
THE NUMBER OF NEW SPECIES, AND THE INCREASE IN
POPULATION COVERAGE, WHEN A SAMPLE IS INCREASED

BY I. J. GOOD AND G. H. TOULMIN

A sample of size N is drawn at random from a population of animals of various species.
Methods are given for estimating, knowing only the contents of this sample, the number of
species which will be represented r times in a second sample of size AN; these also enable us
to estimate the number of different species and the proportion of the whole population
represented in the second sample. A formula is found for the variance of the estimate; when
A> 2, this variance becomes in general very large, so that the estimate is useless without
some modification. This difficulty can be partly overcome, at least for A < 5, by using Euler's
method with a suitable parameter or the methods described by Shanks (1955) to hasten the
convergence of the series by which the estimate is expressed. The methods are applied to
samples of words from Our Mutual Friend, to an entomological sample, and to a sample of
nouns from Macaulay's essay on Bacon.

1. INTRODUCTION

We present here a further development of the theory expounded by Good (1953); that paper
will be referred to, for brevity, by the letter G throughout.

We imagine a random sample of size N, the basic sample, to be drawn from an infinite
population of animals of various species, and suppose that nr distinct species are each
represented exactly r times in the sample, so that

E rnr = N. (1)
r - 1

We write d = £ nr,

the total number of distinct species in the sample. It is convenient (though, as was pointed
out in G, not essential) to suppose that the total number of distinct species in the population
is a known finite number s, so that we can calculate

no = s-d, (2)

the number of species not represented in the sample. If the actual value of s is not known,
all our results will remain true if it is arbitrarily assumed to be any sufficiently large number.
As in G (p. 237), the larger 74 is, the more applicable our results are. In G it was shown that
certain properties of the population could be deduced approximately from the sample
frequencies nr; in particular, the total coverage of the sample (i.e. the proportion of the
population represented in the sample, which is the sum of the population frequencies p. of
the species represented) is approximately

rovided 7ix is large (G, formula (9)).f

•(• ^(nj) is the expected value of the random variable nj when our basic sample of N specimens is
taken at random. We shall use the same symbol nl both for this random variable and for a particular
value of it.
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46 The number of new species covered when a sample is increased

We now contemplate taking a second sample, of size XN. We describe this as the ' second
sample', even though it may be (and in practice probably will be) an enlargement of the
basic sample; in this case, of course, A > 1. If the second sample is not an enlargement of the
basic sample, it will be termed independent; this word may be interpreted in its probabilistic
sense, provided that the true statistical hypothesis specifying the population frequencies
is momentarily regarded as 'given'. Except in §4 our results apply to both enlargements
and independent second samples.

We may now wish, for example:
(a) To find the expected coverage of the second sample.
(6) To find the expected number of distinct species in the second sample.
(c) To find (roughly) the variances of estimates of population parameters which might be

made from the second sample.
(d) To estimate the term ^^(n^ \ H) in formula (22) of G for the variance of nr.
Results of this type may enable us to decide whether it is worth enlarging our sample, and

to what extent, depending on the purposes for which it is required.
For example, consider a teacher of languages who wishes to base his teaching on the

population frequencies of words. He will wish to estimate what size of vocabulary should
be learnt by a student in order to decrease the need for reference to a dictionary below
a certain frequency. It was shown in G how a sample can be used to make such an estimate.
The present paper shows in what way the sample can also be used in order to help the
decision of whether to carry out more sampling. For instance, in example (iii) of § 6 below,
the 2048 words of the basic sample had an expected coverage of 87-3 %, and we find that if
the sample size were doubled, then the same expected coverage could be obtained by
selecting only 1780 words. More work by the teacher means less for the student.

Similarly, an entomologist will often want to know whether to increase a basic sample,
and will be able to base his decision largely on the expected number of new speoies that will
be provided by a given amount of sampling. Example (ii) of § 6 is an instance of such an
application.

Let nr(X) be the random variable whose value is the number of distinct species represented
exactly r times in the second sample.f

We first consider a method that may appeal to statisticians who are accustomed to fit
distributions by the method of moments. The method will not, however, be. used in our
examples if only because of the enormous amount of calculation that it requires. We begin
by stating a lemma that is presumably well known, although we cannot give a reference.

LEMMA. (Determination of a set of numbers whose ' factorial moments' are specified.) If

b{= £»<%r (* = 0,1,2,...), (4)
r -o

then °> = ^ < | O
( 1 * ) ! 6 P " ' ( 5 )

at any rate if or = 0 for all sufficiently large r.% Problems (a), (b) and (d) above reduce to the
estimation of the numbers ^(nr(A)) for certain values of r when values of nr(l) = nr are

t It ia convenient here to depart slightly from the notation of G. The number which we write as
/(n,(A)) would there have been denoted by ^wfn,). Note that in the case of an enlarged sample,
n,.(A) is to be considered as varying as the whole enlarged sample is varied at random, not merely the
(A— 1) N additional specimens, so that this correspondence of notation still holds.

