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The 1990s saw a statistical revolution sparked predominantly by the phenomenal
advances in computing technology from the early 1980s onwards. These advances
enabled the development of powerful new computational tools, which reignited inter-
est in a philosophy of statistics that had lain almost dormant since the turn of the
century. In this paper we brie°y review the historic and philosophical foundations of
the two schools of statistical thought, before examining the implications of the re-
ascendance of the Bayesian paradigm for both current and future statistical practice.
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1. Introduction

Though several key concepts were developed earlier|such as mathematical expecta-
tion (Huygens 1657), signi¯cance testing (Arbuthnot 1711), and the approximation
of the binomial by the normal distribution (de Moivre 1718)|many of the earliest
statistical methods were developed in the latter part of the nineteenth century. For
example, the concept of linear regression ¯rst appeared in the work of Galton (1889),
building on the concept of least squares introduced by Legendre (1805) and arguably
also by Gauss (who claimed that he had been using the method since 1795 (Gauss
1809)). Galton (1888) also introduced the concept of statistical correlation, which
was later developed by Edgeworth (1893), Yule (1897) and Pearson (1896), who also
began the development of goodness-of-¯t measures (e.g. Pearson 1900) at around
the turn of the century. The ¯eld really took o® in the 1920s and 1930s when Fisher
(1922, 1925) developed the notion of likelihood for general estimation; Neyman &
Pearson (1933) developed the basis for frequentist (often termed classical) hypothesis
testing; and Yates & Cochran (1938) established the principles for the analysis of
variance. Since then, the ¯eld has continued to grow and statistical inference now
plays a key role in nearly every area of scienti¯c research.

Bayesian methods date to the original paper by the Reverend Thomas Bayes, read
to the Royal Statistical Society in 1763 (the paper was in fact read by Richard Price
several years after Bayes’ death). The area generated interest from Laplace (1774),
Gauss (1809) and Pearson (Pearson & Filon 1898) amongst others and dominated
statistical thinking throughout the nineteenth century. The Bayesian approach fell
out of favour at the beginning of the twentieth century due, in part, to the domination
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of the ¯eld by staunch opponents such as Neyman and Fisher, who held philosophical
objections to the subjectivity of the Bayesian approach. Nonetheless, Bayesian stal-
warts such as Je®reys (1939), Savage (1954), Lindley (1965) and de Finetti (1970)
kept the Bayesian °ame alive by continuing to advocate Bayesian methods as reme-
dies for certain de¯ciencies in the frequentist approach. It was not until the late
1980s that the Bayesian approach began to re-emerge, motivated both by rapid
recent developments in computing and by the growing desire to describe increas-
ingly complex scienti¯c phenomena that older sampling theories were ill equipped to
address. Since then the Bayesian approach has begun to dominate statistical research
once more with new computational tools providing a far more °exible framework for
statistical inference matching exactly the increasing complexity of scienti¯c research
as we move into the twenty-¯rst century.

2. Two approaches to statistical inference

The two competing approaches to statistical inference are perhaps best explained in
the context of a simple example. Suppose that we wish to toss a single coin, X. Our
statistical model places a probability, say ³ , on it coming down heads (X = 1) and
a probability, 1 ¡ ³ , of it coming down tails (X = 0).y This is a statistical model
parametrized by the unknown probability ³ which simply says that Prob(X = 1) = ³
and Prob(X = 0) = 1 ¡ ³ . In fact, we can write down a general formula which covers
both cases, i.e.

Prob(X = x) = ³ x(1 ¡ ³ )1¡x = f(x j ³ ); for x = 0 and x = 1:

Given a whole series of n coin tosses X1; : : : ; Xn we can write down a joint probabil-
ity for all n outcomes: f(x1; : : : ; xn j ³ ),z which is read aloud as `the joint probability
distribution, f , of x1 up to xn given the value of ³ ’ and explicitly states the depen-
dence of the series of observed coin tosses on the value of the parameter ³ . This
joint probability distribution then forms the basis for statistical inference, whichever
inferential approach is used.

(a) The frequentist approach

Statistical inference is essentially an inversion problem. Given a parametric model
and associated parameter values, it is possible to predict potential outcomes. For
example, given the probability distribution above and the value of ³ it would be
possible to simulate or predict the outcomes of the coin-tossing experiment. However,
in practice, it is the outcome of the experiment that is observed and the values of the
parameters that are unknown. For example, we might observe three coin tosses each
of which were heads and wish to infer from these observations what the value of ³
(i.e. the probability of a head) might be. In this case it seems reasonable to consider

y Note that a tossed coin caught in mid-air will always have probability µ = 1
2 . Coins can only be

biased if allowed to land and bounce after being tossed. Alternatively, coins can be spun rather than
tossed (see, for example, Gelman & Nolan 2002, x 7.6).

z With independent coin tosses,

f (x1 ; : : : ; xn j µ) =

nY

i = 1

f (xi j µ):
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inverting the joint probability distribution and to think of it not as a function of x
given the value of ³ , but as a function of ³ given the observed values of x, i.e. to set
l( ³ j x1; : : : ; xn) = f(x1; : : : ; xn j ³ ). This function l is referred to as the likelihood
function and is the basis for frequentist statistical inference.

The likelihood is used to compare di®erent candidate values for the model param-
eters. The parameter values which lead to the highest value of the likelihood function
are considered to be the best and are known as the maximum likelihood estimates
(MLEs) for the `true values’ of the model parameters.

