
Forecasting Records by Maximum Likelihood 
RICHARD L. SMITH* 

A maximum likelihood method of fitting a model to a series of records is proposed, using ideas from the analysis of censored 
data to construct a likelihood function based on observed records. This method is tried out by fitting several models to series 
of athletics records for mile and marathon races. A form of residual analysis is proposed for testing the models. Forecasting 
consequences are also considered. In the case of mile records, a steady linear improvement since 1931 is found. The marathon 
data are harder to interpret, with a steady improvement until 1965 with only slight improvement in world records since then. 
In both cases, the normal distribution appears at least as good as extreme-value distributions for the distribution of annual 
best performances. Short-term forecasts appear satisfactory, but serious reservations are expressed about using regression-type 
methods to predict long-term performance limits. 

KEY WORDS: Athletics records; Censored data; Generalized extreme-value distribution; Gumbel distribution; Inference for 
stochastic processes. 

1. INTRODUCTION 

Athletics records are a subject of evergreen interest, in 
their own right and as a testing ground for physiological 
theories (e.g., Lietzke 1954; Lloyd 1966). One aspect is 
the relation among records achieved at different distances, 
a subject that has been approached both theoretically 
(e.g., Keller 1974; Ward-Smith 1985) and empirically (Rie- 
gel 1981). This article is concerned with a different as- 
pect-the improvement of records over time. Specifically, 
I propose methods of model-fitting and forecasting when 
the available data consist just of a series of records, as 
illustrated by Figures 1 and 2. Tryfos and Blackmore 
(1985) derived a method of generalized least-squares anal- 
ysis, but under the very restrictive assumption that the 
records are derived from an underlying independent and 
identically distributed (iid) sequence of random variables. 
The method proposed here, based on the maximum like- 
lihood principle, is more general, and I consider its ap- 
plication to several athletics series. I propose a probability 
plotting technique that is useful for assessing a model’s fit. 
I then consider the problem of forecasting, both short- 
term (Sec. 5 )  and long-term (Sec. 6), in the latter case 
disputing the conclusions of Chatterjee and Chatterjee 
(1982) and Morton (1983, 1984) on ultimate-limit esti- 
mation. 

Most of the existing mathematical literature on records, 
and the closely related subject of extremal processes, has 
been concerned with records in iid sequences. Glick 
(1978), Galambos (1978, chap. 6), and De Haan (1984) 
reviewed the area. Recently, attention has been given to 
records in sequences containing an underlying trend. Yang 
(1975) considered the effect on record times of an increas- 
ing population size. Ballerini and Resnick (1985, 1987) 
studied records in a sequence consisting of a stationary 
random sequence superimposed on a linear trend. De 
Haan and Verkade (1987) considered some cases where 
(because of either a very long-tailed distribution or a very 
slow trend) the asymptotic theory is similar to the iid case. 
On the statistical side, Smith and Miller (1986) proposed 

a class of models for records from a Bayesian predictive 
viewpoint. Their models permitted a more general de- 
pendence structure than that considered here, but were 
restrictive in being based on the Gumbel distribution, 
which does not fit the data particularly well. 

2. MODELS 

Let Y, denote the best performance in a particular event 
in the nth year covered by the data. Depending on the 
event, this may refer either to a minimum or to a maxi- 
mum; for definiteness, assume it is a minimum, though 
we could of course apply an analogous analysis to maxima. 
Assume Y, is of the form 

Y,  = x, + c,, 
where {X,} is iid and {c,} is a nonrandom trend. The rec- 
ords in an N-year period are given by 

(2.1) 

2, = min(Y,, . . . , Y,), 1 s n 6 N .  (2.2) 
In most of the analysis assume that the available data 
consist of {Z , ,  1 s n 6 N } ;  that is, the records are available 
but the underlying sequence {Y,} is not. This is a natural 
starting point for athletics data, since the sequence (2,) 
is easily extracted from a table of records whereas the 
sequence {Y,} is not. There are also other contexts in 
which data may be available only in the form of records- 
for example, the use of historical information in hydrology 
or certain problems in materials testing (Glick 1978). Note 
that I am only considering the best performance in each 
year. Thus, if the record is broken more than once during 
the year, only the latest (best) record is used in the anal- 
ysis. 

