropriate combination of the two
media known under the name electro-optics. Our implementation focus here is on electron-
ics, and specifically on the well-developed and standard technology of MOS silicon
integrated circuits We shall restrict our discussions to particular digital and/or analog
VLSI/LSI implementations. In doing so, we realize that we will not, and cannot cover
many other interesting and promising implementations,

The interest in hardware implementation has been revived, to a large degree, by the
wotk of Hopfield and his coworkers (15-19]. In [19], Hopfield and Tank proposed the
applicability of feedback ANNs to the design of A/D converters, signal decision circuits,
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and linear programming circuits. The ANN is realized as a number of Operation]
amplifiers connected via variable (linear) resistors. The input of each operational amplifie;
is connected via a resistor to the non-inverting (inverting) output of another Operationg]
amplifier if the latter amplifier is excitatory (inhibitory). Consequently, for each Neuron
there are non-inverting and inverting amplifiers. Also, in general, the number of variable
(programmable) resistors (referred to as the synaptic weights) is equal to the Square of the
number of neurons. That is, for an n—neuron interconnected ANN there are 27 amplifiers
and n? variable resistors or potentiometers.

It has been emphasized that large number of neurons are needed in an ANN to pro-
duce emergent useful computations in the neural network sense. Since then, many workers
have sought to implement the feedback (and the feedforward) ANNs using VLSI/LSI sili.
con electronics. The input-output function of a neuron, which is usually a (differentiable)
monotone sigmoid function, can be easily implemented in VLSI/LSI by an amplifier or B
two logical inverters in series. A major obstacle, however, has been the VLSI/LSI imple-
mentation of the variable linear resistors (or artificial synapses).

ANN hardware based on the silicon MOS VLSI/LSI technology is actively being pur-
sued by several research groups. Hubbard et al. [20] demonstrated a thin film synaptic
array in submicron feature size fabricated by e-beam lithography. Selectively deposited
amorphous silicon resistive elements at the nodes provide the resistive array synaptic con-
nections which will be useful as an associative read-only memory. Sivilotti et al. [48]
had fabricated a programmable neural network chip with twenty-two neurons and +1, 0,
and -1 synapses. This circuit is designed to perform on-chip learning by employing a
truncated version of Hebb’s rule. Pursuing a different approach, Mead ef al. [26] have
integrated sensor arrays and processing elements to emulate some of the spatial and tem.
poral propertics of neural networks in the retina of the (human) eye. Researchers at Belj
Labs [11] have fabricated a 54-neuron CMOS chip with programmable +1, 0, and -1
synapses. Such an implementation uses static RAM cells as prespecified memories. The
desired data are stored as the synaptic weights of the rows of the interconnect (matrix).
The circuit will perform the inner product of the incoming data and the rows of the synap-
tic weight matrix. The resulting inner products are passed through respective sigmoidal
nonlinearities. The resulting largest output indicates that the incoming data is closest to the
desired vector stored in the corresponding row of the synaptic weights. (This is a winner-
take-all circuit.) Sage ef al. [28] at MIT Lincoln Laboratory developed chips based on
Metal-Nitride-Oxide-Semiconductor (MNOS) and Charge-Coupled Devices (CCDs) tech-
nology. Such an implementation would achieve analog synaptic weights via variable
charge storage. Recently, one VLSI chip from Intel [14] was implemented with fully ana-
log circuitry operating in a deterministic manner. Since digital circuits have proven them-
selves in standard VLSI, there is another chip [58] which was implemented with fully
digital circuitry operating in a stochastic manner. Learning, however, is delegated to off-
chip algorithms in the last two chips.

Here we describe our prospective regarding some research activities on the silicon
implementation of ANNs. Our prospective has transpired from our extensive review of
reports, papers, and products pertaining to aspects of neural theory, analysis, implementa-
tion, and developments. Based on our extensive review of the literature as well as our own
activities, we delineate some observations in the following remarks:

(1) There are still some problems pertinent to silicon VLSI implementation of ANNs. For
instance, in order to retain robustness to imperfections, to noise, and to temperature
effects, the (analyzed) neural models must be faithfully mapped onto the VLSI elec-
tronic chips. If models are not (or cannot) be mapped faithfully, on the other hand,
then it is essential that the introduced modifications are consistent with the formula-
tion and the "spirit" of the analytically verified neural models. Such consistency
would ensure the robustness and preservation of the functionality and the propeities
attributed to neural networks.




245

Most of the existing implementations have not faithfully mapped the neural models
into the domain of implementation, be it digital, analog, or hybrid silicon electronic
circuits. Some researchers also appear to minimize or totally ignore the serious desta-
bilizing and damaging effects of some introduced modifications. More often than not,
the final designed product does not and cannot exhibit neural-like behaviors.

This, we believe, will have negative consequences. It would generate wrong and
sweeping conclusions about the whole area of neural nets and its implementations
Many, who may be unfamiliar with the dynamics of neural nets, will attribute the
limitations and the shortcomings of the (unjustified and/or unfaithful) implementa-
tions to limitations and shortcomings of the theory of neural nets.

The above two remarks are of a serious nature when one considers dynamic (non-
linear) neural net models (and all the silicon VLSI implementations are dynamic due
to the ever-present parasitic capacitances). The statements are even more serious
when one includes leaming algorithms into these implementations,

It is appealing, but also necessary, to build neural modules which will be compatible
and may be integrated into a functioning system. However, because of the presence
of feedback (which occurs in the structure in feedback neural nets and via the learn-
ing in feedforward neural nets), systems issues of stability, convergence, and robust-
ness will be dominant.

One may suggest models without any learning. We believe that such suggestion
would not lead us too far. We believe, neural network research is unique because,
among other things, it introduced dynamic changes to data or because it incorporates
learning in the process. Learning thus is an essential attribute of the area of neural
net which ought to be emphasized. It is the one subject that is needed the most, yet it
is understood the least.

