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Preface 

This book presents a broad ranging view of subjective probability. Chapters
range from the discussions of the philosophy of axiom systems through to
studies in the psychological laboratory and then to the real world of business
decision-making.

Topics covered include subjective probability in statistical inference and
expert systems, the treatmentof causality in laboratory studies and in scenario
planning, whether Man is a Bayesian thinker or a frequentist thinker,
descriptive and normative theories of subjective probability, confidence and
performance, and subjective probability in gambling and court-room
decisions—a wide range of topics. Nevertheless, underpinning all the topics
and approachesis a fundamentaldesire, on the part of the authors, to analyse
and document the humanability to deal with uncertainty—no easy task. The
multidisciplinary nature of this volume—which includes authorities who are
psychologists, philosophers, statisticians, managementscientists, education-
alists, and corporate planners—illustrates the essentially human challenge of
this enormous project.

Fundamentally, we believe that a reconceptualization of the base issues will
be prompted by, and benefit from, the exchange of knowledgeacrossdisci-
plinary boundaries. The challenge of facilitating this flow of knowledge was
the driving force behind this book. We have commissioned chapters from
those individuals who possess both the subject expertise and the ability to write
in an accessible way. Our hopeis that readers of this collection will be stimu-
lated to apply fresh insights to their own disciplinary endeavours and perhaps
also be inspired to contribute to the development of new material to add to
the evolving corpus of knowiedge and debate.

The book is organized into four major parts. The first, Background,
providesthe philosophical andstatistical foundations. The second, Studies in
the Psychological Laboratory, overviews theory and research in cognitive and
developmental psychology. The third, Accuracy of Probability Judgements,
focuses on theories and modelsthat allow assessmentof the quality of assessed
probabilities. The fourth, Real World Studies, reviews subjective probability
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judgement in situations that have material consequences for the decision-

makers. A detailed chapter-by-chapter overview follows next.

In the first chapter of the Background Part, Dennis Lindley introduces

the concept of probability and the probability laws and demonstrates that,

logically, probability is inevitable.

Subjective probability depends upon two things, the event whose uncer-

tainty is contemplated, and the knowledge that you have at the time. The

calculus of probability leads to results that may not agree with commonsense

because, Lindley argues, commonsenseis often not capable of the calcu-

lations. There is no suggestion that the probability rules describe how people

behave in the face of uncertainty. The probability calculus is a norm which

intuitive ideas on uncertainty should follow. Lindley shows that subjective

probability leads directly to utility and thus to the procedure of maximization

of expected utility as the optimal decision criterion.

Patrick Suppes provides a systematic discussion of the major aspects of the

subjective theory of probability. As he notes, a central question for a set of

axioms of qualitative probability is what formal comparative relation the

expression “more probable than” must have in order to be represented by a

numerical probability measure over events. Suppes argues that the subjective

theory of probability provides necessary but not sufficient conditions for

success in probabilistically predicting future events, such as tomorrow’s

weather. Next, Suppes considers a thought experiment and argues that

individuals may ignore hypotheses that are ultimately true. It is unrealistic,

Suppes argues, to have a positive prior opinion for all plausible hypotheses.

Similarly, he debates the issue of whetherthere are situations in which it is not

sensible to make exact probability estimates about possible events about which

little is known. He argues that extension of the theory of subjective probability

to such situations is desirable.

Colin Howson and Peter Urbachreview the backgroundto the development

of a theory of inductive inference. As Howsonand Urbachnote, the apparent

impossibility of determining objective prior probabilities in any non-arbitrary

manner has been a powerful factor in convincing many people that a

probabilistic theory of inductive inference was impossible. However, as these

authors show, debates about methods for determining priors fall outside

Bayesian theory. Next, Howson and Urbach consider classical statistical

inference and arguethat, relative to Bayesianism,it has no proper foundation

and that apparently objective inferential statements are, in fact, illusory. The

principles of significance testing and estimation are, they argue, simply wrong

andbeyondrepair.

Developing this theme, Glenn Shafer argues that subjective probability is

integral to all applications of supposedly objectivistic applications. Focusing

on statistical tests, Shafer argues that subjectivity enters into probability both

in the way in which belief and frequency are unified and in the waythat this
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unification is applied to a practical problem. Shafer demonstrates that

statistical testing often uses instances of what he terms “the informal story”
(the unification) simply as standards against which to rate performance. The
divide between the “frequentists” and the “subjectivists”, he argues, has a

foundationalrigidity that may have been useful in the past, when subjectivists

had few successful, practical Bayesian applications, but is unnecessary today.

By contrast, John Fox argues that, in addition to subjective probability,

there is a family of distinct theories of uncertainty that can be shown to have

sound mathematical foundations and that these theories capture different

intuitions about uncertainty and belief. He questions the general adequacy of

the “probability paradigm” and, by introducing issues from artificial intelli-

gence (AI), argues that subjective probability does not have universal applic-
ability. He contends that a numberofalternative uncertainty formalisms,

deriving from research in AI which has attempted to formalize intuitive

concepts of “common sense”, provide an alternative framework. AI has

becomethe latest stage on which the probability debate is being conducted.

In the first chapter of the Part on Studies in the Psychological Laboratory,
Lee Roy Beach and Gary Braunidentify 1967 as the year in which experiment-
ation began in earnest. They describe early work which focused on identifying

whetherprobability theory was a descriptive behavioural modelof individuals’
judgements of subjective probability. Beach and Braun evaluate whether
probability theory is, in fact, the appropriate standard for evaluating the

quality of subjective probabilities. They argue that knowledge-based reasoning
as well as probability-law-based reasoning may give rise to subjective
probability. Whilst experimenters have generally assumed that the domain

covered by the problems they posed was properly addressed by probability

theory, the subjects of the experiments, they argue, have frequently thought
otherwise.

Gerd Gigerenzer extends this discussion and argues that, from a strong
frequencyview of probability, observed “biases” in probabilistic reasoning are
not errors, since probability theory simply does not apply to single events. In
his chapter, Gigerenzer focuses on the usefulness of a distinction between
single-event probabilities and frequencies and draws on evidence from both
the history of probability and from experimental work in the psychological
laboratory. He argues that empirical demonstrations of errors are not stable
and .cognitive “illusions” disappear when single-event probabilities are
changedto frequencies. He concludes that the untutored mindhas more of a
frequentist design than a Bayesian one.

Peter Ayton and George Wright consider this latest view of probability, as
explicated by Gigerenzer in the preceding chapter. Ayton and Wright suggest
that the well-known gambler’s fallacy can also be made to “disappear”. But
there is some evidence that judgements of frequencies can also show the
characteristic bias found for confidence judgements.
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A numberof questions are raised by Gigerenzer’s critique. How should we

view human judgement under uncertainty? For biases to be capable of being

made to disappear they have to be there in the first place: why do the con-

junction fallacy and base-rate neglect occur when they do? We note that the

evidence for, and generality of, the availability and anchor-and-adjust

heuristics proposed by Kahneman and Tversky appear untouched by the

critique. Aside from the theoretical debate as to the nature of human

probabilistic judgement there are also questionsas to its general competence.

Should we now believe that human probabilistic judgementis satisfactory and

that the evidence for incompetence wasillusory?

Shawn Curley and George Benson focus on the construction of subjective

probability estimates. They argue that the process is dominated by the

construction of reasoned arguments and develop a cognitive theory of

probability construction. Next, they utilize this theory to analyse the results of

earlier experimentation. They argue that influence diagrams and knowledge
maps, often used in the initial phases of decision analysis, are an indication

of a new focus on the process of belief assessment rather than the output of

the judgement. The latter topic, as Beach and Braun note in Chapter6, has

been the primary concern of psychologists to date. However, Curley and

Benson argue that investigation of the reasoning underlying judgemental

assessmentsis critical and, as a first step, they develop a model of “belief

processing” that supports the construction of subjective probabilities. Next

they utilize this model to elucidate judgemental heuristics in probability

assessment.

Karl Teigen argues that subjective judgements of probability are arrived at

by a number of different processes which may, or may not, cause them to

differ from the experimenters’ rules. Teigen does not debate whether or not

there should be a correspondence between subjects’ assessments and experi-

menters’ evaluation of what constitutes a good (often relative to normative

standards) performance. This issue was already debated by Beach and Braun

in Chapter 6. Instead, Teigen evaluates the conditions under which judgements

and norms show agreement and when they do not. Teigen suggests some

simple probability rules which, he argues, people generally seem to accept as

valid. Understanding and application of other rules, for example the product

rule for arriving at the probability value of a conjunction, is less common-

place. Teigen argues that, when people start judging probabilities on an

intuitive basis, judgementis dependent upon a richer source of subjectively

available concepts and strategies. Teigen concludes that we are very sophisti-

cated probabilists in most respects except the quantitative one.

Valerie Reyna and Charles Brainerd document the developmental studies of

probability judgement that have been conducted and argue that these provide

an important perspective on adult conceptions of probability. Knowledge of

developmentalstabilities and changes supply an independentbodyof evidence
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that can be used to select among competing theories of (non-)probabilistic
thinking in adulthood. Their developmental analysis deals successively with
Piagetian information processing and intuitive reasoning approaches. Reyna
and Brainerd debate the evidence for precocity on the one hand andlate
emergence on the other. They conclude that young children can perform
advanced processing operations under certain conditions. Of necessity, the
question of adult rationality is central to developmental research—if cognitive
developmentis seen as progress toward rationality. Reyna and Brainerd argue
that reasoners understand probability at an early age but that they increasingly
rely on intuitive processes as they grow older.
Jonathan Baron and Deborah Frisch analyse what they term the “ambiguity

effect”, where individuals often prefer to bet on gambles with a stated and
known chance of winning, as opposed to gambles wherethe chance of winning
is unstated and unknown butis formally identical from the perspective of
expected utility theory. This phenomenon, which has demonstrated subjects’
aversion to ambiguity, has led to empirical and theoretical research on the
causes and effects of ambiguity. In their paper, Baron and Frisch discuss the
implications of ambiguity avoidance for expected utility theory. They develop
their own theory of ambiguity as missing information and address issues
concerning the practicality of dealing with situations in which information is
missing.

Wibecke Brun focuses on the perception of risk. Some conceptualizations
define risk as a product of the probability of a loss and its magnitude. Other
definitions are concerned with lay perceptions and aim to describe how lay
personsintuitively understand the term. Nevertheless, probability is one of the
main components in most definitions of risk. Does a discrepancy between
“actual” risk measures, like statistical fatality estimates, and subjectively
perceived risk constitute a problem? Brun identifies two major research issues
in risk perception studies. The first has to do with gaining knowledge of what
public concerns are. The second has to do with identifying and explaining
attitudes and reactions toward hazards. Brun differentiates experimental
studies in the psychological laboratory and psychometric or questionnaire
studies of risk attitudes in the lay population. Brun concludes that the
uncertainty component of a risk is multidimensional, involving intuitive
probability concepts such as those described by Teigen in Chapter 9.

Nigel Harvey discusses the relationship between how well people perform
skilled tasks and the confidence that they have in their performance. Most of
the work that Harvey evaluates has to do with motorskills andcognitive skills.
The major issues are whether confidence accurately reflects performance and
whether changes in performance produce changes in confidence. Here confi-
dence is treated as an effect of performance. These issues, and especially the
formerone, are similar to those addressed by cognitively orientated studies of
probability judgement accuracy reviewedin a later section of this volume. In
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addition, however, theoretical concerns have led to an examination of how

confidence influences performance. Harvey argues that confidence and

performanceare coupled together as a dynamical system whereneither should

be seen as just a cause noras just an effect. Here, motivational factors are of

major concern. Harvey concludes that there is a need for the theoretical

integration of cognitive and motivational accounts.

RumaFalk, Abigail Lipson and Clifford Konold investigate how we cope
with the search for a target object in afinite field of locations, if one’s initial

uncertainty is met with a series of negative results. Falk, Lipson and Konold

examine the nature of probabilistic reasoning in such situations along with

the Bayesian solution. But, descriptively, how is conflict resolved between the

diminishing long-term hope and the increasing immediate hope implied by the

diminishing finite number of locations? Do we overestimate our chance of

success, thus wasting time in futile search, or underestimate our chances,

giving up too early in frustration and despair?
In the first chapter of the Part on Accuracy of Probability Judgements,

J. Frank Yates introduces the issues and analyses the variety of accuracy

measures that have been proposed. Such measures, often implemented as

scoring rules, can be used in the form of feedback to the judge as well as direct

assessmentof aspects of the judge’s (in)accuracy. Yates gives several detailed

examples of accuracy measurement in such contexts as pneumonia diagnosis,

intensive-care prognoses, andstudies of cross-national variations in propensity

to engage in probabilistic thinking.
William R. Ferrell discusses practical issues in subjective probability from

the standpointof decision analysis, and he extends discussion oftheelicitation

of subjective probabilities from individuals and subsequent accuracy measure-

ment. AsFerrell notes, the quality of a decision analysis is critically dependent

on the quality of assessed probabilities. He develops Yates’ discussion of prob-

ability accuracy, discusses the consequences of poor accuracy for decision

analysis and argues that a common formof inaccuracy is overconfidence.

Next, Ferrell describes his model of probability accuracy based on signal-

detection theory and he demonstrates that the model can explain a variety of

experimental data drawn from subjective probability judgementtasks.

Alastair McClelland and Fergus Bolger focus on the accuracyorcalibration

of subjective probability judgements. They review theories and models of

calibration that have appearedsince the time of the last review, in 1982. As

McClelland and Bolger note, there are two distinct views of the locus of

observed biases in calibration and other measures of probabilistic reasoning.

The “pessimists” believe that biases are in people whilst the “optimists”

believe that biases are in-built in the experimental tasks utilized by researchers.

Theories and models of calibration can also be located within these two

distinct views of the quality of probabilistic judgement. In their review of

seven models of subjective probability calibration, McClelland and Bolger
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conclude that the “optimists” provide the most satisfactory explanation of
calibration with general-knowledge items.

In the first chapter in the Part on Real World Studies, Gideon Keren
describes gamblers’ conceptions of uncertaintyin light of a distinction between
two different and irreducible fundamental modes of thought. One modeis
based on the abstract rules of logic (e.g. the probability laws), the other is
phenomenological in nature and is based on action and associated conscious
experience. As he notes, the fact that people gamble atall in face of negative
expected values is one of the main paradoxes of gambling behaviour.
However, as Keren argues, this paradox exists only under the rules of the
logic of the probability calculus. Gamblers’ probabilistic assessments are
contaminated by their desires and associated emotions. Clearly, the formal
theory of probability is not descriptive of how gamblers deal with uncertainty.

Paul Krause and Dominic Clark discuss the ways in which uncertainty and
subjective probability have been represented in AI systems. As the authors
note, ad hoc uncertainty calculi have often been used in AI systems because
they are computationally efficient. Bayesian updating of a system’s knowledge
base, on the other hand, is complex and posed problems of combinational
explosion both for the elicitation of subjective probabilities from human
experts and for the numerical computation of updated probabilities. However,
new efficient algorithms have been recently developed for rapid belief updating
which match the computational capability of earlier ad hoc approaches.
However, most probabilistic expert systems are still dependent on theelicita-
tion from experts of the majority of the required conditional probabilities.
Nevertheless, such expert systems are in use, for example in the diagnosis of
congenital heart disease. Krause and Clark describe such a system and argue
that there are situations where aspects of imprecision and vagueness may
be more effectively addressed with alternative calculi to that of subjective
probability. This approach supplements and extends Chapter 5 by Fox.
Willem Wagenaarfocuses on the courtroom criterion of “beyond reason-

able doubt”. As he notes, there is a paradox implicit in the criterion since if
a judge is not absolutely certain thenthis must meanthat there is a logical
possibility that the accused is innocent. Whythen is this possibility not a
reason for doubt? Wagenaar analyses the way in which judges approach the
task of probability assessment. Onedescriptive theory proposes that the
acceptance of good causal stories, given by defence or prosecution, is taken
as diagnostic of truth. Of course, presented evidence should underpin good
stories. Wagenaar argues that insight into how judges and juries deal with
probabilities may lead to better courtroom procedures and better laws.

Kees van der Heijden analyses the advantage of probabilistic planning com-
pared to scenario planning. He notes that probabilistic planning is based on
axiom-based theory, whilst scenario planning, a moreintuitive approach to
dealing with uncertainty, derives from the world of decision-makingpractice.
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Scenario planning, van der Heijden argues, addresses more adequately the

needs of managerial decision-makers, downplays the decision-maker’s poor

ability to think probabilistically and promotes managerial ability to create

causal stories of plausible futures. In general, this approach complementsthat

described by Wagenaarin the previous chapter. Scenario-planning techniques

promote the generationof action options and aid the manager’s desireto close

the gap between expected and desired futures. The contrast with probabilistic

thinking is stark.
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Background



Chapter 1
 

Foundations

Dennis Lindley
Minehead, Somerset

1.1 UNCERTAINTY

Theobject of our study is uncertainty, the situation that arises when we do

not know whethera given statementis true or false. Uncertainty is everywhere

aboutus; all the future is uncertain, and so is muchof the present andthe past.

Weare all uncomfortable with uncertainty and try to avoid it as much as

possible. But it will not go away, so let us face up to the fact that not

everything is known and study the phenomenon of uncertainty.

It will be enough if consideration is confined in the first instance to state-

ments which it would be reasonable to describe as either true or false, if only

we knew which. Such statements will be termed events, though sometimes

other descriptions, such as hypotheses, might be appropriate. It is a purely

technical problem to extend our study from uncertain events to uncertain

quantities; a problem that will not be discussed here. Thus we might take the

event of “rain tomorrow”, rather than consider the amount of rain. Events

will be denoted by capital letters, thus A, B, etc.

Someevents are more uncertain than others. For example, weare fairly sure

that the sun willrise tomorrow,less sure thatit will rain then, and very unsure

whether a tossed coin will fall heads uppermost. Let us suppose that any

degree of uncertainty can be described by a number.This is a major assump-

tion and wewill return to consider it later. For the moment, let us just see

where this reduction of a complex notion to a single value leads us.
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4 D. Lindley

In describing the uncertainty of A by a number, it must be recognized that

the number may depend onthe person contemplating A and also on how much

that person knows. We will refer to the person in the state of uncertainty

concerning A as “you”. The knowledge that you have will be denoted K.If

K changes, so might your uncertainty. Indeed, one of our main taskswill be

to quantify the change. Ourtask is to measure your uncertainty about A when

your knowledge base is K.

1.2 PROBABILITY

Underlying all measurementis the concept of comparison with a standard. To

say the length of an objectis 2.4 m is to compare the length with a standard

metre. So we need a standard foruncertainty. There are many possibilities but

an easy one to handle is that of an urn containing a numberofballs, identical
except for the fact that some are white and the remainder black. Suppose that

your knowledge base, H, contains the information that there are w white and

b black balls in the urn, w+ b=n”. You now drawa ball from the urn in such

a way that you think any oneball is as likely to be withdrawn as any other.

(This concept can be madeprecise without circularity in the argument.) We

then say that the uncertainty concerning the event W, that the ball is white,
is w/n. It is called your probability of W, given H, and written p(W | H). The
notation does not incorporate reference to you, since weshall here always be

dealing with one person.

We now have a standard for uncertainty, called subjective probability,

though the adjective will be omitted. The subject is you. If you now contem-

plate another, general event, A, when your knowledge base is K, it has

probability w/n if the uncertainty is the sameas that for the ball being white.
Thus, for given n, the value of w can be selected to make the two events

equally uncertain. Remember, we are supposing that all uncertainties can be

described numerically, so that this comparison is feasible. Notice that you

might not be able to do the direct comparison of A, given K, with W, given

Hy, any more than you would actually use the standard metre to measure

length. All that is being said is that you would regardit as possible in principle,

just as, in principle, the standard metre might be employed. Although this

procedure only provides rational numbers, it is a purely technical matter to

extend it to real numbers. Asa special case, if K includes the information that

Ais true, then you would choose w=n to make W true, and henceassign a

probability of one.

Wethus havethe first rule of probability, usually called the

Convexity rule. For any uncertain event A and state of knowledge K, the

probability of A, given K, p(A|X), lies between 0 and 1 and assumesthe

value 1 if K includes the knowledge that A is true.
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There are two important features of any measurement process: how the

measurement is made, and how different measurements combine. The first

part is solved in principle by comparison with a standard, thoughthis is rarely
practical. Let us take the second part, the rules of combination. For prob-

ability there are two of these. To describe them, somenotation is required. If

A and B are two events, then the event which is only true when both A and

B are true, the conjunction,is written AB. Similarly, if your knowledge base

is enlarged from K to include the additional information that A is true, we

write AK for the new base. If it is impossible, on K, for both A and B to be
true, we say they are exclusive on K and write AB = @, the empty event, which

is knownto befalse. If AB=@, we write A + B for the event which is true

whenever one of A or B is true, thedisjunction. The two rules can now be

stated.

Addition rule. If AB=@ on K, then p(A + B| K)=p(A|K)+p(B|K).
Multiplication rule. p(AB| K) = p(A | K)p(B| AK).

It is an easy matter to establish these rules by comparingall the probabilities

with the standard of balls in an urn. In addition to supposing someballs are

white, some black, to compare with A, as above, it will be necessary to

suppose someof the balls spotted, some plain, to compare with B. For the

addition rule, there will be no balls that are both white and spotted, corre-

sponding to AB = @. Therules are then simply a reflection of the fact that the

proportions of balls in the urn obey these rules, which are thereby transferred

to probabilities generally. The rules of probability are just those of proportions.

1.3 THE INEVITABILITY OF PROBABILITY

Probability is therefore a measure of uncertainty obeying the three rulesof

convexity, addition and multiplication. It is not the only way to measure

uncertainty. For example, gamblers use odds. But odds are merely a transform

of probability. If the probability of A, given K, is p; then the odds against
A, given K, are (1—p)/p to 1. Elsewhere in this chapter, the odds on,
p|(1—p), will be used and referred to simply as odds. In manystatistical

calculations it is convenient to use the logarithm of odds. We usually prefer

probability because the rules are simpler in that form, though Bayes’ rule,

below, will demonstrate an advantageof odds.

However,although we can switch from probability to functions, like odds,
any measure of uncertainty must be a function of probability. Workers in

fuzzy logic argue for rules expressed, not in terms of addition and multi-

plication, but in terms of maxima and minima. This is not possible. Hereis

an outline of a demonstration of this fact, due to de Finetti (1974). The

account also suggests a way of measuring uncertainty that is more practical

than the comparison with astandard, just used.
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Suppose,still accepting that uncertainty can be described by a number,that

you are asked to provide a numerical value for the uncertainty of some event

A, given K, and provide, using whatever methodyoulike, the answer, p. Then

let you be scored an amount(1 — p)’, if A is later found to be true, and Dp’

if A is false. The score is to be regarded as a penalty and you wish to minimize

your total score. It is easy to see that, under these conditions, you would

provide a value of p between 0 and 1, and that you would give the value 1 if

you knew A to betrue. This is the convexity rule. Using some beautiful,

geometric arguments of great simplicity, de Finetti showed that the numbers

that you would give must satisfy the other two rules as well. If they did not,

then you would necessarily incur a larger score: not simply expect to get a

bigger value than by using probability, but actually get one. It is not an

exaggeration to say that it would be foolish to provide numbersthat did not

satisfy the three rules. It may be objected that this depends on theparticular

method of scoring used by de Finetti. However, it can be shownthat if other

scores are used, one of two things can happen. Thefirstpossibility is that you

will give a transform of probability, for example, odds. Which transform will

be a function of the scoring system. The second is that you will always give

one of only two numbers, say either 1 or 0, which is patently absurd. All

sensible rules lead back, via a possible transformation, to probability.

Probability is inevitable.

There are other approaches, all of which lead to probability. There is

nonethat provides alternative rules like those of fuzzy logic. Jeffreys (1961)

does an analysis that might appeal to a scientist. Another method, due
to Ramsey (1926), is based on decision-making, a topic we will discuss

below. From modest assumptions, Ramsey was able to describe the class

of reasonable decision procedures. They are all based on probability. A

more modern,and detailed, development along similar lines is due to Savage

(1954).

Subjective probability for you depends on two things, the event whose

uncertainty is contemplated, and the knowledge that you have at the time. We
Say it is a function of two arguments. It is commontorefer to the probability

of A. This is strictly wrong and can lead to misunderstandings by omission of

the conditions, K. Also two people considering the same event, with the same

knowledge base, can have different probabilities. De Finetti expressed this

vividly by saying that “Probability does not exist”. Does not exist, that is,

outside of anindividual. The correct form is your probability of A, given K.

Practical experience suggests that there are bases where most people agree. For

example, on being presented with a coin similar to others that you have seen

over the years, most people would say that, if they were to toss it, the prob-

ability of heads for themis 5. Other probabilities, like those concerning the
winner of a political election, are much more subjective.
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1.4 EXTENSION OF THE CONVERSATION

Let us now lookat the rules in more detail. The whole of probability theory

evolves from the three rules. Other rules are mathematical consequences of

them. The rules are sometimes modified, but only in small ways. For example,

the addition rule has been stated for two events and can easily be extended to

any finite number. Butit is usual to supposethat it also holds for an enumer-

able infinity of events. Similarly, in the convexity rule, it is sometimes

supposed that a probability is only 1 if the knowledge base implies the truth

of the event. Notice that, although the rules are simply those of proportions,

probabilities combine in two different ways, by addition and by multiplication.

Lengths, for example, only combine by addition; multiplication yields a new

concept, area. This meansthat the calculus of probability is extremely rich.It
also means that the results do not always agree with commonsense, for

commonsense is often not capable of the calculation.

For any event A, the event which is true (false) whenever A is false (true)

is called the complement of A and will be written A‘. Since AA‘ = @ and the

event A+A° is surely true, it follows that p(A°|K)=1-p(A|K). The
addition rule shows that, since A=AB+AB‘, p(A|K)=p(AB|K)+

p(AB‘| K). Use of the multiplication rule enables this to be written

p(A|K)=p(A|BK)p(B| K) + p(A| BK)p(8*| K).

This most useful.formula is knownasthe extension of the conversation (from

A to include B). It is also known as the generalized addition rule. Its merit

lies in the fact that the probabilities of A on the right-handside are often easier

to evaluate than that on the left, because you knowledge baseis larger there.

1.5 BAYES’ RULE

If, in the multiplication rule, the roles of the two events, A and B,are

interchanged, we easily get that

p(A|K)p(B| AK) = p(B| K)p(A | Bk),

so that if p(B| K) #0,

 

p(B\AK)p(A|K)A|BK)=p(A|BK) (BI K)

This is known as Bayes’ rule. It is more easily appreciated in its odds form.

Write O(A | K)=p(A|K)/p(A‘|K), the odds on A, given K, as in Section
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1.3. With Bayes’ rule, both as written above and with A‘ replacing A, we
have

p(B| AK)
p(B|A‘K)

In this form it clearly displays the effect on the odds for A of learning the truth
of B. The original odds are multiplied by

p(B| AK)
p(B| ASK)

to obtain the new odds. The multiplier is known as thelikelihood ratio. Here
is an application that mightclarify therule.

Considera trial in a criminal court andlet G be the event that the defendant
is truly guilty of the charge. Write G‘° as J, innocence. At somepointin the
course of thetrial, let K denote the knowledge that the court has. Finally, let
E denote a newpiece of evidence before the court, additional to K. Then with
G for A and for B, Bayes’ rule says

p(E|GK)
p(E| IK)

(Since K occurs in every probability, the reader may temporarily like to omit
it as an aid in appreciating the formula.) Onthe left-hand side, there is the
odds forguilt given the new evidence (and K); on the otherside is the odds
without that evidence. Thelatter is multiplied by the likelihood ratio to obtain
the former. This, accordingto probability theory, is the procedure that should
be adopted in the court. As the trial proceeds, the odds are continually
updated by multiplication by the relevant likelihood ratio.

Let us consider this ratio in more detail. The probabilities involved are not
those of guilt, but of the new evidence. Furthermore, these have to be taken
both on the assumption of innocence, and on that of guilt, though only their
ratio matters. The court therefore has to ask itself how probable is the
evidence were the defendant guilty, and how probableis it were he innocent.
Generally, whenever there are two competing hypotheses, here guilt and
innocence, one needsto assessthe uncertainties of the evidence on the bases
of both, and compare them.

O(A | BK) = O(A | K).

O(G| EK) = O(G|K).

1.66 INVERSION, SUPPOSITION AND DESCRIPTION

There is another important feature of Bayes’ rule. On the left-hand side we
have p(G| EK), expressed in odds: on the right there is p(E | GK). Here the
roles of E and G, are reversed. People often experience difficulty in distin-
guishing between these two probabilities, yet they are essentially different.
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Statisticians find it useful to distinguish the two ideas by using different words.

Omitting K for the moment, p(A|B) is the probability of A, given B;
whereas, as a function of B, it is termed the likelihood of B, given A. Thus

in the legal application of Bayes’ rule, the odds refer to the probability of guilt;

the ratio refers to the likelihood of guilt.

Bayes’ rule also brings out another important feature of probability. The

probability p(E | GK) uses the knowledge base GK.But the court never knows

G to be true. What is being studied here is the uncertainty of the evidence on

the supposition that the defendantis guilty. Supposition replaces fact. Strictly,
one should write p(A | B: K), the probability of A, supposing B to be true and

knowing K. This complication is not needed if the assumption is made that

p(A|BC:K)=p(A|B:CK).

This says that, replacing the supposition that C is true by the knowledgethat
it is true, makes no difference to the uncertainty of A. In acquiring the
knowledge that an event is true, you often acquire other knowledge as well.

If you do not, then the assumption seems reasonable. If made, there is no

need to distinguish between supposition and fact, and the previous, simpler

notation may be used. This is almost universal practice.

There is no suggestion, in the developmentgiven, that probability describes

how people currently behave in the face of uncertainty. All that is being said

is that you would wish to behave in accordance with probability, if you could.

The calculus of probability is there to help you to do this. The methodis said

to be normative: it provides a norm by which your ideas might be expressed.

A description of how people actually behave might look very different. There

is no suggestion that courts of law nowadaysuse Bayes’rule in reaction to new

evidence; only that they should.

1.7 NUMERICAL ASSIGNMENT AND COHERENCE

If you are going to use the probability calculus, you have got to input numbers
for some probabilities. How arethese to be obtained? First, there are some

probabilities that are easy to calculate. The probability of } for a coin falling

heads, or 1/6 for a die showing an ace, are natural. Your probability that Jean

celebrates her birthday on 15 Marchis 1/365, with refinements for leap years.

Generally, from easily obtained probabilities, it is possible to. evaluate others

using the calculus. For example, if, to the one about Jean’s birthday, you
include similar statements about other people, and assumeall the judgements

independent, then it is possible to show that the probability, in a room of 23

people, that there are two whosharethe samecelebration, is about 3; a value

that is often found to be surprising. Generally, from some values you can

calculate others by use of the rules.
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Another way to influence your probability evaluations is through scoring

rules. Faced with a sequence of events and the knowledge that you are to be

scored by somesensible system, you will usually make a better job of the task

than you would without the check provided by the score. Certainly it

encourages coherence as explained in the next paragraph. Moreexperienceis

needed with this method to determine which scoring rule is best.
Perhaps the most important wayof calculating probabilities, and certainly

one that is always available, is through coherence. You are said to be coherent

in your approach to uncertainty if all the values you give obey the rules of

probability. For a single event, there is only one rule, convexity. Coherence

only comes into play with several events, and the more there are, the more

powerful it is. For example, suppose that you contemplate the event A that

your party will win the next election, knowing K, p(A|K). The state of the

economy is surely relevant to the party’s fortunes, so you might consider

extending the conversation to include B, the event that the economyis favour-

able. This will involve p(A|BK) and p(A|B‘K), contemplating election,

knowing the state of the economy. Other events, like those concerning foreign
policy, can be added. The procedure can be inverted and you may contemplate

p(B| AK), the probability of a sound economywere yourparty elected. From

evaluations already made, you can calculate others andsee whether you like

them. Computer programsexist which dothe calculations and provide ranges

between which unstated probabilities might lie, given what has been input.

1.8 FREQUENCY IDEAS

There is class of situations in which it is often easy to determine yourbelief

numerically. This is where K includes frequency information relevant to the

uncertain event being considered. For example, if you learn that, in a recent

survey, 15% of people carried a certain gene, you might assert that the prob-

ability that Tom carries the gene is 0.15. It is important to notice that

subjective probability, as developed here, has nothing to do with frequency.

It is merely a numerical expression of your belief. In this example, the

frequency belongs to K andis transferred to the uncertain event by a judge-

ment of a connection between the frequency and the event. If you learned that
Tom’s mother carriedthe gene, then the frequency of 15% would have much

less relevance. The connection between the knowledgebase and the event has

been destroyed by the additional information about the mother. Frequencies

have a usefulrole to play in the evaluation ofbeliefs but it is wrong to interpret

probability as frequency.

Frequency ideas surface in another context. Suppose that, over many days,

you forecast tomorrow’s weather by each daygiving your probability of rain

tomorrow. After a long period, you look at all the occasions on which you
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have given a specific value for the probability, say 0.25. Then one might expect

that on 25% of these occasions, it will have been found to haverained.If this

match between belief and actuality obtains for all probabilities, you are said

to be calibrated and there is agreement between belief and frequency.

Calibration is often said to be a desirable feature. It is easy to see that it is not

necessary, by thinking of the meteorologist who always provides probabilities

of 0 or 1 for rain tomorrow.Every time 0 is stated, it rains; every 1 is followed

by a dry day. This is an excellent forecaster even though quite uncalibrated;

it is only necessary to do the opposite of what his forecast suggests.

1.9 DECISION ANALYSIS

The discussion so far has been entirely in terms of beliefs. But why do we have

beliefs? Why do we wantto calculate with probabilities? The usual answeris,

in order to take action in the face of uncertainty; to decide in a situation where

not all is known. A belief does not have to be associated with a decision, but

it must have the potentiality for action if needed. You need notbet onthefall

of the coin, but the } would be useful if you did. If the gene could have
dangerous consequences for his children, Tom might find the 0.15 very

relevant to a decision whether to have children. It is easy to extend subjective

probability to encompass decision-making. This is done by the introduction of

utility.

Decisions and the resulting actions lead to consequences, which are uncer-

tain if the events are. Suppose that, amongstall the consequences that might

arise there is one that is more desirable than the others, or at least is very good.

Write this C; andgiveit a utility of 1. Similarly take a consequencethat is very

bad, Co, and giveit utility 0. Now take any consequence C whose merit lies

between these two extremes. The utility of C can be constructed as follows.

Consider a choice between an action that will lead to C for sure, and another

actionthat will yield C, with probability uw and Cp with probability 1 — u. Since

C is intermediate between the two extremes, there will be a value of u that

will make the uncertain action equivalent, in your mind, to the certain C.

This is called the utility of C and will be written u(C). The choice of 0 and

1 above is arbitrary and work with utility is unaffected by changes of origin

or scale.

Take any decision and suppose that it can lead to one of a number of

consequences cj, /=1,2,...n, with utilities u(c;), their probabilities being

p(ci), omitting reference to K. By the way in whichutility was derived, c; can

be replaced by C), the highly desirable outcome, with probability u(c;), and

otherwise Co. Hence the decision can be thought of as always leading to one

of the extreme consequences. Let us evaluate the probability of getting the
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better C; rather than the worse. By the extension of the conversation (see

above)this is

P(C1) = Lip(Ci | ci)p(ci) = Uiu(ci)p(ci).

Since you would wish to maximize your probability of getting the best ofall

possible worlds, Ci, you can achieve this by maximizing the right-handside
of the last result. The sum is called the expected utility of the decision,
obtained in the usual way with an expectation by multiplying the respective

utilities by their probabilities and adding. Hence subjective probability,

expressing yourbeliefs about uncertain events, leads directly to utility and thus

to the procedure of maximization of expected utility (MEU) as the proper

criterion for action. We do not use the term, risk, referring to undesirable

outcomes. Utility embraces the good and the bad equally and no distinction

need be made beyond the numerical value. Risk is sometimes used when

probabilities are unknown. Since our usage of probability refers to your

knowledge, or lack ofit, it is always known in principle, though sometimes

hard to determine.

It is importantto notice that utility is not an arbitrary measure of the worth

of a consequence. It is a measure on the scale of probability. A glance atthe

way that it was derived above shows that the concept of a gamble, and hence

of probability, is basic to the concept. Furthermore, since it was derived from

probability, the extension of the conversation can be used to demonstrate that

expected utility is the correct quantity to maximize in order to optimize your

decision-making. Just as a single numberdescribes uncertainty, so one value,

expected utility, is enough to decide. Actually, all utilities are really expected,

since the worth you attach to a consequence is what you expect to obtain

from it.

It is necessary to insert a caveat here. The whole edifice concerns a single

individual, called you. It does not describe how a group of people should

act. Nor does it say howtwo people in conflict should behave,either in the

play of a gameorin situation that may lead to war. But for one decision-

maker, contemplating an uncertain world, MEUis the only sensible way to
proceed.

The conceptof utility is a subtle one and requires care in its use. It applies

to any consequence and, in contemplating the consequence, you can take

accountof anything that you consider relevant. For example, suppose that you

are in a gambling situation where the outcomes are monetary. Then you may

wish to think solely in terms of money, whenall you need dois to take your

utility function for money. But you may perceive a consequencein terms of

more than just cash. Many peoplefeel that £100 received as by right, or almost

certainly, is different from £100 had unexpectedly, or with small probability.

In that case, utility of moneyis inadequate for your contemplation of gambles,

and you will need to addan extra dimension to your consideration of the
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consequences. This type of analysis lies behind the resolution of several

paradoxes, like those of Allais, that have appeared in the literature.

1.10 UNCERTAINTY AS NUMBER

Let us return to the strong assumption madeat the beginning of the chapter

to the effect that you would wish to measure your uncertainty by a single

number. People have often felt unhappy with this bold assertion, feeling that

such a complicated idea cannot be reduced to something as simple as number.

Here is an example of where it may be inadequate. If you are asked for the

probability that a coin will fall heads when tossed, then, under normal circum-

stances, you will confidently announce }. If asked whether the political party
you support will win the next election, you may also provide a probability of

1 but will feel less confident of its value. Here are two values of }, but you
feel more assured about one than the other. You might think that another
number would be needed to express this confidence. Some writers have

suggested the use of upper and lower probabilities, reflecting the range of

reasonable values. In our examples, these might be (0.49, 0.51) for the coin

but more separated values, suchas (0.35, 0.65) for the election. An argument

is now presented to suggest that this complication is not necessary.

Consider an urn that you know contains two balls, identical except for

colour. There are two scenarios:

(1) You know oneball is white, the other black, |

(2) You knowthat there are three possibilities, two black, two white or one

of each colour, and you think that all three are equally likely.

A ball is removed in such a waythat you thinkit is as likely to be one as the

other. In both scenarios, the probability that the withdrawnball is white is 5.
Yet presented with the two scenarios, most people prefer the first over the

second because it contains less uncertainty. This preference is not reflected in

the probabilities, which are } in both cases. A decision, based on a single

expected utility, would be the samein the two cases. Thesingle value of } may

be inadequate.
Now consider a second drawing from the urn,the first ball not having been

replaced, and contemplate the uncertain event that the two withdrawn balls

match. This has probability 0 in the first scenario, but 3 in the second. In other

words, belief based on a single numberis capable of distinguishing the two

scenarios whenit is necessary. It was not probability that was inadequate when

only one ball was taken, it was the fact that decision analysis did not require

any distinction. When two were taken, the distinction was essential and was

met by belief based on a single number. There have been several attempts

to produce paradoxes based on the use of a single number to describe
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uncertainty, but all, in my opinion, can be answeredin a similar fashion to

that just used in the urn illustration. An excellent defence of the idea of using

upper and lower probabilities is given by Walley (1991).

1.11 PROBABILITY AND LOGIC

Probability theory is an extension of logic. The latter deals with truth and

falsehood. Probability deals with uncertainty where the two extremesare truth

and falsehood, with probabilities 1 and 0 respectively. Two situations can look

the samelogically, yet be different when the uncertain element is introduced.

The following example has arisen in the literature. There are a number of

cards. Each card has a letter on one side and a numberonthe other: thus

(D,3). On a table, this card will appear as either (D,-) or (-,3), depending on

which face is showing. Suppose that it is a question of whether the rule “D

implies 3” applies. Logic says that, presented with four cards

(D,*) (F3*) (3) 657),

only the first, with D showing, and the last, with 7 showing, need be inves-

tigated to test the rule.

If there is a set of cards, of which these are just four, then the probability

of whether the rule obtains would be changed, through Bayes’ rule, by turn-

ing up any of the cards, especially that with the 3 showing. Equally there are

cases, where your knowledgebaseis different, where the card with a 7 showing

would not be worth consideration. This case is often known as the paradox

of the swans. Let D correspond to “swan” and 3 to “white”, so that the rule

underinvestigation is that all swans are white. But no one looking at a black

object, 7, and finding it was a jug, F, wouldthink that this supported the
rule.

1.12 SUMMARY

If every uncertainty is to be measured by a number, then it must be in terms

of numbers that obey the rules of probability. The beliefs so generated are in

an appropriate form for decision analysis and, with the conceptofutility, yield
the principle of maximization of expected utility. For a single decision-maker,

in a state of uncertainty, the theory seems adequate. There do not appear to

be difficulties caused by the restriction to a single number. The calculus

provides a generalization of logic. The problem of measurementis substantial

and coherenceis possibly the most important tool, though frequency consider-
ation are often useful.
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Chapter 2 

Qualitative Theory of Subjective
Probability

Patrick Suppes
Stanford University

Because we wantto use probability concepts to talk about everything from the
chance of drawing four aces in a hand of bridge to the probability of rain
tomorrow orthe probability distribution of position in a quantum-mechanical
experiment, it is hardly surprising that no simple categorical theory of prob-
ability can be found. The subjective theory of probability accepts this diversity
of applications, and,in fact, utilizes it to argue that the many ways in which
information must be processed to obtain a probability distribution do not
admit of categorical codification. Consequently, two reasonable men in
approximately the same circumstances can hold differing beliefs about the
probability of an event as yet unobserved. For example, according to the
subjective theory of probability, two meterorologists can be presented with the
Same weather map and the samehistory of observations of basic meterological
variables such as surface temperature, air pressure, humidity, upper air
pressures, wind, etc., and yetstill differ in the numerical probability they
assign to the forecast of rain tomorrow morning. I hasten to add, however,
that the term “subjective” can be misleading. It is not part of the subjective
theory of probability to countenance every possible diversity in the assignment
of subjective probabilities. It is a proper and important part of subjective
theory to analyze, e.g., howclassical relative-frequency data are to be incorpo-
rated into proper estimates of subjective probability. Such data are obviously
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important in any systematic estimate of probabilities, as we can see from

examination of the scientific literature in which probabilities play a serious

part. It is also obvious that the principles of symmetry naturally applied in the

classical definition of probability play an importantrole in the estimation of

subjective probabilities whenever they are applicable.

Bayes’ theorem provides an example of the sort of strong constraints to be

placed on any subjective theory. The prior probability distributions selected by

different investigators can differ widely without violating the subjective theory;

but if these investigators agree on the method of obtaining further evidence,

and if common observations are available to them, then these commonly

accepted observations will often force their beliefs to converge.

2.1 DE FINETTI’S QUALITATIVE AXIOMS

Let us turn now to a more systematic discussion of the major aspects of the

subjective theory. For a more detailed treatment of many questions the reader

is referred to the historically importantarticle of de Finetti (1937), which has

been translated in Kyburg and Smokler (1964), and also to de Finetti’s treatise

(1974; 1975). The 1937 article of de Finetti’s is one of the important pieces of

work in the foundations of probability in this century. Probably the most

influential work on these matters since 1950 is the book by Savage (1954).

Savage extends de Finetti’s ideas by paying greater attention to the behavioral

aspects of decisions, but this extension cannotbe examinedin any detail in this

chapter.