In practical terms, this means that the frequentist approach to inference involves
the maximization of a function of the model parameters. In some simple cases, this
maximization can be performed analytically: by taking derivatives of the likelihood
function, for example. However, for more complex examples numerical optimization
procedures are required, which treat the likelihood function as a multi-dimensional
surface where the height of the surface at any vector point µ is given by the likelihood
at that point. Such methods can involve substantial computational expense and
often su®er from a lack of reliability in that many optimization routines are liable
to become stuck in local rather than global optima. Though comparable problems
also occur with the corresponding Bayesian tools, these can often be more easily
overcome within the Bayesian paradigm using the powerful new computational tools
that we shall introduce in x 3.

An important issue in parameter estimation is the quanti¯cation of the uncertainty
surrounding the ability of our estimate to re°ect the truth. The frequentist approach
to this problem relies on the strong repeated sampling principle and assesses the
performance of our statistical estimation procedure for a single sample of data on
the basis of the expected long-run performance given a hypothetical series of datasets
collected under identical conditions. An obvious consequence of this is the frequentist
95% con¯dence interval, which, for a model parameter ³ , represents an interval on
the real line (a[x]; b[x]) constructed on the basis of data x = x1; : : : ; xn which, if they
were repeated for a series of new datasets, would cover the true value of ³ 95% of the
time. Thus, the uncertainty we attribute to our frequentist estimate is based upon our
beliefs about the ability of our procedure to estimate the truth under hypothetical
repetitions of the single experiment that we observe. To many, this seems a rather
unnatural concept and appears to be addressing the wrong question. For example,
the fact that a drug is successful 99% of the time is not of direct interest to any
individual patient, who is more likely to be interested only in the chances of his/her
own recovery (which is not necessarily 0.99).

The method by which these con¯dence intervals are usually constructed, for all
but the simplest problems, is based upon the observation that the MLE has an
asymptotic normal distribution with known mean and variance both of which are
functions of the observed data.y The asymptotic aspect of this result refers to the size
of our dataset, with increasing accuracy observed as the size of our dataset increases.
However, in many cases the size of our dataset will be ¯xed. Thus, the dataset may
not always be su±ciently large for these asymptotic results to hold, in which case
the results should be viewed with some scepticism.

y Obvious exceptions include non-parametric inference and cases where exact distributions can be
calculated, as in the case of linear models with homogeneous normal errors, for example.
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Figure 1. Reverend Thomas Bayes (1702{1761). British mathematician and Presbyterian min-
ister, famous for both the theorem in probability and the statistical philosophy that now bear
his name.

(b) The Bayesian approach

The Bayesian approach to statistical inference is based upon Bayes’ theorem (Bayes
1763), which, for continuous random variables, states thaty

º (µ j x) / f(x j µ)p(µ):

The distribution º (µ j x) is referred to as the posterior distribution and repre-
sents our beliefs about the model parameters after having observed the data x. The
distribution p(µ) is referred to as the prior and is concerned with our original beliefs
about µ before observing the data. Thus, Bayes’ theorem allows us to update our
prior beliefs on the basis of the observed data to obtain our posterior beliefs, which
form the basis for our inference.

As in the frequentist case above, the Bayesian approach ends up with a function
of the model parameters given the observed data, but this time our inference is in
the form of a probability distribution for µ rather than a simple point estimate. This
illustrates one of the fundamental di®erences between the beliefs of the Bayesian and
frequentist statisticians. The frequentist statistician believes that there exists a ¯xed
true value for the model parameters and tries to estimate this value by maximizing
the likelihood. The Bayesian believes that the unknown parameters have a ¯xed but
unknown distribution which represents their beliefs about those parameters having
observed the data. Note that the Bayesian may also believe that a true value exists,
but since this can never be known with absolute certainty they prefer to think instead
in terms of a distribution which re°ects this uncertainty. As their level of information
increases, the width of this distribution decreases and, in the limit (i.e. omnipotence),

y Note that statistical distributions need only be speci¯ed up to proportionality, since it is the shape
of the distribution that determines the relative probabilities of di®erent values under that distribution.
If distribution ¼(µ) / g(µ), then ¼ is `normalized’ by dividing by

R
g(µ) dµ.
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the Bayesian would, in theory, end up with a point mass (i.e. a single value with
probability one) on a particular value for the parameter of interest.

From a practical perspective, this complex multi-dimensional posterior distribu-
tion may be di±cult to interpret in terms of the physical process under study. In
practice, we often summarize the distribution by calculating a variety of interpretable
univariate summary statistics such as posterior means and variances for example.

Point estimates for parameters of interest are obtained via the speci¯cation of a
loss function. This approach stems from the gaming roots of the Bayesian approach.
The Bayesian approach to parameter estimation is to choose the value which min-
imizes their expected loss under the posterior distribution for some loss function
ascribing a hypothetical cost (¯nancial or otherwise) to getting the estimate wrong.
For example, the quadratic error loss function for estimating the true value ³ by
¿ is given by L ( ¿ ¡ ³ )2, which increases in size the further our estimate lies from
the truth. With this particular loss function it turns out that for any problem the
estimate (i.e. value of ¿ ) which minimizes the expected value of this loss function
over values of ³ simulated from the posterior distribution is simply the posterior
mean. Thus, if we chose the quadratic error loss function, our best estimate of the
true parameter value would be the posterior mean. Other loss functions would lead
to other estimates for the parameter of interest. For example, under the zero{one
loss function, under which we incur a penalty of 1 if we choose the incorrect value
and no penalty at all if we are correct, the best estimate is the posterior mode.

