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Preface

The purpose of this work is to provide an introduction to the mathe-
matical theory of multi-stage decision processes. Since these constitute
a somewhat formidable set of terms we have coined the term ‘‘dynamic
programming”’ to describe the subject matter. Actually, as we shall see,
the distinction involves more than nomenclature. Rather, it involves a
certain conceptual framework which furnishes us a new and versatile
mathematical tool for the treatment of many novel and interesting
problems both in this new discipline and in various parts of classical
analysis. Before expanding upon this theme, let us present a brief
discussion of what is meant by a multi-stage decision process.

Let us suppose that we have a physical system S whose state at any
time ¢ is specified by a vector p. If we are in an optimistic frame of mind
we can visualize the components of p to be quite definite quantities such
as Cartesian coordinates, or position and momentum coordinates, or
perhaps volume and temperature, or if we are considering an economic
system, supply and demand, or stockpiles and production capacities. If
our mood is pessimistic, the components of p may be supposed to be
probability distributions for such quantities as position and momentum,
or perhaps moments of a distribution.

In the course of time, this system is subject to changes of either
deterministic or stochastic origin which, mathematically speaking, means
that the variables describing the system undergo transformations.
Assume now that in distinction to the above we have a process in which
we have a choice of the transformations which may be applied to the
system at any time. A process of this type we call a decision process,
with a decision equivalent to a transformation. If we have to make a
single decision, we call the process a single-stage process; if a sequence
of decisions, than we use the term multi-stage decision process.

The distinction, of course, is not hard and fast. The choice of a point
in three-dimensional space may be considered to be a single-stage process
wherein we choose (¥, ¥, z), or a multi-stage process where we choose
first x, then y, and then z.

There are a number of multi-stage processes which are quite familiar
to us. Perhaps the most common are those occurring in card games, such
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PREFACE

as the bidding system in contract bridge, or the raise-counter-raise
system of poker with its delicate overtones of bluffing. On a larger scale,
we continually in our economic life engage in multi-stage decision
processes in connection with investment programs and insurance policies.
In the scientific world, control processes and the design of experiments
furnish other examples.

The point we wish to make is that in modern life, in economic, in-
dustrial, scientific and even political spheres, we are continually sur-
rounded by multi-stage decision processes. Some of these we treat on
the basis of experience, some we resolve by rule-of-thumb, and some are
too complex for anything but an educated guess and a prayer.

Unfortunately for the peace of mind of the economist, industrialist,
and engineer, the problems that have arisen in recent years in the eco-
nomic, industrial, and engineering fields are too vast in portent and
extent to be treated in the haphazard fashion that was permissible in a
more leisurely bygone era. The price of tremendous expansion has become
extreme precision.

These problems, although arising in a multitude of diverse fields, share
a common property—they are exceedingly difficult. Whether they arise
in the study of optimal inventory or stock control, or in an input-output
analysis of a complex of interdependent industries, in the scheduling of
patients through a medical clinic or the servicing of aircraft at an
airfield, the study of logistics or investment policies, in the control of
servo-mechanisms, or in sequential testing, they possess certain common
thorny features which stretch the confines of conventional mathematical
theory.

It follows that new methods must be devised to meet the challenge of
these new problems, and to a mathematician nothing could be more
pleasant. It is a characteristic of this species that its members are
never so happy as when confronted by problems which cannot be
solved—immediately. Although the day is long past when anyone
seriously worried about the well of mathematical invention running dry,
it is still nonetheless a source of great delight to see a vast untamed
jungle of difficult and significant problems, such as those furnished by
the theory of multi-stage decision processes, suddenly appear before us.

Having conjured up this preserve of problems, let us see what compass
we shall use to chart our path into this new domain. The conventional
approach we may label “enumerative.” Each decision may be thought
of as a choice of a certain number of variables which determine the
transformation to be employed; each sequence of choices, or policy as we
shall say, is a choice of a larger set of variables. By lumping all these
choices together, we ‘“reduce” the problem to a classical problem of
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determining the maximum of a given function. This function, which
arises in the course of measuring some quantitative property of the
system, serves the purpose of evaluating policies.

At this point it 1s very easy for the mathematician to lose interest
and let the computing machine take over. To maximize a reasonably
well-behaved function seems a simple enough task; we take partial
derivatives and solve the resulting system of equations for the maxi-
mizing point.

There are, however, some details to consider. In the first place, the
effective analytic solution of a large number of even simple equations
as, for example, linear equations, is a difficult affair. Lowering our sights,
even a computational solution usually has a number of difficulties of
both gross and subtle nature. Consequently, the determination of this
maximum is quite definitely not routine when the number of variables
is large.

All this may be subsumed under the heading ““the curse of dimensional-
ity.” Since this is a curse which has hung over the head of the physicist
and astronomer for many a year, there is no need to feel discouraged
about the possibility of obtaining significant results despite it.

However, this is not the sole difficulty. A further characteristic of
these problems, as we shall see in the ensuing pages, is that calculus is
not always sufficient for our purposes, as a consequence of the perverse
fact that quite frequently the solution is a boundary point of the region
of variation. This is a manifestation of the fact that many decision
processes embody certain all-or-nothing characteristics. Very often then,
we are reduced to determining the maximum of a function by a combi-
nation of analytic and “hunt and search” techniques.

Whatever the difficulties arising in the deterministic case which we
have tacitly been assuming above, these difficulties are compounded in
the stochastic case, where the outcome of a decision, or tranformation,
is a random variable. Here any crude lumping or enumerative technique
is surely doomed by the extraordinary manner in which the number of
combinations of cases increases with the number of cases.

Assume, however, that we have circumvented all these difficulties and
have attained a certain computational nirvana. Withal, the mathe-
matician has not discharged his responsibilities. The problem is not to
be considered solved in the mathematical sense uniil the structure of the
optimal policy 1s understood.

Interestingly enough, this concept of the mathematical solution is
identical with the proper concept of a solution in the physical, economic,
or engineering sense. In order to make this point clear—and it is a most
important point since in many ways it is the raison d’étre for mathe-
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matical physics, mathematical economics, and many similar hybrid
fields—Tlet us make a brief excursion into the philosophy of mathematical
models.

The goal of the scientist is to comprehend the phenomena of the
universe he observes around him. To prove that he understands, he must
be able to predict, and to predict, one requires quantitative measure-
ments. A qualitative prediction such as the occurrence of an eclipse
or an earthquake or a depression sometime in the near future does not
have the same satisfying features as a similar prediction associated with
a date and time, and perhaps backed up by the offer of a side wager.

To predict quantitatively one must have a mechanism for producing
numbers, and this necessarily entails a mathematical model. It seems
reasonable to suppose that the more realistic this mathematical model,
the more accurate the prediction.

There is, however, a point of diminishing returns. The actual world is
extremely complicated, and as a matter of fact the more that one studies
it the more one is filled with wonder that we have even “‘order of magni-
tude” explanations of the complicated phenomena that occur, much
less fairly consistent “laws of nature.” If we attempt to include too many
features of reality in our mathematical model, we find ourselves engulfed
by complicated equations containing unknown parameters and unknown
functions. The determination of these functions leads to even more
complicated equations with even more unknown parametersand functions,
and so on. Truly a tale that knows no end.

If, on the other hand, made timid by these prospects, we construct
our model in too simple a fashion, we soon find that it does not predict
to suit our tastes.

It follows that the Scientist, like the Pilgrim, must wend a straight
and narrow path between the Pitfalls of Oversimplification and the
Morass of Overcomplication.

Knowing that no mathematical model can yield a complete description
of reality, we must resign ourselves to the task of using a succession of
models of greater and greater complexity in our efforts to understand.
If we observe similar structural features possessed by the solutions of a
sequence of models, then we may feel that we have an approximation
to what is called a “law of nature.”

It follows that from a teleological point of view the particular numerical
solution of any particular set of equations is of far less importance than
the understanding of the nature of the solution, which is to say the
influence of the physical properties of the system upon the form of the
solution.

Now let us see how this idea guides us to a new formulation of these
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decision processes, and indeed of some other processes of analysis which
are not usually conceived of as decision processes. In the conventional
formulation, we consider the entire multi-stage decision process as
essentially one stage, at the expense of vastly increasing the dimension
of the problem. Thus, if we have an N-stage process where M decisions
are to be made at each stage, the classical approach envisages an MN-
dimensional single-stage process. The fundamental problem that con-
fronts us is: How can we avoid this multiplication of dimension which
stifles analysis and greatly impedes computation?

In order to answer this, let us turn to the previously enunciated
principle that it is the structure of the policy which is essential. What
does this mean precisely ? It means that we wish to know the charac-
teristics of the system which determine the decision to be made at any
particular stage of the process. Put another way, in place of determining
the optimal sequence of decisions from some fixed state of the system,
we wish to determine the optimal decision to be made at any state of
the system. Only if we know the latter, do we understand the intrinsic
structure of the solution.

The mathematical advantage of this formulation lies first of all in
the fact that it reduces the dimension of the process to its proper level,
namely the dimension of the decision which confronts one at any particular
stage. This makes the problem analytically more tractable and compu-
tationally vastly simpler. Secondly, as we shall see, it furnishes us with
a type of approximation which has a unique mathematical property,
that of monotonicity of convergence, and is well suited to applications,
namely, “‘approximation in policy space”’.

The conceptual advantage of thinking in terms of policies is very
great. It affords us a means of thinking about and treating problems
which cannot be profitably discussed in any other terms. If we were to
hazard a guess as to which direction of research would achieve the greatest
success in the future of multi-dimensional processes, we would un-
hesitatingly choose this one.

The theme of this volume will be the application of this concept of
a solution to a number of processes of varied type which we shall
discuss below.

The title is also derived in this way. The problems we treat are pro-
gramming problems, to use a terminology now popular. The adjective
“dynamic,” however, indicates that we are interested in processes in
which time plays a significant role, and in which the order of operations
may be crucial. However, an essential feature of our approach will be
the reinterpretation of many static processes as dynamic processes in
which time can be artificially introduced.
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Let us now turn to a discussion of the contents.

In the first chapter we consider a multi-stage allocation process of
deterministic type which is a prototype of a general class of problems
encountered in various phases of logistics, in multi-stage investment
processes, in the study of optimal purchasing policies, and in the treat-
ment of many other economic processes. From the mathematical point
of view, the problem is related to multi-dimensional maximization
problems, and ultimately, as will be indicated below, to the calculus
of variations.

We shall first discuss the process in the conventional manner and
observe the dimensional difficulties which arise from the discussion of
even very simple processes. Then we shall introduce the fundamental
technique of the theory, the conversion of the original maximization
problem into the problem of determining the solution of a functional
equation.

The functional equations which arise in this way are of a novel type,
completely different from any of the functional equations encountered
in classical analysis. The particular one we shall employ for purposes
of discussion in this chapter is

(1) f) = Max [g@y) +h(x—y)+[flay+bx—y)].
0<y<zx

where g and 2 are known functions and a and b are known constants,

satisfying the condition 0 << 4, b < 1.

After establishing an existence and uniqueness theorem, we shall
derive some simple properties of the optimal policy which can be deduced
from simple functional properties of g and 4. In particular, we shall
present the explicit solution of some equations where g and 4 have
various special forms.

The advantage of obtaining these solutions lies in the fact that they
can be utilized to obtain approximations to the solutions of more compli-
cated equations, and, what is more important, approximations to the
associated optimal policies. The subject of approximation leads us to
the concept of approximation in policy space, of importance and utility
in both theoretical and practical discussion, and to the discussion of
the question of the stability of f under changes in g and A.

In the second chapter we consider a multi-stage decision process of
stochastic type in the guise of a gold-mining venture with a delicate
gold-mining machine. Here we encounter the equation

A py[rix + f(1—r) %, )]
®) [, y) = Max [B: palray +flx, (1 —7y) y)]]
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In addition to pursuing an investigation similar to that given in
Chapter I, we actually obtain a solution to this equation, and some of
its generalizations. The solution has a particularly simple and intuitive
form, and introduces the useful idea of “‘decision regions.”

We show, however, that some other generalizations do not have as
simple a structure, and, indeed, pose as yet unresolved problems. An
attempt to obtain approximate solutions to these problems for a parti-
cular region of parameter space will lead us to the continuous versions
treated in Chapter VIII.

Chapter III is devoted to a synthesis of these processes which seem so
different at first glance. In this chapter we analyze the common features
of the two processes treated in the preceding chapters, and then proceed
to formulate general versions of these processes. In this way we obtain
the functional equation

3) F(#) =Max[g(p,q) +h(p. 9 f(T (P, 9)],
q

which includes both of the preceding, and a number of equations of
still more general type.

Also in this chapter we explicitly state the “principle of optimality”
whose mathematical transliteration in the case of any specific process
yields the functional equation governing the process. The concept of
“approximation in policy space” is also discussed in more detail.

In the following chapter, Chapter IV, a number of existence and
uniqueness theorems are established for several frequently occurring
classes of equations having the above form. Our proofs hinge upon a
simple lemma which enables us to compare two solutions of the equation
in (3). Although these equations are highly non-linear, in many ways
they constitute a natural generalization of linear equations. For this
reason alone, aside from their applications, they merit study.

In Chapter V, we discuss a functional equation derived from a problem
of much economic interest at the current time, the “optimal inventory”
problem. Here we show that the various techniques we have discussed
in the preceding chapters yield the solutions of some interesting particular
cases. In particular, we show that the method of successive approxima-
tions is an efficient analytic tool for the discovery of properties of the
solution and the policy, rather than merely a humdrum means of obtaining
existence and uniqueness theorems. There are many different versions
of the optimal inventory problem and we restrict ourselves to a discussion
of the mathematical model first proposed by Arrow, Harris, and Marschak,
and treated also by Dvoretzky, Kiefer, and Wolfowitz.
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A particular equation of the type we shall consider is

(4) f(x) = Min [g(y — ) + a{ L‘”p (s =) dG (s) + £ (0) f:’dc (s)

y>z
+ [ ry =96y

We then turn to a study of what we call “‘bottleneck processes.” These
we define as processes where a number of interdependent activities are
to be combined for one common purpose, with the level of this principal
activity dependent upon the minimum level of activity of the components.

