
Chapter 9

THE KELLY CRITERION IN BLACKJACK SPORTS BETTING,
AND THE STOCK MARKET*

EDWARD O. THORP

Edward O. Thorp and Associates, Newport Beach, CA 92660, USA

Contents

Abstract 386

Keywords 386

1. Introduction 387

2. Coin tossing 388

3. Optimal growth: Kelly criterion formulas for practitioners 392

3.1. The probability of reaching a fixed goal on or before n trials 392

3.2. The probability of ever being reduced to a fraction x of this initial bankroll 394

3.3. The probability of being at or above a specified value at the end of a specified number of

trials 395

3.4. Continuous approximation of expected time to reach a goal 396

3.5. Comparing fixed fraction strategies: the probability that one strategy leads another after n

trials 396

4. The long run: when will the Kelly strategy “dominate”? 398

5. Blackjack 399

6. Sports betting 401

7. Wall street: the biggest game 405

7.1. Continuous approximation 406

7.2. The (almost) real world 409

7.3. The case for “fractional Kelly” 411

7.4. A remarkable formula 414

8. A case study 415

8.1. The constraints 416

8.2. The analysis and results 416

8.3. The recommendation and the result 417

8.4. The theory for a portfolio of securities 418

* Paper presented at: The 10th International Conference on Gambling and Risk Taking, Montreal, June 1997,

published in: Finding the Edge: Mathematical Analysis of Casino Games, edited by O. Vancura, J.A. Cor-

nelius, W.R. Eadington, 2000. Corrections added April 20, 2005.

Handbook of Asset and Liability Management, Volume 1

Edited by S.A. Zenios and W.T. Ziemba

© 2006 Published by Elsevier B.V.

DOI: 10.1016/S1872-0978(06)01009-X



386 E.O. Thorp

9. My experience with the Kelly approach 419

10. Conclusion 420

Acknowledgements 420

Appendix A. Integrals for deriving moments of E∞ 420

Appendix B. Derivation of formula (3.1) 421

Appendix C. Expected time to reach goal 423

References 428

Abstract

The central problem for gamblers is to find positive expectation bets. But the gam-

bler also needs to know how to manage his money, i.e., how much to bet. In the stock

market (more inclusively, the securities markets) the problem is similar but more com-

plex. The gambler, who is now an “investor”, looks for “excess risk adjusted return”.

In both these settings, we explore the use of the Kelly criterion, which is to maximize

the expected value of the logarithm of wealth (“maximize expected logarithmic util-

ity”). The criterion is known to economists and financial theorists by names such as

the “geometric mean maximizing portfolio strategy”, maximizing logarithmic utility,

the growth-optimal strategy, the capital growth criterion, etc. The author initiated the

practical application of the Kelly criterion by using it for card counting in blackjack.

We will present some useful formulas and methods to answer various natural questions

about it that arise in blackjack and other gambling games. Then we illustrate its recent

use in a successful casino sports betting system. Finally, we discuss its application to

the securities markets where it has helped the author to make a thirty year total of 80

billion dollars worth of “bets”.

Keywords

Kelly criterion, betting, long run investing, portfolio allocation, logarithmic utility,

capital growth

JEL classification: C61, D81, G1
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1. Introduction

The fundamental problem in gambling is to find positive expectation betting op-

portunities. The analogous problem in investing is to find investments with excess

risk-adjusted expected rates of return. Once these favorable opportunities have been

identified, the gambler or investor must decide how much of his capital to bet. This

is the problem which we consider here. It has been of interest at least since the

eighteenth century discussion of the St. Petersburg Paradox (Feller, 1966) by Daniel

Bernoulli.

One approach is to choose a goal, such as to minimize the probability of total loss

within a specified number of trials, N . Another example would be to maximize the

probability of reaching a fixed goal on or before N trials (Browne, 1996).

A different approach, much studied by economists and others, is to value money

using a utility function. These are typically defined for all non-negative real numbers,

have extended real number values, and are non-decreasing (more money is at least as

good as less money). Some examples are U(x) = xa , 0 � a < ∞, and U(x) = log x,

where log means loge, and log 0 = −∞. Once a utility function is specified, the object

is to maximize the expected value of the utility of wealth.

Daniel Bernoulli used the utility function log x to “solve” the St. Petersburg Para-

dox. (But his solution does not eliminate the paradox because every utility function

which is unbounded above, including log, has a modified version of the St. Petersburg

Paradox.) The utility function log x was revisited by Kelly (1956) where he showed

that it had some remarkable properties. These were elaborated and generalized in an

important paper by Breiman (1961). Markowitz (1959) illustrates the application to se-

curities. For a discussion of the Kelly criterion (the “geometric mean criterion”) from

a finance point of view, see McEnally (1986). He also includes additional history and

references.

I was introduced to the Kelly paper by Claude Shannon at M.I.T. in 1960, shortly

after I had created the mathematical theory of card counting at casino blackjack. Kelly’s

criterion was a bet on each trial so as to maximize E log X, the expected value of

the logarithm of the (random variable) capital X. I used it in actual play and intro-

duced it to the gambling community in the first edition of Beat the Dealer (Thorp,

1962). If all blackjack bets paid even money, had positive expectation and were in-

dependent, the resulting Kelly betting recipe when playing one hand at a time would

be extremely simple: bet a fraction of your current capital equal to your expectation.

This is modified somewhat in practice (generally down) to allow for having to make

some negative expectation “waiting bets”, for the higher variance due to the occur-

rence of payoffs greater than one to one, and when more than one hand is played at a

time.

Here are the properties that made the Kelly criterion so appealing. For ease of un-

derstanding, we illustrate using the simplest case, coin tossing, but the concepts and

conclusions generalize greatly.
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2. Coin tossing

Imagine that we are faced with an infinitely wealthy opponent who will wager even

money bets made on repeated independent trials of a biased coin. Further, suppose that

on each trial our win probability is p > 1/2 and the probability of losing is q = 1 − p.

Our initial capital is X0. Suppose we choose the goal of maximizing the expected value

E(Xn) after n trials. How much should we bet, Bk , on the kth trial? Letting Tk = 1 if the

kth trial is a win and Tk = −1 if it is a loss, then Xk = Xk−1+TkBk for k = 1, 2, 3, . . . ,

and Xn = X0 +
∑n

k=1 TkBk . Then

E(Xn) = X0 +
n∑

k=1

E(BkTk) = X0 +
n∑

k=1

(p − q)E(Bk).

Since the game has a positive expectation, i.e., p − q > 0 in this even payoff situation,

then in order to maximize E(Xn) we would want to maximize E(Bk) at each trial.

Thus, to maximize expected gain we should bet all of our resources at each trial. Thus

B1 = X0 and if we win the first bet, B2 = 2X0, etc. However, the probability of ruin is

given by 1 − pn and with p < 1, limn→∞[1 − pn] = 1 so ruin is almost sure. Thus the

“bold” criterion of betting to maximize expected gain is usually undesirable.

Likewise, if we play to minimize the probability of eventual ruin (i.e., “ruin” occurs

if Xk = 0 on the kth outcome) the well-known gambler’s ruin formula in Feller (1966)

shows that we minimize ruin by making a minimum bet on each trial, but this unfortu-

nately also minimizes the expected gain. Thus “timid” betting is also unattractive.

This suggests an intermediate strategy which is somewhere between maximizing

E(Xn) (and assuring ruin) and minimizing the probability of ruin (and minimizing

E(Xn)). An asymptotically optimal strategy was first proposed by Kelly (1956).

In the coin-tossing game just described, since the probabilities and payoffs for each

bet are the same, it seems plausible that an “optimal” strategy will involve always wa-

gering the same fraction f of your bankroll. To make this possible we shall assume

from here on that capital is infinitely divisible. This assumption usually does not matter

much in the interesting practical applications.

If we bet according to Bi = f Xi−1, where 0 � f � 1, this is sometimes called “fixed

fraction” betting. Where S and F are the number of successes and failures, respectively,

in n trials, then our capital after n trials is Xn = X0(1+f )S(1−f )F , where S+F = n.

With f in the interval 0 < f < 1, Pr(Xn = 0) = 0. Thus “ruin” in the technical sense

of the gambler’s ruin problem cannot occur. “Ruin” shall henceforth be reinterpreted to

mean that for arbitrarily small positive ε, limn→∞[Pr(Xn � ε)] = 1. Even in this sense,

as we shall see, ruin can occur under certain circumstances.

We note that since

en log

[
Xn

X0

]1/n

=
Xn

X0
,
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the quantity

Gn(f ) = log

[
Xn

X0

]1/n

=
S

n
log(1 + f ) +

F

n
log(1 − f )

measures the exponential rate of increase per trial. Kelly chose to maximize the expected

value of the growth rate coefficient, g(f ), where

g(f ) = E

{
log

[
Xn

X0

]1/n}
= E

{
S

n
log(1 + f ) +

F

n
log(1 − f )

}

= p log(1 + f ) + q log(1 − f ).

Note that g(f ) = (1/n)E(log Xn) − (1/n) log X0 so for n fixed, maximizing g(f ) is

the same as maximizing E log Xn. We usually will talk about maximizing g(f ) in the

discussion below. Note that

g′(f ) =
p

1 + f
−

q

1 − f
=

p − q − f

(1 + f )(1 − f )
= 0

when f = f ∗ = p − q.

Now

g′′(f ) = −p/(1 + f )2 − q/(1 − f )2 < 0

so that g′(f ) is monotone strictly decreasing on [0, 1). Also g′(0) = p − q > 0 and

limf →1− g′(f ) = −∞. Therefore by the continuity of g′(f ), g(f ) has a unique maxi-

mum at f = f ∗, where g(f ∗) = p log p+q log q+ log 2 > 0. Moreover, g(0) = 0 and

limf →q− g(f ) = −∞ so there is a unique number fc > 0, where 0 < f ∗ < fc < 1,

such that g(fc) = 0. The nature of the function g(f ) is now apparent and a graph of

g(f ) versus f appears as shown in Figure 1.

The following theorem recounts the important advantages of maximizing g(f ). The

details are omitted here but proofs of (i)–(iii), and (vi) for the simple binomial case

can be found in Thorp (1969); more general proofs of these and of (iv) and (v) are in

Breiman (1961).

Theorem 1. (i) If g(f ) > 0, then limn→∞ Xn = ∞ almost surely, i.e., for each M ,

Pr[lim infn→∞ Xn > M] = 1;

(ii) If g(f ) < 0, then limn→∞ Xn = 0 almost surely; i.e., for each ε > 0,

Pr[lim supn→∞ Xn < ε] = 1;

(iii) If g(f ) = 0, then lim supn→∞ Xn = ∞ a.s. and lim infn→∞ Xn = 0 a.s.

(iv) Given a strategy Φ∗ which maximizes E log Xn and any other “essentially

different” strategy Φ (not necessarily a fixed fractional betting strategy), then

limn→∞ Xn(Φ
∗)/Xn(Φ) = ∞ a.s.

(v) The expected time for the current capital Xn to reach any fixed preassigned goal

C is, asymptotically, least with a strategy which maximizes E log Xn.

(vi) Suppose the return on one unit bet on the ith trial is the binomial random vari-

able Ui ; further, suppose that the probability of success is pi , where 1/2 < pi < 1.
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Fig. 1.

Then E log Xn is maximized by choosing on each trial the fraction f ∗
i = pi − qi which

maximizes E log(1 + fiUi).

Part (i) shows that, except for a finite number of terms, the player’s fortune Xn will

exceed any fixed bound M when f is chosen in the interval (0, fc). But, if f > fc,

part (ii) shows that ruin is almost sure. Part (iii) demonstrates that if f = fc, Xn will

(almost surely) oscillate randomly between 0 and +∞. Thus, one author’s statement

that Xn → X0 as n → ∞, when f = fe, is clearly contradicted. Parts (iv) and (v)

show that the Kelly strategy of maximizing E log Xn is asymptotically optimal by two

important criteria. An “essentially different” strategy is one such that the difference

E ln X∗
n − E ln Xn between the Kelly strategy and the other strategy grows faster than

the standard deviation of ln X∗
n − ln Xn, ensuring P(ln X∗

n − ln Xn > 0) → 1. Part (vi)

establishes the validity of utilizing the Kelly method of choosing f ∗
i on each trial (even

if the probabilities change from one trial to the next) in order to maximize E log Xn.

Example 2.1. Player A plays against an infinitely wealthy adversary. Player A wins

even money on successive independent flips of a biased coin with a win probability of

p = .53 (no ties). Player A has an initial capital of X0 and capital is infinitely divisible.
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Applying Theorem 1(vi), f ∗ = p − q = .53 − .47 = .06. Thus 6% of current capital

should be wagered on each play in order to cause Xn to grow at the fastest rate possible

consistent with zero probability of ever going broke. If Player A continually bets a

fraction smaller than 6%, Xn will also grow to infinity but the rate will be slower.

