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ABSTRACT

We develop a novel control function approach inmodels where the treatment variable has bunching at one
corner of its support. This situation typically arises when the treatment variable is a constrained choice and
some observations choose the corner solution. The method exploits distributional shape restrictions but
makes no exclusion restrictions. We provide estimators and establish their asymptotic behavior, prove the
convergence of the bootstrap, and develop tests of the identification assumptions. An application reveals
that watching television has no effect on cognitive skills and a negative effect on noncognitive skills in
children.
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1. Introduction

When the treatment variable is constrained to be above or below

a certain threshold, bunching of observations is often seen at

the threshold itself. Caetano (2015) develops a test of exogeneity

in these situations based on the idea that unobservables vary

discontinuously at the threshold. In this article, we show that

the same idea can be leveraged further to build a correction for

endogeneity, provided that further structure is imposed. Specif-

ically, we impose a restriction on the shape of the distribution

of the confounders conditional on the controls, but we allow the

parameters of that distribution to be nonparametric functions of

the controls. In particular, all of the controlsmay be endogenous.

The approach does not require exclusion restrictions or specific

data structures (e.g., a panel), so it can be useful when none of

the well-established selection-on-unobservables identification

strategies are applicable, either because they are infeasible or

because they do not identify the parameter of interest.

In a linearmodel, themethod translates to adding a generated

control to the original regression. The entire approach in this

case can be implemented with packaged software. We derive the

asymptotic behavior of the estimator of the treatment effect coef-

ficient, provide a consistent estimator of the standard errors, and

prove the consistency of the bootstrap. We also develop tests for

all the assumptions in themodel. Finally, we extend the approach

beyond the linear model, showing that it can be applied in

many widely-used nonlinear models. Examples include corre-

lated random effects models, partially linear models, some types

of nonparametric nonseparable models, and probit models with

endogeneity.
We apply the approach to estimate the effect of time spent

watching television on children’s skills using time diary data
from the Panel Study of Income Dynamics Child Development
Supplement (PSID-CDS). We find strong evidence of selection
on unobservables in this application. Our correction approach
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reveals that television time has insignificant, positive effects on
children’s cognitive skills and significant, negative effects on
their noncognitive skills.We test all our identifying assumptions
using the tests we propose.

Our method can be understood as a control function
approach (e.g., Heckman and Robb 1985; Navarro 2010).
However, unlike typical control function approaches, our
method does not require exclusion restrictions, exploiting
shape restrictions instead. There are alternative approaches in
the literature that identify treatment effects without exclusion
restrictions, but the assumptions in those methods apply to
different contexts. For instance, Klein andVella (2010) and Lew-
bel (2012) show that heteroscedasticity can be used to achieve
identification in linear models. D’Haultfœuille, Hoderlein,
and Sasaki (2021) show that if the instrument satisfies a local
irrelevance condition, then it is possible to identify the causal
effect of interest in nonseparable models without an exclusion
restriction. For models with binary treatment, see Millimet and
Tchernis (2013) and the references therein for approaches that
achieve identification without exclusion restrictions.

Our model is also related to the sample selection correction
literature following Heckman (1979). That literature typically
exploits distributional assumptions, as in our case. However,
the key distinction is that our setup is not a sample selection
model—no variable in the structural equation is censored in
our context. In particular, both the outcome and the treatment
variable are observed for the whole sample.

There is a large applied literature using bunching in the
outcome variable (rather than in the treatment variable) to
infer treatment effect parameters. Recently, there have been
advancements in the theoretical treatment of identification in
that context, notably in Blomquist et al. (2019) and Bertanha,
McCallum, and Seegert (2020), on the identification of elastic-
ities with respect to changes in a schedule of incentives (e.g.,
taxable income elasticity), and in Goff’s (2020) generalization to
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models where the outcome is a choice subject to a budget set
with a kink. Blomquist et al. (2019) and Bertanha, McCallum,
and Seegert (2020) establish that identification in that context is
impossible without restrictions on the conditional distribution
of the unobservables similar to those imposed in our approach.
However, differently from this literature, it is not necessary
in our setting to specify how the bunched variable is chosen:
we specify neither the optimization function nor the budget
constraint.

Bunching at one of the extremes of the distribution of the
treatment variable is often observed when the treatment is a
choice constrained to be nonnegative, as in the case of demand
or inputs to production. Examples include behavioral variables
like the consumption of vitamin supplements, cigarettes,
alcohol, and coffee;1 financial variables such as credit card debt,
credit access, expenditure on advertisements, and bequests;2

variables quantifying different uses of time such as exercising,
working, doing homework, volunteering, and using social
media;3 and count data such as the number of children, the
frequency of doctor visits, and the crime rate.4 Moreover,
our approach is a natural solution whenever exogeneity is
rejected by Caetano’s (2015) test, which has been applied
in a variety of settings in economics, political science, and
finance.5

We develop a general inference framework that makes
extensive use of Chen, Linton, and Van Keilegom’s (2003) work
for extremum estimators with possibly infinite dimensional nui-
sance parameters. However, the primitive results for stochastic
equicontinuity in that article, which would greatly simplify the
analysis, cannot be applied in our context. Instead we must
prove the stochastic equicontinuity directly, and for this we use
results in Pakes and Pollard (1989) and Andrews (1994). We
also relax Chen, Linton, and Van Keilegom’s (2003) almost sure
stochastic equicontinuity requirement for the bootstrap, which
has no applicable primitive conditions in the literature, making
it hard to defend in practice. We substitute it by stochastic
equicontinuity in probability requirements which are standard
and for which primitives are well known (generally Donsker
classes, e.g., smooth functions, limited variation functions,
etc.).

To establish the convergence of the estimator in the
specific tail symmetry case we use in our application, we
develop new results for the estimation of quantiles at random

1Meta-analyses of studies estimating the effects of these variables on health
outcomes include Fawzi et al. (1993), Hernán et al. (2002), Reynolds et al.
(2003), Noordzij et al. (2005), Bischoff-Ferrari et al. (2005), Oken, Levitan, and
Gillman (2008), and Richardson, Elliott, and Roberts (2013).

2See, for example, Peek, Rosengren, and Tootell (2003), Ekici andDunn (2010),
Bertrand et al. (2010), Brown, Coile, and Weisbenner (2010), Melzer (2011),
Boserup, Kopczuk, and Kreiner (2016), and Erixson (2017).

3See, for example, Luoh and Herzog (2002), James-Burdumy (2005), Eren and
Henderson (2011), Bhutani et al. (2013), Holt et al. (2013), and Boulianne
(2015).

4See, for example, McDuffie et al. (1996), Black, Devereux, and Salvanes
(2005), and Cohen (2008).

5See, for example, Rozenas, Schutte, and Zhukov (2017), Erhardt (2017), Pang
(2017), Bleemer (2018a), Bleemer (2018b), Ferreira, Ferreira, and Mariano
(2018), Lavetti and Schmutte (2018), Caetano andMaheshri (2018), De Vito,
Jacob, and Müller (2019), Caetano, Kinsler, and Teng (2019), Caetano, Cae-
tano, and Nielsen (2022), and Caetano et al. (2022)

(estimated) probabilities, and trimmed means at random
(estimated) trimming points. Since these results may be of
interest beyond the matters studied in this article, we present
them in general notation which can stand alone (see Lemmas
G.1, G.2, and G.3 in Appendix G.6). The trimmed mean results
apply Fang and Santos’s (2019) recent findings on Hadamard
directional differentiability.

The article is laid out as follows. Sections 2 and 3 present
the identification approach, and Sections 4 and 5 present esti-
mators and asymptotic results. Section 6 develops tests aimed
at detecting violations of all the identifying assumptions. In
Section 7, we estimate the effect of time spent watching televi-
sion (TV) on children’s cognitive and noncognitive skills using
our method. Other applications of this method can be seen
in Caetano, Caetano, and Nielsen (2022) and Caetano et al.
(2022). Section 8 concludes. The Appendix develops extensions
to nonlinear models, presents further material on estimation
and on our application, an empirical Monte Carlo study, and
proofs. The code for implementing the method is available at
https://github.com/GregorioCaetano/Bunching.