Our own research has focused on developing basic cells in all-MOS analog subcir-
cuits as building blocks for the analog silicon implementation of ANNs. Some of our pub-
lished works has adopted a systems-level approach whereby modules are built to be
integrated into a neural network system, e.g., see [59]. We have focused on all-MOS
design of vector-vector multipliers as basic cells, see e.g. [35] and Section 3. We have
designed layouts for all-MOS feedforward ANNs with learning capability based on the
vector analog multiplier cell [43]

The chapter is organized as follows. Section 2 presents a digital CMOS VLSI imple-
mentation of a 4-neuron circuit. We use the static RAM cells to store the synaptic weights
and off-chip learning rules on a host (Personal) computer. This section describes our first
experiments with implementation which enhanced our understanding and suggested the
necessity of the analog pads as opposed to the conventional digital pads common in digi-
tal circuits. Section 3 presents our implementation of ANNs employing the basic cell of
the all-MOS analog vector-vector multiplier. We have successfully demonstrated the
implementation of our modified learning rule [44, 47] which is suitable for the silicon
implementation. Section 4 presents our focus on the natural building block of the CMOS
silicon technology, namely, the MOS Transistor. We use the (nonlinear) four-terminal
transistor as the building block or the basic analog cell for constructing artificial neural
circuits. The main neural circuit was proposed and constructed based on solid analytical
base [33, 37, 42] while other implementations are demonstrated via SPICE simulations of
prototype circuits [59]. Due to space limitations, we focus on the latter implementations
and refer the reader to the literature and Section 4 for the former implementations. Section
5 summarizes our conclusions.
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2. A DIGITAL CMOS VLSI IMPLEMENTATION OF A 4-NEURON
CIRCUIT

A Hopfield-type neural network has been implemented and fabricated using standarg
CMOS VLSI technology with MOSIS 20 pm, n-well process in a 40-pin TINYCHIp,
This chip is implemented with the mixture of the analog and digital VLSI technology. A
neuron is implemented with two CMOS push-pull inverters in series and a connection ig
implemented with a CMOS pass-transistor, which is controlled by its own Tij cell, T:.
cells are implemented by using static RAMs (SRAM). Learning is performed by a hogt
computer, After learning, synapse weights are loaded through input pins and stored at T;;
cells with -1, 0, and +1 correspond to the inhibitory, open, and excitatory operations,
tespectively. We have used various learning rules [45], including the Hebbian rule.

2.1. Artificial Electronic Neural Circuit

A silicon implementation of the neural network proposed by Hopfield is describeq.
An artificial neural circuit has been implemented using standard CMOS VLSI technology:
A block diagram of an artificial neural circuit is shown in Figure 2.1. This contains 4 sub:
blocks: control circuits and a column decoder, amplifiers, T;; cells, and a row decoder.
The control circuits and a column decoder subblock is used to store a synapse weight in a
T;; cell, to initialize an input of a neuron, and to read the output of a neuron after conver-
gence. This subblock is very crucial to implement the neural circuit since the large number
of neurons in a typical neural circuit usually exceeds the number of pins on a standard
chip.

Confrol Signals & Address

Control Circuits &

Inputs & external inpuls——# s Decoder

- Outpuls

Amplifier & Buffer

nxn

Figure 2.1 The block diagram of a neuzal circuit

For example, if a neural circuit is designed with 32 neurons, then more than 20 pins can
be saved by using 4 /0O pins with one 3x8 column decoder instead of 32 I/O pins. The
T;; cell subblock consists of CMOS analog pass transistors and 2n% SRAM cells for an
n‘neuron circuit. The row decoder part has k address inputs and one k x 2% row decoder
for n-neuron circuit, where 2¢ > 2n and the decoder is used to select the corresponding
row T;;-cell, An amplifier is used to function as a cell body and is implemented with two
CMOS/ inverters in series. In the next subsections, the implementation of a 4-neuron cir-
cuit is discussed in detail.
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2.2. Implementation of a 4-Neuron Circuit
An artificial electronic neural circuit with 4 neurons is designed with MAGIC
(University of California at Berkeley) VLSI tools and is fabricated by MOSIS (University
of Southern California) 2 0 microns, n-well process in a 40-pin TINYCHIP padframe 34
ins out of 40 pins are used in order to test this chip more conveniently after fabrication;
Tt should be mentioned that 23 pins suffice for our circuit design, however. Figure 2.2
shows the 40-pin TINYCHIP padframe including the design project; there are approxi-
mately 630 transistors in this project

Vdd Vo ELEL, V3 Gnd Iy EI, I, V, vad

FEE R

L 2 23

L % sel
EL SRR q
Vi j.g d
ex_sel | ‘*}g )
2 $HE o

ay ""_‘}_g dg
el -
desel s dg

Gnd Uy U uz vdd ¢1 ug d7 Gnd
Figure 2 2 The 4-neuron circuit on a 40-pin TINYCHIP padfiame

2.3. The Architecture of the 4-Neuron Circuit

The architecture of the 4-neuron circuit contains control circuits, 4 amplifiers, one
3x8 row decoder, and 16 programmable T;; cells. Each amplifier consists of two push-pull
inverters connected in series, which are used for excitatory and inhibitory processing and
each T;; cell is composed of 2 static RAMs (SRAMs) and CMOS analog pass transistors.
A 3x8 row decoder is used to select one column of 4 Tj; cell columns and each Tj; cell
column consists of two columns, one for excitatory connection storage and the other for
inhibitory one (See Table 2.1). For example, when (a, a; ag) = (1 0 0), the input vector
(Il 12 13 14) is stored in the le cell COlumﬂ, (T13 T23 T33 T43)‘.

Learning is performed by a host computer. After learning, a host computer stores the
modified synapse weights into the corresponding T;; cells with three different interconnec-
tion weights (-1, 0, +1), where -1 corresponds to inhibitory processing, +1 to excitatory
processing and 0 to an open connection. Through these T;; cells, the output of an
amplifier can be connected to the input of any amplifier in the circuit. Figure 2.3 shows
the connection between the output of the amplifier j and the input of the amplifier i with
a pass transistor and SRAMs. Here the stored datum in each Tj; cell is applied to the gate
of the pass transistor to allow proper connection between the output of the amplifier j and
the input of the amplifier i, where the pass transistor works as a resistive device between
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Table 2,1 Selection of 3x8 Row Decoder

L 1, I, I,
Ty Ty Ty Ty
Ty Ty T3 Ty
Tp Ty T; Ty
Ty Tpn -Tn Ty
Ty Ty T3y Ty
T3 Ty Tz Ty
Ty To T Ty
Ty -To Tz Ty

)
[ &)
1)
i
)
=)

bk ke el DO OO
[l == R e B e B e
OO OO

two amplifiers. In case of excitatory connection, Tj; = 1, the noninverting output of the
amplifier j, V;, is connected to the input of the amplifier i, u;, for inhibitory processing,
Ti; = -1, the inverting output of the amplifier j, —V;, is connected to the input of the
amplifier i, u;, and for open connection, T;; = 0, the output of the amplifier j is not con-
nected to the input of the amplifier i.

Ui

SRAM SRAM
I‘]-j= +1 T=-1

Figure 23 A SRAM cell interconnect (Tij)

The voltage of an input line of an amplifier is determined by the sum of the currents
flowing into the line, which is zero here since the input of each amplifier circuit is a gate
of a transistor.

A threshold value is adjusted by choosing an aspect ratio (W/L) of the nMOS and
the pMOS transistors of the inverters since the input/output characteristic of an inverter is
a function of the aspect ratio of MOS transistors. Here 3.0/3.0 and 4.0/2.0 are chosen for
the aspect ratio of nMOS transistors and the pMOS transistors, respectively.

