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The False-positive to False-negative Ratio in
Epidemiologic Studies

John P. A. loannidis,* Robert Tarone,® and Joseph K. McLaughlinb

Abstract: The ratio of false-positive to false-negative findings
(FP:FN ratio) is an informative metric that warrants further evalu-
ation. The FP:FN ratio varies greatly across different epidemiologic
areas. In genetic epidemiology, it has varied from very high values
(possibly even >100:1) for associations reported in candidate-gene
studies to very low values (1:100 or lower) for associations with
genome-wide significance. The substantial reduction over time in
the FP:FN ratio in human genome epidemiology has corresponded
to the routine adoption of stringent inferential criteria and compre-
hensive, agnostic reporting of all analyses. Most traditional fields of
epidemiologic research more closely follow the practices of past
candidate gene epidemiology, and thus have high FP:FN ratios.
Further, FP and FN results do not necessarily entail the same
consequences, and their relative importance may vary in different
settings. This ultimately has implications for what is the acceptable
FP:FN ratio and for how the results of published epidemiologic
studies should be presented and interpreted.

(Epidemiology 2011;22: 450—456)

here has been an ongoing concern in epidemiology re-

garding false-positive findings.'> However, erroneous
inferences from any study include not only false positives,
but also false negatives.’ In this study, the ratio of false
positives to false negatives (FP:FN ratio) has been explored.
On the basis of theoretical and empirical evidence, we argue
that in most traditional areas of epidemiologic investigation
this ratio is much higher than 1, whereas under certain
circumstances the ratio can decrease sharply and become
substantially smaller than 1. We provide evidence from
human genome epidemiology, where the FP:FN ratio has
decreased dramatically over time. We also probe whether
similar advances are feasible for other areas of epidemiologic
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investigation. Finally, we discuss the interpretation and im-
plications of FP:FN ratios.

CONCEPTUALIZING THE FP:FN RATIO

For any tested association, in a binary framework, the
resulting inference could be categorized as a true negative,
false positive, false negative, or true positive. The categori-
zation can be applied to single studies as well as to collective
results derived from many data sets (meta-analyses). Al-
though it may not be optimal to categorize results in a
dichotomous fashion, such an approach is common in the
field, and it allows for probabilistic estimations about how
likely it is to identify a true underlying association. The
Figure summarizes this framework, where N, denotes the
number of hypotheses tested corresponding to actual under-
lying relationships and N, denotes the number of hypotheses
tested corresponding to null relationships (ie, no actual rela-
tionship between exposure and disease risk exists). The ratio
of N|/N, is the prestudy odds, R.> R may vary substantially
across different types of epidemiologic studies, depending on
the maturity of the particular area of interest and on whether
investigators select hypotheses to test based on extensive,
limited, or no prior evidence. Using this framework, as
previously proposed,? it can be shown that the FP:FN ratio is
a function of R, the type I error rate « (ie, the nominal
significance level), and the type II error rate B (ie, the
complement of power):

FP:FN = o/(BR) (D

The aforementioned formula holds true in the absence
of any biases. However, we want to also consider the pro-
portion of probed analyses that would not have been nomi-
nally significant, but nevertheless ends up reported as such
for any reason other than chance (ie, due to selective analysis/
outcome reporting, confounding, or any combination of hun-
dreds of possible biases)>—in other words, the effect of bias
(denoted by u). The FP:FN ratio can then be expressed by the
equation:

FP:FN = [a (1 — u) + ul/(1 — w)pR 2)

A similar amendment can be made for estimating the
FP:FN ratio when we are interested in at least one of several
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FIGURE. The 4 possible outcomes of dichotomous statistical
inferences about hypothesized relationships between expo-
sures and disease status investigated in epidemiologic studies;
N, denotes the number of true underlying relationships inves-
tigated and N, denotes the number of null relationships
investigated.
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studies on the same topic showing false-positive results (see
Toannidis® for details). The relevant values of «, 8, u, and R
may vary considerably by research area. Even within the
same research area, the ratio is expected to decrease when
more stringent (lower) levels of type I error are required, and
when bias is reduced or, ideally, eliminated. Conversely,
larger studies with higher power produce an increased FP:FN
ratio. Finally, the FP:FN ratio is inversely proportional to R,
so that targeting a sample of hypotheses that are more
enriched in true effects decreases the FP:FN ratio.