Suppose we have a parametric model in the form c, = 
c,(B), X, - f(x; e ) ,  where f is a continuous density and 
/? and I9 are (vector) parameters. The situation may be 
thought of as a censored-data problem in which the value 
of Y,, in a nonrecord year, is censored at the existing 
value. Then the likelihood function of (a, 19) based on 
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Figure 1. Plot of Mile Records (seconds) Against Year of Achievement 
for 1860-1 985. On the right are predictions of annual best performance 
(not records) for the next 20 years, with 95% confidence bands com- 
puted by the method described in Section 5, based on Model A fitted 
to 7937-1985 data. 

21, . . . , ZNis 
N n {f(Z, - c,(P); 8))"{1 - F ( Z ,  - cn(P); e))l-", 

n = l  

(2.3) 
where F is the cdf of f and 6, is 1 if there is a record in 
year n,  0 otherwise. The maximum likelihood estimates p and 6 are found by numerical maximization of (2.3). As 
in classical problems, assume that (B - P, 6 - 0 )  is ap- 
proximately normal with mean 0 and covariance matrix 
given by the inverse of the observed information matrix. 
For the special but important case of a linear trend, this 
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Figure 2. Plot of Marathon Records (minutes) for 1909-1985, With 
Projections Computed by the Same Method as for Figure 7 ,  Based on 
Model A for 7909-1985. It is apparent that the improvement has not 
closely followed a straight line, but none of the alternative models is a 
noticeable improvement. 

procedure can be given a rigorous justification in terms of 
asymptotic theory. (The details are in an unpublished re- 
port, available from me.) 

Particular distributions of {X, )  include the normal dis- 
tribution; the Type I extreme-value distribution (Gumbel 
1958), defined by 

F ( x ;  ,u, o) = 1 - exp[-exp{(x - ,u)/a}] (2.4) 
(x E 9; ,u E 3, o > 0) and referred to here as the Gumbel 
distribution; and the generalized extreme-value (GEV) 
distribution 

F ( x ;  ,u, o, k )  = 1 - exp[-(1 + k ( x  - ,u)/o}"k], 

(2.5) 
defined on {x  : 1 + k(x  - p ) / o  > 0) for ,u E 3, o > 0, 
and k E 3 [the case k = 0 is (2.4)]. This distribution 
incorporates Gumbel's (1958) Types I1 and I11 in a pa- 
rameterization convenient for estimation (Prescott and 
Walden 1980, 1983). The rationale for these distributions 
rests on the definition of Y,  as an annual minimum, though 
the normal distribution is also a viable choice in practice. 

The near linearity of Figures 1 and 2 suggests a linear 
function 

.,(Po, Pi) = P o  - nP1, P1 > 0 ,  (2.6) 
as an obvious model for the drift term. As alternatives to 
this, consider a quadratic-drift model, 

c,(Po, P1, Pz) = Po - nB1 + n2P2/2, Pi > 0, (2.7) 

which I regard as an artificial alternative against which to 
test (2.6), and an exponential-decay model, 

c,(Po,P1, P 2 )  = Po - P10 - (1 - P 2 ) n ) / P 2 ,  

Pi > 0, 0 < Pz < 1, (2.8) 

which is equivalent on reparameterization to models of 
Chatterjee and Chatterjee (1982) and Morton (1983); this 
is intended as a more realistic alternative to (2.6), with 
the feature that the eventual limit Po - P1/D2 exists as n 
-+ 00. Note that (2.8) reduces to (2.6) in the limit P2 + 0. 

Thus we have nine candidate models obtained by com- 
bining the different distributions and regression curves, as 
follows: 

A: Normal, linear drift 
B: Normal, quadratic drift 
C: Normal, exponential decay 
D: Gumbel, linear drift 
E: Gumbel, quadratic drift 
F: Gumbel, exponential decay 
G: GEV, linear drift 
H: GEV, quadratic drift 
I: GEV, exponential decay. 

In the Normal case, assume a mean of 0 and a variance 
of o2 (unknown), the mean being absorbed into c,. In the 
Gumbel and GEV cases, ,u = 0 in (2.4) or (2.5). 