2. Correction Strategy

Themain idea behind our approach can be contextualized using
the example of our application, discussed in more detail in
Section 7. We are interested in estimating the effect of the treat-
ment X, hours per week the child watches TV, on the outcome
Y , the child’s cognitive or noncognitive skills. Figure 1 shows
the unconditional cdf (left panel) and the empirical distribu-
tion (right panel) of X. About 5% of the sample is bunched
at X = 0.

Why would this bunching occur? One explanation may be
given if X is chosen in an optimization problem. Suppose that
the amount of TV watching is chosen taking the family and
child’s characteristics, preferences and constraints into account.
One of the constraints of this problem is that the amount of time
spentwatchingTVcannot be negative.Wedenote the solution of
the optimization problem where the nonnegativity constraint is
removed asX∗. In this setting, an explanation for the bunching at
X = 0 is that some individuals find the nonnegativity constraint
binding (i.e., X∗ < 0), so they choose a “corner solution.”6

The variable X∗ indexes all factors that affect the demand for
watching TV, such as preferences for TV watching, preferences
for alternative activities, and any additional constraints (e.g., all
activities must add up to 24 hr a day). Note that this conceptu-
alization of X∗ motivates our approach, but it is not necessary as
long as the model below holds.

6It may be difficult to conceptualize the idea that X∗ can be negative, as
it would mean that someone would want to choose negative amounts
of TV watching. It may be easier to think of X∗ at X = 0 as a measure
of the distance from exact indifference between watching some TV and
alternative activities. For instance, those at X∗ = −0.1 have characteristics,
preferences and constraints that led them to be nearly indifferent between
watching TV and another activity at X = 0, while those at X∗ = −3 have
characteristics, preferences and constraints that led them tobe farther from
indifference atX = 0 (e.g., this family couldbe equal in everyway to a family
of type X∗ = 0, except for having a higher relative preference for playing
sports versus watching TV.)
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Figure 1. Unconditional distribution of X .

NOTE: The left panel shows the cumulative distribution function of X (TV time). The right panel shows the kernel density estimate along with the histogram for X > 0
(bandwidth equals to 2). The darker bar is the proportion of observations with X = 0. See Section 7 for more details about the application.

The treatment variable X is related to X∗ according to7

X = max{0,X∗}, with 0 < P(X∗ < 0) < 1. (1)

The model’s key requirement, 0 < P(X∗ < 0) < 1 in (1),
is that the nonnegativity constraint is binding for part of the
population. For those observations, X∗ is different from the
actual choice X.

We decompose X∗ into a part that is determined by the
characteristics we observe in the data, Z, and a remainder η,
that is,

X∗ = Z′π + η. (2)

We now consider the outcome equation, which is where we
impose structure.

Y = βX + Z′γ + δη + ε, where E[ε|X,Z, η] = 0. (3)

This equation specifies the unobservable determinant of the
outcome as δη+ε. Here, η is a sufficient index of all confounders,
in the sense that, if we were able to observe and control for it,
there would be no endogeneity problem. If δ = 0, then X is
exogenous (i.e., E[δη + ε|X,Z] = 0), and thus β is identifiable
as in the standard selection-on-observables model. If δ �= 0,
then X is endogenous. We keep the linear specification here
for concreteness, as linearity is often assumed by researchers
in practice, but we show in Appendix A that (2) and (3) can
be generalized substantially, including to some nonparametric
nonseparable models.

By (1) and (2),E[η|X,Z] = X+E[X∗|X∗ ≤ 0,Z]1(X = 0)−
Z′π . This implies that, if E[X∗|X∗ ≤ 0,Z = z] can be identified
for all z ∈ Z|X = 0, then Z and X + E[X∗|X∗ ≤ 0,Z]1(X = 0)
are a proxy for the omitted variable η. SinceZ is already a control
in the structural equation, we would only need one additional

7All equations and results involving random variables should be read as
holding almost surely. P denotes the probability, and details about the
implied probability spaces and conditional sigma-algebras are self-evident
and thus omitted. Z denotes the support of the distribution of Z, and
Z|A denotes the support of the conditional distribution of Z given A. For
brevity, we oftenmention the support of the variable V whenwemean the
support of the distribution of V . Finally, the expectation E is assumed to
exist wherever written.

regressor, X + E[X∗|X∗ ≤ 0,Z]1(X = 0), in order to proxy for
the omitted variable. The identification equation is therefore

E[Y|X,Z] = βX+Z′(γ−πδ)+δ(X+E[X∗|X∗ ≤ 0,Z]1(X= 0)).
(4)

As long as E[X∗|X∗ ≤ 0,Z] can be identified, and X, Z and the
correction term X + E[X∗|X∗ ≤ 0,Z]1(X = 0) are linearly
independent (see Remark 2.1), β is identifiable.

Correcting for endogeneity thus depends on the identifica-
tion of E[X∗|X∗ ≤ 0,Z]. However, since X∗ is not observed
when it is negative, E[X∗|X∗ ≤ 0,Z] is not identifiable without
additional assumptions, such as shape or parametric restrictions
on the distribution of X∗|Z. We examine some of these assump-
tions and derive the corresponding expressions for E[X∗|X∗ ≤
0,Z] in Section 3.

Our approach therefore exploits bunching and two assump-
tions: the linearity assumption in (3) (i.e., that it is sufficient to
control for Z and η linearly), and whichever shape or distribu-
tional assumption we make for the identification of E[X∗|X∗ ≤
0,Z]. With these assumptions, we can identify β , (γ − πδ)′

and δ in equation (4). In Section 6, we present several tests for
both of these assumptions. In Appendix A, we relax the linearity
assumption and show how the correction may be implemented
in some nonlinear and nonparametric models.

In Section 4, we prove the asymptotic normality of the cor-

rected regression coefficients (β̂, (γ̂ − πδ)′, δ̂)′ when the correc-
tion uses any consistent estimator Ê[X∗|X∗ ≤ 0,Z] satisfying
some general conditions. We also derive a consistent estimator
of the standard errors and prove the consistency of the bootstrap.

In Section 5, we discuss how to estimate Ê[X∗|X∗ ≤ 0,Z].

Remark 2.1 (On the RankCondition and the Probability of Bunch-
ing). The rank condition for the identification of β in (4) holds
if X, Z and X + E[X∗|X∗ ≤ 0,Z]1(X = 0) are linearly
independent. The linear independence ofX andX+E[X∗|X∗ ≤
0,Z]1(X = 0) is guaranteed if, and only if, P(X∗ < 0) > 0 and
P(X > 0) > 0. This means that the approach cannot be applied
in standardmodelswithout bunching, as bunching is a necessary
condition for identification. The linear independence ofZ,X and
X + E[X∗|X∗ ≤ 0,Z]1(X = 0) imposes the constraint that no
linear combination of the latter two terms be included in Z.
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In Appendix B.1, we derive the expression of the rank con-
dition as a function of the bunching probability for the non-
extreme cases (i.e., 0 < P(X = 0) < 1), and we show that it
is not generally possible to separate the effect of the probability
of bunching fromother functions of the distribution ofX∗ which
also affect the rank condition. Thus, any study of how the rank
condition changes with P(X = 0) will depend on how the
distribution of X∗ is modified in order to achieve a shift in
P(X = 0).

In Appendix F.3, we simulate changes in P(X = 0) inside
ourMonte Carlo experiments by changingE[X∗|Z], allowing all
quantities in the rank condition to vary as a consequence. We
find that the variance of our estimators is stable for bunching
rates away from extremes, and increases sharply near extreme
bunching probabilities.

