Section Two
The Wheels

It doesn’t require an extensive mathematical back-
ground to look at the 38 identically-sized spaces on an
American roulette wheel (note the 35-1 payoff on a
single number) and conclude that the game is
unbeatable. With a 1/38 chance of having a number
come up on the next spin and the 35-1 payoff, it is easy
to calculate the often-quoted expectancy of the player
of —5.26. The odds for other wheels, especially the
Wheel of Fortune, appear even more against the player.

The unbeatability of the roulette wheel is based on
the mechanical perfection of the wheel—such a con-
clusion is based on the assumption that the ball has
an equal chance of landing in each pocket. This may
or may not be true, although Allan Wilson, in The Casino
Gambler's Guide, and others give fairly convincing
evidence for the existence of biased wheels—wheels
sufficiently biased to overcome the house advantage.

The very mechanical perfection of the wheel,
however, would suggest the applicability of the laws
of physics to prediction of the next number, whether
the game is roulette or the Wheel of Fortune. Just as
the future position of a planet can be predicted quite
accurately, so can an understanding of the physical
laws at work minimize the uncertainty surrounding the
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resting place of the ball or the final position of the
wheel.

it is not possible, of course, to obtain an exact predic-
tion. But this is not absolutely necessary to assure a
profit. As Marvin Karlins has pointed out in his book
Psyching Out Vegas, “Simply being able to predict
which half of the wheel the ball will plunk into would
give the player such a whopping edge that he could go
for the chandeliers. . .and make it”

The following two chapters investigate the promise
of this approach to beating the wheel as well as
discussing some of the difficulties that might arise im-
plementing such a strategy in the casino environment.
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It was the spring of 1955. I was finishing my second year of
graduate physics at U.C.L.A. In the course of the next year I
would make three decisions that would shape my life for the next
28 years. I married (my present wife, Vivian), I changed my field
of study from physics to mathematics, and I began to toy with
the fantasy that I could shatter the chains of poverty through a
scientifically-based winning gambling system.

I was living in Robison Hall, the student-owned cooperative.
For $50 a month and four hours work a week, we got our room
and board. I had lived in the co-ops for nearly six years of
undergraduate and graduate work, on a budget of about $100 a
month. Part of this came from scholarships and, in the early
years, 1 got some help from home. But I was basically self-
supporting like most of the other 200 or so co-op residents.

I attended classes and studied from 50 to 60 hours a week,
generally including Saturdays and Sundays. I had read about the
psychology of learning in order to be able to work longer and
harder. I found that “‘spaced learning”’ worked well: study for an
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hour, then take a break of at least ten minutes (shower, meal, tea,
errands, etc.). One Sunday afternoon about 3 p.m., I came to the
co-op dining room for a tea break. The sun was streaming
through the big glass windows. (Robison, designed by Richard
Neutra in the '30s, was very radical for that time. It had so many
big sheet glass windows that it was often called “the glass house.”)
My head was bubbling with physics equations, and several of my
good friends were sitting around chatting.

In our mutual poverty the conversation readily turned to fan-
tasies of easy money. We began to speculate on whether there
was a way to beat the roulette wheel. In addition to me, the group
included math majors Mel Rosenfeld and Andy Bruckner (now
professors of mathematics at U.C. Santa Barbara), Tom Scott,
and engineering major Rick Rushall. After all these yearsit’shard
to be sure of exactly who said what, but we began the discussion
by acknowledging that mathematical systems were impossible.
I'll demonstrate this in a future chapter.

Then we kicked around the idea of whether croupiers could
control where the ball will land well enough to significantly affect
the odds. I will show later that this is impossible under the usual
conditions of the game. (The incredible thing is that logical
reasoning could even be used to settle such a question.) It was a
short brainstorming step to wondering whether wheels were im-
perfect enough to change the odds to favor the player. Those in
the group who ‘‘knew’’ assured me that the wheels are veritable
jeweled watches of perfection, carefully machined, balanced and
maintained. This is false. Wheels are sometimes imperfect
enough so they can be beaten. 1 had no experience with gambling,
or with casinos, or with roulette wheels, so I accepted the
mechanical perfection of roulette wheels.

But mechanical perfection, for a physicist, means predictability.
You can’t have it both ways, I argued. If these wheels are very im-
perfect the odds will change enough so we can beat them. If they
are perfect enough we can predict (in principle) approximately
where the ball will land. Suddenly the orbiting roulette ball seem-
ed like the planets in their stately and precise, predictable paths. In
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my mind there was that intuitive “‘click”’ of discovery that I would
experience again and again. Unknowingly, I had just taken the
first step on a long journey in which I would discover winning
systems such as those for blackjack and for the options market,
and I would accumulate a wealth I never imagined.