The models are fit by numerical maximum likelihood. 
Two algorithms were used: (a) the NAG routine E04CGF, 
which is a quasi-Newton algorithm with numerically ap- 
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proximated derivatives, and (b) a modified Newton-Raph- 
son algorithm for the Gumbel and GEV cases, using 
analytic first- and second-order derivatives. The second 
algorithm is an extension of the method of Prescott and 
Walden (1983). The basic Newton-Raphson procedure is 
modified by including a check that the log-likelihood in- 
creases at each iteration (if not, a shorter step length is 
taken) and by switching to the direction of steepest ascent 
if the Newton step is not defined (Hessian matrix not 
negative definite) or if it fails to result in an increase of 
the log-likelihood. Hosking’s (1985) algorithm employs 
the same principles, but only for iid data. In the GEV 
case, this procedure should converge to a local maximum 
if one exists, but there is no guarantee that one does. This 
difficulty was observed by Rockette, Antle, and Klimko 
(1974) in the closely related case of the three-parameter 
Weibull distribution; it was analyzed theoretically by Smith 
(1985). I used a variety of strategies in my algorithms to 
determine the starting points of the iterations. In difficult 
cases several different starting points were tried, though 
experience suggests that the choice of starting point is not 
critical when the aforementioned modifications of the 
Newton-Raphson algorithm are employed. 

Theoretical justification of maximum likelihood may be 
given, in the case of a linear trend only, by asymptotic 
arguments. The structure of the problem, with censoring 
determined by past values of the series, identifies it as an 
“inference for stochastic processes.” Arguments of Bal- 
lerini and Resnick (1985) may be adopted to prove that 
the process is ergodic; asymptotic normality then follows 
from the general result of Sweeting (1980). (The details 
are in an unpublished report, available from me.) 

The analysis proceeded by fitting these models to some 
athletics series. In addition to testing the models against 
each other, it is possible to fit them to different portions 
of the same series and thus gain some indication of how 
the models are changing with time. In Section 3, I sum- 
marize some of these procedures’ results. 

3. ANALYSIS OF RECORDS DATA 

The preceding models were fitted to the mile and mar- 
athon data of Figures l and 2, part of which were tabulated 
by Smith and Miller (1986). In addition, for the mile-race 
data, a complete set of annual best performances was avail- 

Table 1. Mile Best Performance: Model A Fitted to Various 
Portions of the Series 

Years 

Table 2. Mile Records: Model A Fitted to Various 
Portions of the Series 

Years 

1860- 1931- 1860- 1895- 1931- 1960- 
Parameter 1985 1985 1894 7930 1959 1985 

Po* 250.3 250.0 237.2 252.9 250.6 244.8 
(5) (.6) (3.8) (1.3) (.9) (1.3) 

81 .38 .42 5 9  .17 .44 .32 
(.01) (.02) (.07) (.05) (.05) (.03) 

C7 3.4 1.7 3.2 1.7 2.0 1 .o 
(.4) (.3) (.7) (6) (5) (2) 

NOTE: Units are seconds. Standard errors are in parentheses. 
* Standardized to a 1930 base. 

able (Ballerini and Resnick 1985), and the results were 
analyzed for comparison with the results for mile-record 
data. In the latter case, of course, there is no censoring 
and the model-fitting is simple regression analysis by max- 
imum likelihood under the three error distributions. 

Over short portions of the data we would expect the 
linear drift (2.6) to be satisfactory; for reasons to be ex- 
plained shortly, it was found that the normal distribution 
is the most suitable among the three distributions consid- 
ered. Therefore, I fitted Model A to different portions of 
the series; the results are summarized in Tables 1-3. For 
ease of comparison, the year n was taken relative to a 
fixed origin, which was arbitrarily fixed as 1930 for the 
mile data and 1908 for the marathon data. The standard 
errors in Tables 1-3 are calculated from the observed in- 
formation matrix. 

Inspection of Tables 1 and 2 confirms the visual picture 
from Figure 1, of a rapid improvement in times over the 
last 40 years of the nineteenth century, followed by a pe- 
riod of very little improvement to about 1930, followed 
by fairly steady improvement since then. There is some 
change in between the periods 1931-1959 and 1960- 
1985, though the change is not nearly as great as over the 
preceding periods and is barely significant. Over the whole 
series (1860-1985), a linear drift does not fit particularly 
well. In fact a cubic regression fits this series much better 
than any of the models considered in Section 2, though, 
as the main reason for this is the slow improvement from 
1900 to 1930, it would not seem reasonable to attach too 
much significance to this for the purpose of predicting 

