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a b s t r a c t

What systems should we use to elicit and aggregate judgmental forecasts? Who should
be asked to make such forecasts? We address these questions by assessing two widely
used crowd prediction systems: prediction markets and prediction polls. Our main test
compares a prediction market against team-based prediction polls, using data from
a large, multi-year forecasting competition. Each of these two systems uses inputs
from either a large, sub-elite or a small, elite crowd. We find that small, elite crowds
outperform larger ones, whereas the two systems are statistically tied. In addition to
this main research question, we examine two complementary questions. First, we com-
pare two market structures—continuous double auction (CDA) markets and logarithmic
market scoring rule (LMSR) markets—and find that the LMSR market produces more
accurate forecasts than the CDA market, especially on low-activity questions. Second,
given the importance of elite forecasters, we compare the talent-spotting properties of
the two systems and find that markets and polls are equally effective at identifying
elite forecasters. Overall, the performance benefits of ‘‘superforecasting’’ hold across
systems. Managers should move towards identifying and deploying small, select crowds
to maximize forecasting performance.
© 2024 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

Many forecasting processes necessarily rely on human
predictive judgment. Crowd prediction systems, such as
prediction markets, provide the infrastructure to elicit
and combine the predictions from a group (a ‘‘crowd’’) of
forecasters. In contrast to purely data-driven approaches,
crowd predictions are particularly important in settings
with little historical data, such as in new product devel-
opment (Atanasov, Joseph, Feijoo, Marshall, & Siddiqui,
2023; Cowgill & Zitzewitz, 2015) and when predicting
macro-events such as pandemics (Polgreen, Nelson, Neu-
mann, & Weinstein, 2007) or geopolitical developments
(Tetlock & Gardner, 2016).

∗ Corresponding author.
E-mail address: pavel.atanasov@ie.edu (P. Atanasov).

Our examination focuses on a central practical ques-
tion: If a manager seeks to maximize forecasting perfor-
mance from a crowd of forecasters, what combination of
crowd type and prediction system should she employ?
Furthermore, we examine the case when both systems
and crowds can evolve over time. More specifically, man-
agers may choose to move away from a status quo system
in favor of another, or select only a subset of individuals
based on historical performance.

Our main research contribution lies in quantifying the
impact of prediction system architecture and individual
forecaster track record on aggregate performance. Previ-
ous research studied how the performance of continuous
double auction (CDA) prediction markets and prediction
polls compares when populated by sub-elite forecast-
ers (Atanasov et al., 2017), while published studies on
elite forecasters have focused only on their individual
performance (Mellers et al., 2015). We are the first to

https://doi.org/10.1016/j.ijforecast.2023.12.009
0169-2070/© 2024 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.ijforecast.2023.12.009
https://www.elsevier.com/locate/ijforecast
http://www.elsevier.com/locate/ijforecast
mailto:pavel.atanasov@ie.edu
https://doi.org/10.1016/j.ijforecast.2023.12.009


P. Atanasov, J. Witkowski, B. Mellers et al. International Journal of Forecasting xxx (xxxx) xxx

compare the aggregate performance of small, elite fore-
caster crowds across two prediction systems: logarithmic
market scoring rule (LMSR) prediction markets and team
prediction polls. Moreover, we compare the aggregate
accuracy of elite forecaster crowds to larger, sub-elite
crowds using the same prediction systems. The com-
parison of elite crowds is notable because such a study
relies on the resource-intensive process of identifying
elite forecasters: it involves engaging with thousands
of forecasters reporting on hundreds of questions over
multiple years. Studies involving fewer forecasters may
need to set lower thresholds for elite status, while studies
with fewer questions per season may identify top per-
formers less reliably. This raises the question of whether
forming elite forecaster crowds is worth the effort. Our
results show that the benefits of employing elite crowds
are large and robust across prediction polls and pre-
diction markets, despite the threefold size advantage of
sub-elite crowds. Moreover, the advantages of elite over
sub-elite crowds are substantially larger than the differ-
ences between prediction markets and prediction polls.

In addition to this primary study, we also report on
two additional studies, each of which complements the
findings of the primary study along a different dimension.
In the first, we provide an experimental evaluation of two
popular types of prediction market architectures: CDA
and LMSR markets. To the best of our knowledge, we are
the first to study these methods in a large, randomized
experiment. Prior research reporting on CDA and LMSR
market performance did not compare the two designs di-
rectly but had separate sets of questions for each (Cowgill
& Zitzewitz, 2015). Using data from over 1300 forecasters
and a total of 147 questions, we find that the LMSR market
achieves higher accuracy than the CDA market. We find
that the outperformance by the LMSR market appears
particularly pronounced for questions that attracted few
traders or soon after a question was posted, when only
few traders had placed orders. Both of these correspond
to thin markets, and our analyses are hence in line with
Hanson’s (2003, 2007) main motivation for the design of
the LMSR market architecture.

In the other complementary study, we examine the
relative effectiveness of different prediction systems at
reliably identifying consistently accurate forecasters. Our
data afford such an assessment, as they feature prediction
markets and prediction polls running in parallel across
three seasons. We show that prediction markets and pre-
diction polls are equally effective at identifying elite fore-
casters for prediction polls. The practical consequence of
this finding is that high earners in a prediction market are
expected to continue to outperform when moved into an
elite-crowd prediction poll.

1.1. Crowd prediction systems

The rationale for crowd prediction is based on two
conceptual foundations. First, individual respondents have
access to different signals (Silver, 2012) about uncertain
future events. These signals vary in quality and aggre-
gating them has the potential to integrate information
that is dispersed among individuals. Second, individual

judgments suffer from noise, i.e., ‘‘undesirable variability
in judgments of the same problem’’ (Kahneman, Sibony,
& Sunstein, 2021, p. 40). In the idealized case where noise
is entirely due to judgmental errors that are independent
across participants, aggregation effectively reduces it, as
those noise terms ‘‘cancel out’’ (Surowiecki, 2005). The
benefits of aggregation are still present, albeit to a lesser
extent, when errors in judgment are positively corre-
lated across participants (Davis-Stober, Budescu, Dana, &
Broomell, 2014).

The two types of crowd prediction systems that have
attracted the most attention from both researchers and
practitioners are prediction markets (Wolfers & Zitzewitz,
2004) and prediction polls (Winkler, 1968), with the rel-
ative merits of these systems being subject to vigorous
investigation (Atanasov et al., 2017; Graefe & Armstrong,
2011; Reade & Williams, 2019).

In a prediction market, traders buy and sell futures
contracts that pay out if the corresponding event out-
come occurs. The process of second guessing each other’s
bets yields market prices that correspond to probabilistic
predictions. For example, in a binary-outcome prediction
market for the U.S. presidential election, the contract cor-
responding to the Republican candidate might pay $1 if
the candidate wins, and $0 otherwise. If the current mar-
ket price is $0.30, this would correspond to a probability
of approximately 30% that the Republican candidate will
win.

Prediction markets are conceptually based on the ef-
ficient market hypothesis (e.g., Malkiel & Fama, 1970).
The marginal trader hypothesis (Forsythe, Nelson, Neu-
mann, & Wright, 1992) further stipulates that a market
with ‘‘a sufficient number’’ of traders tends to produce
unbiased estimates even when most individuals are bi-
ased. Proponents argue that well-designed markets can
generate accurate predictions for a wide range of fu-
ture events, including macroeconomic data (Snowberg,
Wolfers, & Zitzewitz, 2013), sports results (Peeters, 2018),
election outcomes (Forsythe et al., 1992), and a variety of
company-specific data (Cowgill & Zitzewitz, 2015; Spann
& Skiera, 2003).

Empirical tests demonstrate that markets can operate
effectively even without real-money incentives (Servan-
Schreiber, Wolfers, Pennock, & Galebach, 2004) and with
a limited number of forecasters (Healy, Linardi, Lowery,
& Ledyard, 2010). Researchers have noted that the pre-
dictive performance of markets depends more on market
setup and less on the composition of the trader pool (Stri-
jbis & Arnesen, 2019).