This provides us with an interesting comparison between the Bayesian and fre-
quentist approaches to parameter estimation. If we adopt a °at prior distribution for
our parameter of interest, the corresponding posterior distribution for that parame-
ter will be of identical shape to the joint probability distribution f(x j ³ ). Therefore,
locating the mode of the posterior distribution (i.e. adopting the zero{one loss func-
tion) with a °at prior provides an identical estimate of the parameter of interest
as the frequentist approach. Many Bayesians have used this simple point to criti-
cize the frequentist approach as being inherently Bayesian, but with an unjusti¯able
restriction to °at prior distributions and zero{one loss functions.

The Bayesian approach to statistical inference provides a far more natural frame-
work to consider the concept of parameter uncertainty and the posterior variance
provides us with a direct measure of the uncertainty associated with any given param-
eter. A more detailed uncertainty indicator is the credible interval, the Bayesian
equivalent of the frequentist con¯dence interval. A 95% credible interval for a par-
ticular parameter ³ is an interval on the real line within which ³ lies with proba-
bility 0.95. There is no assumption here of the properties of our estimation process
under hypothetical replications of our original experiment and the interpretation
of the interval is arguably more natural than the frequentist analogue. Of course,
the interval will depend upon the prior distributions adopted, though this in°uence
typically decreases with increasing size of the original dataset.

(c) Tossing the euro

To illustrate the di®erence between the frequentist and Bayesian approaches let us
return to our coin-tossing example and suppose that we decide to toss a newly minted
euro coin 10 times and observe 8 heads. Given that the probability of a head is ³
(the estimation of which is the object of our exercise), the probability distribution

Phil. Trans. R. Soc. Lond. A (2003)



2686 S. P. Brooks

0 0.2 0.4 0.6 0.8 1.0

q

q

f  (
  )

p
(q

)

4

3

2

1

0
0 0.2 0.4 0.6 0.8 1.0

q

0

4

8

12(a) (b)

Figure 2. (a) Illustration of di® erent possible shapes of the beta distribution. (b) Posterior
distribution for ³ under a ° at prior distribution and for n = 4; 8; 32; 128; 256, with x = n=2.
Note that the larger the value of n, the higher and narrower the peak.

for this outcome (x = 8 heads out of a total of n = 10 trials) is given by the binomial
distribution, i.e.

f(x j ³ ) =
n!

x!(n ¡ x)!
³ x(1 ¡ ³ )n¡x;

where x!, pronounced `x factorial’, is simply x multiplied by x ¡ 1 multiplied by
x ¡ 2 and so on until we reach 1. As described above, the likelihood function l( ³ j x)
therefore takes the same form and it is fairly easy to see that it is maximized at
³ = x=n.y

To conduct a Bayesian analysis, we begin by placing a prior distribution on the
parameter ³ , which, since it is a probability, lies between zero and one. This prior can
take many di®erent forms and is intended to re°ect our own personal beliefs about
what parameter values we believe to be likely before observing the outcome of our
experiment. In the absence of any a priori information, we might adopt a °at prior
distribution for ³ which makes all possible values of ³ equally likely, i.e. p(³ ) = 1. A
more general prior distribution which provides us with additional °exibility in terms
of the range of beliefs that can be expressed is to take the beta distribution so that
p( ³ ) / ³ a¡1(1 ¡ ³ )b¡1. The variables a and b are our prior parameters and can be
chosen so as to re°ect our own personal beliefs. Figure 2a illustrates the shape of
the beta distribution for di®erent values of a and b. Taking a = b = 1, we obtain the
°at (or uniform) distribution, and whenever a = b we obtain a distribution which is
symmetric about ³ = 1

2 .
Taking a beta prior distribution, we obtain the following posterior distribution:

º ( ³ j x) / f(x j ³ )p( ³ ) / ³ x+ a¡1(1 ¡ ³ )n¡x + b¡1:

Thus, the posterior distribution for ³ is also in the form of a beta distribution with
parameters x + a and n + b ¡ x. This has mean

x + a

n + a + b
;

y Taking the derivative of log l(µ j x) with respect to µ and setting to zero, we obtain

x

µ
¡ n ¡ x

1 ¡ µ
= 0:

Taking the second derivative con¯rms that this is indeed a maximum.
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mode
x + a ¡ 1

n + a + b ¡ 2

and variance
(x + a)(n + b ¡ x)

(n + a + b)2(n + a + b + 1)
:

Note the clear di®erence between the posterior estimates and the MLE but that if we
take a °at prior distribution (i.e. a = b = 1), then the posterior mode is exactly the
MLE, as we should expect. Note also that as the sample size increases, the posterior
mean and mode both converge to the MLEy and the posterior variance tends to
zero. Figure 2b provides an illustration of the posterior distribution for p under a
uniform prior distribution for di®erent sample sizes observing x = n=2 heads in each
sample of size n. The posterior variance clearly decreases with sample size and, as
n increases, the posterior distribution puts increasing weight on the MLE, which
is 0:5 here.

A practical problem with the Bayesian approach, the solution to which was one
of the main catalysts for the re-emergence of the paradigm into mainstream statis-
tics, is the di±culty associated with exploring and summarizing realistically complex
posterior distributions. Unlike the coin-tossing example, in most practical problems,
summary statistics, such as the posterior mean and variance of parameters of inter-
est, will not be available analytically and computational tools are required to gain
meaningful inference from the posterior distribution. The introduction to the statis-
tical literature of the technique known as Markov chain Monte Carlo (MCMC) in
the late 1980s overcomes this problem and greatly simpli¯es the Bayesian analysis
of even the most complex data.