One side argued that it is a long way from prediction in princi-
ple to practical prediction. My group said that, over and over, the
story of science has been a rapid leap from a theoretical vision
(E=MC? to an unexpected practical result {nuclear power
plants). By now our initial group of people agreed that the idea
had merit and might well work. The novel debate attracted
listeners, some of them cynical. They challenged us to prove the
idea worked. The ten minute *‘study break’’ had runinto a couple
of hours. We adjourned with the half definite idea of ““doing
something,”

In the following weeks the idea kept coming back to me:
measure the position and velocity of the roulette ball at a fixed
time and (maybe) you can then predict its future path, including
when and where the ball will spiral into the rotor. (The rotor is the
spinning circular central disc where the ball finally comes to restin
numbered pockets.) Also measure the rotor’s position and velocity
at a (possibly different) fixed time and you can predict the rotor’s
rotation for any future time. But then you will know what section
of the rotor will be there when the ball arrives. So you know (ap-
proximately) what number will come up!

You can see that the system requires that bets be placed gfterthe
ball and rotor are set in motion and somehow timed. That means
that the casinos have a simple, perfect countermeasure: forbid
bets after the ball is launched. However, I have checked games
throughout the world, including Reno, Las Vegas, London,
Venice, Monte Carlo, and Nice. Only in a few cases were bets for-
bidden after the ball was launched. A common practice instead
was to call “‘no more bets’’ a revolution or two before the ball
dropped into the center.

The simple casino countermeasure meant that there were two
problems: (1) find out whether exact enough predictions could be
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made to get a winning edge, first in theory and then in the casino
itself, and (2) camouflage the system so the casinos would be
unaware of its use. If we could solve the prediction problem, the
camouflage was easy. Have an observer standing by the wheel
recording the numbers that came up, as part of a ‘system.”” Many
do this so it doesn’t seem out of place. But the observer also wears
a concealed computer device with timing switches. His real job is
to time the ball and rotor. (Much later we settled on toe-operated
switches, leaving both hands free and in the open.) The computer
would make the prediction and transmit it by radio to the bettor.
The bettor, at the far end of the layout, would appear to have no
connection to the observer-timer. The bettor would have a poor
view of ball and rotor and would not pay much attention to them.
To further break any link between timer and bettor, I would have
several of each, with identical devices. They would each come and
go “‘at random.”

The important bets have to be placed after the ball is launched.
A bettor who only bet then, and who consistently won, would
soon become suspect. To avoid that, I planned to have the bettor
also make bets before the ball was launched. These would be
limited so their negative expectation didn’t cancel all the positive
expectation of the other bets. I became a radio amateur
(W6VVM) when I was 13 (back in 1945 when there weren’t easy
novice-class tests), so I thought I could build the radio link and
other electronic gadgetry.

This left me with the prediction problem to solve. Morethan a
year passed without much time for roulette: I got my Master’s
degree in Physics (June 1955) and wrote the first part of my Ph.D.
thesis on nuclear shell structure (Mayer-Jensen theory). The
mathermatical problems that I ran into led me in the fall of 1955 to
take graduate math courses, I needed so many that I got my
Ph.D. in math instead! And early in 1956 I got married. I had
been working as a tutor and one of my “‘students’” was T.T.
Thornton. He was an independently wealthy, knowledge-loving
bachelor of about 45, who had degrees in English and chemistry.
Now he was getting a degree in mathematics, just for the pleasure
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of it. He was an excellent student who didn’t need a tutor but had
hired me simply to learn faster and more efficiently.

We shared bits and pieces of our hopes, dreams, and
enthusiasms.

After I had mentioned the roulette project, I was surprised and
touched by his gift of a half-sized wheel. It was black plastic
(bakelite?) made in France. I learned later that it cost the enor-
mous sum of $25. Though I had thought about the roulette
system off and on, the gift of this wheel (sometime in 1958, I recall)
got me to work more seriously on it, My first idea was to use a
home movie camera to film the orbiting ball. I then plotted the
amount the ball had traveled versus the number of the frame of
the film. I expected that the pictures were taken at a uniform rate
of 24 (?) frames per second so I could plot (angular) distance
traveled versus time as in Figure 4-1. Instead of a smooth graph
like the solid line in Figure 4-1, my first film showed a peculiar
wavy structure, like the dashed line,

After thinking about this, I guessed that this was because the
camera did not run at uniform speed. By taking a movie of a stop-
watch that timed in hundredths of a second, I found that the
camera did vary in speed. Photo stores confirmed this. The
distortion of the curve in Figure 4-1 is analogous to the way a
musical tone is distorted by a phono turntable whose speed varies
slightly.

My next move was to take a movie of the rotating ball and the
stopwatch. This gave me an accurate time for each frame. (I still
have a roll of these pictures, postmarked January 16, 1959.) But
there was still some *‘ripple” to the curves. (I later learned that
even a slight tilt would cause this.) Worse, I found that the curves
were not consistent from spin to spin. The situation was
something like Figure 4-2, This meant the ball behaved differently
from spin to spin. This meant that the distance it traveled varied
even with the same initial velocity. This doomed predictability
on my wheel.

1 found with further experiments that my half-sized wheel was
really very irregular, The track was curved like a tube and the ball
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“rattled around®’ erratically, up and down, as it orbited. Theslick
bakelite surface was moulded, not machined. The ball also skidded
and bounced. And there was a horizontal junction which added
irregularities to the track.