Two chapters are devoted to these problems, the first, Chapter VI,
of theoretical nature, and the second, Chapter VII, given over to the
actual details of the complete solution of one particular process.

The problems that we encounter are particular cases of the general
problem, apparently not treated before in any mathematical detail, of
determining the maximum over z of the inner product (x (T'), a), where
% and z are connected by means of the vector-matrix equation

(5) dxldt = Ax + Bz, x (0) =,

and where there is a constraint of the form Cz 4 Dx < f. Here x, 2, ¢
and f are vectors and 4, B, C and D are matrices. The linearity of the
operators and functionals constitutes the principal difficulty.

We might observe parenthetically that it is often thought that line-
arizing a problem facilitates its solution. On occasion, however, partic-
ularly in variational problems, it frequently complicates affairs to an
enormous degree, since this linearization renders classical variational
techniques largely inapplicable. In return, however, the computational
solution of particular cases may often be obtained by routine procedures.

In Chapter VIII, we return to the gold-mining process, and consider
a continuous version. There are many problems, some of a quite recondite
nature, associated with the formulation of continuous stochastic decision
processes. In the processes at hand, we are fortunate in being able to
sidestep these difficulties. In the continuous version, combining the
classical variational approach with the techniques employed in previous
chapters, we are able to solve completely the continuous versions of a
number of problems that were resolutely intractable in the discrete case.

We now turn to the calculus of variations in Chapter IX, and show
that various characteristic problems may be viewed as dynamic
programming processes of continuous and deterministic type.

In geometric terms, the classical formulation is equivalent to con-
sidering an extremal curve as a locus of points, while the dynamic
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programming formulation conceives of the extremal as the envelope
of tangents.

Taking this latter point of view, we are able to obtain a new formu-
lation of some parts of the classical theory. In particular, we show how
to obtain partial differential equations, in terms of suitably introduced
state variables, for the principal eigen-value of the differential equation

(6) u 4+ Apt)u==0u(0)=u(l) =

Furthermore, we provide a new computational approach to variational
problems with constraints.

In Chapter X, we consider dynamic programming processes involving
two decision-makers, essentially opposed to each other in their interests.
This leads to the discussion of multi-stage games, and, in particular, to
the very interesting class of games called ‘“‘games of survival.” With the
aid of some heuristic reasoning, we are able to obtain a new rationale
for non-zero sum games, as a by-product.

The functional equations encountered in this domain have the general
form

(M) f(p, ') = Max Min [ f f K.t 0 ¢) +
G G

Rt ¢ )T 0°,9.9), T2 (b, #". 9, 4'] 1 4G (9) 4G" (@)

They may be treated by means of the same general methods used in
Chapter IV to discuss the equation in (3) above.
In the final chapter, we consider a class of continuous decision processes
which lead to non-linear differential equations of the form
d,xi y .
(8) ¥ Max[.Elaﬁ (¢ 9) %5 + i (9)], % (0) = ¢4, 1=1,2,..., N,
¢ i=
together with the corresponding equations derived from the discrete
process.

These equations possess amusing connections with some classical
non-linear equations, as we indicate.

In addition to a number of exercises inserted for pedagogical purposes,
we have included a cross-section of problems designed to indicate the
scope of the application of the methods of dynamic programming.

There may be some who will frown upon some of the less than profound
subjects which are occasionally discussed in the exercises, and used to
illustrate various types of processes. We are prepared to defend ourselves
against the charges of lése majesté in a number of ways, but we prefer
the two following. In the first place, interesting mathematics is where
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you find it, sometimes in a puzzle concerning the bridges of Koenigsberg,
sometimes in a problem concerning the coloring of maps, or perhaps the
seating of schoolgirls, perhaps in the determining of winning play in
games of chance, perhaps in an unexpected regularity in the distribution
of primes. In the second place, all thought is abstract, and mathematical
thought especially so. Consequently, whether we introduce our mathe-
matical entities under the respectable sobriquets of A and B, or by the
more charming Alice and Betty, or whether we speak of stochastic
processes, or the art of gaming, it is the mathematical analysis that
counts. Any mathematical study, such as this, must be judged, ultimately
upon its intrinsic content, and not by the density of high-sounding
pseudo-abstractions with which a text may so easily be salted.

This completes our synopsis of the volume. Since the processes we
consider, the functional equations which arise, and the techniques we
employ are in the main novel and therefore unfamiliar, we have restricted
ourselves to a moderate mathematical level in order to emphasize the
principles involved, untrammeled by purely analytic details. Consistent
with this purpose we have not penetrated too deeply into any one domain
of application of the theory from either the mathematical, economic, or
physical side.

In every chapter we have attempted to avoid any discussion of deeper
results requiring either more advanced training on the part of the reader
or more high-powered analytic argumentation. Occasionally, as in
Chapter VI and Chapter IX, we have not hesitated to waive rigorous
discussion and proceed in a frankly heuristic manner.

In a contemplated second volume on a higher mathematical level, we
propose to rectify some of these omissions, and present a number of
topics of a more advanced character which we have either not mentioned
at all here, mentioned in passing, or sketched in bold outline. It will
be apparent from the text how much remains to be done.

In this connection it is worth indicating a huge, important, and
relatively undeveloped arca into which this entire volume represents
merely a small excursion. This is the general study of the computational
solution of multi-dimensional variational problems. Specifically we may
pose the general problem as follows: Given a process with an associated
variational problem, how do we utilize the special features of the process
to construct a computational algorithm for sclving the variational
problem ?

Dynamic programming is designed to treat multi-stage processes
possessing certain invariant aspects. The theory of linear programming
is designed to treat processes possessing certain features of linearity, and
the elegant “simplex method” of G. Dantzig to a large extent solves
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the problem for these processes.For certain classes of scheduling pro-
cesses, there are a variety of iterative and relaxation methods. In particu-
lar, let us note the methods of Hitchcock, Koopmans, and Flood for
the Hitchcock-Koopmans transportation problem, and the “flooding
technique” of A. Boldyreff for railway nets. Furthermore, there is the
recent theory of non-linear programming of H. Kuhn and A. W. Tucker
and E. Beale. The study of computational techniques is, however, in
its infancy.

Let us now discuss briefly some pedagogical aspects of the book. We
have taken as our audience all those interested in variational problems,
including mathematicians, statisticians, economists, engineers, operations
analysts, systems engineers, and so forth. Since the interests of various
members of this audience overlap to only a slight degree, some parts of
the book will be of greater interest to one group than another.

As a mathematics text the volume is suitable for a course on the
advanced calculus level, either within the mathematics department
proper, or in conjunction with engineering or economics departments,
in connection with courses in applied mathematics or operations research.

For first courses, or first readings, we suggest the following programs:

Mathematician: Chapters I, II, III, IV, IX, X
Economist : Chapters I, II, II1, V, IX
Statistician : Chapters I, II, III, IX, X, XI
Engineer: Chapters I, II, III, IX

Operations Analyst: Chapters I, II, III, V, IX, X

Tinally, before ending this prologue, it is a pleasure to acknowledge
my indebtedness to a number of sources: First, to the von Neumann
theory of games as developed by J. von Neumann, O. Morgenstern, and
others, a theory which shows how to treat by mathematical analysis
vast classes of problems formerly far out of the reach of the mathe-
matician—and relegated, therefore, to the limbo of imponderables—and,
simultaneously, to the Wald theory of sequential analysis, as developed
by A. Wald, D. Blackwell, A. Girshick, J. Wolfowitz, and others, a
theory which shows the vast economy of effort that may be effected by
the proper consideration of multi-stage testing processes; second, to a
number of colleagues and friends who have discussed various aspects of
the theory with me and contributed to its clarification and growth.

Many of the results in this volume were obtained in cotlaboration
with fellow mathematicians. The formulation of games of survival was
obtained in conjunction with J. P. LaSalle; the results on the optimal
inventory equation were obtained together with I. Glicksberg and O.
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Gross; the results on the continuous gold-mining process in Chapter VIII
and the results in Chapter VII concerning specific bottleneck processes
were obtained together with S. Lehman; a number of results obtained
with H. Osborn on the connection between characteristics and Euler
equations, and on the convergence of discrete gold-mining processes to
the continuous versions will not appear in this volume. Nor shall we
include a study of the actual computational solution of many of the
processes discussed below, in which we have been engaging in conjunction
with S. Dreyfus.

I should particularly like to thank I. Glicksberg, O. Gross and A.
Boldyreff who read the final manuscript through with great care and
made a number of useful suggestions and corrections, and S. Karlin
and H. N. Shapiro who have done much valuable work in this field and
from whose many stimulating conversations I have greatly benefited.

Finally, I should like to record a special debt of gratitude to O. Helmer
and E. W. Paxson who early appreciated the importance of multi-stage
processes and who, in addition to furnishing a number of fascinating
problems arising naturally in various important applications, constantly
encouraged me in my researches.

A special note should be made here of the fact that most of the mathe-
maticians cited above are either colleagues at The RAND Corporation,
or are consultants. Our work has been conducted under a broad research
program for the United States Air Force.

Santa Monica, California RICHARD BELLMAN
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CHAPTER 1

A Multi-Stage Allocation Process

§ 1. Introduction

In this chapter we wish to introduce the reader to a representative
class of problems lying within the domain of dynamic programming and
to the basic approach we shall employ throughout the subsequent pages.

To begin the discussion we shall consider a multi-stage allocation
process of rather simple structure which possesses many of the elements
common to a variety of processes that occur in mathematical analysis,
in such fields as ordinary calculus and the calculus of variations, and
in such applied fields as mathematical economics, and in the study of
the control of engineering systems.

We shall first formulate the problem in classical terms in order to
illustrate some of the difficulties of this straightforward approach. To
circumvent these difficulties, we shall then introduce the fundamental
approach used throughout the remainder of the book, an approach bhased
upon the idea of imbedding any particular problem within a family of
similar problems. This will permit us to replace the original multi-
dimensional maximization problem by the problem of solving a system
of recurrence relations involving functions of much smaller dimension.

As an approximation to the solution of this system of functional
equations we are lead to a single functional equation, the equation

(1) flx) = Max [g(y) +h(x—y)+flay +bx—y)].
0<y<z

This equation will be discussed in some detail as far as existence and

uniqueness of the solution, properties of the solution, and particular

solutions are concerned.

Turning to processes of more complicated type, encompassing a greater
range of applications, we shall first discuss time-dependent processes
and then derive some multi-dimensional analogues of (1), arising from
multi-stage processes requiring a number of decisions at each stage.
These multi-dimensional equations give rise to some difficult, and as
vet unresolved, questions in computational analysis.

In the concluding portion of the chapter we consider some stochastic

3



A MULTI-STAGE ALLOCATION PROCESS

versions of these allocation processes. As we shall see, the same analytic
methods suffice for the treatment of both stochastic and deterministic
processes.

§ 2. A multi-stage allocation process

Let us now proceed to describe a multi-stage allocation process of
simple but important type.

Assume that we have a quantity x which we divide into two non-
negative parts, y and x — v, obtaining from the first quantity y a
return of g (y) and from the second a return of 4 (x — y).! If we wish
to perform this division in such a way as to maximize the total return
we are led to the analytic problem of determining the maximum of
the function

(1) Ry (x,y) =g ) + k(x—Y)

for all y in the interval [0, x]. Let us assume that g and % are continuous
functions of x for all finite x > 0 so that this maximum will always exist.

Consider now a two-stage process. Suppose that as a price for obtaining
the return g (y), the original quantity y is reduced to ay, where a is a
constant between 0 and 1, 0 << a < 1, and similarly x — y is reduced
to b(x —7v), 0<Cb < 1, as the cost of obtaining % (x — y). With the
remaining total, ay + b (x — y), the process is now repeated. We set

(2 ay +b(x—y) =%, =y, + (1 —y1),

for 0 << y, << %,, and obtain as a result of this new allocation the return
¢ (v1) + A (x; —y,) at the second stage. The total return for the two-
stage process is then

3) Ry(%,9,9) =) +h(x—y) + &) + hlxs—y)

and the maximum return is obtained by maximizing this function of
y and y,; over the two-dimensional region determined by the inequalities

(4) a. 0<<y<«x
b. 0y, <x,

Let us turn our attention now to the N-stage process where we repeat

1 The units of the return are, in this case, different from the units of ». Thus,
for example, » may be in dollars, and g (y) may be man-hours of service from machines
purchased with the y dollars. In other cases, occurring in multi-stage investment
problems, or multi-stage production problems, this will not be so, in that the units
of the return will be the same as that of the resources, or a mixture of both situations
will occur. We are considering the simplest case here.

4
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the above operation of allocation N times in succession. The total return
from the N-stage process will then be

(5) Ry 9,91 yn-1) =g ) +h(x—y) + &)
+h—y) + ...+ glyv-1) +h(av-1—yN 1),

where the quantities available for subsequent allocation at the end of

the first, second, ..., (N — 1)st stage are given by
6) 1 =ay+bx—y),0<y<x
X2 =ay; + b(x,—y1), 0Ty, < #4,

AIN-1=ayn-2+ b(xn-2—9YNn_2),
0<ynv-2<<an-2, O<yn-1<<an-1

The maximum return will be obtained by maximizing the function Ry
over the N-dimensional region in the space of the variables y, y,,...,
yn -1, described by the relations in (6).