If Player A repeatedly bets a fraction larger than 6%, up to the value fc, the same

thing applies. Solving the equation g(f ) = .53 log(1 + f ) + .47 log(1 − f ) = 0

numerically on a computer yields fc = .11973−. So, if the fraction wagered is more

than about 12%, then even though Player A may temporarily experience the pleasure of

a faster win rate, eventual downward fluctuations will inexorably drive the values of Xn

toward zero. Calculation yields a growth coefficient of g(f ∗) = f (.06) = .001801 so

that after n successive bets the log of Player A’s average bankroll will tend to .001801n

times as much money as he started with. Setting .001801n = log 2 gives an expected

time of about n = 385 to double the bankroll.

The Kelly criterion can easily be extended to uneven payoff games. Suppose Player A

wins b units for every unit wager. Further, suppose that on each trial the win probability

is p > 0 and pb − q > 0 so the game is advantageous to Player A. Methods similar to

those already described can be used to maximize

g(f ) = E log(Xn/X0) = p log(1 + bf ) + q log(1 − f ).

Arguments using calculus yield f ∗ = (bp−q)/b, the optimal fraction of current capital

which should be wagered on each play in order to maximize the growth coefficient g(f ).

This formula for f ∗ appeared in Thorp (1984) and was the subject of an April 1997

discussion on the Internet at Stanford Wong’s website, http://bj21.com (miscellaneous

free pages section). One claim was that one can only lose the amount bet so there was

no reason to consider the (simple) generalization of this formula to the situation where

a unit wager wins b with probability p > 0 and loses a with probability q. Then if

the expectation m ≡ bp − aq > 0, f ∗ > 0 and f ∗ = m/ab. The generalization

does stand up to the objection. One can buy on credit in the financial markets and lose

much more than the amount bet. Consider buying commodity futures or selling short a

security (where the loss is potentially unlimited). See, e.g., Thorp and Kassouf (1967)

for an account of the E.L. Bruce short squeeze.

For purists who insist that these payoffs are not binary, consider selling short a binary

digital option. These options are described in Browne (1996).

A criticism sometimes applied to the Kelly strategy is that capital is not, in fact,

infinitely divisible. In the real world, bets are multiples of a minimum unit, such as

$1 or $.01 (penny “slots”). In the securities markets, with computerized records, the

minimum unit can be as small as desired. With a minimum allowed bet, “ruin” in the

standard sense is always possible. It is not difficult to show, however (see Thorp and

Walden, 1966) that if the minimum bet allowed is small relative to the gambler’s initial

capital, then the probability of ruin in the standard sense is “negligible” and also that

the theory herein described is a useful approximation. This section follows Rotando and

Thorp (1992).
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3. Optimal growth: Kelly criterion formulas for practitioners

Since the Kelly criterion asymptotically maximizes the expected growth rate of wealth,

it is often called the optimal growth strategy. It is interesting to compare it with the other

fixed fraction strategies. I will present some results that I have found useful in practice.

My object is to do so in a way that is simple and easily understood. These results have

come mostly from sitting and thinking about “interesting questions”. I have not made

a thorough literature search but I know that some of these results have been previously

published and in greater mathematical generality. See, e.g., Browne (1996, 1997) and

the references therein.

3.1. The probability of reaching a fixed goal on or before n trials

We first assume coin tossing. We begin by noting a related result for standard Brownian

motion. Howard Tucker showed me this in 1974 and it is probably the most useful single

fact I know for dealing with diverse problems in gambling and in the theory of financial

derivatives.

For standard Brownian motion X(t), we have

P
(
sup

[
X(t) − (at + b)

]
� 0, 0 � t � T

)

(3.1)= N(−α − β) + e−2abN(α − β)

where α = a
√

T and β = b/
√

T . See Figure 2. See Appendix B for Tucker’s derivation

of (3.1).

In our application a < 0, b > 0 so we expect limT →∞ P(X(t) � at +b, 0 � t � T )

= 1.

Let f be the fraction bet. Assume independent identically distributed (i.d.d.) trials Yi ,

i = 1, . . . , n, with P(Yi = 1) = p > 1/2, P(Yi = −1) = q < 1/2; also assume p < 1

to avoid the trivial case p = 1.

Fig. 2.
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Bet a fixed fraction f , 0 < f < 1, at each trial. Let Vk be the value of the gambler

or investor’s bankroll after k trials, with initial value V0. Choose initial stake V0 = 1

(without loss of generality); number of trials n; goal C > 1.

What is the probability that Vk � C for some k, 1 � k � n? This is the same as the

probability that log Vk � log C for some k, 1 � k � n. Letting ln = loge we have:

Vk =
k∏

i−1

(1 + Yif ) and

ln Vk =
k∑

i=1

ln(1 + Yif ),

E ln Vk =
k∑

i=1

E ln(1 + Yif ),

Var(ln Vk) =
k∑

i=1

Var
(
ln(1 + Yif )

)
,

E ln(1 + Yif ) = p ln(1 + f ) + q ln(1 − f ) ≡ m ≡ g(f ),

Var
[
ln(1 + Yif )

]
= p

[
ln(1 + f )

]2 + q
[
ln(1 − f )

]2 − m2

=
(
p − p2

)[
ln(1 + f )

]2 +
(
q − q2

)[
ln(1 − f )

]2

− 2pq ln(1 + f ) ln(1 − f )

= pq
{[

ln(1 + f )
]2 − 2 ln(1 + f ) ln(1 − f ) +

[
ln(1 − f )

]2}

= pq
{
ln
[
(1 + f )/(1 − f )

]}2 ≡ s2.

Drift in n trials: mn.

Variance in n trials: s2n.

ln Vk � ln C, 1 � k � n, iff

k∑

i=1

ln(1 + Yif ) � ln C, 1 � k � n, iff

Sk ≡
k∑

i=1

[
ln(1 + Yif ) − m

]
� ln C − mk, 1 � k � n,

E(Sk) = 0, Var(Sk) = s2k.

We want Prob(Sk � ln C − mk, 1 � k � n).

Now we use our Brownian motion formula to approximate Sn by Prob(X(t) � ln C−
mt/s2, 1 � t � s2n) where each term of Sn is approximated by an X(t), drift 0 and
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variance s2 (0 � t � s2, s2 � t � 2s2, . . . , (n − 1)s2 � t � ns2). Note: the

approximation is only “good” for “large” n.

Then in the original formula (3.1):

T = s2n,

b = ln C,

a = −m/s2,

α = a
√

T = −m
√

n/s,

β = b/
√

T = ln C/s
√

n.

Example 3.1.

C = 2,

n = 104,

p = .51,

q = .49,

f = .0117,

m = .000165561,

s2 = .000136848.

Then

P(·) = .9142.

Example 3.2. Repeat with

f = .02,

then

m = .000200013, s2 = .000399947 and P(·) = .9214.

3.2. The probability of ever being reduced to a fraction x of this initial bankroll

This is a question that is of great concern to gamblers and investors. It is readily an-

swered, approximately, by our previous methods.

Using the notation of the previous section, we want P(Vk � x for some k, 1 � k �

∞). Similar methods yield the (much simpler) continuous approximation formula:

Prob(·) = e2ab where a = −m/s2 and b = − ln x

which can be rewritten as

(3.2)Prob(·) = x∧(2m/s2) where ∧ means exponentiation.
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Example 3.3.

p = .51, f = f ∗ = .02,

2m/s = 1.0002,

Prob(·) .= x.

We will see in Section 7 that for the limiting continuous approximation and the Kelly

optimal fraction f ∗, P(Vk(f
∗) � x for some k � 1) = x.

My experience has been that most cautious gamblers or investors who use Kelly

find the frequency of substantial bankroll reduction to be uncomfortably large. We can

see why now. To reduce this, they tend to prefer somewhat less than the full betting

fraction f ∗. This also offers a margin of safety in case the betting situations are less

favorable than believed. The penalty in reduced growth rate is not severe for moderate

underbetting. We discuss this further in Section 7.

3.3. The probability of being at or above a specified value at the end of a specified

number of trials

Hecht (1995) suggested setting this probability as the goal and used a computerized

search method to determine optimal (by this criterion) fixed fractions for p − q = .02

and various c, n and specified success probabilities.

This is a much easier problem than the similar sounding in Section 3.1. We have for

the probability that X(T ) at the end exceeds the goal:

P
(
X(T ) � aT + b

)
=

1
√

2πT

∫ ∞

aT +b

exp
{
−x2/2T

}
dx

=
1

√
2πT

∫ ∞

aT 1/2+bT −1/2
exp

{
−u2/2

}
du

where u = x/
√

T so x = aT + b gives u
√

T = aT + b and U = aT 1/2 + bT −1/2. The

integral equals

1 − N
(
aT 1/2 + bT −1/2

)
= N

(
−
(
aT 1/2 + bT −1/2

))

(3.3)= 1 − N(α + β) = N(−α − β).

For example (3.1) f = .0117 and P = .7947. For example (3.2) P = .7433. Example

(3.1) is for the Hecht optimal fraction and example (3.2) is for the Kelly optimal fraction.

Note the difference in P values.

Our numerical results are consistent with Hecht’s simulations in the instances we

have checked.

Browne (1996) has given an elegant continuous approximation solution to the prob-

lem: What is the strategy which maximizes the probability of reaching a fixed goal C on

or before a specified time n and what is the corresponding probability of success? Note
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that the optimal strategy will in general involve betting varying fractions, depending on

the time remaining and the distance to the goal.

As an extreme example, just to make the point, suppose n = 1 and C = 2. If X0 < 1

then no strategy works and the probability of success is 0. But if 1 � X0 < 2 one should

bet at least 2 − X0, thus any fraction f � (2 − X0)/X0, for a success probability of p.

Another extreme example: n = 10, C = 210 = 1024, X0 = 1. Then the only strategy

which can succeed is to bet f = 1 on every trial. The probability of success is p10 for

this strategy and 0 for all others (if p < 1), including Kelly.

3.4. Continuous approximation of expected time to reach a goal

According to Theorem 1(v), the optimal growth strategy asymptotically minimizes the

expected time to reach a goal. Here is what this means. Suppose for goal C that m(C)

is the greatest lower bound over all strategies for the expected time to reach C. Suppose

t∗(C) is the expected time using the Kelly strategy. Then limC→∞(t∗(c)/m(c)) = 1.

The continuous approximation to the expected number of trials to reach the goal

C > X0 = 1 is

n(C, f ) = (ln C)/g(f )

where f is any fixed fraction strategy. Appendix C has the derivation. Now g(f ) has a

unique maximum at g(f ∗) so n(C, f ) has a unique minimum at f = f ∗. Moreover,

we can see how much longer it takes, on average, to reach C if one deviates from f ∗.

3.5. Comparing fixed fraction strategies: the probability that one strategy leads

another after n trials

Theorem 1(iv) says that wealth using the Kelly strategy will tend, in the long run, to

an infinitely large multiple of wealth using any “essentially different” strategy. It can

be shown that any fixed f �= f ∗ is an “essentially different” strategy. This leads to the

question of how fast the Kelly strategy gets ahead of another fixed fraction strategy, and

more generally, how fast one fixed fraction strategy gets ahead of (or behind) another.

If Wn is the number of wins in n trials and n − Wn is the number of losses,

G(f ) = (Wn/n) ln(l + f ) + (1 − Wn/n) ln(1 − f )

is the actual (random variable) growth coefficient.

As we saw, its expectation is

(3.4)g(f ) = E
(
G(f )

)
= p log(1 + f ) + q log(1 − f )

and the variance of G(f ) is

(3.5)Var G(f ) =
(
(pq)/n

){
ln
(
(1 + f )/(1 − f )

)}2

and it follows that G(f ), which has the form G(f ) = a(
∑

Tk)/n+b, is approximately

normally distributed with mean g(f ) and variance Var G(f ). This enables us to give
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the distribution of Xn and once again answer the question of Section 3.3. We illustrate

this with an example.

Example 3.4.

p = .51, q = .49, f ∗ = .02, N = 10,000 and

s = standard deviation of G(f )

g/s f g s Pr(G(f ) � 0)

1.5 .01 .000150004 .0001 .067

1.0 .02 .000200013 .0002 .159

.5 .03 .000149977 .0003 .309

Continuing, we find the distribution of G(f2) − G(f1). We consider two cases.