% For a proof under more general conditions, see the Appendix p. 62 below.
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I. J. GOOD AND G. H. TOULMTN 47

observed; the results are given in equations (22), (23) and (32), respectively. The same is
true of problem (c) when the variances concerned can be expressed in terms of the nr(A);
thus equations (30A) and (31) of G show that this is the case for Yule's 'characteristic',

«
which is an estimate of 2 P*-

NOW :p)rt/"
n'

is an unbiased estimate of c4 = £ p£ (see, for example, G, p. 245). Similarly
I

It may therefore seem reasonable to assume

00 [XNy® °° r °° i
)^*9fi- 2 t'K -A' s **>», , (7)iv r-0 L r-0 Jr - 0

and then to solve for (?(nr(A)) by using the lemma.
In spite of the theoretical interest of this method it seems likely that it is not really

adequate. For it depends too much on the estimates of the higher population moments, cit

and these estimates are subject to large sampling errors. We have therefore not investigated
any numerical examples. Instead of proceeding via the factorial moments, we find directly
the following relation between <?(nr(A)) and the <?(nr):

<?(nr(A))̂ Ar 2 ( -1) ' ! (A-1) '%J (8)
i-o \ r /

for any integer r ̂  0 (§2, equation (16)). If we assume that

£{nr+i)-nr+i (9)

or ^(nr+i)-n'r+i, (10)

where the numbers n[, n'2> n^,... are obtained by smoothing the numbers n^, n2,7^,... (see G,
§§3, 7, 8), we can estimate the values of <?(nr(A)).

We point out here that the series (8) is not really infinite: for

&(nT+i) = 0 whenever r + i>N, (11)

and the upper limit of summation could therefore be replaced by JV — r. IfA>2,a practical
difficulty arises, in that the factor (A— I)1 increases rapidly with i, and so attaches great
weight to termB for which <?(nr+1) is small And therefore is liable to a large percentage error
when estimated from the basic sample. It seems to be practicable to overcome this difficulty,
at least for moderate values of A (say A< 5), by using a summation method to make the
series (8) converge rapidly; it is shown in §5 that Euler's method with a suitably chosen
parameter q is convenient. We have not, however, been able to justify this procedure by
finding a useful error term for the partial sums of the new series obtained.

We mention here two possibilities which we have not investigated practically. First, it
may be possible to reach larger values of A in two (or more) stages: e.g. to estimate <
we might, instead of using (8) directly with A = 4, first estimate <f (7^(2)),
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48 The number of new species covered when a sample is increased

),..., then smooth the values obtained, and again apply (8) with A = 2 to estimate
). Secondly, (8) with I/A in place of A and nT, nr(A) interchanged might be used as

a check on the results obtained, and this might provide a new method of smoothing.

We are much indebted to Dr J. Wishart for several suggestions and corrections.

2. ESTIMATION OF «?(rar(A))

\jetph(fi = 1, 2,...,«) be the population frequencies of the 8 species. As in G, equation (10),

(12)
/ . - i \ r / '

(In G, the left-hand side is written as <fN(nr\H). As explained above, we use the symbol nr

only with reference to the basic sample, of size N; we omit the H, which refers to the
hypothesis that the population frequencies are {p^, because we shall not be concerned with
expectations on any other hypothesis.) For the second sample, we have similarly, assuming
pfl<k for all fi,

8

(is)

-(X-l)N \

-<?K+<)- (14)

\r + i)

(14) is not rigorously correct, since for r + i > N, I .1 and 3(nr+i) both vanish, and the

corresponding terms of the series are indeterminate. We notice, however, that if the infinite
upper limit for i is replaced by an odd [even] integer, the left-hand side of (13) is greater
[less] than the right-hand sidef, and the same therefore holds of (14). Thus the partial sums
of (14) are alternately greater and less than the left-hand side, and in all practical examples
a sufficiently good approximation is reached while (r + i) is still small compared to N.