§ 8. Discussion

In setting out to solve this problem, the temptation is, quite naturally,
to use calculus. If the absolute maximum occurs inside the region, which
is to say if all the y; satisfy the strict inequalities 0 < y; < x4, and if
the functions g (x) and % (x) possess derivatives, we obtain for the
determination of the maximizing y; the system of equations,

(1) g n-1)—4 (xn-1—yn-1) =0
g (yv-2) —h (An-2—Yn-2) +(@a—b) W (xy-1—yn-1) =0

§O) + W (x—y) + @bk (t—y) + ... =0,

upon taking partial derivatives. However, in the absence of this know-
ledge, since we are interested not in Jocal maxima, but in the absolute
maximum, we must also test the boundary values y; = 0 and x;, and
all combinations of boundary values and internal maxima. Furthermore,
if the solution of the equations in (1) is not unique, we must run through
a set of conditions sufficient to ensure our having a maximum and not

5
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a minimum or a mere local maximum. It is evident that for problems
of large dimension, which is to say for processes involving a large number
of stages, a systematic procedure for carrying out this program is urgently
required to keep the problem from getting out of hand.

Suppose that we abdicate as an analyst in the face of this apparently
formidable task and adopt a defeatist attitude. Turning to the succor
of modern computing machines, let us renounce all analytic tools.
Consider, as a specific example, the problem posed by a 10-stage process.
Then, if we wish to go about the determination of the maximum
in a rudimentary fashion by computing the value of the function
Ry, = Ry (¥, 91, ..., ¥, at suitably chosen lattice points, we may pro-
ceed to divide all the intervals of interest, 0 <<y <, 0Ty, < %y, ...,
0 <C vy < %,, into, say, ten parts, and compute the value of R,, at each
of the 10 points obtained in this manner. 10*° is, however, a number
that commands respect. Even the fastest machine available today or in
the near future, will still require an appreciable time to determine the
solution in this manner.

To give some idea of the magnitude of 10, note that if the machine
took one second for the calculation of R,, at a lattice point, storage and
comparison with other values, the computation of 10*® values would require
2.77 million hours; if one millisecond, then 2.77 thousand hours; if one
micro-second, then 2.77 hours. This last seems fairly reasonable. Observe,
however, that if we consider a 20-stage process, we must multiply any
such value by 107, i.e., 1020 = 10 - 10°,

Needless to say, there are various ingenious techniques that can be
employed to cut this time down. Nonetheless, the method sketched
above is still an unwieldy and inelegant method of attack.

Furthermore, it should be realized that if we are sufficiently interested
in the solution of the above decision process to engage in computations,
we will, in general, wish to compute the answer not only for one particular
value of x, but for a range of values, not only for one set of values of
a and b but for a set of values, and not only for one set of functions
g and %, but for a class of functions. In other words, we will perform a
sensitivity analysis or stability analysis of the solution. Any such sensi-
tivity analysis attempted by the above methods will run into fairly
large computing times.

One of the aspects of the situation viewed in these terms which is
really disheartening is that this problem is, after all, only the conse-
quence of a very, almost absurdly, simple version of an applied problem.
It is clear that any modification of the problem in the direction of
realism, say subdivision of x into more than two parts, which is to say
an increase in the number of activities we can engage in, or an increase

6
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in-the types of resources, will increase the computing time at an expo-
nential rate.

Furthermore, as we have pointed out in the Preface, we must realize
that the essential purpose in formulating many of these mathematical
models of the universe, economic, physical, biologic, or otherwise, is not
so much to calculate numbers, which are in many cases of dubious value
because of the lack of knowledge of some of the basic constants and
functions involved, but rather to determine the stzucture of the solution.
Concepts are, in many processes, more important than constants.

The two, however, in general go hand-in-hand. If we have a thorough
understanding of the process, we have means, through approximation
techniques of various sorts, of determining the constants we require.
Furthermore, in the processes occurring in applications, of such enormous
complexity that trial and error computation is fruitless, it is only by
having an initial toe-hold on the solution that we can hope to use com-
puting machines effectively.

Going back to the idea of the intrinsic structure of a solution, we may
ask what it is that we really wish to know if we are studying a process
of this type. Naturally, we would like to obtain the point (y, y,, ..., ¥n)
at which the maximum occurs, and any solution must furnish this. But
from the point of view of a person carrying out the process, all that is
really required at any particular stage of the process is the value of y
in terms of x, the resources available, and N, the number of stages
ahead; that is to say, the allocation to be made when the quantity
available is ¥ and the number of stages of the process remaining is N.
Viewed as a multi-stage process, at each stage a one-dimensional choice
is made, a choice of y in the interval [0, x]. It follows 2 that there should
be a formulation of the problem which preserves this dimensionality
and saves us from becoming bogged down in the complexities of multi-
dimensional analysis.

§ 4. Functional equation approach

Taking this as our goal, namely the preservation of one-dimensionality,
let us proceed as follows. We first observe that the maximum total return
over an N-stage process depends only upon N and the initial quantity x.
Let us then define the function,

(1) fn(x) = the maximum return obtained from an N-stage process
starting with an initial quantity %, for N =1,2, ...,
and ¥ > 0.

2 As an application of the useful principle of wishful thinking.
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We have

(2 fN(x)={Ma’§RN(x:)’: e yN-1), N=2,3, ..
Y y;

with

(3) fi(x) = Max [g@y) + & (x —y)].

0<y<ur

Our first objective is to obtain an equation for f, (x) in terms of f; (x).
Considering the two-stage process, we see that the total return will be
the return from the first stage plus the return from the second stage,
at which stage we have an amount ay + & (x — ) left to allocate. It is
clear that whatever the value of y chosen initially, this remaining amount,
ay + b (x —y), must be used in the best possible manner for the re-
maining stage, if we wish to obtain a two-stage allocation which
maximizes.

This observation, simple as it is, is the key to all of our subsequent
mathematical analysis. It is worthwhile for the reader to pause here a
moment and make sure that he really agrees with this observation,
which has the deceptive simplicity of a half-truth.

It follows that as a result of an initial allocation of y we will obtain
a total return of f; (ay 4 b (x — y)) from the second stage of our two
stage process, if y, is chosen optimally. Consequently, for the total
return from the two stage process resulting from the initial allocation
of y, we have the expression

(4) Ro(x,y,9) =g +h(x—y) + fi(ay + b(x—9)).

Since y is to be chosen to yield the maximum of this expression, we
derive the recurrence relation

(5) fz(x)=0§’I;)<<x[g(y)+h(x—y)+f1(ay+b(x~y))],

connecting the functions f, (x) and f, (x). Using precisely the same

argumentation for the N-stage process, we obtain the basic functional

equation

(6) fyv(x) = Max [g(y) +h(x—y) +/v-1(ay +b(x—))]
0<y<z

for N > 2, with f, (x) defined as in (3) above.

Starting with f; (x), as determined by (3), we use (6) to compute f, (x),
which, in turn, repeating the process, yields f; (x), and so on. At each
step of the computation, we obtain, not only fk (¥), but also yx (x), the
optimal allocation to be made at the beginning of a k-stage process,
starting with an amount x.

8
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The solution, then, consists of a tabulation of the sequence of functions
{yx (x)} and {fr(x)}forx >0,k=1,2....

Given the sequence of functions {y: (x)}, the solution of a specific
problem, involving a given N and a given x has the form

(7

y yN (x)»
yi=yn-1(ay +b(x—7)),
ye = yn -2 (ay, + b (x, —y1)),

yn-1=9y(@yn-2+ b(xnv-2—y n-2)),

where (¥, Y1, ..., Yn -1) is a set of allocations which maximizes the total
N-stage return,

A digital computer may be programmed to print out the sequence of
values y, 1, - . ., ¥~ -1, in addition to tabulating the sequences { f (x)}

and {yx (x)}.

§ 5. Discussion

The important fact to observe is that we have attempted to solve a
maximization problem involving a particular value of x and a particular
value of N by first solving the general problem involving an arbitrary
value of x and an arbitrary value of N. In other words, as we promised
in the first section, we have imbedded the original problem within a
family of similar problems. We shall exploit this basic method of mathe-
matical analysis throughout the book.

What are the advantages of this approach? In the first place, we have
reduced a single N-dimensional problem to a sequence of N one-
dimensional problems. The computational advantages of this formulation
are obvious, and we shall proceed in the next sections to show that there
are analytic advantages as well, as might be suspected. As we shall see,
we will be able to obtain explicit solutions for large classes of functions
g and A, which can be used for approximation purposes. This point will
be discussed again below. Furthermore, we will be able to determine
many important structural features of the solution even in those cases
where we cannot solve completely. The utilization of structural properties
of the solution and the reduction in dimension combine to furnish
computing techniques which greatly reduce the time required to solve
the original problem. We shall return to this point in connection with
some multi-dimensional versions.
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§ 6. A multi-dimensional maximization problem

Before proceeding to a more detailed theory of the processes described
above, let us digress for a moment and briefly present two further
applications of the general method.

For the first application, consider the problem of determining the
maximum of the function

(1) F (%4, %9, - oy 28) == X gi(x3),
i=1

over the region defined by

(2) @ %42+ ... +av=c,

(b) x: = 0.

Each function g; (x) is assumed to be continuous for all x > 0.
Since the maximum of ¥ depends only upon ¢ and N, let us define
the sequence of functions

(3) fw(¢) = Max F (x,, s, ..., *n),
{15}
forc>0and N=1,2,....
Then, arguing as above, we have the recurrence relation

(4) () = Max [gn (%) + fx-1(c—2)],

0<z<ec

for N =2,3, ..., with
(5) file) =g ().

§ 7. A “smoothing” problem

As the second application, let us consider the problem of determining
the sequence {xx} which minimizes the function

he (X — %k —1).
1

gk (Xk —7x) +
1 k

I
(S

(1) F(x,, x4, ..., 2xn) =
Here {rx} is a given sequence, x, = ¢ a given constant, and we assume
that the functions gx (x) and A (x) are continuous for all finite x, and
that gx (x), hx (%) = 00 as |x | — oco.

The genesis of this problem, explaining its name, will be discussed
in the exercises.

10
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Let us define the sequence {fr (c)}, R = 1,2, ..., N, by the property

that fr (c) is the minimum over all xg, xr+1, ..., xy of the function
~ ~
(2) Fr= gr(xe—7k) + 2 hi (%k — x6-1),
k=R E=R
where xp-1 = ¢.
We have
3) fa(e) = Min [gv (x — 7n) + hn (x — )],
z
and

(4) fr(c) =Min [gr (¥ —7r) + hr(x —¢) + fr+1 ()],
for R=1,2 ..., N—1.

§ 8. Infinite stage approximation

Let us now return to the allocation process. The treatment we present
here serves as a prototype for the discussion of a number of multi-stage
processes, of diverse origin, but similar analytic structure.

If N is large, it is reasonable to consider as an approximation to the
N-stage process, the infinite stage process defined by the requirement
that the process continue indefinitely. Although an unbounded process
is always a physical fiction,® as a mathematical process it has many
attractive features. One immediate advantage of this approximation
lies in the fact that in place of the sequence of equations given by (4.6),
we now have the single equation
(1) fx) = Max [g(y) + h(x—y) +[(ay + b (x—y))]

0<y<z
satisfied by f (x), the total return of the process, with a single allocation
function y = y (x), determined by the equation.

To balance this, we encounter many of the usual difficulties associated
with infinite processes. It is, first of all, no longer clear that a maximum
exists rather than a supremum. This is to say, there may be no allocation
policy which actually yields the total return f(x). Furthermore, if we
wish to employ (1) in an unrestricted fashion to determine properties
of the infinite process, we must show that it possesses no extraneous
solutions. In other words, we must establish existence and uniqueness
theorems if this equation is to serve a useful purpose.

3 We shall occasionally use the word “physical” to describe the ‘‘real” world.
It should be interpreted to mean economic, biological, engineering, etc., depending
upon the background and interests of the reader.
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§ 9. Existence and uniqueness theorems

The result we obtain in this section is actually a special case of a
more general result we shall derive in a later chapter. Repetition, however,
no matter how dismaying as a social or literary attribute, is no great
mathematical sin, and it is important to present the simpler case first,
enabling the basic ideas to appear unimpeded by technicalities of lesser
import.

Let us now demonstrate

THEOREM 1. Let us assume that

(1) a. g(x) and h(x) are continuous functions of x for
x>0,g(0) =h(0) =0.

b. If m(x) = Max Max (|g®) | |h0)|), and

0<y<z

¢ = Max (a, b), then X m (c® x) < oo for all x > 0.

n=0

c. 0<a<l1l,0<b<.

Under these assumptions, there is a unique solution to (8.1) which is con-
tinuous at x = 0, and has the value O at this point,; moreover, this function
1S continuous.

Before proceeding to the proof, let us digress for a moment and
consider the important special case where g and % are both non-negative.
The sequence { f~ (x)} as given by (4.6) is a monotone increasing sequence,
with boundedness a consequence of condition (1b), as we shall show
below in a moment. Consequently, for all x > 0, fn (x) converges to a
function f(x) as N — oo.

Let us show that this function satisfies the equation

(2 fx)= Sup [gW) +h(x—y) + flay + b(x —y))].

0<y<z

To simplify our notation, let us set
) T(fy)=gW) +hlx—y) +flay+bx—y)).
The basic recurrence relation is then

(4) fvr1(x) = Max T (fw,¥).

0<y=<z

12
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From (4) we obtain as a consequence of the monotonicity in N

(5) f(x) = Max T(fw,y).

0<y=<=z

’

For any y in the interval [0, x], this means that the inequality

(6) fx) =T (fnv, )

holds. Letting N — oo, this yields

(M fx) =T (fy)

for all y in [0, x], which, in turn, leads to the result

(8) f®) = Sup T(fy).
0<y<=

We cannot write Max since we have no guarantee that the
0<y<z
limit function f (x) is actually continuous as a function of x.