Table 3. Marathon Records: Model A Fitted to Various 
Portions of the Series 

Years 

1860- 1931- 1860- 1895- 1931- 1960- 
Parameter 1985 1985 1894 1930 1959 1985 

~ 

1909- 1941- 1909- 1941- 1965- 
Parameter 1985 1985 1940 1964 1985 

80’ 249.6 251.0 235.0 252.9 251.2 246.5 
(.3) (.6) (2.6) (.9) (1.0) (1.9) 

(.01) (.02) (.05) (.04) (.04) (.04) 
B1 .37 .44 .62 .24 .44 .34 

( 4  ( 4  (.3) (.3) (.3) ( 4  
C7 3.3 2.3 2.9 2.7 2.7 1.7 

80’ 165.2 164.7 164.5 182.5 140.2 
(1 5) (2.9) (2.2) (5.4) (3.0) 

B1 .49 5 2  .44 .89 .15 

C7 3.9 3.8 4.0 2.4 1.1 
(.03) (.05) (.12) (.04) 

(.7) (.7) (1.4) (4 (.3) 

NOTE: Units are seconds. Standard errors are in Darentheses. NOTE: Units are minutes. Standard errors are in oarentheses. 
* Standardized to a 1930 base. * Standardized to a 1908 base. 
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Table 4. Summary of Fits for the Mile Race: Best Performances of 1931-1985 

Model 

Parameter A B C D E F G  H I 

0 

k 

Negative maximized 
log-likelihood 124.6 

251.3 251.3 252.8 

2.3 2.3 2.4 
(1.0) (1.0) (.7) 

( 4  ( 4  

.47 .47 .46 
(.D8) (.08) (.02) 
6.7 2.8 - 

(14) (6.0) 

124.5 124.5 131.1 130.6 122.7 

252.7 252.8 

2.8 2.7 
(5) (.6) 

(.4) (.4) 
.73 .76 
(.17) (.14) 
.62 .62 

(.05) (.07) 
3.5 14.4 
(1.0) (6.6) 

120.3 120.7 

NOTE: Standard errars are in parentheses 
* No fR. 

future performances. Comparison between the analysis 
based on records and that based on best performances 
shows generally good agreement, though in some cases 
the estimated values of o are significantly higher when 
based on the best performances. This suggests that there 
may be some bias in the maximum likelihood estimator 
of CJ in the censored case. 

A similar analysis for the marathon data (Table 3) shows 
a different pattern. In this case I excluded the year 1908 
as an obvious outlier (see Fig. 2), but the analysis then 
indicates steady improvement from 1909 to 1940, followed 
by much greater improvement from 1941 to 1964 and then 
very little improvement since 1965, the difference between 
the latter values of PI being very clearly significant. This 
is somewhat surprising; although the world record has im- 
proved only slightly since Derek Clayton’s 1969 record, 
overall international performances have improved consid- 
erably during the same period. The reason may have some- 
thing to do with the much closer attention given to accurate 
course measurement during the past 15 years; in any case, 
marathon courses are not comparable in the same way as 
running tracks. Incidentally, Clayton’s 1969 record is 

widely disputed because of the lack of adequate course 
measurement on that occasion. His performance has been 
included in my analysis, though it would make little dif- 
ference to the conclusions if it were omitted. 

For a more detailed analysis, all nine models from Sec- 
tion 2 were fitted. The initial examination of the mile data 
suggested a linear improvement from 1931 to 1985, so I 
concentrate on this period in the subsequent analysis. The 
linear-improvement model may then be tested against the 
quadratic and exponential alternatives, as a further indi- 
cation of whether the improvement really is linear. For 
the marathon data I analyzed the whole series 1909-1985, 
though in view of the preceding remarks there must be 
some doubt about whether it is reasonable to fit a single 
model to the whole series. The results of these fits are 
given in Tables 4-6. 