But full-sized wheels were not like that. In December 1958, 1
made my first visit to the casinos. I observed several regulation
wheels and found that the ball moved smoothly in its track. Also
the track was a pair of flat-beveled, carefully-machined surfaces,
not a tube. When I saw how good the casino wheels were, I was
more convinced than ever that prediction was possible. But I
needed a full-sized wheel and some good laboratory equipment to
continue. How could I pay for it? I got my Ph.D. in June of 1958
and was teaching at U.C.L.A. Though my wife was finally able
to stop working, we had no savings and I barely supported us.
1 couldn’t ask her to go back to work to buy me a roulette wheel
and to finance my pipe dream.

But I persisted. I simulated the study of the problem of whether
the roulette ball would, for the same starting velocity, travel about
the same distance along the track. I set up a little veeshaped
inclined trough. I would start a marble from a fixed height (a
mark on the trough) and measure how far across the floor it roll-
ed. I was encouraged but not surprised to find that the distance
the marble went could be predicted closely from the starting
height.

One memorable evening when my in-laws were due for dinner,
I ran overtime on a marble experiment. They came into the kit-
chen wondering why I hadn’t come to greet them at the door.
They found me rolling marbles down a little wooden trough and
across the floor. All over the floor were little distance markers and
pieces of tape.

In early 1959 Vivian and I spent time with Mel and Judy
Rosenfeld, working on a radio link for the casino test of my yet to
be completed roulette system. We took model airplane radio con-
trol equipment and altered it somewhat. We succeeded in getting
a workable but somewhat inconvenient radio link.

Then around March or April of 1959, I pushed the roulette pro-

50

Roulerte

ject aside. Twelve man years of blackjack calculations arrived,
courtesy of Baldwin, Cantey, Maisel and McDermott. 1 had
convinced myself (as described in Beat the Dealer) that I could
devise a winning blackjack card counting system and now I set to
work on this intensely. The impractical marble rolier now said he
could beat the casinos at blackjack. What next?

I wrote my blackjack computer programs in the summer and
fall of 1959. Testing, then debugging followed, and then from late
1959 through early 1960 my computer production runs produced
the basic results that gave me the five-count system in early 1960.
Then during 1960 I worked out most of the ten-count system and
the ideas for the ultimate strategy. I also made the computer runs
and worked out the methodology so that all of today’s so-called
“‘one parameter’’ blackjack systems could be readily devised by
anyone versed in the use of computers. In December 1960, The
Notices of the American Mathematical Society carried the
abstract of my upcoming talk, **Fortune’s Formula: The Gatne
of Blackjack.” Life would never be the same again. The intense
professional and public interest aroused by the abstract, even
before the talk, led me to seek quick publication in a scientific
journal. I chose to try the Proceedings of the National Academy
of Sciences. I needed a member of the Academy to communicate
(i.e. approve and forward for recommended publication), so 1
sought out the one mathematics member of the Academy at
M.LT., Claude Shannon.

Claude Shannon: Genius

Shannon, then in his early forties, was and is one of the most
famous applied mathematicians in the world. As one genius
among many, he was relatively unnoticed as a graduate
student—until he handed in his master’s thesis. It developed the
mathematical theory of switching electrical networks (€.g.
telephone exchanges) and became the landmark paper in the sub-
ject. After receiving his doctorate, Shannon worked at Bell labs
for several years and then became world-famous for papers
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establishing the mathematical foundations of information
theory.

I was able to arrange a short appointment early one chilly
December afternoon. But the secretary warned me that Shannon
was only going to bein for a few minutes, not to expect more, and
that he didn’t spend time on subjects (or people) that didn’t
interest him (enlightened self-interest, I thought to myself).

Feeling both awed and lucky, I arrived at Shannon’s office
for my appointment. He was a thinnish alert man of middle
height and build, somewhat sharp featured. His eyes had a genial
crinkle and the brows suggested his puckish incisive humor. I told
the blackjack story briefly and showed him my paper. We changed
the title from “A Winning Strategy for Blackjack™ to “A
Favorable Strategy for Twenty-One’’ (more sedate and respect-
able). I reluctantly accepted some suggestions for condensation,
and we agreed that I'd send him the retyped revision right away
for forwarding to the Academy.

Shannon was impressed with both my blackjack resultsand my
method and cross-examined me in detail, both to understand and
to find possible flaws. After my few minutes were up, he pointed
out in closing that I appeared to have made the big theoretical
breakthrough on the subject and that what remained to be
discovered would be more in the way of details and elaboration.
And then he asked, “‘Are you working on anything else in the
gambling area?”’

I decided to spill my other big secret and told him about
roulette. Several exciting hours later, as the wintery sky turned
dusky, we finally broke off with plans to meet again on the
roulette project. Shannon lived in a huge old three story wooden
house on one of the Mystic Lakes, several miles from Cambridge.
His basement was a gadgeteer’s paradise. It had perhaps a hun-
dred thousand dollars worth of electronic, electrical and
mechanical items. There were hundreds of categories, like
motors, transistors, switches, pulleys, tools, condensors,
transformers, and on and on.