On the other hand, from (4) we also obtain

(9) fver(x) < Sup T(fy),

0<y=<z

for all N, and thus

(10) fx) < Sup T(fy).
0<y<z
Comparing (8) and (10), we obtain (2).

One of the defects of this proof based solely upon monotonicity is
that it does not yield the continuity of the limit function, a result which
implies the existence of an optimal policy. This optimal policy is a
function y (x) which yields the maximum in

(11) fx) = Max T(fy),
0<y<z
when the maximum exists.

The existence of an optimal policy for the infinite process is directly
of no particular importance computationally, or as far as applications
are concerned. It is, however, of great importance in connection with
the determination of the structure of optimal policies for the infinite
process. Thus, indirectly, the question of the existence of continuous
solutions is significant as far as numerical results are concerned, since
the solution of the infinite process can be used as an approximation to
the solution of the finite.

In order to establish the existence and uniqueness of a ‘continuous

13
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solution of (11), we shall employ a technique that is applicable to a large
class of equations of this type, the method of successive approximations.
We shall, however, encounter monotonicity arguments again in later
chapters.

Turning to the recurrence relations in (4), let us begin with the obser-
vation that f; (x) is continuous for all x > 0 by virtue of the assumptions
made concerning g (x) and 4 (x). It follows, inductively, that each
element of the sequence { fv (x)} is continuous. It is worth pointing
out, however, that the location of the maximizing y need not depend
continuously upon x. In other words, the policy is not necessarily a
continuous function of x. An example of this is given in § 15.

Let y~ (x) be a value of y which yields the maximum in (4). It is a
matter of indifference as to which value of y we choose, if there is more
than one value producing the maximum. Then we have

(12) Svv1(x) =T (fw, ¥n),
fvee(x) =T (fyv+1,98+1),

and, as a consequence of the maximum property of the yy, the further
inequalities

(13) Sve1(®) =T (fw,yn) =T (fv, yv+1)
fvie(x) =T (fv+n,yv+1) =T (fv+1,98).
These, in turn, yield
(14) Sus1(x) —fause(@) =T (fv,ynv+1) — T (fw+1, yn+1)
< T (fv,yn) — T (fn+1, ¥n)

The two inequalities combined yield the important estimate

(15) |fyv+1(x) —fv+e(x) [<Max[|T (fw, yv+1) — T (fw+1, 8 +1) [,
| T (fx, yn) — T (fv+1,98) |-

Turning to the definition of T (f, y) given in (3), we see that
(16) | T (f, y5) — T (fv+1, yn) |
= [/w(ayn + b (x —yn)) — fv+1(ayy + b (x —yw)) |
Let us now define

() un (x) = Max |fv(z) —fo+1(2) |, N=1,2, ...

0<z<uz

14
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Since ay + b (x — y) << cx for all y in [0, x], the relation in (16) yields
(18) un +1 (%) << un (cx).

It remains to estimate u, (x). We have, referring to the equations
for f, (x) and f, (x), the relation

(19) | /1 (0) —fo (%) [ < Max [ | fy(ay: + b (x — 1) |,
| fr(ays + b (x —y5) [ 1< m (cx),
using the definition of m (x) given in (1b).

Hence we see that u, (x) << m (cx), and thus, using (18), that ux (%)
<< m (cN +1x). By virtue of our assumption concerning # (x) it follows

that 2" un (x) converges for all x, and what is important, uniformly in
V=1
any finite interval. The limit function f (x) = lim fx (x),in consequence,

N —> oo

exists and is continuous for all x. Furthermore, the uniformity of con-
vergence ensures that f(x) is a solution of (8.1).

It remains to establish the uniqueness of the solution. Let F (x) be
any other solution which exists for all x and is continuous at x = 0,
with F (0) = 0.

In the equation

(20) fx) = Max T(fy),

0<y=<=z

lety = v (x) be a value of y which yields the maximum, and let w = w (x)
play the similar role in

(21) F(x)= Max T(F,y).

0<y=<=z
Then, as above, we obtain the two inequalities,
(22) f@) =T (fy) =T (f w)
Fx) =T(F w)=>T(F,y),

and, as before, this leads to

(23) |f(x) —F (x) |<Max[|T(f,y) —T(F,y) | |T (f,w) =T (F,w)l].
< Max[|f(ay+b(x—y))—F(ay +blx—y)|
|flaw + b(x —w)) —F (aw + b(x —w)) |].
Let us now define

(24) u(x) = Sup |f(2) —F(2)]|.

0<z<z
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Since f (x) is continuous for all x > 0 and F () is, by assumption, con-
tinuous at x = 0, we see that % (x) is continuous at x = 0 and has the
value O there.

From (23) we obtain

(25) u(x) < u(cx),
whence, by iteration,
(26) u(x) < u (N x),

for all N > 1. Since u (x) is continuous at x = 0 and # (0) = 0, upon
letting N — oo we obtain # (x) << 0, and thus that f(x) = F (x). This
completes the proof of the existence and uniqueness of a solution of the
functional equation associated with the infinite process.

§ 10. Successive approximations

In considering the equation

ey fl®)= Max T(f9),
0<y<z

we have shown that a particular sequence of successive approximations
converged to the unique solution which is continuous at ¥ = 0 and
zero there. It is important for both analytic and computational purposes
to know that actually any sequence whose initial function satisfies
certain simple requirements converges.

The methods we have used above may also be employed to prove the
following

THEOREM 2. Let f, (x) satisfy the following conditions:

(1) a. fo (%) is continuwous for x > 0.
b. fo (0) = 0.
Then, if the conditions of Theorem 1 are fulfilled, the sequence defined by
(2) fu+1(x) = Max T (fn,y),N=0,1, ...,
0<y=<=z

converges to the solution f (x) obtained above, uniformly in any finite interval.

§ 11. Approximation in policy space
We have employed above the classical technique of successive ap-
proximations in order to obtain a solution to the nonlinear functional
equation

(1) fx) = Max T(fy).

0<y=<z

16
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We now wish to exploit a certain duality which is present in these
decision processes to show that we can choose the initial approximation
in such a way that we can always ensure this approximation being
monotone. This means that we have uniformly better convergence with
each iteration.

Let us begin by introducing some terminology. We shall call a sequence
of allocations; i.e., a sequence of admissible choices of y, a policy, and
a policy which yields f(x) an optimal policy.

The duality that exists in the theory of dynamic programming arises
from the interconnection between the functions f (x) which measure the
maximum return and the policies which yield these maximum returns.
Actually a policy is a function, since a policy is a determination of y as
a function of x. It is worthwhile nonetheless to preserve this terminology
since it possesses certain advantages derived from intuition. If the policy
is not unique, y will not be a single-valued function of x.

It follows from the functional equation that a knowledge of f ()
yields y (x), and conversely any vy (x) determines f(x), iteratively by
means of the functional equation

@ f@=T(fyE).

Thus, for example, if the optimal policy consisted of the choice y = 0
continually, f(x) would satisfy the functional equation

&) Sfx) = h(x) + f(b2),
which would yield the result

4) flx)= 2 h(bnx).
n=0

As we have mentioned above, the purpose of our investigation is not
so much to determine f(x), which is really a by-product, but more
importantly, to determine the structure of the optimal policy, which
is to say to determine y (x).

This leads to an important and useful idea. Just as we can approximate
in the space of the functions f(x), so we can approximate in the space
of policies, y (x). Furthermore, in many ways, this is a more natural and
simpler form of approximation. The advantage of this type of approxi-
mation analytically is that it always leads to monotone approximations.
From the standpoint of applications, it is by far the more natural
approximation since it is usually the one part of the problem about
which a certain amount is known as a result of experience.

Let y,(x) be an initial guess for an optimal policy and let f, () be

17
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the return function derived from this policy function, which is to say
that f, (x) satisfies the functional equation

(5) fo(®) =T (fo,y0 (%)),

an equation which we solve iteratively. To improve y, (x), we determine
y1(x) as a function of x which maximizes T (f,, ¥) for 0 <y < x.
Assume for the moment that y, (x) is itself continuous in x, (which need
not necessarily be the case), and that the return function f; (x) computed
using this policy is also continuous. This will always be the case, as we
point out again below, under the assumptions we have made. We now
continue in this way, generating a sequence of policies, {y~ (x)}, and
a sequence of return function, {fn (x)}.

It is easy to show, utilizing the methods described in the foregoing
sections, that under the assumptions we have made the sequence { fv (1)}
Is monotone increasing. A rigorous proof of the existence and con-
vergence of the sequences {y~ (x)} and {f~ (x)} described above seems
difficult to obtain. Consequently, we compromise for the following.

THEOREM 3. Let f, (x) be the result of an initial approximation in policy
space, that s,

(6) Jol®) =T (fo, %0 (%),

where y, (x) s any continuous function of x satisfying the conditions
(7 0<<yo(x) < x.

Under the assumptions of Theorem 1, the sequence defined by

(8) fv+1(®) = Max T (fwv,y),N=0,1,2,...,

0<y=<we
converges uniformly to the solution f(x) obtained, and this convergence is
monotone.

Proor. Let us demonstrate the monotonicity, which is the essential
feature, first. We have

9) filx) = Max T (f,, ).
0<y<z
Comparing the definition of f, given in (5) with the definition of f; above,
we see that f; > f, for all values of x. From this it follows inductively
that fyv+1 > fw for all values of x > 0.
It remains to prove the continuity of the function f, (x) for x > 0.

18
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The conditions upon g and # which we have imposed above show that
the formal series for f, (x)

(10) fox) =g o) +h(x—y) + ...,

obtained iteratively, converges uniformly in any finite interval and
represents a continuous function of x for x > 0, if y, (x) is a continuous
function of x.

§ 12. Properties of the solution—I: Convexity

Let us now show that we can derive certain structural properties of
the optimal policy from various simple structural properties of the
functions g and 4. The structure of the optimal policy ¥ (x) and that of
the return function f (x) turn out to be intimately entwined.

Our first result in this direction is

THEOREM 4. If, tn addition to the assumptions in Theorem 1, we impose
the conditions that g and h be convex functions of x, then f(x) will be a
convex function, and for each value of x, y will equal O or x.

Proor. The proof will be inductive. Since

(1) fi(x) = Max (g(y) +h(x—y)

0<y<z
and g (y) + A (x —v) is convex as a function of y for 0 Ty < «, it
follows that

2 fi(x) = Max (g (x), £ () ),

since the maximum of a convex function must occur at one of the
end-points. As the maximum of two convex functions, f, (x) is convex.

Since g (v) + A (x —y) + fi(ay + b (x —)) is a convex function of
y for v in [0, x] it follows by repetition of the above argument that

3) fa (%) = Max (g (x) + fi (ax), h (%) + f1 (b1)),

is a convex function of x. We see then, inductively that fy (x) is convex,
and thus that the limit function f(x) is convex.
Turning to the equation f(x) = Max T (f,y), the convexity of f

0<y<z
reduces this to the simpler equation !
(4) [ (%) = Max (g (x) + f(ax), b (%) + f (bx)),

showing that y = 0 or x for each value of x. This equations is, sur-
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prisingly, still a difficult equation to solve in general. We shall consider
a particular case of it below.

§ 13. Properties of the solution—II: Concavity

Let us now demonstrate that an analogous result holds for the case
where g and % are both strictly concave functions of x for x > 0.

THEOREM 5. If, in addition, to the assumptions in Theorem 1, we impose
the conditions that g and h be strictly concave functions of x, then f(x)
will be a strictly concave function of x.

In this case, the optimal policy will be unigue.

Proor. Let us consider the one-stage case first, and perform some
simple calculations which will show us why the result should be true,
before proceeding to a rigorous proof using a different and more general
technique.

We have

(1) fi() = Max [g(y) + & (x —y)].

0<y=<=z
Since g and % are strictly concave functions, the function g (y) + % (x — y)
is a strictly concave function of y. There is, in consequence, a single
maximum, which may, nonetheless, occur at an end point y = 0 or
y = x. Let us suppose for the moment that it occurs at an interior point,
and that g and % possess second derivatives. Then,

(2) fr(0) =g ) +h(x—y)
where y is determined as a function of x by means of the relation
3) g =nrkx—y.

Differentiation of (2) yields
4) A E=@E0—Fx—y)dydc+ 1k (x—y) =W (x—y),
and thus

() H'(x) =4 (x —y) (1 — dy|dx).
Differentiating the relation in (3), we obtain

(6) g (v) dyldx = 1" (x — y) (1 — dy[dx),
which yields

(7 dyldx = h" (x —9)/" (¥) + " (x —y)).
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Thisshows that 1 > dy/dx > 0, and thus, returning to (5), that ;" (x) <O.

If the maximum is not actually inside, we can force it to be by various
modifications of the functions g and # which prevent the maximum from
ever being at y = O or y = x; e.g., by addition of a term ¢ logy (x — y),
where ¢ is a small positive quantity. We can then proceed induc-
tively and establish the same result for all the members of the
sequence fw (x). This is, however, a rather clumsy method which does
not extend without pain to multi-dimensional problems. We shall
therefore use a more elegant and simple method.

LemMMA 1. If G (x,y) is a concave function * of x and y for x, y = O, then
f (&) as defined by

(8 fx) = Max G (x,y)

0<y<sz

is a concave function of x for x > 0.

Proor. We have, for 0 << A< 1,
(9) fAx+(1—A)2) = Max GAx+(1—2)27y).