Provided that we use only terms of the series for which r + i <̂  N and i <̂  (A — 1) N, we can

/\N\(-(\-l)N\

\ r ){ » )
/ N \

V + V

W n t e

r\i\Nr+i

= (_!)< A'(A-l)<(f;*J. (15)

Hence <?K(A))-A' £ (-1)*( + (A- l )^(n r + i ) , (16)
i-o \ r 1

the partial sums erring alternately in excess and defect.
•f This follows from the nth Mean Value Theorem applied to (1 +x)-<*-U'.
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I. J. GOOD AND G. H. TOTJLMTN 49

(16) can also be obtained directly by using the Poisson approximation

(17)

We define an estimate of <̂ (nr(A)) by

*MA) = A'£ (-!)*( + ){X-\)inr+i; (18)
i-o \ r I

then (16) gives us <f(nJ.(A))=<f(nr(A)).

For the case r = 0, we may seem to need to assume the value of a, but this assumption is
not really required since we can write

S(-l)<(A-l)*n i = «-»i0(A), (19)

so that

We have thus obtained (approximately) unbiased estimates of &(nr(A)) and <£(d(\)) in terms
of the observed numbers nr. We shall almost certainly obtain more accurate estimates if we
replace the nr by smoothed values n'r; for methods of smoothing see G, §§3, 7, 8.

In the case when the second sample is an enlargement of the basic one, and it is desired
to predict the value of nr(X) given the basic sample rather than <?(nr(A)), which we have denned
to be the expectation when the whole of the second sample is varied at random, it seems
intuitively clear that nr should not be replaced by n'r in (18), at any rate when A is not large,
though the later terms probably should be smoothed; for instance, consider the case A = 1.
We have not attempted a rigorous treatment of this question. The advantage of smoothing
is not as great when using formulae like (18) as when using such formulae as G (2'):

involving a ratio of the n'r. Sometimes a ratio is involved surreptitiously, as in G (6), (6').
An important point in the argument leading to (14) was the expression of (1 —pM) as

so that expansion led to terms expressible as functions of the &{nT). This device can also be
used to avoid the approximation made in G (lines 8 and 9 of p. 241) of replacing the expected
value of nr+m for a sample of size N + m by its expected value for a sample of size N. The
result obtained is (using the notation of G)

-m\

i J ( 2 0 )

l)m

n) ' ( '

The approximations made in G are thus equivalent to replacing (N — r)'m) by Nm and
neglecting the terms of the sum after the first; they are reasonable provided mr<$N.

4 Biom. 43
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50 The number of new species covered when a sample is increased

As noted in § 1, we may be particularly interested in the coverage of the second sample,
and the number of different species it will contain. By (3) and (16) with r = 1, the expected
coverage is approximately

^ o

^ l - l K - 2 ( A - l ) n 2 + 3(A- I)*7i3-...] (22)

(or, more accurately, the same formula with n'T in place of nr).f The expected number of
distinct species represented is (by (19)) approximately

i.e. in the case of an enlarged sample, the number of new species expected is approximately

Evidently 74,n%,... may be replaced by smoothed values in (23) and (24), but d should be
replaced by the smoothed value ,, , ,

d = 7^ + 712+...

only in the case of an independent second sample. Note that (23) and (24) can be proved
directly without assuming « to be finite.

3. VABIANCE OF THE ESTIMATES nr(A)

In this section we find an expression for the variance of the estimate nr(X) of S(nT(X)) defined
by (18). This must not be confused with the variance of nr(A), which can be found from the
formulae given in G, §5. nr(A) is a linear function of the random variables nr+i, and varies
accordingly when we take different basic samples; we can find its variance if we know the
variances and covariances of the nr. We therefore start by calculating these. By the method
of G, § 5, we find

iv r 8)! ^ „

(25)
where &„= 1, 8n = 0 if r=M.

Now

i-0

"f It is correct to replace r^ by n{, even when the second sample is an enlargement of the basic one,
because the more accurate formula for the coverage, G (9'), uses n{ in place of rij, so we are interested
in /(n^A)) rather than the expected value of n^A) given the basic sample.
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I. J. GOOD AND G. H. TOTTT.MTN

and (1 - 2p,)"—• = [(1 -pj (i _ T i y p ~

i-0 \ » /

Substituting from (26) and (27) in (25),

51

(27)

- s (-

N\
r\a\{N-r-a)l U.fc

(28)

(29)

using (8). Provided t, j , k, r, 8 are all <^N, the coefficient in the first sum is

and when i = j = k = 0, use of Stirling's formula shows that it is 1 -\-0(r8JN). Hence, if

™<N> cov (nr,»,) = *(»rn.) - <?(nr) ̂ (n.)