2.4. SPICE Simulation and Chip Test

SPICE is used to simulate this 4-neuron circuit and the results for 2-neuron, 3-
neuron, and 4-neuron circuits are shown in Table 2.2. Table 2 2 shows that these neural

circuits act like majority-vote when the T;; cells are set to 1 for all the off-diagonal terms
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and O for the diagonal terms. In this simulation, this 4-neuron circuit converges to logical
value (0000), when it is initialized with two 5 volts and two zero volts. This is due to the
threshold voltage of the double inverter, which is 2,65 volts in this design. If a different
aspect ratio is chosen, then a different threshold value will be obtained since this threshold
voltage is a function of the aspect ratio. For example, if the threshold value is chosen to
be less than 2.5 volts, then the circuit will converge to logical value (1111) when initial-
ized with only two logical high.

The fabricated chip has been tested with the TOPAZ VLSI digital testing system and
its results were compared to the SPICE simulation. First, this chip is tested with each sub-
block (Figure 2.1): the amplifier part, the external input part, and the 3x8 decoder part.
The test of the amplifier part results in O output for O input and 1 output for 1 input. This
shows that the amplifier part works correctly. The test of the external input part is done by
measuring the input of a neuron by applying external inputs. This part works correctly
since the expected output values are measured. The 3 x 8 decoder part has been tested by
measuring the outputs of the decoder by applying all the possible addresses This part
works correctly also since the corresponding output of the decoder is 1 and all the other
outputs are 0.

Finally, the whole circuit is tested by applying test vectors. Table 2.2 shows the
results of the chip test and those of the SPICE simulation. This shows that the expected
outputs can not be measured by applying test vectors, There are three possible situations
whete this chip might generate errors. One possible source of error is that the SRAM may
not function properly by either not storing the synapse weight or failing to supply the
weight to turn on the pass-transistor connection. However, the SPICE simulations, based
on the parameters provided by MOSIS, verify that the well-understood SRAM operation
cannot be the source of errors. Eventually, after numerous tests, we concluded that the
source of error may be due to the use of conventional digital pads for the fabrication of, in
reality, an analog neural circuit. We note that digital pads consist of protection and buffer
circuitry. When initialized (then disconnected), the buffer circuitry retains the initial vol-
tages and interacts with the neural circuit to generate transient dynamics of the coupling
which may differ from the transient dynamics of the neural circuit alone. This finding had
prompted us to use analog pads in all of our subsequent designs.

2.5. Discussion

A 4-neuron circuit has been simulated, implemented, and tested, in order to under-
stand how a neural circuit works, what kind of relationship exists between computing ele-
ments and conductance elements, and what sizes of transistors are more suitable. This
understanding has encouraged us to pursue and propose larger designs which would
include analog pads.

3. ANNs USING ANALOG VECTOR MULTIPLIER BASIC CELLS

A crucial element in implementing the available models of ANNs in silicon hardware
is the implementation of the programmable (linear) synaptic weights, In addition to imple-
menting synaptic weights, vector-vector multipliers are also useful in realizing components
of certain learning algorithms. We describe a successful implementation based on analog
vector-vector multipliers. We first describe the design of the vector-vector multiplier as a
basic cell. Then we incorporate the basic cell multiplier in the implementation of feedfor-
ward ANNs with learning.
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Table 2.2 Chip

and 0(7)0(7) means that there are two pos

a) 2-Neuron circuit with 7 = [_11 -1 ]

Test using TOPAZ and Circuit Simulation using SPICE (unit: hex number
sible states, i.e., 00 or 77.)

Initial Condition TOPAZ SPICE
iliO Uilg ViVg uilo ViV
0 0 0 0 0
1 0 0 1 1
2 0 0 2 2
3 0 0 0 0
[ 011 }
b) 3-Neuron circuitwith T =1 0 1
1160
Initial Condition TOPAZ SPICE
isiqig Lol VoV Vg | Uoljlig VoVi¥
0 0 0 0
1 o) o 0 0
2 0 0 0 0
3 7(0) 7(0) 7 7
4 o7 o7 0 0
5 07 o7 7 7
6 o) oD 7 7
7 7 7 7 7
0111
¢) 4-Neuron circuit with T = % (1) (1) }
1110
Initial Condition TOPAZ SPICE
i3i2i1io Ullol U V3VaV Vg UaUoU U VaVaV ¥V
0 [11(3) OF) 0 0
1 oF) OF) 0 0
2 0 0 0 0
3 F@©O) F(0) 0 0
4 F(0) F(O) 0 0
5 F F 0 0
6 0 0 0 0
7 F F F F
8 0 0 0 0
9 OF) oF) 0 0
A F(O) FO) 0 0
B F F F F
C F(0) F@©) 0 0
D F F F F
E F F F F
F F F F F
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3.1. A Simple Tunable Analog AII-MOS Vector Multiplier

A simple tunable analog all-MOS vector-vector multiplier is implemented [32, 35] for
an artificial neural network with learning [43]. This multiplier circuit is suitable to imple-
ment a synapse in the neural nets since it is simple and can execute a linear multiplication
with small error. The multiplier is depicted in Figure 3.1 and its output is represented by
[35, 43]

e S (Wi - Wi} - X! 3.1
Vm = (WIL),(V,, - V.) Ei( 1~ WX —X3), G.1)

with the following operating constraints
x*-wk2v; >0 foralli,j=12, and k=12,..n

V, - Vr 2V, for all i =12, (.2)
%
W‘; O—JTR—__
&
weo—T 4 .
L
o T L |
L
o——————'_ti—< 'J_ch
AU U sl
W1 X
L™ T
P S—— y Va
W2 o— Vi

Figure 3.1 All-MOS n-D analog multiplier

To satisfy the operating constraints (3.2), the output range of the multiplier would not
match the operating input range. We have designed the multiplier to operate in a small
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operating range in order to reduce errors caused by the variation of the mobility. The
operating range of the multiplier is required to be compatible with the operating range of 5
neuron in order to use the multiplier as an artificial synapse.

There are two problems to be considered for this multiplier in order to implement it
as a synapse in ANNs: One is the multiplier’s driving input to the drain of a floating MOS
transistor, whose input impedance is low; the other is the operating range of the multiplier
and its input-output compatibility. The first problem is solved by employing a voltage fol.
lower. In order to make the operating input range match the output range of the multiplier
and/or increase the operating input range of the multiplier, voltage shifters/attenuators are
employed.

The vector multiplier basic cell, consequently, is designed with additional circuitry
that include voltage followers and voltage shifters/attenuators, which are depicted in Fig-

ure 3.2.
Vxl Vx2

i Volta
VW1 w_shifter Follo‘E':- 1-D Vm
f——-

Multiplier
i Vol
sz w_shifter i Vx
2
Vwi 1-D Vm

Figure 3.2 A 1-D multiplier cell

Two simple level shifter/attenuator circuits are designed: one is for the w; input,
named w_shifter, and the other is for the x; input, named x_shifter. The w_shifter is
designed using four MOS transistors with one bias voltage and the x_shifter is designed
using four MOS transistors. These circuits are simulated using the PSPICE circuit simula-
tor and the results show that these level shifters/attenuators have sufficiently small errors.