In no case was the quadratic or exponential model a 
significant improvement over the linear model, as judged 
either by the standard error of the new parameter or by 
the increase in maximized log-likelihood. This is somewhat 
surprising in view of the preceding analysis and suggests 
that, in cases where the linear model does not fit well, it 

Table 5. Summary of Fits for Mile Records, 1931-1985 

Model 

Parameter A B C 0 E F G H I  

8 0  250.0 250.8 250.8 250.7 251.0 250.9 251.0 -* -* 

0 1.8 1.6 1.6 1.3 1.3 1.3 2.4 -* -* 

- - .47 -* -* 

(5) (4 (.8) (5) (.9) (.8) (.9) 

(.3) (.3) (.3) ( 4  ( 4  (.2) (.9) 
- - - - k 

(.20) 
81 .42 .52 .51 .43 .46 .46 .43 -* -* 

(.02) (.07) (.07) (.02) (.07) (.07) (.02) 
- 54 2.3 - -* -7 8 2  x 103 - 1.6 7.1 

Negative maximized 
loq-likelihood 58.9 57.9 58.0 60.6 60.5 60.5 58.1 

(1.1) (5.2) (1.3) (5.4) 

NOTE: Standard errors are in parentheses 
* No fit. 
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Table 6. Summary of Fits for Marathon Records, 1909-1985 

Model 

Parameter A B C D E F G H I  

D O  165.2 165.4 165.4 166.5 166.2 -* -* -* -* 
(1.5) (1.9) (1.9) (1.0) (2.1) 

(I 3.9 3.8 3.8 2.6 2.6 -* -* -* -* 
(.7) (.7) (.7) (.5) (5) 

k 
.49 .51 5 1  .50 .48 -* -* -* -* 

B1 
(.03) (.lo) (.lo) (.03) (.lo) 

p2 x 103 - .3 1.1 - - .2  -* -* -* -* 

Negative maximized 

- - - - - -* -* -* -* 

(1.2) (4.8) (1.1) 

log4 kelihood 73.7 73.6 73.6 75.2 75.2 

NOTE: Standard errors are in parentheses. 
* No fit. 

may be necessary to look for sharp changes in the param- 
eter values rather than the gradual change of slope implied 
by the quadratic or exponential models. Comparing the 
distributions, the normal distribution seems clearly supe- 
rior to the Gumbel, when judged by the maximized log- 
likelihoods. The GEV distribution appeared the best of 
the three when it was fitted at all, though in several cases 
the algorithm failed to converge. It is known that the log- 
likelihood has no local maximum when k 2 1 and that the 
asymptotic properties of maximum likelihood estimation 
fail to hold when k > f (see Smith 1985). In this study, I 
found k > 4 in most cases where a fit was found at all, 
and I believe that the cases where no fit was found cor- 
respond to k > 1 (so no local maximum exists). The max- 
imum likelihood method thus appears to fail in this case, 
so the GEV distribution was not pursued further. It should 
be emphasized, however, that this is because of a failure 
of the estimation method and not because of any evidence 
that the GEV distribution does not fit. Alternative esti- 
mation methods include the “maximum product of spac- 
ings,, method (Cheng and Amin 1983; Ranneby 1984) and 
Bayesian analysis. Smith and Naylor (1987) gave a Bayes- 
ian analysis of the three-parameter Weibull distribution, 
using the computational method of Naylor and Smith 
(1982). 

4. RESIDUAL PLOTS 

As in any regression analysis, much may be learned from 
residual plots. In this case, I define residuals as r, = 
c,@) - 2, (1 =s n 6 N )  so that large residuals correspond 
to good performances, and I let F denote the (common) 
estimated df of p + c,(/J) - Y ,  (from the model). I con- 
sider two plots-(a) a plot of residuals against time and 
(b) a plot of residuals against expected values. Figure 3 
shows a plot of residuals against time (uncensored obser- 
vations only) for the mile records under Model A. Large 
residuals correspond to exceptionally good performances; 
the two largest residuals are derived from the perfor- 
mances of Herb Elliott (1958) and Jim Ryun (1966) , who 
are widely considered to be among the greatest middle- 
distance runners. 