^5 ra^(n r) - 2— •

Notice that when r = « we have equation (22) of G:

V{nT)^#(nT) - 2-

or, expanding the second term by (8),

(30)

(31)

^ ^ (32)

For the case r = 0, since s is constant, we have

V(d) = V(n0) ̂  <?(d(2)) - g(d) - <?(nx) - g(nj + .... (33)

Using (30), we can now find the variance of nr(\). From the elementary formula for the

variance of a linear form: , „
F ( 2 a ) £ cov
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52 The number of new species covered when a sample is increased

we have

( - 1 f« (A -

i - o

( A - 1)* ( ' * * ) ^ K + 1 ) - ( ^ (2A)-^^(n2r(2A))] , V34)

using (8) again. This derivation of (34) is slightly unsatisfactory, since the second series in
the previous formula may give a good approximation to the term by which we replace it
only after so many terms have been taken that the approximation made in (30) is no longer
valid. I t may be possible to postpone making this approximation until a later stage of the
calculation, but the algebra would become very heavy. In order to estimate <?(na.(2A)) in
calculating (34) for an actual case, it may be possible to use the method of § 2 (probably in
conjunction with the summation technique described in §5), or it may be easier to make
a sufficiently accurate guess.

If nr(A) is denned by (18) with n'T+i in place of n^^, it becomes very difficult to make any
estimate of its varianoe. We can say, however, that so long as we feel that it is worth using
smoothed values at all, the variance of the estimate based on them is likely to be con-
siderably less than that given by (34).

4. VARIANCE OF nr(A) CONSIDERED AS A PREDICTION OF nr(A)

In the last section, we were considering the question: How much may nT(X) be expected to
differ from its mean value (which is equal to <?(nr(A))) ? A question which may sometimes be
more relevant is: How much may nr(A) be expected to differ from the value of nr(A) obtained
in a random second sample ? To answer this question, we want to find

^ (35)

which may be called the variance of rir(X) considered as a prediction of the random variable

n,(A), rather than as an estimate of the parameter &(nr(\)). I t is evidently now necessary
to consider separately the cases when the second sample is independent, and ~when it is an
enlargement of the basic sample.

When the second sample is independent, ftr(A) and nr(A) are independent random variables,

!-nr(A)) = F(nr(A))+7(nr(A)) (36)

which can be calculated by using (34) and the following modification of (31):

(37)
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I. J. GOOD AND G. H. TOULMTN 53

In the case when the second sample is an enlargement, rar(A) and nr(A) are correlated, and
we have not been able to calculate (35) in this case. It may be expected to be considerably
smaller than in the case of independence, at least if A is not large, since when A = 1 we have
nT(l) = nr = nr(l) and so (35) is reduced to zero.

5. SUMMATION OF THE SERIES OBTAINED IN §§2 AND 3

We consider the case of the general series (18); similar remarks apply to (22), (23), (24) and
(32), and to the series arising in calculating (34) and (37). It was pointed out in § 1 that the
term (A — I)1 in (8) and (18) may cause trouble if A > 2. In fact, the series is likely to become
'practically divergent'; i.e. to behave like an infinitely oscillating series up to a point at
which we become too uncertain of the value of &{nr) to continue with the calculation. This
difficulty is illustrated by formula (34) for the variance of nr(A); if A > 2, the series

00
 Ir 4- »\ 2

Sf+* (A-
i-0 \ r /

is likely to have a very large sum, unless &(nr+i) decreases extremely fast. It is natural to
try to overcome this difficulty by using a method of summation which is known to make
some oscillating series converge; a convenient method appears to be that of Euler, with
a parameter q, generally called the (E,q) method (Hardy, 1949, pp. 178ff.). This is to

00 00

transform the series 2 at into 2 a$P\ where
t-0 j-0

<
38

»

the forward difference symbol A£ being defined inductively by

^al = ar+1-ar, A J - A J A J - I . (40)

(The form (39) is given by Bromwich (1926), pp. 62-6, for the case q = 1. It leads to a con-
venient method of setting out the work in a practical example, which will be illustrated in
Example (i) of the next section.) If 2 «< converges, then 2 df* converges to the same sum,

i i

for any q ^ 0; if 2 df* converges, then 2 df converges to the same sum for all q > q' (Hardy,
i i

1949, Theorems 117 and 118).
In practical examples, nT+i generally decreases slowly after the first few terms, and we are

circum-usually interested in small values of r, so that I I increases slowly. Under these ci

stances, the series (18) is, after the first few terms, nearly a G.P. with ratio — (A— 1). Now,
if we apply the (E, q) method to such a G J"., say

ai = (-l)<(A-l)<o0 , (41)

we obtain af = ^ J $ ^ ( - (A - 1))*

y
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54 The number of new species covered when a sample is increased

i.e. the transformed series is a G.P. with ratio -— . Clearly the best value of q to select

is A — 1, which reduces all but the first term of the transformed series to zero.f If the nr+1

decrease fairly rapidly, we may get better results by choosing q somewhat smaller. (This
is the case in Example (i) of §6, where A = 5, but we take q = 2.) When r = 0 or 1, and if
n^ > nt, it may be worth taking out the first term of the series, and applying the summation
process to the remainder; the reason for this can be seen by considering such a series as

If we apply the (E, 2) method directly, we get

0-333 + 0-208 + 0-139 + 0-093 + ..., (44)

while if we take out the first term and apply the (E, 2) method to the remainder, we get

1-000-0-042 + 0-000 + 0-000+..., (45)
which is evidently better.