3.2. MOS Programmable Feedforward ANN Circuits

3.2.1. A Modified Learning Rule for Feedforward ANNs

A modified learning rule [44], which removes all of the sigmoidal derivative func-
tions, is realized with circuits using MOS multiplier basic cells. The circuit is simulated
using the PSPICE circuit simulator for a prototype two-layer feedforward ANN with leamn-
ing using standard CMOS VLSI/LSI technology.

Two learning circuits are introduced for the implementation of the modified learning
rule. Each circuit is described in a block diagram and its PSPICE simulation results are
summarized. In order to save time and render executable simulations, PSPICE simple
models as well as some detailed models are employed for some of the amplifiers and for
some of the level shifters. The complexity and size of the overall ANN circuit model ren-
dered the PSPICE simulator inefficient 10 execute when the complete detailed models of
all components are included,

The governing static equation of each neuron in a feedforward ANN is expressed as

[30
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N -_—
yi = Sj (.—Elw'ﬁyj + ej ). (3.3)

Here 7; is the output of the j-th neuron in the present layer, wj; is the synaptic weight
connecting the output y; of the i-th neuron from the previous layer to the input of the j-th
neuron in the present layer, ©; is the bias weight connected to the j-th neuron in the
present layer, and S; is the sigmoidal function.

The error function is defined as usual as

1 n

Ep = E “~ (tpj —-‘ij)zv (34)
j=
where ,; is the value of the desired target p for the j-th output component and Yp; is the
j-th output of the final layer when the external input associated with the target p is
applied.

The modified learning rule, given in [43, 44, 47], is expressed for any weight w;; as:
, dS; oE
wip == (57 B -
I au} P awj,

“ MW =M X ey Y~ WiWiis (3.59)
I 4

where if the neuron j is in the output layer, then

€pj = tpj ~ Vpj (3.51)
and if the neuron j is in any hidden layer, then
s B, s
€, = Y, — e, Wi;, .5iii
LA 41, Pk Wkj

where £ is the index for the elements in the immediate subsequent layer, S, is the nonde-
creasing differentiable monotone sigmoid function of neuron £ in the immediately subse-
quent layer. It is also shown that the derivative terms (dS,/di, in (3.5ili)) may be
removed without loss of stability and convergence of the update (learning) law (3 5).

3.2.2. The Sequential-Learning Circuit for Feedforward ANNs

Two different sequential-learning circuit implementations are introduced for two-layer
feedforward ANNs. We discuss these circuits focusing on PSPICE simulation results of
prototype ANN circuits,

The Sequential-Learning ANN Circuit #1

The sequential-learning ANN circuit #1 is discussed in the context of a two-layer
prototype, see Figure 3.3. The realized prototype circuit includes a feedforward static
model and a dynamic learning circuitry implementing the modified learning rule. The cir-
cuit implementation of the static model results in the governing equations

Y1 = Sulka(X w1j%;0) (3.6)
]

Yoo = Su(ko(X waix,))) (3.6ii)
J

¥, = S, (ka(E W12, (3.6iii)
J

where S, () is a sigmoid function of a neuron and k; is a constant associated with an I-
dimensional vector-multiplier basic cell. In (3.6), Yp; and x,; are defined as follows:

Ypj = Xpj =25
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Figure 33 The feedforward ANN with the sequential learning circuit #1

Xp; =Xp; — 2.5,
where Y,; is an actual output of the hidden layer, Y, is an actual output of the output
layer, and X,; is an actual input of the input layer for pattern p. This notation is used

throughout tflliljs chapter.

The implemented learning circuitry of the feedforward ANN is a realization of the
dynamic update equations. The circuitry is governed by:

RCwyy =ky [ty = F19) 1l - Wi (3.7)
RCwyy =ky [ (11 = ¥11) Y12) = o (3.7ii)
RCwy =k wy [ (=) xul —wn (3.80)
RCwip =k wy [ (t11 — F1) X12l — w2 (3.8ii)
RCwo =ky Wip [ (011 — 1) x11l — woy (3.8iii)
RCWay =ky Wip [ (t11 — F11) X12] — waa. (3.8iv)

This learning feedforward ANN circuit is simulated using PSPICE. Four learning
tasks using four distinct input-output patterns are executed separately following this pro-
cedure:

1. For all the executed PSPICE simulation tasks, initialize the dynamic ANN circuit
using the same initial condition. In the case reported here, we set (wq; w1 woy Wo

Wi Wip) = (-0.50.6 -0.5 0.5 0.7 0.5).

2. Each input data and its desired target (ie., the input-output pattern) are applied and
PSPICE transient analysis is then executed. We then measure the steady state weight
values and the output error, namely, T — y.

3. PSPICE dc analysis is executed by setting the weights to the steady state weight
values. Then, we again measure the output error T — ¥,
The results, summarized in Table 3.1, show that this ANN circuit succeeds in learn-
ing each applied desired input-output pattern. When the four input-output pairs are applied
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sequentially, we found that the overall ANN circuit did not retain all prior input-output
patterns which it learned. We also performed sequential PSPICE runs as follows: we ini-
tialize the ANN circuit for an input-output pattern which it would learn successfully by
converging to a set of (equilibrium) weights. We then use the attained (equilibrium)
weights as initial weights for the next input-output pattern. Continuing this process, until
we employ all the input-output patterns and reapply the first pattern again. In this process,
we found that the ANN circuit would learn each pattern that is presently applied, but it
does not necessarily retain other input-output patterns that it has previously learned. The
ANN circuit is also simulated using the PSPICE transient analysis by applying voltage
waveforms for the external inputs X, X,, and the desired T, whose result concurs with the
result in Table 3 1.

Table 3.1 The PSPICE transient analysis results of the feedforward ANN with the sequential learn-
ing circuit #1. The initial and steady state weights are tabulated for each pattern (units are in
volts),

X, 05 05 45 45
X, 05 45 05 45
T 1.0 45 45 1.0
y 181 50 5.0 1.81
T—y -0.81 -0.5 05 -0.81
weights || init, S.8. init. SS. init §.8. init. 5.8.

win || 05 ] 0053 [-05| 002 | -05]-0019 | -05[-0052
Wi 06 | 0053 | 06 | 0019 | 06| 002 | 06 | -0052
wor || 05| 0053 | -05]| 002 |-05|-0019|-05|-0052
W 050053 | 05| -0019| 05| 002 | 05 | -0.052
Wit 07| 0276 | 07| 0168 | 07 | 0168 | 07 | 0276
Wia 05| 0276 | 05| 0168 | 05| 0168 | 05 | 0276

.8 means steady state and init. means initial value.