It would also be useful to contrast the FP:FN ratio with
2 other metrics, the ratio of false positives to true positives
(FP:TP ratio), which is the inverse of the poststudy odds that
a statistically significant association is true,” and the Bayes
factor, which expresses the magnitude of the difference
between the poststudy and prestudy odds.* The FP:TP ratio
also depends on «, 3, u, and R, but does not factor in the
problem of false negatives. In the absence of bias, this ratio is
given by a/[(1 — B)R]. Therefore, the FP:TP ratio equals the
FP:FN ratio when power is 50%, whereas in general the
FP:FN ratio is equal to [(1 — B)/B] X (FP:TP). The Bayes
factor does not depend on R and, in the absence of bias, it is
given by af/[(1 — a)(1 — B)]. Although the Bayes factor
becomes more favorable (smaller) with reduced type I and
type II error, the FP:FN ratio becomes smaller with reduced
type I error and with increased type II error.

EVOLUTION OF THE FP:FN RATIO IN HUMAN
GENOME EPIDEMIOLOGY

Human genome epidemiology offers a useful paradigm,
because there has been a major transformation in this field

© 2011 Lippincott Williams & Wilkins

with prominent changes in the key parameters that influence
the FP:FN ratio. Until 5 years ago, investigators followed the
path still followed in most traditional epidemiologic areas: a
few candidate risk factors were selected based on diverse
considerations (often under the umbrella of “biologic plausi-
bility”) that suggested their possible importance; studies were
often of small sample size (underpowered, based on the
current hindsight about the size of genetic effects); discovery
hunting was performed using conventional levels of nominal
statistical significance (typically 5% type I error rate, despite
more prudent suggestions for alternatives, eg, false-report-
rate probability®); confounding (population stratification) was
often unaccounted for; and the field was subject to substantial
selective reporting of “positive findings” that—not surpris-
ingly—were often rapidly refuted by subsequent studies.®
Many investigators suspected early on that the large majority
of “discovered” candidate-gene associations were false, >’ °
despite the coexistence of more optimistic views, especially
when data were enhanced by meta-analyses.'”

Over time, human genome epidemiology has benefited
from the routine adoption of replication practices.'' More-
over, it has become easy to measure a large number of genetic
risk factors concurrently, and genome-wide association
(GWA) studies are currently the norm for discovery and
replication of genetic associations.'?™'* As a collateral benefit
from such enhanced measurement ability, we now have
systematic replication efforts for inclusive, large sets of
previously proposed nominally statistically significant candi-
date-gene associations. This allows one to estimate, with
substantial confidence and without the threat of selective
reporting of one-association-at-a-time, the ratio of false pos-
itives to true positives across proposed “discovered” associ-
ations of the candidate-gene era.

Table 1 catalogues several such empirical evaluations
in studies published in 2007-2010 and examining at least 50
candidate genes each, in data sets with sample sizes of >1000
participants.'>2* With one exception,'” where the investiga-
tors genotyped only the gene variants that had been previ-
ously associated with a phenotype of interest, these investi-
gations have used existing data from GWA studies to
replicate previously proposed candidate associations. As
shown (Table 1), robust evidence of replication of these
previously proposed associations is infrequent. After adjust-
ing for the multiplicity of comparisons in each study, only 13
gene loci-phenotype associations survive replication among
the 1151 tested cumulatively in these studies. The crude
replication rate is thus approximately 1.2%. Conceivably,
the number of genuine associations is a bit larger than this
disappointingly low percentage. For modest genetic ef-
fects, most of these replication exercises would have had
modest power to detect significant associations at a type I
error adjusted for multiplicity of comparisons. Consistent
with this possibility, the largest study in Table 1'° repli-
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TABLE 1. Large-scale Efforts to Massively Replicate Reported Candidate-gene Associations®

First Author Disease/Phenotype Gene Loci Tested Sample Size (Design) Replicated Gene Loci®
Bosker et al'® Major depressive disorder 57 3540 (case-control) 1

Caporaso et al'® Smoking (7 phenotypes) 359 4611 (cohort®) 1

Morgan et al'” Acute coronary syndrome 70 1461 (case-control) 0

Richards et al'® Osteoporosis (2 phenotypes) 150 19,195 (cohort?) 3¢:9f

Samani et al'® Coronary artery disease 55 4864; 2519 (case-control) 12

Scuteri et al*° Obesity (3 phenotypes) 74 6148 (cohort) 0

Saber et al?! Blood pressure 149 1644; 8023 (cohort") 0

Wu et al*? Childhood asthma 237 1476 (triads’) 1

The listed studies have been identified through a PubMed search using the strategy (replication [ti] or collaborative [ti] or genome-wide [ti]) and gene* [ti] and (candidate or
“previously reported” or “previously proposed”) for studies published between 2007 and 2010 (last search 29 July 2010) and complemented with eligible studies from those analyzed

in the paper by Siontis et al.>*
"With proper, stringent control for multiple comparisons.
“Two cohorts with combined analysis.
9dFive cohorts with combined analysis.
°Femoral bone density.

fSpinal bone density; the 3 gene loci associated with femoral bone density were also associated with femoral bone density.