When we have chosen a method of summation, and selected a partial sum of the trans-
formed series as probably giving a sufficiently good approximation to the final sum, we can
express this partial sum as a linear combination of the nr, and deduce its variance, as in § 3. J
But there is now a new source of error, namely, the omission of the rest of the transformed
series. We have not been able to find a useful form of error term for this remainder (corre-
sponding to the statement that alternate partial sums of (8) err in excess and defect); failing
such an error term, our results must be used with caution when it is necessary to apply the
summation process. If the nr's decrease slowly and q is taken to be slightly smaller than
A— 1, the transformed series will generally have terms alternating in sign (cf. equation
(42)); it might then be hoped that the partial sums err alternately in excess and defect, but
it does not seem to be possible to lay down any simple general conditions under which this
is the case.

Some of the methods described by Shanks (1955) also seem to be very well suited to our
case; they have the property of Humming perfectly any series which is geometric from some
point onwards, so that the difficulty caused by an excessively large first term, noted above,

00

does not arise. Given the series 2 a
n

 w e define a sequence (not a new series) by
n-0

Bn = nZar+ °" (n= 1,2,3,...);
r-0 an+l~an

repetition of the process gives a sequence Cn, and so on. The e^ method consists of considering
n

the sequence Bn (in place of the sequence of partial sums An = £ ar)> ^le el method, of
r-0

considering the sequence Cn, and so on; the i1 method consists of considering the sequence
Ao, Bv C2,.... For an example, see §6, Example (i).

t This statement may appear to conflict -with the remark of Hardy (1949), p. 180, that 'as q
increases, the (E, q) methods form a scale of increasing strength'. But here 'strength' refers only to
whether we obtain a convergent series or not: if we choose q unnecessarily large, we shall certainly
obtain a convergent series, but it will converge very slowly.

% Thin remark applies to any method of summation by a linear transformation of the series,
e.g. Cesaro means, the composite {E, q; C, k) method, any Hausdorff means, HSlder means, Hutton's
method, any NOrlund means, or quasi-Hausdorff transformations; for references to all these methods,
see Hardy (1949), p. 392. It does not apply to the non-linear methods of Shanks (1955), mentioned
below.
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I. J . GOOD AND G. H. TOTTLMTN 55

6. EXAMPLES

The first example is an artificial one designed to test the efficacy of the methods described
above, especially the summation methods of §5. The second and third examples illustrate
the practical applications, but enlarged samples are not available for verifying the estimates.

Example (i). Sample of words from ' Our Mutual Friend' by Charles Dickens. The following
samples were taken:

A, of 1000 words, the last words of lines on pagess 5 mod 25,

B, of 2000 words, the last words of lines on pagess 10 or 20 mod 25,

C, of 2000 words, the last words of lines on pagess 15 or 25 mod 25,

the sampling in each case being carried as far as required to make up the prescribed number
of words. Our original intention was to use A as the basic sample (N = 1000) and to calculate

Table 1

Sample A; N =

r

1
2
3
4
5

404
57
24
16
6

1000

K

404
64
25
12-2
6-2

d =

Sample A; #=1000

r

6
7
8

3=9

3
0
3

15

—
—
—

528

values of d(A) and nx(A) given by (19) and (18) for A = 2, 3, 4, 5, which could be checked
against the values of d(A) and n^A) actually obtained from the samples B, A + B, B + C,

A + B + C. The results, however, showed a systematic and, for d(2), significant difference
between the prediction and the observed result. Working back from sample B with A = $,

it appeared that sample A had nx considerably too small. We believe that this is due to the
fact that the method of sampling used was not sufficiently random; an uncommon word
is likely to occur several times on the same page, where a particular topic is discussed, and
such a word is therefore less likely to occur just once in a sample selected as described than
in a random sample of the same size.f

The results for larger values of A were, however, not much less accurate than those for
A = 2, and we give the calculation of 5(5) as an example of the use of the (E, q) method of
summation described in §5. Table 1 shows the data; the n'r were obtained by graphical
smoothing of JnT. Our formula (19) gives us