Case 1. The same game

Here we assume both players are betting on the same trials, e.g., betting on the same

coin tosses, or on the same series of hands at blackjack, or on the same games with the

same odds at the same sports book. In the stock market, both players could invest in the

same “security” at the same time, e.g., a no-load S&P 500 index mutual fund.

We find

E
(
G(f2) − G(f1)

)
= p log

(
(1 + f2)/(1 + f1)

)
+ q log

(
(1 − f2)/(1 − f1)

)

and

Var
(
G(f2) − G(f1)

)
= (pq/n)

{
log

[(
1 + f2

1 − f2

)(
1 − f1

1 + f1

)]}2

where G(f2) − G(f1) is approximately normally distributed with this mean and vari-

ance.

Case 2. Identically distributed independent games

This corresponds to betting on two different series of tosses with the same coin.

E(G(f2) − G(f1)) is as before. But now Var(G(f2) − G(f1)) = Var(G(f2)) +
Var(G(f1)) because G(f2) and G(f1) are now independent. Thus

Var
(
G(f2) − G(f1)

)
= (pq/n)

{[
log

(
1 + f2

1 − f2

)]2

+
[

log

(
1 + f1

1 − f1

)2]}
.

Let

a = log

(
1 + f1

1 − f1

)
, b = log

(
1 + f2

1 − f2

)
.

Then in Case 1, V1 = (pq/n)(a − b)2 and in Case 2, V2 = (pq/n)(a2 + b2) and since

a, b > 0, V1 < V2 as expected. We can now compare the Kelly strategy with other
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fixed fractions to determine the probability that Kelly leads after n trials. Note that this

probability is always greater than 1/2 (within the accuracy limits of the continuous

approximation, which is the approximation of the binomial distribution by the normal,

with its well known and thoroughly studied properties) because g(f ∗) − g(f ) > 0

where f ∗ = p − q and f �= f ∗ is some alternative. This can fail to be true for small n,

where the approximation is poor. As an extreme example to make the point, if n = 1,

any f > f ∗ beats Kelly with probability p > 1/2. If instead n = 2, f > f ∗ wins

with probability p2 and p2 > 1/2 if p > 1/
√

2
.= .7071. Also, f < f ∗ wins with

probability 1 − p2 and 1 − p2 > 1/2 if p2 < 1/2, i.e., p < 1/
√

2 = .7071. So when

n = 2, Kelly always loses more than half the time to some other f unless p = 1/
√

2.

We now have the formulas we need to explore many practical applications of the

Kelly criterion.

4. The long run: when will the Kelly strategy “dominate”?

The late John Leib wrote several articles for Blackjack Forum which were critical of the

Kelly criterion. He was much bemused by “the long run”. What is it and when, if ever,

does it happen?

We begin with an example.

Example 4.1.

p = .51, n = 10,000,

Vi and si , i = 1, 2, are the variance and standard deviation, respectively, for Section 3.5

Cases 1 and 2, and R = V2/V1 = (a2 + b2)/(a − b)2 so s2 = s1

√
R. Table 1 sum-

marizes some results. We can also approximate
√

R with a power series estimate using

only the first term of a and of b: a
.= 2f1, b

.= 2f2 so
√

R
.=
√

f 2
1 + f 2

2 /|f1 − f2|.
The approximate results, which agree extremely well, are 2.236, 3.606 and 1.581, re-

spectively.

The first two rows show how nearly symmetric the behavior is on each side of the

optimal f ∗ = .02. The column (g2 − g1)/s1 shows us that f ∗ = .02 only has a .5

standard deviation advantage over its neighbors f = .01 and f = .03 after n = 10,000

Table 1

Comparing strategies

f1 f2 g2 − g1 s1 (g2 − g1)/s1

√
R

.01 .02 .00005001 .00010000 .50 2.236

.03 .02 .00005004 .00010004 .50 3.604

.03 .01 .00000003 .00020005 .00013346 1.581
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Table 2

The long run: (g2 − g1)/s after n trials

f1 f2 n = 104 n = 4 × 104 n = 16 × 104 n = 106

.01 .02 .5 1.0 2.0 5.0

.03 .02 .5 1.0 2.0 5.0

.03 .01 .000133 .000267 .000534 .001335

trials. Since this advantage is proportional to
√

n, the column (g2 −g1)/s1 from Table 1

gives the results of Table 2.

The factor
√

R in Table 1 shows how much more slowly f2 dominates f1 in Case 2

versus Case 1. The ratio (g2 − g1)/s2 is
√

R times as large so the same level of domi-

nance takes R times as long. When the real world comparisons of strategies for practical

reasons often use Case 2 comparisons rather than the more appropriate Case 1 compar-

isons, the dominance of f ∗ is further obscured. An example is players with different

betting fractions at blackjack. Case 1 corresponds to both betting on the same sequence

of hands. Case 2 corresponds to them playing at different tables (not the same table,

because Case 2 assumes independence). (Because of the positive correlation between

payoffs on hands played at the same table, this is intermediate between Cases 1 and 2.)

It is important to understand that “the long run”, i.e., the time it takes for f ∗ to

dominate a specified neighbor by a specified probability, can vary without limit. Each

application requires a separate analysis. In cases such as Example 4.1, where dominance

is “slow”, one might argue that using f ∗ is not important. As an argument against this,

consider two coin-tossing games. In game 1 your edge is 1.0%. In game 2 your edge

is 1.1%. With one unit bets, after n trials the difference in expected gain is E2 − E1 =
.001n with standard deviation s of about

√
2n hence (E2 −E1)/s

.= .001
√

n/
√

2 which

is 1 when n = 2 × 106. So it takes two million trials to have an 84% chance of the

game 2 results being better than the game 1 results. Does that mean it’s unimportant to

select the higher expectation game?

5. Blackjack

For a general discussion of blackjack, see Thorp (1962, 1966), Wong (1994) and Griffin

(1979). The Kelly criterion was introduced for blackjack by Thorp (1962). The analysis

is more complicated than that of coin tossing because the payoffs are not simply one

to one. In particular the variance is generally more than 1 and the Kelly fraction tends

to be less than for coin tossing with the same expectation. Moreover, the distribution

of various payoffs depends on the player advantage. For instance the frequency of pair

splitting, doubling down, and blackjacks all vary as the advantage changes. By binning

the probability of payoff types according to ex ante expectation, and solving the Kelly

equations on a computer, a strategy can be found which is as close to optimal as desired.
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There are some conceptual subtleties which are noteworthy. To illustrate them we’ll

simplify to the coin toss model.

At each trial, we have with probability .5 a “favorable situation” with gain or loss X

per unit bet such that P(X = 1) = .51, P(X = −1) = .49 and with probability .5 an

unfavorable situation with gain or loss Y per unit bet such that P(Y = 1) = .49 and

P(Y = −1) = .51. We know before we bet whether X or Y applies.

Suppose the player must make small “waiting” bets on the unfavorable situations in

order to be able to exploit the favorable situations. On these he will place “large” bets.

We consider two cases.

Case 1. Bet f0 on unfavorable situations and find the optimal f ∗ for favorable situa-

tions. We have

g(f ) = .5
(
.51 log(1 + f ) + .49 log(1 − f )

)

(5.1)+ .5
(
.49 log(1 + f0) + .51 log(1 − f0)

)
.

Since the second expression in (5.1) is constant, f maximizes g(f ) if it maximizes the

first expression, so f ∗ = p − q = .02, as usual. It is easy to verify that when there is

a spectrum of favorable situations the same recipe, f ∗
i = pi − qi for the ith situation,

holds. Again, in actual blackjack f ∗
i would be adjusted down somewhat for the greater

variance. With an additional constraint such as fi � kf0, where k is typically some

integral multiple of f0, representing the betting spread adopted by a prudent player,

then the solution is just fi � min(f ∗
i , kf0).

Curiously, a seemingly similar formulation of the betting problem leads to rather

different results.

Case 2. Bet f in favorable situations and af in unfavorable situations, 0 � a � 1.

Now the bet sizes in the two situations are linked and both the analysis and results

are more complex. We have a Kelly growth rate of

g(f ) = .5
(
.51 log(1 + f ) + .49 log(1 − f )

)

(5.2)+ .5
(
.49 log(1 + af ) + .51 log(1 − af )

)
.

If we choose a = 0 (no bet in unfavorable situations) then the maximum value for g(f )

is at f ∗ = .02, the usual Kelly fraction.

If we make “waiting bets”, corresponding to some value of a > 0, this will shift the

value of f ∗ down, perhaps even to 0. The expected gain divided by the expected bet is

.02(1 − a)/(1 + a), a � 0. If a = 0 we get .02, as expected. If a = 1, we get 0, as

expected: this is a fair game and the Kelly fraction is f ∗ = 0. As a increases from 0

to 1 the (optimal) Kelly fraction f ∗ decreases from .02 to 0. Thus the Kelly fraction for

favorable situations is less in this case when bets on unfavorable situations reduce the

overall advantage of the game.

Arnold Snyder called to my attention the fact that Winston Yamashita had (also) made

this point (March 18, 1997) on the “free” pages, miscellaneous section, of Stanford

Wong’s web site.
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Table 3

f ∗ versus a

a f ∗ a f ∗ a f ∗

0 .0200 1/3 .0120 .7 .0040

.1 .0178 .4 .0103 .8 .0024

.2 .0154 .5 .0080 .9 .0011

.3 .0128 .6 .0059 1.0 .0000

For this example, we find the new f ∗ for a given value of a, 0 < a < 1, by solving

g′(f ) = 0. A value of a = 1/3, for instance, corresponds to a bet of 1/3 unit on Y and

1 unit on X, a betting range of 3 to 1. The overall expectation is .01. Calculation shows

f ∗ = .012001. Table 3 shows how f ∗ varies with a.

To understand why Cases 1 and 2 have different f ∗, look first at Equation (5.1).

The part of g(f ) corresponding to the unfavorable situations is fixed when f0 is fixed.

Only the part of g(f ) corresponding to the favorable situations is affected by varying f .

Thus we maximize g(f ) by maximizing it over just the favorable situations. Whatever

the result, it is then reduced by a fixed quantity, the part of g containing f0. On the

other hand, in Equation (5.2) both parts of g(f ) are affected when f varies, because

the fraction af used for unfavorable situations bears the constant ratio a to the fraction

f used in favorable situations. Now the first term, for the favorable situations, has a

maximum at f = .02, and is approximately “flat” nearby. But the second term, for

the unfavorable situations, is negative and decreasing moderately rapidly at f = .02.

Therefore, it we reduce f somewhat, this term increases somewhat, while the first term

decreases only very slightly. There is a net gain so we find f ∗ < .02. The greater a

is, the more important is the effect of this term so the more we have to reduce f to

get f ∗, as Table 3 clearly shows. When there is a spectrum of favorable situations the

solution is more complex and can be found through standard multivariable optimization

techniques.

The more complex Case 2 corresponds to what the serious blackjack player is likely

to need to do in practice. He will have to limit his current maximum bet to some multiple

of his current minimum bet. As his bankroll increases or decreases, the corresponding

bet sizes will increase or decrease proportionately.

6. Sports betting

In 1993 an outstanding young computer science Ph.D. told me about a successful sports

betting system that he had developed. Upon review I was convinced. I made suggestions

for minor simplifications and improvements. Then we agreed on a field test. We found

a person who was extremely likely to always be regarded by the other sports bettors as

a novice. I put up a test bankroll of $50,000 and we used the Kelly system to estimate

our bet size.
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Fig. 3. Betting log Type 2 sports.

Fig. 4. Betting log Type 1 sports.

We bet on 101 days in the first four and a half months of 1994. The system works for

various sports. The results appear in Figures 3 and 4. After 101 days of bets, our $50,000

bankroll had a profit of $123,000, about $68,000 from Type 1 sports and about $55,000

from Type 2 sports. The expected returns are shown as about $62,000 for Type 1 and

about $27,000 for Type 2. One might assign the additional $34,000 actually won to luck.

But this is likely to be at most partly true because our expectation estimates from the

model were deliberately chosen to be conservative. The reason is that using too large

an f ∗ and overbetting is much more severely penalized than using too small an f ∗ and

underbetting.
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Though $123,000 is a modest sum for some, and insignificant by Wall Street stan-

dards, the system performed as predicted and passed its test. We were never more than

a few thousand behind. The farthest we had to invade our bankroll to place bets was

about $10,000.

Our typical expectation was about 6% so our total bets (“action”) were about

$2,000,000 or about $20,000 per day. We typically placed from five to fifteen bets a

day and bets ranged from a few hundred dollars to several thousand each, increasing as

our bankroll grew.