Perhaps the best way to begin a systematic analysis of the subjective theory

is by a consideration of de Finetti’s axioms for qualitative probability. The

spirit of these axiomsis to place restraints on qualitative judgments of prob-

ability which will be sufficient to prove a standard representation theorem,1.e.

to guarantee the existence of a numerical probability measure in the standard

sense. From this standpoint the axioms may be regarded as a contribution to

the theory of measurementwith particular reference to comparative judgments

of probability. The central question for such

a

set of axioms is how compli-

cated must be the condition on the qualitative relation more probable than in

order to obtain a numerical probability measure over events.

The intuitive idea of using a comparative qualitative relation is that

individuals can realistically be expected to make such judgments in a direct

way, as they cannot when the comparison is required to be quantitative. On

most occasions I can say unequivocally whether I think it is more likely to rain

or not in the next four hours at Stanford, but I cannot in the same direct way -

make a judgment of how much morelikely it is not to rain than rain. General-

izing this example, it is a natural move on the subjectivist’s part to next ask

what formal properties a qualitative comparative relation must have in order

to be represented by a standard probability measure. (Later we shall review
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some of the experimental literature on whether people’s qualitative judgments

do have the requisite properties.)

Webegin with the concept of a qualitative probability structure, the axioms

for which are very similar formally to those for a finitely additive probability

space. The set-theoretical realizations of the theory are triples (Q, ¥, > ) where

{) is anonemptyset, F is a family of subsets of 0, and the relation > is a binary

relation on S. We follow here the discussion given in Luce & Suppes (1965).

Definition 1 A structure Q =(Q, §, >) is a qualitative probability structure

if the following axiomsaresatisfied for all A, B, and C in F:

Sl. & is an algebra of sets on Q;

S2. If A > Band B > C, then A > C;

S3. A>BorB>A;

54. If AN C= and BN C=@, then A > Bif and only if AUC > BUC;
S5. A > GO;

S6. Not @ > Q.

The first axiom on & is the sameas the first axiom of finitely additive prob-

ability spaces. Axioms S2 and S3 just assert that > is a weak ordering of the
events in 5. Axiom S4 formulates in qualitative terms the important and
essential principle of additivity of mutually exclusive events. Axiom S5 says

that any event is (weakly) more probable than the impossible event, and

Axiom S6 that the certain eventis strictly more probable than the impossible

event. Defining thestrict relation > in the customary fashion:

A > B if and only if not B > A,

we maystate the last axiom as: 2 > ©.

To give a somewhatdeepersense of the structure imposed by the axioms,

westate some ofthe intuitively desirable and expected consequences of the

axioms. It is convenient in the statement of some of the theorems to use the

(weakly) less probable relation, defined in the usual manner.

A < Bif and only if B > A.

The first theorem says that < is an extension of the subset relation.

Theorem 1 If ACB, then A < B.

Proof. Suppose on the contrary, that not A < B, i.e. that A > B. By

hypothesis A © B,so there is a set C, disjoint from A such that AUC=B.

Then, because A U@# 4A, we have at once

AU@G@=A > B=AUC,

whence by contraposition of Axiom S4, @ > C, which contradicts Axiom S5.

Q.E.D.
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Someother elementary properties follow.

Theorem2

(i) If O@ < A and ANB=Q,then B < AUB;
(ii) if A > B, then —B> —A;

(iii) if A > Band C> Dand ANC=9, then AUC > BUD;

(iv) if AUB > CUD and CN D=@Q@,then A > Cor B > D;

(v) if B> —Band -C>C, then B>C.

Becauseit is relatively easy to prove that a qualitative probability structure

has many of the expected properties, as reflected in the preceding theorems,

it is natural to ask the deeper question whether or not it has all of the

properties necessary to guarantee the existence of a numerical probability

measure P such that for any events A and Bin S

P(A) > P(B) if and only if A > B. (I)

If Q is an infinite set, it is moderately easy to show that the axioms of

Definition 1 are not strong enoughto guarantee the existence of such a prob-

ability measure. General arguments from the logical theory of models in terms

of infinite models of arbitrary cardinality suffice; a counterexample is given in

Savage (1954, p. 41). De Finetti stressed the desirability of obtaining an answer
in the finite case. Kraft, Pratt & Seidenberg (1959) showed that the answeris
also negative when Q is finite; in fact, they found a counterexample fora set

Q having five elements, and, thus, 32 subsets. The gist of their counterexample

is the following construction. Let 2 = {a,b,c,d,e}, and let @ be a measure (not

a probability measure) suchthat

o(a)=4-€
o(b)=1l-e

o(c)=2
o(d)=3-€
o(e) =6,

and

O<e<}.

Noworderthe 32 subsets of 0 according to this measure—the ordering being,

of course, one that satisfies Definition 1. We then have the following strict ine-

qualities in the ordering:

{a} > {b,d} because ¢(a)=4-—e > 4-2¢e€=$(b) + (2)

{c,d} > {a,b} because $(c) + ¢(d)=5—e > 5—2e€=$(a)+ G(D)

{b, e} > {a,d} because (b) + o(e)=7-—e€ > 7—-2€=$(a)+ O(a)
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Wesee immediately also that any probability measure P that preserves these
three inequalities implies that

{c,e} > (a,b, d},

as may be seen just by adding the three inequalities. In the case of og

o(c) + o(e) =8 > 8 — 3e= (a) + (b) + O().

However, no set A different from {c, e} and {a,b,d} has the property that

(ic, e}) 2 (A) 2 $({a, b, d}).

Thus we can modify the ordering induced by ¢ to the extent of setting

(a,b, d} > {c, e} (I)

without changing anyofthe other inequalities. But no probability measure can
preserve (II) as well as the three earlier inequalities, and so the modified
ordering satisfies Definition 1 but cannot be represented by a probability
measure.

Of course,it is apparent that by addingspecial structural assumptions to the
axiomsof Definition | it is possible to guarantee the existence of a probability
measuresatisfying (I). In the finite case, for example, we can demandthatall
the atomic events be equiprobable, although this is admittedly a very strong
requirement to impose.

Fortunately, a simple general solution of the finite case has been found by
Scott (1964). (Necessary and sufficient conditions for the existence of a
proability measure in the finite case were formulated by Kraft, Pratt and
Seidenberg, but their mutliplicative conditions are difficult to understand.
Scott’s treatment represents a real gain in clarity and simplicity.) The central
idea of Scott’sformulation is to impose an algebraic condition on the indicator
(or characteristic) functions of the events. Recall that the indicator function
of a set is just the function that assigns the value 1 to elements oftheset and
the value 0 to all elements outside the set. For simplicity of notation, if A is
a set we shall denote by A’ its indicator function. Thus if A is an event

if x€ A,

0 otherwise.
A= {4

Scott’s conditions are embodied in thefollowing theorem, whose proof we do
not give.

Theorem 3 (Scott’s representation theorem). Let Q be a finite set and 2a
binary relation on the subsets of 2. Necessary and sufficient conditions that
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there exists a probability measure P on © satisfying (I) are the following: for

all subsets A and B of Q),

(1) A>BorBoA;

(2) A > 0;
(3) 2 > 0;

(4) for all subsets Ao,..., An, Bo,..., Bn of 0, if A; > B; forO <i< an, and

for all x in Q

Ai(x) +++» + Ai(x) = Bh(x) +--+ + Br(x),

then A, < Bn.

To illustrate the force of Scott’s condition (4), we may see how it implies

transitivity. First, necessarily for any three indicator functions

Ait Bi+Cl=B'+C'+A’,

i.e. for all elements x

Ai(x) + Bi(x) + C!(x) = Bi(x) + C'(x) + A'(x).

By hypothesis A > B and B > C, whence by virtue of condition (4),

C<A,

and thus by definition, A > C, as desired. The algebraic equation of condition

(4), just requires that any elementof Q, i.e. any atomic event, belong to exactly

the same number of A; and Bi, for 0 <i <n. Obviously, this algebraic condi-

tion cannot be formulated in the simple set language of Definition 1 and thus

represents quite a strong condition.

2.2 GENERAL QUALITATIVE AXIOMS

In the case that Q is infinite, a number of strong structural conditions have

been shownto be sufficient but not necessary. For example, de Finetti (1937)

and independently Koopman (1940a, 1940b, 1941) use an axiom to theeffect

that there exist partitions of 0 into arbitrarily many events equivalent in

probability. This axiom, together with those of Definition 1, is sufficient to

prove the existence of a numerical probability measure. Related existential

conditions are discussed in Savage (1954). A detailed review of these various

conditions is to be found in Chapters 5 and 9 of Krantz et al. (1971). However,

as is shown in Suppes & Zanotti (1976), by going slightly beyond the indicator

functions, simple necessary and sufficient conditions can be given for both the

finite and infinite case.

In the present case the moveis from an algebra of events to the algebra 5”

of extended indicator functions relative to ¥. The algebra 5 * is just the
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smallest semigroup (under function addition) containing the indicator func-
tions of all events in §. In other words, $* is the intersection ofall sets with
the property that if A is in § then A’ is in $* and if A* and B” are in §*,
then A*+ B* is in ¥*; It is easy to show that any function A* in ¥* is an
integer-valued function defined on Q.It is the extension from indicator func-
tions to integer-valued functions that justifies calling the elements of ¥*
extended indicator functions.
The qualitative probability ordering must be extended from § to* and the

intuitive justification of this extension must be considered. Let A* and B* be
two extendedindicator functions in §*. Then, to have A* > B* is to have the
expected value of A* equal to or greater than the expected value of B*. As
should be clear, extended indicator functions are just random variables of a
restricted sort. The qualitative comparison is now not one about the probable
occurrences of events, but about the expected value of certain restricted
random variables. The indicator functions themselves form, of course, a still
morerestricted class of random variables, but qualitative comparison of their
expected values is conceptually identical to qualitative comparison of the
probable occurrences of events.
There is more than one wayto think about the qualitative comparisons of

the expected value of extended indicator functions, and soit is useful to
consider several examples.

(1) Suppose Smith is considering two locations to fly to for a weekend vaca-
tion. Let A; be the event of sunny weatherat location J and B; be the event
of warm weather at location j. The qualitative comparison Smith is
interested in is the expected value of A‘! + B‘ versus the expected value of
A} + Bi}. It is natural to insist that the utility of the outcomes has been too
simplified by the sums A + Bi. The proper responseis that the expected
values of the two functions are being compared as a matter of belief, not
value orutility. Thus it would seem quite natural to bet that the expected
value of Aj + Bj will be greater than that of Ai + Bi, no matter how one
feels about the relative desirability of sunny versus warm weather. Put
another way, within the context of decision theory, extended indicator
functions are being used to construct the subjective probability measure,
not the measure of utility.

Note that if Smith prefers the country (j = 1) to the city (j = 2) whenit
is warm and sunny, then even if

i+ Bi~Ah+ BS

in belief, his choice of country or city could vary depending on the degree
of belief or expectation: with high expectation go to the country; with low
expectation go to thecity.
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(2) Consider a particular population of n individuals, numbered 1,..., 7. Let

Aj be the event of individual j going to Hawaii for a vacation this year,

and let B; be the event of individual j going to Acapulco. Then define

i and B*= >) Bi.
1 i=1

M
e

aNA*=
{

Obviously A* and B*are extended indicator functions—we have left

implicit the underlying set Q. It is meaningful and quite natural to

qualitatively compare the expectedvalues of A* and B*. Presumably such

comparisonsare in fact of definite significance to travel agents, airlines,

and thelike.

Webelieve that such qualitative comparisons of expected value are natural

inmany other contexts as well. What the representation theorem below shows

is that very simple necessary and sufficient conditions on the qualitative com-

parison of extended indicator functions guarantee existence of a strictly

agreeing, finitely additive measure in the sense of (I), whether the set Q of

possible outcomesis finite or infinite.

The axioms are embodied in the definition of a qualitative algebra of

extended indicator functions. Several points of notation need to benoted.

First, Q' and @’ arethe indicator or characteristic functions of the set 0 of pos-

sible outcomes and the empty set @, respectively. Second, the notation nA*

for a function in $* is just the standard notation for the (functional) sum of

A* with itself times. Third, the same notationis used for the ordering rela-

tion on ¥ and $*, because the one on S” is an extension of the one on §S: for

A and Bin,

A > Biff A‘ > B’.

Finally, the strict ordering relation > is defined in the usual way: A* > B* iff

A* > B* and not B* > A*.

Definition 2 Let Q be a nonemptyset, let § be an algebra of sets on 2, and

let > be abinary relation on §*the algebra of extended indicator functions

relative to §. Then the qualitative algebra (Q, J, >) is qualitativelysatis-

factory if and only if the following axiomsare satisfied for every A“, B*, and

C* in §*:

Axiom 1. The relation > is a weak ordering of &*;
Axiom 2 Q' > @';
Axiom 3. A* > @';
Axiom 4 A* > B* iff A*+C* > B*+C";
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Axiom 5 If A* > B* then for every C* and D* in &* there is a positive
integer 7 such that

nA*+C* > nB*+ D*.

These axioms should seem familiar from the literature on qualitative prob-

ability. Note that Axiom 4 is the additivity axiom that closely resembles de

Finetti’s additivity axiom for events: If ANC=BNC=Q, then A > iff

AUC > BUC. As we move from events to extended indicator functions,

functional addition replaces union of sets. What is formally of importance

about this move is seen already in the exact formulation of Axiom 4. The

additivity of the extended indicator functions is unconditional—there is no
restriction corresponding to AM C=BMC=@.The absenceofthis restric-

tion has far-reaching formal consequences in permitting us to apply without

any real modification the general theory of extensive measurement. Axiom 5

has, in fact, the exact form of the Archimedean axiom used in Krantz etal.

(1971, p. 73) in giving necessary and sufficient conditions for extensive
measurement.

Theorem 4_ Let ( be a nonemptyset, let S be an algebra of sets on 2 andlet

> bea binary relation on §. Then a necessary and sufficient condition that

there exists a strictly agreeing probability measure on § is that there be an

extension of > from ¥ to ¥* such that the qualitative algebra of extended

indicator functions (0, ¥*, >) is qualitatively satisfactory. Moreover, if

(2, F*, >) is qualitatively satisfactory, then there is a uniquestrictly agreeing

expectation function on §* and this expectation function generates a unique

Strictly agreeing probability measure on SF.

Proof. The main tool used in the proof is from the theory of extensive meas-

urement: necessary andsufficient conditions for existence of a numerical repre-

sentation, as given in Krantz et al. (1971, pp. 73—74). In particular, let A be

a nonemptyset, > a binary relation on A, and © a binary operation closed

on A. Thenthere exists a numerical function ¢ on A unique up to a positive

similarity transformation (i.e. multiplication by a positive real number) such
that for @ and bin A

(i) a > biff d(a) > (bd),
(li) $(a°b) = o(a) + d(d)

if and only if the following four axiomsaresatisfied for all a, b, c, and din A:

E1. The relation > is a weak ordering of A;
F2. a°(b°c)=(a°b)°c, where = is the equivalence relation defined in

terms of >;

F3. a>biffacc>bociffccCa>cob;
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E4. If a > b then for any cand d in A thereis a positive integer ” such that

na©°c>nbo d, wherenais defined inductively.

It is easy to check that qualitatively satisfactory algebras of extended

indicator functions as defined above satisfy these four axioms for extensive

measurement structures. First, we note that functional addition is closed on

5 *. Second, Axiom 1 is identical to El. Extensive Axiom E2 follows imme-

diately from the associative property of numerical functional addition: for any

A*, B*, and C* in S*

A* + (B*+C*)=(A*+B*)+C*

and so we have not just equivalence but identity. Axiom E3 follows from

Axiom 4 andthefact that numerical functional addition is commutative.

Finally, E4 follows from the essentially identical Axiom 5.

Thus, for any qualitatively satisfactory algebra (Q, §* >) we can infer

there is a numerical function @ on Q such that for A* and B* in §*.

(i) A* > B* iff ¢ (A*) > o(B"),
(ii) 6(A*+ B*) = ¢(A*) + o(B"),

and ¢ is unique up to a positive similarity transformation.

Second, since for every A* in $*

A*+@'=A"

we have at once that from (11)

o(B') =0.

Since Q' > @' by Axiom 2, we can choose

(2') = 1.

And thus have a standard (unique) expectation function FE for extended

indicator functions:

(i) E(@') =0
(ii) E(Q')=1
(iii) E(A* + B*) = E(A*) + E(B").

But such an expectation function for §* defines a unique probability measure

P on § whenit is restricted to the indicator functions in $*, i.e. for A in F,

we define

P(A) =E(A’).

Thus the axioms are sufficient, but it is also obvious that the only axioms,

Axioms 2 and 3, that go beyond those for extensive structures are also

necessary for a probabilistic representation. From the character of extended
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indicator functions, it is also clear that for each probability measure thereis
a unique extension of the qualitative ordering from ¥ to ¥*.

Q.E.D.

The proof just given, even more than the statement of the theorem itself,

showswhatsubset of random variables defined on a probability spacesuffices

to determine the probability measure in a natural way. Our procedure has been

to axiomatize in qualitative fashion the expectation of the extended indicator

functions. There was no need to consider all random variables, and, on the

other hand, the morerestricted set of indicator functions raises the same

axiomatic difficulties confronting the algebra of events.

2.3 QUALITATIVE CONDITIONAL PROBABILITY

One of the more troublesomeaspects of the qualitative theory of conditional

probability is that A|B is not an object—in particular it is not a new event

composed somehow from events A and B. Thusthe qualitative theory rests on

a quaternary relation A |B > C|D, which is read: event A given event B is at
least as probable as event C given event D. There have been a number of

attempts to axiomatize this quaternary relation (Koopman, 1940a, 1940b;

Aczél, 1961, 1966, p. 319; Luce, 1968; Domotor, 1969; Krantz et al., 1971;

and Suppes, 1973). The only one of these axiomatizations to address the

problem ofgiving necessary andsufficient conditions is the work of Domotor,

which approachesthe subject in thefinite case in a style similar to that of Scott
(1964).

By using indicator functions or, more generally, extended indicator func-

tions, the difficulty of A | B not being an objectis eliminated, for A’ | B is just

the indicator function ofthe set A restricted to the set B, i.e. A'| Bis a partial
function whose domainis B. In similar fashion if X is an extended indicator

function, X| A is that function restricted to the set A. The use of such partial

functions requires care in formulating the algebra of functions in which weare

interested, for functional addition X|A+ Y|B will not be well defined when

A#B but ANB#9. Thus, to be completely explicit we begin with a
nonemptyset(2, the probability space, and an algebra § of events, i.e. subsets
of Q, with it understood that F is closed under union and complementation.
Next we extendthis algebra to the algebra ¥* of extended indicator functions,
i.e. the smallest semigroup (under function addition) containing the indicator
functions of all events in §. This latter algebra is now extendedto include as
well all partial functions on Q that are extended indicator functions restricted
to an event in S. Wecall this algebra of partial extended indicator functions
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RE*, or, if complete explicitness is needed, RF*(Q). From this definitionit
is clear that if X|A and Y|B are in QS", then

(i) A=B, X|A+Y|Bis in RF".
(ii) If ANB=9¢, X|AUY|Bis in QS".

In the more general setting of decision theory or expected utility theory there

has been considerablediscussion of the intuitive ability of a person to directly
compare his preferences or expectations of two decision functions with

different domainsofrestriction. Without reviewing this literature, we do want

to state that we find nointuitive general difficulty in making such comparisons.

Individual cases maypresent problems, but not necessarily because of different

domainsof definition. In fact, we believe comparisons of expectations under

different conditions is a familiar aspect of ordinary experience. In the present

setting the qualitative comparison ofrestricted expectations may be thought
of as dealing only with beliefs and not utilities. The fundamental ordering

relation is a weak ordering > of ®* with strict order > and equivalence ~

defined in the standard way.

- Following Suppes & Zanotti (1982), we give axiomsthat are strong enough

to prove that the probability measure constructed is unique whenit is required

to cover expectation of random variables. It is worth saying something more

about this problem of uniqueness. The earlier papers mentioned haveall

concentrated on the existence of a probability distribution, but from the stand-

point of a satisfactory theory it seems obvious for many different reasons that

one wants a unique distribution. For example, if we go beyond properties of

order andhave uniqueness only up to a convex polyhedronof distributions,

as is the case with Scott’s axiomsforfinite probability spaces, we are not able
to deal with a composite hypothesis in a natural way, because the addition of

the probabilities is not meaningful.

Definition 3 Let © be a nonemptyset, let RF*(Q) be an algebra ofpartial

extended indicator functions, and let > be a binary relation on RSF *. Thenthe
structure (2, R¥*, >) is a partial qualitative expectation structure if and only

if the following axiomsare satisfied for every X and Y in f * and every A, B

and C in § with A, B > @:

Axiom 1 Therelation > is a weak ordering of RS *.
Axiom 2 a" > O; | | |

Axiom 3 0'|4 >C'|B>@'|A;
Axiom 4 If Xi;|A > Yi|B and X2|A > Y2|B then

X;|A+X2|A > Y,|Bt+ Y2 |B;

Axiom 5 If X,|A < Y,|B and X,|A + X2|A > Yi|Bt Y2|B then

X2|A > Y2|B;
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Axiom 6 If A&B then

X|A > Y\A iff X-A'|B> Y-A'|B;

Axiom 7 (Archimedean). If X|A > Y|B then for every Z in &* there is a
positive integer ” such that

nX|A >nY|B+Z|B.

The axioms are simple in character and their relation to the axioms of

Definition 2 is apparent. The first three axioms are very similar.Axiom 4, the

axiom of addition, must be relativized to the restricted set. Notice that we have

a different restriction on the twosides of the inequality. The really new axiom

is Axiom 6. In terms of events and numerical probability, this axiom

correspondsto the following: If A ¢ B, then

P(C|A) > P(D|A) iff P(>CN A|B) > P(DNA|B).

Note that in the axiom itself, function multiplication replaces intersection of

events. (Closure of §* under function multiplication is easily proved.) This

axiom does not seem to have previously been used in the literature. Axiom 7

is the familiar and necessary Archimedian axiom.

We nowstate the main theorem. In the theorem werefer to a strictly

agreeing expectation function on R¥F* (Q). From standard probability theory

and conditional expectedutility theory, it is evident that the properties of this

expectation should be the following for A, B > @:

(1) E(X|A) > E(Y|B) iff X| A > Y|B,
(2) E(X|A+Y|A)=E(X|A)+E(Y|A),
(3) E(X: A'|B)=E(X|A)E(A'|B) if ACB,
(4) E(@'|A)=0and E(Q'|A)=1.

Using primarily (3), it is then easy to prove the following property, which

occurs in the earlier axiomatic literature mentioned above:

E(X|AU Y|B)=E(X|A)E(A'|A UB)+E(Y|B)E(B'|A UB),

for ANB=90.

Theorem 5 Let 2 be a nonemptyset, let S be an algebra of sets on 2, and

let > be a binary relation on ¥ x ¥. Then a necessary andsufficient condition

that thereis a strictly agreeing conditional probability measure on S x & is that
there is an extension >* of > from ¥ x ¥ to RF* (Q) such that the structure
(Q, RF*(Q), >*) is a partial qualitative expectation structure. Moreover, if

(Q, RF*(Q), >*), is a partial qualitative expectation structure, then there is

a uniquestrictly agreeing expectation function on RF *(Q) and this expectation

generates a uniquestrictly agreeing conditional probability measure on $ x F.

The proof is given in Suppes & Zanotti (1982).
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2.4 GENERAL ISSUES

I now want to turn to a numberof general issues that arise in evaluating the

correctness or usefulness of the subjective view of probability.

Use of symmetries

A natural first question is to ask how subjective theory utilizes the symmetries

that are such a natural part of the classical, Laplacian definition of prob-

ability. If we think in terms of Bayes’ theorem the answer seems apparent. The

symmetries that we all accept naturally in discussing games of chance are

incorporated immediately in the subjective theory as prior probabilities. Thus,

for example,if I wish to determine the probability of getting an ace in the next

round ofcards dealt face up in a hand of stud poker, given the information

that one ace is already showing on the board, I use as prior probabilities the
naturalprinciples of symmetry for games of chance, which are a part of the

classical definition. Of course, if I wish to introduce refined corrections I could

do so, particularly corrections arising from the fact that in ordinary shuffling,

the permutation groups introduced are groups ofrelatively small finite order,

and, therefore, there is information carry-over from one hand to another.

These second-order refinements with respect to shuffling are simply an indi-

cation of the kind of natural corrections that arise in the subjective theory and

that would be hard to deal with in principle within the framework of the

classical definition of probability. On the other hand, I emphasize that the

principles of symmetry used in the classical definition are a natural part of

the prior probabilities of an experienced card player. The extent to which these

symmetries are compelling is a point I shall return to later.

Use of relative frequencies

It should also be clear that the proper place for the use of relative-frequency

data in the subjective theory is in the computation of posterior probabilities.

It is clear what is required in order to get convergence of opinion between

observers whose initial opinions differ. The observers must agree on the

method of sampling, and, of course, they must also agree on the observations

that result from this sampling. Under very weakrestrictions, no matter how

much their initial opinions differ, they can be brought arbitrarily close to

convergence on the basis of a sufficient number of sampled observations. The
obvious requirement is that the individual observations be approximately

independent. If, for example, the observations are strongly dependent, then

many observations will count for no more than a single observation.

Reflection upon the conditions under which convergence ofbeliefs will take

place also throwslight onthe manysituations in which no such convergence

occurs. The radically differing opinions of men aboutreligion, economics, and
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politics are excellent examples of areas in which there is a lack of convergence;
no doubt a main source of this divergence is the lack of agreement on what
is to count as evidence.

Problem of the forcing character of information

As already indicated, it is an important aspect of the subjective theory to
emphasize that equally reasonable men mayhold rather different views about
the probability of the same event. But the ordinary use of the word “rational”
seems to go beyond whatis envisaged in the subjective theory of probability.
Let us consider one or two examples of howthis difference in usage may be
expressed.

The first kind of example deals with the nonverbal processing of infor-
mation by different individuals. One manis consistently more successful than
another in predicting tomorrow’s weather. At least before the advent of
powerful mathematical methodsof predicting weather, which are now just
beginning to be a serious forecasting instrument, it was the commonobser-
vation of experienced meteorologists that there was a great difference in the
ability of meteorologists with similar training and background and with the
same set of observations in front of them to predict successfully tomorrow’s
weather in a given part of the world. As far as I can see, in terms of the
standard subjective theory as expressed, for example, by de Finetti, there is no
very clear wayof stating that on a single occasion the better predictor is in
some sense morerationalin his processing of information than the other man;
yet in commonusage we would beveryinclinedto say this. It is a stock episode
in novels, and a common experiencein real life for many people, to denigrate
the intelligence or rationality of individuals who continueto hold naive beliefs
about other people’s behavior in the face of much contrary, even though
perhaps subtle, evidence.
But successive predictions can be studied like any other empirical

phenomena,andthereis a large literature on evaluating the performance of
forecasters, an important practical topic in many arenas of experience.
Examination of quantitative methods of evaluation of subjective, as well as
objective, forecasts lies outside the scope of this chapter. The Journal of
Forecasting is entirely devoted to the subject. See also, for example,
Makridakis et al. (1984) and Dawid (1986).

Contrary to the tenor of manyofde Finetti’s remarks, it seems fair to say
that the subjective theory of probability provides necessary but not sufficient
conditions of rationality.

Bayesianprobabilities and the problem ofconcept formation

An importantpoint revolving aroundthe notion of mistaken beliefis involved
in the analysis of how information is processed. In common usage, a beliefis
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often said to be mistaken orirrational when later information showsthe belief

to be false. According to the subjective theory of probability, and much

sensible common usage in addition, this view of mistaken beliefs is itself a

mistake. A belief is not shown to be mistaken on the basis of subsequent

evidence not available at the time the belief was held. Proper changesin belief

are reflected in the change from

a

prior to a posterior probability on the basis

of new information. The important point for subjective theory is that the

overall probability measure does not itself change, but rather we pass from a

prior to a posterior conditional probability. Applications of Bayes’ theorem

illustrate this well enough. The following quotation from de Finetti

(1937/1964, page 146) illustrates this point beautifully.

Whateverbe the influence of observation on predictions of the future, it never

implies and never signifies that we correct the primitive evaluation of the

probability P(En+1) after it has been disproved by experience and substitute for

it another P*(£,+1) which conformsto that experience andis therefore probably

closer to the real probability; on the contrary, it manifestsitself solely in the

sense that when experience teaches us the result A on the first 7 trials, our

judgment will be expressed by the probability P(£,+1) no longer, but by the

probability P(En+:1|A), i.e., that which our initial opinion would already

attribute to the event E,,+1 considered as conditioned on the outcome A. Nothing

of this initial opinion is repudiated or corrected;it is not the function P which

has been modified (replaced by another P*), but rather the argument E,,4 1 which

has been replaced by En+i|A, and this is just to remain faithful to our original

opinion (as manifested in the choice of the function P) and coherent in our

judgment that our predictions vary when a change takes place in the known

circumstances.

In spite of the appeal of what de Finetti says, there seemsto be a wide class

of cases in which the principles he affirms have dubious application. I have in

mind all those cases in which a genuinely new concept is brought to bear on

a subject. I do not mean necessarily the creation of a new scientific concept,

but rather any situation in which an individual suddenly becomes aware of a

concept that he was not previously using in his analysis of the data in front

of him.
Suppose an organism has the sensory capability to recognize at least 100

features, but does not know howto combinethe features to form the concepts

being forced upon it by experience. Assuming the features have only two

values (presence or absence), even with this drastic simplification it does not

make sense from a computational standpoint to suppose the organism has a

prior distribution that is positive for each of the 2'° possible patterns that

might be nature’s choice.

I am notentirely certain what subjectivists like de Finetti would say about

this kind of example. I cannotrecall reading anywhere a systematic discussion

of concept formation, or even identification, by one of the main proponents
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of subjective probability. It is my own view that no adequate account of

concept formation can be given within the framework of subjective prob-

ability, and that additional more complicated and detailed learning processes

in organisms must be assumed in order to provide an adequate account. This

is not to denigrate the theory of subjective probability, but to be realistic about

its limitations.

Problem of unknown probabilities

Another feature of the subjective theory of probability that is in conflict with

common usage of probability notions is the view that there are no unknown

probabilities. If someone asks me whatis the probability of rain in the Fiji

Islands tomorrow, my natural inclination is to say, “I don’t know,” rather

than to try to give a probability estimate. If another person asks me whatI

think the probability is that Stanford University will have an enrollment of at

least 50 000 students 500 years from now, I am naturally inclined simply to

say, “I haven’t the faintest idea what the probability or likelihood of this event

is.” De Finetti insists on the point that a person always has an opinion, and,

therefore, a probability estimate about such matters, but it seems to me that

there is no inherent necessity of such a view.It is easy to see one sourceofit.

The requirement that one always have a probability estimate of any event, no

matter how poor one’s information about the circumstances in which that

event might occur may be, arises from a direct extension of two-valuedlogic.

Any statementis either true or false, and, correspondingly, any statement or

event must always have a definite probability for each person interrogated.

From a formal standpoint it would seem awkwardto have a logic consisting

of any real number between 0 and 1, together with the quite disparate value,

“T don’t know.”

A little later we shall examine the view that one can alwayselicit a subjective

probability for events about which the individual has very little background

information by asking what sort of bet he will make concerning the event.

Without anticipating that discussion,I still would like to insist that it does not

really seem to be a proper partof the subjective theory to require an assign-

ment of a probability to every imaginable event. In the samespirit with which
wereply to a question about the truth of a statement by saying that we simply

don’t know, we mayalsoreply in the same fashion to a request for an estimate

of a probability. This remark naturally leads to the next problem I wantto

consider.

Inexact probability estimates

There are many reasons, some of which were just mentioned, for being skep-

tical of one’s own or other people’s ability to make sensible exact probability
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estimates of possible events about whichlittle is known. Aretreat, but within

the general subjective framework,is to give upper and lower probability esti-

mates. So, in what we might think ofas a state of nearly total ignorance about

the possible occurrence of an event E, we assign upper probability P*(E) = 1,

and lower probability P,(£)=0. Note that the positions of the stars

distinguishes in a natural way upper from lower probabilities.

Development of this idea is pursued in some detail in Chapter 4 by Glenn

Shafer. There is, however, one important concept I want to mention here. The

use Of upper and lower probabilities developed by Dempster and Shafer,

for example, assumes a supporting probability, i.e. the upper and lower

probabilities assigned to an algebra of events are consistent with the exist-

ence of at least one probability measure P such that for every event £ in the

algebra

P,(E) < P(E) < P*(E).

But it is easy to envisage realistic incoherent inexact probabilities,

incoherent in the sense that they are not compatible with the existence of a

probability measure. As a simple hypothetical example, consider the person

whosepartial beliefs about the economyofhis country ten years from now are

expressed in part by the following correlations. Let u = high unemployment,

p =at least moderate prosperity, and d = at least fairly high deficit. Let these

three events be represented by random variables U, P and D respectively, with

value +1 for occurrence and —1 otherwise, let the subjective expectations of

all three be 0, and let the subjective correlations satisfy the three inequalities

p(U,P) < —0.5, p(D,P) < —0.5 and p(U,D) < 0.0. I think subjective

correlations of this sort are not unlikely for manytriples of events. But then

there can be no upperand lower probability of the kind envisaged by Dempster

and Shafer to express these beliefs, for there is no possible joint probability

distribution of the three random variables satisfying the expectations and the

correlation inequalities—here I am assuming, for simplicity, exact subjective

probabilities for the marginal distribution of each of the three pairs of random
variables.

On the other hand, there can be a nonmonotonic upper probability com-

patible with any pairwise distribution satisfying the correlation inequalities.

Such an upper probability P* satisfies for any two events A and B suchthat

ANB#O@

P*(A UB) < P*(A)+P*(B),

with, of course,

P*(Q)=1 and P*(B)=0.
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But the necessary nonmonotonicity means there are events A and B such that

ACB, but

P*(B) < P*(A).

which is not possible for any probability measure.

It seems desirable to extend the theory of subjective probability to situations

in which it is natural to start with an incoherent or inexact prior because of
lack of knowledge—or the opposite problem of too much—with accompanying

computational problems. (For a natural application of such nonmonotonic

upper probabilities to physics, see Suppes and Zanotti, 1991.)

Decisions and the measurement of subjective probability

It is commonplace to remark that a man’s actions or decisions, and not his

words, are the true mark of his beliefs. As a reflection of this commonly

accepted principle, there has been considerable discussion of how one may

measure subjective probabilities on the basis of decisions actually made. Thisis

a complex subject, and I shall not attemptto give it a fully detailed treatment.

Theclassical response in terms of subjective probability is that we may find

out the subjective probabilities a man truly holds by asking him to place

wagers. For example, if he thinks the probability of rain tomorrow is really

+, then he will be willing to place an even-moneybet on this occurrence.If he

thinks that the probability of snow tomorrow hasa subjective probability of

0.1, then he will bet against snow at odds of 1:9. It is also clear how this same

procedure may be used totest precise statements. For example, if a man says

the probability of rain tomorrowis at least 5, then presumably hewill accept

any bet that provides odds at least this favorable to him.

Unfortunately, there is a central difficulty with this method of measuring

subjective probability. Almost all people will change the odds at which they

will accept a bet if the amount of money varies. For example, the man who

will accept an even-money bet on the probability of rain tomorrow with the
understanding that he wins the bet if in fact it does rain, will not accept an

even-moneybet if the amount of money involved moves from a dollar on each

side to a hundred dollars on each side. Many people who will casually bet a

dollar will not in the same circumstances and at the same odds be willing to

bet a hundred dollars, and certainly not a thousand dollars. The man whowill

accept an even-moneybet on its raining tomorrow will perhaps be willing to

accept odds of two to onein his favor only if the wager is of the order of a

hundred dollars, while he will accept still more favorable odds for a bet

involving a larger sum of money. Whatthen are weto say is his true estimate

of the probability of rain tomorrow if we use this method of wagers to make

the bet?
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In spite of this criticism, there have been a numberofinteresting empirical

studies of the measurement of subjective probability using the simple scheme

we havejust described. A review of the older literature is to be found in Luce

& Suppes (1965). An excellent review of recent literature on risk-sensitive

models, together with new results, are to be found in Luce & Fishburn (1991).

ACKNOWLEDGMENT

Dennis Lindley suggested several clarifying improvements in an earlier draft.

REFERENCES

Aczél, J. (1961) Uber die Begriindung der Additions- und Multiplikationsformeln von
bedingten Warscheinlichkeiten. Magyar Tud. Akad. Mat. Kutaté Int Kozl. 6,
110—22.

Aczél, J. (1966) Lectures on Functional Equations and Their Applications. Academic

Press, New York.

Dawid, A.P. (1986) Probability forecasting. In S. Kotz, N.L. Johnson, and C.B. Read
(eds.), Encyclopedia of Statistical Sciences, Vol. 7. Wiley, New York, pages 210-18.

deFinetti, B. (1937) La prévision: ses lois logiques, ses sources subjectives. Ann. Inst.
H. Poincaré, 7, 1-68. Translated into English in H.E. Kyburg, Jr., & H.E. Smokler

(eds.), Studies in Subjective Probability, 1964, pages 93-158.

de Finetti, B. (1974) Theory of Probability, Vol. 1. Wiley, New York.

de Finetti, B. (1975) Theory of Probability, Vol. 2. Wiley, New York.

Domotor, Z. (1969) Probabilistic Relational Structures and Their Applications.
Technical Report No. 144, Stanford University, Institute for Mathematical Studies

in the Social Sciences.
Koopman, B.O. (1940a) The axioms and algebra of intuitive probability. Annals of
Math. 42, 269-92.

Koopman, B.O. (1940b) The bases of probability. Bulletin of the American Mathe-

matical Society. 46, 763—74. Reprinted in H.E. Kyburg, Jr., & H.E. Smokler (eds.),

Studies in Subjective Probability. Wiley, New York, 1964, pages 159-72.

Koopman,B.O.(1941) Intuitive probability and sequences. Ann. ofMath. 42, 169-87.
Kraft, C.H., Pratt, J.W., & Seidenberg, A. (1959) Intuitive probability on finite sets.

Ann. Math. Statist. 30, 408-19.
Kranz, D.H., Luce, R.D., Suppes, P. & Tversky, A. (1971) Foundations of

Measurement, Vol. I. Academic Press, New York.
Kyburg, H.E. Jr. & Smokler, H.E. (eds) (1964) Studies in Subjective Probability,

Wiley, New York.

Luce, D. (1968) On the numerical representation of qualitative conditional probability.

Ann. Math. Statist. 39, 481-91.
Luce, D. & Fishburn, P. (1991) Rank- and sign-dependentlinear utility models for

finite first-order gambles. Journal of Risk and Uncertainty. 4, 29-59.



Qualitative Theory of Subjective Probability 37

Luce, R.D. & Suppes, P. (1965) Preference, utility and subjective probability. In R.D.
Luce, R.R. Bush and E. Galanter (eds.), Handbook of Mathematical Psychology.
Vol. 3, Wiley, New York, pages 249-410.

Makridakis, S., Andersen, A., Carbone, R., Fildes, R., Hibon, M., Lewandowski,R.,
Newton, J., Parzen, E. & Winkler, R. (1984). The Forecasting Accuracy of Major

Time Series Methods. Wiley, Chichester.

Savage, L.J. (1954) The Foundations of statistics, Wiley, New York.
Scottt, D. (1964) Measurement models and linear inequalities. Journal of
Mathematical Psychology, 1, 233—47.

Suppes, P. (1973) New foundations of objective probability: axioms of propensities.
In P. Suppes, L. Henkin, G.C. Moisil, & A. Joja (eds.), Logic, Methodology and

Philosophy of Science IV, Proceedings of the 4th International Congress for Logic,

Methodology and Philosophy of Science, Bucharest, 1971. Amsterdam: North

Holland, pages 515-29.
Suppes, P. & Zanotti, M. (1976) Necessary and sufficient conditions for existence of

a unique measurestrictly agreeing with a qualitative probability ordering. Journal

of Philosophical Logic. 5, 431-8.
Suppes, P. & Zanotti, M. (1982) Necessary and sufficient qualitative axioms for

conditional probability. Zeitschrift fiir Wahrscheinlichkeitstheorie und verwandte

Gebiete. 60, 163-9.
Suppes, P. & Zanotti, M. (1991) Existence of hidden variables having only upper

probabilities. Foundations of Physics. 12, 1479-99.



 Chapter 3

Probability, Uncertainty and the
Practice of Statistics

Colin Howson and Peter Urbach
London School of Economics

3.1 INTRODUCTION

If we have observed that all the swans in a sample of swans are white, it is
generally accepted that from this we cannotinfer with certainty that all swans
are white, or even that the next swan to be observed will be white. Depending
on the sample, we may be moreorless certain, but never entirely certain. But
if we could somehow knowa priori that whiteness is an essential property of
swans, then we would knowthat necessarily all swans were white, and so we

wouldnot have to worry about whetherthe sample of swans we have actually
Observed is representative of the class of all swans in terms of colour
properties. We need notin principle observe anything, to know everything.

This is a beguiling idea, and it beguiled Plato, and later Descartes, Leibniz
and Spinoza. Theidea that factual knowledge can simply be excogitated in an
armchair, or even a philosopher’s cell, seems fantastic to us now, but we
should remember that these writers had concrete evidence, or so they thought,
to the contrary. For the mathematics they were acquainted with, that is to say
Euclidean, and later Cartesian, geometry, did appear to generate exact and
certain factual knowledge apriori, more exact and certain than any knowledge
derived from observation. Indeed, deviations from its predictions in the world
of space and time were plausibly put down to spatio-temporallines, planes,
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solids and angles being imperfect exemplars of the Ideal Euclideanlines, planes,

solids and angles. Only quite recently wasit realized that Euclid’s geometry1s

not a body of synthetic @ priori knowledgeat all but an axiomatic theory, and

that real lines approximate to ideal ones only insofar as they approximately

satisfy its axioms. We now know,or think we know,that an ideal line is an

imperfect representation of a real one, rather than conversely, and alternative

geometries were developed precisely because the ideal lines, planes etc. in

Euclid’s geometry were too imperfect representations of real ones.

Long before this realization dawned, however, the Platonic doctrine, later

knownasrationalism, that all true knowledge is quasi-mathematical, @ priori,
had succumbed to the chargeofsterility and emptiness, a verdict reinforced

by the spectacular development in the seventeenth and eighteenth centuries of

the new empirical science of physics, which rapidly assumed—andstill does to

many—the status of role model for scientific knowledge. This status was

ratified by the new epistemological doctrine of empiricism, according to which

all knowledge is derived, in a sense that was never madevery precise, from

observation. |
Empiricism seemedto be a fruitful epistemology, but it was one with a price.

That price, as we saw,is uncertainty. Certain deductive inferences are replaced

by uncertain inductive ones. But the lack of information implicit in saying that

somethingis uncertain is mitigated if we can say exactly how certainit is. And

more importantly, can an inductive inference ever approach deductive certainty?

Humeis celebrated for answering these questions firmly in the negative. But

even while he was proclaiming total inductive scepticism, an inductive logic

was being developed which gave entirely different, positive answers, and

claimed to do so, moreover, with finality and exactitude. It was becauseofthis

that Hume’s sceptical arguments evoked little contemporary interest; they

had, it was thought, and incorrectly as we shall see, already been answered.
The new inductive logic was the theory of probability, based on the then

recently developed mathematics of combinatorial algebra and analysis, and

first identified as a distinct discipline in the late seventeenth century. The equa-

tion of mathematical probability with degree of certainty was made almost

immediately. It is already explicit in James Bernoulli’s Ars Conjectandi

(1715). Actual computations of inductive probability proceeded by meansof
three auxiliary principles. The first of these is an easily proved consequence of

the mathematical theory, known as Bayes’ theorem, which states that the

conditional probability of a hypothesis H on data E (the so-called posterior

probability of H) is proportional, as H varies through somepartition {H;},

to the unconditional probability of H (the prior probability of H) multiplied

by the conditional probability of E given H:

P(H|E)« P(E| HA)P(A)

where the constant of proportionality is P(E) = 2P(E | Hi)P(Ai).        