3. Bayesian computation

MCMC methods date from the original work of Metropolis et al . (1953), who were
interested in methods for the e±cient simulation of the energy levels of atoms in
a crystalline structure. The original idea was subsequently generalized by Hastings
(1970), but its true potential was not fully realized within the statistical literature
until Gelfand & Smith (1990) demonstrated its application to the estimation of
integrals commonly occurring in the context of Bayesian statistical inference.z

Basically, MCMC methods provide a mechanism for generating observations from
arbitrarily complex probability distributions, such as the posterior distribution aris-
ing from a Bayesian statistical analysis. This provides a practical means for obtaining
inference by drawing a series of observations from our posterior distribution and then
calculating sample estimates of any quantities of interest. In practice, this usually
means calculating the sample means and variances of all model parameters, though
posterior modes, inter-parameter correlations and quantiles may also be of interest,
for example. Based upon a sample from the posterior distribution, these empirical

y This is perhaps most easily seen by reformulating the posterior mean as (1 ¡ w)[a=(a+ b)] + w[x=n],
where w = n=(a + b + n). Thus, the posterior mean is a weighted average of the MLE and the prior
mean. As the sample size increases, the value of w tends to 1, giving all weight to the MLE.

z The calculation of posterior means and variances, for example, are essentially integration problems.
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estimates approximate the true values under the posterior distribution and arbitrary
accuracy can be obtained by increasing the sample size.

Generic methods for drawing samples from speci¯c or even general statistical dis-
tributions have been around for some time. However, until the advent of MCMC
methods there was no way of e±ciently generating samples from arbitrarily complex
multivariate distributions. MCMC methods work by constructing what is known as
a Markov chain, which is essentially a series of observations generated one after the
other so that the value at any point in the sequence depends only upon the preceding
value. The key to MCMC methods is to construct a chain which has the property
that certain key characteristics of the sequence of generated values are exactly the
same as those from a sample of observations from the statistical distribution of inter-
est. In particular, the marginal distributions of the sampled values is exactly that
corresponding to the posterior distribution of interest, so that the sample mean of the
sequence approximates the true mean under the posterior distribution, for example.

The MCMC algorithm itself can be likened to an explorer who wishes to map
a complex and uncharted landscape. The landscape corresponds to the high-
dimensional surface representing the probability distribution of interest, in this case
a posterior distribution. The aim is to explore this surface and to learn about certain
key properties such as the proportion of the total volume beneath a particular area
on the surface, for example. The surface itself is `normalized’ so that the total vol-
ume beneath it is 1. Thus the volume beneath any particular area will be bounded
between 0 and 1 and corresponds to the probability that a random draw from the
corresponding probability distribution lies within that area. By estimating such vol-
umes, we can answer questions such as `what is the probability that parameter p
is positive’, for example. Similarly, by roaming the surface in such a way that the
time spent in any area is proportional to the volume beneath that area, we can esti-
mate the mean of our distribution by simply recording our position on the surface
at regular intervals and calculating the corresponding sample mean.

Continuing our analogy, these surfaces are typically so complex that the explorer
cannot simply plan an entire route around the landscape but must instead explore the
surface constructing a suitable path as he goes. The MCMC algorithm provides a very
simple framework for randomly determining where to travel next given the current
position. By breaking the exploration process into a series of simple steps, arbitrarily
complex surfaces can be mapped. The more complex the surface, the longer the route
and the greater the computational expense. However, since the explorer is attracted
to the higher ground, the peaks tend to be identi¯ed at a very early stage and the
overall shape of the surface therefore quickly becomes apparent. As we continue
the mapping process we add ¯ner and ¯ner detail until an adequate resolution is
obtained. As an illustration, ¯gure 3 provides several stages in the exploration of
a simple Beta(5; 5) distribution. We can clearly see the increase in accuracy as the
exploration process (number of sampled observations) increases.

In contrast, the frequentist approach to statistical inference can be likened to a
mountain climber given the task of scaling a complex surface, which, in this case,
corresponds to the likelihood function. The climber is less interested in the overall
shape of the surface, and more interested in the location and shape of the highest
peak (corresponding to the MLE), which is a far more speci¯c goal and requires
far higher resolution (at least at the peak) than that of the Bayesian explorer. The
climber’s path is based upon sequential rules, much like the MCMC algorithm, and
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Figure 3. Approximations to the Beta(5; 5) density (solid line) from
samples of size (a) 5, (b) 50, (c) 500 and (d) 5000.

the simplest approach is for the climber to consider the gradient in all directions
at his current position, travelling in the direction of the steepest uphill gradient
until he can ascend no further. The problem with this rule is that if he starts some-
where on the slope of a minor hill, he will immediately ascend that hill until he
reaches its peak. He will then be unable to descend the other side (because of his
uphill-only rule) to reach the next or any other peak which may be higher than his
current position. Thus, the climber easily becomes stuck in local rather than global
maxima.