Classic prediction markets are set up as CDAs and
as such are generally expected to perform best in high-
liquidity settings with many traders of varying skill
(Forsythe et al., 1992). As an alternative to CDA markets,
Hanson (2003, 2007) proposed LMSR. LMSR prediction
markets use an automated market maker to address the
challenges of (thin) markets with few traders. CDA mar-
kets have been studied more widely, especially since the
creation of Iowa Prediction Markets (Berg & Rietz, 2003),
while the LMSR architecture is particularly well adapted
to settings with limited crowds. These two architectures
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have also been applied most widely in corporate set-
tings (Cowgill & Zitzewitz, 2015). Hence, they are the
focus of the current research.

Prediction polls, also referred to as opinion pools or
expert elicitation methods and often used synonymously
with forecasting tournaments, are an alternative crowd
prediction system that relies on directly eliciting probabil-
ity estimates from forecasters, providing proper-scoring
feedback on their individual performance (Brier, 1950;
Gneiting & Raftery, 2007; Murphy & Winkler, 1987) and
aggregating the individual estimates statistically
(Atanasov et al., 2017; Satopää, Baron, Foster, Mellers,
Tetlock, & Ungar, 2014). For example, one forecaster in
a prediction poll may submit a probability estimate of
40% while another submits an estimate of only 10%. These
forecasts would be combined by an aggregation algorithm
such as a weighted average or a more complex statistical
model, and once the question is resolved, the forecasters
would receive an accuracy score based on their individual
forecasts and the outcome that materialized.

1.2. Large crowds versus small, select crowds

A separate line of research focuses on individual and
group-level properties of accurate crowds. The group-
level perspective on this question is that individual fore-
caster skill is less important than emerging properties
of the crowd: large, diverse, and egalitarian crowds are
expected to perform well. For example, the subtitle of
Surowiecki’s book (2005) emphasizes the importance of
crowd size: ‘‘Why the many are smarter than the few...’’.
Similarly, Page (2007) stresses the value of diversity, and
Davis-Stober et al. (2014) showed that crowds become
wiser when crowd members make negatively correlated
errors. Woolley et al. (2010) showed that groups’ collec-
tive intelligence was more strongly correlated with the
equality of contributions across group members than with
their intelligence quotient (IQ) scores.

In contrast, the individual-level view is that accurate
crowds are those made up of accurate individuals. Re-
search from this perspective has shown that individual
differences (e.g., fluid intelligence, cognitive styles, task
engagement, and past performance) have a reliable as-
sociation with individual performance on probabilistic
prediction tasks (Mellers et al., 2015; Tetlock & Gard-
ner, 2016). In contrast, apparent expertise, as assessed
by education, professional experience, or eminence, has
surprisingly little relation to forecasting accuracy (Tetlock,
2005). The strong form of this perspective is that crowd
accuracy hinges primarily on ‘‘getting the right people
on the bus’’—attracting, identifying, and retaining high
performers. The main recommendation from this research
is to employ small crowds of top forecasters, as assessed
by their accuracy track records. In particular, Mannes,
Soll, and Larrick (2014) and Goldstein, McAfee, and Suri
(2014) showed that small, select crowds of forecasters
with records of high achievement tend to outperform
large, less selective crowds in a prediction poll setting.
None of this research has thus far extended to a prediction
market setting.

A variation on this elitist approach was taken by the
Good Judgment Project (GJP), which selected the top 2% of

forecasters each season, labeled them ‘‘superforecasters’’
(henceforth, ‘‘elite forecasters’’), and placed them in dif-
ferent teams competing in a prediction poll (Mellers, Un-
gar, Baron, Ramos, Gurcay, Fincher, Scott, Moore, Atanasov,
Swift, et al., 2014). Team members could share informa-
tion relevant to forecasting questions with one another
and received team accuracy scores in addition to their
individual accuracy scores (Mellers, Stone, Murray, et al.,
2015; Tetlock & Gardner, 2016). Elite forecasters outper-
formed sub-elite forecasters (the bottom 98% plus new,
unproven individuals), and the approach played a key
role in GJP’s winning performance in the geopolitical
forecasting tournaments sponsored by the Intelligence
Advanced Research Project Activity (IARPA). Elite fore-
casters in team-based prediction polls were more accu-
rate than professional intelligence analysts with access to
classified information (Goldstein, Hartman, Comstock, &
Baumgarten, 2016).

Notably, the previously published results on GJP elite
forecasters focused exclusively on their individual per-
formance in team-based prediction polls (‘‘Superpolls’’).
But was the strong performance of Superpolls driven by
its high-accuracy individuals or by the team-based pre-
diction polls architecture? To what extent did individ-
ual excellence result in superior aggregate performance
within the same prediction system? Would aggregate ac-
curacy improve or worsen if crowds of elite forecasters
worked individually in prediction markets (‘‘Supermar-
kets’’) instead of Superpolls? We offer the first empirical
assessment of these questions.

1.3. Research questions

All of the research presented here focuses on the objec-
tive of identifying the combinations of prediction systems
and forecasters that produce maximally accurate predic-
tions. The investigation is organized around one main and
two complementary research questions.

Main Research Question: Crowds and prediction systems
What is the impact on aggregate accuracy of crowd type

(small, elite versus large, sub-elite) and prediction system
(prediction markets versus polls)?

Persistent differences in accuracy among individual
forecasters are well documented (Mellers, Stone, Atanasov,
et al., 2015), and top performers also tend to make posi-
tive contributions to aggregate accuracy (Budescu & Chen,
2015). We thus expect small, elite crowds to outperform
larger, sub-elite crowds in prediction polls, and we ex-
amine whether the number of forecasters is a limiting
factor on aggregate accuracy in elite prediction polls. It is
more difficult to predict whether the potential benefits of
employing small, elite crowds will carry over to prediction
markets. It is plausible that limiting the number of traders
may adversely impact activity or liquidity in prediction
markets, offsetting the advantages of higher individual
skill.

Regarding the comparison of prediction systems, prior
results showed higher accuracy of prediction polls relative
to CDA markets when both are populated by sub-elite
crowds (Atanasov et al., 2017). However, as discussed in
Complementary Research Question 1, to the extent that
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the automated market maker of LMSR markets improves
performance over that of CDA markets in small-crowd
environments (Hanson, 2003), differences in accuracy be-
tween prediction markets and prediction polls may be
reduced. Finally, statistical aggregation algorithms with
features such as temporal subsetting, accuracy weights,
and extremization are known to improve prediction poll
accuracy. We evaluate whether the results of the compar-
ison between small, elite and large, sub-elite crowds, as
well as between prediction markets and prediction polls,
depend on the aggregation algorithm used in prediction
polls. Our main finding is that small, elite crowds tend
to produce consistently more accurate aggregate fore-
casts than non-elite crowds, whereas prediction markets
and prediction polls are approximately tied in terms of
accuracy.

Complementary Research Question 1: CDA versus LMSR
markets

Do LMSR prediction markets produce more accurate fore-
casts than CDA markets?

This question addresses the key argument that Han-
son (2003) provided for the design of his logarithmic
market scoring rules (LMSR) prediction market architec-
ture, namely that CDA markets are expected to perform
poorly in settings with insufficient trading activity. We
discuss two potential moderators of differences in accu-
racy: the number of traders posting orders on the market
for a given question and the timing within the ques-
tion. Atanasov et al. (2017) showed that CDA markets
underperform team-based prediction polls when question
resolutions are months away, but are approximately tied
in accuracy in the last few weeks before the question is re-
solved. Markets are complex adaptive systems (Markose,
2005) with many factors contributing to aggregate per-
formance. It is thus useful to quantify the extent to which
theory-driven directional predictions bear out in exper-
iments. Our empirical result is indeed consistent with
the theoretical prediction, as it shows that LMSR mar-
kets outperform CDA markets, especially on low-activity
forecasting questions. The results of this test also influ-
ence the study design employed for our Main Research
Question—specifically, the market structure employed in
the comparison between prediction markets and predic-
tion polls.

Complementary Research Question 2: Identifying accu-
rate individuals

Which crowd prediction system is more effective at iden-
tifying accurate forecasters: prediction markets or prediction
polls?