Probability, Uncertainty and the Practice of Statistics 41

The importance of this theorem lies in the fact that if H is deterministic and
the data arise from a well-designed experiment, then in the ideal state of affairs
(very ideal, but never mind) £ will either be the outcome predicted by H or
one inconsistent with H; in the former case P(E |) =1 andin the latter
P(E|H)=0. If A is a statistical hypothesis and Ean event in the corre-
sponding outcome space, then the second principle, which used to be called
the principle of direct probability, authorizes equating P(E | H) with the
probability which A assigns E.

The third principle tells one how to compute the prior probabilities P(#).
Known as the principle of insufficient reason, and later the principle of
indifference, it is a symmetryprinciple stating that if nothing is known about
a quantity Xsave that it takes one of n possible values, then the a priori
probability that it will take any one is constant, and hence by thefinite
additivity property of probability functions is equal to n~!. Hence the prob-
ability that its value will be in any r-memberedsubsetis r/n (this is of course
Laplace’s celebrated “favourable cases to possible cases” ratio (1820)).
There is a natural extension of this principle to a bounded real-valued

random variable X:if nothing is known about Xexcept that its range of values
is an open orclosed interval of length k, then the a priori probability density
f(x) is equal to k~'. In the middle of the eighteenth century Thomas Bayes,
in a celebrated Memoir tothe Royal Society of London, used such a uniform
density over the values of a variable Q representing the objective chance of a
specified event, to derive a posterior probabilitydistribution for Q, conditional
on the data that the event in question occurred r times out of n.

Despite apparent successes like this, the new logic based on these three
principles proved far from satisfactory and by the end of thenineteenth
century was widely regarded as discredited. The problem lay with the third
principle, the principle of indifference, which is difficult if not impossible to
implementconsistently. Suppose, for example, that youknow nothing about
a variable X except that it is confined within the closed unit interval, say. In
that case all you know about Y= X”is that it has the same range of values.
So the principle of indifference appears to demand that X and Y have exactly
the same a priori probability density, namely f(x) =f(y)=1, which is
impossible. |

It might seem that this is a problem onlyfor continuously distributed vari-
ables, but that is not true. Consider the hypothesis Hy: X= x, for a particular
value xof the variable X above. Hxitself can be regarded as a quantity taking
two possible values, 1 (i.e. true) and 0 (false). This is all you know about Hy,
moreover. So the principle of indifference would seem to require that
P(Ax = 1) =}. But the principle of indifference also “said” that the prob-
ability P(X = x) was equal to 0 (since it “said” that X has a constant prob-
ability density at each point equal to 1). Yet of course X =x is equivalent to
Hy = 1.
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Thoughpeople wrestled with the problem ofthe correct interpretation of the

principle of indifference, it gradually dawned on them that there was no

uniquely “correct” one. There are many, usually infinitely many, partitions of

logical space containing somespecified cell in that space. There is no reason

why,on the basis of a presumptively null knowledge state, any one of these

should be any moreprivileged than any other. To put the matter another way,

whileit is possible to define a function representing neutrality between the cells

in any given partition of logical space, it is not possible to define one that has

this property forall partitions. A uniform neutrality is not possible, in other

words: neutrality over one partition will mean bias over another.

Theprinciple of indifference had to go. But to abandontheidea of a neutral

prior distribution brought into question the enterprise of an objective induc-

tive logic securely based on probability theory. Alternative rules for deter-

mining orpartially determining prior probabilities have from time to time been

appealed to, but none has been uncontroversial. Jeffreys (1961) and others

have argued that simpler hypotheses have higher prior probabilities, while

E.T. Jaynes, following earlier suggestions by Jeffreys, recommended using the

requirement of invariance under a suitable group to determine prior prob-

abilities (1973), or alternatively choosing the prior distribution which

maximizes entropy,if there is one, subject to whatever constraints are deemed

appropriate (1957, 1967). These suggestions all share with the principle of

indifference problemsofconsistent application, as well as possessing their own

peculiar difficulties. The choice of the appropriate group with respect to which

which the prior is to be invariant is usually a fairly arbitrary matter, as is the

choice of which of the many non-equivalent explications of simplicity to

adopt, and entropy-maximizing distributions may not exist or may not be

unique.

The apparent impossibility of determining prior probabilities in any non-

arbitrary manner has been a powerful factor in convincing many people that

a probabilistic theory of inductive inference was impossible. This was true in

the case of R.A. Fisher, who repudiated Bayesian probabilism in favour of a

theory of inference allegedly based on the logic of refutation. In this he was

followed by Popper, whois today better known,at any rate outsidestatistics,

as the principal proponent offalsificationism. Their attempt, though it con-

tinues to be influential, cannot nevertheless be regarded as successful, as we

shall see in due course.

3.2 THE MODERN SUBJECTIVE THEORY

While Fisher and Popper were dismissing inductive probability, important

discoveries were being made about the probability axioms which suggested an

entirely different way in which a probabilistic inductive logic could be
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constructed, in which objectivity is achieved without recourse to debatably
“objective” priors. We shall look briefly at just one of these, becauseit is both
simple to explain and convincingin its claim to show that the probability
axioms can be interpreted as a complete logic of consistent partial belief.
Different ways of arriving at substantially the same conclusion are to be found
in Ramsey (1931), Savage (1954), Jeffrey (1965), and Lindley (1982).
Suppose you agree to indicate your degree of confidence in the truth of a

proposition A in the traditional mannerofstating the odds you currently think
would bethe fair ones in any bet on A, were the truth of A to be decided after
the bet by a competent authority. It is actually more convenient to measure
that confidence not in terms of the odds on A directly but in terms of the
derivative betting quotient, which we shall suggestively symbolize by P(A).
The betting quotient P is obtained from the odds by the bijective mapping
(allowing oddsto beinfinite): P = odds/(1 + odds), with its familiar inverse:
odds = P/(1 — P). The scale of betting quotients has the advantage thatit is
bounded andthat the point of indifference between A and —A (not-A ), corre-
sponding to oddsof1, is its midpoint. Your fair odds weshall take to be odds
which you believe give no advantageto either side of the bet. Ramseyand de
Finetti independently showedthatif a set of betting quotients does not satisfy
the finitely additive probability axioms, then the odds determined by them
could be combinedinto a certainly winningorcertainly losing betting strategy,
where a betting strategy is a set of n decisions of the form “bet on/against A;
with stake S;”, i=1, ..., a. The finitely additive probability axioms are (1)
P(A) 20, (2) P(T)=1 where 7 is the certain proposition, and (3)
P(A V B) = P(A) + P(B), where AV

B

is the disjunction A or B and A and
B are mutually exclusive. If we define a conditional bet on A given B to be
one that proceeds in the normal wayif B is true andis called off if not, then
it is also true that if P(A | B) is the betting quotient on A in a conditional bet,
and P(A | B) is not equal to P(A&B)/ P(B), where P(A&B), P(B)are betting
quotients on A&B and B respectively and P(B) > 0, then a betting strategy
can be devised which will deliver a sure loss or gain.
The proofthat if (1)—(3) are notsatisfied then a betting Strategy exists which

if implemented leads to inevitable gain orlossis not difficult (an elementary
proofis given in Howson & Urbach, 1993). A set of betting quotients withthis
pathological property is colloquially said to be vulnerable to a Dutch book,
and the theorem above has consequently become known as the Dutch book
theorem. That theorem showsthat a necessary condition for a set of degrees
of belief, measured as the agent’s fair betting quotients, to be internally
consistent is that they satisfy the finitely additive probability axioms, and a
straightforward extension of the argument for (3) shows that they must in
addition be countably additive. Henceforward when we mention the prob-
ability axioms we shall include among them the principle of countable
additivity, or continuity as it is sometimes called. The converse to the Dutch
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book theorem, that if a set of betting quotients does satisfy the axioms then

there is no betting strategy that can be guaranteed in advanceto generatea loss

(or gain) independently of the truth values of the propositions bet on,is also

easily demonstrated.

Since they are necessary and sufficient for avoidance of vulnerability to

certain loss or gain, the probability axioms are in effect a complete set of

consistency constraints, and in our opinion that fact precisely restricts the

domain of objectively valid reasoning about uncertainty to the deductive

closure of the axioms. This has important consequences. In particular, it

meansthat even were it capable of a consistent formulation, the principle of

indifference, or indeed any other method of determining priors, has no claim

to legitimacy, for it is not a consequence of the axioms. But accepting that the

probability axioms are a complete theory of valid probabilistic inference

meansaccepting that the priors in any Bayes’s theorem calculation of posterior

probabilities are essentially indeterminate within the theory. This has seemed

to some, and not a few of them Bayesians, an abdication of responsibility, and

an admission of incompletenessinsofar as allegedly more liberal criteria of

rationality are concerned.

This view, commonthoughit is, is mistaken. If we look at the paradigm of

reasonable cognitive activity, namely science, we find a great diversity of

opinion about new theories, sometimes, as with Einstein’s doggedly negative

attitude to quantum mechanics, persisting over long periods. In fact, of

course, a diversity of opinion is an efficient way of managing uncertainty at

the grouplevel, for it allows the exploration of alternatives to the dominant

view, alternatives which may well show that that view is actually only of

temporary and conditional validity. It is widely appreciated that the suppression

of deviant opinions in the long run does much more harm than good,if it ever

does good, and would certainly have retarded the growth of scientific

knowledge had it been more successfully practised.

Tolerance of alternative opinions is all very well, however, but the fact

remains that as empiricists we must allow the accumulation of observational

evidence to exert an increasingly strong pressure against diversity. But this is

exactly what the probability calculus, in the form of various convergence

theorems, “predicts” will occur. The convergenceis generally with probability

one, so even in the appropriate conditions the posterior distributions do not

necessarily converge for all data sequences. But, granted that they agree on

which hypotheses are to be assigned a positive probability, there are cases

wherethe posterior probability functions actually converge to certainty on the

true hypothesis (for example, Halmos, 1950, p. 213. Theorem B; Earman,

1992 contains a clear and up-to-date discussion of these Bayesian convergence

theorems).

So the fact that the Bayesian theory does not fix “rational” priors neither

condemnsit as undesirably incomplete nor as explanatorily empty. Nevertheless
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it is still felt in many quarters that it is too liberal in what it fails to prohibit.

But criticism of this sort simply begs the question asto whatis and is not

rational cognitive behaviour. Nobody has yet shown where the boundaries of

the rational and the irrationallie, and all the evidence points against there

being any uniquely rational cognitive policy for each possible state of

background information.

Wehavetried to show that the Bayesian theory is not vulnerable to the

commonly made charge of anexcessive reliance on subjective opinion. It is

now time to switch from defence to attack, and look moreclosely at those

alternative theories which purport to rest on an unimpeachably objective and

secure foundation. Weshall see that this is very far from being the case.

3.3 THE OBJECTIVIST IDEAL

Howconvenient it would be if one could arrive at firm theoretical conclusions

by simple logical deduction from observations. For if that were possible, since

direct observational evidence is presumably true (setting aside a philosopher’s

extreme sceptical doubts), the theoretical conclusions drawn would, oflogical

necessity, also be true. Hume’s demonstration that such inferences are not in

general legitimate left philosophers of science pondering the problem (the
“problem of induction”) of what, then, may legitimately be said regarding the

truth oftheories, on the basis of facts of observation.

Weregard the Bayesian answerto this question as extremely satisfactory,

but the fact that inductive probabilities are subjective or personal has

galvanized opposition to the Bayesian idea. Scientific judgement,critics say,
should havenothing subjective about it, but should be perfectly objective.

Lakatos (1978, Vol. 1, p. 1) put this objection with admirable clarity: “The

cognitive value of a theory has nothing to do with its psychological influence

onpeople’s minds ... [but] depends only on what objective support it has in

facts.”
The objectivist ideal implicit in such objections to subjective Bayesianism is

greatly appealing; it would be nice if disagreements in science could be

resolved by impartially measuring the “objective cognitive values” of con-

tending hypotheses. But what does the suggestive phrase “objective cognitive

value” reallymean? Lakatos never said. And since the goal which hepostulated

for the scientific enterprise is shrouded in such a haze of imprecision, it is

scarcely surprising that Lakatos never succeeded in showing howto reachthat

goal. We find this weaknessin all of the well-known attempts to formulate a
non-Bayesian methodologyof science, where rules for processing experimental

evidence are offered, and conclusions purporting to contain objective infor-

mation about the cognitive status of certain theories are drawn: on closer

examination, those conclusions turn out to have no cognitive meaningatall,
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and to create the misleading impression that they do only by the pregnant

language in which they are couched. Methodologies of this (as we shall argue)

ineffectual kind have been developed both by philosophers of science and by

Statisticians.

3.4 POPPER’S METHODOLOGY FOR
DETERMINISTIC THEORIES

Karl Popperis a prominent representative of the first.He started from the fact

that general, non-statistical hypotheses (simple example: “all swans are

white”) can often be decisively falsified by observational evidence (e.g. “this

is a black swan”). And his famous thesis (or definition?) is that only

hypotheses that are falsifiable by “possible or conceivable observations” are

“scientific”. A hypothesis mayalso have empirical implications whose truth

can be checked in appropriate experiments; and if any such implication is

verified, Popper describes the hypothesis as thereby “corroborated”. Now
according to the Oxford English Dictionary, “to corroborate” means to
strengthen or makestrong; to support or confirm. So Popper appears to be

saying that you can strengthen a hypothesis simply by verifying one of its

implications, a process involving no subjective probabilities but logic and

observation alone. But what could this strengthening possiblysignify? It is
easy to think of a bridge being strengthened, or the Tower of Pisa being

supported; but how can that thought be stretched to include an abstract thing

like a hypothesis? To this question, crucial to his thesis, Popper gives no
adequate answer. He acknowledges that the hypothesis is not conclusively

proved in the corroboration process; noris it in any sense “partially” proved;

nor is its objective probability augmented (there seems to be no such thing as
a theory’s objective probability). Popper sometimessays thatit is “rational to

prefer” a corroborated hypothesis over one that is not, on the grounds that

the hypothesis is “better tested”; but this turns out, disappointingly, to be a

circumlocution for “better corroborated”. The dismal fact is, as Popper more

or less concedes, that saying that a hypothesis is corroborated in the sense he

defines, implies nothing as to the cognitive or epistemic standing of the

hypothesis, and certainly does not clarify those hazy notions.

3.5 CLASSICAL METHODOLOGIES FOR
STATISTICAL THEORIES

Statistical theories crop up frequently in science, in quantum mechanics,

genetics, psychology, economics, and the rest, and they play a more humble

but ubiquitousrole with regard to experimental error. A statistical hypothesis
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attributesstatistical probabilities, or chances, to events; these are not the
subjective degree-of-belief probabilities already discussed, but objective
properties of repeatable experiments. The fair-coin hypothesis mentioned
earlier is a simple example ofa statistical hypothesis; it states of a particular
coin thatit is “fair”, i.e. that it has equal statistical probabilities of a half of
landing headsand tails. And whatthis is standardly taken to meanis that if
the coin were tossed repeatedly, the relative frequency of headsin the resulting
sequence of outcomes would tend to } as the numberof throws increased to
infinity.

Popper’s approach does not even begin to deal with statistical theories,
which can neither be falsified. nor corroborated (in Popper’s sense of the
term), since they make no categorical predictions. Thus, the fair-coin
hypothesis would not be falsified, however many times the coin in question
was tossed and landed heads. For the hypothesis does not say you can’t get
a million headsin a row, nor that you must get about 50 headsin a 100 throws;
like all statistical theories, it merely assigns larger or smaller probabilities to
such outcomes.

Classical statistical inference has two main branches: the testing of
hypotheses using “significance tests” and the estimation of parameters; both
have acquired highly technical refinements but their essential principles (and
failings) can be appreciated, and are best appreciated, through the simplest
examples.

Thetheory ofsignificance tests purports to show howstatistical hypotheses
can be tested. Here is a simple example: the hypothesis to be tested (the “null”
hypothesis) asserts that the coin before usis fair. An experimentis performed
in which the coin is tossed a predetermined numberoftimes, say 20, and the
resulting number of heads recorded. The outcome space of the experiment
comprises the 21 possibilities, ranging from no heads and 20tails to 20 heads
and notails, and the significance test requires the statistical probability of
each, relative to the null hypothesis, to be calculated. One must then choose
a region of the outcome space—usually in one or bothtails of the probability
distribution, which is such that the probability that any actual experimental
outcome would fall within in it, if the null hypothesis were true, is fairly
small—0.05 has established itself as an acceptably small value. Finally, if the
outcome obtained in the experiment doeslie in thecritical region,it is said to
be “significant at the 5% significance level”.

All this merely defines significance and significance level, but does not yet
tell us anything about the truth, or “cognitive value” of the null hypothesis.
This last, crucial step is effected, according to advocates of this approach, by
saying that a result significant at the 5%level requires the null hypothesis to
be “rejected at the 5% level”.

What exactly does this mean? You can, of course, reject a hypothesis in
the sense of denying its truth, but how can your rejection be pitched at a
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percentage level? Somestatisticians carelessly suggest that such rejections

amountto logical refutations, for they speak of statistical hypotheses being

“disproved”, or “contradicted” in significance tests. Fisher (1956, p. 39), on

the other hand, held that the “force of a test of significance” resides in the

following dichotomy: either an extremely improbable result has occurred, or

thenull hypothesis is false. But in fact the dichotomyhasnoforce:all it says

is that the null hypothesis is either true or false.

Another way to interpret “rejection” in the significance test sense is due

to Neyman and Pearson, who invented the currently standard form of a

significance test, which is slightly more complicated than that given above, in

that rivals to the null hypothesis are brought into the picture. Neyman and

Pearson (1933, p. 142) suggested that although we may notconcludethat the

null hypothesis is false when it has been “rejected at the such-and-such level”,

we should actin our practical life as if we believed just that. This oft-repeated

advice is always justified by saying that if you performed significance tests

repeatedly on the sameor different hypotheses, and if you decided to act as

if you believed the null hypothesis was false each time the result was

“significant at the 5%level”, only “around” 5% of your decisions would be

wrong.

The argumenthasa speciousplausibility.It is fallacious, though.It is based

on the fact that a test carried out using a 5%significance level would lead to

the “rejection” of a true null hypothesis with probability 0.05. But as we have

stressed, from the probability of an event youcannot deduce the frequency,

or even the approximate frequency, with which that event will appear in any

actual run oftrials, however long.

We must conclude that “significant at such-and-such level‘’ is a phrase

which says nothing about the truthor the cognitive status of any hypothesis.

Like Popper’s “corroboration” notion, it is precisely defined, suggestively

named, yet cognitively empty.

The second great branch of classical statistical inference is known as

estimation; weshall consider that part of the theory of estimation knownas

confidence interval estimation, where the aim is not to test hypotheses but is

the purportedly different one of estimating parameter values. We again

consider the simplest case: the task is to estimate the mean height, », of some

population, whose standard deviation, o, is known. Evidence is obtained by

measuring the mean height Mof a random sample drawn from the population.

If the experiment was designed to select n elements, so that each possible

sample is necessarily of that size, the probability distribution over the outcome

space is normal with standard deviation s = o/./n; it follows from this that with

probability 0.95, —1.96s<<M-—p< +1.96s. Rearranging these inequalities

gives the result that with probability 0.95: M—1.96s <n < M+ 1.96s.

Let M’ be the value of m that is actually observed in the experimental

sample. Then, since s may be computed, so may the terms M'— 1.96s and
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M'+1.96s; the range covered by the resulting values is called a 95%

confidence interval for m, 0.95 being the confidence coefficient.

All this merely defines confidence interval and confidence coefficient, but

doesnotyet tell us anything about the value of the parameter. This last, crucial

step is effected, according to advocates of this approach, by saying that you

should be “95% confident” that the 95% confidence interval measured in any

experiment includes the parameter in question.

Textbooks regularly remind readers not to interpret this degree of

“confidence” as a probability, whether objective or subjective; but they never

say whatin fact it is, nor why they believe weare entitled to any given level

of confidence on the basis of a confidence interval. The standard interpretation

of confidence intervals is nevertheless not without some plausibility; but this

plausibility seems to derive from a line of reasoning, implicit in many

expositions, which while tempting, is, we argue, invalid.

The reasoning seemsto rest on the rule of inference wereferred to earlier,

namely the principle of direct probability, often also called the principal

principle, which is used extensively in Bayesian statistics. It states that if the

objective, physical probability of a random event(in thesenseofits limiting

relative frequency) were knownto be r, and if no other relevant information

were available, then the appropriate subjective degree of belief that the event

will occur on any particular trial would also be r. If, for example, the event

in question is a, the principal principle says that P*(a,| P(a@) =r) =r, where

a, describes the occurrence of the event on a particular trial; P(q@) is its

objective probability; and P* is a subjective probability function.

Thussince the physical probability of getting more than 5 heads in 20 throws

of a fair coin is 0.86, the principal principle states that your confidence that
any particular sequence of 20 throws with the coin will produce more than 5
heads is also 0.86: that is, P*(L[K > 5],| P(K > 5) = 0.86) = 0.86.
Now supposethe coin is tossed 20 times and produces 2 heads. To apply

this to the principal principle and conclude that we should now be 86 percent

confident that 2 is greater than 5 would of course be absurd, and fallacious.

For the principal principle does not assert a general rule for each number K
from zero to 20; the K-term is not in fact a number, but a function which

takes different values depending on the outcome of the underlying experi-

ment. So it is impermissible to substitute numbers for K in the principal

principle.

Butthis is precisely the substitution required in the standardinterpretation

of confidence intervals. It is true that the objective probability of m being
enclosed by experimentally determined 95% confidence intervals is 0.95. By

the principal principle P*([/ < p< /']: | PU <p </')=0.95) = 0.95; andthis

tells us to be 95% confident that any particular performance of the experiment

will produce an interval that contains m. Suppose ? and f’ are the values of

/ and /' obtained from a particular experiment; the standard interpretation
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says that we should now be 95 percent confident that @< » < @’. But as the

simple counterexample above shows, this is a fallacious inference.

3.6 CONCLUSION

The Bayesian theory, we have argued, hasa solid logical foundation;it affords

a unified approach to deterministic and statistical theories, and to testing and

estimation; it is objective and rigorous where objectivity and rigour are

appropriate; and where they are not, it accommodates the personal judge-

ments of scientists in an explicit and controlled way.

Other methodologies which have been developed in conscious reaction to

subjective Bayesianism have, by contrast, no proper foundation and are quite

inadequate to the task of accounting for scientific reasoning. The leading

examples of such methodologies are Popper’s corroboration idea, and the
theories of significance tests and confidence intervals; they all issue in

apparently objective statements, couched in a deceptive terminology which

creates the impression that some important, objective theoretical evaluation1s

being achieved. But these appearances are quite illusory. “Corroborating” a

hypothesis does notstrengthenit, a “significant” result has no significance for

the truth of the hypothesis it is supposedly testing, and a “95% confidence

interval” has no legitimate power to impart confidence,let alone 95%’s worth,

to any estimate. The principles of significance testing and estimation

are simply wrong, and clearly beyond repair. They are the phlogiston and

alchemy of twentieth century statistics; and statisticians in the next centurywill

look back at them in sheer wonderment.
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Chapter 4 

The Subjective Aspect of

Probability

Glenn Shafer

Is subjective probability a kind of probability, corresponding to a particular

interpretation of the mathematical calculus of probability? Oris subjectivity

always an integral aspect of probability, even in applications such asstatistical

testing, where the objective aspects of probability are usually emphasized? In

this chapter, I argue that subjectivity is an aspect of all applications of
probability. When we enunciate clearly the subjective aspects of supposedly

objectivistic applications, the subjectivist critique of these applicationslosesits

force. It is not necessary that these applications be rejected or be replaced with

more complicated Bayesian procedures. It is only necessary that they be

properly understood.

When welearn the mathematics of probability, we learn an informal story

in which belief and frequency are unified. This story has many variations,

but it usually involves a sequence of experiments in which known odds

simultaneously define fair prices, warranted degrees of belief, and long-run

frequencies. Different ways of using probability are understood most clearly

when seen as different ways of using this informal story. Thus subjectivity

enters into probability in two ways. First, subjectivity is part of the informal

story itself. The probabilities in the story are, inter alia, the beliefs of some

person, real or imaginary. Second,it is up to us to bring the informal story

to bear on a practical problem. In doing so, we construct an argument, which

must itself be criticized and subjectively evaluated.
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In previous essays, I have described the unified informal story of probability

and argued forits primacy over any particular axiomatization of probability.

I have also made the general point that different applications of probability

use the informal story in different ways. Here I review and refine these

arguments with emphasis on a particular class of applications: statistical tests.

In many cases, as we shall see, statistical tests use instances of the informal

story simply as standards against whichto rate the performanceofa forecaster

or method of prediction. This is very different from using the informal story

as a representation (model or map) of a problem. By saying this clearly, we

can dispel much of the confusion and controversy that now besetsstatistical

testing. |

Thelarger point of this chapter is that proponents of subjective probability

can afford to recognize the diversity of ways in which the informal story of

probability can be used. Most frequentists, deeply influenced by the

empiricism of the late nineteenth and early twentieth centuries, consider an

application of mathematical probability legitimate only if each probability
number is mapped to an empirical frequency. Despite the anti-realism of de

Finetti, subjectivists have tended to adopt an equally rigid understanding of

the relation between theory and application: an application is legitimate only

if each probability number is mapped to a belief or betting rate (actual or

perhaps only proposed) about a practical question. This foundationalrigidity

may have been helpful when subjectivists had few practical Bayesian appli-

cations to their credit, but it is not necessary today. Theself-confidence of

today’s subjectivists should allow them to lay claim to the subjective nature

and legitimacy of all uses of probability.

This chapter is divided into two sections. The first section reviews the

argument for the unified understanding of the informal story of probability.

The second section relates this story to some simple examples ofstatistical

testing.

4.1 THE UNIFIED INFORMAL STORY

Subjectivists and frequentists each have their own informal stories about prob-

ability, stories that they take to underly and justify the formal theory. The
subjectivist story is about the betting rates of ideal rational agents, while the

frequentist story is about the properties of exceptionally complex and

unpredictable (i.e. random) sequences. The informal story I have in mind

combinesthe subjectivist and frequentist stories. It involves both a sequence

and a person whohasa certain limited kind of knowledge aboutthe sequence.

This unified story is familiar in its basics; we learn it inadvertently when our

teachers slide back and forth between subjectivist and frequentist ideas in

order to persuade us to accept the various rules of probability. But it has not



TheSubjective Aspect of Probability 55

received much philosophical attention. Those who could give it such attention
have usually chosen instead to defend one ofthe narrowerstories.

In order to understand the unified informal story fully, we must first
describe it in its own terms andthenrelateit to its various axiomatizations,
each of which captures or emphasizes only certain ofits aspects. I have made
a beginning on these tasks in earlier essays.! There is not enough space here
to discuss axiomatizations, butI will briefly recount the story and explain why
I prefer it to the narrowerstories.

4.1.1 A Brief Recounting of the Story

Since it must capture the frequency aspects of probability, an adequate
recounting of the unified informal story must have some representation for a
sequence of events. The simplest and perhaps oldest such representationis the
event tree.* Figure 4.1 is an example. As wesee in this figure, the events in
an event tree result from a sequence of experiments, and the experiment
performedin a given situation may depend on what has happenedso far. The
figure uses circles for situations in which an experiment is performed and
octagons(stop signs) for situations in which experimentation has stopped.
The unified informal story also involves a Spectator, who observes the

outcome of each experiment as it is performed. This spectator begins with

 
Figure 4.1 An event tree
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some limited knowledge about how the experiments will turn out; she can

make certain predictions about what will happen on average,but she cannot

go beyond this to predict reliably the outcomes of individual experiments.

Each experiment has several possible outcomes, and a probability is

specified for each outcome. These probabilities have several roles. They define

fair odds, warranted degrees of belief, and long-run frequencies. The odds

corresponding to the probabilities are fair because the spectator knowsthatif

she makes many small bets at these odds—say a small bet on the outcome of

each experiment as she moves down the tree—she will approximately break

even. She also knows that she has no way of finding a strategy for betting at

these odds that can give her any reasonable expectation of substantially

multiplying her initial stake. Since she is willing to bet at these odds, the

probabilities may be considered her degrees of belief, and since the odds are

fair, her degrees of belief may be considered warranted. Finally, in a limited

way, she interprets the probabilities as frequencies: she knowsthat if she bets

on the outcome of each successive experiment, the frequency with which she

winswill approximately equal, in the long run,the average of the probabilities

for the outcomes on which she bets. (Notice that this “frequency inter-

pretation” does not involve repeatedly going down the tree. It refers to the

spectator’s single trip downthe tree. It is only an interpretation of certain

average probabilities, however; it is not an interpretation of each and every

probability in the tree.)

In order for our assertion about the spectator breaking even to be reason-

ably accurate, every path downthe tree must go through many (a few hundred

at least) situations before coming to a stop sign, and the spectator must specify

a complete strategy for laying bets. For each situation, she must specify how

she will, if she arrives in that situation, bet on the experiment performedthere,

subject to the constraint that she will have the money to pay off the bet. (How

much she hasin the situation is determined by herinitial stake together with

her strategy, for the strategy determines what she will win and lose on the way

downto the situation.) When wesay the spectator will approximately break

even, we meanthatshe will approximately break even no matter what path she

takes down the tree and what strategy she chooses. After she has gone down

the tree, she will see ways she could have laid her bets so as to win heavily,

but she has no way of choosing such a strategy in advance, and she is

practically certain that any strategy she does choose will be of no avail.

In addition to the outcomes of individual experiments, the spectator can

also bet on events involving more than onetrial. In Figure 4.1, for example,

she can bet on the event that the path down thetree will end up in the set

{a,d,e}, and this event may depend on three different experiments, those

performed in the situations labelled U, V and W in Figure 4.2. (If the spin?

in U yieldstails, the event fails. If it yields heads, then we move onto the spin

in V. If the spin in V yieldstails, the event happens;if it yields heads, we move
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Figure 4.2 The event {a,d,e} depends on experiments in U, V and W

on to the spin in W.If the spin in Wyields heads, the event happens; ifit yields
tails, the event fails.) In general, any set of stop signs is an event, and a bet
on any such event can be compounded from bets on individual experiments,
so that its fair price is determined bythe fair prices for bets on the individual
experiments. In other words, the probabilities for the individual experiments
determine probabilities for all events in the" tree—probabilities for all sets of
stop signs.

The spectator’s probabilities change as events move down thetree. Her
knowledge unfolds with events; she sees the outcome of each experimentasit
is performed. So as she movesonto the nextsituation, she changes her prob-
abilities for the experiment she just saw performed, giving probability one
to the outcome she actually observed. Since more complicated events are
compounded from events involving the individual experiments, she also
changes her probabilities for them as she moves down the tree. So when we
speak about the spectator’s probabilities, we must, in general, specify the
Situation to which we are referring—the situation in which she has those
probabilities. When we talk about the probabilities for the outcomes of an
experiment performed in a given situation, we usually mean the probabilities
in that situation. But in general, we can talk about the probability for any
event in any situation.
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Amongtheeventsin the tree are events that correspondto the assertion that

a given strategy will approximately break even. Thusthis assertion itself has

a probability. In the initial situation, before any experiments are performed,

this probability is close to one, expressing what we have described as the

spectator’s knowledgeor practical certainty that she will approximately break

even. We can similarly express her practical certainty that she cannot sub-

stantially multiply her initial stake: her probability in the initial situation that

a given strategy will multiply her stake by k or more is never more than | [k.

It is part of the story that these practical certainties match realities in the

spectator’s situation. The story is about more than the spectator’s inner life.

According to the story, she really does move downa tree of experiments, and

her ability to predict the outcomesreallyis limited. She really is unable to pick

out a winning strategy. Any strategy that she does choose for placing small

bets on successive experimentsreally will approximately break even. The story

is a story about knowledge—astory about the relation between fact andbelief.

4.1.2 Why This Story?

Whyshould we beinterested in this unified story? Why not instead base our

understanding of probability and its applications on the separate but narrower

stories of the subjectivists and the objectivists?

The shortcomingsof the objectivistic story have been exhaustively discussed

during the past several decades. Here let me simply point out that these short-

comings lie not in the coherence ofthe story itself, but in the difficulty of

applying it to a broad range of practical problems. Indeed, proponents of the

objectivistic story are usually outspoken aboutthe needtorestrict application.

Some argue that probability should only be used in cases where data iS

generated by random mechanisms (Freedman ef al., 1991). Others find

objectivity in the mathematical theory of infinite sequences and leave us to

puzzle over how application to finite problems can ever be justified.

Criticisms of the subjectivistic story also center on the difficulty of usingit.

It is argued that we often have inadequate information on which to base the

betting rates that would makeuslike the ideal rational agentsin thestory. My

owninterest the theory of belief functions, which uses non-additive numerical

degrees of belief (Shafer 1990b) has encouraged meto push the criticism one

step further: it is only in the unified story that we have groundsfor calling our

betting rates fair and hence using them both for buying andselling.

The standard expositions of the subjectivistic story do not place event trees

in the foundation of the theory. Sequences of events are seen merely as one

thing about which we can havebeliefs. But it turns out that sequences of events

are needed in order to justify the idea of belief change by conditional

probability; without the “protocol” for new information represented by an

event tree, we are led into paradox (Shafer, 1985). Thus even the internal logic
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of the subjectivistic story pushes it in the direction of the unified story for

which I am arguing (Dawid, 1982).

My purpose in this chapter is to show that there are practical reasons for

favouring the unified story that go beyond these general arguments. There are

some applications of probability that can be understood in termsof the unified

story but not in terms of the narrowerstories.

4.2 EVALUATING CATEGORICAL PREDICTIONS

Statistical testing, presented with little theory, is often very persuasive. There

is no reason to hire a forecaster who does no better than chance. When one

treatment does better than another no more often than might be expected by

chance, its performance provides no evidence that it is better. When an

additional variable improves the performance of a prediction equation no

more than might be expected by chance, the improvementis a poor argument

for adding it to the equation.

Whenweturn to theoretical accounts of testing, on the other hand, we find

confusion and controversy. Every teacher of elementary statistics knows how

confused students are by the objectivistic accounts we teach, and every

theoretical statistician is familiar with the mockery these accounts evoke from

subjectivists and other skeptics.* Bayesian elaborations of the objectivistic

accounts are also controversial; they add to the complexity of the objectivistic

accounts and correct only some of their shortcomings.

Whyis it so difficult to make theoretical sense of statistical testing? The

difficulty, I believe, lies in an unspoken but powerful assumption about how

probability theory should be related to practice. We assume, without

reflection, that any probability model we formulate to study a phenomenon

must be a model for—a representation of—that phenomenon. So when we

undertake to explain a statistical test (or rather, to improve the apparently

shallow explanation wefirst found persuasive), we begin by trying to construe

the probability model involved in the test as a representation of the

phenomenon being tested. We try to makethe informal story corresponding

to the model a story about that phenomenon—astory about the behavior of

the forecaster or whatis forecasted, a story about the effect of the treatment,

or a story about the effect of the additional variable. We forget that the

model and the story originally stood apart from the forecaster, treatment,

or variable, as an independent standard to which to compare their

performance.

The unified informal story of probability can help us keep our hands on the

knowledge that testing involves comparison rather than representation. This

unified story can serve as a clear standard for comparison in a waythat its

objectivistic and subjectivistic cousins cannot, for within the unified story



60 G. Shafer

there 1s a spectator with clearly delimited powers ofprediction,anditis to this

spectator that we compare our forecaster or our prediction equation.

Any particular statistical test involves, of course, a particular story; we

compareour forecaster not with the unified informal story in general but with

a particular instance of it, an instance with a particular event tree and

particular probabilities. For brevity, let us call an instance of the unified

informal story a “stochastic story”. For clarity, let us reserve the name

“forecaster” for the real forecaster we wish to evaluate (as opposed to the

“spectator” in the stochastic story), whether it be a person, a prediction

equation, or an expert system. (We may speak of forecasting or prediction

even when we are dealing with assertions about the past or present.> We

require only that after the forecaster makes a prediction weare ableto classify

it as right or wrong.)

Wedeliberately construct the stochastic story that serves as our standard for

comparison. Weoften construct several. We may begin by comparing the

forecaster’s performance to what can be achieved by a nearly clueless spectator

in a very austere stochastic story. If the forecaster can do better than this

spectator, then we may moveon to a stochastic story whose spectator is

more (or perhaps merely differently) advantaged. Continuing in this way if

necessary, we may (or may not) find a stochastic story in which the

performance of the spectator roughly matches the performance of our

forecaster. But none of this requires us to go beyondthe idea of rating the

forecaster’s performance. At no point are we required to think of the fore-

caster herself or of the phenomenon being forecasted as part of a stochastic
story.

There are some general principles that can guide our search for an
appropriate stochastic story. We must makethe story andthe situation of the

forecaster comparable without contriving to force any particular conclusion.

No general principle can guarantee, however, that the comparison with the

stochastic story will be persuasive. In the end, this comparison is only an

argument, and like any other nondemonstrative argument, it is open to

criticism and counterargument. A particular stochastic story will not be

persuasive unless equally natural stochastic stories give similar or consistent

results.

I will discuss two simple examples of categorical prediction. In both

examples, as we will see, the success of the prediction can be evaluated by

comparison with a stochastic story. The two evaluations can be extended to

deal with problemsthat are usually treated as statistical testing problems. The

first correspondsto testing whether a binomial parameteris equal to }, and the

second corresponds to testing independenceina 2 x 2 table.

The analysis of these simple examples falls short of a general theory of

Statistical testing. But there are some obvious waysto extend the analysis. In

order to extend it to the kinds of problems that are usually treated by
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goodness-of-fit tests and and tests of independence in larger tables, we will

need to use the ideas on the evaluation of probability forecasting developed

by Dawid (1984, 1985, 1986, 1990) and Vovk (1993). In order to deal with the

conventional normal-theorytests, will need to adapt the ideas of Freedman &

Lane (1983a,b) and Beaton (1981).

4.2.1 Evaluating Melinda’s Performance

A crude way of scoring the performance of a person who makescategorical

predictionsis simply to count how often she is right. But even this crudescore

will be meaningful only in relation to some baseline. The following example

shows howa stochastic story can provide that baseline.

Melinda claims someinsight into the behavior of the local train. She claims that
at 7:30 she can predict whether the 8:05 train will be on time. As a demon-

stration, she makes predictions on 100 successive days, and wefind that 55 of
her predictions are correct. What does this meagersuccesstell us? Doesit provide

any evidence that Melinda knows whatshe is talking about?

It appears that Melinda does not know whatsheis talking about, because

she is right barely half the time. Why is being right only half the time so

unimpressive? Because we could do as well spinning a coin. Suppose Mary,

who knowsnothing about the train’s behavior, predicts whetherit will be on

time by spinning a fair coin. In spite of her ignorance, Mary can expect to be

right about half the time, too. In fact, Mary has a probability of about one-

sixth of being right 55 or more times out of 100.
The simplicity of this example allows us to see clearly that the stochastic

story is serving only as a standard for comparison. We compare Melinda’s

performanceto the story, but the story is not about Melinda. I could tell a

stochastic story about Melinda if I wanted. I might tell one of thesestories:

(1) I might claim that Melinda’s own knowledge about the train is such that

she can be described as a spectator in a stochastic story. For example, she

might know that the train is on time about half the time, without being

able at all to predict which half.

(2) I might claim that my knowledge about Melinda’s behavioris such thatI

can be described as a spectator in a stochastic story. For example, I might

know that Melinda will predict correctly about halfthe time, without being

able at all to predict which half.

But there is no basis for these stories in what I have told you about Melinda

and the train. Thereis no basis for the first story, because I told you nothing

about how often the train is on time. (I only said that Melinda predicted

correctly 55 times out of 100. This is consistent with the train always, never,
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or sometimes being on time.) There is no basis for the second story, because

I told you nothing about my knowledge. (Perhaps by 7:29 I always know what

Melinda is going to predict and whether sheis going to beright.)

The stochastic story is only a thought experiment. The force of the com-

parison depends, however, on the fact that we could implement the thought

experiment if we wished. We are unimpressed by Melinda because wereally

could predict equally well by spinning a coin (or by using computer-generated

random numbers).

A statistical test always involves some score or “test statistic”. Melinda’s

score is the numberof times she predicts correctly. This is an obvious wayto

score her performance, quite independently of our invention of a stochastic

story. The purpose of the stochastic story is to calibrate the score. How large

does Melinda’s score, say t, have to be in order to provide evidence that

Melinda has someinsight? We answerthis question by calculating, for various

values of ¢, the probability that Mary’s score, say T, will be at least as large

as t. Table 4.1 gives P(T >t) for a few values of ¢t. As this table indicates,

Maryhasa reasonable chanceofscoring as well as 55, but she is quite unlikely

to score as well as 65. Had Melinda predicted correctly 65 times or more, we

would havesaid that she did better than Mary could reasonably expect to do,

and that her performancetherefore provides some evidence that she knows

more than Mary. (This would say nothing, of course, about the nature of

Melinda’s knowledge. She may have a way ofidentifying days on which the

train will have difficulties, or she may know thatthe train is late about 65%

of the time andtake advantage of this knowledge by always predicting thatit

will be late.)

Of course, our imaginary Maryis only one example of a person who knows

nothing about the train. Perhaps someoneelse who knowsnothing about the

train could find a more effective way of predicting its performance than

flipping a coin. So even if Melinda does better than we could hope for Mary

to do, the comparison with Maryis only an argument for Melinda having some

insight or knowledge. The argument is a strong one, however. We have had

much experience with stochastic stories as standards for comparison, and we

do not expect to find a person whoistotally ignorant about the train and yet

knows how to predict better than Mary.

The probability P(T >t), where ¢ is the value of the score actually

recorded, is called the “P-value” in the usual accounts ofstatistical testing.

Whenthe P-value is small (less than the conventional values 5% or 1%, say),

Table 4.1 P-values from spinning a fair coin 100 times®
 

t 55 60 65 70
P(T 2 t) 0.16 0.03 0.002 0.00005
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the observed score ¢ is called significant—i.e. significantly better than could

be expected by chance. I have used P-values in this example in a familiar-

looking way, but I have not explained them in the usual way. The usual

explanation, which is due to R.A. Fisher, talks about “rejecting a null

hypothesis”. The null hypothesis asserts that the data (and hencethescoref)

was produced by chance, in accordancewith a particular objectivistic prob-

ability model. We are supposed to reject the null hypothesis when is large

and P(T > fr) is therefore small, on the grounds that it is easier to disbelieve

the hypothesis than to believe that the event 7 > t, which actually happened,

is so unlikely.

Subjectivists often criticize Fisher’s logic on the grounds that it does not

justify attentionto the event T > ¢.’ Whatactually happenedin Fisher’s story

was T=t. If we want to claim that the null hypothesis makes what actually

happenedtoo surprising, the critics say, we should look at the probability of

T =t, without amalgamating it with 7 > ¢t, which did not happen. This is not

a criticism of my logic. In my story, T= 55 does not happen (7 is Mary’sscore;

55 is Melinda’s score), and attention to the event T > 55is justified even before

the stochastic story is invented. I observe Melinda’s score of 55. I ask myself

whether someone who knowsnothing about the train can hopeto do as well—

i.e., can hope for a score T such that 7 > 55. I invent thestochastic story

precisely in order to study the chances of T > 55 for one person (Mary) who

knows nothing aboutthetrain.