22 case-control studies analyzed separately; the gene locus significantly associated in the smaller study also had the strongest association in the larger study.

"nitial discovery cohort of size 1644, with subsequent replication in 2 cohorts of size 1830 and 1823 and one case-control study with 2401 cases and 1969 controls.
iCase-parent triad design, with 492 triads consisting of an asthmatic child and both parents.

cated 3 of the 150 proposed candidate-gene loci for asso-
ciation with femoral bone-mineral density and 9 of the 150
for association with spine bone-mineral density, ie, a
2%—6% replication rate.

The data in Table 1 are consistent with an estimate of at
least 20 false-positive findings for every one true-positive result,
a ratio previously suggested for candidate-gene studies.’” This is
also consistent with most synopses of candidate-gene studies
where grading of the evidence reveals very few variants with
strong credibility.”> Perhaps for some phenotypes other than
those listed in Table 1, the replication percentage is higher. For
example, in pharmacogenetics, the mechanism of action of a
drug is usually well known, so one can target specifically the
genes that code for the proteins in drug-related pathways.>*
However, for most disease phenotypes, a FP:TP ratio of 10
would likely be an optimistic estimate. Even under this optimis-
tic scenario, approximately 1000 ecarly gene loci-phenotype
associations for the conditions listed in Table 1 were false
positives from the candidate-gene approach.

How about false negatives in candidate-gene studies?
On the basis of inclusive catalogue of GWA studies,?>**
investigators have currently discovered >1000 associations
with genome-wide significance (P < 5 X 10~%) for diverse
phenotypes and whose genuineness is beyond debate. To our
knowledge, none of the GWA-documented associations had
been tested in the candidate-gene era with consistently “neg-
ative” results. There are no documented false-negative results
arising from candidate-gene studies. Therefore, for the phe-
notypes listed in Table 1, the numerator of the FP:FN ratio is
over 1000, while the denominator is apparently 0.

In the absence of substantial empirical data on false
negatives in candidate-gene studies, on the basis of formulae
presented earlier, we can develop estimates of the FP:FN
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ratio in such studies for various values of study power and for
an illustrative 20:1 FP:TP ratio. For a nominal significance
level of 5% and power of 90% (as discussed earlier in the
text), the 20:1 FP:TP ratio is consistent with an FP:FN ratio
of 180:1. For power of 50%, the FP:FN ratio is equal to the
FP:TP ratio, ie, 20:1. These estimates may underestimate the
actual FP:FN ratio, perhaps considerably. The percentage of
published findings that are false exceeds the nominal type |
error level because of bias. Although confounding, selection
and information biases may also contribute to false positives
(and occasionally also false negatives), the main problems are
selective reporting (publication bias, selective outcome, and
analysis reporting bias) and other related biases.'*27"2°
Because of the same sources of bias, the false-negative rate
determined from published results is usually less than the
false-negative rate predicted by power considerations alone;
when the main analysis is not nominally significant, some
investigators may produce and report secondary or subgroup
analyses with nominally significant results, regardless of
whether the tested association is null or a true effect.

The transformation of the methodology of human ge-
nome epidemiology and the emergence of current GWA
investigations have changed the values of all the variables of
equation 2. First, far more stringent criteria are required for
discovery, and typically investigators use a = 5 X 1078
instead of 0.05.3%! Second, increasingly large studies are
performed, with collaborative consortia of multiple teams
sharing data and performing GWA genotyping and replica-
tion efforts integrated into prospective meta-analyses.>
Third, the use of comprehensive agnostic platforms allows
concurrent testing of all genotypes, drastic curtailing of
confounding (population stratification) with appropriate
methods, and appraisal of all results without selective report-
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TABLE 2. lllustrative Estimates of the FP:FN Ratio for Areas
of Current Epidemiologic Research