There have been many suggestions for improving on this basic rule, many of
which automatically move uphill but allow the occasional random downhill move
whose probability decreases with the depth of the descent. This allows the climber
to descend local peaks so as to locate more prominent peaks elsewhere. However,
even these are still not guaranteed to locate the correct peak within a ¯nite time.
Various more technical improvements to the basic approach are also available, and
these are designed to make the chances of locating the correct peak increase as the
simulation continues. However, these rules depend upon the shape of the surface,
with a more-complex (or high-dimensional) surface demanding more-complex rules
so that there exists a practical limit to the complexity of the surface that the climber
can successfully cover.

In practice, simplifying assumptions or approximations are often made to more
complex surfaces in order to facilitate the frequentist exploration process. In contrast,
the advent of MCMC methods means that the Bayesian need not concentrate solely
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on simple models and now has the tools to explore the increasingly complex model
structures that are the focus of many areas of modern scienti¯c research.

4. An average model?

Statistical inference is not limited to parameter estimation. Hypothesis testing, in
which we discriminate between competing models in order to gain a better under-
standing of the structure of the stochastic system under study, is also a common
goal.

The frequentist approach to model selection uses methods such as the likelihood
ratio test to compare nested models to determine whether or not a particular param-
eter (or set of parameters) should be included within the model. To perform a likeli-
hood ratio test, the value of the likelihood is calculated at the corresponding MLEs
for both models. The ratio of these two likelihood values is then compared with appro-
priate statistical tables to determine whether or not the ratio is `signi¯cantly’ large. If
it is, we reject the hypothesis that the parameters in question may be excluded from
the model. As with the construction of frequentist con¯dence intervals and standard
errors, the distribution of the likelihood ratio test statistic is asymptotic and is only
approximately true even for moderate sample sizes.

Alternatively, procedures based upon information criteria, such as the AIC (Akaike
1974), can be used. Such criteria are derived from information theory and are based
upon the evaluation of the log of the likelihood at the MLE, combined with a
penalty term accounting for the number of parameters in the model. This penalty
term ensures that parsimonious models are preferred so that if two models provide
the same likelihood value at their corresponding MLEs, then the model with fewer
parameters is selected. The inclusion of the number of parameters as an appropriate
penalty term derives from an approximation to the bias inherent in the procedure
of simply comparing the likelihoods alone. The AIC provides an approximation to
a formal information-theoretic comparison procedure but performs well only when
the observed dataset is large and when `good’ models are compared (Burnham &
Anderson 1998).

In practice, when there are many plausible models to compare, the frequentist
approaches to model selection may be computationally very costly. Exhaustive eval-
uation of all plausible models may be prohibitively expensive since the MLE must be
calculated for each model in turn. Thus, various model exploration procedures have
been proposed which attempt to identify the best models without having to evaluate
them all. Perhaps the most common approach in the context of nested models is to
evaluate the most-complex model ¯rst and then evaluate all models which can be
derived from that model by the removal of a single model parameter. If an improve-
ment can be found (according to some comparison criterion), the original model is
replaced by the best alternative and the procedure repeated by considering all sub-
models obtained by deleting a second model parameter. This process is repeated
until no further improvement is obtained. Various alternative implementations are
available, such as starting with the smallest rather than the largest model and adding
rather than deleting parameters, but all such procedures exhibit a tendency to get
stuck at locally optimal models and none are guaranteed to ¯nd the best model.

The Bayesian approach to model discrimination is based upon an extension to the
posterior distribution to include not only uncertainty as to the model parameters,

Phil. Trans. R. Soc. Lond. A (2003)



Bayesian computation 2691

but also the model itself. Suppose we observe data x and have a series of plausible
models indexed by m = 1; : : : ; M . Suppose also that under model m we have a joint
probability distribution for the observed data x given by fm(x j µm), where µm

denotes the vector of parameters associated with model m. Then, by specifying a
prior distribution pm(µm) for the model parameters under each model and a prior
probability for each model, p(m), we can derive a posterior distribution over both
parameter and model space given by

º (µm; m j x) / fm(x j µm)pm(µm)p(m):

This joint posterior distribution can then be broken down into two components, since
(by Bayes’ theorem)

º (µm; m j x) = º (µm j m; x)º (m j x);

where º (µm j m; x) denotes the posterior distribution under model m and º (m j x)
denotes what we call the `posterior model probability’ representing our beliefs, having
observed data x, of the probability that model m is the true model given that one
of models 1; : : : ; M is true.

Having obtained these posterior model probabilities we have two choices. We can
either use them to discriminate between the competing models by computing the
Bayes factor, which is simply the ratio of the posterior odds (the ratio of the posterior
to the prior model probability) for any two competing models (Kass & Raftery 1995),
or, if we are interested in prediction for example, we can use them to combine the
predictions from the di®erent models by weighting them according to their posterior
model probability. In this way, we obtain predictive inference which properly re°ects
both sources of uncertainty (i.e. that associated with the model parameters and
with the model itself) and provides a more realistic prediction than anything based
upon any one of the models under consideration. The ability to perform model-
averaged predictive inference is one of the great advantages of the Bayesian approach
and ensures that predictive inference fully accounts for both parameter and model
uncertainty.

The second substantial advantage of the Bayesian approach to model discrimina-
tion, as with parameter estimation, is the availability of computational tools capable
of undertaking analyses that are either impossible or at least prohibitively computa-
tionally expensive to undertake within the frequentist paradigm. Such problems are
commonly encountered when very large numbers of models need to be explored.
These Bayesian tools, known as trans-dimensional (TD)MCMC methods (Green
1995), are a fairly straightforward extension to the MCMC algorithm, but allow for
the construction of Markov chains capable of exploring the more complex posterior
distribution described above.