In order to put Melinda into Fisher’s objectivistic framework, we would

have to tell an objectivistic stochastic story about her predictions: they are

independent and eachis correct with constant probability p. We then test the

null hypothesis p= 3, which seems to correspond to Melinda having noreal

ability to predict. (This null hypothesis is an objectivistic version of the second

of the two stochastic stories about Melinda that I listed earlier.) If Melinda

gets 65 predictions out of 100 right, wecan reject this story; if she gets only

55, we cannot. The difficulty with this talk, of course, is that the objectivistic

story is so ungrounded. Who told us that Melinda’s ability to predict is

constant from day to day? Why should we accept inferences that seem to

depend on such an assumption?

Thoughthe simplicity of this example is atypical of the practice ofstatistical

testing, the lack of grounding for the objectivistic story is quite typical.

Statisticians often excuse this lack of grounding by drawing an analogy to the

shortcomings ofscientific theories, which can be useful even if they simplify

reality and remain unconfirmed in manyrespects. Perhaps our stochastic story

about Melinda is a simplification of a more adequate stochastic story, and

perhapsanalysis of this more adequate story would give the same results. But

subjectivists, who tend to doubt the meaningfulness of even the simplest of

these objectivistic stories, are not comforted by the thought of making them

more complex.
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I believe that statisticians take simple statistical tests seriously not because

they take the corresponding objectivistic stories seriously as representations of

reality, but because they see these stories as standards for comparison. The

account of testing I am giving here makesthis explicit. This account has not

been articulated clearly in the past primarily because the unified informal story

of probability, which it uses in an essential way (the spectator must be in the

story so that we can compare Melinda with her), has lacked respectability.

Notice that I am arguing for a subjectivist interpretation of the standard

test, not for a Bayesian replacement. Bayesian analyses of testing, while

vaunting their emphasis on subjectivity, usually take the Fisherian objectivistic

story as their starting point. Like the Fisherian analysis, they assume that an

objectivistic model generates the data by chance, without reference to any

observer. We enter as observers only after this objectivistic model has done

its job, and we remain outside the model; our job is to decide whether to

believeit.

Before leaving the example, we should note the comparison of Melinda with

Marydoesnot touch on the question of whetherthe future will be like the past.

If Melinda’s performancegives evidence that she knew something that helped

her predict during the past 100 days, then we maywish to infer that she will

continue to know something and continue to makeeffective predictions during

the next 100 days. But this inference goes beyond what we have learned by

comparing Melinda with astochastic story. Neither the story about Melinda

nor the stochastic story made any assumption about the 100 days we observed

being like other days in the future or the past. In particular, we did not assume

that these 100 days were drawn at random from larger population of days.

4.2.2 Evaluating a Treatment

It is a short step from Melinda to examples that appearin statistics textbooks.

Amanda, who wants to add a new razorbladeto herline oftoiletries, is trying

to decide which of two types of razor blade will be most popular amongusers,
type A or type B. She gives 100 users one blade of each type, and asks them to
report back which they prefer. When they do so, 65 report that they prefer type
A. Is this strong evidence in favour of type A?

We can deal with this example just as we dealt with Melinda. Melinda made

100 binary predictions. Here, too, we have 100 binary predictions. We can

think of the labels on each pair of blades as Amanda’s prediction that the

blade labelled “type A” will be preferred. Then we can ask whetherthe success

(albeit limited) of these predictions indicates some genuineinsight about the

superiority of A. In order to rate Amanda’s performance, we compare her

with Anna, who cannottell the two types of blades apart and predicts which
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blade in each pair will be preferred by spinning a fair coin. Anna, we know,

can scarcely hope to do as well as Amanda has done. According to Table 4.1,

the probability she will do as well is 0.002. So Amanda’s knowledge must be

helping her predict. In other words, something about type A blades makes

them more widely preferred.

Wemaybe giving Amandaan unfair advantage in this comparison. Weare

talking as if Amanda thought type A was better and organized the study to

prove the point. If this is so, then the comparison with Annais fair. But

anotherpossibility is that Amanda was uncertain which,if either, of the blades

was better, and that she was simply trying to find out. In this case, Amanda

has an unfair advantage over Anna. For a fair comparison, we should

compare Amanda with Amy, whospinsa fair coin in order to label the blades

in each pair “A” and “B” and then waits to see how the 100 people’s

preferences turn out beforedeciding whether her prediction was that As would

be preferred or that Bs would be preferred. Amy’s chance of doing as well as

Amandais twice Anna’s, or 0.004. (The comparison with Annais a “one-sided

test”, while the comparison with Amyis a “two-sided test”.)

The objectivistic treatment of this example follows the same path as the

objectivistic treatment of Melinda. We posit that each of the 100 people has

the sameprobability p of preferring A over B, and that thepreference of each
person is independent of the preference of the others. Then wetest the null

hypothesis that p = 3. Is this probability model any better grounded, any more

plausible, or any more meaningful here than in the story about Melinda? I

think not.

The comparisonof the razor blades with Annais more complicated than the

comparison of Melinda with Mary,becauseit involves an additionalstep. First
werelate the merit of the razor blades to Amanda’s ability to predict, and then

we compare Amanda’s ability with Anna’s or Amy’s. But otherwise the issues

are the same. The comparison of Amanda with Anna again makesexplicit the

real role of the stochastic story; it is really only serving as a standard for

comparison.
Here, as in the case of Melinda, we have not touched on whetherthefuture

will be like the past. We want, of course, to take the next step and conclude

that the majority of future customers will prefer blade A. But our argument

based on the comparison with Anna or Amyhas no bearing on this next step.

Hadthe 100 people testing the blades been chosen at random from the popu-

lation of potential future customers, probability arguments might help us

makethe step into the future, but that is anotherstory.

4.2.3 Evaluating Lucinda’s Ability to Discriminate

Our rating of Melinda, though instructive, was rather crude. We compared

Melinda to Mary, who knew absolutely nothing about the train. Maryis easy
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to beat; if Melinda knowsthetrain is usually late, then she can beat Mary

simply by always predicting it will be late. Let us turn, therefore, to a more

subtle question about Melinda’s performance. For clarity, we will discuss this

question for a different forecaster, named Lucinda.

Lucinda claims that by 7:30 she cantell (though she sometimes makes mistakes)

whether the 8:05 will be late or not. As a demonstration, she makespredictions
on 100 successive days. As it turns out, she predicts 60 times that the train will

be late, and she predicts 40 timesthat it will be on time. Wefind that 70 of her

100 predictionsare right. She was right 55 of the 60 timesshesaid the train would

be late, and she wasright 15 ofthe 40 times she said it would be on time. Does
this performance provide evidence that Lucinda cantell days the train will be late
from daysit will be on time?

Table 4.2 displays the joint performance of Lucinda andthe train. Thetrain

was late 80 times. Lucinda was right only 70 times, so she could have scored

better overall by always predicting the train would be late. But her performance

does seem to provide evidencethat she cantell a difference between days. The

train was late 91.7% of the times she said it would be late (55 out of 60) and

only 62.5% of the times (25 out of 40) she said it would be on time.

How might we score Lucinda’s performancein distinguishing between days?

I just suggested one reasonable score: how much more oftenthe train is late

when Lucindasaysit will be. This is

55 25 )
60 40 = 9:2? (4.1)

Alternatively, we might measure how much moreoften Lucindasaysthe train

will be late when it is; this is

—~ —>~= 0.44 (4.2)

There are many other possibilities as well; any “measure of association” for

the 2 x 2 table would do. But to interpret any such score we need some kind

of baseline or calibration. We need a stochastic story.

Table 4.2 Lucinda andthe train
 

 

Lucinda says train Lucinda says train
will be late will be on time Total

Trainis late 55 25 80

Train is on time 5 15 20

Total 60 40 100
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Here is a stochastic story that will do. Suppose Lois, who knowsnothing

aboutthe train,is told that it was late 80 of the last 100 days (this information

is not going to help her, but it helps set the stage). And suppose she is asked

to guess 60 of these days. Lacking any other information, Lois uses random

numbers producedby her personal computer to choose 60 out of the 100 days,

with all the possible choices being equally likely. What are the chances, under

these circumstances, for Lois to do as well or better than Lucinda did? In other

words, what are the chances that the 60 days she chooses will include 55 or

more days on whichthe train is late? The answer, as it turns out, is about

0.0002. Lucinda has done muchbetter in identifying days on whichthe train

will be late than we could expect from someone who has no knowledgethat

would help her discriminate.

Notice that the stochastic story has simplified the scoring. Instead of using

(4.1) or (4.2), we score Lois simply by the number, say 7, of her 60 guesses

that turn out right. Thus our P-value is P(T > 55). We would get the same

P-value using (4.1) or (4.2), since T > 55 is equivalent to

F_80-T.53_2 F_8-TL>»>_3

60 40 ? 60. 40 80 20 ? 30 20

Almost any other measureof association in the 2 x 2 table will also give the

same P-value; since the row and columntotals of Lois’s table are the same as

Lucinda’s, Lois can do better only by making 7 greater than 55.

This example illustrates how comparison with a stochastic story can be

effective even though we makearbitrary choices in setting the story up. In

order to make Lois’s performance comparable to Lucinda’s, we asked Lois to

guess exactly 60 days. This did not weaken the force of the comparison,

because it did nothing to put Lois at a disadvantagerelative to Lucinda.

Howis the P-value of 0.0002 computed? Readers familiar with combi-

natorial probability will see that the probabilities for JT are hypergeometric:

(*) ( 20

x} \60-—x
P(T=x)= (10 (4.3)

60

We can find P(T > 55) by adding these probabilities as x goes from to 55 to

60. An approximation using the chi-squared distribution is also available.®

Let us now consider the textbook approach to testing Lucinda’s per-

formance. There are a number of ways we might proceed, all involving

different objectivistic stochastic stories. We might model the behavior of the

train, so that we can test whetherit behaves differently on days Lucinda thinks

are different. We might model the behavior of Lucinda, so that we can test

whethershe predicts differently on days that are different for the train. Or we

might model both together.



68 G. Shafer

 

Here is a way to modelthe train. Let X1 be the numberof times the train
is late out of the 60 times Lucindasaysit will be late, and let X>2 be the number
of times it is late out of the 40 times she saysit will be on time. Assume that
the train is late with probability p,; on the days Lucinda saysit will be late,
that it is late with probability p2 on the days she says it will not be, and that
whetherit is late on a given day is independentof its performance on preceding
days. Under these assumptions, X, and X2 are independent binomial random
variables; X, has parameters 60 and p;, and X2 has parameters 40 and p2. The
question whether the days are different has become the question whether
Pi # p2. We test the null hypothesis of no difference: p: = p2. Underthis
hypothesis, X; and X2 are independent binomials with a common parameter
P=D1i=pD2. As ourtest statistic, we take the difference

60 X2
xX, 40 (4.4)

This is the score (4.1) we considered earlier. It turns out that the probability
that it will equal or exceed the value we observed for Lucinda,0.29, is approxi-
mately 0.0002, the same as the P-value we obtained by comparing Lucinda
with Lois.?

Instead of computing the probability of (4.4) exceeding its observed value
unconditionally, it may be better, according to Fisher, '° to compute its prob-
ability of doing so conditionally, given the observed marginal totals in Table
4.2. The resulting test is called Fisher’s exact test. It is a better test, according
to Fisher, because it brings the population of potential repetitions with which
we are comparing the actual result closer to that result, and also becauseit
simplifies the analysis. In the unconditional model, the choice ofthestatistic
(4.4) is somewhatarbitrary, but, as we noted earlier, once the margins of the
table are fixed, all measures of association are essentially equivalent.
Moreover, the computation of the P-value is simplified. In fact, the condi-
tional probabilities are precisely the hypergeometric probabilities given in
(4.3); Fisher’s exact test comes out exactly the same as our comparison of
Lucinda with Lois.

It would delay us too long to explore here the other objectivistic models that
I have mentioned;suffice it to say that they give similar results and also reduce
to Fisher’s exact test conditionally. We should also note that there is yet
another justification for Fisher’s exact test for the 2 x 2 table in situations
where an experimenter is able distribute units over one of the classifications
(over the rows or over the columns) of the table randomly. Fisher preferred
this justification, but it is obviously inapplicable to Lucinda.
What shouldwesay aboutthe objectivistic approach? Does it make sense?

Here, as in the case of Melinda, the objections are obvious. Whotold us that
the behavior of the train is stochastic? That the probability is the same on
every day that Lucinda saysthetrain will be on time? That its behavior on one
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day is independentof its behavior on another? There are no groundsforthese

assumptions. Surely a stochastic story can only be justified here as a standard
for comparison.

Taking the stochastic story as a standard for comparison allows us make

sense of Fisher’s intuitions about conditionality, intuitions that manyofhis

objectivistic successors have found puzzling. Once we acknowledgethat Lois

is only a standard for comparison, it becomes entirely reasonable that we

should design Lois’s task so as to maximize its comparability with Lucinda’s

accomplishment. The vagueness of this desideratum is not a problem, for the

desideratum merely serves to help us construct an argument. It does not

pretend to exclude any other argument or counterargument.

4.2.4 The Berkeley Graduate Admissions Data

Table 4.3 shows the number of men and women whoapplied for admission

to graduate study at the University of California at Berkeley for the fallof

1973, together with the number of each sex who were and were not admitted.

These data were first published by Peter J. Bickel and colleagues in 1975."
These authors were concerned not only with discrimination against women but

also with the shortcomings of the objectivistic models used to analyze such
questions. - |
As Table 4.3 indicates, the rate of admission was substantially lower—

almost 10 percentage points—for women than for men. Fisher’s exact test

produces a vanishingly small P-value.'* The lower rate of admission for

women is significant both substantively (10 percentage points is a lot) and

statistically (the P-value is practically zero).

Here, as in the case of Lucinda, we can explain thestatistical significance

in terms of a comparison with Lois. Suppose wetell Lois that 8442 of the

12 763 applicants are men. We then give her ID numbers for the 12763
applicants, and we ask herto try to pick out from them 5232 numbersthat

identify men. Since she has no way of knowing which of the numbersidentify

men,she uses her personal computer to choose 5232 of the 12 763 numbersat
random. What is the chance that she will choose as many men as the

admissions committees did? This question is answered by Fisher’s exacttest:

Table 4.3 Graduate admissions at Berkeley in 1973 (reproduced
from Bickel e¢ al. (1975) by permission of Science. © 1975 American
Association for the Advancementof Science)

Admitted Not admitted Total % admitted -

Men 3 738 4704 8 442 44.3%
Women 1 494 2 827 4 321 34.6%
Total 5 232 7 531 12 763 41.0%



JOCG.Shafer

the chanceis vanishingly small. So the Berkeley admissions process did much

better at picking out men than wecould possibly expect Lois to do. It picked

out more men than could possibly happen by chance.

Thoughhaving Lois try to pick out men makes the comparison between Lois

and the admissions process simple and rhetorically effective, other ways of

setting up the comparison are equally valid and lead to the same conclusion.

Suppose, for example, that we ask Lois to pick out 8442 numbers, trying to

include as many admittees as possible. Since she knows nothing about which

of the 12 763 numbers represent admittees, she will again choose the 8442

numbers at random. Suppose Amanda knows which numbers identify men

and chooses them. Amandawill have 3738 admittees among her 8442 choices,

and Lois has practically no chance of doing as well. In fact, her chance of

doing as well is given once again by the P-value from Fisher’s exact test. So

we can conclude that being male predicts admission better than could possibly

happen by chance.

An objectivistic treatment of Table 4.3 would follow the same lines as the

objectivistic treatment I sketched for Lucinda and the train. We assume that

there is a constant probability of admission for men and a constant probability

of admission for women, and wetest for equality of the two probabilities.

Alternatively, we assume that there is a constant probability of an admittee

being a womananda constant probability of a non-admittee being a woman,

and we test for the equality of these two probabilities. As Bickel and his

co-authors and many other commentators have pointed out, none these

objectivistic assumptions are plausible. As Freedman & Lane (1983b, p. 192)

put it, they are known from thefirst “to be inadequate to describe any aspect

of the physical process that generated the data.”

Thoughthe objectivistic models are useless for this example, the comparison

with Lois is meaningful. It tells us that something is going on that favors men.

This something may or may not be stochastic. /? But since it has a stronger

effect than could happen by chance, we can reasonably hope that further

investigation will yield some insights. Bicker and his colleagues, upon under-

taking such an investigation, found that the bias in favor of men wasrelated

to how the numbersof places and numbers of men and womenapplicants were

distributed over departments. The rate of admission (number of places avail-

able per applicant) was smaller in departments where the proportion of women

among applicants was higher. So we can ask whyproportionally fewer places

were provided in departments to which women moreoften applied. Asit turns

out, departments where proportionally more places were provided required,

on the average, more mathematical preparation of their applicants. Perhaps

society needed a greater fraction of those who were prepared, willing, and

asking to study in these demanding fields. This can be contested, butif it is

accepted, then the question of why women were being discriminated against

in graduate admissions comes down to the question of why they were
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underrepresented among those prepared, willing, and asking to study in

departments requiring more mathematical preparation.

NOTES

(1) See especially Shafer (1990a), which describes the informal picture, and Shafer
(1992), which sketches one axiomatization. In both these essays, I used the phrase

“ideal picture of probability” for what I am here calling the “informal story of
probability”. Unfortunately, the adjective “ideal” seems to have been a source of
misunderstanding. One misunderstandingis that the informal story is a representation,
less the rough edges, of somereality. This is not my meaning; my themeis that the
informal story has many uses; its use to represent a reality we want to understandis

only one of these uses. A related misunderstanding is that the merit of the informal
story lies entirely in its lack of rough edges—the moreideal the better. This provides
an excuse for pushing on to one of the narrowerstories, where either the subjective or
the objective aspects of probability are idealized away.

(2) Huygens drew an event tree in a manuscript dated 1676 (Edwards, 1987, page
146).

(3) Figures 4.1 calls for the coins to be spun rather than flipped, so that a biased

coin—onethat is heavier on one side than the other—canexhibitits bias by falling more
often on its heavier side. Such a coin is equally likely to fall on either side when it is
fairly flipped (Engel, 1992).

(4) For the subjectivist critique, see Berger & Delampady (1987) and the references
therein. For a survey of other critiques, see Morrison & Henkel (1970).

(5) As Stephen Brush (1988) has noted, scientists often use the word “prediction”

without regard to whether whatis being predicted is already known. In manycases,at

least, the credit that a scientific theory earns by predicting an effect does not seem to

depend on whether the effect was known before the prediction was made.
(6) These numbers can be obtained from the normal approximation to the binomial

in the usual way: P(T > f) is the probability that a normal deviate with mean 50 and
standard deviation 5 exceeds ¢ — 3.

(7) This criticism seems to go back to Harold Jeffreys. See Berger & Delampady

(1987), pages 329 and 348.
(8) See Miller 1986, pages 47—48.
(9) The P-value for (4.3) is usually computed using a normal approximation. Under

the null hypothesis, (4.3) is approximately normallydistributed with mean zero and
variance p(1 — p) (¢ + 4g). Since we can estimate p by (X1 + X2)/100, this implies that

X/60 — X2/40

X1 + X2 | athe jd

100 100 60 40,

should be approximately standard normal. Substituting 55 for X; and 25 for X2, we

find that (4.5) is approximately equal to 3.6. The probability of a standard normal

deviate exceeding 3.6 is approximately 0.0002. As it turns out the square of (4.5) is

equal to the chi-squared statistic used to approximate the sum of hypergeometric

probabilities in our comparison of Lucinda with Lois. So the agreement between the
two P-values does not depend on the particular numberswe have usedin the example.

(10) See Fisher (1973), pages 89-92.

 (4.5) 
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(11) Their article was originally published in Science (Bickel, Hammel & O’Connell
1975). It was reprinted, together with comments by William H. Kruskal and Petter J.
Bickel, in Fairley & Mosteller (1977). The issues raised by the data werealso discussed

by Freedman & Lane (1983b) and Freedman, Pisani, & Purves (1978, pp. 12-15).

Inspired by this example, Freedman and Lane (1983b) proposea general way of under-
standing tests of independence in two-way contingency tables. My discussion hereis
influenced by their proposal but does not follow it. The comparison I suggest with a
unified stochastic story is, I think, better motivated and more persuasive than

Freedman and Lane’s purely “descriptive” and “nonstochastic” treatment, and it
applies only to 2 x 2 tables.

(13) The chi-squared statistic, which has one degree of freedom,is 110.8.
(14) On ourunified understanding of stochasticity, it surely was not stochastic at the

beginning ofthe investigation by Bickel and his colleagues, for stochasticity requires
an observer, and no one had been closely observing what was going on.
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 Chapter 5

On the Necessity of Probability:
Reasons to Believe and Grounds

for Doubt

John Fox
Imperial Cancer Research Fund Laboratories

3.1 INTRODUCTION

The objective of this volume is to study “subjective probability”, a concept

which has been developed for use in the human decision sciences but which

inherits its conceptual framework and most ofits technicalities from mathe-
matical probability theory. (“Decision scientists” are taken to include psycho-

logists, statisticians, economists, management scientists and others.) The

theory is commonly held to provide the normative standard against which the

“rationality” of any judgement under uncertainty must be assessed. In this

context human judgement under uncertainty is thought to be, at best, a

degenerate formof that prescribed by the theory.

It is an irony that the history of probability theory, a subject whose heart

is the study of uncertainty, has been surrounded by a great deal of dogma.

When the modern idea of probability appeared (generally reckoned to be

about 1660) Europe was torn by sectarianism and political and religious

rivalry. Indeed its emergence has been linked to the rejection of the detested
doctrine that uncertainty and dispute must be resolved by approved opinion

(notably that of the church or some other proper authority) rather than by
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rational debate and the marshalling of evidence. Nowadays systematic

concepts of evidence and its quantitative assessment have overthrown mere

opinion in manyfields and mathematical probability is a well-developed and

deeply understood subject. One might therefore have expected the major

philosophical questions to have been settled. However, notwithstanding its

many practical benefits, the use of probability mathematics continues to

produce controversy about its true meaning and proper application (e.g.

Cheeseman, 1987; Saffiotti, 1987). External signs of this controversy are not

merely frequent (and sometimes noisy) disputes, but also, and much more

interestingly, the continuing appearance of new mathematical systems.

For many,suchelecticism is neither desirable nor necessary, for the reason

that all rival systems to probability are demonstrably mistaken. This claim is

justified by the argumentthat if a system is not based on certain fundamental

assumptions, the probability axioms, then it will be demonstrably irrational
or,more technically, “incoherent” (Lindley, 1985).

The usual approach to adjudicating on competing mathematical theories is

to review the different systems, examine their axioms and theorems, and rule

on their correctness, completeness, universality or whatever. However, too

many talented mathematicians have followed this path and ended up with
firmly held but opposing positions. After deep study some concludethat prob-

ability is both necessary and sufficient as a mathematical theory of uncertainty

and belief; others that probability is neither universally appropriate nor

adequate for the tasks we mustask of it. The large and disputatious literature

Surrounding the uncertainty debate suggests that this issue is unlikely to be
resolved by such adjudication.

The problem is to be resolved, I believe, with a more openposition, in which

we accept that (a) there is a family of distinct theories of uncertainty which

can be shown to have sound mathematical foundations, (b) these theories

capture different intuitions about uncertainty and belief, and (c) that a more

liberal attitude will permit the development of a deeper understanding of

human judgement under uncertainty and more sophisticated technologies for
aiding such judgement. | |

The argument for myposition starts in Section 5.2 with a brief presentation

of some ideas taken from the history of probability concepts bythe philo-

sopher Ian Hacking (1975), together with some other issues that have been

raised about the general adequacy of the probability paradigm. Hacking is

especially interesting because he wasthefirst, to my knowledge, to propose
that there is a “space” of alternative probability theories, though he does not

tell us how this space may be characterized. In Section 5.3 I introduce some

questions from artificial intelligence (AI), and argue that they represent a

fundamental challenge to the probabilists’ claim to universality. In Section

5.4I review a numberofalternative uncertainty formalisms, many of which

have emerged from work in AJ. Finally, in Section 5.5 I attempt to address
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Hacking’s conjecture by offering a proposal for a general framework within

which uncertainty formalisms may be understood.

5.2 THE PROBABILITY PARADIGM ANDITS
DETRACTORS

5.2.1 Historical Questions

Faced with the problem of accounting for the adoption of modern probability

theory against its historical rivals, Hacking arrived at the remarkable

conclusion that the emergence of the modern theory washistorically somewhat

arbitrary. In his elegant and informative book The emergence ofprobability

he identifies a puzzle: that “. . theories of frequency, betting, randomness and

probability appear only recently. No one knows why” (page 2). This may be

contrasted with other mathematical andscientific paradigms, such as those of

geometry, chronology, astronomy and navigation which,like probability, had

great practical implications but appeared muchearlier.

Hacking observesthat “around 1660 a lot of people independently hit on the

basic probability ideas” (page 11), and adds “.. .The time, it appears, was ripe

for probability. What madeit ripe?” (page 12). One answerto this is that

probability could have been discovered earlier, except that a variety of cultural

obstacles prevented its emergence. Among the reasons Hacking considers for

this are that probability’s appearance could have been blocked in cultures

which (a) took a deterministic, necessitarian view of the world, (b) believed

that godssettle things—fate dominates chance,(c) failed to notice or under-

stand the idea of “equally probable alternatives” which is necessary before one

can move on to more useful ideas, (d) did not face (economic) problems for

which probability is the solution, or (e) lacked a sufficiently rich set of mathe-

matical ideas to permit the development of a probability calculus. From this

one might predict that if one found a culture that was somewhat impious,

which took a physical rather than a fatalistic approach to causality, and had

a developed trading culture and arithmetic skills, then this should be conducive

to the development of probability mathematics. Hacking notes that this may

have been true in India about 2000 years ago, and that there are indeed hints

in the historical record of a theory of probability (page 8). Appealing as this

is Hacking finds the evidence for this cultural explanation to be weak. He and

others continue to raise questions about the inevitability, or necessity, of

probability ideas.

5.2.2 Technical Issues

I take the paradigm of probabilistic reasoning to be: the process of assessing
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the relative credibility of a number of alternative hypotheses by assigning
degrees of belief to the various alternatives, based on evidence, in such a way
that certain axioms, the probability axioms, are satisfied. Consider the

following scenario:

A doctor is aiming to maximizethe likelihood of making a correct diagnosis for
a patient who is complaining of abdominal pain. Sheidentifies all the possible
causes Of abdominal pain and the symptomsthat are associated with each
disease. An estimate is now madeof the conditional probability of each symptom
being caused by each disease, and theprior probability of each possible disease.
After establishing the presence or absence of each symptom she is now in a
position to calculate the posterior probability of each disease using Bayes’rule.

Probabilistic approaches to tasks like diagnosis have been extensively

studied. The scenario describes a simple method for probabilistic diagnosis.

Moresophisticated methods may nowbepreferred (e.g. Heckerman, 1991) but
the complexities would distract us unnecessarily. While probabilistic methods
have yielded somestriking successes, they are open to a numberof technical
criticisms.

Firstly, a classical probability analysis places strong requirements on the

completeness of our knowledge. It requires, for example, that a doctor has
exhaustively identified the possible hypotheses (e.g. the patient is suffering

from gastric cancer or gastric ulcer or duodenal ulcer, only) and that a
complete set of conditional probabilities representing the dependencies
between hypotheses and evidence has somehow been obtained. Frequently
(indeed one might argue invariably), assumptions of exhaustiveness are

unrealistic. Practical diagnosis has often to be carried out in the face of high
levels of ignorance;it is as much about understanding what the problem is and

the accommodation of uncertainty about relevant data or hypotheses,asit is
about a precise weighing of evidence for a knownset of possibilities (Fox

et al., 1990).

In his admirable presentation of mathematical decision theory Dennis
Lindley (1971; 1985) acknowledges this: “The first task in any decision

problem is to draw upa list of the possible actions that are availabie. ... It
is almost certainly true that some successful decision-makers derive their

success from their ability to think of new ideas, rather than from anyability

to select amonga list, so providing an example of the human element ... Such
initiative and enterprise is to be encouraged [but] we can offer no scientific

advice as to howit is to be developed.”

Secondly, a narrowly probabilistic position does not recognize knowledge

other than that expressed in probabilistic form. This is surely restrictive. In

predicting the structure of a complex molecule for example, such as a protein,

knowledge of the function of the molecule, its evolution, topological and
geometrical features, charges on its components, and many other kinds of
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knowledge can place substantial constraints on the possible structures a

molecule may have. A strong case can be made, which weshall develop, that

many kinds of knowledge other than probabilistic knowledge have consider-

able predictive value in reasoning under uncertainty, particularly in the

absence of precise quantitative data.

These two points, the frequent absence of precise quantitative data and the

importance of knowledge of general principles, are powerfully illustrated

in the context of risk assessment. In the conclusion of a report of the UK

Department of Health’s Committee on Carcinogenicity of Chemicals in Food

(1990) the committee concludes that it

... does not support the routine use of [probabilistic] risk assessment for

chemical carcinogens. This is because the present models are not validated, are

often based on incomplete or inappropriate data, are derived more from mathe-

matical assumptions than from a knowledge of biological mechanisms and,at

least at present, demonstrate a disturbingly wide variation inrisk estimates

depending on the model adopted.

5.2.3 Doubts about “Subjective” Probability

Related questions can be raised about the adequacy of the probability

paradigm, even some vaguer“subjective” version, in accounting for patterns

of human reasoning under uncertainty. People are remarkably goodat solving

poorly structured problems, involving high degrees of uncertainty, which are

well beyond the capabilities of current formal reasoning systems. A compelling

example of this is the process of formulating scientific theories where,

individually and collectively, scientists achieve explanatory order in the face of

ignorance, contradictions and the appearance of challenges to the theoretical

framework as well as uncertainty about what the theories imply. Most

scientists will be unsurprised by Glymour’s observation that “probability is a

distinctly minor note in the history of science” (Glymour 1980).

The structure of the world is prodigiously complex, andthis is mirrored in

the heterogeneity and complexity of our knowledgeof it. This is evidenced by

the public language we usein talking aboutthe waythe world “works”(recall

the discussion of protein structure), our private experience of it, and scholarly

analysis of the complex ontology of concepts which underpins our under-

standing. Indeed, the subjective features of “belief” itself appear to be quite

complex; the natural language vocabulary that we routinely employ appears

to have an underlying semantics which is, at least, two-dimensional (Clark

1988). Insistence that the laws of objective and subjective belief must be

axiomatized in the same way(via the laws of probability) blurs a distinction

between what is a useful technical device and common experience.
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Doctors, lawyers, scientists, and other professions who commonly haveto

place their opinions on the record appear to arrive at their judgements by

means of processes which do not seem to resemble probability assessment.

Spoken and written records suggest that debates anddisputes are pursued

through patterns of argument and counter-argument, in which the assump-

tions, structure and other properties of arguments are challenged, and not just

the degree of belief warranted by an argumentfor a claim. Individual decision-

making and judgementalso seem to showreflective or “metacognitive” styles

of reasoning about the validity of arguments. The probability paradigm

provides few tools by which to understand such processes.

5.2.4 What May We Conclude?

These and many other doubts have been aroundfor a long time, but they are

not universally shared, and many probability theorists are clearly unimpressed

by them. From their point of view Hacking’s observation that probability had

a difficult birth does not bring into question the manifest health of the child;

if anything it merely underlines the intellectual subtlety of the achievement.

Probabilists may also argue, with justice, that the theory is not static but

constantly advancing, and current technical limitations merely stimulate

technical advances. Finally, any inadequacies of the theory to explain human

judgementarelargely irrelevant; the claim for probability is that it tells us how

we ought to make judgements under uncertainty, not how we actually make

them.

In short, while such doubts may makeus pausetheyare unlikely to lead to

a radical reassessment of such a successful tradition. If there are compelling

arguments against the universal appropriateness of probability we are going to

have to look outside these familiar areas of debate.

I believe there are such compelling arguments. The case I shall make is

groundedin the observation that mathematical probability has been developed

as a tool for people to use; a body of concepts and techniques which helps

them to analyse uncertainty and make predictions in the face of it. While the

theory is highly successful in this respect, the presupposition that it is for use

by, say, a human decision scientist, who brings an understanding of the world

to bear in applying the theory, has profound implicationsforits interpretation

and its limitations.

3.3 UNDERSTANDING INTELLIGENCE:
A DIFFERENT CHALLENGE

Whethera decision-makeris a scientist formulating a hypothesis or a theory,

a doctor diagnosing a new and complex case, a company manager developing
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a marketing strategy, or a lawyer designing a client’s defence, the framework

of probability theory gives little help in formulating the decision problem,

understanding what is a relevant solution or information source—or recog-

nizing that there is a problem in the first place. Intuitively we identify such

abilities with intelligence (Lindsey’s “human element”, perhaps); any view of

uncertainty which ignores the fact that it lies in a larger context of intelligent

problem solving seems to meto be rather unsatisfactory.

Of course weface a serious problem; it has proved notoriously difficult to

achieve an unambiguousand generally accepted definition of the concept of

intelligence. Attempts to relate it to intuitive notions of ability, or objective

tests of educational or other achievement, have had limited success. We

struggle with such weak definitions of intelligence as “that which intelligence

tests measure”. Concepts like knowledge, understanding, rationality and so

forth seem to be at the core of what we mean, yet seem to have a curiously

marginal place in modern psychological theories. I presumethat this is because

psychology aspires to be an objective, empirical discipline andit is difficult to

bring such abstract ideas into the realm of empirical observation. Mentalistic

ideas like uncertainty, belief and rationality are implicitly present in theories of

humandecision-making and judgement,of course, but in rather impoverished

forms. Uncertainty and belief are equated, a priori, with subjective assessment

of probability, and the interpretation of rationality is limited to demon-

strations of compliance with weak mathematical constraints on “coherent”

manipulationof such probabilities (Lindley, this volume, Chapter 1).

Thescientific study of artificial intelligence (AI) shares many of the concerns

of psychology in that it is attempting to understand and emulate human (or

at least human-like) capabilities. As with psychology AI’s attempts to achieve

a general definition of (artificial) intelligence have had limited success,

however: “artificial intelligence is the study of how to do things which, at the

moment, people do better” (Rich & Knight, 1991) or AI systems are “sophisti-

cated electronic agents in the form of computer systems that people could

regard as ‘intelligent’” (Besnard, 1989). Unlike psychology, however, AI is

free to sidestep difficulties like this because it is not required to justify

mentalistic theories in terms of empirically observable and measurable

phenomena.

In order to argue that a theory illuminates a notion of intelligence many Al

researchers simply attempt to demonstrate that a computer program is

sufficient to manifest some interesting kind of competence (Newell, 1973),

where such competence may include the ability to interpret sentences in a

natural language or images seen through a camera,or solve a complex medical

problem and plan a suitable therapy. Lately, the criterion of sufficiency has

become seen as too weak to demonstrate that a theoryis principled, andit is

now widely expected that a computational theory shouldalso be formally

stated. It should be formulated in a precise language or notation and
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developed in such a way that it is possible to unequivocally establish its
properties and verify the claims made forit.
Not all decision scientists will be sympathetic to a computational style

of theorizing. Nevertheless the freedom to investigate intuitive features of
intelligence in this mathematical way hasstimulated the development of
entirely new theories of knowledge and reasoning, belief and intention, and
what is called “common sense” understanding of the world. Although the
motivation for developing such theories is not primarily psychological it is
informed byintuition, and consequently the results may provideaninteresting
body of ideas which mayin turn inform psychology.In the case of uncertainty
and belief formal theories are now available which go substantially beyond
that of the probability tradition.

5.3.1 The AI Paradigm

Perhaps the most significant influence on AI that distinguishes it from other
mathematical and formaltraditions is its goal of understanding, and eventually
building, agents that can operate autonomously in some world. Consider, for
instance, NASA’s interest in constructing an autonomous vehicle which is
capable of operating on the dark side of the moon or some even moreexotic
environment. NASA mission planners cannot be confident of anticipating all
the circumstances that the vehicle might confront (they have, afterall, never
been there). Unanticipated threats could arise at any time. The planners may
believe that they can predict familiar types of threat but nottheir likelihood of
occurring nor their detailed manifestations, and they must assumesituations
will arise that they cannot predict. Since such a vehicle cannot “phone home”
for instructions or reprogramming, it would benefit from capabilities
reminiscent of those of a human astronaut, i.e. abilities to perceive and
interpret its environment, understand whenit is facing a problem, formulate
possible solutions, and identify relevant sources of information which will
allow it to judge its best course of action.
The challenge of an alien world is colourful but we do not in fact need to

go so far afield to find problemsof similar character. Much medical software,
for instance, is “safety-critical”, meaning that errors in operation or use can
lead to death, injury and other consequences. Safety engineers have developed
various methods for predicting the problems that can occur butclinical
environments are so complex that all possible hazards cannot be anticipated,
even for simple systems. Recent cases of software for controlling radiotherapy
equipment giving incorrect dosages to patients in circumstances which were
not predicted by the designers are a pointer to the increasing dangers of using
even semi-autonomous equipment.
The language in which the theorems and equations of probability is

expressedis ill-suited to the design of procedures which areflexible in the face
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of such poorly defined environments. Arithmetic operators and ordinary

algebraic formalisms were not designed to speak of generalized threats ortheir

causes, nor for formulating hypotheses aboutthe state of the world ab initio.

At the very least the language needs to be augmented with other formalisms

in which these concepts can be expressed and manipulated. From its inception

AI has been preoccupied with finding languages for coping with ill-defined

problems; the resulting languages are very different from, and in many

respects much more powerful than, the languages of numerical mathematics.

One such family of languages is based on formal logic.

5.3.2 Computational logic

In traditional work on probabilistic reasoning the interest has centred on the

properties of mathematical functions whose ranges and domains consist of

numbers. When used in computer programs functions are implemented as

algorithmic procedures which accept sets of numbersas input(e.g. prior and

conditional probabilities) and return sets of numbers as output (posterior-

probabilities). AI languages are designed to represent and manipulate more

general data structures. These can include numbers but also more complex

terms such as symbolic descriptions of objects; properties and interrelation-

ships of objects, goals and actions of agents, and so forth.

For instance “factual” knowledge about a topic can be captured in a

database consisting of a collection of expressions such as the following:

hasproperty(cancer, Lifethreatening) (5.1)

is_more_dangerous_than(cancer,peptic_ulcer (5.2)

(We could use a more familiar English-like presentation, as in canceris more

dangerous than peptic ulcer, but the notation avoids ambiguity about the

structure, particularly in complex expressions.)

Logic programscan be thoughtof as proceduresfor proving that statements

are true given some database. For example a database may contain

a

setof

rules for processing sentences in natural language, such as:

isgrammatical (NLsentence) if
<some set of conditions>

(5.3)

A “theorem prover” can establish whether the predicate is_grammaticalis

true or not for some sentence NLsentence byestablishing whether the

associated set of conditions is true. (NLsentence is a variable representing any

input sentence; variables are indicated by capitalizing the first letter.)
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Functional computations can also be captured by logic programs,asin:

has_interpretation(NLsentence,Meaning) if

<conditions> (5.4)

Here the function has_interpretation returns a meaning representation for
the sentence if it can be proved to be consistent with someset of linguistic
rules, or “meaning postulates”, in the database.
The conditions of rules can be arbitrarily complex, made up of conjunc-

tions, disjunctions and negations of simpler conditions. Simple conditions
include facts, like (5.1) and (5.2), or conclusions of other rules. A logic
program may invoke any numberofrules to any depth. Example (5.5) shows
(5.4) fleshed out to a single level:

has_interpretation(NLsentence, Meaning) if

is_grammatical(NLsentence,Parsetree) and
hasmeaning(Parsetree,Meaning) (5.5)

This rule should be interpreted to mean that if the theorem prover can find a
valid grammatical structure, Parse__tree, for the sentence and assign a mean-
ing to the structure, then it will succeed with result Meaning.

Variables are normally universally quantified. This means that logic
programsimplicitly define all possible solutions to a problem. In the case of
(5.5) the program will find all the interpretations of an input sentence which
are justified by the linguistic knowledge encoded in the database.

Muchof the power of AI languages arises because variables can take any
kind of term as a value. Consequently logic programs and other symbolic
languages can not only reason with numbers and all the other datatypes of
classical programming and mathematics, but also complex symbolic structures
like proofs, parse trees and meaning representations. Logical formalisms can
explicitly capture properties of rules, functions and programs (called
“metalevel” representation) and logic programs can reason about programsas
well as simply execute them. Logic programming languages, such as PROLOG
(PROgramming in LOGic), provide many more computational techniques
than weneed to discuss here (see any text, such as Clocksin & Mellish, 1972),
for details) but PROLOGprovides a fairly standard notation for logic pro-
grams and weshall use it to present many of the examples that follow.

5-4 SYMBOLIC REASONING AND UNCERTAINTY

Logic languages provide a formal machinery for representing and reasoning
with knowledgeof the world. They can accommodate concrete concepts,as in
the medical examples, but also abstract conceptslike causality, hypotheses and
beliefs. We shall also see that metalevel reasoning about what an agent knows
or believes can play an importantrole in its reasoning under uncertainty. To
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keep the presentation short, and as widely accessible as possible, I shall discuss

these ideas in a relatively non-technicalstyle. However, most of the concepts

have received considerable technical development. An up-to-date and

comprehensive but accessible technical survey is Krause & Clark (1993).

5.4.1 Uncertainty and Rule-based Reasoning

The earliest experiments with rule-based reasoning systems used quite simple

inference methods. For example, the following rule defines a simple piece of

“diagnosis” knowledge:

evidencefor(Patient,cancer) if
known(Patient,weight_loss) and
known(Patient,elderly) (5.6)

Whichis to say: if a patient is known tobe elderly and has lost weight then

we are entitled to conclude that there is evidence for the patient having cancer.

Therule is analogous to a conditional probability expression, p(H| E1 & E2)

but is only qualitative; it says there is evidence for cancer but not how much.

The absence of any probabilities may appear to be a weakness but it imme-

diately confers an important freedom; since we do not haveto distribute a

fixed quantity of belief over a set of hypotheses we do not haveto fix the set

of hypotheses at the outset. In fact a simple extension to rule (5.6) allows us

to introduce hypotheses progressively, as evidence is obtained:

hypothesis(Patient,Disease) if

evidencefor(Patient,Disease) and
notCexcluded(Patient,Disease)) (5.7)

Whichis to say, if we acquire any information that is evidence for a disease,

and we have no reason to exclude the disease, then weare entitled to include

it as a hypothesis.

The practical importance of such “open-mindedness” was once encountered

by a group working on computer-based interviewing of patients. An interview

program fed data directly into a diagnosis system which made theprior

assumption that all patients were suffering from one of a numberof gastro-

intestinal diseases. Down the hall was an alcoholism clinic. Patients would

occasionally stray from this clinic, be interviewed by the system, and promptly

be diagnosed as suffering from an ulcer, gall-bladder diseaseetc.

Medical knowledge is frequently just empirical, recording that this con-

dition and that symptomsare statistically associated, but much medical

knowledge is deeper than this. For example causal knowledge (howdiseases
cause symptoms), taxonomic knowledge (such as the features of cancer as a

class of diseases as distinct from the features of specific cancers) and

knowledge of anatomical structures, physiological processes andfunctionsetc.

can all come into play in medical decision-making and judgement. Symbolic
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languages are well adapted to expressing such ideas. Rule (5.6) above captures
a specific association between patients with cancer and those whoare elderly
and have lost weight. We may modify the rule to cover (an indefinite variety
of) causal relationships:

evidencefor(Patient,Condition) if
known(Patient,Symptom) and

couldcause(Condition,Symptom) (5.8)

Proving the predicate couldcause(Condition,Symptom) may
require quite a complex process. For example if we have detailed knowledge

of the actions of two drugs it may be necessary to demonstrate from a detailed

physiological theory that they could interact to cause the observed condition.

Reasoning from first principles in this way can be an important diagnostic

Strategy, particularly in unusual or difficult medical cases. Barahona (1993)
provides a detailed analysis of causal reasoning in medicine, in terms of
general knowledge of structures, functions and processes.

