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• Computations specified by programmers
    are implemented as behavior in physical material

• Hardware designer’s job: 
efficiently implement Math (what sw wants) using Physics (what silicon offers)

                              (near) perfect arith                           noisy, approximate                 

                                   uniform mem delay                          delay ~ distance

• Increasingly difficult as decades passed and transistor counts exploded

• Now each instruction (increment, load register, occasionally multiply)
  invokes >10M transistor operations, even though a single transistor
  can perform, for instance, an approximate exponentiate or logarithm
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the motivating problem
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• Suppose we go in the opposite direction,

    move instruction set much closer to physics?

• Programmers will face things usually hidden by CPU design,

    but might gain enormous efficiency (speed, energy, size, cost)

• “Natural Computing”

• Here is how I’ve tried to do it, and some results....
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the motivating idea
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• Interested in solving tasks that benefit from floating point (“fp”),

    but IEEE floating point unit takes >500K transistors

• Could less accurate fp arith unit (eg, 1% error)  be very small?

•  Yes:  at least 100x smaller - O(5K) transistors  -  will sketch

• If errors can be compensated in application software,

   can get 10,000x better speed, power than CPU   (100x GPU)

• Errors can be compensated (in varied apps)  -  some examples

• If hardware cheap and easily available to researchers/students

    could greatly impact computational sciences, CS/AI, medicine, . . . 

• This is my overall goal - a research and commercialization effort
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overview
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one path to a small fpu
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• Represent values as logarithms

• Choose precision of logs to get 1% precision in numbers
    (6 bit fraction needed, along with perhaps 6 integer bits)

• ! / !   are small, fast, exact circuits  (just add, sub, shift logs)

• +   is easy if can compute F(x) = log(1+2x)        (" similar)

• F can be approximated by small, fast, combinatorial circuit

• Total FPU is ~5K transistors,  at ~1GHz
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surrounding hardware?

Advantages of simple SIMD (“single instruction stream, multiple data stream”)

    - doesn’t swamp tiny FPU with other stuff

           =>  can fit O(100,000) PEs on a chip - not 8 or 480 - at O(1GHz)

    - so fast, small, power efficient (~Petaop desktop, ~Teraop mobile)

    - scales with silicon - doesn’t lose it’s edge to commodity processors

    - well studied in 80s, with known development tools (C*, *Lisp, Fortran, etc)

    - easy to understand what’s going on (unlike GPU)   &  easy to build
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consider classic SIMD co-processor

 (MPP, MasPar, DAP, Connection Machine...)

mesh (to obey ~2D physics)  (w extensions)

Each PE:

  ~100 words of 16 bits (float, int, or bits)

  math:  float +-*/!      int +-     16 bit $%¬

  conditional operations (“masked” PEs)

PE
mem+fpu
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PE PE
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limitations

• SIMD - lockstep parallelism (but with masks)

• Local data flow - distance costs time

• Processing and on-chip bandwidth is Peta,
     off-chip bandwidth is Giga

• Limited memory per PE

• fp arithmetic unusually approximate

      What software can run well in this setting?
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software examples

• Running  (emulation)

    - Long sums

    - Image kernel operations

    - Tomography

    - Nearest neighbor

• Other plausible tasks
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software examples

• Basic approach -

    - handle errors in app specific way, not universal hw solution

    - one useful approach - layered like IP stack, each layer reduces error

    - goal: once reach top, reliability sufficient for that real world task

• Example: long sums

    - long sums with 1% error may degenerate  (not assuming a distribution)

    - Kahan (1965) suggested 4 line loop - carry estimated error along

    - can sum 100K values, get ~1% error in sum, sufficiently often

             (often with higher levels of software further compensating)

    - usefulness shown in following examples
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richardson lucy deblur
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ieee fp

1% fp

original

blurred

Stack = Kahan + iterative descent on error

(believe higher level can solve for error alone in similar manner, 
accuracy becomes 1% of 1%  ~  perfect)
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tomography
further evidence that lots of arith can work
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original

ieee fp

Shepp-Logan

phantom

1% fp

“iterative reconstruction”

results here used

~ 100G arith ops

#

#
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nearest neighbor

• Use brute force method  (database on chip, search all in parallel)

   - example: short 5-vectors, from N(0,1) distribution

         - if chip finds best one - 95.6% correct

         - find best two (then CPU chooses) - 99.7% correct

   - stack = Kahan + find several candidates, let CPU pick    

    & more evidence sw can derive high quality results from approximate hw

• Notes:

   - brute force => works in high dimension

  - some algorithmic cleverness usable, eg hashing

  - can efficiently stream large database through in chunks,

      if have enough simultaneous queries

            (chunk loading cost amortizes over query cost)
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other promising domains

• Physical sim - if system robust to underlying physical noise

    - molec dynamics, protein folding (thermal noise, models approx)

    - electrical sim of digital circuits (silicon noise, fab errors) 

• Machine learning, when data noisy, learned models approximate

    (eg neural net training works, now exploring graphical models)

• Numerical optimization and some combinatorial opt  (int/bool support)

    - run 100K starting points in parallel

   -  clean up best ones w/accurate fp math  (on chip or on cpu)

• Image processing at low power/size

    (small autonomous vehicles, cameras, mobile video)
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path forward

• Hardware ready

  - everything innovative is designed, simulated, verified

  - surrounding hardware familiar, easy

  - working with chip design firm to be sure

  - chief architect of 4 Intel Pentiums - thumbs up in DARPA review

  - IP protection in place, to aid commercial scale-up, to enable science

• Software must be explored far more widely

  - it’s where risks and opportunities lie

• Chicken and egg:

  - to get the benefits and advance their field, scientists need hardware

  - but cheap hardware follows proof of wide application by scientists
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• Currently collaborating with Deb Roy at Media Lab

    - large scale video analytics (tracking) with ONR funding

    - exploring software - testing code using hardware emulator

• Next goal - get real hardware out to multiple scientific groups

    But silicon fabrication costs very nonlinear

         - $1M not helpful if want large machines

         - $4M yields 10 machines, each with a million cores (PEs)

    So goal: spend ~$4M, seed ~5 universities/government contractors

         - explore varied domains, e.g. vision, image processing, learning,

                 speech, biology/medicine, other computational science

                    + offer free and open access for students and other faculty

         - share basic tool development, code libraries, experience

• If results promising, seek large company(s) to scale up production,

    bring down prices, make available to broad research community
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