5(5) = 528 + (4.404-4*. 64 + 43 .25-4V 12-2 + 46 .6-2-.. .) . (46)

t Consider the extreme case when p. 1 reads 'one one one...', p. 2 'Two two two...', and so on.
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56 The number of new species covered when a sample is increased

To transform the bracketed series we form the difference table suggested by (39) (q has
been chosen as 2, so as to make the differences small):

402

i-4
(*)2

(*)3

.404

.42 .64

.43 .25

44 12-

.45.6-2

= 808

= 256

= 200

2^195

=^198

-552

- 5 6

- 5

3

496

51

8

555

-445

- 4 3

-488

(We apply the usual check, that the sum of each column is equal to the difference between
the top and bottom of the one before.) The transformed series, by (39), is

f. 808 + (f)2.552 + (|)3.496 + (f)4.445 + (§)5.402. ..^538 + 245 +147 + 88 + 53.... (47)

The last few terms of (47) are approximately a geometric series with ratio 0-6; the sum of
the remaining terms should therefore be approximately!

53 x

making a total of 1150; hence

0-6
1-0-6

^79,

d(5) = 528+1150= 1678. (48)

Applying the methods of Shanks (1955), described at the end of §5, we get Table 2.
Although the transformed sequences are rather short, it looks as if C2 = 1155 is a good
approximation to the limit, giving d(5) = 16S3. In fact, for the whole sample A+B + C,
d(5) = 1832.

Table 2

n

0
1
2
3
4

A,

1616
592

2192
- 9 3 1
5418

1216
1134
1162

c.

1155

In this example, we have been slightly handicapped by having so few terms of the series
available; when using the (E, k) method, this renders the remainder somewhat uncertain,
and prevents us from omitting the first term from the summation process, as was suggested
in §5. Because of this difficulty and the apparent non-randomness noted above, we use
sample B (N = 2000) as the basic sample for a more comprehensive test of our methods,
although we can then verify the results only up to A = 2-5. (The 'second samples' for
A = 1-5, 2-0, 2-5 are A +B, B + C, A+B + C respectively, and are thus all enlargements of
the basic sample.) Table 3 gives the data for this basic sample; the n'T were produced

t This is, as Shanks (1955) points out, equivalent to applying the Bj method to sum (47).
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I. J. GOOD AND G. H. TOULMTN 57

by smoothing yjnr graphically by the use of French curves, the n"r, independently, by
smoothing by eye: d(A), &i(A), and the estimated percentage coverage, 100 (1 — n^AJ/AiV),
were calculated for A = 1-5, 2-0, 2-5, using the three sets of values. The summation process
was used only in the case A = 2-5, with q = 1. Table 4 shows the three sets of estimates
and the actual results found in the enlarged samples; standard deviations are given where
applicable, calculated from (31), (33), and (34). It will be noticed that in this case
little or nothing was gained when smoothed values were used; but it would probably
be essential to use smoothed values when working with larger values of A.

Table 3

Sample B; N = 2000

r

1

2

3

4

5

6

7

8

729

108

33

23

17

7

5

3

30

729

96

38

21

14

9

7

3-2

—

K

729

110

38

19

13

9

6

4

—

d = 955

Example (ii). Captures of Macroiepidopttra in a liglit-trap at Rothamsted. (Quoted as
example (i) in G, §8 from Wilhams's data in Corbet, Fisher & Williams (1943).) N = 15609.
d = 240. Table 5 shows the small values of r. n'r is n" of the example in G, obtained by

smoothing
t-i

tnt. is Fisher's analytic smoothing, given by H3 of G with parameter

ft = 40-2. Now H3 is a hypothesis defining the distribution of the population frequencies
{P/}, and it implies that

(49)

(G, (63)), and

(G, (67)). Since

and

, we see that H3 implies

(50)

(51)

(52)

Putting A = 2 we see that doubling the sample will approximately halve the proportion of
the population not represented (by (51) and (3)) and increase the number of distinct species
observed by approximately /Hogg 2 = 27-9. (The latter fact was noted by Williams in
Corbet et al. (1943), p. 51.)
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58 The number of new species covered when a sample is increased

Table 4

Estimates of d(X)

Using n,
Using n̂
Using n*
Actual results

A= 1-5

1296 ±34
1299
1296
1303 ±29

A = 2 0

1599 ±50
1613
1601
1551 ±31

A = 2-5

1872
1909
1890
1832 ±34

Estimates of nt(X)

Using n.
Using n'r
Using n*
Actual results

A= 1-5

958 ± 42
981
961
983 ± 29

A = 2-0

1172f
1238
1168
1116 ± 31

A = 2-5

1322
1435
1350
1308 ±32

Estimates of % coverage

Using nr

Using n^
Using n'
Actual results

A = 1-5

68-1 ±1-4
67-3
68-0
67-2 ± 1-0

A = 2-0

70-7f
690
70-8
72-1 ±0-8

A = 2-5

73-6
71-3
73-0
73-8 ±0-6

t The S.D. is not given in this case because the sum of the series was not taken to infinity but
estimated after eight terms as lying midway between the last partial sums; that is, in effect, Hutton's
method (Hu, 1) was applied to sum the series (Hardy, 1949, pp. 21-2). (34) would give a very large
variance, most of which arises from terms after the eighth.