Medical knowledge does not consist merely of a “flat” set of diseases and

their associated symptoms, but a complex network of concepts (such as ulcers

of the stomach and duodenum),their classes (peptic-ulcers), classes of classes

(gastrointestinal diseases) and so forth. Likewise for symptoms, treatments,

tests and other medical concepts. As remarked earlier the conceptualstructure,

or ontology, of many domains is complicated and this has implications for

how evidenceis to be interpreted. Suppose we knowthat

is_a_kind_of (duodenal_ulcer, peptic_ulcer)

and we have evidencethat a patient has a duodenal ulcer (such as pain immedi-

ately after meals in an older patient); then using the following rule:

evidencefor(Patient,DiseaseClass) if
evidencefor(Patient,Disease) and
is_a_kind_of(Disease,DiseaseClass) (5.9)

we can directly make the inferencethat there is evidence for the patient having

a peptic ulcer. Reasoning from the specific to the general (or vice versa) may

be simple but it is important. Many peptic ulcers are treated the same way

using a class of drugs called H2-antagonists. If we can obtain convincingevi-

dence that other competing types of gastrointestinal disease are implausible

(suchas gall-bladder disease or cancer) then it is unnecessary to carry out a

detailed differential diagnosis of the particular type of ulcer the patient is

suffering from, since the treatment is the samein all cases.

Wehave emphasized logical aspects of rule-based reasoning but extension

to include quantitative information is quite straightforward. Various systems

for attaching numerical coefficients to facts and rules have been proposed.
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The metalevel expressiveness of logic languages allows the expression of a

quantified belief in an assertion:

holds( Assertion, Coeff) (5.10)

where Coeff represents a numerical coefficient, meaning “Assertion is

certain to degree Coeff”, e.g.

holds(€known('Fred Smith',elderly) ,0.99)

holds(known('Fred Smith',weightloss) ,0.9)

a conditional rule can be treated similarly:

holds ((Conclusion if Premisses), Coeff) (5.11)

meaning “Conclusion can be conditionally inferred from Premisses

with certainty Coeff”. For example embeddingrule (5.6) in (5.11) we may

have

holds(Cevidencefor(Patient,cancer)if

C(known(Patient,weight_loss) and

known(Patient,elderly)), 0.5) (5.12)

Finally a suitable program, or “meta-interpreter” can be designed which

manipulates these expressions to carry out both logical deduction and numer-

ical calculations. If the set of hypotheses is closed and a completeset of prior

probabilities and probabilistic evidence rules is available, then the meta-

interpreter can derive probability-quantified conclusions by combining an

appropriate probability revision procedure with the normal deductive one (we

omit the details, an example program is available from the author).

Early AI methods for combining numerical uncertainty representation and

revision were criticized because, among otherreasons, they used ad hoc rather

than probabilistic methods (e.g. Cheeseman, 1985), and they have been largely

replaced by more established techniques. Probabilistic methods have been

extended to permit propagation of probabilities over complex networks of

evidence and hypotheses (Pearl, 1988; Lauritzen & Spiegelhalter, 1988). Belief

functions can be used whereevidenceis to be distributed over class-structured

hypotheses (Gordon & Shortliffe, 1984). Fuzzy logic has been used to permit

vagueness in the definition of logical categories (Zadeh, 1978) and has since

developed into possibilistic logic, a well developed alternative to the prob-

ability calculus (Dubois & Prade, 1988).

To summarize, a non-numerical calculus such as symbolic logic can provide

a formally soundand well-understood inference system for capturing intuitive

ideas about knowledgeand for introducing and reasoning about hypothesesin

the absence of quantitative uncertainty data.

The emergence of such methods raised a challenge to probability. As so

often before, however, the probability community responded vigorously by
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extending existing techniques to address the wider range of applications that
AI was addressing. One might be tempted to conclude from this that logic is
a useful tool for the deductive elements of reasoning, but when uncertaintyis
encountered a numerical calculusis still necessary. Even this weaker position
can be questioned, however, and we turn now to developments that support
the opposing view.

3.4.2 Non-monotonic Reasoning

Classical logic makes the fundamental assumption that if we can validly
deduce some assertion, A, then whatever other conclusions we may sub-
sequently deduce A must remaintrue. If this is not the case we will be faced
with a contradiction. (In ordinary logic contradictions cannot be tolerated
becauseit is a formal property of classical logic that anything can be deduced
in the presence of an inconsistency.) Consider the familiar example from
elementary logic that if X is a man then X is mortal. More generally:

mortal(X) if

isbiological (X) (5.13)

Plants, animals, man, and collections of cells in culture, are generally
consistent with this rule, so whenevera biologicalentity is encountered we may
reasonably infer that it will not live for ever. Unfortunately, there is an
important complication. In culture, normalcells divide for a few generations
and then the “cell-line” tends to die out. However, when cell is transformed
into a tumourcell the line does not die out; it acquires a property which may
be called “immortality” (although this is a slight abuse of this term, for
purposesof illustration). Rule (5.12) is consequently a little too strong. We
have seen two approachesto solving this problem; both involve weakening the
conclusion, either by concluding that there is merely “evidence for” mortality,
or by attenuating the conclusion with a probability or other numerical
coefficient.

An alternative approachis to say that if I know somethingis biological in
origin then I can reasonably assumethatit is mortal unless and until I find out
I am wrong, in which case I change my mind.Classical logic does not permit
us to change our minds, but non-monotonic logic is designed to overcomethis
restriction. Example (5.13) can be rewritten in a non-monotonic form,such as:

mortal (Xx) if

isbiological (X) and
consistent( notCimmortal(Xx)) ) (5.14)

Thisis to be read as “if X is known to be a biological entity andit is consistent,
given all that is currently known, to assume that X is not immortal, then x
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is mortal”. If we now find that the biological entity is immortal by the

following ordinary rule, say,

immortal (X) if

tumour_cell_line(Xx) (5.15)

then it is no longer consistent to conclude mortal (X) and the conclusion

must be withdrawn. (Speaking a little loosely, classical logic is monotonic

because deduction can only result in increases in the collection of beliefs, while

non-monotonic inference can result in either increases or decreases in our

beliefs.)

Default logics are an important formalization of this idea (Besnard, 1989)

which sanctions the ability to “jump to conclusions” without having to

consider all the circumstances in which the conclusion could conceivably be

wrong. Suppose we are planning a business trip from Paris to Greece; we

choose Air France flight AF97 from Paris to Athens, and then make a hotel

reservation according to the scheduled arrival time in Athens. Default logic

provides a sound framework for the following kind of reasoning:

AF97is scheduled to arrive at 10.00 and there is no reason to believe thatit will

not arrive at that time so I will infer that it will arrive in Athens at 10.00.

The classical inference rule

will_arrive(Flight,Time) if

scheduled(Flight,Time) (5.16)

is too strongso we introduce a “default condition” intoit:

will_arrive(Flight,Time) if’
scheduled(Flight,Time) and

consistent( not(delayed(Flight)) ) (5.17)

so long as the assertion not (delayed (AF97,10.00)) is consistent

with the other things we believe then weare entitled to assume that AF97 will

arrive on time. There is any number of reasons whyour flight might be

delayed—strikes, fog, cancellation, bomb scares, equipmentfaults, loss of the

aircraft in the Bermudatriangle, etc.

Of course, it would be theoretically possible to estimate the probability of

one or more of these events, but would it be useful? If we hear of a strike by

air traffic controllers in the Paris area then we simply retract the default

assumption and rearrange our accommodation.If we do notfind outin time,

and arrive late, then hotels are not usually full, there are always other hotels

or, at worst, an uncomfortable night at Athens airport.

A number of non-monotonic logics have been formalized. In modal logic

a proposition is possible if we cannot provethat it is necessarily false (Mott,



90 J. Fox

 

1988). For example the autonomous vehicle referred to earlier may assume
that it is possible to get fromA to B if it cannot establish any reason thatit
cannot, such as an equipmentfailure or an obstacle. “Autoepistemic logic”is
concerned with the formalization of agents’ reasoning about what they know
or believe (Moore, 1988). As scientists if we come up with aninteresting idea
thenwe may carry out a considerable amount of work on the autoepistemic
argument that “I am expert in myfield; if anyone else had followed upthis
idea I would have heard aboutit, so I can assume they haven’t”. This often
works well, thought sadly not always.

Non-monotonic logics are an advance on classical logic because they have
a well-grounded theory for avoiding assumptions of omniscience (knowing
everything about a situation so one will never have to change one’s mind).
They are a practical alternative to probabilistic and other numerical uncer-
tainty frameworks because they do not require quantification of uncertainty
for reasoning to proceed. Krause & Clark (1993) provide a good review of
developments in the area.

5.4.3 Argumentation

Default reasoning is a recent development but criticisms of classical mathe-
matical logic are not new. Toulmin (1958) raises a number of questions about
the role of logic in practical reasoning. In classical logic an argumentis a
sequence of inferences leading to a conclusion, which may beeither true or
false. The interest of the logician has traditionally been in procedures by which
such arguments maybe judged valid or invalid. Toulmin was more interested
in the kinds of reasoning which go on in everyday debate,and in the conditions
that determine whether arguments are persuasive. For example, a doctor may
argue “it is possible that the patient has gastric cancer becauseheis elderly and
has recently lost weight and I knowthis is a classical presentation of an
advanced malignancy.” Toulmin characterizes such arguments by means of
the following schema:

Date——_——_———_» Claim Qualifier

| |
Warrant Rebuttal

|
Backing (5.18)

Data here correspondstoall the things the doctor knows aboutthe patient (the
patient is elderly and has lost weight); the Claim is the base sentence “the
patient has cancer” but this is Qualified becauseit is said to be “possible” but
not asserted to be true. The Warrant is the doctor’s knowledge about typical
presentations and relationships between pathologies, which gets its Backing
from reference texts, research findings and so forth. Toulmin anticipated
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non-monotonic reasoning with his notion of Rebuttal; the doctor’s colleague
maypoint out “but the results of all the tests we have done seem inconsistent
with cancer”.

Toulmin’s analysis is not formal butit is intuitively appealing. A number
of workers are now investigating waysin which such ideas might be formalized
(Loui, 1987; Pollock, 1992; Fox, Krause & Ambler 1992). One motivation for
developing a formal theory of argumentation arises from the requirement for
a theory of decision-making whichis appropriate to the design of autonomous
agents (Fox, 1991), but the results are quite general. In this section weintro-
duce our formalization of argumentation, showing howit may add to the
available techniques for reasoning under uncertainty. In the next section we
take the ideas further by considering how the approach could provide a general
framework for understanding a number of methods for reasoning under
uncertainty.

A logic of argument

In propositional logic (PL) if we hold somefact to be true, say p, andalso
hold that p implies q (p > q) then by the rule of modusponens weareentitled
to conclude q. Taken together, modus ponens andthe otherrules of proposi-
tional logic define a relationship betweenthe set of sentences in a database (the
antecedents), and a database extended with the set of sentences which may be
validly derived bytherules of the logic (the consequences). This is summarized
by:

Antecedents + pp Consequents (5.19)

in which the “turnstile” symbol + represents the consequence relation of the
logic. The subscript PL remindsusthat particular consequencesare only valid
if we accept the inference rules of PL but maynotbe valid if we adopt some
other logic in which modus ponens is not a rule of inference. (Note that
“object-level” rules in the database of antecedents, such as D— q, shouldnot
be confused with the inference rules or “meta-rules” of the logic, such as
modus ponens.)

Countless logics with specialized consequence relations have been developed
for particular kinds of reasoning (e.g. Haack, 1978). Somelogics drop inference
rules from classical logic, others add rules. For example, propositional logic
includes the rule of the excluded middle, “A or not (A) but not both”, while
intuitionistic logic omits this rule. A logic can have an entirely different
consequencerelation from that of classical logic.

AI has been particularly concerned with developing specialized logics for
“common sense” reasoning about space, time, belief and so forth. Default
logic is an example ofthelatter; it copes with changing belief with a non-
monotonic consequence relation. Argumentation provides another approach



92 J. Fox

to reasoning under uncertainty. The logic of argument (LA)is a variant of

intuitionistic logic in which two modifications have been made (Fox, Krause

& Ambler 1992). First, it is assumed that an argument may not only prove a

claim but may also, more weakly, support it. Second, we view arguments as

contingent on the acceptance of some “view of the world”. We call such a view

a “theory”, since it can be modelled as a collection of object-level rules and

facts. The consequence relation of LA is summarized by the following meta-

level schema:

Context U Theory F 1a (Claim, Grounds, Qualifier) (5.20)

The schema simply says that given someset of beliefs about a particular situa-

tion (Context) together with a set of general beliefs (Theory), we are entitled

by the axioms andinference rules of LA to make certain Claims. Claims are

justified by someset of rules and facts drawn from the union of the Context

and Theory, and are qualified in ways that we discuss in a moment.

Axiomsand inference rules for LA are given in Figure 5.1. In this version

of LA the qualifier is one of “supports” or “confirms” (abbreviated as + and

+ +). If an argument supports a claim then it increases belief in it (but we

don’t say by how much).If it confirms the claim it meansthat, from the point

of view embodiedin the theory, the claim is certain. Note that different agents

may hold different theories, and in principle a single agent can adopt different

and possibly inconsistent theories at different times. Consequently con-

firmation is not quite the same as saying the claim is logically true (or that its

probability is 1.0) because there is always the possibility that even a certain

claim will, in Toulmin’s terms, be “rebutted” by an equally certain argument

based on different theoretical assumptions.

LA has been embodied in a Prolog program called an argumentation

theorem prover (ATP). The consequencerelation of LA is embodied in the

ATP which, when supplied with a proposition and

a

set of rules and facts (the

theory) constructs all and only those arguments which support or confirm the

proposition which are justified on the theory. (LA and the ATP were deve-

loped in collaboration with Paul Krause, Simon Ambler and Michael Clarke.)

The theorem prover returns argument terms which we can represent in the

familiar Prolog style:

argument (Claim,Grounds,Sign) (5.21)

For example:

argument(''the patient has cancer'',
grounds(wt_loss,elderly),

supported) (5.22)

which can be glossed as “since the patient is elderly and haslost weight this

supports the claim that he has cancer.” The ATPis neutral about the. content
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Figure 5.1. Summaryof LAinference rules. The labelling of propositions follows the

syntax formula: grounds: qualifier, where qualifier € {+,++)}, and min(+,++)= +

of the theory; the details of this may warrant quite different kinds of

argument, including appeals to a priori beliefs, external authoritative opinion,

direct or indirect observation, inferences from knowledge of causality,

structure, function, and so on (Fox and Clarke, 1991).

Practical decision-making and debate frequently do not afford the use of

confirmatory arguments, so we may only have collections of supporting

arguments for competing claims. What may we conclude from a number of

arguments? Toulmin givesuslittle guidance here but clearly we need to combine

or aggregate the arguments in some wayif we are to choose amongthealter-

natives. As discussed earlier it is unwise to assumethat there will always be:

some basis for attaching numerical weights or confidences to individual

arguments (though this can be done as weshall see later). In fact there are

various ways to aggregate arguments without relying on weights, including

“semi-quantitative”, “meta-argumentation” and “linguistic” techniques.
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One methodis simply to compare the relative numbers of arguments for
alternative claims; this yields a total ordering on the alternatives. Selecting the
most preferred alternative on this basis amounts to applying an improper

linear decision rule with uniform weights. It is well known thatthis rule gives
quite a good account of much human decision-making under uncertainty
(Dawes, 1979). Although apparently weak it can give results which are
surprisingly similar to those given by a precise probabilistic decision procedure
Fox, Barber & Bardham (1980); O’Neil and Glowinski (1990) and Chard
(1991) show the effectiveness of the method in several medical applications.
The linear aggregation of arguments can also be showntobe formally sound
(Ambler, 1993).
The linear decision rule can be refined by taking advantage of the fact that

the grounds of the argumentsare explicit. Suppose we have equal numbers of

arguments for a patient having gastric ulcer and having duodenal ulcer. The

patient reports, among other things, that he has lost weight and we can argue
that this is best explained by the former hypothesis. However, we also observe
that “thepatient is elderly and confused so we should question the accuracy of
his memory” and hence doubt the argument. This sort of meta-level reasoning
Over argumentsyields a more precise ordering on the alternatives; since certain

arguments are weaker than others this must also weaken the claim.

Toulmin saw arguments as embeddedin natural language, notably in the use
of linguistic qualifiers. In standard logic qualifiers are undistinguished elements
of a sentence which as a whole can only be true orfalse. In the argumentation
framework we wish to distinguish them, in order to permit reasoning about

them separately from the base proposition. In (Fox, 1986) I proposed extending

logic with a set of linguistic predicates which are reminiscent of belief terms
in natural language. For example we might wish to be able to express the
decision rule that “any patient should be investigated whois possibly suffering
from a disease that is life-threatening”. In our usual notation:

should_investigate(Patient,Disease) if
possible( hypothesis(Patient,Disease) )

and lifethreatening(Disease) (5.23)

The first predicate in the conditions of the rule has the form

possible (Proposition).

This and other linguistic predicates might be interpreted in terms of the
properties of the set of arguments for and against the proposition

possible(Claim) if

argument (Claim,Grounds,supported) and

complement(Claim, Complementaryclaim) and

not(€ argument (Complementaryclaim,, confirmed) ) (5.24)
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In other words a claim (e.g. Fred Smith has cancer) is possibly true if there

is a supporting argumentfor it and the opposing claim (i.e. Fred Smith does

not have cancer) cannot be confirmed. (The second variable of the negate

condition, _, means that we do not require any specific grounds since the

theorem prover is going to fail to find any argument.) Other definitions,

covering such concepts as plausibility, suspicion, belief and doubt are

discussed in Fox (1986).

Linguistic predicates offer a symbolic way ofaggregating arguments, based

on patterns rather than numbers of arguments. They extend the expressiveness

of the knowledge representation language. This is analogous to the use of

linguistic terms in reasoning about time (A occurs “before” or “during” B,

etc.) and space (A is “above” or “inside” B, etc.) in that they do not depend

on precise chronological or geometric quantities. Reasoning systems which

employ such predicatesare flexible and, arguably, a natural basis for capturing

and communicating human knowledge. Of course the psychological validity of

any specific linguistic scheme is open to dispute, just as the psychological

validity of the notion of subjective probability is debated. As with thelatter,

this is an empirical question, though, as we discuss in more detail

in a moment, the general approach can be given a clear mathematical

interpretation.

5.5 A GENERAL FRAMEWORK FOR
UNCERTAINTY

I am inviting the reader to imagine ... that there is a space of possible theories

about probability that has been rather constant from 1660 to the present ...

perhaps an understandingof our space andits preconditions can liberate us from

the cycle of probability theories that has trapped us for so long. (Hacking, 1975).

In this section we stand back from the details of particular calculi in order

to consider whether different calculi share any common features. Like

HackingI believe that there is a range of possible uncertainty calculi, some of

which are already recognized while others, perhaps many others, remain to be

discovered. If we can understandthis space of alternatives then benefits should

follow. These may include a deeper understanding of rival systems; better

criteria for selecting the appropriate calculus for solving different kinds of

problem, and a more informed view of the strengths as well as the weaknesses

of human reasoning under uncertainty.

I wish to suggest that various proposals for specific uncertainty calculi are

specializations of a “generic” thoughrelatively weak calculus. I shall suggest

that the calculus is a logic of argument (such as LA, but there may be

other candidates) augmented with different systems of qualifiers and their
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corresponding aggregation functions. For brevity I shall only present the
essential ideas, technical details can be found in (Fox, Krause & Elvang
Goransson, 1993; Krause, Ambler & Fox, 1993). For clarity I shall use the
following simple notation for arguments in this section:

S:G:Q

meaning “the sentence S is qualified by QO given grounds G”. An expression
of the form {S:G:Q} represents a set of arguments aboutS.
Assume we have some methodfor constructing sets of arguments, such as

LA. Aspresented earlier LA has only two qualifying symbols, {+, ++}
representing supporting and confirming arguments. Wegeneralize this set to
the idea of a “dictionary” of “signs” which can be used to label any
(proposition, grounds) pair. The definition of a dictionary has the general
form:

dict(D) = det {S1, ..., Sn}

meaning dictionary D consists of the set of symbols S1, ..., Sn. There is no
reason to restrict dictionaries to finite sets of symbolic signs. Dictionaries for
probabilities, possibilities, certainty factors, belief functions etc. can be
similarly defined, e.g.

dict(prob) = aer [0, 1]

Givensomeset of arguments for P whosesigns are drawn from a dictionary
D we wish to aggregate these arguments to yield a new qualifier in D (or
possibly in some otherdictionary) representing our overall confidence in P.
Suppose the propositionsofinterest are formulae of a languageL, the grounds
are constructed from a class of sentences G, and signs drawn from the
dictionary D. Then an aggregation function has the general form:

AGGp: P (L xX Gx D) ———_5 Lx D

meaningthat that the function maps from the powerset(the set of all subsets)
of arguments into the set of possible claims with their associated qualifiers.
This general formalization summarizes a structure which is common to a
numberof calculi.

5.5.1 The Generic Calculus

In standard logical inference we assign the value “true” to a sentence on the
basis that we can construct a proof from other sentences which are held to be
true. In argumentation we assumethat while an inference procedure may be
valid the sentences that it assumes may not be true, and consequently any con-
clusions that can be deduced using them may be in error. Wetherefore
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substitute the sign + for “true” to acknowledge this possibility. This gives us

the simplest uncertainty calculus:

dict(generic) =det {+}

the argument ca:lw:+ simply says “the fact that the patient has lost weight

increases my confidence in her having cancer, but I cannot say by how much”.

Suppose we have two arguments in the generic calculus:

P:Gl1:+ & P:G2: +

how may we aggregate them? In general the more arguments we have for P

the greater may be our confidence in P. More formally we can characterize the

force of a set of arguments (represented by | Args|) with the constraint:

Let Args={P:Gl:+,..., P:Gn:+ } then

| Args’'| > | Args|if Args' = {P:Gn+1:+)}U Ares (5.25)

This captures the simplest aggregation procedure, the improper linear model

in which we just count arguments for a proposition to assess our relative

confidence in alternative claims.

5.5.2 The Bounded Generic Calculus

There is no limit to the number of arguments that can be constructed for a

proposition. Intuitively, however, some arguments are conclusive; to represent

this we may define a morespecialized calculus, introducing a dictionary with

an additional sign ++, i.e.:

dict (bounded) = der {++, +}

whichis the dictionary on which we defined LA. We now require an extended

aggregation function. Informally, if we have a conclusive argument for some

proposition, then this argument will dominate the aggregation procedure,

that is the aggregation function is restricted by (5.25) and the additional

constraint:

\{P:Gl:++}|=|{P:Gl:++, P:G2:+}| (5.26)

(5.26) applies to many quantitative calculi as well as this symbolic one, such

as probability. If we know the precise probability of a hypothesis H given

evidence E is 1.0 and E is observed (with certainty) then the probability of H

is certain, notwithstanding any other pieces of marginal evidence against H.



98 J. Fox

 

3.5.3. The Delta Calculus

In some situations we want to be able to argue against as wellas in support
of propositions, i.e. we would like to be able to write arguments of the form:

P:G:-

which meansthat G justifies a reduction in belief in P. To do this we introduce
the extended dictionary:

dict(delta) = aep {+, —}

As in intuitionistic logic an argument for P is not necessarily an argument
against not(P); we may have an argumentin favour of somescientific theory,
say, but if we cannot be sure we have exhaustively enumerated all possible
theories we cannot be certain that some alternative theory will not also be
supported by the same argument. However, for cases where we have
exhaustively identified the alternatives (e.g. we hold that the patient has cancer
or does not have cancer) we can strengthen the generic calculus by explicitly
defining an exclusiveness constraint on the mutually exclusive alternatives:

P:G: — if and only if O:G:+ (5.27)

An aggregation procedure for the delta dictionary honours the generic
constraint (Al), but in addition we adda complementary constraint which
takes account of arguments against propositions. As in (A1) let Args be some
set of arguments about a proposition P, then

| Args'| < | Args|if Args'={P:G:—-—} U Args (5.28)

5.5.4 The Bounded Delta Calculus

Finally, we specialize the delta calculus with an extended dictionary including
symbols for upper and lower confidence bounds:

dict (bounded__delta) = aep {++, +, —, ——}

The constraints (Al—A3)all hold on aggregation, but we havethe additional
bounded-complement constraint analogous to (5.27)

P:G: ++ if and only if O:G: -- (5.29)

3.5.5 Argumentation and Numerical Calculi

In conventional quantitative calculi the logical arguments underlying inference
receive little attention. Thesecalculi must satisfy the aggregation constraints
(5.25), (5.26), (5.28), (5.29) , (the complementation constraint (5.27) is only
necessarily obeyed by classical probability). For example, if we can logically



On the Necessity of ProbabilityCOW

construct an argument then the belief coefficient (probability, possibility)

associated with the conclusion of the argument must increase or decrease

consistently with the constraints. In other words if we can construct an

argument in support of a claim, but the overall belief in the claim as deter-

minedby the aggregation function of the calculus is reduced, then the function

is incoherent. The probability calculus is proveably coherent, but it is not

alone in having this property.

Mybasic proposal is that the most elementary form of reasoning under

uncertainty consists of constructing arguments in support of propositions and

aggregating the signs of those arguments within constraints determined by the

dictionaries from whichthe signs are drawn. The ATP provides the machinery

for the first step; we now need to demonstrate that it is compatible with

different dictionaries and their characteristic aggregation functions. The neces-

sary demonstration is only summarizedhere; technical details are provided in

Krause, Ambler & Fox (1993).

(1) The simplest aggregation function has “confirming” arguments outweighing

“supporting” arguments, which in turn outweigh “vacuous” arguments.

(2) The next refinement is the improper-linear aggregation rule: The more

supporting arguments there are for a claim the greater confidence we may

have in that claim.

(3) “Weakest link” aggregation. Each sentence in a databaseis labelled with

a value drawn from [0,1]. Confidence in an argument is the minimum

value of the confidences assigned to the individual grounds of the

argument. Overall confidence in a claim is the maximum value of the

confidences of the arguments which support it. This is the aggregation

function of possibilistic logic (Dubois & Prade, 1988).

(4) “Shortest path” aggregation. Similar to (3) but the confidences of the

grounds of an argument are multiplied together. If the grounds have

confidences less than 1, then the greater the number of axioms used in

constructing an argument, the lower will be the resulting confidence.

Again, the confidence in a claim is the maximum value of the confidences

of the arguments which supportit.

(5) The final aggregation procedure hascertain similarities to belief functions.

In the simplest case, the confidencein a single argumentis just the product

of the confidences in the axioms used to construct that argument.

However, if two arguments are aggregated, the confidence of the

combined arguments is given by the formula

c(A)+c(B)-—c(A AB)

which is the formula for the combination of “pure arguments” given by

Bernoulli (Shafer, 1978) and is essentially a probabilistic method without

normalization.
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5.5.6 Argumentation and Non-monotonic Reasoning

Standard default logic can be interpreted in terms of the bounded delta
calculus. Suppose we can construct an argument for P on thebasis of a default
rule. By definition a default is not guaranteedto be correct, so in this calculus
the argument has the form

P: default: +

If we subsequently identify arguments for rejecting P (i.e. not(P):G: ++ )
then aggregation will yield the conclusion not(P) by constraints (5.26) and
(5.29). Argumentation therefore permits behaviour much like that of default
logic, but it mayalso illuminate the relationship between default reasoning and
quantitative uncertainty. Suppose we have a reason to doubt P but not to
reject it (i.e. we can construct the argument not(P):G: +), then this balances
the default argument, and we are equivocal about P and not(P). If we have
further arguments against P then the balance of argument turns against it
(constraint (A4)) but we canstill hold both P and not(P)as possibilities, a
behaviour similar to the normal behaviourof probabilistic, possibilistic, belief
function and other quantitative calculi.

5.5.7 Argumentation and Natural Language

As remarked earlier the presence of an inconsistency in a logical theory is
pathological for classical logic; everything can be deduced from a contradiction.
This seems counter-intuitive since we constantly encounter contradictions in
everydaylife, yet in some way manage to cope with them. Elvang-Goransson,
Krause & Fox (1993) attempt to explain how arguments constructed from an
inconsistent database using classical logic canbe assigned different levels of
“acceptability” rather than leading to general logical incoherence. They view
reasoning, as here, in terms of the construction and evaluation of arguments,
but rather than merely deciding from the arguments which claims to accept
and which to reject they define a hierarchy of “acceptability classes”. The
weakest class of claims, cl, is the set for which there is, simply, some argu-
ment. A strongerclass of claim, c2, consists of the subset of cl for which the
argument is consistent. An even more acceptable set of claims, c3, is that
subset of c2 for which there are no rebutting arguments, while class c4 is the
set of claims in c3 whose grounds are not subject to a rebutting argument.
Class c5 contains the claims which are tautologies.

This is a purely formal system which attempts to capture the idea ofrelative
uncertainty in purely logical terms. However, the authors also conjecture a
relationship between various properties of these acceptability classes and
linguistic uncertainty terms discussed earlier and informally defined in terms
of patterns of argument. Elvang-Goransson, Krause & Fox (1993) indicate
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how a substantial set of English descriptors, such as supported, doubted,

probable and plausible (and their lexical and affixal negations) might be

derived. Any claim for psychological validity of their interpretations is of

course subject to the earlier caveat that it requires empirical validation.

However, the proposalis attractive in that it offers a formal framework in

which intuitive ideas about relative uncertainty could be understood without

requiring a quantitative interpretation.

—§.6 CONCLUSIONS

Probability theory is an extremely successful branch of applied mathematics.

It has never, however, entirely shaken off disputes aboutits claim to provide

the only proper framework within which to reason under uncertainty. Since

Hacking’s careful historical analysis of the emergence of probabilistic ideas,

there is reason to be somewhat concerned that these ideas have “tended to

constrain the space within which discussions ... are conducted”. Attempts to

escape this space have been repeatedly frustrated by the impressive ability of

probability theorists (or, they might say, the extraordinary power of the

theory) to achieve technical advances which appear to rebut the arguments of

their critics.

Faced with such implacable sophistication it is easy to understand that many

decision scientists should have accepted probability as the “correct” theory

against which human judgement under uncertainty must be assessed. The

consequences,it seems to me,have been that discussions have been forced into

an overly restrictive framework.

AI is making significant advances in foundational theories of mental

concepts. One of the most striking areas of developmentis in work aimedat

formalizing intuitive concepts of common sense, or “everything everyone

knows”as the AI theorist John McCarthyput it. Having beliefs seems to have

something to do with having commonsense, andconsequently AI has become

the latest stage on which the probability debate is being conducted. However,

AI brings an entirely new set of questions and techniques to bear.It is less

concerned with how to refine the current set of tools for addressing such

humantasksas prediction and forecasting than with the question of what a

rational, adaptive agent needs to do to cope in a complex and often poorly

understood world. Its answers are far from complete, but its concepts and

languages are producing many new ideas. The willingness to confront the

problem of autonomyis yielding advances in our understanding of such

notions as knowledge and, as I hope to have shown here, uncertainty and

belief. The availability of good ideas about such concepts is fundamental to

developing strong theories of intelligence, whether natural or artificial.
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The technical adequacy of non-probabilistic inference, non-monotoniclogic
and argumentation, seem to meto be persuasive. Somewhatless convincing,

at this stage of the investigation,is the utility of these ideas for understanding
human judgement. I believe there is a strong case for their consideration, but
perhaps more important than the specific proposals are the new freedoms
conferred by the paradigm and languages of AI. Whatever the fate of the
techniques discussed here decision scientists have no excuse for ignoring the
opportunity to think about uncertainty and belief outside the framework of
probability.

I think that people make a lot of judgements under uncertainty rather well,
despite the laboratory evidence. Most of the traditions, artifacts and
intellectual triumphs of humanity—including probability theory itself—have
been achieved in the face of uncertainty. Their emergence is owed to
intellectual processes that cannot be matched by procedures based on any
current theory or technology. However, this is not an argument for the
nobility of man. People make mistakes and are probably often irrational. My
claim is that probability theory does not have a monopoly as a source of
insight into the frailties of our judgement. The new thinking which I have
credited to AI has considerable promise for releasing us from “the cycle of
probability theories that has trapped us for so long”.
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Chapter 6

Laboratory Studies of Subjective
Probability: a Status Report

Lee Roy Beach and Gary P. Braun
University of Arizona

The year 1967 marksthe beginning of general interest in subjective probability

as an area of research. In that year, Edwards and Tversky published a

collection of theoretical and empirical papers in a book called Decision

Making, parts of which examined subjective probability. In that year also,

Peterson and Beach published a Psychological Bulletin article called “Man as

an intuitive statistician”, sections of which reviewed therelatively few existing

studies of subjective probability. Together, these publications identified a

small, widely dispersed literature, and at about the time that they were

published, psychology emergedas the official home for research on subjective

probability.

The literature was small because not many researchers had yet become

interested in studying subjective probability. It was diverse because the few

researchers who were interested in it came from diverse disciplines. The

research found a homein psychology because, as the 1960s progressed, the

editors of psychology journals becameincreasingly willing to publish work on

subjective probability. The new journal, Organizational Behavior and Human

Performance, became the primary outlet for this research.

In 1967 the idea that probability theory might prove to be a formal and

precise model of human uncertainty was very exciting. Because of their

training in statistics, most behavioral scientists were familiar with probability

Subjective Probability. Edited by G. Wright and P. Ayton.
© 1994 John Wiley & Sons Ltd.
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theory. Manywere intrigued by the possibility that it could serve both as a tool
for data analysis and as a behavioral model. The research paradigm seemed
fairly straightforward: present subjects with scenarios containing events that
could be described in probability terms, not unlike the problemsat the end of
the chaptersin a statistics book. Have the subjects make judgments about the
probabilities of various events in the scenarios or of events that might follow
from the described events. Finally, compare the judgments to the probabilities

that a statistician would derive using probability theory—that is, compare the
subjects’ subjective probabilities to the “correct” probabilities.
The rationale for all of this, in so far as one was required, was borrowed

from Brunswik (1956). First, if it is assumed that the world is not wholly
predictable, then people must, of necessity, be uncertain about future events.
In order to cope effectively, they must learn to accurately evaluate that

unpredictability.

The second assumption wasthat if people have to evaluate unpredictability,
then the best way to doit is to behavelike a statistician using the logic of
probability theory, hence the idea of “man as an intuitive statistician”.
Probability theory was regarded as the “normative” (correct) way of

evaluating and characterizing unpredictability anduncertainty.

Much of the interest in subjective probability came from the fact that
probability is a componentof the expected value model of choice. Given the
assumptions outlined above, it seemed reasonable to view attempts to cope
with an unpredictable environment as, in effect, attempts to gamble success-
fully. Therefore, maximization of expected value provided the seemingly
appropriate model for coping because it was the optimal model for gambling

(Bernoulli, 1738). Moreover, the psychological nature of subjective prob-
ability meshednicely with earlier work by Savage (1954) on personal probabil-
ities in economic theories of decision-making. Thus, by assuming that humans
deal with unpredictability and uncertainty in the same waythatstatisticians
do, onecould rationalize the use of probability theory to summarize personal
uncertainty, and in doing so provide a link between psychology and
economics. It was intriguing. Notlogically flawless, perhaps, but nevertheless
intriguing.

From the beginning, research focused on examining the degree to which
subjective probabilities conform to probability theory. This was complicated
by the existence of two ways of viewing such conformity. One was an
“objectivist” view, which follows from the assumption that humans must
learn about unpredictability in the environment. Work in this vein used
relative frequency asthe criterion for evaluating subjective probabilities, and
the subjects’ problems involved things like draws from urns of red and blue
poker chips, rolls of dice, draws from decks of cards, or throws of roulette
wheels. The dependent variable was accuracy, the difference between the
subjects’ judgments (or subjective probabilities inferred from choices among



Laboratory Studies of Subjective Probability©...—~——__—=«di1'09

bets, selling or buying prices, etc.) and the relative frequencies defined by the

presented problem.

In contrast, the “subjectivist” view follows from the assumption that even

though subjective probabilities may not mirror the environment, something

like cognitive consistency should force them to be coherent. Coherent means

that relationships among a subject’s judgmentsfor a set of mutually exclusive,

exhaustive events should be constrained in the ways required by probability

theory. For example, the judged probability of the union of two independent

events should be equal to the sum of the judged probabilities of the two

individual events. Subjects were asked for judgments of the probability of the

union and for each of the two individual events. Then the experimenter would

sum the two judgments for the individual events and compare it to the

judgmentforthe intersection. The similarity (difference), called “coherence”,

was the dependentvariable.

The most celebrated research on coherence was the “conservatism” studies

by Edwards andhis associates (e.g., Phillips and Edwards, 1966). This line of

research was in large part responsible for the surge of interest in subjective

probability. Subjects were presented with problems that required them to

revise their judgments about the truth of two or more hypotheses as they

observed a sequence of data that were pertinent to the hypotheses. Bayes’s

theorem was the normative model from probability theory and the question

was whether subjects revised as much and in the samedirection as prescribed

by the theorem. The generalfinding was that revisions were in the prescribed

direction but they were smaller than the prescribed amount—they were

conservative. This finding, which was frequently replicated, means that the

judgments are inaccurate but it does not prove that they are incoherent.

Follow-up studies (e.g. Beach 1966; Wheeler & Beach, 1968) suggested that the

inaccurate, conservative judgments often approximated coherence, but how

close is close enough and how often is often enough? At any rate, conservatism

became a “phenomenon”, and wasofsufficient note to merit mention in a few

introductory psychologytexts.

Interest in Edwards’s findings soon was superseded by interest in a more

general set of findings. Promoted by Kahnemanand Tversky (1973), research

on heuristics and biases was aimed at demonstrating that probability theory

could not be regardedas the calculus of uncertainty. Its intended audience was

as much economistsas it was psychologists, and its message was that no theory

of choice can justifiably represent human uncertainty in terms of probability

theory. This was a profound statement andit had profound effects on both

economic and behavioral decision theory.

_Thesecondmessage.oftheheuristicsandbiasesresultssooneclipsedthe

importanceofthefirst message for.manyresearchers. The resultswere broadly

interpretedas anindictmentof humanreasoning. In.itsmostbenignform this.

indictmentsimplystates thathumansuseheuristicstomake.judgmentsabout|
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probabilities—simplerules ofthumbthatmakethetaskeasier.Tothedegree.
that the heuristics fallshortof the.normative procedures,‘theresulting
judgmentsalso fall short,called bias.Researchconsists of comparing judg-
ments to normativeprescriptions from probabilitytheoryandinferringthe
heuristic that might accountforthe bias. Intheideal case, this iis followed by
studies| thatset up.conditions thatmightreasonably|promote useof the
inferred heuristicinordertodemonstratethatthe biasedresultisinfact
obtained.-

In its least benign form the indictment states that human reasoning is
seriously flawed, that humansareirrational, intellectual cripples. Of course,
this statement assumes that probability theory equates with rationality, a
colossal assumption.

The heuristics and biases research appears to havesettled the question of

whether probability theory can serve as the calculus of uncertainty: it
apparently cannot. However,it leaves unsettled the question of what to do if
one is convinced that probability theory ought to be the calculus of uncer-
tainty. The problem then becomes one of knowingprecisely how subjective
probability differs from probability theory in order to devise methods for
making the former congruent with the latter. Such methods might involve
training or they might involve application of transformations to subjective
probabilities so that they satisfy the requirements of probability theory.
Althoughthere has been research along theselines, there has been far less than
might be expected. In fact, a surprising number of researchers who develop
systems for aiding decision making simply take subjective probability
judgments for granted, treating them as though they conform to probability
theory.Theseresearchers:seemmuchmoreconcerned.about careful-measure-
mentofutilities,especially for.complex. multi-attributedoptions.Thisis
curious becausethese carefullymeasuredutilities end upbeingcombined.with
highlysuspectprobabilityjudgmentsto determinethedecision.thatthe system
willrecommend.-

  

6.1 METHODOLOGICAL CRITIQUE

Because ofits visibility, the heuristics and biases research necessarily becomes
the focus of any examination of subjective probability research. Whether the
emphasis is upon the conclusion that probability cannot serve as the calculus
of uncertainty or upon the conclusion that humans are irrational, the
examination tends to turn on methodology. First, and most fundamental, is
the question of whether probability theory is, in fact, the appropriate standard
for evaluating the adequacy of subjective probabilities, and of human
reasoning. Second is the question of the degree to whichtheresearch results
generalize to the cognitive processes of knowledgeable, motivated judges
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working at familiar, important tasks that involve uncertainty. And, third,

there is the question of what new views (and old data) about subjective

probability imply for future theory and research. Let us look at each of these

three questions in turn.

6.1.1 Is Probability Theory an Appropriate Standard?

This question is fundamental because probability theory is a unique kind of

logic andit is not at all clear that it is as broadly applicable as is sometimes

assumed. To apply probability logic one must treatall events as faceless

members of categories and ignore any unique information one might have

about them as individual events, i.e. the events in a category must betreated

as intersubstitutable (Suppes, 1957). The result is that a probability theory

description of a set of events may use only part of the available information

about those events. This raises a question about the conditions under which

it is reasonable to ignore such additional information in order to apply

probability theory to make predictions about events.

Consider the following thought experiment (Beach, Christensen-Szalanski &

Barnes, 1987): Suppose that an experimenter were to randomly select a church

in the United States and visit it one Sunday afternoon in June,the traditional

month for American weddings. She stands outside and waits for the wedding

party to emerge. Then she approaches the Best Man andasks, “If I were to

randomly select an American couple getting married this afternoon, what is the

probability that they will still be married to each other ten years from now?”

Assuming that he knows the American divorce rate, the Best Man probably

would give it as his answer. However, what if the experimenter asked, “What

is the probability that the newly married couple for whom you just were Best

Manwill still be married to each other ten years from now?”

For the experimenter, the change in question does not change the problem—

she randomly selected this couple and she knows absolutely nothing about

them as individuals; for her they are intersubstitutable with any other newly

married American couple. But, for the Best Man, the subject of this

experiment, the change of question constitutes a substantial change in the

problem. The divorce rate in the population as a whole mayinfluence his

answer, but only if he is particularly cynical. (Indeed, if he really thought the

divorce rate accurately described his friends’ chances of success he might well

have declined to serve as Best Man on the grounds that it would be a poor

investmentof his time.) Rather, his answer to the second question,the one that

is specific to his friends as individuals, properly is based upon his specific

knowledge about them and his private theory about what causes successful

and unsuccessful marriages.

Superficially, the Best Man’s answerto the second question will in some way

resemble the experimenter’s answer, because they will both be numbers on a
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scale from 0.00 to 1.00. However, they will have derived from very different
processes, and it is presumptuous to condemn the Best Man’s process in
favor of the experimenter’s. The two processes simply are different, although
the Best Man’s is more richly informed. More important, for both the
Best Man and the experimenter the resulting probabilities reflect their uncer-
tainty about the newlyweds’ chances of marital success. In short, two very
different processes provide answers to the same question and there is no
reason that the answers must be the same. One cannot say that the Best
Man’s process or answer is wrong merely because it is different from the
experimenter’s.

Thought experiments are all very well but the empirical issue is whether
subjects actually use knowledge-based reasoning insteadofstatistical (prob-
ability) reasoning in making subjective probability judgments. The empirical
answeris that they can use both kinds of reasoning and which kind they use
in a specific instance depends upon the circumstances.

Building upon a suggestion by Kahneman and Tversky (1982), Barnes
conducted an experiment using 10 undergraduate students as subjects; subjects
similar to those usedin the majority of laboratory experiments on subjective
probability (Barnes, 1984). She presented these subjects with 15 word prob-
lems from the subjective probability literature. Five of the problems had
previously been used to demonstrate that subjects ignore samplesizes (the law
of small numbers, Tversky & Kahneman,1971), five to demonstrate that they
ignore or underuse baserates (the base rate bias, Kahneman & Tversky, 1973),
and five to demonstrate that they judge the probability of the conjunction of
events as being higher than the probabilities of the constituent events (the
conjunction fallacy, Tversky & Kahneman, 1983).
The subjects read the 15 problems and made a probability judgment while

“thinking aloud” about what they were doing. The transcriptions of the
‘thinking aloud’ were then classified according to whether they reflected
Statistical reasoning, knowledge-based reasoning, a mixture of the two, or
were unclassifiable. It was found that:

@ For the sample-size problems, 74% of the judgments were based on
Statistical reasoning, 22% on knowledge-based reasoning, and 4% on a
mixture or were unclassifiable.