0<y<iz+(@1—2z
We may replace y by the quantity y = Ay, 4+ (1 — 4) y, where y, and
y, range independently over the intervals 0 <<y, << x, 0 <{ ¥, << z. Then

(10) fAx4+(1—24)2) = Max G@Ax+ (1—2) 22y, + (1—4)y).
0O<y <=z
0<y, <z

Since G (x,y) is concave in x and y, we have
1) GAx+ (1 —A) 2,4y, +(1—2Ays) 2AG (%, y) + (1-—4) G (z,9,)
Hence

(12)  fAx+(1—2A)z2) > Max [AG(x,y,) + (1 —2)G(2,9,)]

0<y <z
0<ys <z

> 2 Max G(x,y,) +(1—A4) Max G(z,,)
0<y <z 0<ys<z

> Af(0) + (1—2) f(2).

Let us now apply this lemma to prove Theorem 5. It is easily verified
that g (y) + & (x — ) is a concave function of x and y if g and % are
concave functions. This shows immediately that f; (%) is concave. Simi-
larly, since f; (ay + b (x —y)) is a concave function of x and y, f; (x)

4 Concavity in both » and y means the G (A #; + (1 —A) 25, Ays + (1—A) 3,) =4
G#,9) +(1—A)G(x, ), for0 <A< 1.
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as defined by the basic recurrence relation is a concave function. We
thus proceed inductively and show that each function in the sequence,
{f~ (x)}, is a strictly concave function, and hence that the limit function
is concave. That it is strictly concave follows from the strict concavity
of g and 4, using Lemma 1 upon the functional equation for f (x).

Once we have established the strict concavity of f (x), the uniqueness
of the maximizing y and thus of the optimal policy follows immediately.
This completes the proof of Theorem 5.

§ 14. Properties of the solution—III: Concavity

Let us now show that the assumption of concavity enables us to tell
quite a bit more about the nature of the solution.

THEOREM 6. Let us assume that

(1) a. g(x) and h (x) are both strictly concave for x > 0, monotone in-
creasing with continuous derivatives and that g (0) = h (0) = 0.

b. g (0)/(L —a) > A (0)/(1 —b), " (0) > g (c0), b > a.
Then the optimal policy has the following form:

(2) a. y=x for 0<<x<<x, where x s the root of b’ (0) = g’ (x)
+ (b—a)g (ax) + (b—a) ag’ (a2 x) + ...
b. ¥y =y (x) for x > x where y (x) is a function satisfying the in-
equalities 0 <<y (x) < x, and y (x) is the solution of

3 g —HAEx—y)+@—bf(ay+bx—y)=0

Remark. We have given the solution for only one of the possible
combinations of inequalities connecting g’ (0), 4’ (0), b and a. It will be
easily seen from the procedure below, that corresponding results hold
for the other cases. Furthermore, the number of cases can be halved
by the observation that the interchange of y and x — y results in an
interchange of a and &.

Proor. Let us employ the method of successive approximations. Set
4) fi(x) =, Max [g(y) + & (x —y)].
Sy<sz

Since, by assumption, g’ (0) > A’ (0), for small x, we have g’ (y) —
k' (x —y) >0, for ¥ in the interval [0, x]. Hence g (y) + A (x — ) is
monotone increasing in 0 < y < x and the maximum occurs at y = x.
As x increases, the equation g’'(y) —A4' (¥ —y) = 0 will ultimately
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have a root at ¥ = «x, and then as x increases further a root inside the
interval {0, x]. The critical value of x is given as the solution of g’ (x) —
#' (0) = 0. This equation has precisely one solution, which we call x,.
For x > %, let y, = y, () be the unique solution of g’ (y) = &' (x — ¥).
The uniqueness of solution is a consequence of the concavity assumptions
concerning g and /4, and the existence of a solution is a consequence of
the continuity of g’ and 4'.
Thus we have

(5) fi (%) =g ), 0<x<x,
=g W) + A(x—y), x> x,.
and
6) fi' (x) =g (x), 0<x <
=g () —k (x—y) dyJdx + I (x —y) = I (x — ),
for x > x,.

Since y, (x;) = x,, we see that f," (x) is continuous at ¥ = x,, and hence,
for all values of x > 0. Furthermore f, (x) is a concave function of x;
cf. the analysis of § 11.

Now let us turn to the second approximation
(M folx) = 01\</Iax< ) +hx—y) + filay +b(x—y)].

sSyse

The critical function is now D (y) =g (y) — A" (x —y) + fi’ (ay +
B (x —y)) (a—b). Since g’ (0) — & (0) + £’ (0) (a —b) = g’ (0) — &’ (0)
g (0) (a—b) > K (0) [{(1—a) (1+a—b)/(1—b)} —1] >0, we
see that D (y) is again positive for all y in [0, ] for small x. Hence the
maximum occurs in (7) at ¥y = «x for small x. As x increases, there will
be a first value of x where D (x) = 0. This value, x,, is determined by
the equation g’ (x) = 4 (0) + (b — a) fy’ (ax). Comparing the two
equations
(®) g )
g (¥ =
we see that 0 < x, < x,.

7 (0)
"(0) + (6 —a) fy' (ax),

Hence the equation for x, has the simple form
9) g (%) =4 (0) + (b —a) ¢ (ax).

Thus y = x for 0 << x << x, in (7) and y = y, (x) for x > x,, where
y. (x) is the unique solution of

(10) gy =hr@Ex—y)+b—a)fi(ay+bx—y).
23



A MULTI-STAGE ALLOCATION PROCESS
Furthermore
1) =gk o0<r<x
=h'(x —y,) + bfy' (@, + b (x — y3)), X =Xy,
and f,' (x) is continuous at x = x,.

Comparing (10) with the equation g’ (y) = 4’ (x — y) defining y,, we
see that y, (x) <y, (x). In order to carry out the induction and obtain
the corresponding results for all members of the sequence {f»}, defined
recurrently by the relation

forr= Max [g(y) +h(x—y) + falay + b (x—y))],
0sy<sz
we require the essential inequality f,’ (x) > f;’ (). There are three

intervals [0, x,], [%,, %], [%;, o0], to examine, each one requiring a
separate argument. Using (10) and (11) we have

bé’ (yz) —ak’ (x —3’2)
b—a

(12) [ (%) =
for ¥ > x,. Combining (6) and the equation for y, we have

fl' (x) — bg' (yl) —ak’ (x_yl) X

(13) '

The function [bg’ (y) — ah’ (x — v) ]/(b — a) is monotone decreasing
in y for 0 <y << «. Since y, < y, we see that f,’ (¥) > f,’ (x). This com-
pletes the proof for the interval [x,, co]. The interval [0, x,] yields
equality. The remaining interval is [x,, #,]. In this interval, we have

(14) Sl (%) = ¢ ()
iy B0 —ak )

b—a
Hence in this interval, since 0 <<y, << %,
, bg’ (x) — ah’ (0 ,
(15) o' (%) 2%—‘(—) g (x),

since g’ (x) = 4’ (0) is a consequence of g’ (y) > &' (x —y) for0<y < x
and 0 << x << x,. This completes the proof that f;’ (x) > fi’ (x).

We now have all the ingredients of an inductive proof which shows
that

(16) a X >%> ... xm>... >0
b. il ) <f'(0)< ... fo' (0) <
C. Y1(x) >y, (%) >

24



A MULTI-STAGE ALLOCATION PROCESS

Since f» (x) converges to f (x), fa' (x) to f' (), ¥ (¥) to y (¥) and xx to %,
we see that the solution has the indicated form.

§ 15. An “ornery” example

Having imposed successively the conditions that g and % be both
convex or both concave, let us now show by means of an example
that the solution can be exceedingly complicated if we allow more
general functions possessing points of inflection.

Let us consider the equation
(1)  f(x) = Max [e7v 4 ¢5/G-0)  f(.8y + .9 (x—))].

0<y<=z
The function e~¢/# is used since it is one of the simplest possessing a
point of inflection. Determining f(x) by means of the method of suc-
cessive approximations, we obtain a well-behaved curve

f(x) 10
9
8
7
6
5
q
3
2
i
%5 ;o 45 ;o
Figure 1

Note, however, the strange behavior of y (x)!

20
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Figure 2
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As soon as we allow changes of sign on the part of g” (¥) and A" (),

we seem to encounter functional equations which defy precise analysis.

§ 16. A particular example—I

Figures 1 and 2 show the difficulties that can be encountered in the
pursuit of general solutions. Let us then consider some simpler equations
which can be used for approximation purposes.

THEOREM 1. The continuous solution of

1) f (%) = Max [cx? + f (ax), ex? + f (b%)], f (0) = O,

subject to
2 a. 0<a,b<l1;¢cdeg>0,
) g
b. 0<d<yg,
is given by
cx® —
3) f(x)=T:73,0Sx£x,
fx) =ext + f(bx), x > 7,
where
_ c/(l - ad)]l/(ﬂ—d)
4 = (A 77
” 7= [

Since 0 < b < 1, f(x) may be found explicitly in the intervals

[x,2/b], ... [x[b", x/bn+1] ..., for n=0,1,2, ...
Proor. Let us represent by A the operation of choosing cx? + f(ax),
and by B the operation of choosing ex? + f (bx). A solution corresponding

to an optimal sequence of choices, S may then be represented sym-
bolically by

(5) S = A2t Bb1 Ao Bb, . .,

where a; and b; are positive integers or zero, and 4% means the choice
A repeated a; times, with Bb having a similar meaning.

Let us assume for the moment that the solution does have the indicated
form and show how to calculate x. At the point x either an 4 or B
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decision is optimal, while below x only an A decision is optimal. Conse-
quently, symbolically, x is the point where

(6) BA>™ = A,
To compute A= we write
(7 f(x) = cx? + f(ax) = cx® + ¢ (ax)® + c (a%x)d 4 ...
= cx%/(1 — a%),
Similarly BA* yields
(8) f(x) = ex? + cbixd/(1 — ad).

Equating the two expressions, we find that x has the stated value.

It remains to prove that the solution has the desired form. Let us
begin by showing that 4 is always used when x is small. To do this it
is sufficient to show that f(x) = cx%/(1 — a9) is a solution for small x,
and then to invoke the uniqueness theorem. ® We must assure ourselves
that

= ———— g -_—
(9 1—ad Max 1—qd’ ext + 1—ad

cxd [ cxd cbd x4 ]

for small x. This, however, is clear if g >d >0 and 0 <b < 1.

We now proceed inductively. Let z be the smallest value of x for which
a B-choice is optimal. At this point BA* = 4*. This means that z = x.
Let us now consider the interval x > x, and begin by asking for the
point p where 4B and B4 are equally effective as a set of first two

choices.
We .have, using an obvious notation,

(10) faB (¥) = cx® + eavx9 + f(abx)
fBa (x) = exv + cbaxd + f(abx).

Hence the required point p is given by

(11) p=c(L—b%/e(l—ar)C™?.

Since g > d, we see that p < x.

It follows then from the fact that fam (x) < fpa (%) for x > p that
for x > x, AB plus an optimal continuation is inferior to B4 plus an
optimal continuation. From this we see that 4 cannot be used for x > x

5 Strictly speaking, we haven’t established this uniqueness theorem yet. However,
it is easy to see that the method used to establish Theorem 1 works equally well
in this case.
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unless followed by 4=, which we know is also impossible. This completes
the proof.

§ 17. A particular example—II

Another interesting case is that where g and A are quadratic in .
We leave as an exercise the following result:

THEOREM 8. Let ¢, d >0 and 0 <b<<a<1. Let
1) f( =, Maf ey —y*+d(x—y) —(x—y)*+ flay + b (x—y))],
<w<sz

) =o.

Then, in the interval ¢ 0 < x << Min (c/2, d/2), f (%) has the following form,
which depends on the sign of c¢/(1 —a) —dj(1 —b):

Case 1: ¢/(1 —a) = dj(1 —b).
(c—dya+4d at + (1 —a)?

@) f(")=1—-b+(b—-a)a"_1—[(a—b)a+b]'”"
where

1far—b* 1 [a* — b7)3)
@ “={1+a(1—a—b)+l/‘+1(m)}

Case II: ¢/(1 —a) < d/(1 —b).

@ 10 =(155) s~ (=25 =
Jor 0<<x << Min (4, ¢/2, d/2), where
o) Ao +Y[EQ—a—ca—b]

2 (1 — ab)

When A < Min (¢/2, d(2) use of (1) as a recursion formula enables one to
obtain f (x) over the entive interval of interest.

Case III: ¢/(1 —a) > d/(1 —b).

c 1
(6) f<x>=(1_a)x—<1_a,)x*
for 0< x << Min (u, ¢/2, 4/2) where
() p=01+a[c1—t)—d(1l—a)2(1—ab)

¢ This is the maximum interval over which the g and % functions are both
increasing.
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§ 18. Approximation and stability

It is, of course, interesting to have the explicit solutions of as many
equations as possible available. However, the true importance of the
explicit solutions of simple equations lies in the use of these solutions
as approximate solutions to more obdurate equations, and in furnishing
clues to the nature of optimal policies for more complicated processes.

In the above sections we have derived explicit solutions for the case
where g and 4 have monomial forms cx¢, and for the case where they
are quadratic. Note that approximation to g(x) by means of cx? is
equivalent to an approximation to log g(e?) by means of log ¢ + dx,
a straight line, which is readily accomplished.

Observe that as x changes, we may change our approximating curves
so as to obtain better fits if we wish closer approximations. Furthermore,
let us point out that in general the approximation is most useful as an
approximation in policy space rather than in function space.

In order to use approximation techniques, we require an estimate
for the difference between the solutions? of the two equations

S =0£\43><( (u(xy) + flay+bx—y)], [f(0)=0,
Sy<s
F(x) = Max [v(xy)+F(ay+b(x—y)], F(©0)=0,
0<y=<z=z
in terms of the difference between u (x, y) and v (x, ). This is a stability
theorem in the classical sense.