Though we had a net win, the net results by casino varied by chance from a substantial

loss to a large win. Particularly hard hit was the “sawdust joint” Little Caesar’s. It “died”

towards the end of our test and I suspect that sports book losses to us may have expedited

its departure.

One feature of sports betting which is of interest to Kelly users is the prospect of

betting on several games at once. This also arises in blackjack when (a) a player bets

on multiple hands or (b) two or more players share a common bankroll. The standard

techniques readily solve such problems. We illustrate with:

Example 6.1. Suppose we bet simultaneously on two independent favorable coins with

betting fractions f1 and f2 and with success probabilities p1 and p2, respectively. Then

the expected growth rate is given by

g(f1, f2) = p1p2 ln(1 + f1 + f2) + p1q2 ln(1 + f1 − f2)

+ q1p2 ln(1 − f1 + f2) + q1q2 ln(1 − f1 − f2).

To find the optimal f ∗
1 and f ∗

2 we solve the simultaneous equations ∂g/∂f1 = 0 and

∂g/∂f2 = 0. The result is

f1 + f2 =
p1p2 − q1q2

p1p2 + q1q2
≡ c,

f1 − f2 =
p1q2 − q1p2

p1q2 + q1p2
≡ d,

(6.1)f ∗
1 = (c + d)/2, f ∗

2 = (c − d)/2.

These equations pass the symmetry check: interchanging 1 and 2 throughout maps

the equation set into itself.

An alternate form is instructive. Let mi = pi − qi , i = 1, 2 so pi = (1 + mi)/2 and

qi = (1 − mi)/2. Substituting in (6.1) and simplifying leads to:

c =
m1 + m2

1 + m1m2
, d =

m1 − m2

1 − m1m2
,

(6.2)f ∗
1 =

m1(1 − m2
2)

1 − m2
1m

2
2

, f ∗
2 =

m2(1 − m2
1)

1 − m2
1m

2
2

which shows clearly the factors by which the f ∗
i are each reduced from m∗

i . Since the

mi are typically a few percent, the reduction factors are typically very close to 1.
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In the special case p1 = p2 = p, d = 0 and f ∗ = f ∗
1 = f ∗

2 = c/2 = (p − q)/

(2(p2 + q2)). Letting m = p − q this may be written f ∗ = m/(1 + m2) as the optimal

fraction to bet on each coin simultaneously, compared to f ∗ = m to bet on each coin

sequentially.

Our simultaneous sports bets were generally on different games and typically not

numerous so they were approximately independent and the appropriate fractions were

only moderately less than the corresponding single bet fractions. Question: Is this al-

ways true for independent simultaneous bets? Simultaneous bets on blackjack hands at

different tables are independent but at the same table they have a pairwise correlation

that has been estimated at .5 (Griffin, 1979, p. 142). This should substantially reduce

the Kelly fraction per hand. The blackjack literature discusses approximations to these

problems. On the other hand, correlations between the returns on securities can range

from nearly −1 to nearly 1. An extreme correlation often can be exploited to great

advantage through the techniques of “hedging”. The risk averse investor may be able

to acquire combinations of securities where the expectations add and the risks tend to

cancel. The optimal betting fraction may be very large.

The next example is a simple illustration of the important effect of covariance on the

optimal betting fraction.

Example 6.2. We have two favorable coins as in the previous example but now their

outcomes need not be independent. For simplicity assume the special case where the

two bets have the same payoff distributions, but with a joint distribution as in Table 4.

Now c+m+b = (1+m)/2 so b = (1−m)/2− c and therefore 0 � c � (1−m)/2.

Calculation shows Var(Xi) = 1 − m2, Cor(X1, X2) = 4c − (1 − m)2 and

Cor(X1, X2) = [4c − (1 − m)2]/(1 − m2). The symmetry of the distribution shows

that g(f1, f2) will have its maximum at f1 = f2 = f so we simply need to maximize

g(f ) = (c + m) ln(1 + 2f ) + c ln(1 − 2f ). The result is f ∗ = m/(2(2c + m)). We

see that for m fixed, as c decreases from (1 − m)/2 and cor(X1, X2) = 1, to 0 and

cor(X1, X2) = −(1 − m)/(1 + m), f ∗ for each bet increases from m/2 to 1/2, as in

Table 5.

Table 4

Joint distribution of two “identical” fa-

vorable coins with correlated outcomes

X1 : X2 : 1 −1

1 c + m b

−1 b c

Table 5

f ∗ increases as Cor(X1, X2) decreases

Cor(X1, X2) c f ∗

1 (1 − m)/2 m/2

0 (1 − m2)/4 m/(1 + m2)

−(1 − m)/(1 + m) 0 1/2
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It is important to note that for an exact solution or an arbitrarily accurate numerical

approximation to the simultaneous bet problem, covariance or correlation information

is not enough. We need to use the entire joint distribution to construct the g function.

We stopped sports betting after our successful test for reasons including:

(1) It required a person on site in Nevada.

(2) Large amounts of cash and winning tickets had to be transported between casinos.

We believed this was very risky. To the sorrow of others, subsequent events con-

firmed this.

(3) It was not economically competitive with our other operations.

If it becomes possible to place bets telephonically from out of state and to transfer

the corresponding funds electronically, we may be back.

7. Wall street: the biggest game

To illustrate both the Kelly criterion and the size of the securities markets, we return to

the study of the effects of correlation as in Example 6.2. Consider the more symmetric

and esthetically pleasing pair of bets U1 and U2, with joint distribution given in Table 6.

Clearly 0 � a � 1/2 and Cor(U1, U2) = Cor(U1, U2) = 4a − 1 increases from

−1 to 1 as a increases from 0 to 1/2. Finding a general solution for (f ∗
1 , f ∗

2 ) appears

algebraically complicated (but specific solutions are easy to find numerically), which

is why we chose Example 6.2 instead. Even with reduction to the special case m1 =
m2 = m and the use of symmetry to reduce the problem to finding f ∗ = f ∗

1 = f ∗
2 ,

a general solution is still much less simple. But consider the instance when a = 0 so

Cor(U1, U2) = −1. Then g(f ) = ln(1 + 2mf ) which increases without limit as f

increases. This pair of bets is a “sure thing” and one should bet as much as possible.

This is a simplified version of the classic arbitrage of securities markets: find a pair

of securities which are identical or “equivalent” and trade at disparate prices. Buy the

relatively underpriced security and sell short the relatively overpriced security, achiev-

ing a correlation of −1 and “locking in” a riskless profit. An example occurred in 1983.

My investment partnership bought $ 330 million worth of “old” AT&T and sold short

$332.5 million worth of when-issued “new” AT&T plus the new “seven sisters” regional

telephone companies. Much of this was done in a single trade as part of what was then

the largest dollar value block trade ever done on the New York Stock Exchange (De-

cember 1, 1983).

In applying the Kelly criterion to the securities markets, we meet new analytic prob-

lems. A bet on a security typically has many outcomes rather than just a few, as in

Table 6

Joint distribution of U1 and U2

U1 : U2 : m2 + 1 m2 − 1

m1 + 1 a 1/2 − a

m1 − 1 1/2 − a a
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most gambling situations. This leads to the use of continuous instead of discrete prob-

ability distributions. We are led to find f to maximize g(f ) = E ln(1 + f X) =∫
ln(1 + f x) dP(x) where P(x) is a probability measure describing the outcomes. Fre-

quently the problem is to find an optimum portfolio from among n securities, where

n may be a “large” number. In this case x and f are n-dimension vectors and f x is

their scalar product. We also have constraints. We always need 1 + f x > 0 so ln( · ) is

defined, and
∑

fi = 1 (or some c > 0) to normalize to a unit (or to a c > 0) invest-

ment. The maximization problem is generally solvable because g(f ) is concave. There

may be other constraints as well for some or all i such as fi � 0 (no short selling), or

fi � Mi or fi � mi (limits amount invested in ith security), or
∑

|fi | � M (limits

total leverage to meet margin regulations or capital requirements). Note that in some

instances there is not enough of a good bet or investment to allow betting the full f ∗, so

one is forced to underbet, reducing somewhat both the overall growth rate and the risk.

This is more a problem in the gaming world than in the much larger securities markets.

More on these problems and techniques may be found in the literature.

7.1. Continuous approximation

There is one technique which leads rapidly to interesting results. Let X be a random

variable with P(X = m + s) = P(X = m − s) = .5. Then E(X) = m, Var(X) = s2.

With initial capital V0, betting fraction f , and return per unit of X, the result is

V (f ) = V0

(
1 + (1 − f )r + f X

)
= V0

(
1 + r + f (X − r)

)
,

where r is the rate of return on the remaining capital, invested in, e.g., Treasury bills.

Then

g(f ) = E
(
G(f )

)
= E

(
ln
(
V (f )/V0

))
= E ln

(
1 + r + f (X − r)

)

= .5 ln
(
1 + r + f (m − r + s)

)
+ .5 ln

(
1 + r + f (m − r − s)

)
.

Now subdivide the time interval into n equal independent steps, keeping the same drift

and the same total variance. Thus m, s2 and r are replaced by m/n, s2/n and r/n,

respectively. We have n independent Xi , i = 1, . . . , n, with

P
(
Xi = m/n + sn−1/2

)
= P

(
Xi = m/n − sn−1/2

)
= .5.

Then

Vn(f )/V0 =
n∏

i=1

(
1 + (1 − f )r + f Xi

)
.

Taking E(log(·)) of both sides gives g(f ). Expanding the result in a power series leads

to

(7.1)g(f ) = r + f (m − r) − s2f 2/2 + O
(
n−1/2

)

where O(n−1/2) has the property n1/2O(n−1/2) is bounded as n → ∞. Letting n → ∞
in (7.1) we have

(7.2)g∞(f ) ≡ r + f (m − r) − s2f 2/2.
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The limit V ≡ V∞(f ) of Vn(f ) as n → ∞ corresponds to a log normal diffusion

process, which is a well-known model for securities prices. The “security” here has

instantaneous drift rate m, variance rate s2, and the riskless investment of “cash” earns

at an instantaneous rate r . Then g∞(f ) in (7.2) is the (instantaneous) growth rate of

capital with investment or betting fraction f . There is nothing special about our choice

of the random variable X. Any bounded random variable with mean E(X) = m and

variance Var(X) = s2 will lead to the same result. Note that f no longer needs to

be less than or equal to 1. The usual problems, with log(·) being undefined for negative

arguments, have disappeared. Also, f < 0 causes no problems. This simply corresponds

to selling the security short. If m < r this could be advantageous. Note further that the

investor who follows the policy f must now adjust his investment “instantaneously”.

In practice this means adjusting in tiny increments whenever there is a small change

in V . This idealization appears in option theory. It is well known and does not prevent

the practical application of the theory (Black and Scholes, 1973). Our previous growth

functions for finite sized betting steps were approximately parabolic in a neighborhood

of f ∗ and often in a range up to 0 � f � 2f ∗, where also often 2f ∗ .= fc. Now with

the limiting case (7.2), g∞(f ) is exactly parabolic and very easy to study.

Lognormality of V (f )/V0 means log(V (f )/V0) is N(M, S2) distributed, with mean

M = g∞(f )t and variance S2 = Var(G∞(f ))t for any time t . From this we can de-

termine, for instance, the expected capital growth and the time tk required for V (f )

to be at least k standard deviations above V0. First, we can show by our previous

methods that Var(G∞(f )) = s2f 2, hence Sdev(G∞(f )) = sf . Solving tkg∞ =
kt

1/2
k Sdev(G∞(f )) gives tkg

2
∞ hence the expected capital growth tkg∞, from which

we find tk . The results are summarized in Equations (7.3).

f ∗ = (m − r)/s2, g∞(f ) = r + f (m − r) − s2f 2/2,

g∞(f ∗) = (m − r)2/2s2 + r,

Var
(
G∞(f )

)
= s2f 2, Sdev

(
G∞(f )

)
= sf,

tkg∞(f ) = k2s2f 2/g∞,

(7.3)tk = k2s2f 2/g2
∞.

Examination of the expressions for tkg∞(f ) and tk show that each one increases as f

increases, for 0 � f < f+ where f+ is the positive root of s2f 2/2 − (m− r)f − r = 0

and f+ > 2f ∗.