In addition to forecasts that support decision mak-
ing, crowd prediction systems can also produce valuable
information about the accuracy of individuals. For a per-
formance assessment measure to be useful, it needs to
produce similar rankings when the measure is collected
again under similar conditions (i.e., it needs to be reli-
able). We assess the relative reliability of performance
rankings in prediction markets and prediction polls. In
the context of geopolitical forecasting tournaments, previ-
ous research has demonstrated that individual differences
in prediction poll accuracy scores are reliable over time
(Mellers, Stone, Atanasov, et al., 2015). Such accuracy

measures provide useful inputs to weighted aggregation
algorithms, which consistently outperform unweighted
aggregation (e.g., Atanasov et al., 2017).

We know less about the association between predic-
tion market earnings and forecaster accuracy, as well as
the reliability of market earnings and associated rankings
in prediction markets. Rothschild and colleagues (Roth-
schild & Sethi, 2016; Schmitz & Rothschild, 2019) show
that traders exhibit reliable trading patterns; for example,
only a minority engage in arbitrage trades, betting on both
sides of a contract with minimal directional risk. The use
of arbitrage strategies speaks to traders’ engagement and
relative sophistication in navigating the market environ-
ment but may or may not be associated with the traders’
aptitude to generate predictive insight.

Practically speaking, a manager running a large predic-
tion market would find little evidence in the literature on
whether high-earning traders on the top of a prediction
market leaderboard are reliably accurate forecasters par-
ticularly skillful at executing trading strategies, or simply
lucky.

We examine Complementary Research Question 2 at
two levels: elite and sub-elite performance. First, at the
elite level, we compare the accuracy of forecasters who
have been identified as elite in a prediction poll with fore-
casters who have been identified as elite in a prediction
market. In a later season, both groups provide proba-
bilistic forecasts in a Brier-scored prediction poll. Since
the trading skills required to excel in prediction markets
may not perfectly align with the probability estimation
skills needed to attain elite status in prediction polls
(i.e., skill transfer between the prediction market trading
environment and the prediction poll setting may be less
than perfect), we expect that elite traders identified in
prediction markets will underperform elite forecasters
identified in prediction polls. Inconsistent with this ex-
pectation, our results show that elite forecasters perform
at similar levels, independently of whether they qualified
through their top performance in prediction markets or
polls.

Second, in our data, forecasters who do not reach elite
levels (do not place in the top 2%) tend to remain in the
same system across seasons. This allows us to compare
the reliability of rankings across subsequent seasons of
the tournament for both prediction markets and predic-
tion polls. In contrast to Brier scores in prediction polls,
where scores of individual questions are limited to the
range between 0 and 2, prediction market earnings may
depend more on the outcome of a single question, and
thus luck may be more important: a single large bet
can account for a large proportion of a trader’s gains or
losses. Therefore, we expect the cross-season reliability of
market earnings to be lower than the cross-season relia-
bility of Brier scores from prediction polls.1 Our empirical
results are consistent with this expectation.

1 While we consider the reliability of performance rankings to be an
important property of the system, we note that performance ranks do
not equate to forecasters’ individual contributions to overall accuracy.

4



P. Atanasov, J. Witkowski, B. Mellers et al. International Journal of Forecasting xxx (xxxx) xxx

2. Methods

All data were collected in the IARPA Aggregative Con-
tingent Estimation (ACE) tournament (2011–2015), a fore-
casting tournament that consisted of four forecasting
seasons, each lasting approximately nine months (Good
Judgment Project, 2016). Our Main Research Question fo-
cuses on aggregate performance in Season 4. We compare
the performance of four separate groups using a two-
factor design: forecaster accuracy (elite versus sub-elite)
and crowd prediction system (LMSR prediction market
versus prediction poll). Data from Seasons 1, 2, and 3 were
used to identify elite forecasters and to estimate optimal
parameters for the prediction poll aggregation algorithms.
Complementary Research Question 1 uses data from the
CDA and LMSR markets from Season 3 of the tournament.
Complementary Research Question 2 focuses on individ-
ual performance across markets and polls. At the elite
level, we examine the accuracy of forecasters in Season 3
in Superpolls, comparing those who attained elite status
through their performance in Seasons 1 and 2 through
prediction markets versus those who qualified through
prediction polls. The reliability of sub-elite performance
is assessed using data from Seasons 2, 3, and 4. In any one
season, a forecaster participated in only one prediction
system.

2.1. Crowd prediction systems

Prediction markets
Prediction markets run by the GJP used play-money

contracts valued between $0 and $100. When a question
resolved, the price was set to $100 if the event occurred,
and $0 otherwise. Each forecaster (trader) was provided
with an initial endowment of $10,000. Leaderboards fea-
tured the top 50 forecasters based on their total balance.
The aggregate probability forecast on a given question and
day was the last price as of midnight Pacific Time.

Prediction markets in Seasons 2 and 3 were CDA mar-
kets in which forecasters traded with one another by
placing bids and asks on the order book. Both price history
and order book, which displayed the six highest bids
and the six lowest asks, were public information. LMSR
markets (Hanson, 2003, 2007) were employed in Season
3 (parallel to CDA markets) and Season 4 using software
from Inkling Markets (now operating as Cultivate Labs).
In these LMSR markets, forecasters traded with an au-
tomated market maker that was constantly available to
quote prices based on the current market price and the
number of to-be-traded shares. Below is Pennock’s (2006)
implementation of the price function for a binary (yes/no)
question:

priceyes =
eqyes/b

eqyes/b + eqno/b
· $100 (1)

The current price of a contract for the ‘‘yes’’ outcome
(priceyes) increases with the quantity of shares traded
on that outcome (qyes) and decreases with the quantity
traded on the ‘‘no’’ outcome (qno). The liquidity parameter
b determines how prices respond to trading activity, with
higher values corresponding to more liquidity and hence

less price movement for a given quantity of traded shares.
Based on Inkling’s prior experience, the liquidity parame-
ter was fixed at 250 and held constant across all questions
in the tournament. For example, at b = 250, buying
100 shares in a binary market that is newly initiated at
a price of $50 for each outcome would move the price
from $50.00 to $59.87, for an average price per share
of $55.02. Price history was publicly available to mar-
ket participants, who could view their portfolio holdings,
including profits and losses per question as well as the
play-money balance available for trading.

Prediction polls
Forecasters provided probability forecasts in two vari-

ants of prediction polls: independent and team-based.
The accuracy metric was the Brier score (Brier, 1950),
which varies from 0 (best) to 2 (worst). For questions with
ordered response categories, we used the ordered scoring
variation of the Brier score (Jose, Nau, & Winkler, 2009).
Scores of individual forecasters were based on the average
daily Brier score, which averaged scores across all days
on which the question was open for forecasting. If a fore-
caster did not update an estimate on a given day, her most
recent forecast was carried over for scoring purposes.
Scores for days up to the first forecast were imputed as
that question’s mean Brier score of all active forecasters
in the same condition. If a forecaster did not report on a
given question, the score for that question was imputed
for the entire question duration. Brier scores based on
individual questions were then averaged over questions,
and the 50 forecasters with the lowest (best) Brier scores
were featured on a leaderboard. Forecasters submitted
individual forecasts in both independent and team-based
prediction polls; team consensus was not required. Team-
based prediction polls differed from independent polls in
that teammembers could communicate with one another.
For each forecasting question, the team-level Brier score
was the median of all team members’ Brier scores. The
leaderboards displayed both individual and team-level
Brier scores as well as the corresponding rankings.