The Sequential-Learning Circuit #2

The block diagram of the sequential-learning circuit #2 is depicted in Figure 3.4, This
circuit incorporates bias weights and nonlinear terms in the weight equations, in addition
to the circuiry in the sequential-learning circuit #1. The circuit implementation is
governed by the following equations:

RC fu =ky 0Ty yn-Ty (3.99)
RC Typ=ki tnT) yo-Tn (3.9ii)
RC I:u =ky Wy (Y xgy - Ty (3.100)
RC Typ=ky wyy (t;Y )x1p— Ty (3 10ii)
RC Ty =k Wy (ty—F xy — Ty (3.10ii)
RC Typ=ky Wiy (=T xy0 — Top (3.10iv)

and



256

t

Figure 3.4 The feedforward ANN with the sequential learning circuit #2

wij = S(Tl] )

The (incorporated) modified learning circuits for (bias) weights are governed by:
0, +RC 0=k, wy; (¢, - T,) 1 (3.113)
8, + RC 9_2=k1 Wi, —Y,) 1 (3.11i)
0, +RC 0=k, (1, —1,) 1 (3.11iid)
and
0; =5(;).

The circuit implementation of the governing equations results in

Y1 = SpCks(X wijxy; + ©1) (3.12i)
J

Y0 =8, (ks(X wayxy; + ©2) (3.12ii)
J

Y, =5,(ks(Z w13, + ©), (3.12iii)
]

where §,, () represents a nonlinearity for ®; and Wi
This learning circuit is tested using the PSPICE circuit simulator. Learning tasks are
again executed sequentially as follows (Tables 3.2 and 3.3 summarize the results):
1. Initialize the overall ANN circuit with the initial condition given at the top of each
table.
2. The first input-output pattern is applied and the PSPICE transient analysis is exe-
cuted. Then, measure the steady state (equilibrium) weight values.
3. Use this last steady state weight values as initial conditions and run the PSPICE tran-
sient analysis for the next input-output pattern.



257

Table 3.2 (a) The PSPICE transient analysis results of the feedforward ANN with the sequential
learning circuit #2 (w/o amplification) (units are in volts). T is a target and ¥ is an actual output,
The initial conditions are given by

(L11(0) L12(0) T21(0) T(0) T11(0) T1(0) 81(0) 050) §,(0) ) = (0.5 0.5 -0.5 05 0.5 05-05 05 0.5)

(w11(0) w12(0) w21(0) wz(0) #11(0) %12(0) 8;(0) 8,(0) ©1(0) )=(10-10-10101010-10-1.0 1.0).

Column #1 | Column #2 | Column #3 | Column #4 | Column #5

X1 45 1.0 1.0 45 45
X2 45 1.0 4.5 1.0 45
T 0.5 0.5 4.3 4.5 0.5
vy 0.5002 04999 4.501 4501 0.5002
-y || -0.002 0.001 -0.001 -0.001 -0.002

Tn 4210E-04 | 2511E-04 | 2901E-04 | 3817E-04 | 4565E-04
T2 4210E-04 | 2511E-04 | 3817E-04 | 2901E-04 | 4565E-04
T 4210E-04 | -2511E-04 | 2901E-04 { 3.817E-04 | 4565E-04
Tn 4210E-04 | -2511E-04 | 3.817E-04 | -2901E-04 | 4565E-04
Ty 3 410E-03 3.411E-03 | 3.410E-03 | 3410E-03 3 410E-03
T 3.410E-03 3 411E-03 3.410E-03 | 3.410E-03 3.410E-03 .
6, 4.210E-04 | 3304E-04 | 3.817E-04 | 3.817E-04 | 4565E-04
6, 4210E-04 | 3304E-04 | 3817E-04 | 3817E-04 | 4.565E-04
[N -3.269E-03 2.739E-03 | -2.723E-03 | -2.723E-03 | -3.771E-03

wa f -1 -1 -1 1 1
wi || -1 -1 -1 -1 -1
wa || -1 -1 -1 -1 -1
wa || -1 -1 -1 -1 -1
wy || 0.1393 0,1396 -0,1663 0.1663 -0.1393
Wi || 01393 01396 -0.1663 0.1663 -0 1393
e |1 -1 -1 -1 -1
8 || 1 -1 -1 -1 -1
8 | -1 -1 -1 -1 -1

Table 3.2(b) The PSPICE DC analysis results of the feedforward ANN circuit with the convergent
weights in Table 3.2(a). 7 is a target, y; is an output of the hidden layer, and ¥ is an output of the
output layer.

Column #1,5 Column #2 Column #3,4
X1 | X2 | T || Y1 | Y2 y TV | Y| X y TV | %] % y -y
10 | 1.0 | 0550|5000 0.5 50 |50 | 04995 | 0.005 { 50 | 50 | 0.0 0.5
10 | 45 |1 4500 | 00 | 05002 3998 { 00 { 00 | 00 45 00 | 00 | 4501 | -0.001
45 | 10 | 45§ 00 | 0.0 | 05002 3998 [ 00 | 00 | 00 45 00 [ 00 | 4501 | -0001
45 | 45 1 05100 | 00 | 05002 | -0.002 | 0.0 | 00 | 00 05 00 [ 00 | 4501 | 4001
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Table 3.3(a) The PSPICE transient analysis results of the feecdforward ANN with the sequentig
learning circuit 2 (w/o amplification) (units are in volts) 7 is a target and § is an actual output,
The initial conditions are given by

( L1100) L15(0) I 21(0) I 2(0) T'13(0) T12(0) 64(0) 8(0) 8,(0) )= (00 0.0000.000000.00000)

( w11(0) w120 w21(0) w2(0) W13(0) #12(0) 8:(0) 8;(0) B{(0) )= (101.0101.01010101010)

Column #1 | Column #2 | Column #3 | Column #4 | Column #5

X1 45 10 10 4.5 45

b2 45 10 45 1.0 45

T 0.5 0.5 4.5 4.5 0.5

y 05099 04928 4.51 4.51 0.509
-y || -0.099 0.0072 -0.01 -0.01 -0.099

Ty 4 607E-04 | 2507E-04 | -2.85E-04 3 284E-04 | 4.535E-04
T 4 607E-04 | 2507E-04 | 3751E-04 | -2906E-04 | 4535E-04
Ty 4 607E-04 | -2507E-04 | -2 85E-04 3 284E-04 | 4535E-04
Tn 4 607E-04 | -2507E-04 | 3.751E-04 | -2906E-04 | 4535E-04
Th 3 410E-03 | 3411E-03 | 3410E-03 | 3 410E-03 3 410E-03
Ty 3 410E-03 3.411E-03 | 3410E-03 3 410E-03 3.410E-03
6; 4607E-04 | 3.300E-04 | 3751E-04 | 3.824E-04 | 4535E-04
6. 4,607E-04 | 3300E-04 | 3751E-04 | 3.824E-04 | 4535E-04
8, -3.804E-03 | 2.748E-03 | -2.723E-03 | -2.723E-03 | -3.739E-03

wi || -1 1 -1 -1 1
wiz || -1 -1 -1 1 -1
wa | -1 -1 -1 -1 -1
wa || -1 -1 -1 -1 -1
wy { -0.1396 0.1394 -01663 -0.1663 -0 1396
wy li -01396 0.1394 -0 1663 -0.1663 -0.1396
8, -1 -1 -1 -1 -1
e, i -1 -1 -1 -1 -1
8, -1 -1 -1 -1 -1