Comment: The capital asset pricing model (CAPM) says that the market portfolio

lies on the Markowitz efficient frontier E in the (s,m) plane at a (generally) unique

point P = (s0,m0) such that the line determined by P and (s = 0,m = r) is tangent

to E (at P ). The slope of this line is the Sharpe ratio S = (m0 − r0)/s0 and from (7.3)

g∞(f ∗) = S2/2 + r so the maximum growth rate g∞(f ∗) depends, for fixed r , only

on the Sharpe ratio. (See Quaife (1995).) Again from (7.3), f ∗ = 1 when m = r + s2

in which case the Kelly investor will select the market portfolio without borrowing or

lending. If m > r + s2 the Kelly investor will use leverage and if m < r + s2 he will
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invest partly in T-bills and partly in the market portfolio. Thus the Kelly investor will

dynamically reallocate as f ∗ changes over time because of fluctuations in the forecast

m, r and s2, as well as in the prices of the portfolio securities.

From (7.3), g∞(1) = m − s2/2 so the portfolios in the (s,m) plane satisfying

m − s2/2 = C, where C is a constant, all have the same growth rate. In the contin-

uous approximation, the Kelly investor appears to have the utility function U(s,m) =
m − s2/2. Thus, for any (closed, bounded) set of portfolios, the best portfolios are ex-

actly those in the subset that maximizes the one parameter family m − s2/2 = C. See

Kritzman (1998), for an elementary introduction to related ideas.

Example 7.1. The long run revisited. For this example let r = 0. Then the basic equa-

tions (7.3) simplify to

r = 0: f ∗ = m/s2, g∞(f ) = mf − s2f 2/2,

g∞(f ∗) = m2/2s2,

(7.4)Var
(
G∞(f )

)
= s2f 2, Sdev

(
G∞(f )

)
= sf.

How long will it take for V (f ∗) � V0 with a specified probability? How about

V (f ∗/2)? To find the time t needed for V (f ) � V0 at the k standard deviations level of

significance (k = 1, P = 84%; k = 2, P = 98%, etc.) we solve for t ≡ tk:

(7.5)tg∞(f ) = kt1/2 Sdev
(
G∞(f )

)
.

We get more insight by normalizing all f with f ∗. Setting f = cf ∗ throughout, we

find when r = 0

r = 0: f ∗ = m/s2, f = cm/s2,

g∞(cf ∗) = m2
(
c − c2/2

)
/s2,

Sdev
(
G∞(cf ∗)

)
= cm/s,

tg∞(cf ∗) = k2c/(1 − c/2),

(7.6)t (k, cf ∗) = k2s2/
(
m2(1 − c/2)2

)
.

Equations (7.6) contain a remarkable result: V (f ) � V0 at the k standard deviation

level of significance occurs when expected capital growth tg∞ = k2c/(1 − c/2) and

this result is independent of m and s. For f = f ∗ (c = 1 in (7.6)), this happens for

k = 1 at tg∞ = 2 corresponding to V = V0e
2 and at k = 2 for tg∞ = 8 corresponding

to V = V0e
8. Now e8 .= 2981 and at a 10% annual (instantaneous) growth rate, it takes

80 years to have a probability of 98% for V � V0. At a 20% annual instantaneous rate it

takes 40 years. However, for f = f ∗/2, the number for k = 1 and 2 are tg∞ = 2/3 and

8/3, respectively, just 1/3 as large. So the waiting times for Prob(V � V0) to exceed

84% and 98% become 6.7 years and 26.7 years, respectively, and the expected growth

rate is reduced to 3/4 of that for f ∗.
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Comment: Fractional Kelly versus Kelly when r = 0

From Equations (7.6) we see that g∞(cf ∗)/g∞(f ∗) = c(2 − c), 0 � c < ∞,
showing how the growth rate relative to the maximum varies with c. The relative risk

Sdev(G∞(cf ∗))/Sdev(G∞(f ∗)) = c and the relative time to achieve the same ex-

pected total growth is 1/c(2 − c), 0 < c < 2. Thus the relative “spread” for the same
expected total growth is 1/(2 − c), 0 < c < 2. Thus, even by choosing c very small, the

spread around a given expected growth cannot be reduced by 1/2. The corresponding

results are not quite as simple when r > 0.

7.2. The (almost) real world

Assume that prices change “continuously” (no “jumps”), that portfolios may be revised

“continuously”, and that there are no transactions costs (market impact, commissions,
“overhead”), or taxes (Federal, State, city, exchange, etc.). Then our previous model

applies.

Example 7.2. The S&P 500 Index. Using historical data we make the rough estimates

m = .11, s = .15, r = .06. The equations we need for r �= 0 are the generalizations

of (7.6) to r �= 0 and f = cf ∗, which follow from (7.3):

cf ∗ = c(m − r)/s2,

g∞(cf ∗) =
(
(m − r)2

(
c − c2/2

))
/s2 + r,

Sdev
(
G∞(cf ∗)

)
= c(m − r)/s,

tg∞(cf ∗) = k2c2/
(
c − c2/2 + rs2/(m − r)2

)
,

(7.7)t (k, cf ∗) = k2c2
(
(m − r)2/s2

)/((
(m − r)2/s2

)(
c − c2/2

)
+ r

)2
.

If we define m̃ = m − r , G̃∞ = G∞ − r , g̃∞ = g∞ − r , then substitution into

Equations (7.7) give Equations (7.6), showing the relation between the two sets. It also

shows that examples and conclusions about P(Vn > V0) in the r = 0 case are equivalent

to those about P(ln(V (t)/V0) > rt) in the r �= 0 case. Thus we can compare various
strategies versus an investment compounding at a constant riskless rate r such as zero

coupon U.S. Treasury bonds.

From Equations (7.7) and c = 1, we find

f ∗ = 2.22̄, g∞(f ∗) = .115̄, Sdev
(
G∞(f ∗)

)
= .33̄,

tg∞(f ∗) = .96k2, t = 8.32k2 years.

Thus, with f ∗ = 2.22̄, after 8.32 years the probability is 84% that Vn > V0 and

the expected value of log(Vn/V0) = .96 so the median value of Vn/V0 will be about
e·.96 = 2.61.

With the usual unlevered f = 1, and c = .45, we find using (7.3)

g∞(1) = m − s2/2 = .09875, Sdev
(
G∞(1)

)
= .15,

tg∞(1) = .23k2, t (k, .45f ∗) = 2.31k2 years.
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Writing tg∞ = h(c) in (7.7) as

h(c) = k2/
(
1/c + rs2/

(
(m − r)2c2

)
− 1/2

)

we see that the measure of riskiness, h(c), increases as c increases, at least up to the

point c = 2, corresponding to 2f ∗ (and actually beyond, up to 1 +
√

1 + rs2

(m−r)2 ).

Writing t (k, cf ∗) = t (c) as

t (c) = k2
(
(m − r)2/s2

)/(
(m − r)2/s2

)
(1 − c/2) + r/c2

shows that t (c) also increases as c increases, at least up to the point c = 2. Thus for

smaller (more conservative) f = cf ∗, c � 2, specified levels of P(Vn > V0) are

reached earlier. For c < 1, this comes with a reduction in growth rate, which reduction

is relatively small for f near f ∗.

Note: During the period 1975–1997 the short term T-bill total return for the year,

a proxy for r if the investor lends (i.e., f < 1), varied from a low of 2.90% (1993)

to a high of 14.71% (1981). For details, see Ibbotson Associates, 1998 (or any later)

Yearbook.

A large well connected investor might be able to borrow at broker’s call plus about

1%, which might be approximated by T-bills plus 1%. This might be a reasonable esti-

mate for the investor who borrows (f > 1). For others the rates are likely to be higher.

For instance the prime rate from 1975–1997 varied from a low of 6% (1993) to a high

of 19% (1981), according to Associates First Capital Corporation (1998).

As r fluctuates, we expect m to tend to fluctuate inversely (high interest rates tend

to depress stock prices for well known reasons). Accordingly, f ∗ and g∞ will also

fluctuate so the long term S&P index fund investor needs a procedure for periodically

re-estimating and revising f ∗ and his desired level of leverage or cash.

To illustrate the impact of rb > r , where rb is the investor’s borrowing rate, suppose

rb in example (7.2) is r + 2% or .08, a choice based on the above cited historical values

for r , which is intermediate between “good” rb
.= r + 1%, and “poor” rb

.= the prime

rate
.= r + 3%. We replace r by rb in Equations (7.7) and, if f ∗ > 1, f ∗ = 1.33̄,

g∞(f ∗) = .100, Sdev(G∞(f ∗)) = .20, tg∞(f ∗) = .4k2, t = 4k2 years. Note how

greatly f ∗ is reduced.

Comment: Taxes

Suppose for simplicity that all gains are subject to a constant continuous tax rate T

and that all losses are subject to a constant continuous tax refund at the same rate T .

Think of the taxing entities, collectively, as a partner that shares a fraction T of all gains

and losses. Then Equations (7.7) become:

cf ∗ = c(m − r)/s2(1 − T ),

g∞(cf ∗) =
(
(m − r)2

(
c − c2/2

))
/s2 + r(1 − T ),

Sdev
(
G∞(cf ∗)

)
= c(m − r)/s,
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tg∞(cf ∗) = k2c2/
(
c − c2/2 + r(1 − T )s2/

(
m − r2

))
,

(7.7T)

t (k, cf ∗) = k2c2
(
(m − r)2/s2

)/((
(m − r)2/s2

)(
c − c2/2

)
+ r(1 − T )

)2
.

It is interesting to see that cf ∗ increases by the factor 1/(1 − T ). For a high income

California resident, the combined state and federal marginal tax rate is 45% so this

factor is 1/.55 = 1.82. The amplification of cf ∗ leads to the same growth rate as before

except for a reduction by rT . The Sdev is unchanged and t (k, cf ∗) is increased slightly.

However, as a practical matter, the much higher leverage needed with a high tax rate

is typically not allowed under the margin regulation or is not advisable because the

inability to continuously adjust in the real world creates dangers that increase rapidly

with the degree of leverage.

7.3. The case for “fractional Kelly”

Figure 5 shows three g curves for the true m : mt = .5me, 1.0me and 1.5me, where

me is the estimated value of m. The vertical lines and the slanting arrows illustrate the

reduction in g for the three choices of: f = .5f ∗
e , f ∗

e and 1.5f ∗
e . For example with

f = .5f ∗
e or “half Kelly”, we have no loss and achieve the maximum g = .25, in

case mt = .5me. But if mt = me then g = .75, a loss of .25 and if mt = 1.5me then

g = 1.25, a loss of 1.0, where all g are in units of m2
e/2s2. This is indicated both by

LOSS1 and LOSS2 on the vertical line above f/f ∗
e = .5, and by the two corresponding

arrows which lead upward, and in this case to the right, from this line. A disaster occurs

when mt = .5me but we choose f = 1.5f ∗
e . This combines overbetting f ∗

e by 50%

with the overestimate of me = 2mt . Then g = −.75 and we will be ruined. It is still

bad to choose f = f ∗
e when mt = .5me for then g = 0 and we suffer increasingly wild

oscillations, both up and down, around our initial capital. During a large downward

oscillation experience shows that bettors will generally either quit or be eliminated by a

minimum bet size requirement.

Some lessons here are:

(1) To the extent me is an uncertain estimate of mt , it is wise to assume mt < me and

to choose f < f ∗
e by enough to prevent g � 0.

Estimates of me in the stock market have many uncertainties and, in cases of

forecast excess return, are more likely to be too high than too low. The tendency

is to regress towards the mean. Securities prices follow a “non-stationary process”

where m and s vary somewhat unpredictably over time. The economic situation can

change for companies, industries, or the economy as a whole. Systems that worked

may be partly or entirely based on data mining so mt may be substantially less

than me. Changes in the “rules” such as commissions, tax laws, margin regulations,

insider trading laws, etc., can also affect mt . Systems that do work attract capital,

which tends to push exceptional mt down towards average values. The drift down

means me > mt is likely.
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Fig. 5. Penalties for choosing f = fe �= f ∗ = ft .

Sports betting has much the same caveats as the securities markets, with its own

differences in detail. Rules changes, for instance, might include: adding expansion

teams; the three point rule in basketball; playing overtime sessions to break a tie;

changing types of bats, balls, gloves, racquets or surfaces.

Blackjack differs from the securities and sports betting markets in that the prob-

abilities of outcomes can in principle generally be either calculated or simulated to

any desired degree of accuracy. But even here mt is likely to be at least somewhat

less than me. Consider player fatigue and errors, calculational errors and mistakes

in applying either blackjack theory or Kelly theory (e.g., calculating f ∗ correctly,

for which some of the issues have been discussed above), effects of a fixed shuffle

point, non-random shuffling, preferential shuffling, cheating, etc.

(2) Subject to (1), choosing f in the range .5f ∗
e � f < f ∗

e offers protection against

g � 0 with a reduction of g that is likely to be no more than 25%.
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Example 7.3. The great compounder. In 1964 a young hedge fund manager acquired a

substantial interest in a small New England textile company called Berkshire Hathaway.