Our work continued there. We ordered a regulation roulette
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wheel from Reno and assembled other equipment including
(most important) a strobe light and a large clock with a second
hand that made one revolution in one second. The dial was divided
into hundredths of a second and still finer time divisions could be
estimated closely. We set up shop in “‘the billiard room,”’ where a
massive old dusty slate billiard table made a perfect solid stable
mounting for the roulette wheel.

Analyzing the Motion

My original plan was to divide the various motions of ball and
rotor into parts and analyze each one separately. They were:

o The ball is launched by the croupier. It orbits on a horizontal
track on the stator until it slows down enough to fall off this
(sloped) track towards the center (rotor). Assume at first that (a)
the wheel is perfectly level, and (b), the velocity of the ball
depends on how many revolutions it has left before falling off.
Referring to Figure 4-2, (b) means that every spin would produce
the same curve, not different ones like my half-sized wheel. Put
another way, this means that if you timed one revolution of the
ball on the stator, you could tell how many more revolutions and
how much more time until the ball left the track. If these assump-
tions turned out to be poor, we would attempt to modify the
analysis.

¢ Next analyze the portion of the ball orbit from the time the
ball leaves the track until it crosses from the stator to the rotor. If
the wheel is perfectly level and there are no obstacles, then it seems
plausible that this would always take the same amount of time.
(We later learned that wheels are often significantly tilted. This
tilt, when it occurs, can affect the analysis substantially. We even-
tually learned how to use it to our advantage.) There are,
however, vanes, obstacles, or deflectors on this portion of the
wheel. The size, number, and arrangement vary from wheel to
wheel.

On average, perhaps half the time these have a significant effect
on the ball. Sometimes they knock it abruptly down into the
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rotor, tending to cause it to come to rest sooner. This is typical of
“‘vertical’’ deflectors (ones approximately perpendicular to the
ball’s path). Other times they *‘stretch out”’ the ball’s path, caus-
ing it to enter the rotor at a more grazing angle and to come to rest
later, on average. This is typical of “‘horizontal’’ deflectors (ones
approximately parallel to the ball’s path).

¢ Assume the rotor is stationary (not real), and beat that situa-
tion first. Reasoning: if you can’t beat a stationary rotor, you
can’t beat the more complex moving rotor. Here the uncertainty
is due to the ball being *‘spattered”’ by the frets {the dividers be-
tween the numbered pockets). Sometimes a ball will hit a fret and
bounce several pockets on, other times it will be knocked
backwards. Or it may be stopped dead. Occasionally the ball will
bounce out to the edge of the rotor and move most of a revolution
there before falling back into the inner ring of pockets. Thus, even
if we knew where the ball would enter the rotor, the ‘‘spattering”’
from the frets causes considerable uncertainty regarding where it
finally stops. This tells you that there is no possible reliable
“physical” method for predicting ahead of time which pocket the
ball is going to land in, unless the wheel is grossly defective or

crooked. That makes the roulette method ““used” in the movie
“The Honeymoon Machine,” where the players forecasted the

exact pocket, an impossibility. It also tells you that successful
physical prediction can at most forecast with an advantage which
sector of the wheel the ball will end in.

* Assume now that the rotor is moving. Generally the ball and

rotor move in opposite directions; increasing the velocity of the
ball relative to the rotor. We'll assumne this is always the case. I’ve
never seen or heard of a casino spinning ball and rotor in the same
direction. If this were done, the relative motion of ball and rotor
would be even less than with a stationary rotor and prediction
would be easier yet. With a moving rotor, the amount of ball
*“‘spattering’’ is increased and predictability is further reduced.
Note that this change depends on the rotor velocity. Since that
varies from time to time and from croupier to croupier, thizasds
further complexity. It turns out that the velocity of the rotor
changes very slowly, so it is possible to predict with high accuracy
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which part of the rotor will be “‘there” at the predicted time and
place that the ball leaves the stator.

1 will now take you through a simplified version of what we first
tried to do. Later, with that overview to guide us, I'll explain some
of the modifications we had to make and describe our casino
experiences.

First, let’s consider part 1, the motion of the ball on the track.
The actual function x(#), which describes the number of remain-
ing revolutions x versus the remaining time ¢, is theoretically very
complex. *

Our first problem, and the key one, was to predict when and
where on the stator the ball would leave the track. This problem
was key because once we knew this, everything else except rotor
velocity was a “constant.’’ And rotor velocity is easy to measure
in advance and incorporate into the prediction, as we shall see.
Our method was to measure the time of one ball revolution, If the
time were short, the ball was *‘fast” and had a long way to go. If
the time were ““long,”’ the ball was “‘slow”” and would soon fall
from the track.