To combine individual estimates, we used the weighted
mean algorithm described by Atanasov et al. (2017), with
two additional weighting features that were based on
a forecaster’s psychometric test score as well as on the
time she spent on the platform. A weighted logit algo-
rithm (Satopää et al., 2014) was used in sensitivity analy-
ses. The difference between the two is that the weighted
mean algorithm averages forecasts in the original prob-
ability space, whereas the weighted logit algorithm first
transforms forecasts into log-odds (logit), then averages
them, and then converts them back to probabilities. Both
algorithms feature (1) temporal subsetting, (2) differential
forecaster weights, and (3) extremization. Temporal sub-
setting ensured that the data were timely by including
only forecasts from days containing the most recent k%
forecasts for a given question. Weighting increased the
influence of forecasters with a track record of high ac-
curacy, as measured by z-score-transformed Brier scores,
high forecast-updating frequency, more time spent on the
platform, and higher scores on psychometric measures
of intelligence and political knowledge (Mellers, Stone,
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Murray, et al., 2015). Finally, extremization was applied
to aggregate forecasts using the formula

p̂ =
p̄a

p̄a + (1 − p̄)a
, (2)

where p̂ is the extremized probability estimate, p̄ is the
raw aggregate probability estimate, and a is the recali-
bration parameter. Note that a = 1 denotes the iden-
tity transformation. For a > 1, values are extremized
(i.e., pushed away from 0.5 towards 0 or 1), and for a < 1,
aggregate forecasts are made less extreme (i.e., pushed
towards 0.5). This function was also applied to predic-
tion market prices to assess whether markets exhibit
the well-known favorite-long-shot bias (Page & Clemen,
2013).

The parameters for the aggregation algorithms were
optimized at the start of a new season based on data
from all previous seasons using elastic net regulariza-
tion (Zou & Hastie, 2005) and in the following order:
temporal subsetting, forecaster weights, and extremiza-
tion. The objective was to minimize the aggregate forecast
error. In the present work, analyses for our Main Research
Question rely on aggregation in prediction polls. For the
relevant Season 4, the estimated values using data from
Seasons 1–3 for temporal subsetting resulted in using
the k = 20% most recent forecasts for sub-elite team-
based prediction polls, and the most recent k = 53% and
k = 73% forecasts for Superpolls logit and mean, respec-
tively. Accuracy parameter settings were such that the
most accurate forecaster received approximately 16 and
13 times the weight of the median-accuracy forecaster
at the time, in sub-elite and elite teams, respectively.
Other differential forecaster weights were of secondary
importance. Extremization parameters were set at 1.5 and
1.32 for sub-elite teams and elite teams, respectively.

2.2. Participants

GJP forecasters were recruited from email lists, profes-
sional societies, research institutes, alumni associations,
and by word of mouth. They were required to hold a
bachelor’s degree or higher. Before entering the tourna-
ment, they completed psychometric and political knowl-
edge tests (lasting approximately two hours) as well as
online training modules (lasting approximately one hour).
Forecasters were mostly male (80%+) with a mean age of
36 years.

Financial incentives were provided for active partici-
pants, based on rules communicated at the start of each
season. Every forecaster who made at least 25 forecasts
received a $150 gift certificate in Season 1 and a $250
certificate in Seasons 2, 3, and 4. Each returning forecaster
in Seasons 2, 3, and 4 received an additional $100 gift
certificate. Forecasters who placed in the top 2% of their
condition’s leaderboard were invited to become super-
forecasters (elite forecasters) in the subsequent season.
All superforecasters were invited to travel-expenses-paid
in-person workshops that took place at university cam-
puses after Seasons 2, 3, and 4.

Table 1 displays all relevant study conditions across
the four seasons of the forecasting tournament. For each

Table 1
Good Judgment Project conditions across all four seasons.
Condition Season

1 2 3 4

Independent polls ✓ ✓ ✓ ✓
Team polls ✓ ✓ ✓ ✓
Superpolls (team polls) ✓ ✓ ✓

CDA markets ✓ ✓
LMSR markets ✓ ✓
Supermarkets (LMSR markets) ✓

Note: Only Superpolls and Supermarkets conditions are populated by
elite forecasters.

Table 2
Study design for the Main Research Question; n denotes the number
of forecasters in each cell. All data are from Season 4.
Prediction system Forecaster type

Elite Sub-elite

Prediction markets Supermarkets Sub-elite markets
n = 122 n = 404

Team prediction polls Superpolls Sub-elite polls
n = 139 n = 430

Table 3
Elite forecaster transition from Season 3 to Season 4.
Season 3 condition Season 4 condition

Superpolls Supermarkets Total

Superpolls (self-selection) 85 22 107
Team polls 45 2 47
Independent polls 4 16 20
Prediction markets 0 82 82
Other 5 0 5

Total 139 122 261

of the research questions, we used all available data for
the relevant conditions.

Our Main Research Question focuses on elite forecast-
ers and sub-elite forecasters in Season 4, the only season
in which a sufficient number of elite forecasters were
available to afford allocation across two conditions: team
prediction polls (Superpolls) and LMSR markets (Super-
markets). Elite forecasters were identified in Seasons 1,
2, and 3 of the IARPA tournament based on their season-
end performance. To qualify, a participant had to rank in
the top 2% of their condition in a season. The ranking
was based on the Brier score in prediction polls and end-
of-season earnings in prediction markets. Once qualified,
elite forecasters retained this status unless they dropped
out or asked to rejoin the sub-elite crowd. Prediction
markets with elite forecasters (Supermarkets) consisted of
n = 122 traders working independently in an LMSR pre-
diction market (also see Table 2). Team prediction polls
with elite forecasters (Superpolls) consisted of 10 teams
with 12 to 16 forecasters each, totaling n = 139 forecast-
ers. For sub-elite forecasters, n = 404 were assigned to
work independently in an LMSR prediction market, and
n = 430 were assigned to team prediction polls. Thus, for
both prediction systems, sub-elite crowds were over three
times larger than elite crowds.

The assignment of elite forecasters to Season 4 condi-
tions was not random (also see Table 3). Forecasters who
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Table 4
Sub-elite forecaster transition from Season 3 to Season 4.
Season 3 condition Season 4 condition

Team polls LMSR markets Total

Team polls 127 0 127
Independent polls 0 28 82
Prediction markets 34 130 164
None 243 272 515

Total 404 430 834

Note: All conditions are populated by sub-elite forecasters.

were active elite forecasters in Season 3 (i.e., who attained
elite status in Season 1 or 2) self-selected into Superpolls
or Supermarkets, with the majority selecting into Super-
polls (85/107). Forecasters who attained elite status based
on Season 3 performance were assigned to Superpolls or
Supermarkets mostly based on their Season 3 conditions.
Five other elite forecasters who had not participated in
Season 3 but had attained elite status previously were
assigned to Superpolls.

Sub-elite forecasters were randomly assigned to con-
ditions (also see Table 4). The majority (62%) of Season
4 sub-elite forecasters joined the project in Season 4
and were newly assigned. The second-largest group (31%)
consisted of participants who returned from Season 3 and
continued to participate in the prediction system (predic-
tion market or prediction poll) to which they had been
randomly assigned in Season 3. Finally, a small group (7%)
were assigned to switch from markets to polls or from
polls to markets between Seasons 3 and 4.

Complementary Research Question 1 focuses on the
comparison of CDA and LMSR prediction markets in Sea-
son 3, the only season with both CDA and LMSR markets
running side by side. Forecasters were randomly assigned
to either the CDA (n = 664 forecasters) or LMSR (n = 679
forecasters) prediction market. Forecasters had the option
of asking to have their data removed but few did. Midway
through the season, additional forecasters were added,
bringing the total to 750 assigned forecasters per market.
Randomization was stratified by returnee status, balanc-
ing the number of new and experienced forecasters across
the two markets. Because the CDA versus LMSR test took
place in Season 3, while the LMSR versus prediction polls
test took place in Season 4, we discuss these separately
rather than as parts of a single comparison.

Complementary Research Question 2 uses data from
Seasons 2, 3, and 4 to assess the test–retest reliability of
performance rankings among sub-elite forecasters. These
were the three seasons in which prediction markets and
prediction polls ran in parallel. We include all forecasters
who competed in the same system (prediction markets
or prediction polls) across two consecutive tournament
seasons. For example, a forecaster is included if she com-
peted in a prediction market in both Season 2 and Season
3 or if she competed in prediction polls in both Sea-
son 3 and Season 4. Forecasters who switched systems,
attained elite status, or dropped out across seasons are
not included. The analysis includes sub-elite forecasters
competing in independent or team-based prediction polls
in Seasons 2–3 (n = 412) and Seasons 3–4 (n = 244),

as well as prediction market traders in Seasons 2–3 (n =

237) and Seasons 3–4 (n = 508). The differences in
the number of participants across conditions (systems)
are a function of experimental assignment rather than
forecaster self-selection into conditions.