As with the bene¯ts of MCMC methods over the frequentist alternatives, TDM-
CMC methods allow us to explore almost arbitrarily large model spaces. This removes
the need to ignore plausible models simply to reduce the model space, as is often the
case for frequentist analyses. However, TDMCMC methods are a relatively new addi-
tion to the statistical literature, and the construction of the necessary between-model
transitions, though well understood in theory, can be rather di±cult to implement in
practice. Ultimately, such techniques will only be routinely applied in practice once
a suitable implementational framework has been established and incorporated into
widely available computer packages. We are still some way o® from developing this
framework and this is the focus of a great deal of current methodological research.
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5. Modelling bird survival

As an example of a model-selection problem highlighting the potential advantages
of the Bayesian approach using TDMCMC, we consider a problem from population
ecology.

Data collection for wildlife populations is often performed using capture{recapture
and/or tag{recovery techniques (Schwarz & Seber 1998) which involve marking ani-
mals (often at birth) and then recording subsequent resightings either alive (recap-
ture) or dead (recovery). The primary aim of such studies is to learn about the
survival dynamics of the population under study, though recovery and recapture
rates may also be of interest. In particular, we often wish to study the dependence
of the annual survival rate on a variety of factors such as age or year as well as any
number of environmental or individual covariates.

We consider recapture{recovery data from a population of Scottish shagsy (Pha-
lacrocorax aristotelis) previously analysed by Catchpole et al . (1998). Shags move
through three distinct life stages and are referred to as pulli in their ¯rst year, im-
mature in their next two years, ¯nally becoming adult in their fourth year. The
survival, recapture and recovery parameters are assumed to depend on year and/or
age, so that the full model has three groups of parameters:

¿ a(t) = P(an animal of age a alive in year t survives until year t + 1);

pa(t) = P(an animal of age a alive in year t is resighted at that time);

¶ a(t) = P(an animal of age a which dies in [t; t + 1), has its band returned);

for a 2 f1; 2; 3; Ag, where A represents adult. Di®erent models can then be repre-
sented by placing di®erent restrictions upon these parameters.

Here, we have no covariates, and are interested in determining the structure
describing the dependence of survival upon age and/or year. The data were col-
lected annually over a nine-year period and so the various combinations of year and
age dependence provide us with almost 500 000 di®erent models. For example, one
model allows all parameters to depend upon both age and sex, while another may
group the survival probability for ages 2 and 3 and set it constant for all time, etc.
This provides an extremely di±cult model-selection problem. From the frequentist
perspective, it is computationally infeasible to exhaustively evaluate all models and
so it is necessary to restrict the model space by `guessing’ which models are likely to
describe the data best. This is the approach taken by Catchpole et al . (1998), who
identi¯ed the model with the following restrictions as that which minimized the AIC
statistic (with a value of 12 197.7) amongst a small selection of alternatives:

¿ 2(t) = ¿ 3(t) = ¿ im m ; ¿ A(t) = ¿ A;

p1(t) = p1; p2(t) = p2; p3(t) = p3;

¶ 1(t) = ¶ 2(t) = ¶ 3(t) = ¶ A(t) = ¶ (t):

The model here is described in terms of the restrictions imposed on the full model
described earlier. In terms of survival, for example, we have time-dependent survival
for pulli and a common survival rate for immatures which is constant over time, as

y A seabird somewhat similar to, but smaller than, a cormorant.
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is the adult survival rate. Similarly, the model suggests that the recovery rates are
the same for all ages, but change over time.

The Bayesian analysis using TDMCMC does not need to restrict attention to only
a small selection of models as it is capable of exploring a very large model space with
reasonable e±ciency. Adopting a uniform prior distribution for all model parameters
and a °at prior distribution over models, the Bayesian analysis gives highest posterior
model probability to the following model:

¿ 2(t) = ¿ 3(t) = ¿ im m ;

p1(t) = p1; p2(t) = p2;
¶ 1(t) = ¶ 1; ¶ 2(t) = ¶ 3(t) = ¶ im m ; ¶ A(t) = ¶ A:

This model suggests that adult survival is year dependent rather than constant
across all years and is more consistent with current ecological thinking in that we
would expect that annual environmental °uctuations at the breeding site would
almost certainly a®ect their survival. This would not be the case for immatures,
which remain at sea throughout the year and would be less vulnerable to the in°uence
of such variations. This model also suggests that the recovery probabilities are age
rather than year dependent. Again, this is more consistent with expert opinion since

the less experienced juveniles and ¯rst winter birds seem to die in ways
associated with man (e.g. caught in nets or lobster pots) or in places
where they are more likely to be found (e.g. blown inland or into estuaries,
which rarely happens to older birds).

M. Harris (2001, personal communication)

Thus, we should expect a larger recovery rate for these shags and a corresponding
age-dependent structure for recoveries, which was not observed in the earlier model.

It is worth noting that this model has an associated AIC statistic of 12 138.72 and
therefore improves (from the frequentist perspective) upon the model discussed by
Catchpole et al . (1998). The reason that this model was not identi¯ed in the original
analysis is that it simply was not considered. If it had been possible to consider all
plausible models within the frequentist analysis, then both Bayesian and frequentist
analyses would have identi¯ed the same model and would therefore have provided
the same conclusions. Thus, it is the tool rather than the philosophy that leads us
to the right result, as is often the case.

