COMPUTING
10,000X MORE EFFICIENTLY

JOE BATES
MIT MEDIA LAB, VISITING SCIENTIST
CARNEGIE MELLON CS DEPARTMENT, ADJUNCT PROF
SINGULAR COMPUTING LLC

web.media.mit.edu/~bates

THE MOTIVATING PROBLEM

Computations specified by programmers
are implemented as behavior in physical material

Hardware designer’s job:
efficiently implement Math (what sw wants) using Physics (what silicon offers)

A A\
r N\ r N\
(near) perfect arith noisy, approximate
uniform mem delay delay ~ distance

Increasingly difficult as decades passed and transistor counts exploded
Now each instruction (increment, load register, occasionally multiply)
invokes >10M transistor operations, even though a single transistor

can perform, for instance, an approximate exponentiate or logarithm

Bates - Jul 2010 2

THE MOTIVATING IDEA

Suppose we go in the opposite direction,
move instruction set much closer to physics?

Programmers will face things usually hidden by CPU design,
but might gain enormous efficiency (speed, energy, size, cost)

“Natural Computing”

Here is how I've tried to do it, and some results....

Bates - Jul 2010 3

OVERVIEW

Interested in solving tasks that benefit from floating point (“fp”),
but IEEE floating point unit takes >500K transistors

Could less accurate fp arith unit (eg, 1% error) be very small?
Yes: at least 100x smaller - O(5K) transistors - will sketch

If errors can be compensated in application software,
can get 10,000x better speed, power than CPU (100x GPU)

Errors can be compensated (in varied apps) - some examples

If hardware cheap and easily available to researchers/students
could greatly impact computational sciences, CS/ Al, medicine, . . .

This is my overall goal - a research and commercialization effort

Bates - Jul 2010 4

ONE PATH TO A SMALL FPU

Represent values as logarithms

Choose precision of logs to get 1% precision in numbers
(6 bit fraction needed, along with perhaps 6 integer bits)

x [/ v~ are small, fast, exact circuits (just add, sub, shift logs)
+ is easy if can compute F(x) = log(1+2%) (— similar)
F can be approximated by small, fast, combinatorial circuit

Total FPU is ~5K transistors, at ~1GHz

Bates - Jul 2010 5

SURROUNDING HARDWARE?

consider classic SIMD co-processor
Host CPU
PE lanl PE |e> (MPP, MasPar, DAP, Connection Machine...)
i t t mesh (to obey ~2D physics) (w extensions)
CB:ti:m — PE >N PE <>
Each PE:
y y ~100 words of 16 bits (float, int, or bits)
Sgﬁgrr;%aery <> math: float +-*/v~ int+- 16 bit Av™
(ORAW conditional operations (“masked” PEs)

Advantages of simple SIMD (“single instruction stream, multiple data stream”)
- doesn’t swamp tiny FPU with other stuff
=> can fit O(100,000) PEs on a chip - not 8 or 480 - at O(1GHz)
- so fast, small, power efficient (~Petaop desktop, ~Teraop mobile)
- scales with silicon - doesn’t lose it’s edge to commodity processors
- well studied in 80s, with known development tools (C*, *Lisp, Fortran, etc)
- easy to understand what’s going on (unlike GPU) & easy to build
Bates-Jul2010 6

LIMITATIONS

SIMD - lockstep parallelism (but with masks)
Local data flow - distance costs time

Processing and on-chip bandwidth is Peta,
off-chip bandwidth is Giga

Limited memory per PE

fp arithmetic unusually approximate

What software can run well in this setting?

Bates - Jul 2010

SOFTWARE EXAMPLES

* Running (emulation)
- Long sums
- Image kernel operations
- Tomography
- Nearest neighbor

e Other plausible tasks

Bates - Jul 2010 8

SOFTWARE EXAMPLES

e Basic approach -
- handle errors in app specific way, not universal hw solution
- one useful approach - layered like IP stack, each layer reduces error
- goal: once reach top, reliability sufficient for that real world task

* Example: long sums
- long sums with 1% error may degenerate (not assuming a distribution)
- Kahan (1965) suggested 4 line loop - carry estimated error along
- can sum 100K values, get ~1% error in sum, sufficiently often
(often with higher levels of software further compensating)
- usefulness shown in following examples

Bates - Jul 2010 9

RICHARDSON LUCY DEBLUR

original

blurred

Stack = Kahan + iterative descent on error

(believe higher level can solve for error alone in similar manner,
accuracy becomes 1% of 1% ~ perfect)

Bates - Jul 2010 10

TOMOGRAPHY
FURTHER EVIDENCE THAT LOTS OF ARITH CAN WORK

#
“iterative reconstruction”
original results here used
~ 100G arith ops
#

ieee fp 1% fp

Bates - Jul 2010 11

NEAREST NEIGHBOR

e Use brute force method (database on chip, search all in parallel)
- example: short 5-vectors, from N(0,1) distribution
- if chip finds best one - 95.6% correct
- find best two (then CPU chooses) - 99.7% correct
- stack = Kahan + find several candidates, let CPU pick

= more evidence sw can derive high quality results from approximate hw

* Notes:
- brute force => works in high dimension
- some algorithmic cleverness usable, eg hashing
- can efficiently stream large database through in chunks,
if have enough simultaneous queries
(chunk loading cost amortizes over query cost)

Bates - Jul 2010 12

OTHER PROMISING DOMAINS

Physical sim - if system robust to underlying physical noise
- molec dynamics, protein folding (thermal noise, models approx)
- electrical sim of digital circuits (silicon noise, fab errors)

Machine learning, when data noisy, learned models approximate
(eg neural net training works, now exploring graphical models)

Numerical optimization and some combinatorial opt (int/bool support)
- run 100K starting points in parallel
- clean up best ones w/accurate fp math (on chip or on cpu)

Image processing at low power/size
(small autonomous vehicles, cameras, mobile video)

Bates - Jul 2010 13

PATH FORWARD

 Hardware ready
- everything innovative is designed, simulated, verified
- surrounding hardware familiar, easy
- working with chip design firm to be sure
- chief architect of 4 Intel Pentiums - thumbs up in DARPA review
- IP protection in place, to aid commercial scale-up, to enable science

e Software must be explored far more widely
- it’s where risks and opportunities lie

e Chicken and egg:

- to get the benefits and advance their field, scientists need hardware
- but cheap hardware follows proof of wide application by scientists

Bates - Jul 2010 14

e Currently collaborating with Deb Roy at Media Lab
- large scale video analytics (tracking) with ONR funding
- exploring software - testing code using hardware emulator

e Next goal - get real hardware out to multiple scientific groups

But silicon fabrication costs very nonlinear
- $1M not helpful if want large machines
- $4M vyields 10 machines, each with a million cores (PEs)

So goal: spend ~$4M, seed ~5 universities/ government contractors
- explore varied domains, e.g. vision, image processing, learning,
speech, biology / medicine, other computational science
+ offer free and open access for students and other faculty
- share basic tool development, code libraries, experience

e If results promising, seek large company(s) to scale up production,
bring down prices, make available to broad research community

Bates - Jul 2010 15