At the elite level, we use Season 3 data with n =

126 elite forecasters working in Superpolls. This was the
only season in which all elite forecasters competed side
by side in one condition, and where their prior-season
rankings were available from both prediction markets and
prediction polls. The plurality had worked in Superpolls in
Season 2 (n = 49). Newly qualified elite forecasters from
Season 2 had worked in team-based prediction polls (n =

26), independent prediction polls (n = 25), prediction
markets (n = 21), and other conditions (n = 5).

2.3. Forecasting questions and scoring

Seasons 1, 2, 3, and 4 featured 85, 114, 147, and 136 re-
solved questions, respectively. Forecasting questions were
released throughout the forecasting season in batches of
1–10 questions at a time. Across all seasons, the median
question duration was 82 days (interquartile range: 40 to
153). Forecasters were encouraged to update their esti-
mates as often as they wished until the questions were
resolved. Probability forecasts in prediction polls were
aggregated and compared to market prices at the same
time each day. Aggregate forecasts were scored using the
average daily Brier score—the same rule as for individual
prediction poll forecasters. We perform sensitivity analy-
ses in which logarithmic scores are used in place of Brier
scores to assess aggregate accuracy. Logarithmic scores
range from -∞ (worst) to 0 (best possible accuracy).

3. Results

3.1. Main research question: Individual forecaster accuracy
versus prediction system

To determine the impact of crowd type and predic-
tion system on overall accuracy, we compare the perfor-
mance of four separate groups using a two-factor design:
individual forecaster accuracy (small, elite versus large,
sub-elite) and prediction system (LMSR prediction mar-
ket versus prediction poll). Within polls, we vary the
sophistication of the aggregation algorithms between a
simple unweighted linear opinion pool (ULinOP), which
corresponds to the simple average of all forecasters’ most
recent forecasts on a question, and the more complex,
weighted algorithm (called full aggregation) described in
Section 2.1. Inferential tests were based on mixed-effects
models with random intercepts for forecasting questions,
as implemented in the R nlme package.

Fig. 1 summarizes the main results: crowd type and
prediction system with different prediction poll aggrega-
tions. The largest and most notable accuracy difference
is that between small, elite and large, sub-elite crowds.
Team prediction polls with full aggregation show small
advantages over prediction markets, and more sophis-
ticated aggregation algorithms (full versus ULinOP) also
yield small advantages within prediction polls.
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Fig. 1. Aggregate accuracy on 136 questions in Season 4 by forecaster accuracy (sub-elite versus elite) and prediction system (prediction markets
versus team prediction polls). Lower scores denote better accuracy. Error bars denote one standard error of the difference in scores for each pair.

Table 5
Aggregate-level Brier Scores (BSs) for 136 questions in Season 4 by forecaster accuracy level (elite versus sub-elite)
and prediction system (prediction polls versus prediction markets).

Sub-elite Elite % Elite Cohen’s d

Mean (SD) Mean (SD) BS adv.

Pred. markets 0.215 (0.280) 0.173 (0.242) 20% 0.16
Pred. polls 0.203 (0.330) 0.156 (0.305) 23% 0.15

% Polls BS adv. 6% 10%
Cohen’s d 0.04 0.06

Note: Lower Brier scores denote better accuracy. Mean Brier score reduction and Cohen’s d values are positive if the
Brier score in the second row/column is lower than in the first row/column. See Fig. 1.

Table 6
Aggregate-level logarithmic scores (LSs) for 136 questions in Season 4 by forecaster accuracy level (elite versus sub-elite)
and prediction system (prediction polls versus prediction markets).

Sub-elite Elite % Elite Cohen’s d

Mean (SD) Mean (SD) BS adv.

Pred. markets −0.350 (0.358) −0.300 (0.322) 14% 0.14
Pred. polls −0.328 (0.470) −0.270 (0.513) 18% 0.12

% Polls LS adv. 6% 10%
Cohen’s d 0.05 0.09

Note: Higher (less negative) scores denote better accuracy. LS improvement and Cohen’s d values are positive if the
logarithmic score in the second row/column is higher than in the first row/column.

We first examine accuracy differences among the four
forecaster groups, and later return to the comparison of
aggregation algorithms. Brier score descriptive statistics
by individual accuracy level and prediction system are
shown in Table 5. A sensitivity analysis with logarithmic
scores is shown in Table 6 and largely replicates the Brier
score pattern. Table 7 displays the results of the mixed
models, the primary inferential tests addressing our Main
Research Question.

In both prediction markets and team-based predic-
tion polls, small elite crowds outperformed larger, sub-
elite ones. The accuracy advantage of small, elite crowds
amounted to approximately 0.05 on the Brier score scale
(b = −0.045, se = 0.010, t = −4.62, p < .001), corre-
sponding to an accuracy improvement of 21%. Prediction
markets and prediction polls did not differ significantly
in accuracy (b = −0.015, se = 0.010, t = 1.51, p = .13).

See Fig. 1. There was no significant interaction between
individual forecaster accuracy type and prediction system.
See Table 7, Column B.

Addressing our Main Research Question, the effect of
individual forecaster track record on aggregate accuracy
was large and significant, while the choice of prediction
system did not correspond to significant differences in
accuracy.

Within prediction polls, we also examined how the
effects of individual forecaster accuracy compare to those
of using more or less sophisticated aggregation algo-
rithms. In particular, we compared the full algorithm
featuring temporal subsetting, forecaster weights, and ex-
tremization (as explained in Section 2.1) with the simple
unweighted linear opinion pool (ULinOP). The improve-
ments in accuracy from using the full algorithm versus
ULinOP were smaller than the improvements in accuracy
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Table 7
Mixed-effects models: Aggregate Brier score by crowd type and prediction system, based on 136 questions in Season 4.
DV: Season 4 aggregate Brier score A. Main effects B. Interaction

Intercept 0.217 (0.025) 0.215 (0.025)
Forecaster accuracy

Sub-elite (reference)
Elite −0.045 (0.010) ** −0.042 (0.014) **

Prediction system
Prediction markets (reference)
Prediction polls −0.015 (0.010) −0.012 (0.014)

Interaction: Elite × polls −0.005 (0.019)

AIC −369.10 −361.13

Note: * p < .05, ** p < .01. Lower values denote better performance.

Table 8
Brier score decomposition based on 136 questions in Season 4 by individual forecaster accuracy (elite versus sub-elite)
and prediction system (prediction polls versus prediction markets). Lower calibration error, higher discrimination, and
lower simple Brier Scores denote better performance.

Calibration Discrimination Uncertainty Simple BS

Superpolls 0.009 0.44 0.61 0.18
Sub-elite polls 0.008 0.37 0.61 0.25

Supermarkets 0.021 0.43 0.61 0.20
Sub-elite markets 0.011 0.38 0.61 0.24

Note: Smaller calibration error and larger discrimination values denote better performance. Simple Brier scores do not
account for ordered outcomes and are thus higher than ordered Brier scores in Table 7.

from employing elite versus sub-elite forecasters. In fact,
the simple ULinOP of small, elite crowds outperformed
the full aggregation algorithm of large, sub-elite crowds,
yielding 15% lower Brier scores.2

Calibration and discrimination
Brier score decomposition (Murphy & Winkler, 1987)

analyses show that elite and sub-elite forecaster crowds
registered similar calibration errors in both prediction
markets and prediction polls. The differences in accu-
racy were entirely accounted for by elite crowds’ superior
discrimination scores. See Table 8.