« B R u FP:FN

GWAS?; common variants with 5X107% 02 107° 0.0 1:40
modest effects (OR >1.15);
no bias

GWAS?; uncommon variants with 5 X 10°% 09 107° 0.0 1:180
modest effects (OR >1.15);
no bias

Traditional case-control 0.05 0.2 0.05 03 48:1
study; well-powered;
substantial bias

Large traditional cohort study; 0.05 0.1 0.05 0.1 32:1
some bias
As above; late confirmatory 0.05 0.1 1 0.1 3.2:1
research
Large traditional cohort study; 0.05 0.1 005 0 10:1
unbiased
As above; late confirmatory 0.05 0.1 1 0 1:2
research
Large traditional cohort study; 0.001 0.1 005 O 1:50
unbiased; more stringent
threshold
As above; late 0.001 0.1 1 0 1:1000

confirmatory research

#Genome-wide association studies of genetic variants that have modest effects;
nominal level of significance for claiming discovery has been properly adjusted for the
fact that the ratio of true positive to true null variants is very small.

OR indicates odds ratio; FP, false positive; FN, false negative.

ing.!" Although R can vary for different phenotypes, for
common variants with minor allele frequency >10% and
modest effects, R = 0.00001 is probably a typical value,
perhaps with roughly a log-scale window. Assuming no bias
(u = 0), one can calculate (Table 2) an FP:FN ratio of 1:40.
This is a complete reversal of the ratio compared with the
candidate-gene era. False positives have practically disap-
peared, and there are still a number of common variants with
modest effects that are currently false negatives and that can
be discovered if larger studies are conducted. This is com-
mensurate with the experience accumulating from many
fields, where meta-analyses of GWA studies find a growing
number of common variants, as sample size increases. For
example, in type 2 diabetes, each single early GWA study
identified only a couple of common variants; their meta-
analysis led to the discovery of 8 risk variants; the list
increased to 18 risk variants with larger meta-analysis, and
then to 39 variants with even larger samples.**> Moreover,
there is increasing interest in identifying less common gene
variants that were not properly targeted by initial GWA
efforts. Unless these variants have large effects, power to
detect them is low>®; with power of 10%, the FP:FN ratio is
1:180. This means that in the current epistemic direction of
GWA studies, false negatives are a far more common prob-
lem than false positives.*” >’

© 2011 Lippincott Williams & Wilkins

THE FP:FN RATIO IN TRADITIONAL
EPIDEMIOLOGY

Most of the traditional areas of epidemiologic research
more closely reflect the performance settings and practices of
human genome epidemiology in the pre-GWA era and thus
likely have high FP:FN ratios."**°~*2 Under traditional ep-
idemiology, we include disciplines such as nutritional, life-
style, and occupational epidemiology; much of molecular
epidemiology also still follows similar inferential and report-
ing practices. The operational features of these disciplines
resemble the candidate-gene era of genomics—in fact the
candidate gene-association studies were conceived, designed,
performed, and reported using the templates that had been
operational for at least a generation in chronic disease epide-
miology. Associations are tested and reported one- or a-few-
at-a-time, built around a single-theme hypothesis; statistical
significance testing typically uses nominal significance levels
of 0.05, despite repeated suggestions to shift to lower thresh-
olds* or to Bayesian approaches**; confounding is difficult
to exclude; raw data are usually not shared in public or across
teams; and the pursuit of statistical significance leads to
strong publication bias and selective analyses and outcome
reporting.?”*>*¢ There is considerable flexibility and creativ-
ity involved in defining and quantifying exposure in most
traditional areas of epidemiology,?’ causing what has been
termed “vibration” of effects,?” the ability to get a wide range
of different results, depending on how one analyzes the data.
Thus, there is an even greater opportunity for selective
analyses, reporting, and interpretation compared with candi-
date-gene epidemiology, where the exposure (the genotype)
is fixed and not open to manipulation other than performing
analyses with different models of inheritance. Finally, many
studies in these traditional areas of epidemiology either con-
tinue to have small total sample sizes, or focus on extreme
exposures”® or subgroup analyses for which the effective
sample size is small.