@ For the base-rate problems, 50% were based onstatistical reasoning, 46%
on knowledge-based reasoning, and 4% on a mixture or were unclassifiable.

@ For the conjunction problems, 28% were based onstatistical reasoning and
72% were based on knowledge-based reasoning.

Thatis, most subjects used statistical reasoning on sample-size problems, most
used knowledge-based reasoning on conjunction problems, and about equal
numbers used statistical and knowledge-based reasoning on the base-rate
problems.
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However, subjects were not rigid in their choice of reasoning. For example,

on one of the five conjunction problemsall of the subjects used knowledge-

based reasoning while for another conjunction problem most of them used

statistical reasoning. Indeed, Barnes’ results conform to the conclusions

reached by Nisbett ef a/. (1983) that problems that encourage recognition of

chance, repeatability and the like tend to evokestatistical reasoning, and those

that involve individual persons tend to evoke knowledge-based logic. For

example, two of Barnes’ five base-rate problems were about diseases in groups

of people, and virtually all subjects used statistical reasoning for them. The

other three base-rate problems involved individual persons and most of the

subjects used knowledge-based reasoning.

Onthe basis of these results, Beach, Barnes & Christensen-Szalanski (1986)

proposed the contingency model of subjective probability judgment that is

described in Figure 6.1. The general idea is that judges possess a repertory of

strategies for making subjective probability judgments, the primary categories

being strategies based uponstatistical reasoning and strategies based upon

knowledge-based (epistemic) reasoning, although other kinds of strategies

probably exist (soothsayers, examining the entrails of chickens, repeating

judgments madebyothers of high-status etc.). Choice of one or another of

thesestrategies for use in a particular task is contingent upon the character-

istics of the task, primarily upon the type of judgment that is required by the

context or by some other person (e.g. the experimenter). The selected strategy

is then applied either more or less rigorously, depending upon the judge’s

motivation to produce an accurate judgment. Motivation for accuracy is

contingent upon the characteristics of the environment in which the judgment

task is embedded. Thus,if there is little benefit from being accurate, if the

judgmentcan berevised easily without penalty, if the judge is not expected to

be particularly competent in this sphere, or if the available information 1s

poor, there is little motivation to be accurate andlittle motivation to be

rigorous in application of the selected strategy. If the opposite conditions

obtain, motivation to be accurate is high and the judge should be more

 

Strategy ———— Strategy Motivation ———— Strategy ————> Offered
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based quality and amount
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Figure 6.1 The Beach, Barnes and Christensen-Szalanski contingency model of

subjective probability judgment
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rigorous in application of the selected strategy. Different combinations of high
and low on these variables results in different levels of motivation.

This model has never beentested and no comparable model has been
proposed for non-laboratory subjective probability tasks. However, two

recent studies speak to the third stage in the model, motivation for accuracy.
Ashton (1992), using experienced auditors, found that requiring an explicit,

written justification for judgments about bond ratings for 16 industrial
corporations increased judgment accuracy using Moody’s Investors Service

bond ratings as thecriterion. (Note that this criterion is empirical, not a
normative model’s prescription, but this is not different from using empirical
relative frequencies as the criterion in earlier experiments.) The increase

in accuracy came from greater consistency in the judge’s processes, and it led

to greater consensus among the judges. In a related study, Johnson and

Kaplan (1991) had auditors assess the risk of obsolescence of 20 items in an

inventory. An experimental group wasinstructed that their judgments would
be reviewed and that they would beasked to explain them; a control group was
given no such instruction. The effect was that the experimental group showed

more consensus than the control group, but both groups were very consistent
in the processes they used to make the judgments. It would appearthat, as

suggested by the model in Figure 6.1, motivation can be increased by

emphasizing the negative consequences of inaccuracy (a condition, by the way,
that is central to auditors’ jobs).

Although other aspects of the model have not yet been tested, the modelis
at least an attempt to address the fact that judges clearly use different kinds
of reasoning (strategies) to make subjective probability judgments and that

characteristics of the task and environment appear to systematically influence
which kinds of reasoning they elect to use.

All of this leaves open the question about how accurate and how coherent
subjective probability judgmentsreally are. The fact is, the question really has
never been properly addressed. Let us assume that in some situation the

experimenter wants the judgments to agree with probability theory. Barnes’
(1984) results mean that the experimenter first must make sure that the
judges are using statistical reasoning, otherwise it does not make much sense

to assess accuracy by comparing their judgments to the prescriptions of
probability theory. This precaution was never taken in the studies published

prior to the Barnes study, and we knowofnostudies published since that have

done so. It seems safe to assume that the subjects in most if not all studies
have used a variety of strategies; different strategies by different subjects and
different strategies by the same subject on different problems. However,

because the data are almost always pooled for analyses, it is impossible to
tell from the published results just what was going on. Perhaps those subjects
who were using statistical reasoning were giving judgments very like
those prescribed by probability theory. Perhaps those who were using
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knowledge-based reasoning were giving completely different judgments, but

judgments that followed rigorously from the underlying knowledge-based

logic. Group averages of the two kinds of judgment will, quite likely, reveal

an apparentbias. But the source of the so-calledbiasis in the kind ofstrategies

that different subjects selected (and in the experimenter’s method of grouping

the data), not necessarily in the judgments produced by those subjects who

selected strategies that used statistical reasoning. Theresult is that one cannot

go back to the literature and untangle things. In fact, to a large degree most

if not all of those studies are useless for deciding about the very hypotheses

that they were designedtotest.

The Barnes research (Barnes, 1984) grouped all forms of nonstatistical

reasoning into one category, called knowledge-based reasoning.It is possible

however to be morespecific. In a series of studies, Hendrickx (1991: see also

Hendrickx, Vlek & Oppenwal, 1989, and Hendrickx, Vlek & Caljé, 1992) con-

trasted subjects’ use of frequencies and knowledgein the generation of subjec-

tive probability assessments. The studies were done in the context of risk

taking, and Hendrickx first established that subjective probability plays an

important role in subjects’ judgments of the riskiness of various situations.

Then he examined the ways in which information is used to judge accident or

loss probabilities. He concluded that,

... people are sensitive to different types of risk information and ... they use

different cognitive strategies when judging accident or loss probabilities. Such

judgments may be either: (a) based on information about past outcome

frequencies, or (b) derived through mental simulation,i.e., the construction and

evaluation of possible event scenarios, or (c) logically deduced from knowledge

about relevant characteristics of the outcome-generating mechanism (page 121).

Hendrickx’s results showed that when using scenarios, people judged an

event to be morelikely if they had available more scenarios that described how

the event might occur, and that extensive, concrete scenarios had a greater

effect on increased probability judgments (and decreasedrisk-taking behavior)

than did brief, abstract scenarios. Moreover, the less personal control afforded

by a scenario the morerisky the situation was judged to be. Finally frequency

information was dominated byscenario information, and frequency infor-

mation wasignored altogether when subjects could logically infer the relevant

probabilities through their understanding of the process that would generate

the event in question.

Together, the Barnes results and the Hendrickx results demonstrate that

subjects have various strategies for assessing probabilities. In Hendrickx’s

words,

Our findings underscore the constructive nature of human probability

assessment... Apparently, people do not possess some standardized ‘mental
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algorithm’ for probability assessment, which is blindly applied every timea
probability assessment is required. Instead, probability judgments appear to
result from several, highly divergent mental processes (“cognitive strategies”)
which people apply in a flexible manner; dependent on the informational
conditions—and probably also on other task-specific factors. ..—different
Strategies are applied to the task (page 122).

He further concludes that probability assessment deriving from different
cognitive strategies may have different relevance and different meaning to
people. These conclusions, as well as those that follow from Barnes’ results,
point out the necessity for a more thorough description of the various
strategies people use and for the identification of the conditions that promote
or suppress the use of the strategies. “The latter point is crucially relevant if
we want to overcomethe low predictive value of the results of the ‘heuristic
approach’...” (Hendrickx, 1991, page 122).

6.1.2 How Generalizable are the Heuristics and Biases Results?

The second question arising from an examination of the methodologyused in
subjective probability research is about the degree to which the research results
generalize to the cognitive processes of knowledgeable, motivated judges
working at familiar, important tasks that involve uncertainty.
A great deal has been written of late about expert judgment, some of which

focuses on subjective probability judgments. This is not the place to recapitu-
late all that has been said (see the special issue of Organizational Behavior and
Human Decision Processes, November, 1992). Instead, we will examine one
area of expertise, financial auditing, that has been the subject of a recent
exhaustive review (Smith & Kida, 1991). In doing so wewill explore both the
empirical results on subjective probability in the auditing literature and wewill
return to our first question, whether probability theory is an appropriate
evaluative standard in this area of expert functioning.

There is a growing body of empirical research on auditor judgmentthatis
inspired by the psychological literature on subjective probability, particularly
the heuristics and biases literature. Moreover, because the subjects in the
auditing research often are practising auditors performing familiar tasks, some
of the studies address the question of the generalizability of the results of the
psychology studies.

Wewill begin by describing whatit is that auditors do and whythis is such
an apt area for subjective probability research. Then we will summarize the
results of the Smith and Kida (1991) review of the empirical literature. Finally
we will discuss the appropriateness of assuming that auditors should be
sensitive to base rates as an example of howreal-life judgment may involve
more subtle matters than can be dealt with using probability theory. Thelatter
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will bring us back to the issue of whether probability theory is always the

appropriate standard for evaluating how people deal with uncertainty.

What auditors do. Most organizations are required to makeperiodic reports

about their financial condition, called financial statements. Errors in these

statements can occur because those who prepare them lack valid or pertinent

information or becauseit is in some way beneficial to them to misrepresent the

facts. To reduce the risk of material error in the statements, auditors are

engaged by the organization itself (the client) to examine its statements, to

review the information upon which they are based, and to evaluate the

processes through which the information was obtained and compiled to arrive

at the statements. The auditors then issue one of three opinions: an unqualified

opinion that material error is absent, a qualified opinion (which notes possible

sources of difficulty), or an adverse opinion. Or, the auditor can disclaim an

opinion altogether. The client appends the opinion to its financial statements

prior to distributing them to interested users, e.g., stockholders, regulatory

agencies.

Waller and Felix (1984) divide the audit process into four steps:

(1) deciding to perform the audit for theclient organization;

(2) gaining an understanding of the client and making a preliminary evaluation

of the client’s internal accounting controls;

(3) planning and execution of the audit activities;

(4) forming an opinion.

Research on subjective probability in auditing has focused on the fourth step

becauseit is here that the auditor looks at information andrevises his or her

opinion aboutits implications for the financial statements that the client has

made. The predominant research metaphorhas been that of the auditor as a

Bayesianstatistician revising his or her prior probabilities about the presence

or absence of material error in the statements in light of data abouttheclient’s
internal controls and accounting procedures. Thefinal audit opinion is seen as

being determined bythe posterior probabilities at the end of the audit process.

Uncertainty in auditing. Contrary to general opinion,it is not the auditors’

task to decide whether the client’s financial statements are or are not true.

Rather, the task is to express an opinion about whether the financial

statements are a fair representation of the client’s financial condition. This

definition of the task recognizes that there is uncertainty in the process leading

to formation of the financial statements as well as of the audit opinion, and

that uncertainty also exists for the user of the financial statements. Within the

professional standards that guide auditors’ activities and that govern the

opinions they issue, the auditors’ uncertainty is explicitly recognized. It is

called audit risk and is identified as the risk that the auditor will unknowingly

express an unqualified opinion aboutfinancial statements that, in fact, are not

fairly presented.
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Audit risk has two components, the risk that the statements actually are

unfairly presented and therisk that the auditor will not detect this fact. When
both components obtain, the auditors will incorrectly give an unqualified

opinion. From the auditors’ point of view, the detection component is of

primary interest—the task is to devise tests that will detect unfair presentation

if, in fact, it is present. In this the auditor is much like an experimenter whose
task is to detect significant differences if they in fact exist. Because of this
parallel, the use of probability logic seems to be anatural fit to the audit

process.

Just as researchers seldom exhaustively sample the populations to which
they wish to generalize, either because it would be too expensive or because

it would be virtually impossible to obtain complete data, auditors must rely

uponpartial information. The sheer volume of transactions in whichtheclient

organization engages, together with the particular accounting procedures used

by the client, would make anyeffort to obtain complete knowledge aboutthe

financial affairs of the client much too expensive. As a result, auditors must

restrict their information procurement and accept the consequent uncertainty.

The question is whether in learning to deal with this uncertainty auditors come

to behavelike statisticians.

Empirical studies ofauditors. Studies of auditors’ ability to deal with uncer-

tainty have adopted thestrategy of replicating heuristics and biases studies in

“audit contexts”. This meansthat auditors or accounting students have served

as subjects and that the problems have been adapted to include features that

relate to auditing or accounting. The bulk of the studies have examined the

anchoring and adjustment heuristic or the representativeness heuristic, with a

few studies examining other heuristics.

Smith and Kida (1991) report six tests of auditor use of the anchoring and

adjustment heuristic. Results suggest that auditors’ answers were biased in the

expected (anchored) direction, suggesting use of the heuristic, but in most

cases the degree of bias was less than that observed in studies that do not use

experts or that do notuse tasks that are highly familiar to the subjects (Butler,

1986; Joyce & Biddle, 198la; Kinney & Uecker, 1982).

Tests of the representativeness heuristic, as reflected in an underuse of base

rates, provide similar results. When the subjects were business students

performing unfamiliar tasks (Johnson, 1983; Swieringa ef al. 1976), results

showed that the subjects ignored base rates, especially when unique infor-

mation was available about individual events. In contrast, when auditors,

rather than students, are asked to make judgments in an unfamiliar task

(Joyce & Biddle, 1981b) the results showed under-use of the base rates, but —

they were not completely ignored. Finally, with highly experienced auditors

and a highly familiar task, Kida (1984a) found that base rates were used more

when they were accompanied by an explanation than whenthey were not. The

explanation appeared to encourage the auditors to draw a causal link between
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the explanation (cash flows) and the base rate (failure rate in the industry) in

judging the probability that a particular firm would fail. Just presenting the

base rate without the causal link resulted in its not being used by the auditors.

The conclusion implied by these studies is that base rates are not much used

by subjects in general, but that if the base-rate information can berelated to

the subject’s knowledge base (i.e. cash flows for auditors’ theories of what

causes business failures), the base rate influences the subsequent judgment.

Returning tothe remainder of the Smith and Kida (1991) review: two studies

showed auditors’ judgmentsreflected greater sensitivity to sample size than is

found using non-expert judges and unfamiliar tasks (Biddle & Joyce, 1979;

Uecker & Kinney, 1977). Three studies found that auditors are sensitive to the

reliability of information sources (Bamber, 1983; Cohen & Kida, 1989; Joyce

& Biddle, 1981b). Five studies showed auditors not to be subject to confir-

matory biases in information search (Anderson, 1988; Anderson & Kida, 1989;

Butt & Campbell, 1989; Kida, 1984b; Trotman & Sng, 1989). And, one study

(Tomassini ef a/., 1982) foundauditorsto be better calibrated than are student

subjects.

With the possible exception of the anchoring and adjustmentresults, these

studies suggest that auditors’ judgments deviate from normativeprescriptions,

but not as muchas is usually observed in studies that use nonexpert subjects

and relatively unfamiliar tasks. However, the exact source of the reduced

mean “error” is not at all clear. That is, do these results mean that fewer of

the auditors used the heuristic or do they meanthat the auditorsall usedit less,

resulting in less bias, or just what do they mean? (Indeed, what does “used it

less” actually mean?) The Barnes (1984) results would suggest that some

auditors were using statistical reasoning and some were using somethingelse,

perhaps the heuristic of interest. Whatever was happening, the fact remains

that performance vis normative prescriptions is superior for auditors (experts)

making judgments about events with which they are familiar.

Base rates in auditing. Kida’s (1984a) finding that highly experienced

auditors who were performing a familiar judgment task only tookthebase rate

into account whenit could be linked to a cause for its occurrencesuggests that

base rates may not normally be used in auditing in the way they are used in

probability theory. The question is whether they should be used in the norma-

tively prescribed manner or whether a more complicated use involving causal

reasoning is appropriate. In what follows we will argue that normative, non-

causal, reasoning is not appropriate. In so far as this is true for base rates,it

may also be true for other aspects of the normative model—atleast it raises

that possibility.

One way of examining the appropriateness of statistical use of base rates in

auditing is to contrast the auditing task with the task performed by an

insurance actuary, for whom thestatistical use of base rates clearly is

appropriate. An actuary uses base rate information to categorize customers
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for the purpose of setting a premium. By examining the base rate for claims
for persons or property in various categories, a premium can be devised that

assures that the insurance company makesa profit in the long run. It is not

unreasonable to think that an auditor might do the samething for assaying the

potential for material errors in financial statements by defining various
categories of clients, kinds of internal controls, etc. However, it can be argued

that doing so would be inappropriate and, to return to the heuristics and biases
literature, because they have no practice, expecting auditors to be more adept

at base-rate problems in experiments is equally inappropriate.
First, actuariesmake judgments aboutthe future, auditors make judgments

about the past. That is, insurance is a gamble about a future event, with the
insurance company betting that a claim will not be made and the insured

betting that it will. In contrast, an auditor’s task is to make correct judgments

about past events, issuing a correct opinion about the financial statements

made bytheclient. In light of this, it seems rational for the actuary to heed

base rates and for the auditor to search for information that justifies and

strengthenshis or her opinion. Indeed,in the face of perceived risk the actuary

can merely raise premiums to cover the potential losses. The auditor has less

flexibility if only because fees sufficient to cover all possible lawsuits by those
who use the financial statements become too high and clients would defect.

Therefore, the auditor’s major protection is provided by performance of

additional substantive tests of details of the client’s financial records.

Suppose for the moment that the auditor actually would like to use

statistical reasoning in the audit, particularly base rates. However, as we have

seen, he or she is motivated to reduce audit uncertainty in order to reduce the

possibility of an incorrect opinion. In the course of performing additional

substantive tests in order to accomplish this, the auditor learns a great deal

that 1s specific to the individual client. Unless one carefully ignores part of

whatis learned, information of this kind acts to reducethesize of the category

to which the client belongs because fewer and fewer past clients are similar

enoughto this client to be regarded as intersubstitutable. Indeed, the more that

is learned the smaller the category becomes, until it is unique to the client

alone. The base rate has no meaning whenthe category has only one member,

because the probabilities are 1.0 or 0.0. Thus, evenif statistical reasoning were

preferred, the knowledge gained in the interest of raising accuracy actually

serves to reduce the applicability of statistical reasoning.
Actuaries differ from auditors in yet another way. Actuaries know when

they bet wrong, auditors do not. That is, a verified claim is a clear indication

of having lost the bet with the insured, andit is in the interests of the insured

to notify the insurance company when the companyhaslost the bet. Each loss

is added to the records kept by the insurance industry, and these records are

consulted when future bets are made. In contrast, it often is not in the best

interests of auditors’ clients to inform the auditing firm when an unqualified
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opinion is in fact wrong. Quite the opposite. Moreover, records are not kept,

so they cannot be consulted for future audits. Generally, the only feedback

auditors get abouttheir errors is from lawsuits brought by disgruntled users

of the financial statements. Even lawsuits are not infallible feedback because

the verdict is based on whichside presents the best argument rather than upon

whether or notthe auditor’s opinion actually was correct—if the auditor can

defend the opinion, he or she may win the lawsuit even if the opinion was in

fact wrong. In view of this, it is not at all clear what base rates even mean in

an auditing context and how an auditor would go aboutassessing them if he

or she wanted to use them.

Lawsuits, as feedback or otherwise, are a prominentfact of life for auditors.

Insurance companies may haveto justify their categorizations (provingthat

they do not discriminate against this or that group), but auditors must justify

their opinion in court. Causality, not probability, is the language of the

courtroom. Auditors must keep in mind the possibility that they will have to

justify their procedures and conclusions, and justification will have to be in

terms of why they did what and what the results meant. It is doubtful that a

defence couched in terms of Bayes’s theorem would sway a jury, or be

admitted as a legitimate form of argument.

Experiencein laboratorysettings. Experience can be acquired in many ways.

Weassumethat the auditors in the studies reviewed by Smith and Kida (1991)

acquired theirs by participating in numerous audits. Following Hendrickx

(1991), perhaps their experience was reflected in mental records of the

frequencies of various features of audits. Perhaps it was reflected in scenarios

about howclients behave, constructed as a result both of observation and of

sharing stories with fellow auditors. Perhaps it was represented as a mental

model of the processes by which various kinds of audit information are

generated. Perhaps its representation contained elementsof all three, but for

the moment, let us focus on the first—mental records of frequencies as a

reflection of experience.

Much of the research on subjective probability has involved presenting

subjects with rather complicated problems. Conservatism usually was studied

by telling subjects that there were urnsfilled with various proportions of red

and blue balls; the task was to estimate the probability of a particular urn

being the one from which a displayed sample was drawn. Heuristics and biases

were studied by presenting subjects with a written paragraph in which the

various probabilities were given; the task was to estimate the probability of

some event deriving from the information in the paragraph. The pointis, the

relevant information was given to the subjects—they did not experience it

themselves.

It should not be thoughtthat the results of studies of “man as an intuitive

Statistician” have uniformly shown people to be inept. As Christiansen-

Szalanski and Beach (1984) found, the results are more evenly split than one
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might imagine—it is just that poor performanceis cited more frequently than
good performance. The question is, of course, what differentiates between the
two kinds of results? Space does not permit a literature review that might
answerthis question. However,inthe interest of prompting such a review (by
someone) in the future, we submit the following nonrandom sample ofstudies
that may suggest an answer.

Early in his career, the senior author (Beach) found himself repeatedly
embarrassed by the inability to find compelling evidence that subjects were
rotten intuitive statisticians. Study after study obtained results that were at
variance with everythingelse in the then-growingliterature. But, in retrospect,
these studies can be seen to have one feature that makes them different from
the majority of other studies, a feature that was quite overlookedat the time.
In these studies, subjects were given experience with the events before they
were asked to assess probabilities.

For example, Beach and Peterson (1966) presented a random sequence of
flashing lights—seven different lights that each flashed a prespecified pro-
portion of the time in a sequence of flashes. Then the subjects assessed the
probability for each light and for unions of pairs of lights. The assessments
for the single lights were compared to the true proportions, and because the
Sequence wasfairly short they were not particularly accurate (although they
were notfar off). Then the subjects’ assessments for the unions werepredicted
using their assessments for the individual lights, and there was very high agree-
ment; subjects evidenced coherence amongtheir subjective probabilities.

Using the sameseven lights, Beach and Phillips (1967) found that subjects’
assessments of the probabilities correlated 0.92 (slope = 0.918) with thelights’
proportionsafter 300 flashes. Moreover, when subjects made bets about which
of two specified lights would occurfirst if the sequence oflights continued, the
subjective probabilities inferred from the bets for each light correlated 0.93
(slope = 1.06) with the previously assessed probabilities for the individual
lights and 0.90 (slope 0.722) with the lights’ proportions. Again, the subjects’
assessed subjective probabilities were highly coherent.
Beach (1966) presented subjects relative frequencies via cards in decks and

had them revise their subjective probabilities about which deck a sample was
drawn from. The experiment was complex, but the upshot was that even when
the revised probabilities were not accurate in relation to the deck composi-
tions, they were internally coherent and suggested that revisions were not
conservative. In a similar vein, Wheeler and Beach (1968) taught subjects
about sampling distributions for urns of different compositions (0.40/0.60 and
0.80/0.20) by showing them sequences of samples from the urns. A subsequent
revision task found that conservatism was almost eliminated as a result of the
training.

More recently, Christensen-Szalanski and Beach (1982) taught subjects
frequencies for a problem that was drawn from the heuristics and biases
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literature. Subjects saw a series of 35 mm slides which represented suspected

cases of disease. Someslides indicated that the patient had the disease, some

indicated that he or she did not. This was crossed with either positive or

negative test results. After seeing the slides the subjects were told that in a city

of 100 000 people there are 7000 who have contracted the disease. A test for

the disease is positive for 80% of the people who have the disease and is

negative for 80%of the people who do not havethe disease. If the test were

given to all the people in the city, what is the probability that a person with

a positive test has the disease? In this experiment, subjects’ answers were very

close to the correct answer, 0.23, in contrast to the usual finding (0.80) when

subjects had not seen the frequencies.

Finally, Barclay and Beach (1972) examined the combinatorial properties of

subjective probabilities for problems that college students werelikely to under-

stand easily. Thus, for example, subjects were asked for the probability that

the big fountain on campus would be turned on if they were to walk over to

the plaza. And they were asked the probability that Mt Rainier would be

visible from the plaza if they were to go look. Then they were asked the

probability that both the fountain would be on andthe mountain would be

visible. Data analysis consisted of summing the two probabilities for the single

events and comparing them with the probability for the union. This strategy

was usedto examine various problemsinvolving (1) unions of mutually exclusive

events, (2) unions of nonexclusive events, (3) intersections of independent

events, and (4) intersections of nonindependent events. The respective mean

correlations, slopes, and intersections across individual subjectswere:

(1) r=0.94, slope = 0.94, intercept = 0.01;

(2) r=0.85, slope = 0.98, intercept = 0.05;

(3) r=0.85, slope = 1.00, intercept = 0.08;

(4) r=0.86, slope = 1.02, intercept = 0.05.

The correlations are high, but the most surprising results are how close the

slopes are to 1.00 and howclose theintercepts are to 0.00, both of which are

necessary conditions for establishing identity between the combinations of the

assessed probabilities of the elementary events and the assessed probabilities

of the union orintersection of the events. In short, subjects’ probability assess-

ments were coherent. Moreover, there was no evidence of the so-called

“conjunctionfallacy” in the assessments of probabilities for intersections of

events.

6.2 CONCLUSIONS

Our conclusions can best be presented by reviewing the questions that guided

the discussion.
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Is probability theory an appropriate standard for evaluating the adequacy
of subjective probabilities, and of human reasoning? The answer to this
question depends upon the domain to which it is applied. If the domain is
mutually agreed uponby the experimenter and judgeto be onethatis properly
addressed by probability theory, then probability theory is indeed the
appropriate standard. Unfortunately, mutual agreement seldom has obtained
because no effort was made oneither side to assure that it did. Theresult is
that while experimenters generally have assumed that the domain covered by
the problemsthey gave judges was properly (and, usually, solely) addressed by
probability theory, the judges frequently have assumed otherwise. This means
that much of the empirical “evidence” that is claimed to show that subjective
probabilities are biased and that judgesare irrational simply misses the point.
Moreover,it probably is impossible to go back andsort things out because the
data are a hopeless tangle; some subjects assumed the tasks to require

statistical reasoning and others assumed them to require knowledge-based
reasoning, and one cannottell in retrospect which are which.
The results of studies that have examined judgment strategies have,

however, provided a new and potentially important way of thinking about
subjective probability. Barnes (1984) and Hendrickx(1991), and others no
doubt, provide evidence that subjective probability assessments can derive
from knowledge-based reasoning. Hendrickx (1991) showed that subjects’
stated willingness to take risks was related to these knowledge-based subjective
probabilities, implying that they in fact reflect perceived riskiness, confidence
and similar varieties of subjective uncertainty. Indeed, the research agenda for
the future might profitably focus on judges’ use of casual logic in the context
of scenarios as a way ofgenerating predictions of future events and as a way

of evaluating uncertainty.

The second question is about the degree to which the results of subjective
probability research generalizes to the cognitive processes of knowledgeable,
motivated judges working at familiar, important tasks that involve uncer-
tainty. There is a considerable body of research on this question, but we have
focused on the performance of experienced auditors who are presented

problems that are similar to the problems they face in the course of their

occupation (Smith & Kida, 1991). The results strongly suggest that the

“heuristics and biases” results are greatly attenuated by experience and task
familiarity. Moreover, in laboratory experiments, naive subjects can be given
experience with the frequencies of the events in question, with the result that
their performance is close to the prescriptions of normative theory.

It is important to note in this latter case that when subjects are taught
frequencies, their answers to subsequent questions are based upon reparti-
tioning the set of observations rather than upona cognitive counterpart of the
normative computations. Of course, partitioning also is what the calculus of
probability does, but there is a meaningful difference in the operations
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involved. Imagine that you have a set of marbles, each of which hasa label.

If the experimenter asks you what proportion of the marbles are labeled B or

Y or G,it is a simple matter to segregate the marbles into the required classes

and estimate the proportions. Conditional probabilities (which is what Bayes’

theorem is all about) would simply involve repartitioning the classes of

marbles according to the labels and order of precedence dictated by the

statement of conditionality. In neither case need you have recourse to the

mathematical operations prescribed by normative probability theory.

Similarly, partitioning and repartitioning of frequentistic events in memory

is different from the abstract logical task implied by the processes involved in

deriving probabilities and conditionalities using the equations of probability

theory. The former uses the judge’s experience, the latter uses his or her

knowledge of probability theory, and the two may not be applied with equal

ease to probability assessment. Recent research by Gigerenzer (1991), as well

as the frequentistic laboratory studies cited above, suggests that when the

familiar subjective probability assessment problems are rephrased as parti-

tioning of frequentistic events with which the judge has some familiarity, the

results look quite different from those that generally are reported. Indeed,

Gigerenzer’s (1991) results indicate that the biases that supposedly arise from

the celebrated heuristics disappear or be greatly diminished when the problems

are posed in terms of frequencies. |

Manyresearchers have lost interest in subjective probability as a research

topic because they regard the major issues as settled by the heuristics and

biases studies; probability is not the calculus of uncertainty and judges’ ration-

ality is flawed. However, as we have seen, things are not quite so simple.

Subjective probability may not necessarily follow probability theory, but it

still is interesting for its own sake. Knowledge-based reasoning as well as

statistical reasoning may give rise to subjective probability, and those prob-

abilities may well account for some of the variance in human behavior,

particularly in risk assessment (e.g. Hendrickx, 1991). Moreover, it may well

turn out that judges are frequentists; that they are able to use frequentistic

information in ways that have yet to be fully explored (e.g. Gigerenzer, 1991).

In short, a non-normative approachto the study of uncertainty and subjective

probability may well prove to be profitable, broadening and enriching our

understanding of judgment and decision making.
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Chapter 7

Whythe Distinction between

Single-event Probabilities and

Frequencies is Important for

Psychology (and Vice Versa)

Gerd Gigerenzer
University of Chicago

Someyears ago in Stanford I was lunching with a motley group ofcolleagues,

mostly psychologists and economists, all interested in judgment under uncer-

tainty. We gnawed our way through our sandwiches and through thelatest

embellishments of the prisoners’ dilemma, trading stories of this or that

paradox or stubborn irrationality. Finally, one economist from Princeton

concluded the discussion with the following dictum: “Look,” he said with con-

viction, “either reasoning is rational or it’s psychological.”

This forked opposition between the rational and the psychological has

haunted meeversince. Frege scholars will hear in it an echo of the nineteenth-

century debate between the logician Frege and the psychologist Wundt over

the status of the “laws of thought”; the economists and psychologists seated

at the picnic table with me that afternoon had in mind the morerecentfindings

of the “heuristics and biases” research program in cognitive psychology(e.g.

Tversky & Kahneman 1974, 1983). Certainly anyone acquainted with only this

aspect of contemporary psychology—and it remains among the best publi-

cized, both to colleagues in other disciplines and to the public at large—could
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easily have cometo think that psychology is about revealing and explaining
human irrationality. The conjunction fallacy, the base-rate fallacy, the
overconfidence bias—this was the gloomylitany of sins people seemed to
commit routinely and incorrigibly against reason. According to the exponents
of the “heuristics and biases” program, humanbeings were programmedto be
systematically, stubbornly irrational when making judgments under
uncertainty—at least, most of the time. (Experimental subjects were not
dazzling at logical thinking either, but that is another story and another
research program.) No wonderthe psychology of reasoning had becomenearly
synonymouswith the investigation of the irrational (you get a taste from Table
7.1).

Whatexactly did it mean to beirrational, according to the psychologists of
the heuristics and biases program? Let me use a well-known example, the
“Linda problem”. Assumeyouare a subject in a psychological experiment. In
front of you is a text problem and you begin to read:

Linda is 31 years old, single, outspoken and very bright. She majored in
philosophy. As a student, she was deeply concerned with issues of discrimination

Table 7.1. A sample of conclusions from the heuristics and biases programee

EE

In making predictions and judgments under uncertainty, people do not appear to
follow the calculus of chanceorthestatistical theory of prediction. Instead, they rely
on a limited number of heuristics which sometimes yield reasonable judgments and
sometimes lead to severe and systematic errors.

Daniel Kahneman & Amos Tversky (1973, page 237)

It appears that people lack the correct programs for many important judgmentaltasks.
...we have not had the opportunity to evolve an intellect capable of dealing
conceptually with uncertainty.

Paul Slovic, Baruch Fischhoff & Sarah Lichtenstein (1976, page 174)

The genuineness, the robustness, and the generality of the base-rate fallacy are matters
of established fact.

Maya Bar-Hillel (1980, page 215)

The biases of framing and overconfidence just presented Suggest that individuals are
generally affected by systematic deviations from rationality.

Max Bazerman & M.A.Neale (1986, page 317)

[Overconfidence bias] has proved so robustthatit is hard to acquire much insight into
the psychological processes producingit.

Baruch Fischhoff (1988, page 172)

[Weare] a species that is uniformly probability-blind, from the humble janitor to the
Surgeon General ... We should not wait until A. Tversky and D. Kahnemanreceive
a Nobel prize for economics. Ourself-deliberation from cognitive illusions ought to
start even sooner.

MassimoPiattelli-Palmarini (1991, page 35)
es
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and socialjustice, and also participated in antinuclear demonstrations. Which of

these two alternatives is more probable?

(a) Linda is a bankteller |

(b) Linda is a bank teller and active in the feminist movement.

Which alternative would you choose? Assume you chose (b), just as most

subjects—80% to 90%—in previous experimentsdid. Tversky and Kahneman

(1983) argue: (b) is the conjunction of two facts, namelythat Linda is a bank

teller and is active in the feminist movement, whereas (a) is one of the

conjuncts. Because the probability of a conjunction cannot be greater than

that of one ofits conjuncts, the correct answeris (a), not (b). Therefore, your

judgmentis recorded as an instance of a celebrated reasoningerror, known as

the conjunction fallacy. Tversky, Kahneman, and others have shownthatthis

type of judgment is highly stable across experimental manipulations. By

analogy to stable visual illusions, stable reasoning errors, such as the

conjunction fallacy, have been labeled cognitive illusions. The standard

conclusion is that the mind does not possess the properstatistical algorithms,

but relies on non-statistical quick-and-dirty algorithms, such as the represent-

ativeness heuristic. That is, the mind assesses the probability by calculating the

similarity between the description of Linda and each of the alternatives, and

chooses the alternative with the highest similarity. Judging probability by

similarity has been termed the representativeness heuristic.

This alleged demonstration of humanirrationality in the Linda Problem has

been widely publicized in psychology, philosophy, economics and beyond.

Stephen J. Gould (1992, page 469) puts the message clearly:

I am particularly fond of [the Linda] example, because | know that the

[conjunction] is least probable, yet a little homunculus in my head continues to

jump up and down,shouting at me—“but she can’t just be a bankteller; read

the description.” ... Why do we consistently make this simple logical error?

Tversky and Kahnemanargue,correctly I think, that our mindsare not built (for

whatever reason) to work bythe rules of probability.

In what follows I will argue that Gould should have had moretrust in the

intuition of his homunculus.

Twoaspects of the standards ofrationality versus irrationality assumed by

this and other celebrated experiments cry out for closer inspection.

(1) The distinction between single-event probabilities and frequencies. In

the supposed demonstrations of the conjunctionfallacy, the base rate fallacy,

and the overconfidence bias, rationality is characterized not simply by prob-

ability theory, but someparticular interpretation of probability theory, often

a narrow version of Bayesianism. In the Linda problem, probability theory
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is applied to a single event—that Linda is a bank teller—rather than to
frequencies. Does probability theory apply to single events?

This is a controversial matter amongst probabilists, who have long and
heatedly debated the merits of subjective Bayesian versus objective frequentist
interpretations of probability. The influential Bayesian Leonard J. Savage
(1954), for instance, introduced his notion of personal probability with every-
day examples of reasoning about singular events: “I personally considerit
more probable that a Republican president will be elected in 1996 than thatit
will snow in Chicago sometimein the month of May, 1994. But eventhis late
Spring snow seems to me more probable than that Adolf Hitleris still alive”
(page 27). Savage’s proposal challenged the frequentist schools which were
then dominant, as they are in most statistics departments today. Savage was
quite explicit about the deviant character of his proposal, when he added,
“Many,after careful consideration, are convinced that such statements about
probability to a person meanprecisely nothing, or at any rate that they mean
nothing precisely” (page 27).
The mathematician Richard von Mises (1957) was one of those many.In his

view, a reference class (collective) has to be defined first, and then the prob-
ability of a repetitive event is the relative frequency of this eventin its class.
Oneof his examples is the probability of death at age 40, as determined from
the data of insurance companies. Theclass is “all men insured before reaching
the age of forty after complete medical examination and with the normal
premium”. The numberof deaths at age 40 was 940 out of 85 020, which cor-
respondsto a relative frequency of about 0.011. This probability is attached
to a class, but not to a particular person or a single event. Every particular
person is always a memberof manydifferent classes, whoserelative frequen-
cies of death may have different values. Therefore, von Mises concluded, “It
is utter nonsense to say, for instance, that Mr. X, now aged forty, has the
probability 0.011 of dying in the course of the next year.” (pages 17-18).
By now it should be clear that according to a strong frequency view of

probability (e.g. Neyman, 1977; von Mises, 1957), what has been labeled the
conjunction fallacy is not an error in probabilistic reasoning. In this view,
probability theory is about frequencies and simply doesn’t apply to single
events.

(2) Content-independentrationality. There is a peculiar indifference in this
standard of rationality to background knowledge: rationality here means the
deploymentof formalalgorithms(or rules, such as the conjunction rule) which
are content-independent. Thatis, it is assumed that they can and should be
applied to tasks with different specific contents, provided the formal structure
remains constant. From this point of view, rationality is not bound to any
specific domain, and knowledgeideally is irrelevant to proper reasoning.

In the Linda problem, for instance, whatever you know about banktellers
and feminists is assumed to be entirely irrelevant; indeed, you need not read
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the description of Linda at all—itis irrelevant to content-independentration-

ality. Hence thereis little analysis of how the content of a problem cuesthe

understanding of the term “probable” in this research tradition. “Probable”

can refer to typical, prototypical, frequent, credible, to the weight of evi-

dence, to a plausible causal story, or to what “may in view of present evidence

be reasonably expected to happen,” as the Oxford English Dictionary informs

us. Most of these uses do not obey the laws of probability. For instance,

judgmentsof typicality do not followthe conjunction rule. Betty Friedan may

count as a typical feminist writer, but not as a typical writer. Such psycho-

logical considerations, however, are not part of the content-independent

rationality that defines right and wrong reasoningin the heuristics and biases

program.

These two issues are not independent. For instance, suppose oneinsists that

every single-event statement involving the term “probable,” as in the Linda

problem, must obeythe laws of probability theory rather than, say, the guide-

lines of the Oxford English Dictionary. (I take the statements in Table 7.1 to

epitomize this conviction.) One would then be uninterested in how content

(add physical and social context, goals, if you want) determines whatis reason-

able in a given situation.

I will focus in this chapter on the distinction between single-event prob-

abilities and frequencies, and will say little about the role of content in under-

standing what is rational (on the latter see Cosmides & Tooby, 1992;

Gigerenzer, 1991; Gigerenzer & Hug, 1992).

In the first part, drawing on recent work in the history of probability, I will

show that the distinction between single-event probabilities and frequencies

was dependenton theories of mind: the meaning of probability changed when

theories of mind changed.In the second part, drawing on recent experimental

work,I will show that apparently stable cognitive illusions are dependent on

the distinction between single-event probabilities and frequencies: cognitive

illusions tend to disappear when single-event probabilities-are changed into

frequencies. Thus, I argue that the conceptual distinction between single-event

probabilities and frequencies is of direct relevance for psychology, and vice

versa.

7.1 HOW THEORIES OF PSYCHOLOGY SHAPED
THE MEANING OF PROBABILITY

According to legend, probability is one of the few seminal ideas that has an

exact birthday. In 1654, precisely three hundred years before Savage’s treatise,

the now famouscorrespondence between Blaise Pascal and Pierre Fermatfirst

cast the calculus of probability in mathematical form. Ian Hacking (1975)

argued that the notion of probability that emerged so suddenly was
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Janus-faced from the very beginning. One face wasaleatory, concerned with
observed frequencies (e.g. co-occurrences between fever and disease, comets

and deaths of kings); the other face was epistemic, concerned with degrees of
belief or opinion warranted by authority. In his view, the twentieth-century
duality between objective frequencies and subjective probabilities existed then
as it does now. Barbara Shapiro (1983) and Lorraine Daston (1988), however,
have argued that probability in the seventeenth and eighteenth centuries had
more than Janus’s two faces. It included physical symmetry(e.g. the physical
construction of dice, now called “propensity”); frequency (e.g. how many
people of a given age died annually); strength of argument (e.g. evidence for
or against a judicial verdict); intensity of belief (e.g. the firmness of a judge’s
conviction in the guilt of the accused); verisimilitude; and epistemological
modesty, among others. Over the centuries, probability also conquered new

territory and created further meanings, such as in quantum physics, andlost
old territory, such as the probability of causes (Daston, 1988). Rather than
Janus’s two faces, probability seems more like a group of visages loosely
assembled in a family portrait, with some members joining over time and
others dropping out.

7.1.1 The Unity: Frequencies and Subjective Beliefs

The puzzling fact about the Enlightenment probabilists is the ease with which
they slid from one meaning ofprobability to the next—and this holds
independently of whether you see probability as Janus-faced or more like a
family portrait. This ease created the apparent paradox that competing
present-day interpretations of probability could claim the same work as their

ancestor. Jakob Bernoulli’s Ars conjectandi (1713), for instance, has been

variously claimed as anticipating the 20th century’s subjective interpretation,
Rudolf Carnap’s logical interpretation, and the extreme frequentist inter-
pretation of Jerzy Neyman and Richard von Mises (Hacking, 1975, pages
15-16).

The solution to this puzzle lies in the intimate link between psychology and
probability. Daston (1988, Chapter 4) argues that only with hindsight doesit
seem that Bernoulli and otherclassical probabilists vacillate between objective
and subjective interpretations. Whereas today these interpretations look
incompatible to many, the classical probabilists were able to reconcile the
subjective and objective facets of probability onthe basis of the theories of
mind advanced by John Locke, David Hartley, and David Hume. The
following account of how associationist psychology shaped and incorporated
ideas of probability is a condensed version of Daston’s (1988) detailed study.

Philosophers such as Hartley and Hume, and mathematicians like
Condorcet and Laplace, treated associationist psychology and mathematical
probability as kindred topics. Following Locke’s associationism, Hume held
that the mind unconsciously and automatically tallied frequencies and
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proportionated degree of belief (for Hume, the vivacity of an idea). And

Humeinsisted that the psychological mechanism that converted frequency into

belief was finely tuned: “When the chances or experiments on one side amount

to ten thousand, and on the otherto ten thousand and one, the judgmentgives

the preference to the latter, upon account of that superiority.” (Hume,

1739/1975, page 141). Despite his reservation about the validity of induction,

Hume made probabilistic thinking the de facto standard of reasonableness.