Let us prove

THEOREM 9. Let f(x) and F (x) be the continuous solutions of the above
equations under the assumptions that u (x,y) and v (x,y) are continuous

i x and y for all x,y >0, with 0 < a,b <1, and that £ m (c*z) < oo
n =0
where m (2) = Max [Max Max{ |« (x,9) ]|, |v(x,9) |}

0<z<z 0<y<z
If

(@) Max {Max [u(x,5) —v(x3) |}=D(),
0<z<z 0<Ly<z
o

and X D (c"z) < oo, ¢ = Max (a, b), then

n=20

o
(3) |f(x) —F (x) |[< 2 D (c"x).
n=0

7 The existence and uniqueness of these solutions is assured by the natural
modification of the proof of Theorem 1. When we speak of the solution, we shall
mean the continuous solution, or, generally, the solution furnished by the existence
theorem.
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Proor. Define

4) filx) = . 1};{ v ()
fv+1(x) ;O—glﬁz[u %9 + fn (ay + b (x —y))]
F, () =, glj}ézv (%, )
Fyn+1(x) ;0 i\f,afz [v(x,y) + Fn (ay + b (x —))].

We know, using the methods given previously that fx (x) converges to
f(x), and Fn (x) converges to F (x) as N — oo.

Let us estimate the difference between f, and F,. Clearly,

() [fi(®) —F1(x) | < Max |u(x,y) —v(xy) [< D).

0<y=<z

Proceeding, as in § 7, we have

(6) lfN+1(x)~FN+1(x)I£0 l\laﬁ | /v (ay + b (x—y))
”‘FN(ay_}'b(x_y))l'*"OE{a)i lu(x,y)—v(x,y)[

It now follows inductively that

N
(7) [fo+1(®) —Fyi1(x) | << 2 D (cm).

n=0

Letting N — oo, we obtain (3).

§ 19. Time-dependent processes

We have tacitly assumed in the foregoing pages that the processes
under consideration were time-independent in that the total return
depended only upon the initial quantity x and the duration of the
process N, and not upon the time at which the process were initiated.
Let us now see how we can handle situations in which this is not the case.

Let us assume that as a result of the division of x into y and (x —¥)
at the kt* stage, we receive a return g (v,y) and are left with a quantity
ar (x, ). It isrequired to determine the allocation policy which maximizes
the total N-stage return.

We shall assume that gi (x, y) is continuous in x and y for x >0
and 0 <<y < x and that ax (x, y) is likewise continuous in this region
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and satisfies the inequality 0 << ax (x,y) <ax,a <1, for k=1,2, ...
Define

(1) fr ~ (x) = total N-stage return obtained starting with a quantity »
at stage £ and employing an optimal policy.

We have
(@) Ji1(x) = Max gi(x,y),

0<y<z

and for N > 2, arguing as in the preceding pages,
3) fe.n(®) = Max (ge(x,¥) + fre+1, v —1(ax (%, %)) .

0<y<z
Since the double subscript is distressing both analytically, esthetically,
and above all, computationally, let us see whether or not we can restore
the single subscript relation. Having made up our mind that we are
interested in an N-stage process starting at stage 1, let us define

(4) fr (x) = total return obtained starting with a quantity x at stage &
and ending at stage N, employing an optimal policy,

k=12, ...,N.
Then
(5) fv(x) = Max gn(x,)
0<y<z
fr(x) = Max [ge (%, 9) + fe+1(@x(x,9)), k=1,2,...,N—1.
0<y=<=z

This simplification is essential if we are interested in computational
solutions, since the difference between the effort involved in the tabulation
of functions of one variable and functions of two variables is enormous,
while that between the tabulation of functions of two variables and
functions of three variables may be the difference between a feasible
and unfeasible approach.

The case of unbounded processes, i.e., N = oo, yields the set of
functional equations

(6) fe(x) = Max [gx(x,y) + fr+1(ax (% ¥))].

0<y<z

It is not difficult to obtain the analogues of Theorem 1 for these systems.

§ 20. Multi-activity processes

The process we have been using for expository purposes is the simplest
of its category since we allow only one type of resource, and require only
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one allocation at each stage. Let us now discuss the formulation of more
general and more realistic processes.

Let there be M different kinds of resources, in quantities %, x,, ...,
xm respectively. At each stage, a quantity xi; of the 4th resource is
utilized to produce an additional quantity of the jt» resource. Hence
we have the equations, relating the resources at the (& 4 1)st stage to
the resources at the &t stage,

1) x(B+1)==x:i(R) ~E{ %47 (k) + gi (w14 (R), w2 (R), . .., xme (R)),
j=1

for e =1,2, ..., M, where
(2 (@) xy (k) =0,

M
(b) & x5 (R) < x4 (R),
i=1
and the production functions, g;, are assumed known, together with
the initial quantities, x; (0) = c;.
The xi (k) are to be chosen so as to maximize some pre-assigned
function

(3) Ry =F (%, (N), 2, (N), ..., 2 (N)),
of the final resources.
In many cases, as we shall see in Chapter 6, there are other constraints

in addition to those of (2).
If we set

(4) fN (01» Coy o oey CM) = Ma.x RN,
{=is}

we obtain, as before, the recurrence relations

M
(5) fx(cnce ovnem) =Maxfy_1(c, —jzylj'l‘gl(}’u:yn» ce s Yma),. )
=1

{vis}
for N > 2, where the y;; are restricted by the relations
(6) @) y4=0

M

(b) P Vi < ¢4, 1=12 ..., M,
j=1

and
(7) fl(clrcz’"':CM)=F(01)02;'--,CM).
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Existence and uniqueness theorems covering the unbounded versions
of these general processes will be given in Chapter IV, in conjunction
with a better notation. We shall encounter a particular example of this
equation further along in connection with the bottleneck processes of
Chapter VL. In the present chapter we shall discuss briefly some of the
difficult computational problems raised in maximizing over a multi-
dimensional domain.

§ 21. Multi-dimensional structure theorems

It is not difficult to extend the results we obtained in the one-
dimensional case concerning convexity and concavity of the solutions
of the functional equation of (8.1) to the multi-dimensional equations
of § 20.

Let G (x) be a scalar function of a vector variable ». It is said to
be convex if

1) GAr+ (1 —2y)<AG@#) + (1 —4HG®)

for all A in the range 0 << 4 <C 1. The function is concave if the inequality
goes the other way.

The multi-dimensional analogue of Lemma 1, proved in § 13, is valid
and the proof is precisely the same. Using the lemma, we can establish
the result below.

Before stating the result, let us introduce a more convenient notation.
Let x denote the vector whose components are x;, and y% denote the
vector whose components are y;;, for 1 << ¢, << M. Then, in terms of
the process described above, we have

@) (@) x = Zy0,
(b) y0 >0,

where the notation y > 0 signifies that all components of y are non-
negative. Let D (x, y) denote the domain defined by (2).

THEOREM 10. If 7 (x,y) and a (x,y) are continuous concave functions of
x and y for all x,y >0, and v (x,y), a (x, y) are monotone increasing in
the components of x, then the functions {fn (x)} defined by the equations

(2) f1(x) = Max 7 (x,y),

D(z,y)

fws1(x) =;\{:§)[' (%, ) + fwv (a (x, )]

are all concave functions of x for x > 0.
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This implies a unique optimal policy for each N, if r (x,y) ¢s strictly
concave.

The importance of this result resides in the following. If we have
an N-stage process where % decisions must be made at each stage, the
functional equation approach reduces the Nk-dimensional maximization
problem to a set of N k-dimensional problems. Although this is an
essential reduction, the k-dimensional maximization problems them-
selves possess thorny features.

If, however, the function of & variables we are maximizing is strictly
concave, we know that it possesses a unique relative maximum which
is the absolute maximum. Given this additional information that the
function under investigation has a unique relative maximum, we should
be able to determine a search procedure for the location of this maximum
which is far more efficient than the search procedure we would employ
for a general function.

§ 22. Locating the unique maximum of a concave function

The determination of optimal search procedures ® for the location of
the maximum of a concave function or, conversely, for the minimum of
a convex function, is an extremely important and difficult problem which
has not been solved to date. The solution has, however, been obtained
in the one-dimensional case for the more general situation where the
function is unimodal, which is to say possesses a single relative maximum.

Let us pose the problem in the following terms. The function y = f(x)
is a strictly unimodal function defined on the interval [0, L,]. We wish
to determine the maximum L, with the property that we can always
locate the maximum of y = f(x) on a sub-interval of unit length by
calculating at most »n values of the function f(x). Since the maximum
may not exist, it is safer to begin by setting

(1) Fp=Sup L,

We then have the following result
THEOREM 11. F, s the nth Fibonacci number; ie., Fo =F, = 1 and

(2) Fn=Fn—1+Fn—2

for n > 2.
Proor. The definition of F, is a matter of convention, on the other
hand the value of F, is determined by the process.

8 It is actually not easy to specify precisely what we mean by an optimal search
procedure. It clearly depends upon the type of equipment we have, the type of
operations we permit, the ‘“‘cost’” of these operations, and so on. Consequently,

there are a variety of problems of the above type which may be posed. The subject
has not been explored to any extent.
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Let us now proceed inductively. Fix » and calculate the values
yy = f(x1), ¥2 = f(x,) where 0 < x, < x, << Ln. If y; >y,, the maxi-
mum occurs on (0, x,) since f(x) is strictly unimodal. If y, > y,, the
maximum is on (x;, La). If y; = y,, choose either of the above intervals,
even though we know the maximum occurs on (,, x,). Thus, at each
stage after the first computation we are left with a subinterval and the
value of f(x) at some interior point x. Since values at the ends of an
interval furnish no information per se, we restrict our attention to the
interior points.

Forn =2,Lp = 2—¢,%, = 1—¢,x, = 1, for arbitrarily small e > 0.
From the preceding argument it follows that F, = 2 = F, 4 F,,.

Consider the case where » > 2 and assume that Fy = Fy -1+ Fr_2
for k=2, ...,n—1. Let us begin by showing that

(3) Fon<Fn_1+ Fn-o.

For if we calculate f(x) at x, and x, on (0, L,) we have

o) X, X2 Ln
Figure 3

If ¥, > y,, we obtain the new picture

Yi

0 X, Xp
Figure 4
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In this case x, << Fn - ; since we have only (» — 2) additional choices
with x, a first choice, for the case & = n — 1. Moreover, x;, < F,_ 4,
since the maximum could occur on [0, x,], with two choices of x already
used.

Similarly if y, >y,, we have L, —x, < Fn-,

Thus in all cases Lrn < Fa- 1+ Fa_ , which yields (3). Now chose
Ly, x,, %, arbitrarily close to their respective upper bounds F — ; 4+ Fa- o,
F,_; and Fy - , respectively. Then Fp = Fn_ ; + Fa_ ,. This yields
the proof of Theorem 11. Furthermore, it yields the optimal policy,
since each x; is either discarded or is the optimal first choice for the
remaining subinterval.

The sequence {F,} has as its first few terms

(4) 1,1,2 35, 8, 13,21, 34,55, ...,

with F,, > 10,000. Hence the maximum of a strictly unimodal function
can always be located within 10~* of the original interval length with
at most 20 calculations of the value of the function.

It is easy to obtain an explicit representation for Fn, namely

(5) F=y2_—17”+(1_—71)7”
" (ra—r, ! (ra—r4) B

where

1+V5
(6) ¥y = T ~ 1.61

2
1—V'5 o1
7y = g =

From this we see that Fp. /Fn — 7, =~ 1.61 as #-> co. Thus, for
large #, a uniform approximate procedure is to choose the two first
values at distances L/r, from either end, where L is the length of the
interval. This is a useful technique for machine computation.
Consider now the related problem where the -unimodal function is
defined only for discrete values of x. Let K, be the maximum number
of points such that the maximum .of the function can always be iden-
tified in #» computations. The same type of proof as above establishes.

THEOREM 12. K, =1, K, =1, K, =2, K, = 4, and
(7) Kn=1+Fn,n23.
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§ 28. Continuity and memory

Let us suppose that we have a function of two variables, f(x,y),
depending continuously on x and y for x > 0 and 0 <<y <{ x. Define
the function
1) g(x) = Max f(x9).

0<y<z
It is clear that g(x) will be continuous, but the function y =y ()
yielding the maximum need not be continuous. We have already seen
an example of this in connection with the functional equation of § 15.

Suppose, however, that we restrict f(x,y) to be a strictly concave
function of y for all ¥ in [0, x], for x > 0.

f(x,y)

(o] y X
Figure 5

It is clear that as x varies, the maximizing y will now be a continuous
function of x.
Let us see how we can utilize this information to simplify the memory
problem for computing machines. Consider the equations
@ fwerl) = Max [gly) +hlxr—y) +/n (ay +b(x—y))],
Sy<ze

N=12....

If we have no information concerning the location of a maximizing v,
we must have available all values of fy (2) for 0 << z < ax in order to
determine fw +1 (x). Suppose, however, we take g(x) and % (x) to be
strictly concave as well as continuous. In this case, fa (x) is strictly
concave for each N and the function g(y) + h(x —y) + fnv (ay +
b (x —y)) is strictly concave for 0 < ¥ << x, and what is most important
the function yx (¥) which yields the maximum in (2) is unique and
continuous as a function of x.

It follows than that if we are using an x-grid of values 0,4,24, ...,
to compute f(x), the complete set of values of fw (2) for 0 <<z << ax is
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not required to compute fv +1(x), but only the values of fw(2) in a
relatively small neighborhood of z = yn (x — A4).

The same idea extended to multi-dimensional equations can result in
a considerable saving of memory space in computing machines. Recipro-
cally, we will be able to solve problems using existing machines which
might otherwise escape them. In any case, a great saving in running
time will result, once again increasing the feasibility of a solution by
these means.