Remark 2.2 (On the Role of Controls). The approach can be
implemented without controls, provided the assumptions are
valid (i.e., (3) holds with Z ≡ 1, and E[X∗|X∗ ≤ 0] is identified,
see Section 3). In this case, there are two constants π0 and γ0
such that E[η|X,Z] = X + E[X∗|X∗ ≤ 0]1(X = 0) − π0, and
therefore E[Y|X] = (γ0 − π0δ) + βX + δ(X + E[X∗|X∗ ≤
0]1(X = 0)). If P(X∗ < 0) > 0 and P(X > 0) > 0,
the correction term is linearly independent of X, and so β is
identifiable.

If (3) holds for a given Z, what is the consequence of using
the vector of controls Z̃ �= Z? In Appendix B.2, we study this
situation in detail. In general, using a different control vector
impacts the identification of β through the parts of ε and of the
omitted controls (the elements of Z not included in Z̃) that are
not linearly predicted by X∗ and the included controls Z̃.

Remark 2.3 (On the Effect ofMisidentification ofE[X∗|X∗ ≤ 0,Z]).
What is the consequence of using a different function ẽ(Z),
instead of the true expectation E[X∗|X∗ ≤ 0,Z]? In Appendix
B.3, we show that this introduces the omitted variable (ẽ(Z) −
E[X∗|X∗ ≤ 0,Z])1(X = 0) into the model, and study its
consequences in detail. In general, using a mistaken expectation
in the correction impacts the identification of β through δ and
the part of the omitted variable which is not predicted by Z and
the correction term X + ẽ(Z)1(X = 0). We also show that, if
the rank condition holds when using the true correction term
X + E[X∗|X∗ ≤ 0,Z])1(X = 0), then the identification of β

is generally robust to small mistakes in the identification of the
expectation.

3. Identification of E[X∗|X∗ ≤ 0, Z]

Since we only observe X∗ when it is positive, E[X∗|X∗ ≤ 0,Z]
is an out-of-sample moment, and thus it cannot be nonparamet-
rically identified. Nevertheless, if X∗|Z has a stable distribution
that maintains certain properties on its entire support, then the
fact that we do observe the distribution of X∗|Z when X∗ > 0
may be sufficient for the identification of this out-of-sample
expectation.

More specifically, identification of the expectation can be
achieved by relying on properties of the distribution ofX∗|Z = z
that hold both when X∗ is negative and for at least some positive
values of X∗. The following theorem, proved in Appendix G.1,

states formally a sufficient condition for identification of
E[X∗|X∗ ≤ 0,Z = z]. Define FX|Z=z and FX∗|Z=z as the
cumulative distribution functions (cdf ’s) of X|Z = z and
X∗|Z = z, respectively, and F the space of cdf ’s in R.

Theorem 3.1. For a given value z ∈ Z , if FX∗|Z=z(x) =
G(x, FX|Z=z) for an identifiable functional G : R × F → [0, 1],
then E[X∗|X∗ ≤ 0,Z = z] is identified.

Parametric families usually satisfy the condition in Theo-
rem 3.1, provided all the parameters that determine E[X∗|X∗ ≤
0,Z = z] also affect the distribution of X|Z = z.8

Next, we consider two large classes of distributions that sat-
isfy Theorem 3.1, and for which the identification ofE[X∗|X∗ ≤
0,Z = z] can be obtained in closed-form. Note that the iden-
tification of E[X∗|X∗ ≤ 0,Z = z] for a specific z is not
necessarily tied to the identification of the expectation for a
different value z′. Therefore, different identification assumptions
may be made for different values of Z. Below, we denote the
generalized inverse of a cdf F ∈ F as F−1(p) = inf{x; F(x) ≥ p}.

Tail Symmetric Distributions

The class of distributions that are symmetric in the tail is for-
mally characterized by the following condition:

Assumption 1. (Conditional Tail Symmetry) Suppose that
P(X = 0|Z = z) ≤ 0.5 and that, for x ≤ 0, FX∗|Z=z(x) =
1 − FX∗|Z=z(F

−1
X∗|Z=z(1 − FX∗|Z=z(0)) − x).

Figure 2 shows an example of a distribution that is symmetric
in the tails. Following Powell (1986), conditional symmetry
assumptions have been used extensively in the censoring liter-
ature. For a large list of citations in the applied and theoretical
literature which use conditional symmetry assumptions, see
Chen and Tripathi (2017). This class includes many well-known
distribution families, such as Gaussian, Student’s-t, logistic, and
uniform. Tail symmetry is a weaker assumption than symmetry,
since it also allows distributions that are not symmetric every-
where, as depicted in Figure 2.

Since for x < 0, F−1
X∗|Z=z(1 − FX∗|Z=z(0)) − x > 0, it follows

that FX∗|Z=z(F
−1
X∗|Z=z(1−FX∗|Z=z(0))−x) = FX|Z=z(F

−1
X|Z=z(1−

FX|Z=z(0)) − x), and thus Tail Symmetric distributions satisfy
the condition of Theorem 3.1 with functional G(x, F) = 1 −
F(F−1(1 − F(0) − x)) for any distribution function F. The
conditional expectation can be identified using the formula

E[X∗|X∗ ≤ 0,Z = z] = F−1
X|Z=z(1 − FX|Z=z(0))

− E[X|X ≥ F−1
X|Z=z(1 − FX|Z=z(0)),Z = z]. (5)

8This is not satisfied if elements of the parameter vector affect FX∗|Z=z only
when x ≤ 0. One example is the piecewise-linear distribution family with a

kink at zero, which has cdf FX∗|Z=z(x) = ω2 + ω1 · x · 1
(

−ω2
ω1

≤ x ≤ 0
)

+

ω2 · x · 1
(

0 ≤ x ≤ 1
ω2

− 1
)

+ 1
(

z ≥ 1
ω2

− 1
)

. The expectation satisfies

E[X∗|X∗ ≤ 0, Z = z] = − 1
3

ω2
ω1

, and therefore varies with ω1. However,

FX∗|Z=z(x) varies with ω1 only when x ≤ 0, so FX|Z=z(x) = ω2 · 1(x ≥
0) + ω2 · x · 1

(

0 ≤ x ≤ 1
ω2

− 1
)

+ 1
(

z ≥ 1
ω2

− 1
)

cannot identifyω1 . The

expectation is not identifiable in this family.
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Figure 2. Tail symmetric density.

Location-Scale Distributions

The conditional location-scale class generated by the functionH
is characterized by the following condition.

Assumption 2. (Conditional Location-Scale) Suppose that

FX∗|Z=z(x) = H
(

x−μz
σz

)

for H ∈ F identifiable, and some

pair (μz, σz), where σz > 0.

The location-scale family is a well-known class of distribu-
tions studied at length in statistics, finance and decision theory
(see e.g., Meyer 1987; Wong and Ma 2008; Hazra et al. 2017).
All parametric symmetric families, such as Gaussian, Student’s-
t, logistic, and uniform are location-scale, as well as some
parametric asymmetric families, such as the two-parameter
exponential. Some nonparametric families also satisfy this
condition, such as the class of symmetric distributions with
nonnegative median.9 Because −μz/σz = H−1(FX|Z=z(0)) and
σz = (H−1(FX|Z=z(1)) − H−1(FX|Z=z(0)))

−1, location-scale
families satisfy the condition of Theorem 3.1 with functional
G(x, F) = H(H−1(F(1))x + H−1(F(0))(1 − x)).

Define the termsμH(z) =
∫

vdH(v), τH(z) = H−1(FX|Z=z(0)),

and λH(z) = −FX|Z=z(0)
−1· ·

∫ τH(z)
−∞ vdH(v). Then, the

conditional expectation can be identified using the formula

E[X∗|X∗ ≤ 0,Z = z]

= −E[X|Z = z] (τH(z) + λH(z))

FX|Z=z(0) (τH(z) + λH(z)) − (τH(z) − μH(z))
. (6)

Equation (6) is a deterministic function of H, except for the
conditional expected treatmentE[X|Z = z], and the conditional
probability of bunching FX|Z=z(0). Note that this equation is
well defined because we only need to identify the expectation for
z ∈ Z|X = 0, which implies that FX∗|Z=z(0) > 0 (this follows
from a more general claim proved in Appendix G.1).