We hit a microswitch as the ball passed a reference mark on
the stator. This started the electronic clock. This was at time ¢,
(to go) with x; revolutions to go. (There are many such *“marks”
available on all actual casino wheels.) When the ball passed the
reference mark the second time we hit the switch again, stopping
the electronic clock. That was at a time #, (left to go) before the
ball left the track) with x, revolutions left. The clock measured
; — t, the time T for one revolution {so x; — xp, = 1L}*

Movie Experiments

The function x(#) which we are using in this illustration is not
the actual one. The actual xf?) can be determined by a “‘movie
experiment”’ like the ones I described earlier which Ididin 1953 on
my half-size wheel. To do this experiment today, get a full-size
roulette wheel, a large clock which reads accurately in hundredths
of a second or better, and a video camera or movie camera. Then
take a movie of the orbiting ball. The successive frames give
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values for #and x(#), which can be plotted to get an x(#) curve like
that of Figure 4-3. Several movies should be made to see how
much the X{#) curve varies from one spin to another. This uncer-
tainty is a source of errors in determining 7, that I’li discuss later
on. These x(#} errors can be incorporated into the theory in the
same way as the timing errors. They each cause some uncertainty
in the predicted X (T)value. The data from the movie experiment
can beimproved if the camera frames are synchronized to astrobe
so that the motion of both balland clock is ‘stopped’’ rather than
blurry. I didn’t do this in my original movies, so I got a short
blurry arc, instead of a ball, in each frame.

If an appropriate clock is not available, you can use a high
quality phonograph turntable instead. These rotate at very
uniform speeds which can be verified for your turntable with a
strobe. Now get a stiff paper disc and mark the edges in equal
small units. Numnber these units (much as you would a “circular”
ruler) for ease in reading. Now place a thin fixed pointer just

X Figure 4-3
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above the disc. When the disc rotates, you have a very accurate
clock whose hand is fixed and whose face moves. If you use a
paper disc of polar coordinate graph paper (glued, perhaps, to an
old record), there will be 360 equally spaced degree marks.

At 33'% r.p.m., each mark is 1/200 sec. At 45 r.p.m., each
mark is 1/270 sec., and at 78 r.p.m., each mark is 1/468 sec. Ona
12-inch disc, the 360 marks will be spaced about a tenth of aninch
apart so additional marks can be used or the pictures can simply
be read to a fraction of an interval. Record test discs with equally
spaced “‘spokes,”’ for use with a strobe for testing turntables, are
also available and can be used.

Timing Errors

Shannon and I used the switch which measured T to flash a
strobe as well as start and stop the clock. We discovered the lights
and the strobe flash “‘stopped’’ the ball at each of the two instants
the switch was hit. This allowed us to see how much the ball was
off the reference mark. Since we knew approximately how fast
the ball was moving, we could tell about how much in time we
were early or late in hitting the switch. This enabled us to correct
the times recorded on the clock, thereby making the data much
more accurate. We also learned from the visual feedback how to
become much more accurate at timing.

Here’s an illustration. Suppose the track of the wheel was 25
inches in diameter. (I don’t have any of this equipment now so
I’'m remembering back over 20 years and recalling about what the
sizes, velocities, etc. seemed to be. They’ll be close enough to be
representative and good enough to show you how to do it all
again, better for you if you want to.) Suppose the ball is % inchin
diameter and T, the time for one revolution, is 0.8 seconds. Then
the track is 78.54 inches in length, or 98.17 ball diameters. If the
ball center is one diameter away from the reference mark when
the strobe flashes, then the timing error is about 1/98.17 of T or
about 8/1000 of a second. There will be one of these errors when
the switch is first hit and another when it is hit the second time.
With practice we were able to reduce each error to a typical (root
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mean square) size of one ball diameter or about 8/1000 seconds.
According to the theory of errors, the two errors together give a
typical (root mean square) size of ~2/1000 or about 11.2/1000
seconds.

These errors would be unobservable in casino play, so we
couldn’t correct for them there. The critical question is how do

they affect the prediction?*

A Simple Casino Countermeasure

It should be clear that for this method to work, we have to time
the ball (and rotor) before placing our potentially winning bets.
(Earlier bets are losing, on average, so are only camouflage.)
Thus, the casino must allow us to continue to bet for a time after
the ball is launched. 1 have observed roulette wheels all over the
world: Monte Carlo (our final goal), Nevada, Puerto Rico, Nice,
Venice, and London. The practice has been, generally but not
always, to allow bets until the ball was almost ready to fall off the
track. This was much longer than we needed. Be warned again,
though; all the casino needs to do to prevent our method is to for-
bid bets once the ball is launched. That simple perfect
countermeasure is the Achilles heel of the system and a major
reason why 1 never made a total effort to implement it. (People
who use the system in casino play say the casinos don’t catch on
and don’t use the countermeasure. But if the player is not really
careful, I would expect the casino to catch on.)

The ball timing errors cause errors in predicting both the time
and place the ball leaves the track. Even if the spiral path of the
ball down the stator into the rotor is always the same in time and
distance, this still yields errors in predicting when and where on
the rotor the ball enters. *

58
*See Appendix E, pg. 138

*See Appendix F, pg. 3%

Roulette

Error Analysis

We have a long list of sources for errors in the prediction of the
ball’s final position. They are:

E1 Rotor timing—use 1.4 pockets to illustrate.
E2 Ball timing—use 5.5 pockets to illustrate.

E3 Variations in ball “‘paths’’ on rotor (see Figure 4-1). Error size
is unknown, call it X.