Table 3 3(b) The PSPICE DC analysis results of the feedforward ANN cizcuit with the convergent
weights in Table 3 3(a). T is a target, y; is an output of the hidden layer, and ¥ is an output of the
output layer

Column #1,5 Column #2 Column #3,4
X1 | X2 T | Y2 y -y Y| ¥ y T=F | Y1 | ¥ y Ty
10110 | 05|50 |50 |00 05 50 | 50 | 04931 | 0.0069 | 50 | 5.0 | 0.0 05 .
10 [ 45| 45|00 | 00 | 05107 39893 | 00 | 00 | 00 45 00 | 00 | 4511 | -0011 i
45110 | 4500 | 00 | 05107 39893 | 00 | 00 | 00 4.5 00 | 00 | 4511 | -0011
45 1 451 05|00 | 00| 05107 | 00107 | 00 | 00 | 0O 05 00 | 0.0 | 4511 | -4011
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4.  After executing the learning tasks for all the input-output patterns, the PSPICE dc
analysis is executed by setting the weights to the steady state weight values. We then
measute their error T -y,

Tables 3.2 and 3.3 summarize the results. The simulation results indicate that this

ANN circuit does not Iearn all the desired targets concurrently.

For example, let’s consider Table 3.2. Table 3.2(a) contains the set of (equilibrium)
connection weights of the feedforward ANN with sequential learning after executing the
PSPICE transient analysis With these weights, the PSPICE dc analysis is executed and
their results are summarized in Table 3.2(b). Note that in Table 3.2(b), column #1,5 means
that the dc analysis is performed using the data of column #1 and the data of column #5
of Table 3.2(a), separately; the identical dc analysis results are summarized in the same
column. In column #1,5, the pattern (X; X, ©)=(45 4.5 0.5) is learned with an error
equals -0.002 and (X X, T)=(10 1.0 0.5) is learned with an error equal to 0.5. In column
#3,4, the patterns (X; X, T)= (1.0 45 4.5) and (4.5 1.0 4.5) are learned with an error
equals to -0.001, and (X; X, ©)=(1.0 1.0 0.5) is learned with an error equals to 0.5; note,
however, that the pattern (X; X, 1) = (4.5 4.5 0.5) is not simultaneously learned.

3.2.3. Silicon MOS Implementation of Feedforward ANNs with Learning

A module chip is designed to implement feedforward ANNs with learning. This
module chip can be used as a building block which may be expanded into a large scale
feedforward ANNs with learning. To increase the number of neurons in a layer (or the
number of the layers), a number of these module chips are connected together vertically
(tespectively, horizontally).

The sequential-learning circuit #2 is employed to build this module chip. Figure 3.5
depicts the block diagram of an n x m module chip, where n is the number of inputs and
m is the number of outputs. Its block representation is shown in the box of Figure 3.5,
where x is an n-dimensional input vector, y is an m-dimensional output vector, ¢ is an
m-dimensional error vector from the next higher layer, and € is an n-dimensional back-
propagated error vector to the previous lower layer.

This module chip consists of two sub-circuits: a feedforward sub-circuit and an
error-back-propagation sub-circuit. The feedforward sub-circuit generates m outputs,
indexed as y;. These outputs are applied as the inputs to the next higher layer or, in the
event they are in the final layer, are used to modify the connection weights, w;; and the
bias weights, 0;, in the error-back-propagation sub-circuit. These modified weights are
applied to generate the back-propagated error signals for the previous lower layer and also
applied to the feedforward sub-circuit.

Figure 3.6 illusttates a simple example of how this module chip can be used to
expand vertically and horizontally. Three nxm module chips are used to implement a
nx2mxm two-layer feedforward ANN with learning. Similarly, when n =km, a
nxkmxm two-layer feedforward ANN with learning can be implemented using kxn xm
module chips.

The input layer consists of just the input voltage nodes, x. The module chips in the
middle form (a) hidden layer(s). All the input vectors in the hidden layer are fed directly
from the external input voltage nodes. The outputs of the hidden layer are applied to the
inputs of the output layer. In the output layer, the desired target vector is applied through
the error vector, e. Then a back-propagated error vector is generated and applied to the
error vector node, e, of the module chips in the hidden layer.

The design of this module chip is critically dependent upon the number of pins of the
MOSIS standard chip package and the design project area. Table 3.4(a) lists the four
MOSIS standard chip sizes for a 2 pm process. Table 3.4(b) summarizes the nxm module
chips when the only limitation is given by the number of pins. The module chip has been
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Figure 3.5 The block diagram of the n x m module chip
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Figure 3.6 nx 2m x m two-layer feedforward ANNSs with learning

designed with the restriction that n is at least three times larger than m.

3.2.4. Remarks and Conclusions

The modified learning rule [44] is employed to implement feedforward ANNs with
learning. Two sequential-learning ANN circuits are implemented and simulated using the
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Table 3.4(a) The four MOSIS standard chip sizes for a 2 wm process

Chip Die Size(wn) | Max. Project Size(mm) | Area Normalization | Price (Quanfities)
Tiny 2540 x 2667 222 x2.25 1 $500 (4)
Small 4826 x 7112 4.6 x 6.8 6.26 $2,500 (12)
Medium | 7112 x 7112 6.9 x 6.8 9.39 $5,400 (24)
Large 8218 x 9779 79x9.2 14.55 $10,900 (32)

Table 3.4(b) n x m Module Chip vs. the number of pins of MOSIS standard chip

Chip | 40 Tiny 40 64 84 108 132
nxm 4x1 4x2 | 12x4 [ 21x6 | 30x10 | 40x 10

PSPICE circuit simulator. The PSPICE results infer that the sequential-learning circuits do
not enable the ANN circuits to learn all the desired input-output patterns concurrently.