The stock traded then at 20. In 1998 it traded at 70,000, a multiple of 3500, and an annu-

alized compound growth rate of about 27%, or an instantaneous rate of 24%. The once

young hedge fund manager Warren Buffett is now acknowledged as the greatest investor

of our time, and the world’s second richest man. You may read about Buffett in Buffett

and Clark (1997), Hagstrom (1994, 2004), Kilpatrick (1994) and Lowenstein (1995). If,

as I was, you were fortunate enough to meet Buffett and identify the Berkshire opportu-

nity, what strategy does our method suggest? Assume (the somewhat smaller drift rate)

m = .20, s = .15, r = .06. Note: Plausible arguments for a smaller future drift rate

include regression towards the mean, the increasing size of Berkshire, and risk from the

aging of management. A counter-argument is that Berkshire’s compounding rate has

been as high in its later years as in its earlier years. However, the S&P 500 Index has

performed much better in recent years so the spread between the growth rates of the In-

dex and of Berkshire has been somewhat less. So, if we expect the Index growth rate to

revert towards the historical mean, then we expect Berkshire to do so even more. From

Equations (7.3) or (7.7),

f ∗ = 6.22̄, g∞(f ∗) = .495̄, Sdev
(
G∞(f ∗)

)
= .93̄,

tg∞(f ∗) = 1.76k2, t = 3.54k2 years.

Compare this to the unlevered portfolio, where f = 1 and c = 1/6.22̄
.= .1607. We

find:

f = 1, g∞(f ) = .189, Sdev
(
G∞(f )

)
= .15,

tkg∞(f ) = .119k2, tk = .63k2 years.

Leverage to the level 6.22̄ would be inadvisable here in the real world because secu-

rities prices may change suddenly and discontinuously. In the crash of October, 1987,

the S&P 500 index dropped 23% in a single day. If this happened at leverage of 2.0,

the new leverage would suddenly be 77/27 = 2.85 before readjustment by selling part

of the portfolio. In the case of Berkshire, which is a large well-diversified portfolio,

suppose we chose the conservative f = 2.0. Note that this is the maximum initial lever-

age allowed “customers” under current regulations. Then g∞(2) = .295. The values

in 30 years for median V∞/V0 are approximately: f = 1, V∞/V0 = 288; f = 2,

V∞/V0 = 6, 974; f = 6.22̄, V∞/V0 = 2.86 × 106. So the differences in results of

leveraging are enormous in a generation. (Note: Art Quaife reports s = .24 for 1980–

1997. The reader is invited to explore the example with this change.)

The results of Section 3 apply directly to this continuous approximation model of

a (possibly) leveraged securities portfolio. The reason is that both involve the same

“dynamics”, namely log Gn(f ) is approximated as (scaled) Brownian motion with drift.

So we can answer the same questions here for our portfolio that were answered in

Section 3 for casino betting. For instance (3.2) becomes

(7.8)Prob
(
V (t)/V0 � x for some t

)
= x∧(2g∞/ Var(G∞)

)
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where ∧ means exponentiation and 0 < x < 1. Using (7.4), for r = 0 and f = f ∗,

2g∞/ Var(G∞) = 1 so this simplifies to

(7.9)Prob(·) = x.

Compare with Example 3.3 For 0 < r < m and f = f ∗ the exponent of x in (7.9)

becomes 1 + 2rs2/(m − r)2 and has a positive first derivative so, as r increases, P(·)
decreases since 0 < x < 1, tending to 0 as r tends to m, which is what we expect.

7.4. A remarkable formula

In earlier versions of this chapter the exponent in Equations (3.2), (7.8) and (7.9)

were off by a factor of 2, which I had inadvertently dropped during my derivation.

Subsequently Don Schlesinger posted (without details) two more general continuous

approximation formulas for the r = 0 case on the Internet at www.bjmath.com dated

June 19, 1997.

If V0 is the initial investment and y > 1 > x > 0 then for f ∗ the probability that

V (t) reaches yV0 before xV0 is

(7.10)Prob
(
V (t, f ∗) reaches yV0 before xV0

)
= (1 − x)/

(
1 − (x/y)

)

and more generally, for f = cf ∗, 0 < c < 2,

Prob
(
V (t, cf ∗) reaches yV0 before xV0

)

(7.11)=
[
1 − x∧(2/c − 1)

]/[
1 − (x/y)∧(2/c − 1)

]

where ∧ means exponentiation.

Clearly (7.10) follows from (7.11) by choosing c = 1. The r = 0 case of our

Equation (7.8) follows from (7.11) and the r = 0 case of our Equation (7.9) follows

from (7.10). We can derive a generalization of (7.11) by using the classical gambler’s

ruin formula (Cox and Miller, 1965, p. 31, Equation (2.0)) and passing to the limit

as step size tends to zero (Cox and Miller, 1965, pp. 205–206), where we think of

log(V (t, f )/V0) as following a diffusion process with mean g∞ and variance v(G∞),

initial value 0, and absorbing barriers at log y and log x. The result is

(7.12)Prob
(
V (t, cf ∗) reaches yV0 before xV0

)
= [1 − x∧a]/

[
1 − (x/y)∧a

]

where a = 2g∞/V (G∞) = 2M/V where M and V are the drift and variance, respec-

tively, of the diffusion process per unit time. Alternatively, (7.12) is a simple restatement

of the known solution for the Wiener process with two absorbing barriers (Cox and

Miller, 1965, Example 5.5).

As Schlesinger notes, choosing x = 1/2 and y = 2 in (7.10) gives Prob(V (t, f ∗)
doubles before halving) = 2/3. Now consider a gambler or investor who focuses only

on values Vn = 2nV0, n = 0,±1,±2, . . . , multiples of his initial capital. In log space,

log(Vn/V0) = n log 2 so we have a random walk on the integer multiples of log 2, where
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the probability of an increase is p = 2/3 and of a decrease, q = 1/3. This gives us a

convenient compact visualization of the Kelly strategy’s level of risk.

If instead we choose c = 1/2 (“half Kelly”), Equation (7.11) gives Prob(V (t, f ∗/2)

doubles before halving) = 8/9 yet the growth rate g∞(f ∗/2) = .75g∞(f ∗) so “half

Kelly” has 3/4 the growth rate but much less chance of a big loss.

A second useful visualization of comparative risk comes from Equation (7.8) which

gives

(7.13)Prob
(
V (t, cf ∗)/V0 � x for some t

)
= x∧(2/c − 1).

For c = 1 we had Prob(·) = x and for c = 1/2 we get Prob(·) = x3. Thus “half

Kelly” has a much lessened likelihood of severe capital loss. The chance of ever losing

half the starting capital is 1/2 for f = f ∗ but only 1/8 for f = f ∗/2. My gambling

and investment experience, as well as reports from numerous blackjack players and

teams, suggests that most people strongly prefer the increased safety and psychological

comfort of “half Kelly” (or some nearby value), in exchange for giving up 1/4 of their

growth rate.

8. A case study

In the summer of 1997 the XYZ Corporation (pseudonym) received a substantial

amount of cash. This prompted a review of its portfolio, which is shown in Table 7

in the column 8/17/97. The portfolio was 54% in Biotime, ticker BTIM, a NASDAQ

biotechnology company. This was due to existing and historical relationships between

people in XYZ Corp. and in BTIM. XYZ’s officers and directors were very knowledge-

Table 7

Statistics for logs of monthly wealth relatives, 3/31/92 through 6/30/97

Berkshire BioTime SP500 T-bills

Monthly Mean .0264 .0186 .0146 .0035

Standard deviation .0582 .2237 .0268 .0008

Annual Mean .3167 .2227 .1753 .0426

Standard deviation .2016 .7748 .0929 .0028

Monthly Covariance .0034 −.0021 .0005 1.2E−06

.0500 −.0001 3.2E−05

.0007 5.7E−06

6.7E−07

Monthly Correlation 1.0000 −.1581 .2954 .0257

1.0000 −.0237 .1773

1.0000 .2610

1.0000
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able about BTIM and felt they were especially qualified to evaluate it as an investment.

They wished to retain a substantial position in BTIM.

The portfolio held Berkshire Hathaway, ticker BRK, having first purchased it in 1991.

8.1. The constraints

Dr. Quaife determined the Kelly optimal portfolio for XYZ Corp. subject to certain con-

straints. The list of allowable securities was limited to BTIM, BRK, the Vanguard 500

(S&P 500) Index Fund, and T-bills. Being short T-bills was used as a proxy for mar-

gin debt. The XYZ broker actually charges about 2% more, which has been ignored in

this analysis. The simple CAPM (capital asset pricing model) suggests that the investor

only need consider the market portfolio (for which the S&P 500 is being substituted

here, with well known caveats) and borrowing or lending. Both Quaife and the author

were convinced that BRK was and is a superior alternative and their knowledge about

and long experience with BRK supported this.

XYZ Corp. was subject to margin requirements of 50% initially and 30% mainte-

nance, meaning for a portfolio of securities purchased that initial margin debt (money

lent by the broker) was limited to 50% of the value of the securities, and that whenever

the value of the account net of margin debt was less than 30% of the value of the secu-

rities owned, then securities would have to be sold until the 30% figure was restored.

In addition XYZ Corp. wished to continue with a “significant” part of its portfolio in

BTIM.

8.2. The analysis and results

Using monthly data from 3/31/92 through 6/30/97, a total of 63 months, Quaife finds

the means, covariances, etc. given in Table 7.

Note from Table 7 that BRK has a higher mean and a lower standard deviation than

BTIM, hence we expect it to be favored by the analysis. But note also the negative

correlation with BTIM, which suggests that adding some BTIM to BRK may prove

advantageous.

Using the statistics from Table 7, Quaife finds the following optimal portfolios, under

various assumptions about borrowing.

As expected, BRK is important and favored over BTIM but some BTIM added to the

BRK is better than none.

If unrestricted borrowing were allowed it would be foolish to choose the correspond-

ing portfolio in Table 8. The various underlying assumptions are only approximations

with varying degrees of validity: Stock prices do not change continuously; portfo-

lios can’t be adjusted continuously; transactions are not costless; the borrowing rate

is greater than the T-bill rate; the after tax return, if different, needs to be used; the

process which generates securities returns is not stationary and our point estimates of

the statistics in Table 7 are uncertain. We have also noted earlier that because “over-
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Table 8

Optimal portfolio allocations with various assumptions about borrowing

Security fraction

Security No borrowing 50% margin Unrestricted borrowing

Berkshire .63 1.50 6.26

BioTime .37 .50 1.18

S&P 500 .00 .00 12.61

T-bills .00 −1.00 −19.04

Portfolio growth rate

Mean .36 .62 2.10

Standard deviation .29 .45 2.03

betting” is much more harmful than underbetting, “fractional Kelly” is prudent to the

extent the results of the Kelly calculations reflect uncertainties.

In fact, the data used comes from part of the period 1982–1997, the greatest bull

market in history. We would expect returns in the future to regress towards the mean so

the means in Table 7 are likely to be overestimates of the near future. The data set is

necessarily short, which introduces more uncertainty, because it is limited by the amount

of BTIM data. As a sensitivity test, Quaife used conservative (mean, std. dev.) values for

the price relatives (not their logs) for BRK of (1.15, .20), BTIM of (1.15, 1.0) and the

S&P 500 from 1926–1995 from Ibbotson (1998) of (1.125, .204) and the correlations

from Table 7. The result was fractions of 1.65, .17, .18 and −1.00 respectively for BRK,

BTIM, S&P 500 and T-bills. The mean growth rate was .19 and its standard deviation

was .30.

8.3. The recommendation and the result

The 50% margin portfolio reallocations of Table 8 were recommended to XYZ Corp.’s

board on 8/17/97 and could have been implemented at once. The board elected to do

nothing. On 10/9/97 (in hindsight, a good sale at a good price) it sold some BTIM

and left the proceeds in cash (not good). Finally on 2/9/98 after a discussion with

both Quaife and the author, it purchased 10 BRK (thereby gaining almost $140,000

by 3/31/98, as it happened). The actual policy, led to an increase of 73.5%. What would

have happened with the recommended policy with no rebalance and with one rebal-

ance on 10/6/97? The gains would have been 117.6% and 199.4%, respectively. The

gains over the suboptimal board policy were an additional $475,935 and $1,359,826,

respectively.

The optimal policy displays three important features in this example: the use of lever-

age, the initial allocation of the portfolio, and possible rebalancing (reallocation) of the

portfolio over time. Each of these was potentially important in determining the final
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result. The potential impact of continuously rebalancing to maintain maximum margin

is illustrated in Thorp and Kassouf (1967), Appendix A, The Avalanche Effort.