A commonly observed phenomenon in these fields is
that case-control studies produce larger effect sizes than
subsequent prospective cohort studies,*’ and when putative
risk or protective factors are tested in randomized interven-
tion trials, effects are often null.*®3*%4% There is a long-
standing debate about the epistemic meaning of such nonrep-
lication. Opinions range from the view that a large number'+?
or even a vast majority*'*>°°753 of traditional epidemiologic
findings are false, to the view that randomized trials may not
be appropriate to study all research questions and may pro-
vide wrong answers®* or may be studying different ques-
tions,”> and that the epidemiologic associations are likely
correct and should be placed higher in the hierarchy of
evidence.’®

Even if we choose to ignore the failure of traditional
epidemiologic results when tested in large-scale randomized
trials, one can nonetheless envision a large-scale replication
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approach for traditional epidemiologic associations, much as has
been possible for human genomics. Very large cohort studies
and cohort consortia are available and several hundreds or even
a few thousand exposures can be measured and analyzed cumu-
latively in a standardized, consistent manner.’”>* However, to
date this is not happening in mainstream epidemiology.

Table 2 provides some estimates of the FP:FN ratio
under diverse possible settings of traditional epidemiologic
investigation. If we assume R = 0.05 (1 genuine effect tested
for every 20 null effects tested, ie, a figure consistent with
exploratory investigations), bias in the range of u = 0.1-0.3
results in very high FP:FN ratios (32:1 or 48:1 in the corre-
sponding examples). These values of u may be underesti-
mates in the current research environment. Empirical evalu-
ations have shown that almost all published observational
studies report some nominally statistically significant re-
sults.?®>® An evaluation of 1915 publications on cancer
prognostic markers shows that only 1.4% of them admit to
fully “negative” results in their abstracts.’® False negatives
are by definition a subset of all reported negative associa-
tions. In literature where there are relatively few reported
negatives, there cannot be many false negatives. Even if false
positives in observational studies are not as prevalent as
comparisons with randomized studies would suggest, one
would still have to admit that much of current epidemiology
operates at very high FP:FN values, given the relative paucity
of negative (hence false negative) reports in the literature.

Even if one were to work in fields with R = 1 (1
genuine effect tested for every null effect tested)—ie, con-
ducting research on topics that are already very well studied
and on risk factors that already have very strong prior
evidence—the FP:FN ratio would still be 3.2:1 unless bias is
accounted for. Elimination of bias, of course, is an idealized
target that is unlikely to be reached, particularly if we con-
tinue with the same practices of conducting and reporting
research from case-control and cohort studies in a fragmented
fashion, no matter how well-designed and conducted these
studies are. However, if we assume hypothetically that we
could eliminate bias, the FP:FN ratio would still be 10:1 for
exploratory research, but would drop below 1 (1:2) for
late-stage confirmatory research. If we adopted more strin-
gent criteria for significance, eg, « = 0.001 rather than o =
0.05, and also eliminated bias, then the FP:FN ratio would
become 1:50 for exploratory research and 1:1000 for late
confirmatory research. We would then have matched current
GWA studies in terms of the FP:FN ratio (Table 2).

ARE FALSE POSITIVES AS BAD AS, WORSE
THAN, OR BETTER THAN FALSE NEGATIVES?
The same FP:FN ratio may be interpreted differently
depending on the relative importance one attaches to a false
positive compared with a false-negative result. Modeling
these interpretations with decision analytic approaches® %2
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is difficult, because many nonscientific issues need to be
considered. If getting a false positive is tolerable and without
major consequences, but a false negative has detrimental
consequences, then one would not be happy unless the ratio
of FP:FN were high. Conversely, if getting a false negative
has no major consequences, but a false positive has detrimen-
tal consequences, then one would only be satisfied with a low
FP:FN ratio.

Much of the debate about false positives and false
negatives in epidemiology stems from a poor understanding
and communication of the consequences of each type of
error, and the conflation of the aims of science®® with those of
public policy.®* A systematic appraisal is needed on a case-
by-case basis, and this often extends beyond the scope of
epidemiology as a science, encompassing rather public health
policy and political considerations. The eventual appraisal
and decision depend on the perspective through which con-
sequences are seen. Consequences differ if scientific validity
and accuracy are the paramount concerns. If public health
policy and political considerations are paramount, then an
entirely different form of deliberation is necessary. In each
situation, policy- and decision-makers may rationalize, dis-
cuss, and juxtapose the specific costs associated with false
positives and the specific costs associated with false nega-
tives, to interpret the estimated FP:FN ratio. In the best of
situations, science may inform such a deliberation but cannot
prescribe which action or approach to take. There is an
inherent tension—if not conflict— between epidemiology as a
science and epidemiology as public policy.®*