§ 24. Stochastic allocation processes

In the preceding pages of the chapter, we have considered, in greater
and lesser detail, various multi-stage allocation processes characterized
by the property that the outcome of any decision was uniquely determined
by the choice of this decision. Processes of this type we call deterministic.

Not all multi-stage processes, however, possess this property, and, as
a matter of fact, many of the most interesting are quite definitely not
of this type. Let us consider here one important class of non-deterministic
processes in which the effect of a decision is to determine a distribution
of outcomes in the sense of probability theory. Processes of this type
we shall call stochastic.

We shall limit ourselves in this book to processes of these two types.
The discussion of the origin of processes of more complicated nature,
and their treatment, we shall defer to another place.

From the mathematical point of view, stochastic processes furnish
varied classes of fascinating analytic problems, and throw unexpected
light upon many processes of supposedly deterministic nature. Appli-
cations of the theory are furnished by scores of processes drawn from
biologic, economic, engineering, and physical fields.

Returning to our domain of decision processes, a fundamental problem
confronting us is that of defining what we mean by an optimal policy
in the face of uncertain outcomes. What is crystal clear, but so often
overlooked in a posteriori comment, is the fact that a lack of complete
control over a process effectively prevents a guarantee of a maximum
return.

On the other hand, despite this Damoclean sword of uncertainty,
there must exist some means of comparing policies, taking into account
the possible fluctuation of outcomes.

What causes a major difficulty in applications is not that it is hard
to find such a measure, but rather that is is hard to find a unique measure.
In short, it must be emphasized that there is no one method which can
have any pretensions to the title of “best.” Whatever method is used
depends to a large extent upon various analytic and arithmetic aspects

38



A MULTI-STAGE ALLOCATION PROCESS

of the process, and, it must be confessed, upon the philosophical and
psychological attitudes of the decision-makers.

Having thus dwelt upon the dismal side of the matter, to assuage
our consciences, let us now proceed more constructively.

The general idea, and this is fairly unanimously accepted, is to use
some average of the possible outcomes as a measure of the value of a
policy. It is in the choice of this average that the difficulties arise.

Let us point out in passing that there is a definite lack of unanimity
concerning the use of averages in determining policies for stochastic
processes which may be carried through once, or at best, only a few
times. In some cases, “‘distribution-free” policies can be obtained. In
general, however, there seems to be no other approach to these questions
than the usual one we present here.

The first average, or criterion, we shall employ is the common arithme-
tic weighted average, or expected value. Due to the linearity of this
average, it possesses a most important invariant property which greatly
simplifies the functional equations which describe the process. This
property enables the future decisions to be based solely upon the present
state of the system, independently of the past history of the process.

The second criterion, which is far less frequently used, is the probability
of achieving at least a certain level of return. This also possesses the
proper invariant structure as far as multi-stage processes are concerned.
We will discuss this criterion in greater detail in a subsequent chapter.

§ 25. Functional equations

Let us now consider a simple stochastic version of the deterministic
process considered in § 2, and show that the same functional equation
technique is applicable.

In place of assuming that the outcome of a division of x into y and
x —vyisa return of g (y) + & (x — ), leaving a new quantity x; = ay
+ b (x —y), let us assume that with probability p, there is a return
of g, (¥) + Ay (x —y) and a remaining quantity @,y + b, (* —y), and
with probability p, = 1 — », a return of g, (y) 4+ 4 (* —y) and a new
quantity a,y 4 b, (x — )

Let us define
(1) fw (x) = the expected total return of an N-stage process, obtained

using an optimal policy, starting with an initial quantity x.

Then, as before, we obtain the equations

@) filr) = Max [p1(g:(¥) + A (x—)) + b2 (8 (¥) + ha(x —))],

0<y<«w
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fve1(x) = Max [P {gi () + b (x—y) + fy(ary + b (x—9))] +

0<y<z

palga(y) + ha(x—y) + fn @y + b2 (x — )],

for N > 1.

The equations have the same analytic structure as those obtained
from the deterministic process. By agreeing to use the “‘expected value”
as the measure of the value of a policy, we have eliminated the stochastic
aspects of the process, at least as far as the analysis is concerned.

§ 26. Stieltjes integrals

For those who are familiar with the Riemann-Stieltjes integral, there

is a much more compact way of writing the above equations. Let

(1) dG (u, v; x, y) = distribution function of a return of » and a re-
maining quantity of v, starting with an initial
quantity x and making an allocation of y.

Taking fw (x) to be defined as above, we obtain the equations

) fi(x) = Max f udG (u,v; %, ),

0<y<=z

fv+1(x) = Max f[u + fv )] 4G (u, v; %, 9)

0<y=<z

It is much simpler to describe the processes, to establish existence
and uniqueness theorems for the resultant functional equations, and to
derive analytic properties of the solution, using this short-hand notation.
The basic mathematical ideas are, however, the same.

Equations of this type will be discussed again in Chapter III within
a more general framework.

Exercises and Research Problems for Chapter I

1. Let us define the function

fn(a) = Max [x; %, ... xn]
R

where R is the region determined by the conditions
a. % +2+ ... +av=a,a>0.
b. x; > 0.
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Prove that fn (a) satisfies the recurrence relation

fv(a) = Max xfv_1(a—2x),N>2,
0<z<a
with f, (a) = a.
9. Show inductively that fy(a) = a¥/N¥, and hence establish the
arithmetic-geometric mean inequality,

(x1+x2+...+xN
N

N
> %1 %3 ... XN,

for x; > 0, with equality only if x, = x, = ... = an.

3. Let us define the function

N
fv(a) =Min X %2, 6 >0,

R i=1
where R is the region defined by

3%
a. 2 xi>a,a>0.

i=1
b. % > 0.
Show that fn (a) satisfies the recurrence relation

fv(@) = Min [x? 4 fy_1(a—=x)], N > 2,

0<z<a

with f; (a) = a».
4. Show that fv(a) = a? cy, where ¢y depends only upon N and p,

and thus that

cv= Min [2P 4 (1 —x)Pcn—_1].
0<z<1 )

Determine cy for the ranges 0 << p << 1,1 < p, respectively.
5. Consider the problem of minimizing the function
N
F (%, %9 oo, 2n) = X pusif(si + xi),
i=1

where the p¢ and s; are parameters subject to the conditions p; > 0,
Xpi=1, si >0, and the x; range over the region defined by x; > 0,
i

N

2% = a.
=1
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Obtain the corresponding recurrence relations and show that the
solution is of the form
=0 0<7<4¢
x>0, t4+1<j<N

under a suitable reordering of the x;’s.

6. Consider the problem of maximizing the function
N

F (%, %5, ..., %8) = & @ (),
i1
N

subject to the constraints x; > 0, 2" x; = ¢. Show that the maximum
i=1
is @ (¢), under the assumption that ¢ (x) is convex.

7. Consider the case where ¢ (x) is a monotonically increasing function
which is strictly concave. Show that the solution of the corresponding
functional equation,

fv(e) = Max [p@) +fv-1(c—y)], N=2,

0<y<e

fHile)=e9l),
has the form
yv=100<c<cw,

= 2N, € > CN,
where zy is the unique solution of
0 =fv-1(c—y),
for N > 2, and show how to determine the sequence {cn}.

8. Obtain explicit recurrence relations, and the analytic form of the
sequence for the case where

) =y—0by?b>0,
and ¢ is restricted to the range 0 <<c < 1/20.
9. What are the analogues of these result for the case where the function
F has the form 2 @i (xi), where each function @; (x) satisfies the same
conditions as alg(:\rle7

10. Carry through the correspondmg analysis for the prob]em of mini-

mizing F (%;, %5, ..., xn) = Z @ (%), subject to x; > 0, 2 %i = a in the
=1 =1
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case where ¢ (x) is a non-negative monotonically increasing function
which is strictly convex. Consider, in particular, the case where

@ (x) = x + bx?, b > 0.

11. Consider the problem of maximizing

N
F (%, % oo, XN Y1, Varu oo, YN) = 2 @ (%, 4),
i=1
subject to
~ ~
%, ¥ >0, 2 xi = ¢y, X yi = ¢y,
i=1 i=1

where @ (x, ¥) is a strictly concave function, monotone increasing in x and

Show that the corresponding functional equation

(e, ) = Max [p(xy) + fv -1 (cr—%, ca—)],
0<z<¢
0<y<ge

possesses for each N > 2 a solution of the form

Figure 6

and show how to determine the boundary curves.
Consider, in particular, the case where

@ xY) = ur x4 vy 4 s %%+ 2uy xy 4 u, V3,

12. Under the assumption that ¢ (x) is a monotonically increasing strictly

concave function, determine the maximum of F (x4, %,,..., %n) =
N

2 @ (x:) over the region determined by

i=1
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N
a. 2 xi<c,x>0

t=1

N
b. 2 x? <ec,,

i=1
for p > 1 and p < 1 respectively.

13. Obtain the recurrence relations arising from the problem of mini-
N

mizing X ¢; (x:) subject to the restrictions
i=1

a. 0<<wi<<v,

N
b. X pi(x:) > a,

t=1

under the assumptions that each y: (x) is a non-negative monotone in-
N

%)
creasing function of x, with 2 y; (r)) > a.
i=1

14, Consider the corresponding multi-dimensional problem of mini-
¥

mizing X @ (xi, vi) subject to the constraints
i=1

a. 0 ai<7, 0<<yi<<sy,
N

b. X yi(xi, 90) > a,

i=1
under appropriate assumptions concerning the sequence {y}.

15. Determine the maximum of the function x, x, ... xn over the region
defined by

N
a. in——-l, xi >0,

i=1

b, bxp<<xx+1,0>1,k=1,2,...,N—1.

N
Consider the same problem for the function X' x:2, for different ranges
i=1
of .
16. Consider the recurrence relations

fi(x) = Max [g(y) + & (x—)],

0<y<=z

Sy+1(x) = Max [g(y) + h(x—y) + fn (ay + b (x—y))],

0<y<z
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where g (y) = ¢1y%, h (y) = cay?, with ¢y, ¢,, d > 0. Show that fv (x) =
wunx%, where

u, = Max [c,v2 + ¢, (1 —v)9],

0<v<1

un +1 = Max [c,v? + ¢, (1 — )% + un (av + b (1 — v))9].

0<v»<1

Show that

€, 0% 4 ¢y (1 —v)e ]
1—(av4+b(1—v))el’
17. Consider the process described in § 2 under the assumption that it is

not required to use all the resources available at each stage. Show that the
functional equation obtained in this way has the form

flx) = Max [g(y) + h(ys) + flay, + by, + x —y, —¥,)].

Y1 +y, <z

lim uy = Max [

N— oo 0<v<1

Does this equation have a solution if g (x) and 4 (x) are both concave
functions of x? Does it have a solution if they are both convex? Under
what conditions upon g (x) and % (x) does it have a solution with a corre-
sponding optimal policy?

18. Show that if there is a solution with y, + y, < %, ¥4, ¥ > 0, then
g (v))/(L—a) = A’ (y5)/(1 — b) under suitable assumptions concerning
g and 4. What is the interpretation of this solution ?

19. Consider the process described in § 2 under the assumption that addi-
tional resources are added at each stage, either externally or from the
conversion of all or part of the return g (y) 4+ & (x — y) into resources,
and obtain the corresponding recurrence relations.

20. Consider the process described in § 2. Define gn (2) as the minimum
cost required to obtain a total return of zat the end of NV stages. Show that

g1 (2) = Min (I —a)y, + (1 —0) ys],
g(W) +h(y,) =2
Y1, Y3 =0
gv+1(2) = Min . [(A—a)y, + (1 —0b) ys + gn (z—g (1) — £ (¥2))]
Y Y2 =

21. There are N different types of items, with the st* item having weight
w; and a value v;. It is desired to load a ship having a total capacity of w
pounds with a cargo of greatest possible value. Show that this problem
leads to the problem of determining the maximum over the »; of the

N
linear form L = X' n;v;, subject to the constraints,n; =0, 1,2, ..., N,
i=1
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2 ni wi << w, and thus that this problem leads to the recurrence relations
i=1

f1 (@) = v, [w/w,], ([a] denotes the greatest integer contained in a)

fy+1(w) = Max [xow +1 -+ f (@ — xwn +1)],

w
ngslw
N+1

where x can assume only zero or integral values.

22. Suppose that we have a herd of cattle and the prerogative, at the
end of the year, of sending one part of the herd to market, and retaining
the other part for breeding purposes. Assume that the dollar value of y
cattle sent to market is ¢ (y), and that z retained for breeding purposes
yield az, a > 1, at the beginning of the next year.

Show that the problem of determining a breeding policy which maxi-
mizes the total return over an N-year period leads to the recurrence
relation

filx) = Max ¢(y)

0<y=<z

fn(x) = Max [@(y) + fv-1(a(x—y))].

0<y=<z

23. Determine the structure of the optimal policies in the following cases:

a. @y)=Fky, k>0

b. ¢ (y) is quadratic in y

c. @ (y) is strictly convex

d. @ (y) is strictly concave

24. Formulate the equations under the additional restriction that cattle

must be 2 years old before they can be sold. Take into account feeding
cost and mortality rates.

25. Consider the case in which there are probability distributions for the
price and demand.

26. In problem 22, let ¢ (¥) = cx4,¢,d > 0. Show that fy (x) = cnx?,

where ¢, =c and ecx+1= Max [ré 4 cyad(l—7r)d, N=1,2, ...
0<r<i1
Determine the asymptotic behavior of ¢y +1/cy and 7x +1/7n.

27. Suppose that we have a quantity x of money, and that portions of
this money can be used for common goods, invested in bonds, or invested
in stocks. The return from y dollars invested in bonds is ay dollars, a > 1,
over a period of one year; the return from z dollars invested in stocks is
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bz dollars, b > 1, over a period of one year. The utility of w dollars spent
is ¢ (w). How should the capital be utilized so as to derive a maximum
utility over an N year period?