Example 3.1 (The Gaussian Family). Let � be the standard
normal cdf, φ its derivative, and λ = φ/�. The Gaussian family
is the set of distribution functions which satisfy FX∗|Z=z(x) =
�

(

x−μz
σz

)

for some pair (μz, σz), where σz > 0.

9The symmetric family is location-scale with functionH(u) = 1−FX|Z=z(−u)
if u ≥ 0, and H(u) = FX|Z=z(u + 2med(X|Z = z)), if u > 0, where
med(X|Z = z) is the median of X|Z = z. In this case, μz = 2med(X|Z = z)
and σz = 1.

The Gaussian family satisfies Assumption 2 with H = �,
and is therefore location-scale. The expectation may thus be
identified using (6), which in this case gives the formula

E[X∗|X∗ ≤ 0,Z = z] = − E[X|Z = z]
1 − FX|Z=z(0)

·
�−1(FX|Z=z(0)) − λ

(

�−1(FX|Z=z(0))
)

�−1(FX|Z=z(0)) − λ
(

−�−1(FX|Z=z(0))
) . (7)

If P(X = 0|Z = z) ≤ 0.5, the Gaussian family also satisfies
Assumption 1, and is therefore tail symmetric. In this case, the
expectation may be also identified using (5).

4. General Estimation and Asymptotic Results

For a given estimator of the expectation Ê[X∗|X∗ ≤ 0,Z],
estimation of β follows (4) and consists of an OLS regression of

Y onto X, Z and the estimated correction term, X + Ê[X∗|X∗ ≤
0,Z]1(X = 0). The coefficient of X is β̂ ; the coefficient of the
correction term is δ̂.

We prove in this section the asymptotic normality of β̂ and

δ̂, propose an estimator of the asymptotic variance, and prove its
consistency.We also prove the consistency of the bootstrap. Sup-
plementary details and further results are in Appendix C.1. Our
theorems allow for broad classes of estimators of E[X∗|X∗ ≤
0,Z], including estimators not discussed in this paper. In Sec-
tion 5, we examine the estimation of E[X∗|X∗ ≤ 0,Z], and
in Appendix C.2 we prove that the specific estimators used in
the empirical application satisfy the conditions of the general
theorems in this section.

Assumption 3. Denote ψ0 = E[X∗|X∗ ≤ 0,Z = ·] and

ψ̂ = Ê[X∗|X∗ ≤ 0,Z = ·]. Let the vector of regressors be
W = (X,Z′,X + ψ0(Z)1(X = 0))′ with Wi an observation
of this vector. The corresponding parameter vector is denoted
θ0 = (β , (γ −πδ)′, δ)′. Suppose that Assumption 4 in Appendix
C.1 holds, and

(i) The observations {(Yi,Xi,Z
′
i)

′}ni=1 are independent.

(ii) supz∈Z

∣

∣

∣
ψ̂(z) − ψ0(z)]

∣

∣

∣
= op(n

−1/4).

(iii) For some finite matrix �,
√
nE[(ψ̂(Zi) − ψ0(Zi))1(Xi =

0)Wi] →d N (0,�).10

Assumption 4 in Appendix C.1 includes the technical
requirements that several moments are bounded (equivalent
to White 1980), that θ0 belongs to a compact set, and that

10 The use of E in this expression gives the impression that the left hand side
is constant. However, the expectation here is taken with respect to Xi and

Zi , but conditional on the data that generated ψ̂ . Thus, the left hand side
term is a random variable. This notation can be confusing, but it is standard
in the empirical process literature (e.g., Chen, Linton, and Van Keilegom
2003). To clarify the notation further, wegive an example for two variablesV
and Q, where V is discrete, assuming values {v1, . . . , vM} with probabilities

p1 , . . . , pM. Suppose that ξ̂ (vm) = 1
n

∑n
j=1 Qj1(Vj = vm) and ξ(v) =

E[Q1(V = vm)]. Then, the notation
√
nE[ξ̂ (Vi) − ξ(Vi)] is equivalent to√

n 1
n

∑n
j=1(QjP(V = Vj)−E[E[Q1(V = Vj)]]) =

√
n 1
n

∑n
j=1

∑M
m=1 1(Vj =

vm)(Qjpm − E[Q|V = vm]pm)] =
∑M

m=1 pm
√
n 1
n

∑n
j=1(Qj − E[Q|V =

vm])1(Vj = vm)]. Supposing that the data is iid and var(Q|V = vm) = ς2
m ,

then � =
∑M

m=1 pm(ς2
mp2m).
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the expectation and its estimator are well behaved functions.
Assumption 3(i) allows the data to not be identically distributed.
Assumption 3(ii) allows the expectation to be estimated at non-
parametric rates, provided the estimator is uniformly consistent
at a minimum rate of n1/4. Given Assumptions 3(ii) and 4(iii),
Assumption 3(iii) may be substituted by 1√

n

∑n
i=1(ψ̂(Zi) −

ψ0(Zi))1(Xi = 0)Wi →d N (0,�) (this follows from Lemma
19.24 in Van der Vaart 1998). Note that the first element of
(ψ̂(Zi) − ψ0(Zi))1(Xi = 0)Wi is equal to zero, and therefore
both the first row and the first column of � are equal to zero.
Other rows and columns of � may also be equal to zero, for
example if Z includes X2. The notation N (0,�) thus should
be understood as a random variable with a degenerate normal
distribution with (singular) covariance matrix �.

Theorem 4.1 establishes that the coefficients estimated with
the correction approach are asymptotically normal at parametric
rates.

Theorem 4.1. If equations (1), (2), and (3), and Assumption 3
hold, then

√
n(θ̂ − θ0) →d N

(

0,� + δ2E[WW′]−1�E[WW′]−1
)

,

where� is the asymptotic covariancematrix of the coefficients of
a regression ofY ontoX,Z, andX+E[X∗|X∗ ≤ 0,Z]1(X = 0).11

The proof (Appendix G.2) applies Theorem 2 in Chen,
Linton, and Van Keilegom (2003). Establishing the stochastic
equicontinuity condition 2.5’ in Chen, Linton, and Van Keile-
gom (2003) is challenging. For this, we show that Lemma 2.17 in
Pakes and Pollard (1989) can be directly applied in our context.

Next,wepresentanestimatorof theasymptoticvariance.Let ŵ

be thematrix of regressors,with rows equal toŴi := (Xi,Z
′
i ,Xi+

ψ̂(Zi)1(Xi = 0))′. Let D̂ = diag{(Yi−Ŵ′
i θ̂ )2}ni=1 be thediagonal

matrixof the squareof the residuals. Finally, let V̂ beamatrixwith

row i equal to (Ĉi11(X1 = 0,Xi = 0), . . . , Ĉin1(Xn = 0,Xi =
0))′, where the Ĉij are estimators of the asymptotic covariance

of Ê[X∗|X∗ ≤ 0,Z = Zi] and Ê[X∗|X∗ ≤ 0,Z = Zj], precisely
defined in Assumption 5 in Appendix C.1. Then, an estimator
of the asymptotic variance of θ̂ is

V̂θ =
(

ŵ
′
ŵ

n

)−1
(

ŵ
′
D̂ŵ

n

)

(

ŵ
′
ŵ

n

)−1

+ δ̂2
(

ŵ
′
ŵ

n

)−1
(

ŵ
′
V̂ŵ

n2

)

(

ŵ
′
ŵ

n

)−1

.