Humelinked frequency with belief, but his account contained almost norefer-

ence to the mathematical theory of probability. David Hartley’s (1749) work

did. He combined elements from Locke’s sketch of associationism and

Newton’s physiological speculations concerning the vibratory basis of sensa-

tions, and workedit into a full-blown associationism that connected the laws

of mind with the laws of probability. Repeated associations created cerebral

vibrations until grooves of mental habit were etched in the brain. Throughthis

physiological mechanism, human judgment, when undeflected by strong emo-

tion or passion, imitated the law of large numbers.

The list of psychological mechanisms underlying the mapping of objective

frequencies into subjective belief, postulated from Locke to Hartley to

Laplace, seemssurprisingly familiar to a contemporarypsychologist: observed

frequencies are transformed into degrees of belief through “traces”,

“vibrations”, “interior images”, and “impressions”. All these mechanisms

assumed the passive, automatic and unconscious mapping of experienced fre-

quencies into subjective probabilities. Being built up from frequencies, degrees

of belief were considered to be rational. The Enlightenment empiricists had

taken due notice of the distortion of rational belief through passion and

interest, but they believed these were corrigible aberrations.

These psychological theories were the backbone of what is now known as

the classical interpretation of probability (from 1660 to c. 1840) and they

explain some ofits central features. First, classical probability conflated sub-

jective belief and objective frequencies, based on associationist psychology.

Second, probabilities were epistemic, a figment of human ignoranceandthere-

fore subjective, not part of the physical world. Classical probabilists, from

Jakob Bernoulli through Laplace, were arch determinists (Daston, 1992).

God, or Laplace’s secularized demon, could dispense fully with probability.

However, we humansare, as John Locke putit, most of the time condemned

to live in the twilight of probability rather than the noondaysunofcertainty.

Although the world itself is deterministic, human cognition is inherently

probabilistic and empirical in its working—a view that was revived, among

others, in Egon Brunswik’s (1955) functional probabilism. Third, the mapping

of frequencies into subjective probabilities was considered to be rational, as

were subjective probabilities, unless disrupted by passion or interest. The

Enlightenment probabilists cherished the fiction of the hommes éclairés, an

elite of educated people who could prevent such disruptions from affecting

their beliefs. Probability theory mirrored their reasoning and provided a tool
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for those unfortunates needinghelp to stay clear of these disruptions. Human
reasoning and probability theory were two sides of the samecoin. In Laplace’s
famous phrase, probability theory was nothing more than “good sense
reduced to a calculus”.

By the time Siméon-Denis Poisson (1837) published his major work on

probability, the classical interpretation was under attack on several fronts.
The psychological theories postulating mechanisms that guaranteed the pro-
portioning of belief to frequencies had given way to those that emphasized the
illusionary nature of humanbelief. Etienne de Condillac (1754) was one of the
first to express misgivings about the reliability of the link between frequency
andbelief. In his psychology, wishful thinking became the rule rather than the
exception. Condillac was preoccupied with pathological associations caused by

experiencesearly inlife, by prejudice, or by brain consistency. He held, for

instance, that young girls were prone to confuse chimerasforrealities, because
their brains were soft and even faint associations left permanent impressions
in a soft medium. Condillac and his followers shifted the associationist psy-
chology of Humeand Hartley to a psychology in which needs, wants, and tem-

peraments (and other sources of pathologies) determined how the mind

distributed attention, which in turn organized experience (Daston, 1988). The
unity between frequency and belief was slowly eroded. What psychology had
given to probability, it now took away. Poisson was thefirst to distinguish
clearly in print, in 1837, between the subjective and the objective meaning of
probability.

There is a broaderintellectual and social context in which the rise and the
fall of the classical interpretation of probability is embedded. The Frenchrev-
olution and its aftermath seems to have shaken the confidence of the
probabilists in the existence of a single shared standard of reasonableness.
Whatconstituted “good sense” was no longerself-evident. The consensus and
the values of the intellectual and political élites fragmented and disappeared,
as did l’hommeéclairé, the fiction of the reasonable man who embodiedthis

consensus (Daston, 1988; Gigerenzer et a/., 1989, Chapter 1).

7.1.2 The Divorce: Frequencies versus Subjective Belief

Subjective belief and objective frequencies began as equivalents and ended up

as diametric opposites. Poisson had distinguished the two, and thepolitical
economist and philosopher Antoine Cournot (1843) seems to have been the
first who went one step further and eliminated subjective belief from the
realm of mathematical probability: mathematical probability was not a

measure of belief. Only then did it become evident that the classical inter-

pretation of probability had been an interpretation. Classical probability

was a form of “mixed mathematics”, a term stemming from Aristotle’s
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explanation of how optics and harmonics mixed the forms of mathematics

with the matter of light and sound. Classical probability theory had no

existence independent of its subject matter—the beliefs of reasonable men.

The modern view that a mathematical theory might indeed exist independently

of a particular subject matter—the distinction between formal theory and

application—was foreign to mixed mathematics. Arguably, mathematical

probability did not free itself from its particular applications until very

recently, when in 1933 A.N. Kolmogoroff presented his axiomatization of

probability.

The new associationist psychology which focusedon illusions had, by the

early nineteenth century, provided the argumentsfor severing subjective prob-

abilities from objective frequencies, and, ironically, associationist psychology

from probability theory. By about 1840, /’homme éclairé had given way to

l’-homme moyen. Probability was no longer about mechanical rules of rational

belief embodied in an élite of reasonable men, but about the properties of the

average man (/’homme moyen), the embodiment of mass society if not

mediocrity. Adolph Quetelet’s (1835) social physics determined thestatistical

distributions of suicide, murder, marriage, prostitution, height, weight, educa-

tion, and almost everything else in Paris, and compared these with the distri-

butions in London or Brussels. The means of these distributions defined the

fictional average man in each society. The meansandrates of moral behaviors,

such as suicides and crimes in Paris or in London, proved to be strikingly

stable over the years; this was cited as evidence that moral phenomena are

governed by the laws of a society rather than by the free decisions of its

individuals. In nineteenth-century France, statistics became known as “moral

science”.

This new focus on mass phenomenahad a tremendous impact on pioneer

sociologists such as Herbert Spencer and Emile Durkheim, andshaped demog-

raphy, insurance, epidemiology, Prussian bureaucracy, the debates on free

will, Francis Galton’s enthusiasm for the normal curve and Gustav Theodor

Fechner’s statistical aesthetics, inter alia (Hacking, 1990; Stigler, 1986).

Quetelet’s model of human behavior as erratic and unpredictable at the indi-

vidual level, but governed by statistical laws and predictable at the level of

society, was independently adopted by James Clerk Maxwell and Ludwig

Boltzmann to justify, by analogy, their statistical interpretation of the

behavior of gas molecules (Porter, 1986). By this strange route, physics

became revolutionized through the analogy with statistical laws of society.

Throughout most of the nineteenth and twentieth centuries, the “probabil-

istic revolution” (Kriiger, Daston & Heidelberger, 1987; Kruger, Gigerenzer &

Morgan, 1987) was about frequencies: from the kinetic theory of gas to

quantum statistics, and from population genetics to the Neyman—Pearson

theory of hypothesis testing. The urn model ofclassical probability was now

concerned with these mass phenomena, excluding subjective degrees of belief
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suchas single-event probabilities. Joseph Bertrand in his Calcul des probabi-

lités (1889), for instance, criticized Laplace’s applications of Bayes’ theorem

to calculate degrees of belief: we believe the sun will rise tomorrow because

of “the discovery of astronomical laws and not by renewedsuccess in the game

of chance” (page xliv).

As is well known, subjective probability has regained acceptance in the

second half of this century with the pioneering work of Bruno de Finetti and

Frank Ramsayin the 1920s and 1930s and Leonard Savage in the 1950s. The

reasonable man, once exiled from probability theory, had his comeback.

Economists, psychologists, and philosophers now struggle again with the issue

of how to codify “reasonableness” in mathematical form—the sameissue once

abandoned by mathematiciansas a thankless task. Before the 1970s, the return

of subjective probability still provoked a particularly lively debate between

frequentists and subjectivists (now called “Bayesians”). Today, both sides

pretend to know each other’s argumentsall too well and seem to have stopped

listening. Frequentists dominate statistics and the experimental sciences;

subjectivists the areas of theoretical economics andartificial intelligence. The

territory has been divided up. As Glenn Shafer (1989) complained, “concept-

ually and institutionally, probability has been balkanized” (page 15).

To summarize: theories of psychology have been important in shaping the

meaning of probability, and therewith the subject matter of probability

theory. In particular, the associationist psychology of Locke, Hume and

Hartley provided the groundsfor not distinguishing objective frequencies and

subjective degrees of belief—from theinception of probability theory circa

1650 to roughly 1840. The turn of associationist psychology towardsillusions

dethroned the reasonable man ofclassical probability theory and made the

distinction between degrees of reasonable belief and frequencies obvious.

After this conceptual transformation, psychology founditself dissociated

from probability theory, too.

7.2 HOW THE DISTINCTION BETWEEN SINGLE
EVENTS AND FREQUENCIES AFFECTS COGNITIVE
ILLUSIONS

Psychologists like precise birthdays too. Textbooks celebrate 1879 as the

beginning of whatis referred to as scientificpsychology, when Wilhelm Wundt

devoted some space at the University of Leipzig for conducting experiments.

For Wundt, the experimental method was a means to study elementary

cognitive processes, such as attention and perceptual thresholds, but not (what

he believedto be) deeply culture-bound processes such as thinking (Danziger,

1990). For these and other reasons, such as the dominance of American
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behaviorism, probabilistic reasoning was only occasionally a topic for
psychologists in the first half of this century.
The classical probabilists would have felt a strong sense of déja@ vu upon

learning about someof the theoretical developments in the second half of the
twentieth century. Around 1950, Jean Piaget in Geneva revived the reasonable

man of classical probability theory. In Piaget and Inhelder’s (1951/1975)

experimental work, the formal laws of probability are the laws of the adolescent
and adult mind. Errors in probabilistic reasoning were characteristic only
during ontogenetic development, until the age of fourteen or so, when formal
probabilistic reasoning emerges. Take for instance the law of large numbers.
In 1703 Jacob Bernoulli had written in a letter to Leibniz that the law of large
numbers is a rule that “even the stupidest man knows by someinstinct of
nature per se and by nopreviousinstruction” (see Gigerenzeret al., 1989, page
29). More than two centuries later, Piaget and Inhelder concluded that even
twelve to thirteen year olds intuitively apply the law of large numbers and
understand the reasons for the law (page 207).

Locke, Hartley, and Humehad assumedthat the mind unconsciously tallies

frequencies and converts them into degrees of belief. Hasher and Zacks (1979)
concluded from their experiments that frequencies are one of the few kindsof
information (the others being word meaning and spatial and temporal loca-
tion) that are monitored automatically—that is, without intention or much
attention, and without interfering with other tasks. Moreover, what is now

called automatic frequency processing seems to be generally accurate, a

conclusion independently arrived at by others (e.g. Brehmer & Joyce, 1988).
The thesis that objective frequencies eventually shape degrees of belief has
now been experimentally demonstrated (Hasher, Goldstein & Toppino, 1977).
Locke, Hartley, and Hume would have been enthusiastic about these
experimental findings. The reasonable man is back, dressed in modern
fashion:less élite (everyoneis a reasonable intuitive statistician) and confirmed
by numerous experimental results.

The déja vu, however, goes beyond the recreation of the reasonable man.
Around 1970, much of cognitive and social psychology turned away from the
rational intuitive statistician and focused on illusions (Kahneman, Slovic &
Tversky, 1982; Nisbett & Ross, 1980). One and a half centuries earlier,

associationist psychology had turned to illusions, and the reasonable man had
crumbled along with theclassical interpretation of probability. Now illusions
were again being used to destroy belief in the rational homo sapiens, and to
challenge economists’ rational homo economicus. Now,as then,illusions were

no longer the exception, but the rule.

Here the historical parallels end. The old challenge was that passion and
wishful thinking almost always interfere with the rational laws of thought.
Freud’s attack on human rationality is a well-known variation on that
theme. The unconscious wishes and desires of the Id are a steady source of
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intrapsychic conflict that manifestsitself in all kinds of irrational beliefs, fears,

and behaviors. The new challenge, however, does not invoke passion or

wishful thinking as interfering with otherwise rational reasoning. This

challenge is stronger: the human mind does not possess the properstatistical

algorithms. Poor reasoning is seen as a Straightforward consequence of the

laws of human reasoning, which are non-statistical “rule-of-thumb”

heuristics. The mindis a poorintuitive statistician whether or not passion and

wishful thinking compoundthisstate of affairs.

Ironically, the departure point of the unreasonable man that emerged two

decades after Piaget’s revival of the reasonable man was Savage’s neo-

Bayesianism. In the 1960s, Ward Edwardsandhis colleagues at the University

of Michigan made tworelated proposals. First, Edwards, Lindman & Savage

(1963) attempted to persuade experimental psychologists to turn Bayesian and

to dispense with frequentist hypothesis testing. Second, Edwards (1968)

proposed to study empirically whether intuitive reasoning follows Bayesian

statistics. The first proposal fell still-born fromthe press; the second became

a raging success.

Experimenters already had their frequentist statistics, a curious and con-

fused mishmash of Fisher’s significance testing and Neyman—Pearson’s

hypotheses testing (Gigerenzer, 1993). This was generally presented as the sine

qua non ofscientific method. Textbooks did nottell their readers that they

were teaching a shotgun marriage between Fisher and Neyman—Pearson.

Rather, the textbookscreated theillusion that “statistics is statistics is statis-

tics”. Since the 1950s, statistical inference had become a mechanical ritual in

psychology and beyond, enforced by journal editors and internalized by

researchers as the guardian of objectivity and scholarly morality. Bayesianism,

by contrast, looked subjective and, above all, unnecessary.

Thus, in the 1970s and 1980s, Bayesianism became a rational yardstick

for the subjects in psychological experiments, but not for the experimenters

whoanalyzed them. Subjects were judged rational if their inferences from data

to hypotheses followed Bayes’ theorem; otherwise their judgments were

recorded as errors in reasoning, such as the base rate fallacy (see below).

However, when experimenters made inferences from data to hypotheses—

here, whether subjects are Bayesians—they did not use Bayes’ theorem. They

used, as they had been taught for two decades before Edwards’ proposal,

frequentist statistics. But the most commonly used kind of frequentist

statistics, R.A. Fisher’s significance testing, does not use prior probabilities or

base rates. This neglect of base rates by experimenters was not recorded as an

error in reasoning, althoughit hadall the characteristics of the base rate fal-

lacy. Nor do I know of a single experimenter who noticed and remarked on

that amazing double standard. The split between Bayesians and frequentists

not only divides disciplines today, but can also go right through single

individual (Gigerenzer, 1993).
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Edwards seems to have soon become dissatisfied with pointing out

discrepancies between subjects’ reasoning and Bayes’ formula, and no

interesting and rich theory of how subjects actually do reason had emerged.

He turned to the task of designing tools that help people reason the Bayesian

way. In the 1970s, Amos Tversky and Daniel Kahneman took over Edwards’

second proposal and turned it into what is now knownas the heuristics and

biases program.

The heuristics and biases program arrived at a view of humanrationality

(Table 7.1) diametrically opposed to that of classical probability theory. Yet

this modern program neglects the distinction between single-event probabilities

and frequencies just as the classical probabilists ignored the distinction

between subjective degrees of certainty and objective chances.

I will now use the distinction between single-event probabilities and

frequencies to unearth the reasonableness hidden by the perspective of the

heuristics and biases program.

7.2.1 Representation of Information: Single-event Probabilities

versus Frequencies

My point here is precisely not to champion one side over another—

frequentism over Bayesianism, or vice versa—but to point out a connection

between the single-event probabilities/frequencies distinction and a second

distinction, that between algorithms and information representation.

Muchink flowed in debates about mental algorithms: is the mind equipped

with the right statistical algorithms or only with suboptimal algorithms based

on rules of thumb such as the representativeness heuristic? These two alterna-

tives, however, are not sufficient for a theory of cognitive processes underlying

judgment under uncertainty, because they only deal with the level of

algorithms. Algorithms need information, and information needs representa-

tion. This distinction between algorithms and information representation is

central to David Marr’s (1982) analysis of visual information-processing

systems.

For example, consider numerical information. This information can be

represented by the Arabic numeral system, the binary numeral system,

Roman numerals, and other symbol systems. These different representations

can be mapped one-to-one onto each other, and are in this sense formally

equivalent representations. But they are not necessarily equivalent for cal-

culating algorithms. The algorithms programmed into my pocket calculator

work well when I feed them Arabic numerals, but not when I feed them binary

numbers. The human mind seems to acquire analogous preferences for one

form of representation: contemplate for a moment long division in Roman

numerals.
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Let me nowreturn to the distinction between single-event probabilities and
frequencies. Instead of squabbling over which captures the “real” meaning of
probability, let us instead regard them as two different representations of
probability information. Finer distinctions can be made, butthis will suffice
to start.

An evolutionary speculation links these two distinctions. Assume that some
capacity or algorithm for statistical reasoning has been built up through
evolution by natural selection. For what information representation would
such an algorithm be designed? Certainly not for percentages and single-event
probabilities (as is assumed in many experiments on humanreasoning), since
these took millennia of literacy and numeracyto evolve as tools for communi-
cation. Rather,in an illiterate and innumerate world, the representation would

be frequencies of events, sequentially encoded as experienced—for example,

3 out of20 as opposed to 15% or p=0.15. Such a representation is couched
in terms of discrete cases, that is, natural numbers.
Note that bumblebees, birds, rats, and ants all seem to be goodintuitive

Statisticians, highly sensitive to changes in frequency distributions in their
environments, as recent research in foraging behavior indicates (Gallistel,
1990; Real & Caraco, 1986). One wonders, reading that literature, why birds
and bees seem to do so much better than humans.

In short, the proper functioning of a mental algorithm depends on the way
in which informationis represented. So, to analyze probabilistic reasoning, we
must attend to the difference between, at least, the frequency andthesingle-
event representation of probability. If evolution has favored one of these
forms of representation, then it would be frequencies, which prelinguistic
Organisms could observe and act on.

Attending to this distinction suffices to make several apparently stable
cognitive illusions disappear.

7.2.2 How to Make the Conjunction Fallacy Disappear

Now weapplythe distinction between single-event and frequency information
representation to the Linda problem. Weonly change the format from single
event to a frequency representation, leaving everything else as it was.

Linda is 31 years old, single, outspoken and very bright. She majored in
philosophy. As a student, she was deeply concerned with issues of discrimination
and social justice, and also participated in antinuclear demonstrations.

There are 100 people who fit the description above. Howmany of them are:

(a) bank tellers
(b) bank tellers and active in the feminist movement.

Subjects are now asked for frequency judgments rather than for single-event
probabilities. If the mind solves the Linda problem by using a representativeness
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heuristic, changes in information representation should not matter, because

they do not change the degree of similarity. The description of Linda is

still more representative of (or similar to) the conjunction “teller and

feminist” than of “teller.” Subjects therefore should still commit the

conjunction fallacy.

However, if there is somestatistical algorithm in the mind that is adapted

to frequencies as information representation, then something striking should

happen to this stable cognitive illusion. Violations of the conjunction rule

should largely disappear.

Table 7.2 How to makethe conjunction fallacy disappear

 

Linda problem Conjunction violations (%)

 

Single-event versions

Tversky & Kahneman (1983)

Which is more probable? 85

Probability ratings 82

Probability ratings T* 57
Betting 56

Fiedler(1988)

Probability ranking, Exp. 1 91

Probability ranking, Exp. 2 83

Hertwig & Gigerenzer (1993)

Probability ranking 88

Frequency versions

Fiedler (1988)
How many out of 100? 22

How many out of X? 17

Hertwig & Gigerenzer (1994)

How manyout of 200? 13

How many 16

 

Note: The various versions of the Linda problem are (i) which is more

probable (see text, 1 = 142), (ii) probability ratings on a nine-point scale

(n = 119),(iii) probability ratings using the alternative “Lindais a bankteller

whether or not she is active in the feminist movement” (7*) instead of

“Linda is a bank teller” (T) (” = 75), (iv) hypothetical betting, i.e. subjects

were asked “if you could win $10 by betting on an event, which of the

following would you choose to bet on?” ( = 60). Fiedler asked subjects to

rank order T, T&F, and other alternatives with respect to their probability.

In his first frequency version the population size was always 100, in the

second it varied (n= 44 and 23, in Experiments 1 and 2, respectively).

Hertwig & Gigerenzer asked subjects to rank order T, T&F, and F, with

respect to their probability (single-event version, m = 24), or estimate the

frequency of T, T&F, andF (in the two frequency versions, each n = 25). In

one of the frequency versions, the number of womenwasspecified (200); in

the other, this number was notspecified.
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The available experimental evidence confirmsthis prediction. Klaus Fiedler
(1988) reported that the number of conjunction violations in the Linda
problem dropped from 91%in the original, single-event representation to 22%
in the frequency representation. A similar result was found when hereplaced
“there are 100 people” by some odd numbersuch as “there are 168 people.”
The drop in the numberof conjunction violations here was from 83% to 17%.
Hertwig and Gigerenzer (1994) used three alternatives: F (Lindais active in the
feminist movement), T&F (Linda is a bankteller and active in the feminist
movement) and T (Lindais a bankteller). In the single-event task, subjects
rank-ordered F, T&F and T withrespect to their probability; in the frequency
task, they estimated the frequency of T, T&F and F (“how many out of
200?”). The percentage of conjunction violations dropped from 88% in the
single-event task to 13% and 16%, respectively, in two frequency tasks.

Hertwig and Gigerenzer as well as Fiedler reported similar results for other
reasoning tasks from which the conjunction fallacy has been inferred as a
stable cognitive illusion. Tversky and Kahneman (1983) had reported a similar
case in their original paper, but maintained the claim that people commit a
fallacy when choosing the conjunction in the single-event case.
To summarize: The philosophical andstatistical distinction between single

events and frequenciesclarifies that judgments hitherto labeled instances of the
“conjunction fallacy”’ cannot be properly called reasoning errorsin the sense
of violations of the laws of probability. The conceptual distinction between
single-event and frequency representations suffices to makethis allegedly
stable cognitive illusion largely disappear. The conjunction fallacy is not the
only cognitive illusion that is subject to this argument.

7.2.3 How to Makethe Base-rate Fallacy Disappear

In the 1960s, Ward Edwardsandhis colleagues designed probability revision
problems to find out whether their subjects were Bayesians. Many of these
problems used the tried-and-true urns-and-balls problems, and the major
finding was that subjects exhibited conservatism—that is, that they seemed to
give too much weightto the base rates. From the 1970s on, however, Tversky,
Kahneman, and manyoftheir followers claimed that reasoning deviates from
Bayes’rule in the opposite direction, that subjects in fact ignore base rates—
the so-called base-rate fallacy.

Recently, some researchers have weakened their claims aboutthe generality
and robustness of the base-rate fallacy, but some of the fundamental confu-
sions with which this stimulating research was burdened from the verystart
have survived (Gigerenzer & Murray, 1987, ch.5).

The two confusions I will point out are both instances of blurring single-
event probabilities and frequencies. The first confusion is between the
Bayesian notion of a person’s prior probability and the frequentist concept of
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a base rate. Tversky and Kahneman(e.g. 1974; Kahneman & Tversky, 1973)

started out using the expressions “neglect of base rates” or “insensitivity to

base rates” interchangeably with those of “neglect of prior probabilities” or

“insensitivity to prior probabilities.” However, priors and base rates are

different things. Priors are subjective degrees of belief that may be informed

by objective base rates, but need not be identical. (Similarly, the subjective

likelihoods that enter Bayes’ theorem and the “individuating” information

presented by the experimenter need not be identical; see Birnbaum, 1983;

Schum, 1990). This confusion, however, was necessary to argue that if a

subject does not give much weight to whatever base rate information the

experimenter has presented, this counts as a demonstration ofa fallacy,i.e.,

that the subject does not reason by Bayesian principles. Whether or not the

mind actually reasons by Bayesian principles, this confusion between a base

rate and a subjective prior has prevented us from drawing adequate conclusions

from experimental work.

The second and related confusion is between normative theories ofthe

subjective and frequentist varieties. For instance, when subjects seemed notto

pay muchattention to base rate information, Kahneman and Tversky (1973,

p. 243) asserted: “The failure to appreciate the relevance of prior probability

in the presence of specific evidence is perhaps one of the most significant

departures of intuition from the normative theory of prediction.” But which

normative theory? They seem to have had Bayesianism in mind,andatthat,

a narrow version thereof—e.g., one that conflated base rates with priors

(Gigerenzer, Hell & Blank, 1988). But what if intuition were measured against

the frequency view?

I will now apply the distinction between single-event and frequency infor-

mation representation to the base-rate fallacy . Here is an observationto start

with.

Some researchers tend to change the representation of a problem from

single-event probabilities to frequencies when they turn away from their

subjects and explain the correct solution to their readers. An early example is

Hammerton(1973, p. 252) who used single-event probabilities to communicate

information to his subjects:

1. A device has been invented for screening a population for a disease known

as psylicrapitis. 2. The device is a very good one, but not perfect. 3. If someone

is a sufferer, there is a 90% chance that he will be recorded positively. 4. If he

is not a sufferer, thereis still a 1% chancethat he will be recorded positively. 5.

Roughly 1% of the population has the disease. 6. Mr. Smith has been tested, and

the result is positive. The chance that he is in fact a suffereris:

Hammerton seems to have been surprised that his subjects gave a median

response of 85%(whichis close to the 90%hit rate) despite the 1% baserate.
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Suchjudgments have been labeled by others as the base-rate fallacy. When the
author explained the correct answer to his readers, he switched however,
without commentinto a frequency representation (p. 252):

Out of every 100 persons tested, we expect | to have the disease; and the device
is nearly certain to say that he has. Also, out of that 100, we expect the machine
to say that 1 healthy person hasthe disease. Thus, in the long run, out of every
100 persons tested, we expect 2 positive results, one of which will be correct and
the other incorrect. Therefore the odds on any positive result being valid are
roughly even.

The frequency format could be easily digested by Hammerton’s readers.
You can “see” that the relative frequency is one out of two (i.e. 50%), and
not 85%. Hammerton’s subjects, however, were tested and failed on a single-

event representation.

Here is a second example. In a fascinating article on mammography, Eddy
(1982) reports that he asked 100 physicians questions of the following kind:

The prevalence of breast canceris 1% (in a specified population). The probability
that a mammographyis positive if a woman has breast cancer is 79%, and 9.6%
if she does not. Whatis the probability that a woman whotests positive actually
has breast cancer? %

 

Eddy (1982) reports that 95 out of 100 physicians estimated the probability
p(cancer| positive) to be about 75%. However, if one applies Bayes’ theorem
to the information given, p(cancer| positive) is only about 0.08 (or 8%). The
judgment ofthese 95 physicians once morelooks like an instance of the base-
rate fallacy. College students, physicians, writers of medical textbooks (Eddy,
1982), and staff at the Harvard Medical School (Casscells, Schoenberger &
Grayboys 1978) all seem to have equally great difficulties with problemsofthis
kind. Reasoning about single-event probabilities (or percentages) does not
seem to come naturally to them.

Let us now perform a thought-experiment with the mammographyproblem.
Change the information representation in the mammography problem from
single-event probabilities to frequencies:

Imagine 100 people (think of a 10 x 10 grid). We expect that one woman has
cancer and a positive mammography. Also, we expect that there are 10 more
women with positive mammographies but no cancer. Thus we expect 11 people
with positive mammographies. How many women with positive mammographies
will actually have breast cancer?

With frequencies, you immediately “see” that only about J out of 1] women
whotest positive will have cancer. The base-rate fallacy disappearsif the infor-
mation is represented in frequencies. Note that by “frequencies”, I mean
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natural numbers. Let us now turn from the thought-experiment to real

experiments.

Casscells et al. (1978) gave 60 staff and students of the Harvard Medical

Schoolthe following problem,cast in single-event probabilities (except for the

base rate):

If a test to detect a disease whose prevalence is 1/1000 has a false positive rate

of 5%, what is the chance that a person found to havea positive result actually

has the disease, assuming you know nothing about the person’s symptomsor

signs?

If one inserts these numbers into Bayes’ theorem, the posterior probability

that the person actually has the disease is 0.02 (assuming the test correctly

diagnoses everyperson who has the disease—a piece of missing information).

Most of the staff and students at Harvard Medical School were hopelessly

lost—almost half estimated this probability as 0.95 not 0.02. Only 11

participants answered 0.02. Note the amountofvariability in the physicians’

judgments about the probability of the disease! The modal answerof 0.95 was

taken to be another instance of the base-rate fallacy, or base-rate neglect, as

Tversky and Kahneman (1982) called it. The base rate of the disease (1/1000)

is neglected, and judgmentis based only (or mainly) on the characteristics of

the test (here: the false positive rate). This seemed yet more proof of the

stability of the base-rate fallacy.

But I will now apply to the Harvard Medical School problem the same

frequency-representation procedure I applied to the preceding problems. If

there is some kind of algorithm for statistical reasoning that works on

frequency representations, changing the information representation in the

Harvard Medical School problem from single-event probabilities and

percentages to frequencies should make the base-rate fallacy disappear.

Consequently, the large variability in judgments should also disappear.

Cosmides and Tooby(in press) have tested this prediction in a series of

experiments with more than 400 Stanford undergraduates. They constructed

a dozenorso variations of this medical problem, substituting step-by-step fre-

quencies for single-event probabilities. In the original single-event version, the

Stanford undergraduates gave almost the samelow percentage of0.02 answers

as the staff and students at Harvard Medical School, 12% compared to 18%

(Table 7.3). The original single-event version was somewhat ambiguous,

because the true positive rate was not specified and Stanford undergraduates

might not know what the term “false positive rate” means. Therefore, Cos-

mides and Toobyconstructed a purified single-event version in which these

ambiguities were eliminated:

The prevalence of disease X is 1/1000. A test has been developed to detect when

a person has disease X. Every time the test is given to a person whohas the
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disease, the test comes out positive. But sometimes the test also comes out
positive whenit is given to a person whois completely healthy. Specifically, 5%
of all people whoare perfectly healthy test positive for the disease.
Whatis the chance that a personfound to have a positive result actually has

the disease, assuming that you know nothing aboutthe person’s symptoms or
signs?__%

This made the percentage of 0.02 answers go up, but only to 36%. Rather
dramatic effects were obtained, however, when the single-event format was
changedinto a frequency format. There were two major changes, the format
of the information (first paragraph ofthe single-event version) and that of the
task (second paragraph). To change the format of the information from single
events to frequencies, (1) all probability information was expressed in frequen-
cies such as “SO out of 1000” instead of 5%, and (2) a reference class
(“Americans”) was added on which these frequenciesare defined. Nothingelse
was changed:

One out of 1000 Americans has disease X. A test has been developed to detect
when a person has disease X. Every timethetest is given to a person who has
the disease, the test comes out positive. But sometimes the test also comesout
positive when it is given to a person whois completely healthy. Specifically, out
of every 1000 people whoare perfectly healthy, 50 of them test positive for the
disease.

To transform the task from estimating a single-event probability to estimating
a frequency, a new sample of Americans was introduced, and the second para-
graph of the single-event version was replaced by the following question:

How many people whotestpositive for the disease will actually have the disease?
____out of___..

If our minds were not built to reasonstatistically, but only equipped with
crude heuristics (consult Table 7.1), then the distinction between single events
and frequencies should not matter. But it does. Table 7.3 shows how onecan
make almost everybody (or almost nobody, or any proportion inbetween) find
the answerthat correspondsexactly with the result of applying Bayes’ theorem
to the information given—thatis, a probability of 0.02 or a frequency “1 out
of 51,” respectively. If both the information andthe task werein termsoffre-
quencies, this percentage was over seventy; if only one of the two was
represented by frequencies, the percentage was inbetweenthe single-event and
the frequencyversions. If the frequency format was combined with asking the
subjects to construct a pictorial frequency representation (i.e. to represent
each person by a square, and mark those who dohavethe disease and those
whotest positive), then the percentage reached 92%.
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Table 7.3. How to make the base-rate fallacy disappear: The Harvard
Medical School problem (see Cosmides & Tooby, in press)

Answers in accordance

Representation of the problem n with Bayes’ rule (in %)

Original single-event format 60 18
(Casscells et al., 1978)
Single-event format, replication 25 12

Information in frequency format, 25 56
task in single-event format |

Information in single-event format, 75 59
task in frequency format

Information and task in frequency 75 73
format

Information and task in frequency 25 92
format, pictorial representation

Cosmides and Tooby’s experimental variations, both in number and in

detail, go beyond what I have described here. But my summarysuffices to
make the same point as with the conjunction fallacy. The conceptual distinc-
tion between single-event probabilities and frequencies seems to be as impor-

tant for the untutored mind as it is for probability theory. It can make

apparently stable cognitive illusions disappear.

These results have direct implications for teaching statistical reasoning.

7.2.4 Natural Sampling of Frequency Information

So far I have dealt with situations in which frequency information comes in

one package, as in textbook problems or in newspapers. In many natural

environments, and for animals or people in an illiterate world, however,

frequencies must be sequentially learned through experience. How does an

algorithm vary if we move from the standard single-event probability textbook

problem to a corresponding ecological situation, in which the structure of the

environment is sequentially learned through experience? Here is another

thought experiment.

Let us transpose the above medical diagnosis problem to a non-literate
society where physicians have to rely on their experience alone. Assume you

are a physician. Your tribe has been afflicted for one year by a previously

unknownand fatal disease. Everyone suspected of having the new diseaseis

sent to you. You were lucky to discover one symptom that seemsto signal the

outbreak of the disease. What would it mean to be a Bayesian physicianin this

non-literate society?
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You would encounterall information sequentially, as discrete cases that add

up to frequencies. This information gathering is sometimes called natural

sampling (Kleiter, 1993), a concept corresponding to Brunswik’s (1955)

representative sampling. So far you have seen 30 people suspected of having

the disease. Ten of these turned out to have the disease, 20 did not. Of the 10
personsafflicted, 8 showed the symptom;of the 20 personsnotafflicted, only
4 had the symptom. Nowthey bring in number 31. She has the symptom.
What mental algorithm do you need in order to calculate the Bayesian

posterior probability that sheactually has the disease?

It turns out that in natural sampling this algorithm is quite simple—indeed,
much simpler than requiredin those studies from whichthe baserate fallacy
has been concluded. The algorithm needs only two absolute frequencies: the
number a of people with symptom and disease, and the number b of people

with symptom and no disease. These frequencies are a=8 and b=4,

respectively. The algorithm to calculate the relative frequency f(D|S) of

people with disease D among those who have the symptom is:

a 8

I(PIS)==e594
 

If you are a Bayesian and wantto calculate from the frequencies monitored

so far the posterior probability p(D|S) that patient number 31 has the

disease, your mental algorithm is just as simple:

8
p(D|S)= 844

Compare now this algorithm to that needed in the standard probability

revision tasks of the heuristics and biases program. In the latter, the infor-

mation is presented in terms of three single-event probabilities (forget for a
moment the confusion between base rates and subjective priors): the prior
probability p(D), and the likelihoods p(S|D) and p(S|—D). For this
representation of information, Bayes’ theorem is:

p|s)=-——-PO)w(S|D)_—_
The information (corresponding to the natural sampling condition) would

be represented as p(D) = 0.33, p(S| D) = 0.80, and p(S|—D) = 0.20. Inserting
these numbers into Bayes’ theorem results in the following calculation:

p(D|S) = 0.33 x 0.80/(0.33 x 0.80 + 0.67 x 0.20) = 0.67

The result is the same as in natural sampling, but the calculation is much
more difficult.

The general point I want to makeis that the way information is represented
in an experiment, versus encountered in a natural environment, can require
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reasoning algorithms of differing complexities. Even if these algorithms are

mathematically equivalent, as they are in the thought experiment just

presented, they can be computationally and psychologically different. Specific-

ally, if information is encoded through natural sampling of frequencies—as

opposedto laboratorystudies which present three single-event probabilities—

the following differences arise:

(1) In natural sampling, memory needs to monitor only two kinds of infor-

mation, the frequencies a and b. No attention need be paid to the base

rates themselves.

(2) In natural sampling, Bayes’ rule reduces to a simple algorithm.

(3) Frequency information, naturally sampled, carries more information than

single-event probabilities. Absolute frequencies contain information about

the sample size (e.g. “3 out of 20”, as opposed to p = 0.15), which allows

for computing the precision (so-called second-order probabilities) of the

information (Kleiter, 1993).

I know of very few studies that have used natural sampling instead ofdis-

playing three single-event probabilities. Christensen-Szalanski and Beach

(1982) represented the information in a medical diagnosis problem (similar to

those described earlier) both in the single-event probability format, as usual,

and by natural sampling. In the single-event version the usual results were

obtained, from whichthe base-rate fallacy has been concluded. In the natural

sampling condition, subjects were shown 100 slides, one by one. Eachslide

contained information about one patient: whether or not the patient had pneu-

monia, and whether or not the test result was positive. As in the single-event

version, the task was to estimate p(pneumonia| positive). The mean estimate

in the natural sampling condition was 0.22, almost identical with the actual

relative frequency f(pneumonia| positive) = 6/(6 + 19) = 0.24. (Although the

meanswere very close, there wasstill considerable individual variability inest1-

mates, perhaps duein part to individual differences in monitoring the actual

frequencies.)

Here is a second study. One of the best publicized demonstrations of the

base-rate fallacy outside of the realm of medical diagnosis problems is Tversky

and Kahneman’s (1982) Cab problem:

A cab was involved in a hit-and-run accident at night. Two cab companies, the

Green and the Blue, operate in the city. You are giventhe following data:

(i) 85% of the cabs in the city are Green and 15% are Blue.

(ii) a witness identified the cab as Blue. The court tested the reliability of the

witness under the same circumstancesthat existed on the night of the accident

and concluded that the witness correctly identified each one of the two colors

80% of the time and failed 20%of the time.

Whatis the probability that the cab involved in the accident was Blue rather

than Green?
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Tversky and Kahnemanreported that the modal and median response of
several hundred subjects was 0.80, whereas Bayes’ theorem gives only 0.41.
The medianresponseis identical with the witness’ hit rate—just as in some of
the medical diagnosis problems—and this has been interpreted to mean that
subjects neglect base rates. Bar-Hillel (1980; 1983) has tried many variations,
such as presenting the base rates before or after the other information, and
concluded that the base-rate fallacy was a robust phenomenon. Tversky and
Kahneman (1980) suggested that the reason forthis is that base rates tend not
to be used unless they are seen as causal: “The proportions of Blue and Green
cabs does not inducea differential propensity to be involved in accidents and
this information is therefore neglected.” (page 70).
Note that the problem, like those describedearlier, is presented in terms of

single-event probabilities and percentages. If base rates are neglected because
they are not “causal”, then the distinction between single-event probabilities
and frequencies should not matter, since frequencies do not induce a “differen-
tial propensity to be involved in accidents”, either.

Schlotterbek (1992) displayed the information in the Cab problem by means
of natural sampling. In an analogy to the study by Christensen-Szalanski and
Beach, 100 incidents of hit-and-run accidents were shown,one by one, using
a computer display. In each case the subjects could see whether the cab was
blue or green, and what the witness reported. After they had seen all 100 inci-
dents, subjects estimated either the probability that a cab reported as “blue”
is actually blue, in a new case, or the corresponding frequencyf(blue| “blue”).
Subjects were also asked (after they had seen all 100 cases) for their perceived
four conjoint frequencies (blue cabs and report “blue”, blue cabs and report
“green”, and so on). This allowed one to control for individual differences in
perceived frequencies. Each subject’s response to the frequency task was com-
pared with the actual frequency, which was 12 out of 29, or 0.41, and with
the corresponding individual frequency, calculated from the subject’s reported
conjoint frequencies.

Probability judgments corresponded well to the actual frequency(as in the
Christensen-Szalanski & Beach study), and frequency judgmentsstill better
(median = .42; mean = .45). Half of the frequency judgmentshit exactly either
the actual frequency (12 out of 29) or the corresponding numbercalculated
from subjects’ perceived conjoint frequencies. Perceived conjoint frequencies
were in very good correspondencewith actual frequencies, with a slight overes-
timation of the smallest frequency (blue cabs and report “green”) and underes-
timation for the largest (green cabs and report “green”). Neither of these two
frequencies, however, is needed to solve the frequency task.
To summarize: the examples given, including sequential frequency

processing, show that the distinction between single-event probabilities and
frequencies is relevant to understanding howthe mind reasons abouta class
of problems that are often termed Bayesian probability revision problems.
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Thus far, we have seen how to make two cognitive illusions, the conjunction

fallacy and the base-rate fallacy, largely disappear. I will now turn to a third

prominent illusion.

7.2.5 How to Make Overconfidence Bias Disappear

Confidence in one’s knowledge has been typically studied with questions of the

following kind:

Which city has more inhabitants?

(a) Hyderabad

(b) Islamabad

How confident are you that your answeris correct?

50%, 60%, 70%, 80%, 90%, 100%

Imagine you are an experimental subject. Your task is to choose one of these

two alternatives. Suppose you choose Islamabad, as most subjects in previous

studies did. Then you are asked to state your confidence, or subjective

probability, that your answer “Islamabad”is correct. 50% confident means

guessing; 100% confident means that you are absolutely sure that Islamabad

is the larger city. From a large sample of questions, the experimenter counts

how manyanswersin each of the confidence categories were actually correct.

The major finding of some two decades of research is the following

(Lichtenstein, Fischhoff & Phillips, 1982): In all the cases where subjects said,

“I am 100% confident that my answeris correct”, the relative frequency of

correct answers was only about 80%; in all the cases where subjects said, “I

am 90%confident”, the relative frequency of correct answers was only about

75%: when subjects said “I am 80% confident”, the relative frequency of

correct answers was only about 65%, and so on. Values for confidence were

systematically higher than relative frequencies. This systematic discrepancy

has been interpreted as an error in reasoning and has been named over-

confidence bias. Quantitatively, overconfidencebias is defined as the difference

between mean confidence and percentage correct.

Is overconfidence bias really a “bias” in the sense of a violation of prob-

ability theory? Let me rephrase the question: has probability theory been

violated if one’s degree of belief (confidence) in a single event (i.e. that a

particular answeris correct) is different from the relative frequency of correct

answers in the long run? From the point of view of the frequency interpre-

tation, the answer is “no”. In this view, probability theory is about frequencies;

it does not apply to single-event judgments such as confidences. Therefore, no

statement about confidences can violate the laws of probability. Even for

Bayesians, however, the answer is not “yes”. The issue here is not internal
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consistency, but the relation between subjective probability and external
(objective) frequencies, which is a more complicated issue and depends on
conditions such as independence. In particular, if there is no feedback after
each answer, as in this research, and if the true answers for a series of

questions are dependent, one cannot expect that one’s average degree ofbelief
matchesthe relative frequency of correct answers. Consider, for instance, pre-
dictions of the following type: “Will there be snowfall on December24, 1999,
in downtown Boston? Yes/No.” “Will there be snowfall on December 24,
1999, at Logan (Boston) airport? Yes/No.” “Will there be snowfall on
December 24, 1999, in Cambridge, Mass.? Yes/No.” And so on. Assume,
after careful consideration, that your probability that there will be snow is 0.7
in each case. Nevertheless, you cannot expect that your single-event confi-
dences match the relative frequencies in the long run, because the outcomes
are dependent. If it snows in downtownBoston,it will mostlikely snowinall
places, and you appear to be underconfident; otherwise you will appear
overconfident.