A plot of residuals against approximate expected values 
was constructed by adapting a method of Aitkin and Clay- 
ton (1980). Define 

u. .  = 1 if rj  < ri 

= o  if rj  > r i ,  dj = 0 

= F ( r i ) / F ( r j )  if rj  > r i ,  dj = 1, 
for 1 s i 6 N ,  1 S j S N ,  such that 6, = 0. Loosely, .this 
represents the probability that the true (uncensored) re- 
sidual in year j is less than that for year i. Then define 

for each i such that di = 0. The residuals ri are plotted 
against F-’(ui) for the uncensored years. Ignoring errors 

3.5 4’0 1 

1 . 5 i  1 .o 

0 . 5 4 ,  * ~ * 

0.01 , , , , I , , , , I , , , , I , , , , I , , , , i , , , , ,  
1930 1940 1950 1960 1970 1980 1990 

Figure 3. Plot of Residuals (from Model A, 1931-1985) for the Mile- 
Record Data. Only those residuals corresponding to actual records are 
plotted; consequently, the residuals are all positive, even though the 
underlying distribution is assumed normal. The two largest residuals 
correspond to the performances of Herb Elliott and Jim Ryun; thus there 
is a case for considering them the overall best runners for the period 
of the plot. 
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Figure 4. Plot of Residuals (observed vs. expected values) for the 
Mile Data From Model A (normal distribution). The plot remains close 
to the diagonal line. 

Figure 6. Plot of Residuals (observed vs. expected values) for the 
Mile Data From Model G (GEV distribution). This appears to be a very 
good fit, but there are estimation difficulties (see Sec. 3). 

of estimation, this should be close to a straight line of unit 
slope through the origin. This form of probability plot 
differs from one based on the Kaplan-Meier estimator 
(Chambers, Cleveland, Kleiner, and Tukey 1983, sec. 
6.10) in that the ui)s depend on F. Note that the plot 
effectively corrects for the censoring. Thus it is not inval- 
idated by the fact that the residuals, as thus defined, are 
nearly all positive. 

This plot is shown in Figures 4-6 for the mile records- 
Models A, D, and G. In the case of the Gumbel model 
(Model D), the largest two residuals lie well below their 
expected values, suggesting that the Gumbel model is a 
poor fit in the lower tail of the mile-record distribution. 

V 
1 " " l " " l " " l " " I " " I " " I  
0 1 2 3 4 5 6 

The normal and GEV distributions both seem to fit well, 
however. In view of the difficulties in fitting the GEV 
distribution, this adds support to the use of the normal 
distribution in practice. Similar plots for the marathon data 
showed the same behavior even more strongly. 

5. FORECASTING 

Suppose we wish to forecast future performances. A 
simple approach is to estimate some specified quantile of 
the distribution of the best performance in the required 
year, substituting the maximum likelihood estimates for 
the fitted-model parameters. Standard errors may be ob- 
tained from the inverse of the observed information matrix 
by the well-known delta method (Rao 1973, p. 388). As 
an example, Figure 1 shows the median best performance 
for the mile for the next 30 years based on Model A fitted 
to 1931-1985 data. It also includes 95% confidence limits, 
calculated as estimated +2 standard errors. Similar plots 
are obtained for the other models, though with much 
larger standard errors (up to 10 seconds) for Models B, 
C ,  and E. Figure 2 shows forecasts for the marathon, 
derived from the same model. Figure 7 shows the median 
estimate for the mile for all six models. The three models 
based on linear drift (Models A, D, and F) give virtually 
identical results, suggesting that the choice of the correct 
distribution may not be so important for forecasting pur- 
poses. 

Smith and Miller (1986) took a different approach to 
forecasting, based on Bayesian predictive distribution. 
They also discussed the forecasting of records as opposed 
to annual minima. 

6. THE ULTIMATE RECORD 

The exponential decay model (2.8) was introduced, in 
a different parameterization, by Chatterlee and Chatterlee 
(1982) and applied to predict the ultimate limit of athletic 

Figure 5. Plot of Residuals (observed vs. expected values) for the 
Mile Data From Model D (Gumbel distribution). The discrepancy at the 
right end (equal to the lower tail of the actual distribution) is evident. 
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210 
1985 1990 1995 2000 2005 2010 2015 

Figure 7. Median Predictions of the Annual Minimum for the Mile 
Race (19862075) From Six Models: 13, C, E, G, D, A (from top to 
bottom). 

performances. Subsequent discussion (Maher 1983; Mor- 
ton 1984; Wootton and Royston 1983) suggested that their 
fitting method was in error but did not refute the model 
itself, and Morton (1983, 1984) claimed good results for 
the same model by a different fitting method. 