The first term is simply the Eicker-White covariance estimator in

a regression of Y onto X, Z and X+ ψ̂(Z)1(X = 0). The second
term is the penalty resulting from the fact that we are using an
estimate of the expectation, instead of the true value ψ0(Z).

Theorem 4.2. If equations (1) and (2), and Assumptions 3 and 5
(in Appendix C.1) hold, then

V̂θ →p � + δ2E[WW′]−1�E[WW′]−1.

The proof of this theorem is in Appendix G.3. It uses a
special Strong Law of Large numbers for U-statistics when the

11Precisely,� = E[WW′]−1limn→∞
∑n

i=1
1
nE[var(Yi|Xi , Zi)WiW

′
i ]E[WW′]−1.

The limit is well defined by Assumption 3(i) and Assumption 4(i), and is
established in White (1980).

data is independent but not identically distributed. Assumption
5 is presented in Appendix C.1 for brevity. It requires further

bounded moments, as well as that the Ĉij are uniformly consis-
tent.

When the expectation estimator converges weakly at the rate√
n, both Assumption 3(iii) in Theorem 4.1 and the uniform

consistency of the Ĉij in Theorem 4.2 (Assumption 5(iii) in
Appendix C.1) do not need to be verified because they always
hold; see Remark C.1 in Appendix C.1.When Z has a discrete or
discretized support, the conditions of Theorems 4.1 and 4.2 are
further simplified; see Remark C.2 in Appendix C.1.

Letting V̂β be the first element in thematrix V̂θ , the standard

error of β̂ is

√

V̂β/n. The first term in V̂β can be obtained

directly from packaged software as the square of the Eicker-

White standard errors of β̂ on a regression of Y onto X, Z and

X + ψ̂(Z)1(X = 0). The second term in V̂β is the first element

in the second term in V̂θ divided by n.
Now we establish that the ordinary nonparametric bootstrap

can consistently estimate the distribution of
√
n(θ̂−θ0) for an iid

sample for a wide class of estimators ψ̂(Z). Denote the estimator
of θ using a bootstrap sample as θ̂b.

Theorem 4.3. If (1), (2), and (3), and Assumptions 3 and 6 (in
Appendix C.1) hold, then

√
n(θ̂b − θ̂ ) →d N (0,� + δ2E[WW′]−1�E[WW′]−1)

in P
b-probability.

This theorem follows from Theorems 3 and B in Chen, Lin-
ton, and Van Keilegom (2003), and its proof is presented in
Appendix G.4. Theorem B in Chen, Linton, and Van Keilegom
(2003) makes a requirement of almost sure stochastic equicon-
tinuity.12 This is a difficult condition to justify in applications,
which is why we would like to avoid requiring it here.13 Instead,
we bypass the need for almost sure stochastic equicontinuity and
prove that, in our context and given the other assumptions of
Theorem 4.3, this condition may be substituted by two standard
stochastic equicontinuity in probability conditions (Assump-
tions 6(iv) and 6(vb) in Appendix C.1), for which well-known
primitive conditions exist (e.g., Donsker classes).

5. Estimation of E[X∗|X∗ ≤ 0, Z]

5.1. Parametric Estimation

If the identification of E[X∗|X∗ ≤ 0,Z] relies on a parametric
assumption on the joint distribution ofX∗ andZ, that is,X∗|Z =
z ∼ G(x, z; κ) for a known function G and finite parameter vec-
tor κ , then κ can be estimated by censoredmaximum likelihood.

12Specifically, Theorem B requires that Assumption 2.5’ in Chen, Linton, and
Van Keilegom (2003) holds with “in probability” replaced by “almost surely.”
The direct translation of this condition to our context is expressed in Foot-
note 25 in Appendix C.1.

13Pötscher and Prucha (1994) and Jenish and Prucha (2009) discuss almost
sure stochastic equicontinuity for establishing Uniform Laws of LargeNum-
bers. The primitives explored in those papers are not sufficient to establish
almost sure stochastic equicontinuity with a

√
n denominator as required

by Chen, Linton, and Van Keilegom (2003). We did not find other references
of primitives of almost sure stochastic equicontinuity, and a general treat-
ment of this condition in the lines of Pakes and Pollard (1989) is an open
question.
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Supposing G admits a density g(x, z; κ), the conditional log-
likelihood function is

L(κ) =
n

∑

i=1

(

1(Xi > 0) log(g(Xi,Zi; κ))+

1(Xi = 0) log

(∫ 0

−∞
g(x,Zi; κ)dx

) )

,

and the expectation estimator is

Ê[X∗|X∗ ≤ 0,Z] =
(∫ 0

−∞
xg(x,Z; κ̂)dx

)

/

∫ 0

−∞
g(x,Z; κ̂)dx.

The asymptotic properties of this estimator may be derived
by applying the Delta Method and the Continuous Mapping
Theorem to standard results on the asymptotic behavior of the
censored maximum likelihood estimator (e.g., van der Vaart
1994).

Example 5.1 (Homoscedastic Tobit Estimator). Suppose that
FX∗|Z belongs to the Gaussian family (Example 3.1) with
μZ = Z′μ and σ 2

Z = σ 2. This condition and (1) specify a
standard homoscedastic Tobit model (Tobin 1958). Then,

E[X∗|X∗ ≤ 0,Z = zl] = Z′μ − σλ

(

−Z′μ

σ

)

. (8)

The parameters μ and σ 2 can be estimated by a Tobit regres-
sion of X onto Z with censoring below zero. This can be imple-
mented with any packaged Tobit software. Letting μ̂ and σ̂ be
the resulting estimators of the coefficients of Z and standard

deviation, respectively, then Ê[X∗|X∗ ≤ 0,Z] is obtained by
substituting these into (8). Details regarding the asymptotic nor-
mality of this estimator and consistency of the standard errors
can be found in Footnote 27 in Appendix C.2.1.

5.2. Nonparametric Estimationwith DiscreteZ

Suppose that FX∗|Z=z = G(x, FX|Z=z), as in Theorem 3.1, for
a known G. If Z has a discrete support Z = {z1, . . . , zL},
then it is possible to estimate the distribution of X∗|Z =
zl as F̂X∗|Z=zl(x) = G(x, F̂X|Z=zl), where F̂X|Z=zl(·) =
(

1
n

∑n
i=1 1(Xi ≤ ·,Zi = zl)

)

/

1
n

∑n
i=1 1(Zi = zl). Then,

Ê[X∗|X∗ ≤ 0,Z = zl] = −F̂X|Z=zl(0)
−1

∫ 0

−∞
G(x, F̂X|Z=zl)dx.

(9)
The asymptotic properties of this estimator can be derived using
empirical process theory, observing that FX|Z=zl is a function
of the joint distribution of X and Z (see Step 2 in Appendix
G.6), and therefore E[X∗|X∗ ≤ 0,Z = z] can be written as an
empirical process.

Example 5.2 (Semiparametric Tobit Estimator). Suppose that
FX∗|Z belongs to the Gaussian family (Example 3.1). For a given
zl, this condition and (1) imply that X∗|Z = zl satisfies a
standard Tobit regression model with constant mean μzl and
constant variance σ 2

zl
(Tobin 1958). Then,

E[X∗|X∗ ≤ 0,Z = zl] = μzl − σzlλ

(

−μzl

σzl

)

. (10)

Because P(Z = zl) > 0, the parameters μzl and σ 2
zl
can

be estimated by a Tobit regression of X onto a constant with
censoring below zero, using only observations such that Z = zl.
This can be implemented with any packaged Tobit software.
Letting μ̂zl and σ̂zl be the resulting estimators of the mean and

standard deviation, Ê[X∗|X∗ ≤ 0,Z = zl] is then obtained
by substituting these estimates into (10). Details regarding the
asymptotic normality of this estimator and consistency of the
standard errors can be found in Appendix C.2.1.