28. Consider the same problem under the assumption that the return
from stocks is a stochastic quantity.

29. A sophomore has three girl friends, a blonde, a brunette, and a red-
head. If he takes one of the three to the Saturday night dance, the other
two take umbrage, with the result that the probability that they will
refuse an invitation to next week’s dance increases. Furthermore, as a
result of his invitation, there is a certain probability that the young lady
of his choice will be more willing to accept another invitation and a
certain probability that the young lady will be less willing.

Assuming that feminine memories do not extend back beyond one
week, what dating policy maximizes the expected number of dances the
sophomore attends—with a date?

30. Obtain a sequence of recurrence relations equivalent to determining

N
the minimum of the linear form L = X x;, subject to the constraints
i=1

% >0,% + %41 >a5,0=1,2, ..., N— 1. Thus, or otherwise, show

that Min L = Max a;, granted that one a; is positive.
i

31. Solve the corresponding problem for the case where the constraints
are x; + Xi+1+ Xir2>a;,1=1,2, ..., N—2.

32. Determine the recurrence relations for the problem of minimizing L
N

=X ci %3, ¢i > 0, subject to the constraints

i=1

2>0,bixi +dixis1>a5,1=1,2, ..., N—1.

33. Solve the problem formulated above in (32) for the case where the
constraints are

a. X+ xi+1>ai,1=1,2 ..., N—1,xy > an, or

b. % +x+1>a;,0=12 ..., N—1,x, >a, xy > an, Or

C. X+ X1+ xir2>a,0=1,2,..., N—2,xxv_1+ axv>an-1,

AN > an.

plus the usual constraint x; > 0.

34. Show how to approximate to f (x) in the interval [a, b] by means of a
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linear function ux + v according to the following measures of deviation

a. fb(f(x)—ux——v)zdx

a

b. Max |f(x) —ux—v]
a<z<b
35. Suppose that it is necessary to traverse a distance x. If we travel at a
speed v there is a probability p (v) ds of being stopped in the interval
(s, s + ds) and incurring a delay of 4 time units. At what fixed speed
should we travel in order to minimize the expected time required to cover
a distance x? (Greenspan)

36. Under the same conditions as those of Problem 35, at what speed
should we travel in order to minimize the probability of requiring more
than a time T to cover the distance x?

37. Assume that there is a penalty of p dollars when stopped and that
actual travelling time costs ¢ dollars per unit time. How do we proceed to
minimize expected cost ?

38. Obtain a recurrence relation equivalent to the problem of minimizing
N

the quadratic form Qn = 2 (¥x — xx-,)? over all sets of values for the
N k=1
xr for which X' %2 =1, 2, = c.
k=1

39. We are informed that a particle is in either of two states, which we
shall call S and T, and are given the initial probability x that it is in state
T. If we use an operation 4 we reduce this probability to ax, where a is a
positive constant less than 1, whereas operation L, which consists of
observing the particle, will tell us definitely which state it is in. It is
desired to transform the particle into state S in a minimum time, with
certainty.

If f (x) is defined to be the expected number of operations required to
achieve this goal, show that f (x) satisfies the equation

DL 14 xf(D)
fx) = Min {A: 1+ f (ax)
£(0) = 0.

40. Show that there is a number x, in the interval (0,1) with the property
that

}y 0<x£1,

flx)=14+xf(1),0<x<x,
=1+ f(ax), 1 = x > x,.
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Show that

f(l):Min(k+l ),k=1,2,...,

1 —ak

1 . 1—ak
xO= —

1—=af1) (1—aE&+1’

for the minimizing value of .

41. At each stage of a sequence of actions, we are allowed our choice of
one of two actions. The first has associated a probability p, of gaining one
unit, a probability , of gaining two units, and a probability p, of gaining
nothing and terminating the process. The second has a similar set of
probabilities p,’, p,’, 5. We wish to determine a sequence of choices
which maximizes the probability of attaining at least # units before the

process is terminated.
Let p (n) denote the this probability forn = 1,2, 3, . ... Showthat p (n)
satisfies the equation

prp(n—1) +P2P("—2),]
P p(n—1) +p p(n—2)1°

forn =2,3,4, ..., with (0) =1, and
p (1) = Max (p,, p,).

# (n) = Max [

42. With reference to § 7, show that if g (x) and 4 (x) are quadratic in «,
then fw (¢) = an + fnc + ync? where aw, B, v~ are independent of c.

43. Show that there exist recurrence relations of the form
av +1 = R, (an, B, yn),
Bn +1 = Ry (an, Bv, yn),
y~n +1 = Ry (aw, fn, yn),

where the R; are rational functions.

44, Treat in a similar way the problem of minimizing the function

N
f(xlv x2;"'rxN) == 2 [g(xk'—fk) +h(xk“—xk— 1)
k=1

+ m (X — 2%k -1+ Xk - 2)],
where g (x), % (x) and m (x) are quadratic.
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45. Suppose that we have a machine whose output per unit time is 7 (¢) as
a function of ¢, its age measured in the same units. Its upkeep cost per
unit time is # (¢) and its trade-in value at any time ¢ is s(¢). The purchase
price of a new machine is p >s(0). At each of the times ¢ =10,1,2,...,
we have the option of keeping the machine, or purchasing a new one.
Consider an unbounded process where the return one stage away is dis-
counted by a factor a4, 0 << a < 1. Let f(¢) represent the total overall
return obtained using an optimal policy.
Show that f (¢) satisfies the equation

r() —ult) +aft+1), ]
—
TO=M L) —p 70— (0 + 27 ()
46. Using the fact that an optimal policy, starting with a new machine,

is to retain the machine for a certain number of time periods, and then
purchase another one, determine the solution of the above equation.

47, TIs it uniformly true that, if given an over-age machine, the optimal
policy is to turn it in immediately for a new one?

48. How does one formulate the problem to take into account technolo-
gical improvement in machines and operating procedures?

49. A secretary is looking for a single piece of correspondence, ordinarily
a carbon on thin paper. She usually has 6 places she can look

Folder Number &

Three folders of about 30 sheets each 1,2,3
One folder of about 50 sheets 4
One folder of about 100 sheets 5
Elsewhere 6

The initial probabilities of the letter being in the various places are usually

k Pk 1-2; tr
Probability of Probability of Time for one
letter in folder being found on examination

one examination
if in folder

1 .11 .95 1

2 .11 .95 1

3 .11 .95 1

4 .20 .85 2

5 .37 .70 3

6 .10 .10 100
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How shall the secretary look through the folders so as to
a. Minimize the expected time required to find a particular letter ?
b. Maximize the probability of finding it in a given time? (F. Mos-
teller)

50. Let the function a (x) satisfy the constraint a (x) << d < 1 for all «.
Show that the solution of the equation

u = Max [b(x) + a (x) »],

if it exists, is unique, and is given by the expression

u = Max b (x)/(1 —a (x)) .

Under what conditions does the solution exist ?

If a (x) does not satisfy the above condition, show that the number
of solutions is either 0, 1, 2 or a continuum, and give examples of each
occurrence.

51. We are given a quantity x > O that is to be utilized to perform a
certain task. If an amount y, 0 << y < x, is used on any single attempt,
the probability of success is a (y). If the task is not accomplished on the
first try, we continue with the remaining quantity x — y. Show that if
f (x) represents the over-all probability of success using an optimal policy,
then f (x) satisfies the functional equation

f®) = Sup [a(y) +(L—a(y))flx—y)].

0<y<«x

52. Derive the corresponding equation for 1 — f(x), the probability of
failure.

53. Consider the two cases where a (y) is convex or concave, and obtain
the explicit solutions for these cases. Observe that in one case there is no
optimal policy.

54. Consider the process discussed in § 2 under the assumption that the
total return from an N-stage process is

Ry=g@)+hx—y) +gW) +h(x—y) + ...
+glynv-1) +hxv-1—y~-1) + k(xn),
where % (x) is a given function.
55. Consider the functional equation
S = i\lya;[g ¥) + A (x—y) + flay + b (x—y))I,
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under the assumption that
a. g~y h(y) ~ cayt €y, ¢y, d > 0,8y —> 00
or
b. g) ~ ¢y, h(y) ~ coy®h, ¢y, €y, dy, dy > 0asy — oo,

In both cases, determine the asymptotic behavior of f (x) as x — oo.

56. Determine a recurrence relation for

Min[ 2 +_x,, n n Xn 1 n %n ]
;>0 Xy 4 %3 Xy + %, Ko+ % X+ %]

with the introduction of suitable additional parameters.

57. Consider the problem of determining the minimum of the function

N N

2 gk(fk,7k+1)+ z hk(l’k),

k=1 k=1
where 7y +1 = 7,, and the 7, are subject to the constraint

a. 07 << by,

N
b. X2 @r(rk) >c,
k=1

with each @i (x) a known monotone increasing function of x, g (0) = 0.
Introduce the auxiliary problem:
Minimize
gu,7e) +g(ra,7s) + ... +g(rw-1,78) + g (7w, v)

N

+ 2 h«k(fk),

k=2
with 7,, 75, ..., 7~ subject to the constraints

a. ngkgbk

N

b X @r(re) >c.
k=2

Show that if we designate the above minimum by F (u, v, c), then the
minimum in the original problem is given by

Min F(ry, 7, ¢ — o (1)) .

0<rn<b
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58. Introduce the sequence of functions, R =2,3, ..., N —1,

Fr(u,v,c) =Min[g(u,7r) + g (*r,7R+1) + ... + g (75 -1, 7N)

% N
+eglwv)+ 2 hx(re)],
k=R
with
Fy(u,v,¢) = Min [g (, »n) + g (r~, v) + hx (7a)].
'~
For each R, admit only c-values satisfying the restriction

N
2 @k (br) = ¢, where the by are fixed positive constants.
E=R

Show that we have the recurrence relation

Fr(u,v,c) = Min[g (u,7r) + hr(*r) + Fr+1(*r, v, c—@r (*r))],
r
R

where 7 varies over the interval defined by

a. 0<<rp<<bg,

N
b. P (pk(bk) 2C—¢R(1’R).
E=R+1
59. Consider in a similar fashion the problem of minimizing a function
such as

Ry =¢ (’1, 6% 73) +g (72, 73,7 + ... + ¢ ("N— 1 ?N, 71)
+ g (VN, 71! 72)'

60. Suppose that we have a quantity of capital ¥, and a choice of the
production in varying quantities of N different products. Assume initi-
ally that there is an unlimited supply of labor and machines for the pro-
duction of any items we choose, in any quantities we wish.

If we decide to produce a quantity x; of the 7t* item, we incur the follow-
ing costs:

a. a; = unit cost of raw materials required for the #t* item

b. b: = unit cost of machine production of #¢* item

c. ¢; = unit cost of labor required for #t* item.

d. Ci = a fixed cost, independent of the amount produced
of the st item, if x; > O.

The cost of producing a quantity x; of the ¢¢# item is then

gi (x:) = (a¢ + bi + ¢i) % + Cq, x>0 )
=0, xi=0.
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Let p: be the selling price per unit of the #t* item. The problem is to
choose the x; so as to maximize the total profit

N
Py= X pi %xi,
i=1
subject to the constraints
N
@ 2 gilw)<x,
i=1
(b) % >0.
Let
fnv (x) = Max Pn.
Show that '
fi(x) = p1 (x—Cy)[(ar+b1+c), x = Cy,
- 0, 0 S X S Clr
and
fv(x) = Max [pyan + fv-1(x —gn (xn))].
x>0
yN(lzN) sz

Show that x» > 0 can be replaced by
fv-a1(®) —fv -1 (x —Cw)
XN = .
(2%

61. Assume that the demand for each item is stochastic. Let Gy (2) repre-
sent the cumulant function for the demand z for the kt* item. Show that
the expected return from the manufacture of x4 of the £t item is

pr f:"zdck (2) + pkf“xkdc ()

T

— i f 2dGy (2) + pr xx (1 — G (x2)),

and obtain the recurrence relation corresponding to the problem of
maximizing the total expected return.

62. Consider the problem of maximizing the probability that the return
exceed 7.

63. Consider the above problem in the deterministic and stochastic
versions when there are restrictions upon the quantity of machines
available and the labor supply.
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64. Obtain the recurrence relations corresponding to the case where we
have ‘“‘complementarity’’ constraints such as

a. X% =0, %%=0, %¥o%,=0,
and so on, or
b. xixi+1=0, 1=1,2 ..., N—1,.

65. Suppose that we have a complicated mechanism consisting of N
interacting parts. Let the 4t» part have weight W;, size S;, and let us
assume that we know the probability distribution for the length of time
that any particular part will go without a breakdown, necessitating a new
part. Assume also that we know the time and cost required for replace-
ment, and the cost of a breakdown. Assuming that there are weight and
size limitations on the total quantity of spare parts we are allowed to
stock, how do we stock so as to minimize

the expected time lost due to breakdowns,

. the expected cost of breakdowns,

a given function of the two, time and cost,

. the probability that the time lost due to breakdowns will exceed T,
the probability that the cost due to breakdowns will exceed C?

P a0 TP

66. Determine the possible modes of asymptotic behavior of the sequence
{un} determined by the recurrence relation

un +1 = Max [aun + b, cun + d],
and generally by the recurrence relation
Un +1 = ng[aiun +b],1=12,...,k.
(cf. Problem 50). 1

67. Determine the minimum of
.A\Y
F (%), %5, ..., 28) = 2 gi (%) + Max (x5, %, ..., xn),
i=1

subject to the constraints x; > 0.

68. Suppose that we have N different activities in which to invest capital.
Let g¢{x:) be the return from the st activity due to an investment of x;.
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