One might tolerate false positives better than false
negatives in scientific fields where findings can be confirmed
or refuted quickly and with reasonable cost; however, this is
rarely the situation in most areas of epidemiology. Even the
most conclusively refuted associations such as beta-carotene
for cancer prevention continue to get die-hard supporting
citations from their followers 2 decades after their refuta-
tion.°> False positives may also be better tolerated when
interest is primarily in generating hypotheses for further
scientific exploration, with no immediate clinical or public
policy implications (ie, there are no medical or public actions
to be taken). However, by its own nature of dealing with
common diseases and common exposures, epidemiology cap-
tures the public’s attention more than most other areas of
scientific research; it has been demonstrated that newspapers
prefer reporting bad news from observational studies com-
pared with good news and compared with randomized tri-
als.®® This can have adverse consequences, including a loss of
confidence (by the public as well as the wider medical
research community) in the credibility of epidemiology as a
science. Thus, we believe that epidemiologists should exer-
cise caution in making definitive scientific claims, as should
research journals and universities in their press releases, with
the hope that such caution may lessen the impact of false-
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positive findings. Conversely, public health policy decision-
making sometimes operates at higher FP:FN ratios, but in such
situations one should expect evidence that the public health
intervention or action does more good than harm. The threshold
of acceptability remains open to discussion and needs to be
revisited in each area of epidemiologic research, with applica-
tion on a case-by-case basis in the ever-shifting sands of the
interface between science and public health policy.

10.

1.
12.

13.
. lToannidis JP, Thomas G, Daly MJ. Validating, augmenting and refining
15.
16.
17.

18.

19.

20.

21.

22.

REFERENCES

. Boffetta P, McLaughlin JK, La Vecchia C, Tarone RE, Lipworth L, Blot

WI. False-positive results in cancer epidemiology: a plea for epistemo-
logical modesty. J Natl Cancer Inst. 2008;100:988-995.

. lToannidis JP. Why most published research findings are false. PLoS Med.

2005;2:e124.

. Blair A, Saracci R, Vineis P, et al. Epidemiology, public health, and the

rhetoric of false positives. Environ Health Perspect. 2009;117:1809—
1813.

. Spiegelhalter DJ, Abrams KR, Myles JP. Bayesian Approaches to

Clinical Trials and Health-Care Evaluation. Chichester: Wiley; 2004.

. Wacholder S, Chanock S, Garcia-Closas M, El ghormli L, Rothman N.

Assessing the probability that a positive report is false: an approach for
molecular epidemiology. J Natl Cancer Inst. 2004;96:434—-442.

. Toannidis JP, Trikalinos TA. Early extreme contradictory estimates may

appear in published research: the Proteus phenomenon in molecular
genetics research and randomized trials. J Clin Epidemiol. 2005;58:543—
549.

. Davey Smith G, Ebrahim S. Data dredging, bias, or confounding. BM.J.

2002;325:1437-1438.

. Colhoun HM, McKeigue PM, Davey Smith G. Problems of reporting

genetic associations with complex outcomes. Lancet. 2003;361:865—
872.

. Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K. A comprehen-

sive review of genetic association studies. Gener Med. 2002;4:45-61.
Lohmueller KE, Pearce CL, Pike M, Lander ES, Hirschhorn JN.
Meta-analysis of genetic association studies supports a contribution of
common variants to susceptibility to common disease. Nat Genet.
2003;33:177-182.

Kraft P, Zeggini E, loannidis JP. Replication in genome-wide associa-
tion studies. Stat Sci. 2009;24:561-573.

Hirschhorn JN. Genomewide association studies—illuminating biologic
pathways. N Engl J Med. 2009;360:1699—-1701.

Chanock S. High marks for GWAS. Nat Genet. 2009;41:765-766.

genome-wide association signals. Nat Rev Genet. 2009;10:318-329.
Bosker FJ, Hartman CA, Nolte IM, et al. Poor replication of candidate
genes for major depressive disorder using genome-wide association data.
Mol Psychiatry. In press.

Caporaso N, Gu F, Chatterjee N, et al. Genome-wide and candidate gene
association study of cigarette smoking behaviors. PLoS One. 2009;4:
e4653.

Morgan TM, Krumholz HM, Lifton RP, Spertus JA. Nonvalidation of
reported genetic risk factors for acute coronary syndrome in a large-scale
replication study. JAMA. 2007;297:1551-1561.