6. Looking to the future

To many, the Bayesian approach exhibits a natural a±nity with recent scienti¯c
philosophy, stressing the advantages of cumulative evidence-based practice. Though
opponents criticize the subjectivity in that prior distributions need to be used, others
see this as an advantage which, in many cases, provides an essential extra source of
information and invariably improves the precision of parameter estimates. It is worth
noting that the subjective choice of prior is not too dissimilar from the problem of
choosing a signi¯cance level for the frequentist hypothesis test, for example. In fact,
most criticisms aimed at one or other of the two approaches seem to have an analogue
in the alternative approach. Computationally, for example, the problem of locating
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the global maximum in the frequentist setting is comparable with determining the
number of observations necessary for the corresponding MCMC simulation.

In practice, many researchers will be less interested in the philosophical foundation
of the two distinct statistical approaches to inference than they are in getting the
right answer to the speci¯c questions arising from their own data. In many cases, the
questions of interest will be partly directed by the statistical tools that have tradi-
tionally been available as well as the traditions of the discipline itself. For example,
the automatic recourse to analysis of variance, t tests and À 2 tests to analyse almost
any dataset is standard in many disciplines. Such techniques are extremely easy to
apply using standard and commonly available statistical packages and, if these tech-
niques provide an answer to the question of interest, then the pragmatic approach
is simply to use them. There is certainly little, if any, advantage in applying the
Bayesian machinery to such problems, particularly given the fact that very few of
the corresponding Bayesian techniques can be so easily implemented. Thus, if your
primary question of interest can be simply expressed in a form amenable to a t test,
say, there really is no need to try and apply the full Bayesian machinery to so simple
a problem.

However, the many practitioners who ¯nd themselves tailoring their questions to
the tools they have available; those who ¯nd themselves being forced to use unreal-
istic approximations or assumptions in their analysis; those who feel uncomfortable
adopting essentially arbitrary critical values for testing hypotheses; or those who
wish to incorporate additional information that could be conveniently expressed in
the form of a prior distribution may ¯nd that the Bayesian approach provides an
alternative which overcomes these di±culties. This may involve the construction
of problem-speci¯c code (as, in fact, is often necessary for frequentist analyses of
`non-standard’ datasets) in order to conduct the necessary simulations and this may
present a barrier to many, the removal of which is perhaps one of the biggest chal-
lenges facing statistical methodologists today.

Statistical tools to undertake standard frequentist statistical techniques are widely
available in an enormous range of computer packages. As restrictive as some of these
tools may be in terms of the analyses they provide, they are generally quick and
easy to use. Bayesian analyses, on the other hand, generally require the develop-
ment of problem-speci¯c computer code because the implementation of many of the
Bayesian tools requires at least some element of `tuning’ in order to achieve optimal
performance. The development of techniques for automating this tuning process so
that computer packages can begin to be developed is one of the biggest challenges
facing statistical methodologists today, since, without them, many researchers will
be unable to implement these methods themselves.

A recent success story is the development of the BUGSy project (Spiegelhalter et
al . 1996) by the MRC Biostatistics Unit in Cambridge. This impressive suite of pro-
grams was originally developed to tackle a variety of standard problems encountered
in medical statistics, but is now widely used in areas as diverse as ecology, sociology
and geology. This powerful and very easy to use package enables statisticians and
practitioners alike to analyse a wide variety of standard models as well as allowing
a reasonable range of problem-speci¯c models to be constructed and analysed.

y The BUGS package is freely available from the BUGS website at http://www.mrc-bsu.cam.ac.uk/
bugs/.
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However, the methodological framework is not yet in place to allow the construc-
tion of a general package capable of constructing arbitrary model structures. Nor do
we yet have the methods in place to automate the model discrimination process via
TDMCMC. Though some of the foundation work has already been laid (Brooks et al .
2003; Green 2003), there remains a great deal of work to be done in determining how
to construct algorithms capable of moving e±ciently between di®erent models and,
in particular, automating the selection of the various tuning parameters necessary to
make these algorithms work well. It is the absence of these general implementation
frameworks that has prevented the development of Bayesian statistical packages to
rival the myriad of well-established frequentist packages already available. However,
once this framework has been developed, the BUGS package will provide a template
for the development of the next generation of statistical packages aimed at meeting
the increasing demands of researchers working at the coalface of scienti¯c research.

References

Akaike, H. 1974 A new look at the statistical identi¯cation model. IEEE Trans. Automatic
Control 19, 716{723.

Arbuthnot, J. 1711 An argument for divine providence, taken from the regularity observed in
the births of both sexes. Phil. Trans. R. Soc. Lond. 27, 186{190.

Bayes, T. 1763 An essay towards solving a problem in the doctrine of chances. Phil. Trans. R.
Soc. Lond. 53, 370{418.

Brooks, S. P., Giudici, P. & Roberts, G. O. 2003 E± cient construction of reversible jump MCMC
proposal distributions (with discussion). J. R. Statist. Soc. B 65, 3{55.

Burnham, K. P. & Anderson, D. R. 1998 Model selection and inference: a practical information-
theoretic approach. Springer.

Catchpole, E. A., Freeman, S. N., Morgan, B. J. T. & Harris, M. P. 1998 Integrated recov-
ery/recapture data analysis. Biometrics 54, 33{46.

de Finetti, B. 1970 Teoria della probabilitia vols 1 and 2. Einaudi: Turin. (Transl. 1974, 1975
Theory of probability, vols 1 and 2. Wiley.)

de Moivre, A. 1718 The doctrine of chances. London: W. Pearson.