We now remark on the possible reasons for the observed inability of the sequential-
learning to concurrently learn multiple input-output patterns. Consider the total squared
error function:

E =l}:E , (3.131)
2 14

where each E, denotes the squared error function for the desired target p given as
1 ..
E, = 5 E (tpl-—~yp]~)2 (3.131i)
i

The sequential-learning ANN circuits are a realization of the error function (3.13ii) for the
particular pattern p considered at that instant. As the pattern p is changed, the resulting
error function E, may or may not retain previous patterns as minima. Consequently, the
weight values that the ANN circuit would converge to are only expected to minimize the
error due to the latest supplied pattern p. This explains the results of the PSPICE simula-
tions where the sequential-learning ANN circuit may not retain all previously learned pat-
terns. It also justifies the necessity of the simultaneous-learning ANN circuits in the analog
implementation of feedforward ANNs. However, simultaneous-learning ANN circuits may
diminish the possibility of implementing such networks in large scale. Consequently, the
choice between the sequential-learning and simultaneous-learning ANN circuits becomes
dependent on a trade-off among basically subjective factors,

4. ANALOG VLSI IMPLEMENTATION OF SYNAPTIC WEIGHTS
VIA SIMPLE MOSFETs

We have used a single nMOSFET as a programmable nonlinear synaptic weight in
the VLSI/LSI MOS implementation of a certain class of artificial neural networks [33, 34,
35]. This nonlinear programmable synaptic weight can be utilized in both feedback and
feedforward neural nets. Particularly, it was first introduced for a new feedback neural
architecture which was proposed in [33, 42]; the proposed ANN circuits have been shown
to exhibit the dynamics of continuous-time gradient feedback neural systems,

4.1. Implementation of feedforward neural nets via simple MOSFETs as synaptic
weights

To implement an all-MOS feedforward (ANNs), a single nMOS tansistor is
employed for the connection (synapse) element [40]. Note that the synapse is nonlinear as
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intended. A one-layer feedforward ANN circuit is depicted in Figure 4.1, where X;
denotes the output of the previous layer, V; denotes a connection weight voltage, and Y
denotes the output of a neuron of the present layer.

lV1 vdd
Xy o—T T
1 V2 v, —d
X; o TT — Y
Vs .
X3 0—TT | ¥n
GND

Figure 4 1 A one-layer feedforward ANN with nonlinear elements

A single nMOS transistor is used as a nonlinear, controllable resistive element by
controlling its gate voltage. Its substrate voltage is connected to the lowest (global) vol-
tage level, V. Consequently, depending on their voltage magnitudes, the roles of the
source and the drain of floating nMOS transistor may be interchanged due to the MOS
transistor symmetric structure.

One pMOS and one nMOS transistors emulate the bias (weight) circuit; the two
MOS transistors are connected to the input of each neuron. The source of the pMOS
transistor is connected to the highest (global) voltage, V,,, and the source of the nMOS
transistor is connected to the lowest voltage, V,,. To generate a more positive bias,
V, =V, is set to low; and to generate a more negative bias, V, = V,, is set to high.

A synaptic weight is taken to be the value of the gate voltage of the MOSFET con-
nections, This value may be stored in an analog storage device in order to supply its vol-
tage to the gate of the corresponding floating nMOS transistor. (Few popular analog
storage devices include: (1) a large capacitance connected to a very large impedance or (2)
the so-called floating-gate device.) The learning process may be executed on a host com-
puter using a suitable learning algorithm. Then the updated weights may be stored in digi-
tal form in memory and loaded to a digital-to-analog converter by its memory controller,
The analog gate voltages are then stored in local analog memories (such as capacitors) and
applied to the gate of each floating nMOS transistor.

This simple "floating” nMOS transistor is suitable for analog VLSI implementation.
We have decoupled the design of the architecture of the network from the development of
a learning scheme that would obtain a set of control gate voltages which would achieve a
certain mapping. Consequently, the learning scheme may be developed off-line or on-line,
via analog/digital VLSI or using a host computer whichever the case may be.

The capability of this feedforward ANN is illustrated by solving the XOR problem.
Two different architectures are used for this problem using two-layer feedforward ANNs
(Figure 4.2). The architecture of these two examples are analogous to the ones described
by Rumelhart et al for the linear weight feedforward ANNs [30].

Figure 4.2 shows two different architectures for solving the XOR problem using
two-layer feedforward ANNs and also includes all the gate voltages for the proper connec-
tion weights, The gate voltage values of the MOS transistors are properly chosen for the
corresponding weights. This two-layer feedforward ANN consists of one input layer, one
hidden layer, and one output layer. The input layer can produce inverting and noninvert-
ing outputs of the external inputs by using double inverters. The hidden layer has one
neuron for one architecture and two neurons for the other. A bias is applied to the hidden
layer and the output layer in order to supply proper threshold value of each neuron.
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(W]

Figure 4.2 Two different architectures for the XOR problem using
two-layer feedforward ANNs

PSPICE simulation is executed to show that these two two-layer feedforward ANNs
can solve the XOR problem correctly. Table 4.1 summarizes the results of the PSPICE

simulation.
Table 4.1 The output of the circuit in Figure 4.2(a) and the expected output of the XOR problem
(unit: volts)

The output of the circuit || The expected output

X, | Xy Y, Y, Y, Y,

00 | 00 045 045 0.0 00

00|50 0.67 50 50 5.0

5010 50 067 50 5.0

50150 045 0.45 00 0.0
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4.2. Implementation of feedback neural nets via simple MOSFETs as synaptic
weights: A Hopfield-type neural net

Simple nMOSFETs used as programmable synaptic weights in the VLSI implementa-
tion of a certain class of ANN has been described in [33, 34, 42]. Here we describe our
use of this (nonlinear) programmable synaptic weights for the VLSI/LSI implementation of
feedback ANNs of the Hopfield model. We remark on the outset that there are yet no
theoretical justifications that preserve the gradient dynamic feature of these new implemen-
tations. As of yet, one can not theoretically rule out the possibility of oscillations or
chaotic dynamics when gate voltages are not constrained by symmetry. One can ensure
the presence of stable equilibria, however. Each synaptic weight in the Hopfield neural
network is implemented by a simple nMOSFET conductance element instead of a pure
resistor. In addition, the neuron is simply realized by CMOS double inverters. The
synaptic weight can now be adjusted via the gate control voltage of the (nonlinear) nMOS-
FET conductance element. The negative synaptic weights can be implemented via con-
necting the complement of the outputs of the neurons instead. Figure 4.3 depicts a proto-
type 3-neuron Hopfield neural network when the connections are nMOSFETs.