Example 5.3 (Tail Symmetry Estimator). Supposing that FX∗|Z=zl
satisfies Assumption 1, the expectation identification formula in
(5) holds. That formula has three components which have to be
estimated and then substituted into (5). First, we estimate the
bunching probability using sample frequencies:

F̂X|Z=zl(0) =
∑n

i=1 1(Xi = 0,Zi = zl)
∑n

i=1 1(Zi = zl)
.

Second, we estimate the quantile F−1
X|Z=zl

(1− F̂X|Z=zl(0)) by sub-
stituting the empirical quantile of the distribution of X among
the observations such that Z = zl. Finally, we estimate the
conditional trimmed mean using

Ê[X|X ≥ F̂−1
X|Z=zl

(1 − F̂X|Z=zl(0)),Z = zl] =

=
∑n

i=1 Xi · 1(Xi ≥ F̂−1
X|Z=zl

(1 − F̂X|Z=zl(0)),Zi = zl)
∑n

i=1 1(Xi ≥ F̂−1
X|Z=zl

(1 − F̂X|Z=zl(0)),Zi = zl)
. (11)

Theorems establishing the asymptotic normality of this esti-
mator and consistency of the standard errors can be found in
Appendix C.2.2. Although the estimator itself is very simple,
the asymptotic result is very challenging to prove. The proof
can be found in Appendix G.6 which, although long, can be
well understood by reading the titles of the several steps. We
would like to call the reader’s attention, in particular, to the
intermediate lemmas (Lemmas G.1 and G.2) and surrounding
discussion, as these are of general interest for the estimation of
quantiles at random (e.g., estimated) probabilities and trimmed
means at random (e.g., estimated) trimming locations. These
results are stated and proven in self-contained notation, and
thus they should be understandable (and useful) independently
of this paper’s concerns. Lemma G.3 may also be useful, as it
derives the Hadamard derivative of the conditional distribution,
which allows one to transform an estimator that is a functional of
the estimated conditional distribution into an empirical process
estimator.

5.3. Nonparametric Estimation (General Case)

Estimation of the expectation in the general case requires the use
of some multivariate nonparametric estimation technique. If G
in Theorem 3.1 is known, a general framework for estimation
can follow (9), substituting zl with z. In this case, FX|Z=z(·) may
be estimatedwith a specialized conditional probability estimator
(e.g., Durrieu et al. 2015 and the citations therein). Another
option, since FX|Z=z(·) = E[1(X ≤ ·)|Z = z], is to estimate
this quantity as a nonparametric regression of 1(X ≤ ·) onto Z
at z. This opens up a number of possibilities, starting from the
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basic Nadaraya-Watson kernel regression,14 or any of the classic
nonparametric regression techniques (see, e.g., Masry 1996 for
local polynomials and Song 2008 for series estimators), all the
way to modern statistical learning prediction estimators (see
Hastie, Tibshirani, and Friedman 2009 for several examples).

In the tail symmetric case (Assumption 1), E[X∗|X∗ ≤
0,Z] may be estimated following (5). The conditional quantile
F−1
X|Z=z(1 − FX|Z=z(0)) can be estimated with any of several

existing techniques for nonparametric estimation of conditional
quantiles (e.g., Samanta 1989 and Chaudhuri 1991) evaluated

at the estimated probabililty 1 − F̂X|Z=z(0). The conditional
trimmed mean E[X|X ≥ F−1

X|Z=z(1 − FX|Z=z(0)),Z = z]
can be estimated as a nonparametric regression of X onto Z at

Z = z, using only observations such that X ≥ F̂−1
X|Z=z(1 −

F̂X|Z=z(0)). This can be implemented with any of the regression
methods discussed in the estimation of FX|Z=z(·). Note that the
asymptotic results for quantile and trimmedmean estimation in
the literature are developed for known probabilities and trim-
ming points, respectively. Here, these quantities are evaluated at
estimated points instead, which must be taken into account. See
the discussion in Example 5.3.

In the location-scale case (Assumption 2),E[X∗|X∗ ≤ 0,Z =
z] may be estimated following equation (6). This is a deter-
ministic equation of FX|Z=z(0) and E[X|Z = z]. FX|Z=z(0)
may be estimated as discussed above, and E[X|Z = z] may be
estimated similarly, using any of the nonparametric regression
techniques discussed above. Alternatively, E[X|Z = z] may
also be estimated via a varying coefficient maximum likelihood
method (e.g., Cai, Fan, and Li 2000).

Remark 5.1 (Large-Dimension/MixedDiscrete-Continuous/Sparse
Support Controls). There are well-known practical issues in
implementing the approaches discussed abovewhenZ hasmany
dimensions, or when it is composed of multiple continuous
and discrete variables, or when it is sparse in regions. Thus,
in many applications, including ours, it may be necessary to
implement a strategy that is adaptive for complex Z. Techniques
aimed at nonparametric multivariate regression with complex
regressors are amain concern of the statistical learning field. For
a summary of this large literature, we refer the reader to Hastie,
Tibshirani, and Friedman (2009), which examines many of the
modern dimensionality reduction techniques for regressions,
and thus covers the estimation of FX|Z=z(·), E[X|Z = z], and
E[X|X ≥ F−1

X|Z=z(1 − FX|Z=z(0))]. Analogous methods for
conditional quantiles have also been studied extensively (e.g.,
White 1992; Chaudhuri and Loh 2002; Li andRacine 2008; Chen
et al. 2019), which cover the estimation of F−1

X|Z=z(1−FX|Z=z(0)).
In our application, we use a clustering strategy to reduce the

dimension of Z. The idea is to group the values of Z into K
clusters such that each cluster has the least amount of variation

14Let K(u) be a kernel function (
∫ ∞
−∞ K(u) = 1, and suppose if convenient

that K(u) ≥ 0 and K(u)1(|u| > 1) = 0), let kn(Zi − z) = K((Zi −
z)/hn)/

∑n
i=1 K((Zi − z)/hn), for some sequence hn → 0, nhn → ∞. Then

F̂X|Z=z(·) =
n

∑

i=1

1(Xi ≤ ·)kn(Zi − z).

Conditions for uniform convergence of such estimators can be verified in
the existing literature. See, for example, Andrews (1995) andHansen (2008).

possible in Z. We then substitute Z with ĈK , the vector of cluster
indicators, in the estimation of the expectation. That is, if Z
belongs to the kth cluster, then Ê[X∗|X∗ ≤ 0,Z] = Ê[X∗|X∗ ≤
0, ĈK = ek(K)], where ek(K) is the kth canonical vector with K
coordinates.

Clustering is a convenient strategy for dimensionality reduc-
tion because it discretizes the support of Z for the purposes of
estimation: no matter the dimension of Z, ĈK can assume only
K values: e1(K), . . . , eK(K). This allows us to use the estimators
developed for the discrete support case—see Examples 5.2 and
5.3, substituting Z with ĈK and zl with el(K). These estimators
may be implemented conveniently using optimized, off-the-
shelf packages in commonly used software. Details about the
clustering strategy are found in Appendix D.

6. Testing the Identification Assumptions

In this section, we discuss how to test the two identification
conditions: (3) and the distributional assumption, both sepa-
rately and jointly. All tests we propose are simple modifications
of existing, well-known tests. We implement the tests in our
application, and the findings are discussed in Section 7 and
Appendix E. A comprehensive study of the properties of these
tests is beyond the scope of this article.

6.1. Testing Equation (3)

Let the null hypothesis be “H0: (3) holds.” If H0 is true, then (4)
holds, and therefore E[Y|X,Z] = (β + δ)X + Z′(π − γ δ) for
X > 0. That is, the conditional expectation for X > 0 must be
linear in X and Z. Note that no assumption other than equation
(3) was used to establish this fact. Therefore, we can test H0 by
applying any specification test to the regression of Y on X and Z
forX > 0 (e.g., Ramsey’s 1969 RESET test). In Appendix E.2, we
show plots that illustrate in our application how this testing idea
may be visually displayed.