Edgeworth, F. Y. 1893 Statistical correlation between correlated averages. J. R. Statist. Soc.
56, 563{568.

Fisher, R. A. 1922 On the mathematical foundations of theoretical statistics. Phil. Trans. R.
Soc. Lond. A 222, 309{368.

Fisher, R. A. 1925 Statistical methods for research workers. Edinburgh: Oliver & Boyd.

Galton, F. 1888 Co-relations and their measurement, chie° y from anthropological data. Proc.
R. Soc. Lond. 45, 135{145.

Galton, F. 1889 Natural inheritance. London: Macmillan.

Gauss, C. F. 1809 Theoria motus corporum celestium. Pertheset Besser: Hamburg. (Transl. 1857
Theory of motion of the heavenly bodies moving about the Sun in conic sections, C. H. Davis.
Boston, MA: Brown.)

Gelfand, A. E. & Smith, A. F. M. 1990 Sampling-based approaches to calculating marginal
densities. J. Am. Statist. Assoc. 85, 398{409.

Gelman, A. & Nolan, D. 2002 Teaching statistics: a bag of tricks. Oxford University Press.

Green, P. J. 1995 Reversible jump MCMC computation and Bayesian model determination.
Biometrika 82, 711{732.

Green, P. J. 2003 Trans-dimensional Markov chain Monte Carlo. In Highly structured stochastic
systems. Oxford University Press.

Phil. Trans. R. Soc. Lond. A (2003)

http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0018-9286^28^2919L.716[aid=32260]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/1364-503X^28^29222L.309[aid=1182164]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/1364-5021^28^2945L.135[aid=5292984]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0162-1459^28^2985L.398[aid=20258]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0018-9286^28^2919L.716[aid=32260]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/1364-503X^28^29222L.309[aid=1182164]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/1364-5021^28^2945L.135[aid=5292984]


2696 S. P. Brooks

Hastings, W. K. 1970 Monte Carlo sampling methods using Markov chains and their applica-
tions. Biometrika 57, 97{109.

Huygens, C. 1657 De ratiociniis in ludo aleae. In Exercitationum mathematicarum (ed. F. van
Schooten), pp. 517{534. Leidein: Johannis Elsevirii.

Je® reys, H. 1939 Theory of probability. Oxford University Press.

Kass, R. E. & Raftery, A. E. 1995 Bayes factors. J. Am. Statist. Assoc. 90, 773{795.

Laplace, P. S. 1774 Memoire sur la probabilite des causes par les evenemen. In Memoires de
l’Academie Royale des Sciences presentes par divers savans, pp. 621{656.

Legendre, A. M. 1805 Nouvelles m¶ethodes pour la d¶etermination des orbites des comµetes.
(Appendix: sur la m¶ethode des moindres carr¶es). Paris: Courcier.

Lindley, D. V. 1965 Introduction to probability and statistics from a Bayesian viewpoint. Cam-
bridge University Press.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. 1953 Equations
of state calculations by fast computing machines. J. Chem. Phys. 21, 1087{1091.

Neyman, J. & Pearson, E. S. 1933 On the problem of the most e± cient tests of statistical
hypotheses. Phil. Trans. R. Soc. Lond. A 231, 289{337.

Pearson, K. 1896 Mathematical contributions to the theory of evolution. III. Regression, heredity
and panmixia. Phil. Trans. R. Soc. Lond. A 187, 253{318.

Pearson, K. 1900 On the criterion that a given system of deviations from the probable in the
case of a correlated system of variables is such that it can be reasonably supposed to have
arisen from random sampling. Phil. Mag. 50, 157{175.

Pearson, K. & Filon, L. N. G. 1898 Mathematical contributions to the theory of evolution. IV.
On the probable errors of frequency constants and on the in° uence of random selection on
variation and correlation. Phil. Trans. R. Soc. Lond. A 191, 229{311.

Savage, L. J. 1954 The foundations of statistics. Wiley.

Schwarz, C. J. & Seber, G. A. F. 1998 A review of estimating animal abundance. III. Statist.
Sci. 14, 427{456.

Spiegelhalter, D. J., Thomas, A., Best, N. G. & Gilks, W. R. 1996 BUGS: bayesian inference
using Gibbs sampling, version 0.50. Cambridge: MRC Biostatistics Unit.

Yates, F. & Cochran, W. G. 1938 The analysis of groups of experiments. J. Agric. Sci. 28,
556{580.

Yule, G. U. 1897 On the theory of correlation. J. R. Statist. Soc. 60, 812{854.

Phil. Trans. R. Soc. Lond. A (2003)

http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0021-9606^28^2921L.1087[aid=20274]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0141-8610^28^2950L.157[aid=5402533]


AU T H O R P R O F I L E

S. P. Brooks

Born in Crawley, Sussex, Steve Brooks studied Mathematics at the University of
Bristol before moving to the University of Kent, Canterbury (UKC), to take his
MSc in Statistics. He worked as a research assistant at UKC for a further year
before moving to the University of Cambridge, where he gained his PhD in 1996. He
returned to the University of Bristol as a lecturer before moving to the University
of Surrey as a senior lecturer in 1999. Aged 33, he is now a reader in statistics
at the University of Cambridge and an EPSRC advanced research fellow. Scienti¯c
interests include Bayesian and computational statistics and their applications in
biology, ecology, archaeology, economics and engineering. His main recreation activity
is scuba diving both in the UK and abroad.

2697