Richards JB, Kavvoura FK, Rivadeneira F, et al. Collaborative meta-
analysis: associations of 150 candidate genes with osteoporosis and
osteoporotic fracture. Ann Intern Med. 2009;151:528-537.

Samani NJ, Erdmann J, Hall AS, et al. Genomewide association analysis
of coronary artery disease. N Engl J Med. 2007;357:443—453.

Scuteri A, Sanna S, Chen WM, et al. Genome-wide association scan
shows genetic variants in the FTO gene are associated with obesity-
related traits. PLoS Genet. 2007;3:e115.

Sober S, Org E, Kepp K, et al. Targeting 160 candidate genes for blood
pressure regulation with a genome-wide genotyping array. PLoS One.
2009;4:¢6034.

Wu H, Romieu I, Shi M, et al. Evaluation of candidate genes in a
genome-wide association study of childhood asthma in Mexicans.
J Allergy Clin Immunol. 2010;125:321.e13-327.e13.

© 2011 Lippincott Williams & Wilkins

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Khoury MJ, Bertram L, Boffetta P, et al. Genome-wide association
studies, field synopses, and the development of the knowledge base on
genetic variation and human diseases. Am J Epidemiol. 2009;170:269—
279.

Siontis KC, Patsopoulos NA, Toannidis JP. Replication of past candidate
loci for common diseases and phenotypes in 100 genome-wide associ-
ation studies. Eur J Hum Genet. 2010;18:832—837.

Hindorff LA, Junkins HA, Manolio TA. A catalog of published genome-
wide association studies. Available at: www.genome.gov/gwastudies.
Accessed August 1, 2010.

Hindorff LA, Sethupathy P, Junkins HA, et al. Potential etiologic and
functional implications of genome-wide association loci for human
diseases and traits. Proc Natl Acad Sci U S A. 2009;106:9362-9367.
Phillips CV. Publication bias in situ. BMC Med Res Methodol.
2004;4:20.

Kavvoura FK, Liberopoulos G, loannidis JP. Selection in reported
epidemiologic risks: an empirical assessment. PLoS Med. 2007;4:¢79.
Ioannidis JPA. Why most discovered true associations are inflated.
Epidemiology. 2008;19:640—648.

Pe’er I, Yelensky R, Altshuler D, Daly MJ. Estimation of the multiple
testing burden for genomewide association studies of nearly all common
variants. Genet Epidemiol. 2008;32:381-385.

Hoggart CJ, Clark TG, De Iorio M, Whittaker JC, Balding DIJ.
Genome-wide significance for dense SNP and resequencing data. Genet
Epidemiol. 2008;32:179—185.

Zeggini E, loannidis JP. Meta-analysis in genome-wide association
studies. Pharmacogenomics. 2009;10:191-201.

Zeggini E, Weedon MN, Lindgren CM, et al. Replication of genome-
wide association signals in UK samples reveals risk loci for type 2
diabetes. Science. 2007;316:1336—-1341.

Zeggini E, Scott LJ, Saxena R, et al. Meta-analysis of genome-wide
association data and large-scale replication identifies additional suscep-
tibility loci for type 2 diabetes. Nat Genet. 2008;40:638—645.

Voight BF, Scott LJ, Steinthorsdottir V, et al. Twelve type 2 diabetes
susceptibility loci identified through large-scale association analysis. Nat
Genet. 2010;42:579-589.

Panagiotou O, Evangelou O, loannidis JP. Genome-wide significant
associations for variants with minor allele frequency <5%: an overview.
Am J Epidemiol. 2010;172:869—889.

Yang J, Benyamin B, McEvoy BP, et al. Common SNPs explain a large
proportion of the heritability for human height. Nat Genet. 2010;42:565—
569.

Park JH, Wacholder S, Gail MH, et al. Estimation of effect size
distribution from genome-wide association studies and implications for
future discoveries. Nat Genet. 2010;42:570-575.

Gibson G. Hints of hidden heritability in GWAS. Nat Genet. 2010;42:
558-560.

Kabat GC. Hyping Health Risks: Environmental Hazards in Every Day
Life and the Science of Epidemiology. New York: Columbia University
Press; 2008.

Maziak W. The triumph of the null hypothesis: epidemiology in an age
of change. Int J Epidemiol. 2009;38:393-402.

Young S. Acknowledge and fix the multiple testing problem. Int J
Epidemiol. 2010;39:934; author reply 934-935. doi: 10.1093/ije/
dyp188.