Table 5

r

1

2

3

4

5

6
7

35

11

15
14

10
11

5

K

3 5 0

22-5
16-3
12-3
9-7
7-7

6 0

K

40-1
20-0
13-3
1 0 0

7-9

6-6
5-6
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I. J . GOOD AND G. H. TOULMTN 59

The present example is not a good one to which to apply our distribution-freef methods,
since even 7^ is rather small; however, we shall obtain the corresponding results for com-
parison, using the smoothed values n'r. By (18),

»1(2) = 2(35-0- 45-0 + 48-9 -49-2 + 48-5- 46-2 + 42-0-...)

= 2(17-5 - 2 - 5 - 0-8 -0-2 + 0-0 + 0-1 + 0-1 + ...)

(transforming the series by (E, 1))

= 28-4,

whence (using (3)) we predict that the proportion of the population not covered should
decrease from o c A

= 0-22 %
15609 " " "" / 0

whereas H3 implied that it was halved. By (24), the expected number of new species is
approximately

35-0- 22-5 +16-3 -12-3 + 9-7- 7-7 + 6-0-. . .

= 17-5 + 3-1 + 0-8 + 0-3 + 0-1 + 0-1+0-0+... (by (E,l))

= 21-9,

whereas H3 implied that 27-9 were expected. Finally, in order to estimate the S.D. of 74 we
calculate from (18)

na(2)^4(22-5-48-9+ 73-8-97-0 + 115-5- 126-0+...)

= 4(ll-25-6-60-0-19 + 0-01-0-09-0-04+...) (by (E,l))

= 17-4,
so, by (31),

F(n1) = 35-i .2.17-4 = 26-3,

giving T^ a S.D. of about 5-1, whereas H3 (by (65) of G) gave 5-5.
We note that our distribution-free estimates of 7^(2), 7i2(2), d(2) are all less than the values

implied by H3, This is what one would expect when the sample size, N, is large enough for
the finiteness of a (the total number of species in the population) to conflict with the pre-
diction of H3 that a = oo; but the effect may well be accidental.

In this example, we can also make a rough comparison between the variances of the
estimate of n1(A) deduced from H3 and that given by our distribution-free method. The
former estimate is almost exactly /?, and its variance is therefore approximately equal to
the sampling variance of /? for this example, given by Fisher (Corbet et ol. (1943), p. 56) as
1-13 (S.D. of 1-06); this is independent of A. Our T!1(A), on the other hand, has a very large
variance for A> 2 (by (34)), and even for A = 1, since T\(1) = 74, its variance, as we saw
above, is about 26-3 (S.D. 5-1). However, it must be remembered, first, that H3 is certainly
not exactly true (since in fact a < 00),J so that the estimate deduced from it is subject to an
unknown additional error, and secondly, that we may hope to reduce the variance of
ftr(A) considerably by using carefully smoothed values and summation methods.

"f I.e. independent of any particular assumption about the distribution of the pfi, in contrast to the
above argument which assumes H,.

X Not even the truncated form, fl, of G, can be exactly true, as was shown in G, p. 257.
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60 The number of new species covered when a sample is increased

In general, if a fairly simple hypothesis H on the p^ (e.g. any of Hx to i^ of G) gives a good
fit for the nT, we should prefer to deduce < (̂nr(A)) and <?(d(A)) from H, rather than use the
distribution-free estimates (18) and (19); but such extrapolation should be made with
caution, and the distribution-free methods may give a useful indication of the error to
be expected if H is false.

Example (Hi). Sample of nouns in Macavlay's essay on Bacon. (Prom Yule (1944),
Table 44, p. 163; quoted in G as example (iii), p. 260.) N = 8045, d = 2048.

Table 6

r

1

2

3

4
5

6

7

8

9

10

990

367

173

112

72

47

41

31

34

17

K

1024

341

170

102

68

49

35-5

28-5

22-7

18-4

r

11

12

13

14

15

16-20

21-30

31-60

51-100

lOl-oo

n.