E4 Ball path down stator: error due primarily to ‘‘deflectors”
and varies with the type and placement. Use seven pockets to
illustrate.

ES Variation in distance ball travels on rotor: error due primarily
to frets between pockets ‘‘spattering’’ ball, plus occasional
very long paths along the rim of the rotor “‘outside’” the
pockets. Use six pockets to illustrate.

E6 Tilted wheel. (We didn’t know about this yet.)

For illustrative purposes, assume the errors approximately obey
the normal probability distribution. Then the standard deviation
(typical size) of the sum of several errors is the square root of
the sum of all the squared errors. For instance, using “pockets”
as our unit, combined errors E4 + ES have typical size /(62 +
7?) = /85 = 9.2 pockets. Now add on the timing errors: E; +
E, + E, + E; have typical size /(142 + 552 + 62 + 73 =
4/117.21 = 10.8 pockets. Thus the timing errors in this example
cause very little additional error: just 10.8 —9.2, or 1.6 pockets*

Of course, we haven’t added in E3 yet and, if Xis bigenough, it
could ruin everything. Possible variations in the ball orbit
behavior on the stator were difficult for us to measure because we
found it hard to tell at exactly what point the ball lost contact with
the outer wall of the wheel. We also learned from both our own
lab experiences and from watching in the casinos why the orbit
varied somewhat. Once a drunken, cigar-smoking bettor knocked
his ash onto the track. This was hard to clear out. It got on the ball
and spread out on the track. That immediately changed the ball’s
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behavior. Skin oil from our fingers or the croupier’s would slowly
“poison”’ ball and track and seem t0 affect the orbit behavior.

If we or the croupier gave the ball lots of axial “spin”’ (in the
sense of tennis or ping pong), it could take several revolutions
around the track before this abnormal spin energy was converted
to orbit energy. (We named this effect after the famous quantum
mechanics concept of * spin-orbit coupling.””) On the other
hand, the ball might be launched with no spin or backspin, so it
would skid for a while before spin and orbit got ““into sync! R

Advantage Versus Error

Obviously, the greater the error, the less the advantage. If we
assume the total prediction error £ is (approximately) normally
distributed, then we can construct a table showing the player’s
expected gain or lossas a function of E.

Table 4-4 gives the results for a bet on the best pocket and also
for a bet on the best “octant.”” The best octant is a set of five
pockets, two on each side of the best pocket.

The Table shows that, when the prediction error is normally
distributed, the typical forecast error (standard deviation) must
be 16 pockets or less, in order for the bettor 1o have an advantage.
This is 16/38, or about 0.42 revolutions. This is true both for bets
on the best pocket and the best octant. Since the best octant
includes four pockets that aren’t quite as good as the best, the ad-
vantage is somewhat less for a given typical error E, However, as
we will see later in discussing the Kelly-Breiman system for money
management, it is generally better for a small to medium-sized
bankroll to bet the best octant.

Kimmel and the Dealer’s Signature
Stephen Kimmel asserted that a dealer who works eight hoursa
day, 50 weeks a year, tends to spin the ball and rotor in a habitual,
regular way. This would make possible accurate predictions—a
bet on ten pockets, Kimmel contended, would havea 50% chance
of success. His views were contained in an article “Roulette and
Randomness”’ in the December, 1979 issue of Gambling Times.

&0

Roulette

Table 4-4
Topca Betting on Best | | Typlca Bating on Best —
{No. of Pockets) | Pocket Octant (li:’ir;o;fE Pockets) | Pocket Octant
0 3500.00 620.00| | 16 0.46 0.30
1 1278.53 611.06] | 17 - 162 |- 172
2 610.69 467.86| | 18 - 301§ — 307
3 376,52 328.65( [ 19 - 390 | — 394
4 258.12 236.98] | 20 — 446 | = 449
5 186.76 17571 | 21 — 481 | ~ 482
6 139.09 132.62] | 22 - b501 { — 5.02
7 105.00 100.89) | 23 - 613 | — 513
8 79.41 76.65 24 - 619 | — 519
8 59.54 57.60) | 28 - 523 { — 523
10 43.77 42.38 26 - b524 | = 525
11 31.19 30181 | 27 - 526 | - 525
12 21.24 2052 | 28 - 52 | — 526
13 13.54 13.03| | 29 - 528 | — b5.26
14 7.73 7.87 30 - 526 - B6.26
16 3.47 3.24 -] - 526 - b5.26

I don’g believe Kimmel’s approach works. Here’s why: there
are three important conditions that must remain roughly constant
throughout play for the player to take advantage of the regularity
of the dealer’s signature. These conditions are (1) the rotor velocity
shoulc_i bo._e approximately the same each time the ball is spun, (2)
the spinning ball should make approximately the same number of
revolutions each time, and (3) the initial position of the rotor
when the dealer launches the ball should be approximately the
same each time. This third condition, which is not mentioned in
Kimmel’s article, is crucial.
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By way of illustration, suppose that the rotor velocity was
exactly the same each time and that the dealer spun the ball exactly
the same number of revolutionsin each instance. Suppose further
that the ball spun exactly eight revolutions and the rotor four
revolutions during this time. Given those assumptions, the ball
would land about 12 revolutions beyond the point where it was
launched. In other words, if the number 13 was passing the ball as
the dealer released it, the ball would arrive 12 revolutions later,
relative to the spinning rotor, at approximately the number 13.
You can see, however, that if the number 2 on the rotor was
closest to the ball at the instant it was released, the ball would then
end up near that number 12 revolutions later.