For the mile-records data, using the estimates reported 
for Model C in Table 5, we obtain the asymptote Do - pl/ 
p2 as 2 minutes, 58 seconds, with an estimated standard 
error of 63 seconds. Fitting the same model to the best 
performance data of Table 4, we can estimate the asymp- 
tote as 1 minute, 22 seconds, with a standard error of 395 
seconds. In both cases, the estimate looks absurd with a 
standard error so large as to render the estimate mean- 
ingless. By fitting the Gumbel and GEV versions of the 
same models (Models F and I) we obtain an asymptote of 
52.0 seconds (standard error, 409) for Model F applied to 
mile records, and 3 minutes, 25.5 seconds (standard error, 
10.8 seconds), for Model I applied to mile best perform- 
ances. No estimate was obtained for Model F applied to 
mile best performances, possibly because of the restriction 
to p2 > 0 and because a local maximum could have been 
obtained with p2 < 0. These estimates were based on the 
data for 1931-1985, and there were similar wide variations 

Table 7. Cramer-Rao Lower Bound for the Standard Deviation of the 
Estimated Asymptote 

Estimated asymptote" Standard 
(seconds) deviation 

.06587b 

.2173 

.2699 

.3071 

.3561 

82.1 
200.0 
21 0.0 
21 5.0 
220.0 

167.9 
20.0 
14.3 
11.9 
9.7 

NOTE: me data are based on Model (6.1) for the mile best-performance data of 1931-1985. 
LAs 02, and (I are rued at maximum likelihood values: S3 vanes. 

amat is, o1 - @(20,). 
Maximum likelihood value. 

in applying the same model to other portions of the series 
and to other series. 

It is not clear from these results whether the difficulty 
arises from the model or from the method of fitting it. To 
address this point, some Cramer-Rao bounds for standard 
deviation were calculated, representing lower bounds for 
any method of estimation. Explicit calculations were done 
for the case of normal errors with no censoring. Model 
(2.8) was first reparameterized as 

1 S n < N ,  (6.1) 
from which the linear case results as 8, + 0. Substituting 
parameters for the 1931-1985 mile-race data, I set B1 = 
251.2989, O2 = 4.7216, O3 = .06587, = 2.3284, and N 
= 55; the estimated asymptote is O1 - O;/(203) = 82.1, 
with a Cramer-Rao standard deviation of 168. The last 
value may be compared with 395 obtained earlier from 
the observed information matrix. It is interesting to vary 
the value of O3 (keeping the other parameters fixed so that 
the linear fit is unaffected) and thus obtain the Cramer- 
Rao bound under a variety of assumptions about the true 
model. Some results of this procedure are given in Table 
7. For example, with O3 = .2699 (which would correspond 
to an asymptote of 210 seconds) we obtain a Cramer- 
Rao bound of 14.3 seconds for the standard error of the 
asymptote's estimate. This purely hypothetical value gives 
some indication of what might be possible if the model 
were correct, though even in this case the standard error 
is the same order of magnitude as the eventual improve- 
ment being predicted. 

Thus, even if Model (2.8) or (6.1) were correct, with 
parameter values that might correspond to reasonable 
judgment about the long-term improvement in record per- 
formances, the standard error of the estimate appears to 
be too large for the estimate to be valuable. In practice, 
given the uncertainty about the model's fit and the wide 
variability of estimates corresponding to different error 
distributions and different portions of the series, it is ques- 
tionable whether any useful estimate of the asymptote is 
possible. 

To summarize, although I have not presented any evi- 
dence to contradict the exponential-decay model as such, 
the difficulties of estimating the parameters make it very 
doubtful that this model can be used to produce mean- 
ingful performance estimates in the distant future. 

7. CONCLUSIONS 

The method of maximum likelihood fitting, as devel- 
oped here, is conceptually simple and may be applied to 
a wide range of models for records data. The numerical 
algorithms developed appear good enough to find a local 
maximum when one exists. There are cases, however, 
most of them involving the GEV distribution, when no 
local maximum exists, and in these cases my methods fail. 
The principal model adopted has been a linear-drift model 
with normal errors, though over very long periods of time 
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the slope of the linear drift changes. On the other hand, 
there is no evidence that either the quadratic-drift model 
or exponential-decay model provides a better fit overall. 
These models appear to provide a satisfactory basis for 
short-term forecasting of future performances, but I am 
extremely skeptical about the use of such methods to pre- 
dict the long-term limit of record performances. 

[Received June 1986. Revised June 1987.1 
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