Sterne JA, Davey Smith G. Sifting the evidence—what’s wrong with
significance tests? BMJ. 2001;322:226-231.

Goodman SN. Toward evidence-based medical statistics. 2: the Bayes
factor. Ann Intern Med. 1999;130:1005-1013.

Dwan K, Altman DG, Arnaiz JA, et al. Systematic review of the
empirical evidence of study publication bias and outcome reporting bias.
PLoS One. 2008;3:¢3081.

Hopewell S, Loudon K, Clarke MJ, Oxman AD, Dickersin K. Publica-
tion bias in clinical trials due to statistical significance or direction of
trial results. Cochrane Database Syst Rev. 2009:MR000006.

Riboli E, Norat T. Epidemiologic evidence of the protective effect of fruit
and vegetables on cancer risk. A4m J Clin Nutr. 2003;78(suppl 3):559S—
5698.

Ioannidis JP. Contradicted and initially stronger effects in highly cited
clinical research. JAMA. 2005;294:218-228.

www.epidem.com | 455

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.


www.genome.gov/gwastudies
http://www.epidem.com

loannidis et al

Epidemiology ® Volume 22, Number 4, July 2011

49.

50.

51

52.

53.

54.

55.

56.

57.

Prentice RL, Pettinger M, Anderson GL. Statistical issues arising in the
Women’s Health Initiative. Biometrics. 2005;61:899-911; discussion
911-941.

Skrabanek P. Has risk-factor epidemiology outlived its usefulness? Am J
Epidemiol. 1993;138:1016-1017.

Shapiro S. Looking to the 21st century: have we learned from our
mistakes, or are we doomed to compound them? Pharmacoepidemiol
Drug Saf. 2004;13:257-265.

Feinstein AR. Scientific standards in epidemiologic studies of the men-
ace of daily life. Science. 1988;242:1257-1263.

Austin PC, Mamdani MM, Juurlink DN, Hux JE. Testing multiple
statistical hypotheses resulted in spurious associations: a study of astro-
logical signs and health. J Clin Epidemiol. 2006;59:964-969.
Stampfer M. Observational epidemiology is the preferred means of
evaluating effects of behavioral and lifestyle modification. Control Clin
Trials. 1997;18:494—-499; discussion 514-516.

Hernan MA, Alonso A, Logan R, et al. Observational studies analyzed like
randomized experiments: an application to postmenopausal hormone ther-
apy and coronary heart disease. Epidemiology. 2008;19:766—-779.
Vandenbroucke JP. Observational research, randomized trials, and two
views of medical science. PLoS Med. 2008;5:¢67.

loannidis JP, Loy EY, Poulton R, Chia KS. Researching genetic versus
non-genetic determinants of disease: a comparison and proposed unifi-
cation. Sci Transl Med. 2009;1:7ps8.

456 | www.epidem.com

58.

59.

60.

61.

62.

63.

64.

65.

66.

Patel CJ, Bhattacharya J, Butte AJ. An environment-wide association
study (EWAS) on type 2 diabetes mellitus. PLoS One. 2010;5:¢10746.
Kyzas PA, Denaxa-Kyza D, loannidis JP. Almost all articles on cancer
prognostic markers report statistically significant results. Eur J Cancer.
2007;43:2559-2579.

Hozo I, Schnell MJ, Djulbegovic B. Decision-making when data and
inferences are not conclusive: risk-benefit and acceptable regret ap-
proach. Semin Hematol. 2008;45:150—159.

Hozo 1, Djulbegovic B. When is diagnostic testing inappropriate or
irrational? Acceptable regret approach. Med Decis Making. 2008;28:
540-553.

Djulbegovic B, Hozo I. When should potentially false research findings
be considered acceptable? PLoS Med. 2007;4:¢26.

Merton RK. The normative structure of science. In: Storer NW, ed. The
Sociology of Science. Theoretical and Empirical Investigations. Chicago
and London: Chicago University Press; 1973.

Pielke RA Jr. The Honest Broker: Making Sense of Science in Policy and
Politics. Cambridge; Cambridge University Press; 2007.

Tatsioni A, Bonitsis NG, Ioannidis JP. Persistence of contradicted claims
in the literature. JAMA. 2007;298:2517-2526.

Bartlett C, Sterne J, Egger M. What is newsworthy? Longitudinal study
of the reporting of medical research in two British newspapers. BM.J.
2002;325:81-84.

© 2011 Lippincott Williams & Wilkins

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.


http://www.epidem.com