If the dealer releases the ball without regard to which number
on the spinning rotor is closest to the launch point, the ball would
randomly fall on the rotor 12 revolutions later. In this case, there
would be no predictability whatsoever, even though the rotor
velocity is absolutely fixed and the number of ball revolutions
constant. Any variance in rotor velocity or number of ball revolu-
tions would further guarantee a random outcome. Because Kim-
mel did not discuss variations in the point of release, I do not
believe in his method.

There is a better approach to this statistical analysis of roulette.
Watch a dealer and count the number of revolutions the ball
makes on the stator from the time of release until it crosses onto
the rotor. Note how constant that number of revolutions is. The
results of your observations can be statistically stated as some
average number of revolutions plus an error term.

Next, count the number of revolutions the rotor makes during
the time the ball is on the stator. This will give you another average
for the number of rotor revolutions, plus a second error term.
Finally, count how far the ball travels on the rotor after it has
crossed the divider between the rotor and stator. You can sum-
marize these results as some average number of revolutions or
pockets plus an error term.

In order for this approach to work, it is necessary that the
square root of the sums of the squares of the error terms be less
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than 17 pockets. The proof of this appears in Table 44 which
shows what the rate of return is, given various root mean square
errors. That table demonstrates that a positive return is possible
only when that root mean square error is less than 17 pockets.

Now for the improved method. In the unlikely event that the
root mean square error is less than 17 pockets, then—and only
then—you have a chance to win. The key lies in using the position
of th.e rotor when the ball is launched as your starting point for
predicting where the ball will fall out on the wheel.

For example, suppose you find that for a certain dealer the ball
travels eight revolutions with a root mean square error of five
pockets:. Suppose also that during this time, the rotor travels four
revolutions, with a root mean square error of six pockets. And
suppose st@li further that once the ball is on the rotor, it travels 13
pockets w1th_ a root mean square error of eight pockets. Given
these sqppos1tions, you can predict that the ball will travel eight
revglptlons plus four revolutions plus 13 pockets from the launch
position, or 13 pockets beyond that point. The root mean square
error is the square root of five squared plus six squared plus eight
squa_red. This turns out to be 11.2 pockets, well within the
required error of less than 17 pockets. In this case, the prediction
system would work.

However, I think you will find that when you collect this data,
thg errors at each stage are several tirnes as large as I have used in
this example. My own observation is that the dealer error in the
number of revolutions for the ball spin is about 20 pockets for the
more consistent dealers; it is much larger with a less consistent
one. I also noticed that the rotor velocity is not nearly as constant
as Kimmel would like. That is because the dealer gives it an extra
kick every few spins to rebuild its velocity.

It is also true that the deflecting vanes on the sides of the rotor
add considerable randomness to the outcome, as do the frets or
spacers between the pockets. The upshot is that I don’t believe
that any dealer is predictable enough to cause a root mean square
error of less than 17 pockets. I'm willing to examine proof to the
contrary, but I would be very surprised if anyone could ever pro-
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duce it.

If a dealer dutifully practiced spinning the ball a fixed number Ch a p ter 5
of revolutions, and if a motor drive spun the rotor at a consta_mt
velocity, and if we have a very good way of deciding exactly which
number is opposite the ball just as it is released, it might be barely
possible to gain a small prediction advantage. I consider even that
e e Tl the perfect casi termeasure to

In closing, I'll give you the perfect casino countermeasure
the strategy of the dealer’s signature, pretending for the moment The Wheel Of Fortune
that the strategy worked. First, the casino halts the betting before
the dealer spins the ball. Second, the dealer closes his eyes or looks
away from the wheel when he releases the ball so that he has no
knowledge of which number on the rotor is closest to the ball
when it is launched. Then, for the reasons explained above, the
result will be perfectly random.

In the last chapter, 1 described a system for winning at roulette
based on physical prediction. That system was developed largely
in 1961 and 1962 in collaboration with Claude Shannon at MIT.
One by-product was an even simpler system for physical predic-
tion of the Wheel of Fortune. A story about me and blackjack
card-counting in Life magazine, March 27, 1964, reported on this
in a section entitled ‘‘Beating the Wheel of Fortune with the Big
Toe.”

While I was at the Fifth Annual Conference on Gambling and
Risk Taking at Caesars Tahoe in October of 1981, I collected data
on a Wheel of Fortune at Caesars. I wanted to see whether their
wheels could still be predicted in the same way.

My Casio C-80 watch has a digital stop watch feature which
times to 1/100 of a second. I used it to time one revolution of the
wheel and then recorded how many revolutions it went. I col-
lected the data in Table 5-1 at the Wheel of Fortune nearest to
Caesars’ cashier cage.