The large loss from the suboptimal policy was much more than what would have

been expected because BRK and BTIM appreciated remarkably. In .62 years, BRK was

up 60.4% and BTIM was up 62.9%. This tells us that—atypically—in the absence of

rebalancing, the relative initial proportions of BRK and BTIM did not matter much

over the actual time period. However, rebalancing to adjust the relative proportions of

BRK and BTIM was important, as the actual policy’s sale of some BTIM on 10/9/97

illustrated. Also, rebalancing was important for adjusting the margin level as prices, in

this instance, rose rapidly.

Table 8 illustrates what we might have normally expected to gain by using 50% mar-

gin, rather than no margin. We expect the difference in the medians of the portfolio

distributions to be $1,080,736[exp(.62 × .62) − exp(.36 × .62)] = $236,316 or 21.9%

which is still large.

8.4. The theory for a portfolio of securities

Consider first the unconstrained case with a riskless security (T-bills) with portfolio

fraction f0 and n securities with portfolio fractions f1, . . . , fn. Suppose the rate of

return on the riskless security is r and, to simplify the discussion, that this is also the

rate for borrowing, lending, and the rate paid on short sale proceeds. Let C = (sij ) be

the matrix such that sij , i, j = 1, . . . , n, is the covariance of the ith and j th securities

and M = (m1,m2, . . . , mn)
T be the row vector such that mi , i = 1, . . . , n, is the drift

rate of the ith security. Then the portfolio satisfies

f0 + · · · + fn = 1,

m = f0r + f1m1 + · · · + fnmn = r + f1(m1 − r) + · · · + fn(mn − r)

= r + F T (M − R),

(8.1)s2 = F T CF

where F T = (f1, . . . , fn) and T means “transpose”, and R is the column vector

(r, r, . . . , r)T of length n.

Then our previous formulas and results for one security plus a riskless security apply

to g∞(f1, . . . , fn) = m − s2/2. This is a standard quadratic maximization problem.

Using (8.1) and solving the simultaneous equations ∂g∞/∂fi = 0, i = 1, . . . , n, we get

F ∗ = C−1[M − R],
(8.2)g∞(f ∗

1 , . . . , f ∗
n ) = r + (F ∗)T CF ∗/2

where for a unique solution we require C−1 to exist, i.e., det C �= 0. When all the

securities are uncorrelated, C is diagonal and we have f ∗
i = (mi − r)/sii or f ∗

i =
(mi − r)/s2

i , which agrees with Equation (7.3) when n = 1.



Ch. 9: The Kelly Criterion in Blackjack Sports Betting, and the Stock Market 419

Note: BRK issued a new class of common, ticker symbol BRK.B, with the old com-

mon changing its symbol to BRK.A. One share of BRK.A can be converted to 30 shares

of BRK.B at any time, but not the reverse. BRK.B has lesser voting rights and no right

to assign a portion of the annual quota of charitable contributions. Both we and the mar-

ket consider these differences insignificant and the A has consistently traded at about

30 times the price of the B.

If the price ratio were always exactly 30 to 1 and both these securities were included

in an analysis, they would each have the same covariances with other securities, so

det C = 0 and C−1 does not exist.

If there is an initial margin constraint of q, 0 � q � 1, then we have the additional

restriction

(8.3)|f1| + · · · + |fn| � 1/q.

The n-dimensional subset in (8.3) is closed and bounded.

If the rate for borrowing to finance the portfolio is rb = r + eb, eb � 0, and the rate

paid on the short sale proceeds is rs = r − es , es � 0, then the m in Equation (8.1) is

altered. Let x+ = max(x, 0) and x− = max(0,−x) so x = x+ − x− for all x. Define

f + = f +
1 +· · ·+f +

n , the fraction of the portfolio held long. Let f − = f −
1 +· · ·+f −

n ,

the fraction of the portfolio held short.

Case 1. f + � 1

(8.4.1)m = r + f1(m1 − r) + · · · + fn(mn − r) − esf
−.

Case 2. f + > 1

(8.4.2)m = r + f1(m1 − r) + · · · + fn(mn − r) − eb(f
+ − 1) − esf

−.

9. My experience with the Kelly approach

How does the Kelly-optimal approach do in practice in the securities markets? In a

little-known paper (Thorp, 1971) I discussed the use of the Kelly criterion for portfolio

management. Page 220 mentions that “On November 3, 1969, a private institutional

investor decided to . . . use the Kelly criterion to allocate its assets”. This was actually

a private limited partnership, specializing in convertible hedging, which I managed.

A notable competitor at the time (see Institutional Investor (1998)) was future Nobel

prize winner Harry Markowitz. After 20 months, our record as cited was a gain of 39.9%

versus a gain for the Dow Jones Industrial Average of +4.2%. Markowitz dropped out

after a couple of years, but we liked our results and persisted. What would the future

bring?

Up to May 1998, twenty eight and a half years since the investment program began.

The partnership and its continuations have compounded at approximately 20% annu-

ally with a standard deviation of about 6% and approximately zero correlation with the

market (“market neutral”). Ten thousand dollars would, tax exempt, now be worth 18
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million dollars. To help persuade you that this may not be luck, I estimate that dur-

ing this period I have made about $80 billion worth of purchases and sales (“action”,

in casino language) for my investors. This breaks down into something like one and a

quarter million individual “bets” averaging about $65,000 each, with on average hun-

dreds of “positions” in place at any one time. Over all, it would seem to be a moderately

“long run” with a high probability that the excess performance is more than chance.

10. Conclusion

Those individuals or institutions who are long term compounders should consider the

possibility of using the Kelly criterion to asymptotically maximize the expected com-

pound growth rate of their wealth. Investors with less tolerance for intermediate term

risk may prefer to use a lesser function. Long term compounders ought to avoid using

a greater fraction (“overbetting”). Therefore, to the extent that future probabilities are

uncertain, long term compounders should further limit their investment fraction enough

to prevent a significant risk of overbetting.
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Appendix A. Integrals for deriving moments of E∞

I0

(
a2, b2

)
=
∫ ∞

0

exp
[
−
(
a2x2 + b2/x2

)]
dx,

In

(
a2, b2

)
=
∫ ∞

0

xn exp
[
−
(
a2x2 + b2/x2

)]
dx.

Given I0 find I2

I0

(
a2, b2

)
=
∫ ∞

0

exp
[
−
(
a2x2 + b2/x2

)]
dx

= −
∫ 0

∞
exp

[
−
(
a2/u2 + b2u2

)](
−du/u2

)



Ch. 9: The Kelly Criterion in Blackjack Sports Betting, and the Stock Market 421

where x = 1/u and dx = −du/u2 so

I0

(
a2, b2

)
=
∫ ∞

0

x−2 exp
[
−
(
b2x2 + a2/x2

)]
= I−2

(
b2, a2

)
,

hence

I−2

(
a2, b2

)
= I0

(
b2, a2

)
=

√
π

2 | b |
e−2|ab|,

(A.1)I0 =
∫ ∞

0

exp
[
−
(
a2x2 + b2/x2

)]
dx = U · V |∞0 −

∫ ∞

0

V dU

where U = exp[ · ], dV = dx, dU = (exp[ · ])(−2a2x + 2b2x−3) and V = x so

I0 = exp
[
−
(
a2x2 + b2/x2

)]
· x|∞0

−
∫ ∞

0

(
−2a2x2 + 2b2/x2

)
exp

[
−
(
a2x2 + b2/x2

)]
dx

= 2a2I2

(
a2, b2

)
− 2b2I−2

(
a2, b2

)
.

Hence:

I0

(
a2, b2

)
= 2a2I2

(
a2, b2

)
− 2b2I−2

(
a2, b2

)

and I−2(a
2, b2) = I0(b

2, a2) so substituting and solving for I2 gives

I2

(
a2, b2

)
=

1

2a2

{
I0

(
a2, b2

)
+ 2b2I0

(
b2, a2

)}
.

Comments.

(1) We can solve for all even n by using I0, I−2 and I2, and integration by parts.

(2) We can use the indefinite integral J0 corresponding to I0, and the previous methods,

to solve for J−2, J2, and then for all even n. Since

I0

(
a2, b2

)
=

√
π

2|a|
e−2|ab|

then

I−2

(
a2, b2

)
=

√
π

2|b|
e−2|ab| and

I2

(
a2, b2

)
=

1

2a2

{√
π

2|a|
+ 2b2

√
π

2|b|

}
e−2|ab| =

√
π

4a2
e−2|ab|{1/|a| + 2|b|

}
.

Appendix B. Derivation of formula (3.1)

This is based on a note from Howard Tucker. Any errors are mine.
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From the paper by Paranjape and Park, if x(t) is standard Brownian motion, if a �= 0,

b > 0,

P
(
X(t) � at + b, 0 � t � T | X(T ) = s

)

=

⎧
⎨
⎩

1 − exp

{
−

2b

T
(aT + B − s)

}
if s � aT + b,

0 if s > aT + B.

Write this as:

P
(
X(t) � at + b, 0 � t � T | X(T )

)

a.s.= 1 − exp

{
−2b

(
aT + b − X(T )

) 1

T

}
if X(T ) � aT + b.

Taking expectations of both sides of the above, we get

P
(
X(t) � at + b, 0 � t � T

)

=
∫ aT +b

−∞

(
1 − e−2b(aT +b−s)1/T

) 1
√

2πT
e−s2/2T ds

=
1

√
2πT

∫ aT +b

−∞
e−s2/2T ds −

e−2ab

√
2πT

∫ aT +b

−∞
e−(s−2b)2/2T ds.

Hence

P(X going above line at + b during [0, T ]) = 1 − previous probability

=
1

√
2πT

∫ ∞

aT +b

e−s2/2T ds + e−2ab ·
1

√
2πT

∫ aT −b

−∞
e−u2/2T du,

(B.1)where u = s − 2b.

Now, when a = 0, b > 0,

P
[

sup
0�t�T

X(t) � b
]

=
√

2

πT

∫ ∞

b

e−v2/2T dv,

which agrees with a known formula (see, e.g., p. 261 of Tucker (1967)). In the case a >

0, when T → ∞, since
√

T /T → 0 and
√

T = s.d. of X(T ), the first integral → 0,

the second integral → 1, and P(X ever rises above line at + b) = e−2ab. Similarly, in

the case a < 0, P(ever rises above line at + b) = 1.

The theorem it comes from is due to Sten Malmquist, On certain confidence contours

for distribution functions, Ann. Math. Stat. 25 (1954), pp. 523–533. This theorem is

stated in S.R. Paranjape and C. Park, Distribution of the supremum of the two-parameter

Yeh–Wiener process on the boundary, J. Appl. Prob. 10 (1973).

Letting α = a
√

T , β = b/
√

T , formula (B.1) becomes

P(·) = N(−α − β) + e−2αβN(α − β) where α, β > 0 or
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P
(
X(t) � at + b, 0 � t � T

)
= 1 − P(·) = N(α + β) − e−2αβN(α − β)

for the probability the line is never surpassed. This follows from:

1
√

2πT

∫ ∞

aT +b

e−s2/2T ds =
1

√
2π

∫ ∞

a
√

T +b/
√

T

e−x2/2 dx = N(−α − β) and

1
√

2πT

∫ aT −b

−∞
e−u2/2T du = N(α − β)

where s = aT + b, x = s/
√

T = a
√

T + b/
√

T , α = a
√

T and β = b/
√

T .

The formula becomes:

P
(
sup

[
X(t) − (at + b)

]
� 0: 0 � t � T

)

= N(−α − β) + e−2abN(α − β)

= N(−α − β) + e−2αβN(α − β), α, β > 0.

Observe that

P(·) < N(−α − β) + N(α − β) =
{
1 − N(α + β)

}
+ N(α − β)

=
∫ α−β

−∞
α(x) dx +

∫ ∞

α+β

α(x) dx < 1

as it should be.

Appendix C. Expected time to reach goal

Reference: Handbook of Mathematical Functions, Abramowitz and Stegun, Editors,

N.B.S. Applied Math. Series 55, June 1964.

P. 304, 7.4.33 gives with erf z ≡ 2√
π

∫ z

0 e−t2
dt the integral:

∫
exp

{
−
(
a2x2 + b2/x2

)}
dx

(C.1)=
√

π

4a

[
e2aberf(ax + b/x) + e−2ab erf(ax − b/x)

]
+ C, a �= 0.

Now the left side is >0 so for real a, we require a > 0 otherwise the right side is <0,

a contradiction.