Crowd size sensitivity
A key concern regarding elite crowds is the limited

number of forecasters. In our data, the cutoff was set
so that only the top 2% of forecasters were invited to
become elite forecasters. This cutoff was chosen in light
of the unique tournament constraints, so it is not meant
to be universal. Since elite crowds were treated differently
(they worked together), we cannot simulate
performance in counterfactual scenarios with less re-
strictive cutoffs (e.g., 5%). Furthermore, prediction market
interactions are cumulative, since traders react to price
changes, so we cannot simulate how traders would have
reacted to a smaller or larger number of traders. We can,
however, simulate how performance is affected by the
number of Superpoll teams included in the aggregation

2 There were no differences between the two fully optimized ag-
gregation algorithms, mean and logit. Moreover, neither the Superpoll
mean (Brier score mean = 0.156) nor Superpoll logit algorithms
(Brier score mean = 0.157) significantly outperformed Supermarkets
in accuracy at α = 0.05. These results are based on mixed models
of the type shown in Table 7 but using only data from Superpolls
and Supermarkets. We focus on the weighted mean aggregation for
simplicity, but all results also hold for the logit algorithm.

because teams were disincentivized from sharing infor-
mation with other teams, and independence across teams
is a reasonable assumption.

To make this analysis more applicable across contexts,
we find it useful to consider the ratio between the number
of forecasters and the number of questions in a given
season. In Season 4, there were 139 Superpoll forecasters
and 136 resolved forecasting questions, for a forecaster-
to-question ratio of approximately 1:1. We reran the
aggregations with subsets of the 10 Superpoll teams. We
performed aggregation and scoring for combinations of
two to nine teams, corresponding to approximate
forecaster-to-question ratios between 1:5 and 9:10. For
each number of teams, we produced 10 scoring iterations,
sampling teams without replacement in each iteration.
For aggregation, the simple ULinOP algorithm was used
for all subsets because the full algorithms’ parameters
were optimized only for the full sample.

Fig. 2 displays the results across 10 iterations. The
Superpoll ULinOP including all teams achieved a Brier
score of 0.166. When teams were sub-sampled so that the
forecaster-to-question ratios were reduced, mean Brier
scores increased to a maximum of 0.176, correspond-
ing to an accuracy reduction of 6%. Aggregate accuracy
for elite crowds remained significantly superior to that
of over 300 ULinOP-aggregated sub-elite crowd forecast-
ers (dashed line, mean Brier score of 0.228) even when
only two teams (24–28 elite forecasters) remained in the
crowd. Moreover, any one of the ten subsets of two Su-
perpoll teams we tested would have outperformed even
the full-sample, fully optimized aggregation of sub-elite
team polls (not shown).

Extremized supermarket prices
Superpoll algorithms had a potential advantage over

the Supermarket: algorithms included aggregate-level ex-
tremization, whereas market prices were not extremized.
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Fig. 2. Aggregate accuracy on 136 questions in Season 4 by number of Superpoll teams included in the aggregation. Gray dots represent one scoring
sample, while the black line and black dots show the mean scores across aggregations. The dashed line represents the accuracy of the ULinOP of
the full-sample sub-elite team poll.

Table 9
Season 4 performance for different levels of extremization in Supermarkets.
Extremization parameter source a Mean BS SD BS

No extremization, default 1.00 0.173 0.242
Season 3 Superpoll & LMSR prediction market 1.32 0.161 0.273
Season 4 hindsight optimization 1.75 0.158 0.301

If extremization were helpful in improving Supermarket
accuracy, that would suggest that Supermarkets’ (non-
significant) underperformance versus Superpolls is partly
due to easily correctable miscalibration and not a funda-
mental deficit of predictive insights generated by Super-
market traders.3 We thus examined different degrees of
market price extremization. First, we applied the same ex-
tremization level used in the Superpoll mean algorithms
(a = 1.32) to Supermarkets. Second, we backtested Sea-
son 3 LMSR market prices and found that the same level of
extremization (a = 1.32) minimized Brier scores. Finally,
we applied the optimal-in-hindsight extremization level
for Season 4 (a = 1.75). Note that this is not a realistic
estimate of real-world performance but was included to
assess the maximum potential benefit of extremization.

Table 9 displays the results. After applying the a =

1.32 extremization, the overall Supermarket Brier score
improved from 0.173 to 0.161. Applying the hindsight-
optimized extremization (a = 1.75) would have reduced
Supermarket Brier scores further to 0.158, approximately
equivalent to the 0.156 for the extremized, full-algorithm
Superpolls aggregation.

3 Another approach for dealing with underconfident forecasts in
LMSR markets is to reduce the liquidity parameter, which leads to
larger prices movements for a given order size. We cannot simulate
price movements with a different liquidity parameter ex post, but these
extremization analyses provide a different way to estimate the impact
of underconfidence in the LMSR Supermarket.

3.2. Complementary research question 1: CDA versus LMSR
markets

The two markets attracted similar activity levels. On
the CDA market, the median number of traders per ques-
tion was 80 (M = 87.7, SD = 46.4), while on the LMSR
market the median was 74 (M = 84.9, SD = 44.4). The
two types of markets also attracted similar order volumes,
with an average of approximately 300 orders per question
for both the CDA (M = 315.3, SD = 350.2) and the LMSR
market (M = 298.8, SD = 285.7).

Across the 147 resolved questions in Season 3, the
LMSR market earned lower (i.e., better) Brier scores (M =

0.211, SD = 0.280) than the CDA market (M = 0.245,
SD = 0.327). The differences in Brier scores were signif-
icant in a paired t-test (t(146) = 2.28, p = 0.024). This
is equivalent to a 14% Brier score reduction for the LMSR
market relative to the CDA market (Cohen’s d = 0.12).
These results are also consistent with those obtained by
a regression specification that uses Brier scores for each
day within a question, rather than only one score per
question, utilizing a mixed-effects model with random
question intercepts. See Table 10, Column A.

What were the main sources of the CDA market’s
relative underperformance? The experiment was not de-
signed to specifically address this question, but we con-
ducted exploratory analyses, providing some indication.
The larger standard deviations of Brier scores for the
CDA market point to the possibility that the CDA mar-
ket’s underperformance was driven by a small number of
high-Brier-score questions. Our expectation—as indicated
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Table 10
Mixed-effects models: Aggregate Brier scores by prediction market type (CDA versus LMSR) and timing within question
in Season 3. Timing main and interaction effects are estimated for the absolute number of days and proportion of time
within a question.
DV: A. B. C.

Agg. Brier score Main effect Abs. time Prop. time

Intercept 0.231 (0.024) 0.166 (0.029) 0.185 (0.027)
CDA (reference)
LMSR −0.026 (0.002)** −0.022 (0.003)** −0.009 (0.004)*
Days to res. (x100) 0.204 (0.050)**
LMSR × Abs. time −0.005 (0.003)
Prop. Time to res. 0.094 (0.024)**
LMSR × Prop. time −0.034 (0.007)

AIC −16719.7 −16701.5 −16735.7

Note: * p < .05, ** p < .01. Lower values denote better performance.

Fig. 3. Differences in Brier scores between the LMSR and CDA market, one point per question, plotted against the mean number of traders posting
orders on the CDA market. Positive score differences denote LMSR market overperformance relative to the CDA market. All data are from Season 3.

by the literature (Hanson, 2003, 2007)—was that CDA
markets may underperform in thin-market settings. In
the tournament, traders self-selected into questions, so
we do not have the benefit of a random assignment of
forecasters to questions. However, we can still examine
whether the CDA market underperformed on questions
that attracted fewer traders. Questions on which CDA
markets attracted a larger number of traders also tended
to attract a larger number of traders in the LMSR market
(r = 0.88). Hence, we use the average number of traders
across the two markets as our measure of activity on a
question. The results are similar when using the number
of CDA traders or LMSR traders instead.