6.2. Testing the Distributional Assumption

As discussed in Section 3, identification of E[X∗|X∗ ≤ 0,Z]
is often achieved by assuming that X∗|Z = z belongs to some
specific distribution family. Because the distribution of X∗|Z is
observedwhenX∗ > 0, this assumption is oftendirectly testable.

For example, the null hypothesis “H0: X∗|Z = z ∼
N (μz, σ

2
z )” (Assumption 2 with H = �, see Example 3.1) can

be tested by comparing the empirical distribution F̂X|Z=z(x),
and the assumed normal distribution�((x−μz)/σz) for x > 0,
where μz and σz can be estimated as described in Example 5.2.
This test can be implemented with any distribution comparison
test, such as the well-known two-sample Kolmogorov-Smirnov
test, as well as various more powerful alternatives such as the
test developed in Goldman and Kaplan (2018).15 Analogous
tests can be built for most well-known parametric families.

15This test is designed to have better power to detect deviations from the
null at the extremities of distributions. Such deviations may be a particular
concern in our setting, when including the upper tail in the comparison of
the distributions is often necessary.
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Tail symmetry (Assumption 1) is not directly testable. How-
ever, full symmetry around the mean implies tail symmetry and
is testable ifFX|Z=z(0) < 0.5.16 This follows because, ifX∗|Z = z
is symmetrically distributed around itsmean, thenX|X ∈ I,Z =
z, where I = (FX|Z=z(0), 1 − FX|Z=z(0)), is also symmetrically
distributed around its mean. Therefore, if FX|Z=z(0) < 0.5, the
null hypothesis “H0: X

∗|Z = z is symmetrically distributed
around E[X∗|Z = z]” can be tested by implementing any of a
large number of existing tests of symmetry on FX|X∈I,Z=z.

17 In
Appendix E.3, we show plots that illustrate in our application
how this testing idea may be visually displayed.

6.3. Testing All Identifying Assumptions: Specification

Tests

Suppose that the identified expectation is ẽ(Z), which may be
different from the true expectation, E[X∗|X∗ ≤ 0,Z]. Let the
best linear predictor of Y given X, Z and X + ẽ(Z)1(X = 0) be
defined as

L(Y|X,Z,X+ẽ(Z)1(X = 0)) = β̃X+Z′θ̃Z+δ̃(X+ẽ(Z)1(X = 0)).

If (3) holds and the expectation is correctly identified (i.e.,
ẽ(Z) = E[X∗|X∗ ≤ 0,Z]), then L(Y|X,Z,X + ẽ(Z)1(X =
0)) = L(Y|X,Z,X + E[X∗|X∗ ≤ 0,Z]1(X = 0)) = E[Y|X,Z],
and β̃ = β , θ̃Z = (γ − πδ), and δ̃ = δ. This implies that it
is possible to test the hypothesis “H0: equation (3) holds, and
E[X∗|X∗ ≤ 0,Z] is correctly identified” by testing whether
E[Y|X,Z] = L(Y|X,Z,X + ẽ(Z)1(X = 0)) using a specification
test.18

Since the regression employs a generated regressor, X +
ˆ̃e(Z)1(X = 0), standard specification tests will have the wrong
size. A correctly-sized specification test can be performed by
simply adding functions of X and Z to the sets of controls used
in the regression and testing if the coefficients of these terms
are equal to zero using the correct covariance matrix estimator
or the bootstrapped critical values discussed in Section 4 (see
Remark C.3 in Appendix C.1).

We also propose a specification test of H0 that is particularly
suited to our setting, where the support of the treatment variable
is bounded at one extremewith bunching at the boundary point.
The test leverages sample truncation to detect nonlinearities
caused by failures of H0. Specifically, we propose restricting the
sample to X ∈ [0,α], for a given value of α, and testing whether
the coefficient of X in the truncated regression is different from
the coefficient of X in the full sample regression. This test can be
implemented using off-the-shelf tests that compare coefficients
of non-nested regressions. The rationale of this test and further
details can be seen in Appendix E.4. There, we also present plots
that illustrate in our application how this testing idea may be
visually displayed.

16Precisely, X∗|Z = z is symmetric around its mean if FX∗|Z=z(x) = 1 −
FX∗|Z=z(2E[X∗|Z = z] − x) for all x.

17See, for example, Chen and Tripathi (2017), which is designed specifically
for truncated variables as in our case, Niu et al. (2018) and the large list
of citations therein, and Quessy (2021) for a more general test of copula
homogeneity which can be used to test symmetry.

18Note that, in models without controls, this test has nontrivial power only
against violations of (3), not against the misidentification of the expecta-
tion. This is because, if (2) and (3) holdwithout controls,E[Y|X] = L(Y|X , X+
ẽ1(X = 0)) holds for all ẽ.

Figure 3. Evidence of bunching, maternal labor supply.

NOTE: This figure shows the empirical cdf for the average number of weeks per
year in which the mother worked in the three years following her child’s birth.
Source: National Longitudinal Study of Youth, 1979 cohort, sample of mothers
whose children were born from 1979 to 2002.

6.4. Testing All Identifying Assumptions: Additional

Bunching Points

When there are multiple bunching points, including possibly
some in the interior of the support of the treatment, one bunch-
ing point on the boundary of the support can be used to build the
correction, while the remaining bunching points can be used to
test the underlying assumptions of the correction method in the
same regression. Specifically, suppose that a second bunching
point at X = x̄ exists, we propose testing the hypothesis “H0:
equation (3) holds and E[X∗|X∗ ≤ 0,Z] is correctly identified”
by estimating the model

E[Y|X,Z] = βX + Z′(γ − πδ) + δ(X + E[X∗|X∗ ≤ 0,Z]
1(X = 0)) + αx̄1(X = x̄),

and performing a t-test of whether αx̄ = 0. This is equivalent
to performing the dummy test from Caetano et al. (2021) in
this model. This test detects whether linearity holds and the
correction has solved the endogeneity problem.19 The t-test
must be implemented using the correct standard errors. The
standard error estimator and the consistency of the bootstrap
critical values are established in Appendix C.1 (see Remark C.3).

To illustrate the type of situation where this testing approach
can be employed, Figure 3 shows the empirical cdf of maternal
labor supply, measured as the average number of weeks per year
the mother worked during the three years following the child’s
birth. The figure shows two bunching points, one at X = 0,
and the other at X = 52. Maternal labor supply is the treatment
variable of a large literature (see e.g., Caetano et al. 2022 and the
references therein).

7. Application: The Effect of TV on Children’s Skills

In this section, we apply our method to estimate the effect of
time spent watching TV on children’s skills using the 1997, 2002,

19When X has N bunching points, one can use X = 0 for the correction, add
indicators of each of the remaining N − 1 bunching points, and do a joint
test that all the coefficients of the dummies are equal to zero, as discussed
in the multivariate version of the dummy test in Caetano et al. (2021).
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Table 1. The effect of TV time on children’s skills.