Vi3 Vo Vi Vdd
Ug $ E
UL
T33 T32 T31 GND
Vdd

Uy ]—d
Pl s

T21 GND
vdd
o [
T [ [ L
T13 T12 Til GND

Figute 4.3 A prototype 3-neuron Hopfield ANN using simple MOSFETs

4.2.1. SPICE Simulations

SPICE simulations have been conducted for 2-neuron Hopfield ANNs with nMOS-
FET interconnects. The power supplies of this neural network circuit, Vpp and Vg, were
set at 2.5v and -2.5v, respectively. The parameters chosen for this simulation are set at
Vo = [-2“5 2.5 }

G725 250
where VG,-]- denotes the gate voltage of the interconnect nMOSFET in Figure 4.3 and
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C; =10 microfarads (i=1,2). This circuit preserves the same qualitative dynamic
behavior of the circuit with analog multipliers; and all initial conditions eventually con-
verge to one of two stable equilibrium points with the logical representations (+1,+1) and
(-1,-1). Table 4.2 summarizes the SPICE simulation resulfs,

Table 4.2 The SPICE simulation results of 2 neuron Hopfield ANN with nMOSFET interconnects

Initial States

Ve matrix (19V.12V) | (-1.9V,1.2V) | (1.9V,-12V) (-1.9v.-1.2V)

Steady States (measured at input nodes)

[“2255 _2255} (185117) | (:250,250) | (1.85117) | (-250,2.50)
[ EY “2'2-55] 85117 | (250,117 | (18525 | (25.25)

A 3-neuron prototype of the Hopfield neural network with nMOSFET interconnects
has also been simulated using SPICE. By adjusting the gate voltages of the interconnect
nMOSFETs, we have been able to obtain different number of stable equilibrium points,
from the minimum of two distinct stable equilibria to the maximum of eight distinct stable
equilibria, In addition, the circuit also exhibits the dynamic behavior discussed in [36]:
there are two distinct stable equilibria co-existing within a single quadrant of the state
space.

4.2.2. Experiments using discrete components

In order to verify the SPICE simulation, the discrete-component realization of a 3-
neuron prototype of the Hopfield ANNs with nMOSFET interconnects was built in our
laboratory. Every CMOS inverter is one inverter of CD4069UBE chips, which is single
stage and is not buffered. Every n-channel MOSFET conductance element is realized via
a 2N4351 transistor. Table 4.3 summarizes the experimental results. In Table 4.3 we use
binary representation for both outputs of the CMOS inverter for all possible initial condi-
tions. Then we interpret any analog voltage greater than 2.5 volts as binary value 1 and
less than 2.5 volts as binary value 0.

The experimental results are consistent with the SPICE simulations qualitatively.
They show that this ANN circuit has multiple stable equilibria and the number of stable
equilibria can be changed by adjusting the gate voltages of the interconnect MOSFETs.

5. CONCLUSIONS

We have presented the implementation of a 4-neuron circuit using digital CMOS cir-
cuits. SRAM cells are used to store the synaptic weights, a double inverter is used as a
neuron cell, and a CMOS switch is used as a resistive element. This circuit has been
designed using the MAGIC VLSI editor and fabricated via MOSIS. The 4-neuron chip has
been tested using the TOPAZ VLSI digital testing system and its results are compared
with the SPICE simulation results.

We have presented implementable realizations of ANN circuits in MOS silicon
VLSILSIL We developed a building block comprised of an analog vector-vector multiplier
which is viewed as a basic cell for ANN MOS silicon implementation. We describe a
learning rule for updating the weights particularly suitable for MOS silicon circuit
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Table 4.3 The laboratory test result for a 3-neuron prototype of the Hopfield architecture
with nMOSFET interconnects.

Initial States
) Number of
T maurix 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111
Stable Equilibria
Steady States
002525
2.50.000 1 111 | 111 | 111 | 1ar | 111 | 111 | 111} 111
12.50.000]
0.00000
000050 2 001 | 001 | 001 | 001 | 001 | 001 | 111 | 111
1 0.05.000 ]
500050
005050 3 000 | 000 | 000 | 000 | 000 | 000 | 110 | 111
1 0.0505.0)]
505000
0.05050 4 000 | 000 | 000 | 000 | 100 | 100 | 110 | 111
1 0.00.05.0
5.00000
505050 5 000 | 001 | 000 | 001 | 100 | 101 | 100 | 111
1000050
500000
0.05024 6 000 | 001 | 000 | 001 | 100 | 101 | 110 | 111
0.00.0 5.0
5.0 4900
4855000 7 000 | oo1 | 000 | 011 | 100 | 101 | 110 | 111
0.0 0050
500000
005000 8 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111
000050

implementation. The new rule removes all derivatives of the sigmoidal function which are
present in the usual form of the back-propagation update rule. Yet, the rule guarantees
convergence of the update law to minima. It should be mentioned that the implementation
of the derivative of the sigmoidal function can not be guaranteed to be the exact analytical
derivative of the implemented sigmoidal function employed. It should also be stressed that
no analytical support is available for such imperfection except unjustifiable hope that
imperfections in’ the implementation is likely to retain stability and convergence of the
dynamic weight update law.

We also describe the radically different view of implementing the nonlinear MOS
element to emulate the functionality of the synapse No existing theory supports this type
of nonlinear synapse for the conventional feedback ANN of the Hopfield type or the con-
ventional feedforward multilayer ANN. Our motivation arises from our use of the non-
linear synapse in the proposed new model [33, 34, 37, 42] where analytical justification is
provided. The use of the MOS transistor as a nonlinear synapse here does not necessarily
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retain the gradient-like characteristics of the conventional model. The use, however,
preserves the programmable mapping and/or dynamic system features which are the essen-
tial aspect of ANNs [36].

Due to space limitations, we were not able to include the material on our proposed
novel ANN architecture; the references [33, 34, 37, 42] provide a description and analysis
of this new ANN model, however.

For the novel ANN architecture [33], we have designed a layout for a Tiny-Chip and
had it fabricated via MOSIS (in May 1989). The architecture of the TinyChip network
adheres to the rigorous mathematical analysis of its model [37, 42] and it appears to emu-
late the connectivity of the Horizontal and Bipolar cells in the retina. The TinyChip is
capable of [34, 59]:

(1) preprocessing data using nonlinear averaging to restore/enhance images when it is
configured in the hexagonal/retinal architecture, and

(2) storing (and retrieving) distinct multiple analog data of any number between 0 and 2%,
where n is the number of neurons.

We have extensively tested the TinyChip over the course of a year and found that it
performs the two tasks ((1) and (2) above). We have also developed learning algorithms
that accurately ensure the storing (and retrieving) of a given set of data.

Recently, we have designed a layout of our all-MOS analog VLSI neural circuit
which will contain 50 neurons and will have on-chip learning for the (nonlinear) weights.
The small standard chip will be able to process 7x7 sub-images or 50-d feature-space data
vectors. This small chip is a direct expansion of our earlier TinyChip.

Finally, we conclude that standard MOS technology will in fact enable us to produce
working integrated neural network chips in the very near future. These chips will be
tailored for specific tasks, will include in the order of 100 neurons with possible digital
on-chip learning, and will operate in the order of micro seconds. For the long term, new
material and new technologies may be needed to meet the requirements of more complex
and versatile tasks.
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