
Joe Bates

MIT Media Lab, Visiting Scientist

Carnegie Mellon CS Department, adjunct prof

Singular Computing llc

web.media.mit.edu/~bates

computing

10,000x more efficiently

Bates - Jul 2010

• Computations specified by programmers
 are implemented as behavior in physical material

• Hardware designer’s job:
efficiently implement Math (what sw wants) using Physics (what silicon offers)

 (near) perfect arith noisy, approximate

 uniform mem delay delay ~ distance

• Increasingly difficult as decades passed and transistor counts exploded

• Now each instruction (increment, load register, occasionally multiply)
 invokes >10M transistor operations, even though a single transistor
 can perform, for instance, an approximate exponentiate or logarithm

2

the motivating problem

!"# !"#

Bates - Jul 2010

• Suppose we go in the opposite direction,

 move instruction set much closer to physics?

• Programmers will face things usually hidden by CPU design,

 but might gain enormous efficiency (speed, energy, size, cost)

• “Natural Computing”

• Here is how I’ve tried to do it, and some results....

3

the motivating idea

Bates - Jul 2010

• Interested in solving tasks that benefit from floating point (“fp”),

 but IEEE floating point unit takes >500K transistors

• Could less accurate fp arith unit (eg, 1% error) be very small?

• Yes: at least 100x smaller - O(5K) transistors - will sketch

• If errors can be compensated in application software,

 can get 10,000x better speed, power than CPU (100x GPU)

• Errors can be compensated (in varied apps) - some examples

• If hardware cheap and easily available to researchers/students

 could greatly impact computational sciences, CS/AI, medicine, . . .

• This is my overall goal - a research and commercialization effort

4

overview

Bates - Jul 2010

one path to a small fpu

5

• Represent values as logarithms

• Choose precision of logs to get 1% precision in numbers
 (6 bit fraction needed, along with perhaps 6 integer bits)

• ! / ! are small, fast, exact circuits (just add, sub, shift logs)

• + is easy if can compute F(x) = log(1+2x) (" similar)

• F can be approximated by small, fast, combinatorial circuit

• Total FPU is ~5K transistors, at ~1GHz

Bates - Jul 2010

surrounding hardware?

Advantages of simple SIMD (“single instruction stream, multiple data stream”)

 - doesn’t swamp tiny FPU with other stuff

 => can fit O(100,000) PEs on a chip - not 8 or 480 - at O(1GHz)

 - so fast, small, power efficient (~Petaop desktop, ~Teraop mobile)

 - scales with silicon - doesn’t lose it’s edge to commodity processors

 - well studied in 80s, with known development tools (C*, *Lisp, Fortran, etc)

 - easy to understand what’s going on (unlike GPU) & easy to build
6

consider classic SIMD co-processor

 (MPP, MasPar, DAP, Connection Machine...)

mesh (to obey ~2D physics) (w extensions)

Each PE:

 ~100 words of 16 bits (float, int, or bits)

 math: float +-*/! int +- 16 bit $%¬

 conditional operations (“masked” PEs)

PE
mem+fpu

PE

PE PE

Control
Unit

Host CPU

Secondary
Storage
(DRAM)

Bates - Jul 2010

limitations

• SIMD - lockstep parallelism (but with masks)

• Local data flow - distance costs time

• Processing and on-chip bandwidth is Peta,
 off-chip bandwidth is Giga

• Limited memory per PE

• fp arithmetic unusually approximate

 What software can run well in this setting?

7

Bates - Jul 2010

software examples

• Running (emulation)

 - Long sums

 - Image kernel operations

 - Tomography

 - Nearest neighbor

• Other plausible tasks

8

Bates - Jul 2010

software examples

• Basic approach -

 - handle errors in app specific way, not universal hw solution

 - one useful approach - layered like IP stack, each layer reduces error

 - goal: once reach top, reliability sufficient for that real world task

• Example: long sums

 - long sums with 1% error may degenerate (not assuming a distribution)

 - Kahan (1965) suggested 4 line loop - carry estimated error along

 - can sum 100K values, get ~1% error in sum, sufficiently often

 (often with higher levels of software further compensating)

 - usefulness shown in following examples

9

Bates - Jul 2010

richardson lucy deblur

10

ieee fp

1% fp

original

blurred

Stack = Kahan + iterative descent on error

(believe higher level can solve for error alone in similar manner,
accuracy becomes 1% of 1% ~ perfect)

Bates - Jul 2010

tomography
further evidence that lots of arith can work

11

original

ieee fp

Shepp-Logan

phantom

1% fp

“iterative reconstruction”

results here used

~ 100G arith ops

#

#

Bates - Jul 2010

nearest neighbor

• Use brute force method (database on chip, search all in parallel)

 - example: short 5-vectors, from N(0,1) distribution

 - if chip finds best one - 95.6% correct

 - find best two (then CPU chooses) - 99.7% correct

 - stack = Kahan + find several candidates, let CPU pick

 & more evidence sw can derive high quality results from approximate hw

• Notes:

 - brute force => works in high dimension

 - some algorithmic cleverness usable, eg hashing

 - can efficiently stream large database through in chunks,

 if have enough simultaneous queries

 (chunk loading cost amortizes over query cost)

12

Bates - Jul 2010

other promising domains

• Physical sim - if system robust to underlying physical noise

 - molec dynamics, protein folding (thermal noise, models approx)

 - electrical sim of digital circuits (silicon noise, fab errors)

• Machine learning, when data noisy, learned models approximate

 (eg neural net training works, now exploring graphical models)

• Numerical optimization and some combinatorial opt (int/bool support)

 - run 100K starting points in parallel

 - clean up best ones w/accurate fp math (on chip or on cpu)

• Image processing at low power/size

 (small autonomous vehicles, cameras, mobile video)

13

Bates - Jul 2010

path forward

• Hardware ready

 - everything innovative is designed, simulated, verified

 - surrounding hardware familiar, easy

 - working with chip design firm to be sure

 - chief architect of 4 Intel Pentiums - thumbs up in DARPA review

 - IP protection in place, to aid commercial scale-up, to enable science

• Software must be explored far more widely

 - it’s where risks and opportunities lie

• Chicken and egg:

 - to get the benefits and advance their field, scientists need hardware

 - but cheap hardware follows proof of wide application by scientists

14

Bates - Jul 2010

• Currently collaborating with Deb Roy at Media Lab

 - large scale video analytics (tracking) with ONR funding

 - exploring software - testing code using hardware emulator

• Next goal - get real hardware out to multiple scientific groups

 But silicon fabrication costs very nonlinear

 - $1M not helpful if want large machines

 - $4M yields 10 machines, each with a million cores (PEs)

 So goal: spend ~$4M, seed ~5 universities/government contractors

 - explore varied domains, e.g. vision, image processing, learning,

 speech, biology/medicine, other computational science

 + offer free and open access for students and other faculty

 - share basic tool development, code libraries, experience

• If results promising, seek large company(s) to scale up production,

 bring down prices, make available to broad research community

15