(i) (ii) (iii) (iv) (v)
Uncorrected Uncorrected Hom. Semipar. Tail
No controls w/ controls Tobit Tobit symmetry

β −0.57∗∗ −0.44∗∗ 1.54 1.52 0.94
Cognitive (0.13) (0.10) (0.98) (0.98) (0.68)

δ −1.92∗∗ −1.90∗∗ −1.31∗∗
(0.93) (0.93) (0.63)

β −0.28∗ −0.10 −3.05∗∗ −3.07∗∗ −2.11∗∗
Noncognitive (0.14) (0.14) (1.44) (1.42) (1.00)

δ 2.85∗∗ 2.87∗∗ 1.91∗∗
(1.40) (1.38) (0.95)

NOTE: N=4330. Results are reported in terms of percentage points of the standard deviation of the outcome variable. For example, the results in the last column suggest
that an increase of one hour per week watching TV leads to a reduction in noncognitive skills of 2.11 percentage points of one standard deviation. The list of observed
controls in columns (ii)–(v) is described in Footnote 21. Bootstrapped standard errors in parentheses (1000 bootstrap samples). Columns (iii), (iv), and (v) show results
using the Homoscedastic Tobit expectation estimator (Example 5.1), the Semiparametric Tobit expectation estimator (Example 5.2) and the Tail Symmetry expectation
estimator (Example 5.3), respectively. Specifications in columns (iv) and (v) use 10 clusters (see Remark 5.1). See Figure 4 in Appendix D for a reproduction of the results
in column (v) for different numbers of clusters. **p <0.05, *p <0.1.

and 2007Waves of the Child Development Supplement from the
Panel Study of Income Dynamics (CDS-PSID).20 More detailed
applications of the method proposed in this article can be found
inCaetano, Caetano, andNielsen (2022), which studies the effect
of enrichment activities on skills, and Caetano et al. (2022),
which studies the effect of maternal labor supply on skills. As
the application here uses the same sample as Caetano, Caetano,
and Nielsen (2022), we refer the reader to that paper for details
about the data and definition of skills.

We would like to estimate β in (3), where Y is either the
cognitive or noncognitive skills of the child, X is the number
of hours the child spent watching TV in a typical week, and
Z is a vector of controls which includes a constant as well as
characteristics of the child, family, and environment.21

Table 1 presents the estimates of β in (3) both with and with-
out the endogeneity correction. Column (i) shows the simple
regressions of TV time on skills without controls. Time spent
watching TV is negatively correlated with both cognitive and
noncognitive skills. Column (ii) adds observed controls, but
does not include the correction control function. After control-
ling for observables, the estimates of β are closer to zero, but the
cognitive estimate is still negative and significant.

In columns (iii)–(v), we show estimates of the corrected
regression. Specifically, we follow (4), and estimate a regression

ofY onX,Z and the control functionX+Ê[X∗|X∗ ≤ 0,Z]1(X =
0). In column (iii), Ê[X∗|X∗ ≤ 0,Z] uses the Homoscedastic
Tobit estimator, described in Example 5.1. The estimates of
E[X∗|X∗ ≤ 0,Z] in columns (iv) and (v) are obtained in two
steps. First, we cluster the controls according to the method
described in Remark 5.1. We obtain K = 10 clusters, and
the cluster indicator vector ĈK . Second, for observation Zi in

20See Zavodny (2006), Gentzkow and Shapiro (2008), and Munasib and Bhat-
tacharya (2010) for recent empirical papers in this literature. These papers
are well aware that watching television may be endogenous. Zavodny
(2006) tackles endogeneity using fixed effects, Munasib and Bhattacharya
(2010) uses IV, while Gentzkow and Shapiro (2008) uses the timing of the
roll-out of children’s programming to different local markets to obtain
causal estimates.

21The variables included as controls are the child’s age and squared age
(in months), and indicators for: CDS wave (1997, 2002, and 2007), grade
(thirteen variables, from kindergarten through grade 12), gender, ethnicity
(black, Hispanic and other nonwhite ethnicity), whether the child has sib-
lings, family income tercile, whether the mother is alive, and whether the
father is alive.

cluster l, we estimate Ê[X∗|X∗ ≤ 0,Z = Zi] = Ê[X∗|X∗ ≤
0, ĈK = el(K)]. In column (iv) we use the Semiparametric Tobit
estimator described in Example 5.2, substituting Z with ĈK , and
zl with el(K) in the formulas. In column (v) we use the tail
symmetry estimator described in Example 5.3 with analogous
substitutions.

The corrected β estimates are positive and insignificant for
cognitive skills, but negative and significant for noncognitive
skills. The Homoscedastic and Semiparametric Tobit estimates
(columns (iii) and (iv)) are very similar. The tail symmetry
estimates (column (v)) are closer to zero, yet the noncognitive
estimate remains significant at 5%. Table 1 also displays the
estimates of δ. All are significant at 5% and are negative for
cognitive skills and positive for noncognitive skills, suggesting
that selection on observables is strongly rejected in this context.

Note that the bootstrapped standard errors of β̂ in the
corrected models (columns (iii)–(v)) are much larger than
the corresponding standard errors in the uncorrected model
(column (ii)). The Eicker-White standard errors of the corrected
model (�, see Theorem 4.1) gravitate around 95% of the
bootstrapped standard errors for all specifications, so the penalty
due to the estimation of the expectation turns out not to be
important in explaining the larger standard errors. Rather, the
standard errors are larger becausemuch of the raw variation inX
is contaminated by variation in the confounder. The uncorrected
models attribute to X the confounding variation in Y , thus
yielding artificially smaller standard errors. In this context,
inference is affected twice by not appropriately controlling
for unobservables: not only is there bias in the uncorrected
estimator, but its standard error leads to the belief that effects
might be estimated with a higher degree of precision than is
achievable by a correct estimator.

Testing the Identification Assumptions

We mention here the key findings from the implementation of
the tests discussed in Section 6 in our application. The pre-
cise null hypothesis, method used and details can be seen in
Appendix E. In Appendix E.1, we show that there is strong
evidence of endogeneity in the uncorrected model, which jus-
tifies our correction approach. In Appendix E.2, we test the
hypothesis that (3) holds, and we do not reject it. In Appendix
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E.3, we test the distributional assumption of X∗|Z alone. The
Homoscedastic Tobit estimator (column(iii)) is consistent under
the homoscedastic Gaussian assumption, as discussed in Exam-
ple 5.1, and the Semiparametric Tobit estimator (column (iv))
is consistent under the semiparametric Gaussian assumption,
as discussed in Example 5.2. Our tests reject both assumptions.
The tail symmetry estimator (column (v)) is consistent under
the tail symmetry assumption, as discussed in Example 5.3. Our
tests do not reject the stronger condition of symmetry around
the mean (see Footnote 16). Therefore, our preferred estimates
are those in column (v) of Table 1. It is worth noting that the
estimates in columns (iii) and (iv) are similar to the results
in column (v). This suggests that our tests are able to detect
violations of the distributional assumptions even when the bias
generated by these violations is likely small. This is consistent
with what we find in our Monte Carlo study (Appendix F).
Finally, in Appendix E.4, we perform a joint test of whether (3)
and the tail symmetry assumption hold and do not reject this
joint hypothesis.

8. Concluding Remarks

This article shows how to leverage bunching at the lower (or
upper) extremum of the distribution of the treatment variable
to build a control function to correct for endogeneity. In linear
models, the method consists of adding a generated regressor
to the original regression. We also show that the method can
be applied in many models used by practitioners, including
some nonparametric and nonseparable models. The approach
does not make exclusion restrictions. Instead, it makes testable
functional and distributional shape assumptions. We study
the asymptotic behavior of the estimated coefficients, prove
the consistency of the bootstrap, and show that the method
performs well in an empirical Monte Carlo study. Finally, we
apply the method to estimate the effect of watching television
on the skills of the child. A common finding in both the
application and the Monte Carlo study is that, when violations
of the identifying assumptions are large enough to generate a
noticeable bias, these violations are easy to detect with the tests
of the identification assumptions we develop.

The method proposed in this article opens up many paths
for new research. Here we highlight a few: (a) discretizing the
controls Z before estimating the expectation is convenient for
the implementation of the method proposed in this article, as
evidenced in our application, Caetano, Caetano, and Nielsen
(2022), and Caetano et al. (2022). The advantages/drawbacks of
the use of clusters in this context need to be investigated further.
(b) The interaction of the correction with existing methods is
promising. We mentioned the combination of this method with
Caetano et al.’s (2021) test in Section 6.4. The interaction of this
approach with instrumental variables methods may also prove
valuable.

Supplementary Materials

The appendix provides generalizations of the approach to more flexible
functional forms, details referenced in the paper as well as further results
on identification, estimation and testing, a Monte Carlo study, and proofs.
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