24

19

10

10

13

31

31

19

6

r

K

15-5

131

113

9-7
8-6

30-5

31-5

25-9

19-9

20-3

(As in the tables in G, nr and n'T have been summed where values of r are grouped.)
Here n'r (= n, of G) is the analytic smoothing

of G; notice that this is not an explicit hypothesis on the p^, and that it gives a good
fit only for r < 30.) (53) is so simple in form that we can carry through all our calculations
analytically. Again we consider doubling the sample (A = 2); by (18),

00 ( -D*
= 2.2048 2 K—j-

i-o » + 2

= 2. 2048(1-log,2)

^1260;

and
2048

= 2.2048
i_0

= 2.2048

The first series is summed by any standard method to £, and the second is equal to log^ 2 — \;
h e n c e na(2) = 2.2048(| - 210& 2)

=^465.
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I. J . GOOD AND G. H. TOITLMIN 61

Finally, by (19),
°° 2048

2 ( l ) V*(»+!)

= 2048.2 £ v

= 2048.2 log 2

^ 2840.

Notice that, since the n'r give a good fit only for r < 30, the justification for substituting
them in infinite series rests on the following argument:

(i) the partial sum of the seriesf with the true <£{nr) down to the term containing ^{n^)

is a good approximation to its infinite sum;
(ii) the same is true for the seriesf with the n'r;

(iii)the n'T are good approximations to the &(nT) for r<30, so that the partial sums
mentioned are nearly equal.
(Compare the argument justifying evaluation of integrals by the saddle-point method.)
(i)-(iii) should be borne in mind whenever an analytic smoothing is used in this way, or
even when it is used to give values of n'T which are treated numerically; otherwise there is
some risk of obtaining an apparently satisfactory convergence which is in fact spurious.
When possible, it would probably be advisable in such cases to try a graphical smoothing as
well: the reader might like to try the smoothing n'r of G, using the (E, 1) or Zy method of
summation.

We have now sufiicient data to derive the result which was quoted in §1. By (3), the
proportion of the population not represented in the 2048 nouns of the basic sample is about %

by (7) of G the proportion not represented in the 2840-1260 = 1580 nouns occurring twice
or more in the doubled sample will be about

1260 + 2.465
1 6 0 9 0 - 1 3 6 / o -

by (2) of G, the average frequency of the 1260 nouns occurring once only in the doubled
sample will be about

1260.16090

Hence, if we add a random selection of

13-6-12-7
0-0046

^0-0046%.

^ 2 0 0

of the nouns occurring once only in the doubled sample to all those occurring twice or more.
we will have a list of about 1780 nouns covering approximately the same proportion of the
population as the 2048 nouns of the basic sample.

t Or, if summation methods are used (as in calculating n,(2) above), the sum of the transformed
series.

% The figure of 12-3% given in G was based on the unsmoothed values.
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62 The number of new species covered when a sample is increased

APPENDIX

Conditions for the lemma of § 1

Although this lemma was not actually used in our argument, we give here, for any reader who may be
interested, two fairly general sets of conditions under which it holds.

If a,^0 for all r, and finite numbers b, are defined by (4), then (5) holds if and only if

^±-'-^0 as »-+oo. («*)
t!

Proof. Write B(n,r) = - E ( ~ 1?'6f+<-aT,
r ! o *'

so that (6) holds if and only if R(n, r) -*• 0 as n ->• oo. Now, for all n>r,

1 n I — 1 \* °°
R(n,r) = - S S «<'+'>o.-ar

r!i_0 t! »-o

D o1"
= — , even if a is negative, together with the well-known identity

61

Putting a = r gives a term + a,, and all other terms with s<n + r+ 1 vanish; hence

* — r — n d + >

= (-1)- S W , a,. (55)
« - r n!r!Now, since a, S= 0 for all «,

l-R(n,r)|<-i- S
n l r ! o

r! n!

and the sufficiency of (54) follows. The necessity is trivial, since if (54) does not hold the right-hand side
of (5) cannot converge.

If a,- 0(xr), 0=§x< \, then (5) holds for all r; further, (5) does not hold if a, = 2"*, so this result
cannot be improved by extending the range of x.

Proof, (i) We may assume without loss of generality that | a, | ̂ xr. Then it follows from (66) above
that m ^

—n+rnlr!

_ {n + r)lx-

~ n\r\

1

-»• 0 as n -• oo provided x<\;
hence (5) holds for all r.

(ii) Taking a, = 2-*, we have «
64 = 2J r*fl(J)r

r-0

summing the series as in (i), and it is clear that the right-hand side of (5) is not convergent for any r.
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