We also note that p. 302, 7.4.3. gives

(C.2)

∫ ∞

0

exp
{
−
(
at2 + b/t2

)}
dt =

1

2

√
π

a
e−2

√
ab

with ℜa > 0, ℜb > 0.
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To check (C.2) v. (C.1), suppose in (C.1) a > 0, b > 0 and find limx→0 and limx→∞
of erf(ax + b/x) and erf(ax − b/x),

lim
x↓0+

(ax + b/x) = +∞, lim
x↓0+

(ax − b/x) = −∞,

lim
x→∞

(ax + b/x) = +∞, lim
x→∞

(ax − b/x) = +∞.

Equation (C.1) becomes

√
π

4a
e−2ab

[
erf(∞) − erf(−∞)

]
=

√
π

4a
e−2ab2 erf(∞) =

√
π

2a
e−2ab

since we know erf(∞) = 1.

In (C.2) replace a by a2, b by b2 to get

I0

(
a2, b2

)
≡
∫ ∞

0

exp
{
−
(
a2t2 + b2/t2

)}
dt =

1

2

√
π

|a|
e−2|ab|

which is the same.

Note: if we choose the lower limit of integration to be 0 in (C.1), then we can find C:

0 =
∫ 0+

0

exp
{
−
(
a2x2 + b2/x2

)}
dx =

√
π

4a

[
e2aberf(∞) + e−2ab erf(−∞)

]
+ C

=
√

π

4a

[
e2ab − e−2ab

]
+ C.

Whence

F(x) ≡
∫ x

0

exp
{
−
(
a2x2 + b2/x2

)}
dx

(C.3)=
√

π

4a

{
e2ab

[
erf(ax + b/x) − 1

]
+ e−2ab

[
erf(ax − b/x) + 1

]}
.

To see how (C.3) might have been discovered, differentiate:

F ′(x) = exp
{
−
(
a2x2 + b2/x2

)}

=
√

π

4a

{
e2ab

(
a − b/x2

)
erf′(ax + b/x)

+ e−2ab
(
a + b/x2

)
erf′(ax − b/x)

}
.

Now erf′(z) = 2√
π

exp(−z2) so

erf′(ax + b/x) =
2

√
π

exp
[
−(ax + b/x)2

]
=

2
√

π
exp

{
−
(
a2x2 + b2/x2 + 2ab

)}

=
2

√
π

e−2ab exp
{
−
(
a2x2 + b2/x2

)}
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and, setting b ← −b,

erf′(ax − b/x) =
2

√
π

e2ab exp
{
−
(
a2x2 + b2/x2

)}

whence

F ′(x) =
√

π

4a

{
2

√
π

(
a − b/x2

)
+

2
√

π

(
a + b/x2

)}
exp

{
−
(
a2x2 + b2/x2

)}

=
1

2a
{2a} exp

{
−
(
a2x2 + b2/x2

)}
= exp

{
−
(
a2x2 + b2/x2

)}
.

Case of interest: a < 0, b > 0.

Expect:

b > 0, a � 0 ⇒ F(T ) ↑ 1 as T → ∞,

b > 0, a > 0 ⇒ F(T ) ↑ c < 1 as T → ∞.

If b > 0, a = 0:

F(T ) = N(−β) + N(−β) = 2N
(
−b/

√
T
)

↑ 2N(0) = 1 as T ↑ ∞.

Also, as expected F(T ) ↑ 1 as b ↓ 0.

If b > 0, a < 0: See below.

If b > 0, a > 0:

F(T ) = N
(
−a

√
T − b/

√
T
)
+ e−2abN

(
a
√

T − b/
√

T
)

→ N(−∞) + e−2abN(∞)

= e−2ab < 1 as T ↑ ∞.

This is correct.

If b = 0: F(T ) = N(−a
√

T ) + N(a
√

T ) = 1. This is correct.

Let F(T ) = P(X(t) � at + b for some t, 0 � t � T ) which equals N(−α − β) +
e−2abN(α − β) where α = a

√
T and β = b/

√
T so ab = αβ; we assume b > 0 and

a < 0 in which case 0 � F(T ) � 1 and limT →∞ F(T ) = 1, limT →0 F(T ) = 0; F is a

probability distribution function:

lim
T →0

F(T ) = N(−∞) + e−2abN(−∞) = 0,

lim
T →∞

F(T ) = N(+∞) + e−2abN(−∞) = 1.

The density function is

f (T ) = F ′(T ) =
∂

∂T
(−α − β)N ′(−α − β) + e−2ab ∂

∂T
(α − β)N ′(α − β)

where

∂α

∂T
=

1

2
aT −1/2,

∂β

∂T
= −

1

2
bT −3/2,
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N ′(−α − β) =
1

√
2π

e−(α+β)2/2 =
1

√
2π

exp

{
−

(a2T + b2/T + 2ab)

2

}
,

N ′(α − β) =
1

√
2π

e−(α−β)2/2 =
1

√
2π

exp

{
−

(a2T + b2/T − 2ab)

2

}
,

Tf (T ) = T

(
−

1

2
aT −1/2 +

1

2
bT −3/2

)
1

√
2π

e−ab exp

{
−

(a2T + b2/T )

2

}

+ T e−2ab

(
1

2
aT −1/2 +

1

2
bT −3/2

)
1

√
2π

eab exp

{
−

(a2T + b2/T )

2

}

=
e−ab

2
√

2π

[
(−aT +1/2 + bT −1/2) exp

{
−

(a2T + b2/T )

2

}

+
(
aT +1/2 + bT −1/2

)
exp

{
−

(a2T + b2/T )

2

}]

=
be−ab

√
2π

T 1/2 exp

{
−(a2T + b2/T )

2

}
.

The expected time to the goal is

E∞ =
∫ ∞

0

Tf (T ) dT =
be−ab

√
2π

∫ ∞

0

T −1/2 exp

{
−

(a2T + b2/T )

2

}
dT ,

T 1/2 = x

T = x2

dT = 2x dx

⎫
⎬
⎭ =

2be−ab

√
2π

∫ ∞

0

exp

{
−
[(

a
√

2

)2

x2 +
(

b
√

2

)2

x−2

]}
dx

=
2be−ab

√
2π

I0

((
a

√
2

)2

,

(
b

√
2

)2)
.

Now

I0

(
a2, b2

)
=

√
π

2|a|
e−2|ab| so

I0

((
a

√
2

)2

,

(
b

√
2

)2)
=

√
π

√
2|a|

e−|ab| whence

E∞ =
2be−ab

√
2π

√
π

√
2|a|

e−|ab| =
b

|a|
, a < 0, b > 0.

Note:

f (T ) ≡ F ′(T ) =
be−ab

√
2π

T −3/2 exp

{
−(a2T + b2/T )

2

}
> 0

for all a, e.g., a < 0, so F(T ) is monotone increasing. Hence, since limT →∞ F(T ) = 1

for a < 0 and limT →∞ F(T ) < 1 for a > 0, 0 � F(T ) � 1 for all T so we have more
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confidence in using the formula for a < 0 too.

Check: E∞(a, b) ↓ 0 as ↓ −∞ yes,

E∞(a, b) ↑ as b ↑ yes,

E∞(a, b) ↑ as|a| ↓ yes,

note lim
a↓0+

E∞(a, b) = +∞ as suspected.

This leads us to believe that in a fair coin toss (fair means no drift) and a gambler

with finite capital, the expected time to ruin is infinite.

This is correct. Feller gives D = z(a − z) as the duration of the game, where z is

initial capital, ruin is at 0, and a is the goal. Then lima→∞ D(a) = +∞.

Note: E∞ = b/|a| means the expected time is the same as the point where aT + b

crosses X(t) = 0. See Figure 2.

E∞ = b/|a|, a = −m/s2, b = ln λ,

λ = C/X0 = normalized goal,

m = p ln(1 + f ) + q ln(1 − f ) ≡ g(f ),

s2 = pq
{
ln
[
(1 + f )/(1 − f )

]}2
,

Kelly fraction f ∗ = p − q, g(f ∗) = p ln 2p + q ln 2q,

For m > 0, E∞ = (ln λ)s2/g(f ).

Now this is the expected time in variance units. However s2 variance units = 1 trial

so

n(λ, f ) ≡
E∞
s2

=
ln λ

g(f )
=

ln λ

m

is the expected number of trials.

Check: n(λ, f ) ↑ as λ ↑,

n(λ, f ) → ∞ as λ → ∞,

n(λ, f ) ↑ as m ↓ 0,

n(λ, f ) → ∞ as m → 0.

Now g(f ) has unique maximum at g(f ∗) where f ∗ = p − q, the “Kelly fraction”,

therefore n(λ, f ) has a unique minimum for f = f ∗. Hence f ∗ reaches a fixed goal in

least expected time in this, the continuous case, so we must be asymptotically close to

least expected time in the discrete case, which this approximates increasing by well in

the sense of the CLT (Central Limit Theorem) and its special case, the normal approx-

imation to the binomial distribution. The difference here is the trials are asymmetric.

The positive and negative step sizes are unequal.



428 E.O. Thorp

References

Associates First Capital Corporation, 1998. 1997 Annual Report. Associates First Capital Corporation, Dallas,

TX.

Black, F., Scholes, M., 1973. The pricing of options and corporate liabilities. Journal of Political Economy 81,

637–659.

Breiman, L., 1961. Optimal gambling systems for favorable games. In: Fourth Berkeley Symposium on Prob-

ability and Statistics, vol. I, pp. 65–78.

Browne, S., 1996. Reaching Goals by a Deadline: Continuous-Time Active Portfolio Management. Columbia

University, New York.

Browne, S., 1997. The return on investment from proportional investment strategies. Advances in Applied

Probability 30 (1), 216–238.

Buffett, M., Clark, D., 1997. Buffettology. Rawson Associates, Simon and Schuster, New York.

Cox, D.R., Miller, H.D., 1965. The Theory of Stochastic Processes. Wiley, New York.

Feller, W., 1966. An Introduction to Probability Theory and Its Applications, vol. I, Revised. Wiley, New

York.

Griffin, P.A., 1979. The Theory of Blackjack. Huntington Press, Las Vegas. Revised 1995.

Hagstrom, R.G. Jr., 1994. The Warren Buffett Way. Wiley, New York.

Hagstrom, R.G. Jr., 2004. The Warren Buffett Way, second ed. Wiley, New York.

Hecht, R., 1995. Private correspondence.

Ibbotson Associates, 1998. Yearbook: Stocks, Bonds, Bills and Inflation (or any later edition). Ibbotson As-

sociates, Chicago.

Institutional Investor, 1998. Ivory Tower Investing, pp. 43–55 (see p. 44), March.

Kelly, J.L., 1956. A new interpretation of information rate. Bell System Technical Journal 35, 917–926.

Kilpatrick, A., 1994. Of Permanent Value, the Story of Warren Buffet. Distributed by Southern Publishers

Group, Birmingham, AL.

Kritzman, M., 1998. Risk and utility: basics. In: Bernstein, Damodaran (Eds.), Investment Management. Wi-

ley, New York. Chapter 2.

Lowenstein, R., 1995. The Making of an American Capitalist. Random House, New York.

Markowitz, H., 1959. Portfolio Selection. Cowles Monograph, vol. 16. Wiley, New York.

McEnally, R.W., 1986. Latané’s bequest: the best of portfolio strategies. Journal of Portfolio Management 12

(2), 21–30, Winter.

Quaife, A., 1995. Using the Sharpe ratio to evaluate investments. The Trans Times 4 (1), February. Trans

Time Inc., Oakland, CA.

Rotando, L.M., Thorp, E.O., 1992. The Kelly criterion and the stock market. American Mathematical

Monthly 99, 922–931, December.

Thorp, E.O., 1962. Beat the Dealer. Random House, New York.

Thorp, E.O., 1966. Beat the Dealer, second ed. Vintage, New York.

Thorp, E.O., 1969. Optimal gambling systems for favorable games. Review of the International Statistical

Institute 37, 273–293.

Thorp, E.O., 1971. Portfolio choice and the Kelly criterion. In: Proceedings of the 1971 Business and Eco-

nomics Section of the American Statistical Association, pp. 215–224.

Thorp, E.O., 1984. The Mathematics of Gambling. Lyle Stuart, Secaucus, NJ.

Thorp, E.O., Kassouf, S.T., 1967. Beat the Market. Random House, New York.

Thorp, E.O., Walden, W., 1966. A winning bet in Nevada baccarat, part I. Journal of the American Statistical

Association 61, 313–328.

Tucker, H., 1967. A Graduate Course in Probability. Academic Press, San Diego, CA.

Wong, S., 1994. Professional Blackjack. Pi Yee Press, La Jolla, CA.