Fig. 3 shows the results of this exploratory analysis.
The outcome measure is the difference in Brier scores
between the LMSR and the CDA markets, where positive
values denote better Brier scores for the LMSR market
relative to the CDA market (and vice versa). On questions

attracting larger numbers of traders in the CDA mar-
ket, Brier score differences consistently clustered around
zero. On questions with few traders, however, Brier score
differences were larger and more variable. Notably, the
CDA market registered its worst relative performances on
low-activity questions attracting fewer than 100 traders.
A simple correlational analysis reveals that Brier score
differences are positively correlated with the number of
CDA traders (Pearson’s r = 0.15, p = .062) and the mean
number of traders across the two markets (Pearson’s r =

0.17, p = .035), denoting that CDA market underper-
formance tended to observed on questions with fewer
CDA traders. While this evidence is correlational and the
correlation itself is not strong, these results are direc-
tionally consistent with Hanson’s expectations that LMSR
markets would outperform CDA markets when there are
few active traders.
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Fig. 4. Left side: Brier scores for CDA and LMSR markets by the absolute number of days to resolution within a question. For example, 100 on the
horizontal axis denotes that that the scores are measured 100 days before question resolution. Right side: Brier scores for CDA and LMSR markets
by the proportion of days to resolution within a question, where 1 denotes question start and 0 denotes the time of question resolution. Linear
model fits are shown for each market on both the left and right sides.

Another possible source of CDA market underperfor-
mance relates to the timing within a question. Traders
may be reluctant to place many large orders when ques-
tion resolutions and expected payoffs are months into
the future, and instead may prefer to allocate their at-
tention and artificial currency to questions with more
imminent resolutions. In CDA markets specifically, low
activity on a question at a given time corresponds to
thinner order books, which in turn makes these questions
less attractive to other traders. LMSR markets, on the
other hand, should be less vulnerable to such negative
activity feedback loops, since traders can always trade
with the automated market maker.

We performed two tests on whether the differences
in accuracy vary with time within a question. The first
uses the absolute time until the question is resolved, and
the second uses the proportion of time until the question
is resolved. The left side of Fig. 4 shows Brier scores by
absolute timing within a question. Time is defined as the
number of days to question resolution. For example, we
may compare the difference in accuracy 200 days versus
100 days versus 1 day before question resolution. The
lines represent linear model fits and include data points
across all available questions at the given point in time
(e.g., all questions open 100 days before resolution). As
shown in the figure, for this specification, the LMSR mar-
ket tended to produce more accurate forecasts throughout
the duration of the questions, and the differences in ac-
curacy were relatively constant. A mixed-effects model
with question-level random intercepts is consistent with
the visual result, revealing no significant interaction be-
tween prediction market type and absolute time (b =

−.005, p = .11). See Table 10, Column B.
On the right side of Fig. 4, we normalize timing by

question duration, using the proportion of days to resolu-
tion instead of the absolute number of days. For example,
for questions lasting 100 days, we may compare the dif-
ference in accuracy at the start of the question (1.00),

at day 50, which is in the middle of the question’s du-
ration (0.50), and right before the question is resolved.
When using normalized timing, we see convergence over
time. Whereas the CDA market tends to underperform
in the early periods within a question, the two markets
are almost tied in accuracy immediately before ques-
tions resolve. A linear mixed-effects model yields results
consistent with convergence, revealing a significant inter-
action between market type and relative question timing
(b = −.034, p < .001), denoting that the difference in
Brier scores moved in favor of CDA markets by 0.034 Brier
score points between the start and the end of a question’s
duration. See Table 10, Column C.

Overall, the exploratory analysis of within-question
timing suggests that the CDA market underperforms the
LMSR market by a margin that is most pronounced in the
early stages of questions.

3.3. Complementary research question 2: Identifying accu-
rate forecasters

The most notable result from our main investigation
is the large impact of forecasters with superior accuracy
track records relative to the choice of crowd prediction
system. This underscores the value of reliable measures
and methods to identify those highly accurate individuals.
Are prediction polls better at reliably identifying accu-
rate forecasters than prediction markets? We answer this
question separately for sub-elite and elite forecasters.

In our sub-elite reliability analysis, we calculate per-
centile ranks within the condition for each season. The
sample includes all sub-elite forecasters who were ac-
tive in two subsequent seasons. Rankings are based on
Brier scores for prediction polls and season-end earnings
for prediction markets. Using these percentile ranks, we
calculate the correlation of within-condition ranks across
seasons. A test–retest Pearson product-moment corre-
lation of r = 1 means that the percentile rank of a
forecaster in one season would perfectly predict their
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Table 11
Test–retest reliability of sub-elite forecaster rankings in prediction polls and prediction markets.
Period Prediction markets Prediction polls Difference, p-value

n r n r p

Seasons 2–3 237 0.25 412 0.37 .101
Seasons 3–4 508 0.18 244 0.44 < .001
Seasons All 591 0.20 549 0.38 < .001

Table 12
Season 3 performance among n = 122 elite forecasters as a function of forecaster condition in Season 2, for three
accuracy measures: A. raw Brier score, B. final nank, and C. standardized Brier score. OLS regression model coefficients
are reported, with standard errors in parentheses.
Season 2 Condition A. Raw BS B. Rank C. Std. BS

Intercept 0.196 (0.006) 0.57 (0.06) 0.23 (0.07)
Indep. polls (ref.)
Team polls −0.003 (0.009) 0.00 (0.08) −0.10 (0.10)
Markets −0.005 (0.009) −0.01 (0.08) −0.17 (0.10)
Superpolls −0.025 (0.008) ** −0.17 (0.07) * −0.34 (0.08) **

Adj. r-squared 0.10 0.05 0.13

Note: * p < .05, ** p < .01. Lower values denote better performance for forecasters from a given condition relative to
the reference group of independent poll forecasters.

rank in the next season, while r = 0 means that rank-
ings between seasons are completely independent of one
another.

Table 11 shows the results separated by prediction
system (prediction markets versus prediction polls) and
season pairs (Seasons 2–3 and Seasons 3–4). All correla-
tion coefficients are significantly higher than zero (t >
4.00, p < .001). For Seasons 2–3, prediction polls produce
more reliable rankings (r = 0.37, n = 412, p < .001)
than prediction markets (r = 0.25, n = 237, p < .001).
The difference between the two correlation coefficients is
not significant (z = 1.64, p = .101). The difference in
test–retest reliability is more pronounced in Seasons 3–4
(polls: r = 0.44, n = 244, p < .001; markets: r = 0.18,
n = 508, p < .001; difference: z = 3.71, p < .001).
In an overall analysis, we combine data across seasons,
using the first season pair available for each forecaster.
For example, if a forecaster is active in Seasons 2, 3, and
4, we would only include their data from Seasons 2 and
3. We find that prediction polls produced more reliable
performance rankings than prediction markets.

To assess each system’s reliability at identifying elite
forecasters, we used data from Season 3, in which all elite
forecasters competed in (team-based) Superpolls. Fore-
casters had attained elite status by placing in the top 2%
of their randomly assigned condition (prediction markets
or prediction polls) in Season 1 or 2. We compared the
season-end individual accuracy of these newly identified
elite forecasters in prediction polls versus prediction mar-
kets, using raw Brier scores as the primary performance
measure. See

Table 12, Column A. Season-end leaderboard rank and
z-score-standardized Brier scores were used in sensitivity
analyses. There were no significant differences in Season
3 raw Brier scores among newly qualified elite forecasters
based on their prior condition. Elite forecasters who quali-
fied from team-based polls and prediction markets earned
similar scores, relative to each other and to those from
independent polls. The only group that achieved signifi-
cantly better Brier scores than the reference group were

returning elite forecasters from Season 2 (b = −0.025,
se = 0.008, p < .01). Sensitivity analyses with the
alternative performance measures yielded similar results.
See Table 12, Columns B and C.

Overall, there was no evidence that top prediction
market traders underperformed forecasters who had at-
tained elite status in either independent or team predic-
tion polls, when all competed in Superpolls. These results
suggest that prediction markets are approximately as ef-
fective at identifying highly accurate forecasters as pre-
diction polls. This finding is inconsistent with our expec-
tations with respect to Complementary Research Question
2.

4. Discussion

4.1. Research implications

Our key result for our Main Research Question is that
the superior aggregate accuracy of elite forecasters holds
regardless of whether the forecasters are working in pre-
diction markets or prediction polls, and whether more
or less sophisticated aggregation algorithms are used in
polls. Analyses for Complementary Research Question 1
show that, in our setting, featuring several hundred traders
working on 100+ forecasting questions, LMSR markets
yield more accurate aggregate predictions than CDA mar-
kets. Complementary Research Question 2 examines skill
identification and reveals that elite forecasters perform
similarly, independent of whether they were originally
identified in prediction polls or prediction markets.