To see how predictable the Wheel was, I looked for a
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Table 5-1

Wheel of Fortune Data

Caesars Tahoe

Time

Further Revs R
Raw Data Decimal

35+22p
35~ 2p

T

Observation Time
Number

4 — 6p
4 +15p
3 - 9
3 +10p
2 - 6p
3 + 3p
45+ 8p
4 —9p

—TNOSTOOMMRIDO —N
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The Wheel of Fortune

mathematical curve which would best fit these data points. A
curve which worked well was R = A times T to the B power where
A = 121.545and B = —2.11153. In the equation, T is the time
for the wheel to make onerevolution and R is the number of addi-
tional revolutions which it then travels. Intuitively, if T is short,
the wheel did one revolution quickly so it will go far and R will be
large. But if T is long, the wheel was slow and will stop soonso R
will be small.

The letter p in the third column of the Table (“‘raw data’’)
stands for ‘‘pegs.” The wheel has pegs separating the payoff
numbers. As the wheel rotates, the pegs push past a flexible *“flap-
per.”” This gradually slows the wheel. When the wheel stops, the
winning number is the one with the flapper between its pegs.

The raw data column gives 3.5 + 22p for observation number
1. This means that the wheel traveled 3.5 revolutions plus 22 pegs
or further numbers. Since there are 54 numbers in all, it went 3.5
+ 22/54 or 3.907 revolutions in all. That is shown under
“‘decimal’’ in column 4.

The prediction P is made from the equation. The “‘error’’ P-R
is the amount the prediction is off from what actually happened.
Strictly speaking, what I am calling a prediction is only a fit to the
data. The fit approaches a ‘‘true’’ fit more closely as more data is
included. However, there is generally a difference between the
“true” fit and the actual fitted equation.

New data tends to cluster around this slightly different
unknown true fit, so it will tend to deviate from the actual fit to
the data by this extra amount. Thus, we expect future data to be
predicted by the equation not quite as well as the data in Table 5-1.

The error P —R has a standard deviation (‘‘typical size’’) of
0587 revolutions, or 3.2 numbers. The true curve location (stan-
dard deviation of the curve) is probably within .0169 revolutions
or 0.9 numbers, on average. Considering this and the greatest
positive and negative values in the column, error in “‘pegs’’ sug-
gests that the prediction will almost always be within five “pegs”
or positions of the actual outcome.

Table 5-2 shows the actual arrangement of numbers on the
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wheel. They are listed in order, clockwise, as seen by the player.
Each number gives the profit per unit bet. Thus, a player who bets
on 2 wins $2 for each $1 bet. The number marked 40A, and called
Caesars, pays 40 to 1 and the number 40B, called Cleo, also pays
40to 1. A bet on one of them does not win if the other one comes
up.

pThere are 24 “‘ones” in Table 5-2, Thus, if each of the 54
numbers comes up once, “‘one’” wins 24 times and loses 30 times
for a loss of 6 units in 54 unit bets, or an expected loss rate of
—6/54=—1/9=11.1%. Similar calculations lead to Table 5-3.
For the player who doesn’t predict, the house edge is enormous.
This is a game to avoid.

Table 5-2 Table 5-3

2 140A 2 1 2
1.2 1 10 15 Number House Edge
1 2 1 2 1 2 ! fripatbon A
1 6 2 110 1 .
4 2 9/54 16.7%
2 51 2148 5 12/54 222%
t 2 1 5 g ; 10 10/54 18.5%
;g : ::,’ 120 40A 1354 24.1%
+)
° a2 e 408 1354 24.1%

Now let’s see what the player advantage might be from prediq-
tions. Suppose for the sake of discussion that the final wheel posi-
tion is always within five numbers of the predicted wheel position.
For any prediction in the eleven number strip centered aroqnd
40A, we should bet on 40A. In 54 spins where each final position
occurred once, we will place 11 bets on 40A and win one of them
for a gain of 40 —10 = 30 units.

The discussion is the same for 40B. For any prediction in either
of the eleven number strips surrounding each 20, twenty-two
numbers in all, we bet on 20. In twenty-two bets we expect t¢ #in
20 units twice and lose one unit twenty times for a net gais <
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twenty units. This leaves 54-44 or ten predicted positions where
we need instructions.

There are four 10s in this left-over set of ten positions. Suppose
we bet the 10 each time one of these positions is predicted. It seems
plausible to suppose that we would win ten units four times and
lose 1 unit six times for a net gain of 40 — 6 =34 units. (Actuaily,
since the 10s in this case are either the predicted number or within
one position of the predicted number, we expect to do better still.

Finally, in 54 unit bets we net 30 units from 40A, 30 units from
40B, 20 units from the two 20s, and 34 units from the four 10s, for
a total of 114 units/54 units or a 211% rate of return.

It may be possible to improve both the timing procedure and
the method of exploiting predictability. This would improve the
results.

We see now that the Caesars wheel can be predicted well
enough so that we can beat it if the casino will let us put down bets
after the wheel has been set in motion.