The strong performance of elite crowds in both predic-
tion markets and prediction polls underscores the value
of designing and improving methods to identify such
high performers early and reliably. Technology choices
relevant to talent spotting include the choice of per-
formance tracking methods (Gneiting & Raftery, 2007;
Witkowski, Atanasov, Ungar, & Krause, 2017), behavioral
data capture (Atanasov & Himmelstein, 2023; Atanasov,
Witkowski, Ungar, Mellers, & Tetlock, 2020; Karvetski
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et al., 2022), and aligning forecaster incentives (Licht-
endahl, Grushka-Cockayne, & Pfeifer, 2013; Witkowski,
Freeman, Vaughan, Pennock, & Krause, 2023). More gen-
erally, our results highlight one important aspect of sys-
tem design: The choice of which individuals are granted
access may have a larger impact on the system’s overall
performance than any other feature.

Our main result regarding the comparison of systems,
a virtual tie between LMSR prediction markets and team-
based prediction polls in terms of accuracy, differs from
that of Atanasov et al. (2017), who reported that team-
based prediction polls significantly outperformed CDA
prediction markets. The results of our complementary
market comparison explain this seeming discrepancy
across studies, since we show that LMSR prediction mar-
kets tend to produce more accurate forecasts than CDA
prediction markets. To summarize the GJP results across
studies and seasons, team-based prediction polls and LMSR
prediction markets tend to yield similar levels of accu-
racy, while CDA markets produce somewhat less accurate
aggregate forecasts. The difference in accuracy between
LMSR and CDA markets is largely traceable to questions
attracting few traders and to early periods within a ques-
tion. This result is directionally consistent with Hanson’s
theory-based prediction that, relative to CDA markets,
LMSR markets will perform especially well in thin-market
conditions.

The present work extends the literature on forecaster
tracking from prediction polls to prediction markets. We
find that prediction markets with elite traders tend to
outperform those populated by less selective crowds.
LMSR prediction markets populated exclusively with elite
traders (Supermarkets) produce similar levels of accu-
racy as Superpolls, team-based prediction polls populated
with only elite forecasters. The latter remain unbeaten in
formal comparisons.

4.2. Practical implications

The practical question we set out to address focused
on a manager who seeks to maximize forecasting per-
formance in a crowdsourcing environment through her
choices about forecasting systems and crowds. Our inves-
tigation points to specific recommendations.

The first choice concerns system type. The three sys-
tems we examined were prediction polls, CDA prediction
markets, and LMSR prediction markets. Our study fea-
tured crowds of hundreds of forecasters and 100 to 150
questions over roughly nine months. With these param-
eters, we found that CDA markets underperform LMSR
markets, which are in turn tied in accuracy with predic-
tion polls. Thus, when the ratio of sub-elite forecasters to
questions is roughly 5 to 1 or lower, the manager should
generally avoid the CDA market structure.

Regarding the choice between LMSR prediction mar-
kets and prediction polls, our results point to an approx-
imate tie in terms of accuracy. If the manager has run
a prediction market for years and is generally satisfied
with its usability, she may avoid system switching costs.
If, however, the crowdsourcing initiative is new and man-
agers are interested not just in aggregate accuracy, but

in identifying reliably accurate forecasters, they may be
better served by employing a prediction poll.

Second, our results offer a clear recommendation for
improving accuracy: employ smaller, elite crowds. These
findings are relevant to corporate forecasting tourna-
ments (Cowgill & Zitzewitz, 2015) as well as to the grow-
ing research literature on public forecasting tournaments
(Atanasov et al., 2023; Morstatter, Galstyan, Satyukov,
Benjamin, Abeliuk, Mirtaheri, Hossain, Szekely, Ferrara,
Matsui, et al., 2019; Tetlock, Mellers, & Scoblic, 2017).
Whether the prediction system is an LMSR market or pre-
diction polls, managers could improve performance by se-
lecting a smaller, elite crowd based on prior performance
in the competition.

Small, elite forecaster crowds may yield benefits be-
yond accuracy. For example, when forecasts use propri-
etary data or relate to confidential outcomes, employing
a smaller group of forecasters may help minimize infor-
mation leakage. This is a non-trivial concern, especially
in prediction markets: Google Chief Economist Hal Var-
ian has noted that data concerns were key to stopping
one Google prediction market project: ‘‘The problem is,
the things that we really wanted to get a probability
assessment on were things that were so sensitive that
we thought we would violate the SEC rules on insider
knowledge because [...] anybody who looks at the auction
is now an insider’’ (Cowen & Varian, 2019).4

Finally, the formation of elite forecasting pools de-
pends on picking reasonable performance cutoffs. In our
data, the top 2% of forecasters were deemed elite. This
cutoff decision was partly driven by the details of the
tournament, such as the number of forecasting questions
(100–150 per season) and number of forecasters (1000 to
3000). Thus, it should not be considered a hard-and-fast
rule. A rough order-of-magnitude recommendation based
on previous literature is that at least 5–10 forecasters
should be available to answer each question (Mannes
et al., 2014). The results of our sub-sampling simulations
in Superpolls suggest that active, elite crowds produce
accurate aggregate forecasts even when they are very
small in number, with forecaster-to-question ratios of 1:5,
e.g., 20 forecasters for 100 questions over a nine-month
period. We note that the average elite forecaster in our
sample answered more than 70% of available questions
and made over five forecasts per question, so these re-
sults on very small crowds depend on the availability of
highly engaged forecasters. This implies that raising the
threshold for entry to elite status to the top 1% may work
well when sourcing from a crowd of 2000+ forecasters.
On the other hand, our results on the high reliability
in performance across seasons, especially in prediction
polls, implies that moderately relaxing the threshold for
promotion to elite status (e.g., from the top 2% to the top
5%) would result in including additional high perform-
ers and is thus unlikely to materially reduce aggregate
performance.

4 Improvements in confidentiality can be achieved either by em-
ploying smaller, elite crowds or by deploying prediction polls instead of
prediction markets. Polls can function well without broadcasting crowd
consensus to all active forecasters (Atanasov et al., 2017).
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4.3. Limitations and future directions

As is true for virtually all empirical investigations of
individual and system-level performance, the current re-
sults should be generalized with caution. First, this study
featured probabilistic forecasting questions on geopolitics,
economics, and public health. Questions were designed
to be rigorously resolvable in the near future. Future
work should also explore the merits of small, elite crowds
in prediction markets and prediction polls for answer-
ing other types of questions, such as ones about long-
term trends or rare events. More generally, while the two
widely used crowd prediction systems in our comparison
produced similar levels of performance, it is possible that
novel systems will perform substantially better or worse
than our comparison set. Thus, our results should not be
seen as a general statement that the choice of predic-
tion system does not matter for maximizing forecasting
performance.

Finally, the comparison between Supermarkets and
Superpolls did not feature random assignment. Most no-
tably, returning elite forecasters self-selected into a sys-
tem of their choice, and most chose to remain in the
Superpoll system they had worked in. Relative to random
assignment, this preference may have provided a small
benefit to Superpolls, though it is unlikely to have qualita-
tively changed the result: a statistical tie between Super-
markets and Superpolls. Superpolls exhibited a small and
insignificant advantage over Supermarkets, and a large
swing, equivalent to a 25% change in relative Brier scores,
would have been needed to produce a significant advan-
tage of Supermarkets over Superpolls.

4.4. Conclusion

This study was the first to demonstrate that small, elite
crowds outperform large, less selective crowds across two
popular prediction systems: prediction markets and pre-
diction polls. This finding underscores the more general
point that the performance of information systems uti-
lizing human inputs depends crucially on the humans
making those inputs. In the context of prediction systems,
the main challenge remains the identification of elite
forecasters with little or no historical performance data.
We believe the development of methods addressing this
challenge will be a fruitful area for future research.
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