For these various reasons, a discrepancy between confidencein single events
and relative frequencies in the long run should not be labeled simply an
“error” in statistical and probabilistic reasoning, contrary to the claims in the
heuristics-and-biasesliterature. It only looks that way from the perspective of
a narrow interpretation of probability theory that blurs the fundamental
distinction between single events and frequencies.
However, for the last two decades, many researchers have taken it for

granted that any systematic difference between confidence andfrequencyis a
reasoning error, a regrettable deviation from rationality. And they assumed
that their task is to explain this discrepancy by somedeficiency in our mental
Or motivational programming, such as a “confirmation bias” (Koriat, Lichten-
stein & Fischhoff, 1980), “insensitivity to item difficulty” (von Winterfeldt &
Edwards, 1986, page 128), and the tendency of humansin the Western world
to overestimate their intellectual powers (Dawes, 1980). Similar to other
“cognitive illusions”, overconfidence bias has been suggested as an expla-
nation for human disasters of many kinds, including deadly accidents in
industry (Spettell & Liebert, 1986), errors in the legal process (Saks & Kidd,
1980) and systematic deviations from rationality in negotiation and manage-
ment (Bazerman & Neale, 1986).

Many experiments have demonstrated the stability of the overconfidence
phenomenondespite various “debiasing methods”, such as warning subjects
about overconfidence prior to the experiment or providing monetary
incentives. We even used a bottle of French champagneas an incentive, but
to no avail. Edwards and von Winterfeldt (1986, page 656) concluded in a tone
of regret: “Can anything be done? Not much.” .

I will now apply the distinction between single-event probabilities and fre-
quencies to the overconfidence bias. Take the samekind of general-knowledge
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questions that have been used before to demonstrate the overconfidencebias.

But now let our subjects make frequency judgments. After our subjects

answered 50 general-knowledgequestions of the Hyderabad—Islamabadtype,

in the usual format, they also had the opportunity to judge frequencies: “How

many of these 50 questions do you think you answered correctly?”

If confidence in one’s knowledge weretruly biased due to confirmation bias,

wishful thinking, or other deficits in cognition, motivation, or personality,

then the difference between a single-event and a frequency representation

should not matter. Overestimation should remain stable, as it does with

warnings and bribes.

Table 7.4 shows the results of two experiments (Gigerenzer, Hoffrage &

Kleinbolting, 1991). If one calculates, for each subject, the difference between

mean confidence (averaged over 50 questions) and the relative frequency of

correct answers, one finds as usual a stable positive difference that has been

called the overconfidence bias: the value +13.8 is such a difference (multiplied

by 100, and averaged across the 80 subjects in the first experiment). But the

interesting issue is how the frequency estimates compare with the actual

frequencies.

When we compared subjects’ estimated frequencies with their true

frequencies, there was no overestimation. Frequency judgments were quite

accurate. In both experiments, the mean differences were even slightly

negative, indicating a tendency towards underestimation. For instance, the

figure —2.4 means that in the actual set of 5O questions, the estimated

frequency of correct answers was, on the average, 1.2 lower than the true

frequency. Subjects missed the true frequency by an average of only about1

correct answer in a set of 50 questions.

Note that the very same subjects appear to be overestimating their

knowledge, if one blurs the distinction between single-event probabilities and

Table 7.4 How to make the overconfidence bias disappear (see

Gigerenzer, Hoffrage & Kleinbdlting, 1991)

Experiment 1 Experiment 2

Difference between (n = 80) (n = 97)

Mean confidence andrelative + 13.8 + 15.4

frequency of correct answers
(“overconfidence bias”)

Estimated frequency and —2.4 — 4,2

frequency of correct answers

Note: To make values for frequency and confidence judgments comparable,all

frequencies were transformed to relative frequencies. Values shownare
differences multiplied by a factor of 100.
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frequencies. You may think that this difference between single-event and
frequency judgment is simply due to subjects having second thoughts about
their performance at the end of the experiment. We have checked this. When
the sequence “confidence judgments—frequency judgment” was repeated again
and again (by presenting several sets of 50 questions in a sequence), subjects
consistently gave different values for confidence and frequency.

This chapter is not the place to pursue the question of how to model these
striking judgments. We have developed the theory of probabilistic mental
models (Gigerenzer, Hoffrage & Kleinbdlting, 1991), which explains this and
related phenomena with an algorithm that infers both confidences and
frequencies from frequency information—thatis, from frequency information
based on different reference classes.
To summarize: I have argued that the discrepancy between mean confidence

and relative frequency of correct answers, known as “overconfidence bias”, is
not an error in probabilistic reasoning. It only seems that from a narrow
normative perspective, in which the distinction between single-event probabili-
ties and frequenciesis blurred. If we ask our subjects about frequencies instead
of single-event probabilities, we can make this stable phenomenondisappear.
The conceptual distinction is much more effective with our subjects than
money or French champagne.

The striking effect of frequency representations on apparent violations of
probability theory, as reported in this chapter, seems to generalize to so-called
violations of utility theory as well. For instance, Keren and Wagenaar(1987)
showed that standard violations such as the “certainty effect” and the
“possibility effect” (Kahneman & Tversky, 1979) largely disappear when a
single gamble is changed into a repeated gamble (see also Keren, 1991; Lopes,
1981; Montgomery & Adelbratt, 1982). It also seems to generalize to a class
of phenomena knownasthe “illusion of control” (Langer, 1975), which
largely disappears if single-event estimates are replaced by judgments about a
series of events (Koehler, Gibbs & Hogarth, in press).

7.3 CONCLUSIONS

Probability theory and psychology havehistorically been intertwined since the
Enlightenment. The psychological theories of Locke, Hume, and Hartley
provided the groundsfor theclassical interpretation of probability, in parti-
cular for the assumption that the mind unconsciously tallies frequencies and
converts them into rational degrees of belief. This created the fiction of the
reasonable man (/’hommeéclairé) and the blurring of the distinction between
objective frequencies and subjective probabilities. When, by the early
nineteenth century, psychological theories had shifted to illusions, the reason-
able man dissolved and the difference between frequencies and degrees of
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belief became clear. The reasonable man gave way to the average man

(’homme moyen), and the frequency interpretation of probability emerged

and became dominant. Whenthe subjective interpretation—Bayesianism and

subjective utility theory—regained influence in the secondhalf of this century,

these modern versions of Enlightenment rationality often didnot distinguish

between single-event probabilities and frequencies, nor between single and

repeated gambles—just as classical probability theory had not. And many

psychologists, following in these footsteps, also failed to makethis distinction

and found the humanmind overflowing with cognitive illusions. Conflating

single-event probabilities and frequencies now served the fiction of the

irrational man.

Muchof the current view is condensed in my economist colleague’s dictum,

“either reasoningis rational orit’s psychological.” Rationality is now defined

in terms of formal algorithms or axioms, and psychologyis called upon to

explain the irrational. However, algorithms work on information, and infor-

mation needs representation. To discuss rationality in terms of algorithms

alone, good or bad ones, is incomplete if one does not pay attention to the

kind of information representation that these algorithms were designed to

work upon. Consequently, one cannot simply conclude from whatlookslike

bad performance, or cognitive illusion, that there are poor algorithms. This

non sequitur has been basic flaw in theheuristics and biases program. When

information is represented in terms of frequencies rather than single-event

probabilities, apparently stable cognitive illusions tend to disappear.
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Chapter 8

Subjective Probability:
What Should We Believe?

Peter Ayton
City University

and

George Wright
University of Strathclyde

“Everybody complains about their memory but no-one complains abouttheir

judgement.”
La Rochefoucauld

Whenintroductory psychology students are shownvisualillusions for the first

time they are often quite fascinated. They usually want to see more. They

express delight when they “see” the effects and some grumble their disappoint-

ment whenthey fail to experience certain effects that are rather dependent on

specific lighting or viewing conditions. Thatthis is not just because the demon-

strations are a welcome break from the usual drudge of lectures seems borne

out by their quite different reactions to demonstrations of reasoning problems,

or what some, though for different reasons (e.g. Cohen, 1981; von Winterfeldt

& Edwards, 1986) call “cognitive illusions”. In our experience, those that fall

prey to base-rate neglect (Kahneman & Tversky, 1973) or the conjunction

effect (Kahneman & Tversky, 1982a; Tversky & Kahneman, 1983) will be

more likely to complain. They sometimes argue that they were misled, didn’t

Subjective Probability. Edited by G. Wright and P. Ayton.
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understand the problem properly or that it was all just somesilly trick. The
stark contrast with the look of smug glee on the faces of the few that didn’t
give the wrong answeris quite inverse to the reactions of those confronted with
visual illusions.
The reason for this difference in reactions presumably has something to do

with how people view their psychological faculties. To students on an
introductory psychology course it is not always obvious that there is such a
thing as perception—or that if there is, it must be both immediate and
veridical. The experiencing of visual illusions serves as a vivid demonstration
that there is some sort of evidently fallible process mediating between reality
and their apprehension of it. However when it comes to reasoning and solving
problems, students, perhaps more than most, are self-consciously aware that
they have limitations. After all, they know that at the end of the course they
will face a test that will be widely interpreted as a measure of each individual’s
intellectual calibre. A rather defensive attitude to their own rational com-
petency seems to be behind the motivation to explain away any apparent
failings. In comparison the existence ofvisual illusions does not threaten
anyone’s sense of their own “visual competence”. In fact, the opposite seems
to be true; visual illusions serve to impress upon people howclever the brain
is to be able to make sense of the world.
The quotation printed at the head ofthis article gives a further example of

the different reactions people haveto the fallibility of different aspects of their
psychological functioning. Both of our examples suggest that people seem to
hold their judgementin high regard—thoughwith eachthereis a hint that this
may be rather unwarranted. Muchof the psychological research focusing on
subjective probability can be construed as input to a long running debate
about whether or not human judgementis reasonable according to the various
standards employed to judge it. Indeed the debate is now more often about
the standards used to judge judgement than the judgements themselves (cf.
Chapters 6, 7 & 10). In somerespects the reactions of students confronted with
their own fallibilities rather parodies the debate. There are those who argue
that there is nothing really so very wrong with the humanjudgements under-
lying subjective probabilities (e.g. Gigerenzer, Chapter 7) while others claim
that there are observable inadequacies (e.g. Harvey, Chapter 14). What can be
concluded from these arguments? In this chapter we consider some of the
evidence concerning the quality of subjective probabilities. In doing so we
consider the role of the standards that have been employed to study subjective
probability.

8.1 EVALUATING SUBJECTIVE PROBABILITIES

Subjective probabilities represent degrees of belief in the truth of particular
propositions. For example I maybeableto say thatI feel 50% sure that I have
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an appointmentat the dentist’s this afternoon, or 90%sure that the Suez canal
is the longest in the world or 99% sure that a person tried in court for an
offence is guilty. Such probabilities are subjective in the sense that they reflect
an individual’s assessment based on his or her knowledge and opinions. !
People with different knowledge andbeliefs will be perfectly entitled to offer
different judgementsofthelikelihoods attached to the same propositions. For
example, it is not possible using probability theory to calculate the probability
that the Suez canal is the longest in the world. Indeed, unless weare dealing
with random sampling from known populations, probability theory does not
offer anyone the means to compute the probability of uncertain events. It
follows that for any particular statement there is no “correct” subjective
probability.
At first it might be supposed that this would pose an insurmountable

problem for anyoneinterested in evaluating judgements of subjective prob-
ability, for if any value is as “correct” as any other who can say what a good
judgement is? Howeverthere are ways by whichsets of subjective probabilities
are constrained by axioms of probability theory and also external corre-
spondence to facts about the world. For example the additivity axiom states
that the probabilities for a mutually exclusive and exhaustive set of events (e.g.
the possible winners of a horse race) must add to one. Although, insofar as
probability theory is concerned, an individualis entitled to believe anything he
likes about the chances of each horse winning,thetotal of all the probabilities
he estimates for each horse winning must addto one.2 If the subjective prob-
abilities produced by an individual conform to an axiom of probability theory
then they aresaid to be coherent with respectto that axiom. Thestate of the
world can also be referred to in order to measure how well calibrated aset of
subjective probabilities are (cf. McClelland & Bolger, this volume). If the
statements concern some verifiable aspect of the world then they can be
checked for external correspondence (cf. Yates, 1982). For example,if I claim
to be 70%sure about each of a whole set of statements being true then, to be
well calibrated, 70% of them must in fact be true.
We havelikened the relationship between the coherence and calibration

properties of subjective probabilities to the relationship betweenreliability and
validity in psychometric test design (Ayton & Wright, 1987). For example, a
personality test designed to measure,say, intelligence is said to be reliable if
on different occasionsit gives the same assessmentof a group of individuals.
Reliability is of interest as it is a prerequisite for validity; a test that proved
to be unreliable couldn’t systematically be providing a valid measureofintel-
ligence. However, as manycritics of intelligence tests have pointedout, of
itself, reliability isno guarantee that thetest really is measuringintelligence—it
might be measuring someotherstable trait. The validity of an intelligencetest
has to be determined by comparing the test results with some other measure
of intelligence. In a similar way coherence and calibration of subjective prob-
abilities are interdependent. Subjective probabilities that are incoherent with
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respect to an axiom of probability theory cannot systematically be well

calibrated; they therefore cannot be taken as a guide to therelative likelihood

of the events that they describe. However, subjective probabilities that are

shown to be coherent are not necessarily well calibrated.

Whyshould the quality of subjective probabilities be of any concern? In the

classic decision analytic framework (see von Winterfeldt & Edwards, 1986;

Goodwin & Wright, 1991) numerical probabilities are ascribed to all the

different events identified in a decision tree. The best alternative is selected by

combining the probabilities and the utilities corresponding to the possible

Outcomes associated with each of the possible alternatives. Subjective

probabilities are thus one of the prime numerical inputs into decision analysis

(Raiffa, 1968), cross-impact analysis (Dalkey, 1972), fault-tree analysis

(Fischhoff, Slovic & Lichtenstein, 1978) and many other management

technologies. This is because actuarialstatistics concerningrelative frequencies

of the pertinent future events will often be unavailable or may be believed to

be inappropriate for current circumstances. A decision-maker mayrealize for

example that there have been changes in the world which have some causal

impact on the events being judged. Such changes would invalidatestatistical

methodsfor calculating probabilities, for example by using regression or time-

series methods based on averaging techniques. And, of course, one might take

the decision analytic frameworkas a psychological model of (unaided) human

choices. Perhaps people intuitively attempt some sort of expected utility

analysis in order to maketheir choices; plainly, subjective expectations in this

context would be crucial. For example, our decision about whether ornot to

go on a picnic might be strongly influenced by our estimate of the likelihood

of good weather.

8.2 THE APPEARANCE OF CONSERVATISM

So how good are judgemental probabilities? One early benchmark used for

comparison was Bayes’ theorem. Bayes’ theorem defines mathematically how

probabilities should be combined and can be used as a normative theory of the

way in which subjective probabilities representing degrees of belief attached to

the truth of hypotheses should be revised in the light of new information. In

the 1960s Ward Edwards and his colleagues conducted a number of studies

using the book-bag and poker-chip paradigm. A typical experiment might

involve two opaque bags. Each bag contained one hundred coloured poker-

chips in different but stated proportions of red to blue. One contains 70 red

chips and 30 blue while the second contains 30 red chips and 70 blue. The

experimenter chooses one bag at random and drawsa series of chips from it.

After each draw, the poker-chip is replaced and the bag well shaken before the
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next chip is drawn. The subject’s task is to say how confident they are—in
probability terms—that the chosen bagis bag 1 or bag 2.
A crucial aspect of the logic of these studies is that the experimenteris able

to say whatthe correct subjective probabilities should be for the subjects by
the simple expedient of calculating them using Bayes’ theorem. All of the
information required as inputs to Bayes’ theoremis explicit and unambiguous.
Ironically enough though this meant that the subjectivity of probability was
not a part of the studies in the sense that the experimenters assumedthat they
could objectively compute the correct answer—which they wouldbe able to
assume should be the sameforall the subjects faced with the same evidence.
The fact that the experimenter assumes he is able to calculate what the

subjective probabilities should be for all of the subjects was absolutely
necessary if one was to be able to judge judgement. However,it is also an
indication of theartificiality of the task, and is at the root of the difficulties
that were to emergewith interpreting the subjects’ behaviour. The experiments
conducted with this procedure produced a good deal of evidence that human
judgement under these conditions is not well described by Bayes’ theorem.
Although subjects’ opinion revisions were proportional to the values calcu-
lated from Bayes’rule, they did notrevise their opinionssufficiently in thelight
of the evidence, a phenomenon that was labelled conservatism. The clear
Suggestion was that human judgementwastothis extent poor, although there
was somedebateas to the precise reason forthis. It might be due to a failure
to understand the impact of the evidence or to an inability to aggregate the
assessments according to Bayes’ theorem. Aside from any theoretical interest
in these possibilities there were practical implications of this debate. If people
are goodat assessing probabilities but poor at combining them (as Edwards,
1968, suggested) then perhapsthey could be helped;a relatively simple remedy
would be to design a support system that took the human assessments and
combined them using Bayes’ theorem. However,if they were poorat assessing
the componentprobabilities then there wouldn’t be much point in devising
systems to help them aggregate these. “Garbagein garbage out” used to be a
popular aphorism for summarizing this sort of predicament.

8.3. CONSERVATISM DISAPPEARS

Before any firm conclusions were reached as to the cause of conservatism,
however, the research exploring the phenomenon rather fizzled out. The
reasonsfor this seem to be twofold. One cause, which weconsiderin the next
section, was the emergenceofthe heuristics and biases research and,in parti-
cular, the discovery of what Kahneman & Tversky (1973) called base-rate
neglect. Before this development occurred, however, there was growing
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disquiet as to the validity of this sort of study as a model for judgementin the

real world.

A numberofstudies had shownthat there was considerable variability in the

amount of conservatism manifested according to various quite subtle differ-

ences in the task set to subjects. For example, the diagnosticity of the data

seemed an important variable. Imagine, instead of our two bags with a 70/30

split in the proportions of blue and red poker-chips, the bags contained 49 red

and 51 blue or 49 blue and 51 red chips. Clearly, two consecutive draws of a

blue chip would not be very diagnostic as to which of the two bags we were

sampling from. Experiments have shown that the more diagnostic the infor-

mation the less optimal is the subject. When the information is very weakly

diagnostic, as in our example, human probability revision can be too extreme

(Phillips and Edwards, 1966).

Anotherfactor is the way in which the informationis presented. Presenting

the information about draws sequentially or all at once is irrelevant according

to Bayes’ theorem but Peterson, Schneider & Miller (1965) found that

presenting the information one item at a time, with revisions after each item,

were less conservative than those subjects who were given all the information

in one go. Pitz, Downing & Rheinold (1967) described an “inertia effect”,

where subjects tended not to revise their probabilities downward once the

initial sequence of information had favoured one of the hypotheses under

evaluation.

DuCharme & Peterson (1968) attempted to investigate probability revisions

in a situation they considered nearer toreallife than the standard paradigm.

They argued that the fact that the information was restricted to one of two

different possibilities (red chip or blue chip) meant that there were very few

possible revisions that could be made.In the real world, information leading

to revision of opinion doesn’t have discrete values but may more fairly be

described as varying along a continuum.In an experimental study, DuCharme

and Peterson used a hypothesis test consisting of the population of male

heights and the population of female heights. The subjects’ task was to decide

which population was being sampled from on the basis of the information

obtained by randomly sampling heights from one of the populations. Using

this task, DuCharme and Peterson found conservatism greatly reduced to half

the level found in the moreartificial tasks. They concluded that this was due

to their subjects greater familiarity with the data generating process underlying

their task.

The argumentconcerningthe validity of the conclusions from the book-bag

and poker-chip paradigm was taken further by Winkler & Murphy (1973).

Their paper, entitled “Experiments in the laboratory and the real world”,

argued that the standard task differed in several crucial aspects from the real

world. Firstly the bits of evidence that are presented to the subjects are

conditionally independent. That is, two or more pieces of information have an
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identical implication for the posterior probability to be credited to the

hypotheses regardless of the order in whichthey are produced. Knowing one

piece of information does not changethe likelihood of the other; producing

one red chip from the urn and then replacing it does not affect the likelihood

of drawing another red chip. However,in real world probability revision this

assumption often does not make sense. Suppose I see a football supporter

wandering along the street wearing a blue scarf. This may well cause me to

revise my Opinions about which team maybevisiting my home team; I would

now be more confident that it would be a team that wears blue. However, the

sight of another supporter also wearing a blue scarf will hardly change my

views very much more—having seen the first blue scarf, the sight of another

blue scarf is very much morelikely.

For another example consider a problem posed by medical diagnosis. Loss

of appetite is a symptom which,used in conjunction with other symptoms, can

be useful for identifying the cause of certain illnesses. However,if I know that

a patient is nauseousI knowthat the patient is morelikely (than in the absence

of nausea) to experience loss of appetite. These two pieces of information

therefore are not conditionally independent and so, when making mydiag-

nosis, I should not rely on the loss of appetite symptom as muchas I might,

in the absence of nausea, to diagnose diseases indicated by loss of appetite.

Winkler and Murphy argued that in many real-world situations lack of con-

ditional independence of the information would render muchofit redundant.

In the standard tasks subjects may have been treating the data as if it was

conditionally dependent and so one possible explanation for conservatism is

that the subjects are behaving much as they do in more familiar situations

involving redundant information sources.

A second difference between experimental environments andreality wasthat

in most experiments the data generators (the book-bags) are “stationary”. The

contents of the bags are fixed but in reality our hypotheses are not always

constant; indeed the evidence may cause us to change the set of hypotheses

under consideration. A third difference is that in reality the information may

be somewhat unreliable and thereforeless diagnostic than the perfectly reliable

colours of the poker-chips. In support of this argument Yousseff & Peterson

(1973) found that, when laboratory tasks included unreliable data, probability

revision was less conservative. A fourth difference is that the typical

experiments have offered very diagnostic evidence—clearly favouring one

hypothesis—whereas in reality the evidence may very often be weakly

diagnostic. Again the result of generalizing from experience may be the

appearance of conservatism. Recall that Phillips & Edwards (1966) found that

probability revision can be too extreme with very weakly diagnostic evidence.

In summary, the arguments considered by Winkler and Murphyled them to

conclude that “conservatism may be an artifact caused by dissimilarities

between the laboratory and the real world.” ?
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An early supposition from this line of experimentation was that subjective
probabilities were inappropriate by virtue of the observed discrepancies with
the probabilities derived from the Bayesian normative standard. However,
over the decade of research that we have just described, a curious reversal of
this conclusion was arrived at; now the normative standard is considered
inappropriate and thereby subjective probabilities may be appropriate. As we
shall see, the nature of contemporarycriticisms of more recent research, which
documents suboptimality in other aspects of probabilistic judgement, suggests
that this cycle is about to repeat itself: Once again it is being claimed that
inappropriate presumption lies behind the conclusion that poor judgementis
responsible for the experimentally observed disparities between judgement and
the normative standard (e.g. Beach & Braun, Chapter 6, and Gigerenzer,

Chapter 7). The notion that judgement is valid and that poorly chosen

experimental tasks have led to a misconceived view of poor human capability
has strong advocates.

8.4 THE APPEARANCE OF BASE-RATE NEGLECT

In reporting studies of peoples’ intuitions of random sampling Tversky &
Kahneman (1971) commented, in a footnote, that their respondents “...can

hardly be described as conservative. Rather in accord with the representation
hypothesis they tend to extract more certainty from the data than the data,in

fact, contain.” Their discovery of base-rate neglect—the antithesis of

conservatism—seemsto have beenthefinal nail in the coffin for the hypothesis
that we are all conservative Bayesians. In Kahneman & Tversky’s (1973)
experiments demonstrating neglect of base-rates, subjects were found to
ignore information concerning the prior probabilities of the hypotheses. For
example, in one study subjects were presented with this brief personal descrip-
tion of an individual called Jack and told that the description was drawnat
random from those of seventy engineers and thirty social scientists.

Jack is a 45-year old man. Heis married and has four children. Heis generally
conservative, careful and ambitious. He showsnointerest in political and social
issues and spends most ofhis free time on his many hobbies which include home
carpentry, sailing and mathematical puzzles.

Half the subjects were told that the description had been drawn from a

sample of 70 engineers and 30 lawyers while the other half were told that the
description was drawn from a sample of 30 engineers and 70 lawyers. Both

groups were asked to estimate the probability that Jack was an engineer (or

a lawyer). The mean estimates of the two groups of subjects were only very

Slightly different (50% vs. 55%). On the basis of this result and others
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Kahneman and Tversky concluded that prior probabilities are largely ignored

when individuating information was made available.

Although subjects used the base-rates when told to suppose that they had

no information whatsoever about the individual (a “null description”), a

description designed to be totally uninformative with regard to the profession

of an individual called Dick produced complete neglect of the base-rates.

Dick is a 30-year-old man. He is married with no children. A man of highability

and high motivation, he promises to be quite successful in his field. He is well
liked by his colleagues.

Whenconfronted with this description, subjects in both base rate groups gave

median estimates of 50%. Kahneman and Tversky concluded that when no

specific evidence was given the base-rates were properly utilized; but when

worthless information was given base-rates were neglected.

This phenomenonwasattributed to the operation of the representativeness

heuristic. Subjects were not judging by any kind ofstatistical reasoning but

were judging the probability of the professions by the extent to which the

descriptions were similar to the stereotype of the profession. Kahneman and

Tversky argued that people did not engagein statistical reasoning as such but

instead invoked heuristics such as representativeness to judge uncertainties.

Their 1972 paper on representativeness argued that the Bayesian approach to

the analysis and modelling of subjective probability did not capture the

essential determinants of the judgement process. This was because “in his

evaluation of evidence manis apparently not a conservative Bayesian: heis not

Bayesian at all.”

8.5 THE DISAPPEARANCE OF BASE-RATE
NEGLECT

Later research established that base rates might be attended to more (though

usually not sufficiently) if they were perceived as relevant (Bar-Hillel 1980) had

a causal role (Kahneman & Tversky 1982b) or were “vivid” rather than

“pallid” (Nisbett & Ross, 1980). However, Gigerenzer, Hell & Blank (1988)
have argued that the real reason for variations in base-rate neglect is nothing

to do with any of these factors per se, but because the different tasks may to

varying degrees encourage the subject to represent the problem as a Bayesian

revision problem. They claimed that there are few inferencesin real life that

correspond to Bayesian revision where a known base-rate is revised on the

basis of new information. Just because the experimenter assumes that he has

defined a Bayesian revision problem does not imply that the subject will see

it the same way.In particular, the subjects may not take the base-rate asserted
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by the experimenter as their subjective prior probability. In Kahneman and

Tversky’s original experiments the descriptions were not of course actually

randomly sampled (as the subjects were told) but especially selected to be

“representative” of the professions. To the extent that the subjects suspected

that this was the case then they would be entitled to ignore the offered

base-rates.

In an experiment Gigerenzer, Hell & Blank (1988) found that when theylet

the subjects experience the sampling themselves base-rate neglect disappeared.

In the experiment their subjects could examine ten pieces of paper each

marked lawyer or engineer (according to the base-rates). Subjects then drew

one of the pieces of paper from an urn andit was unfolded so that they could

read a description of an individual without being able to see the mark defining

it as being that of a lawyer or engineer. In these circumstances subjectsclearly

used the base-rates in a proper fashion—including for the “uninformative”

description Dick.* However, in a replication of the verbal presentation where

base-rates were asserted, rather than sampled, Kahneman and Tversky’s

base-rate neglect was replicated.

8.6 THE GAMBLER’S FALLACY CAN DISAPPEAR
TOO

It is perhaps worth noting that the phenomenon in subjective probability

judgement known as negative recency also “disappears” in similar contexts.

Recently we (Ayton, Hunt & Wright, 1989; 1991) reviewed the evidence that

people had difficulty in recognizing and generating random sequences. The

typical finding reported in the psychological literature over the past thirty years

has been that subjects show a degree of negative recency. That is they appear

to believe that alternations of the elements of a random sequence are more

likely than they really are; by the same token subjects under-estimate the

degree of repetition that there is. This is also known as the gambler’s fallacy

after Dostoyevsky’s (1866/1966) observation that players of roulette falsely

assume that after a given number has comeupit is muchlesslikely to occur
next time. In our review we discussed the possible reasons for this observation.
Wenoted that there were very few occasions when people would encounter an

assuredly random process and that consequently the apparent bias might

actually be a function of generalization from experience of encounters with

non-random sequences. We also considered evidence that the effect was

extremely sensitive to subtle variations in the instructions given to subjects. We

mentioned a study by Winefield (1966) which showedthat if subjects had to

guess the suit of a card drawn from the deck the usual measure of negative

recency disappeared if they could see the card being placed back in the deck

and the deck beingwell shuffled. If this was not the case then they continued
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to display negative recency. The experiment seemsvery similar in rationale and

findings to that of Gigerenzer, Hell & Blank’s (1988) test of the robustness of

base-rate neglect.

Recently a number of authors have reported that negative recency varies

quite considerably with the task and that tasks can be devised where the

subjects perform quite well. A number of authors have found that using an

instructional set that avoids reference to probabilistic concepts of chance or

randomnesswill improve performance. For example, Finke (1984) foundthat

subjects asked to produce responses that are as unpredictable as possible

produce responses that more closely approached the frequency of repetitions

expected by chance than do those subjects asked to produce responses as

randomly as possible. If, in a competitive game, subjects are motivated to

produce unpredictable sequences of binary responses then they can do so in

a way that satisfies standard tests of randomness more successfully (Rapoport

& Budescu, 1992). Kareev (1992) reports data that also showsvariability of

performance according to task and concludes that people have a basically

correct notion of randomness, with apparently non-random behaviour being

the result of attempts by a capacity-limited information-processing system to

optimize performancegiven its interpretation of the standard tasks. In the

words of the title of Kareev’s paper, maybe human randomnessis not so bad

after all.

In our comments on the research into randomness (Ayton, Hunt & Wright,

1989, 1991) we also noted that there is evidence of some confusion about the

normative standards used to judge human conceptions of randomness.

Curiously the same basic concept (representativeness) is often used both to

define the basis for objective “tests for randomness” and to explain whyitis

that subjects deviate from this standard. Thestatistical tests commonly assume

that a random sequence should contain a representative sample of all the

possible configurations (e.g. all the possible pairs of outcomes resulting from

tossing a fair coin: HT; HH; TH; TT). However, subjects are typically

berated when they can be assumedto be applying the same heuristic. Indeed,

negative recency has often been assumed to result from the application of

representativeness. Subjects have commonly been judged to be suffering from

the misconception that even small samples of random output should contain

a (representative) numberof the basic elements and should also show disorder

and absenceof any obvious “patterns”. In the light of this contradictionit is

perhaps not altogether surprising that the instructions given to experimental

subjects by experimental psychologists therefore have sometimes appeared a

little confusing, and possibly, in terms of the negative recency hypothesis,

rather self-fulfilling. Subjects have sometimes been explicitly told that they

should produce responses which appear “jumbled” or that don’t contain

any patterns. Aside from being a potential source of the inappropriate

“sambler’s fallacy”, such instructions suggest that the psychologists have
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beena little uncertain as to quite what the objectives are for their subjects with
this task.

8.7 IS HUMAN JUDGEMENT UNDER
UNCERTAINTY BAYESIAN, HEURISTIC OR
FREQUENTIST?

Gigerenzer (Chapter 7) discusses several cases where, with frequentist
representations, putative fallacies of probabilistic judgement disappear, and
he attributes this to the idea that subjects are better equipped to process
information concerning frequencies of events than they are single event prob-
abilities. An evolutionary speculation supports the argument: in the course of
their evolutionary development humans(and perhaps other creatures) have
acquired the meansto effectively represent and manipulate information about
frequencies of events—butnottheir probabilities. After all, probability theory
has, relative to the evolutionary scheme,only very recently emerged as a means
by which to represent and communicate information. According to Hacking
(1975) what we now recognize as the mathematical calculus of probability
theory was only formalized in the seventeenth century. It would not be
altogether surprising then if human cognition did not naturally compute
probabilities, but instead used stored frequencies of events. So, requesting
subjects to give their responses to problemsin the form of probabilities may
be asking them to understand and speaka rather foreign language. Just as it
would be unrealistic to expect one’s pocket calculator to accurately compute
the answer to arithmetic problems entered with Roman numerals, it may be
unreasonable to judge the general competence of human judgement under
uncertainty on the performance of problems requiring the assessment of
subjective probabilities rather than frequencies.
We have seen that Kahneman and Tversky suggested that people are not

conservative Bayesians but judge and reason with probabilities using mental
heuristics. Gigerenzer argues that people do not use heuristics when
experimental problems are re-cast into a relative frequency paradigm and,
indeed, are not equipped to reason aboutuncertainty using single-event prob-
abilities at all—but they can reason successfully about uncertainty with
frequencies. These frequency estimates can, under appropriate task con-
ditions, be translated into a valid probability metric. Note though one
emergent point of consensus in this dispute about human inference under
uncertainty. Gigerenzer’s conclusion from experiments that test subjects with
frequentist versions of Kahneman and Tversky’s problemsis, in one sense at
least, strikingly similar to that of Kahneman and Tversky’s. All parties would
appear to agree that human reasoning underuncertainty is “... not Bayesian
at all”.
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Kahneman and Tversky, and others, (see Kahneman, Slovic & Tversky

1982) assumed that mental heuristics were utilised in order to reduce the

complex tasks of assessing probabilities to simpler judgemental operations.

Such an assumption followed very naturally from Simon’s (1957) proposal of

bounded rationality—the notion that, because of their limited information

processing capacities, people don’t use optimal methods for reasoning but

instead take short cuts, or “satisfice” in order to produce judgements and

decisions accurately and efficiently. Simon’s work was concerned with the

simplifying mental strategies that reduced the complexity of tasks to make

them manageable by the kinds of minds that people actually have. However,

Gigerenzer’s view of reasoning underuncertainty is based on the premise that

the human mind has no need to makeuse of such heuristic judgements for

assessing probabilities. The claim is that people’s memory for frequencyis

reliable enough for them to utilise past records of events as statistics for their

judgements. Thereis in fact considerable evidence that memory for frequency

information is automatically encoded and extremely good. The evidence has

been well summarized by Hasher & Zacks (1979, 1984) who conclude that

experiments “reliably and uneqivocably demonstrate remarkable knowledge

of the frequency of occurrence ofall events so far tested.” (1984, page 1373).

Hasher and Zacks (1984) were aware thattheir views about the veracity of

the storage of frequency information might be seen as in conflict with the

evidence from Tversky & Kahneman (1973) that people might use an avail-
ability heuristic for judging frequency. Tversky & Kahneman (1973) reported

a number of experiments which suggested that people judged likelihood or

frequency by the ease with whichinstances of the event could be brought to

mind. Instances of frequent events are typically easier to bring to mind than

instances of less frequent events so the availability heuristic would often be

valid. However,availability and frequency are not always perfectlycorrelated.
For example, an experiment showed that subjects were morelikely to judge
that the letter R was morelikely to appearin the first position of a word than

in the third position. In fact the letter R occurs more often in the third position

of a word than the first and Tversky and Kahnemanattributed the error to the

fact that words beginning with R are easier to recall.

Hasher & Zacks (1984) comment that:

...the conflict between our view and that of Tversky and Kahneman is more
apparent than real. First of all, in most instances frequency andavailability (like
frequency and probability) are highly correlated: More frequent events are, other
things being equal, morerecallable or “available” than less frequent events. In
such situations, any biasing effects of the availability heuristic will not be seen.
Use of availability will bias frequency estimates most clearly whenthe retrieval
cue(i.e. the event to be judged) is a weak one(as in the example of words having
a particularletter in the middle position). It is worth noting, in addition, that in
otherillustrations of the availability heuristic the actual frequency differentials
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are small (e.g. 19 versus 20) and the countervailing effects of other variables(e.g.
stimulus familiarity) are strong. Such is the case in Tversky and Kahneman’s
experimentin whichsubjects misjudged as being more frequent 19 famous names
scattered in a list that also included 20 non-famous names. (pages 1383—4.)

Hasher and Zacks’ commentthat thereis no real conflict in their frequency
proposal and Kahneman and Tversky’s heuristic model of judgement cannot
be assumed to apply to those who argue that judgements of likelihood are
madeby reference to memorized frequencies. Either a particular judgementis
based on stored frequencies or it is heuristic.> There are some experiments
reported in the literature which attempt to unconfound the correlation
between frequency and probability to determine if judgement relies on
heuristics or stored frequencies. For example, Estes (1976) reported a study
whichled him toconclude that the basis for predictive behaviouris not a prob-
ability estimate but rather a record in memory of the past frequencies of
events. In a simulated opinion poll, on each of a series of trials, subjects
observed the outcome of a mini-poll contrasting pairs of alternatives (e.g. two
political candidates). The exposure sequence was designed such that in some
cases one candidate had a lowerprobability of winning the paired comparisons
than another but, because the candidate appeared moreoften, a higher overall

frequency of winning. When two such candidates were paired directly, sub-
jects picked as the likely winner the candidate whose absolute frequency of
winning was higher.

In summarising the probability learning literature Estes commented:

...the results suggest that the term “probability learning” is in a sense a
misnomer. I have found nothing to encourage the tendencyto think of prob-
ability learning as a basic or unitary process or as a direct manifestation of a
capacity for perceiving the statistical structure of sequences of events. The
subjects clearly are extremely efficient at acquiring information concerning
relative frequencies of events. (page 51).

Other researchis less supportive of the notion that judgements under uncer-
tainty rely on stored frequencies and not heuristics. A numberof studies have
shown that mere repetition of the presentation of large sets of statements
causes the subjective degree of belief in their validity to increase compared to
non-repeated control statements (e.g. Hasher, Goldstein & Toppino, 1977;
Gigerenzer, 1984). This phenomenonhasbeen attributed to the automatic and
accurate encoding of frequency information (e.g. Gigerenzer, Hoffrage &
Kleinbdlting. 1991). However, two studies suggest a heuristic account for the
effect.Bacon (1979) demonstrated that higher levels of rated validity occurred
for statements that subjects judged to be repeated—whetherthey hadbeen or
not. Arkes, Hackett & Boehm (1989) found that the effect did not generalise
to all repeated statements. Specifically they found that statements concerning
topics with which their subjects were unfamiliar did not increase in perceived
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validity with repetition. Arkes, Hackett and Boehm concluded that the

repetition—validity effect was attributable to a familiarity heuristic like avail-

ability. Note, however,thatit is possible to argue that the results of Bacon and

those of Arkes, Hackett and Boehm are dueto effects on the encoding of

memory for frequency (cf. Estes, 1976), and that therefore an availability

heuristic explanation may not be required.

With regard to the third general heuristic discussed by Tversky and

Kahneman—the anchor and adjust heuristic—we know of no evidence or

argument that specifically militates against its existence. There is of course a

large body ofresearch that has found evidence for its operation. A recent

study of judgemental forecasting by Bolger and Harvey (1994) finds that the

general anchorandadjust heuristic, operating in different forms depending on

context, was very usefulfor explaining their subjects’ responses. Their subjects

were required to make forecasts of future data points given previous ones in

the sameseries and appearedto alter their forecasting strategy depending on

the presence and absenceof trends andserial dependency. Bolger and Harvey

questioned whether such an account might conflict with Gigerenzer’s more

“ecological” accountof statistical reasoning. They suggest that, although we

might not have evolved to perform the type of judgemental extrapolations

required of their subjects, their tasks are now ecologically valid ones. Among

business people judgemental extrapolation is the most popular method of

forecasting. |
The frequentist approach adopted by Gigerenzer argues strongly against the

operation of mental heuristics and biases but there is, as yet, for those

choosing to adopt a heuristic approach to judgement, plainly still scope for

invoking general heuristics to account for judgemental behaviourin situations

where a frequentist representation is inappropriate, i.e. the assessment of

subjective probabilities for unique one-off events. However, the experimental

evidence of fallacies of subjective probability, usually attributed to the

operation of the representativeness heuristic, is obviously compromised by

the disappearance of these effects when subjects are able to contemplate

uncertainty from a frequentist perspective. Perhaps, as argued by Teigen

(Chapter 10), alternative mental processes for reasoning under uncertainty

may be invoked depending on the circumstances. Under one set of circum-

stances, defined by the problem structure and the format of information,

people may use a frequentist mode of thought to generate a probabilistic

response while under other circumstances mental heuristics may be used to

generate a response.

8.8 LIKELIHOODS OF SINGLE EVENTS

The evidencefor the use of heuristics in judgements of likelihood is based

largely on tasks where subjects were required to estimate the likelihood of
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single events. How do they do this? For the frequentist statistician the task is
nonsense. Probability only applies to the relative frequency of eventsand it
makes no sense to consider the probability attached to the truth of a single
statement. Plainly though people do feel different degrees of confidence in the
truth of individual propositions and, on the face of it, don’t object to
providing descriptions of their confidence in terms of probability. From the
standpoint of the Bayesian statistician there is no reason to discourage this
practice. The difficulty according to Gigerenzer is that human information
processing simply isn’t suited to the task. Nonetheless, it follows that
difficulties may arise if subjects are asked to assess veridical probabilities for
single events, or assume that they can do so.

Wecould ask ourselves whyit is that subjects produce responsesthat are so
well predicted bythe heuristics approach. For example, in one oftheir studies
Kahneman & Tversky (1982b) asked one group of subjects to judge the
representativeness of personality descriptions with respect to a whole series
of different professions. A separate group of subjects rated the likelihood
that each of the described individuals really was a member of each of the
listed professions. The correlation between the two was 0.96; plainly, the
judgements of likelihood were quite indistinguishable from those of repre-
sentativeness. It would seem that there is a danger that when asked to assess
subjective probabilities for single events subjects will report a measure of
representativeness or availability.
Kahneman & Tversky (1979) explained that one way to avoid thebiases of

subjective probability implied by the heuristic account was to take an external
rather than an internal view, by contemplating the target event in relation to
a reference class of similar events and considering the distribution of like-
lihoods for the whole class of events. The strategy looks very muchlike a way
of attempting to invoke a frequentist set for judging likelihood. (Indeed,
Tversky & Kahneman (1983) themselves found evidence that the conjunction
fallacy was largely eliminated when subjects were presented with the problem
expressed with frequencies rather than percentages.) This analysis is amplified
and extended by Kahneman & Lovallo (1993), who argue that we have a strong
tendency to see problemsas unique when they would be more advantageously
viewed as instances of a broader class. They claim that the natural tendency
in thinking about a particular problem, such as the likelihood of success of a
business venture,is to take the “inside” rather than the “outside” view. People
will pay particular attention to the distinguishing features of a particular case
and reject analogies to other instances of the same general type as crudely
superficial and unappealing. Consequently they will fall prey to fallacies of
planning—anchoring their estimates on present values orextrapolations of
current trends.

Once a forecaster takes the inside view they will not seek out relevant
statistical knowledge, will be less likely to formulate arealistic estimate and
will be overconfident about their forecasts. (For a discussion of the evidence
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for the overconfidence phenomenon and anevaluation of the frequentist

“ecological” perspective we refer readers to Chapter 18.) It would seem then

that proponents of the heuristic view are persisting with a pessimistic view

about human judgement of likelihood. However, in advising that anyone

attempting to assess probabilities should take an “outside view”, it also seems

that there is very little in practical terms that separates the advocates of the

heuristic and the ecological frequentist approachesin termsof their attitudes

to the quality of subjective probabilities. For example, Kahneman and Lovallo

review evidence which suggests that, because they take an inside view, people

can beunrealistically optimistic or, if failure is easier to imagine, pessimistic).

They cite a study by Cooper, Woo & Dunkelberger (1988) which showed that

entrepreneurs interviewed about their chances of business success produced

assessments that were unrelated to objective predictors such as college

education, prior supervisory experience and initial capital. Moreover, more

than 80% of themdescribed their chances as 70%or better whilst the survival

rate for new businesses is as low as 33%. Such findings might be taken as

evidence for poor judgement under uncertainty—oralternatively as evidence

that people are better off not attempting to assess probabilities for single

events. It seems possible that the entrepreneurs in Cooperet al’s study were

giving judgements of plausibility of success rather than any sort ofstatistical

probability (cf. Teigen, Chapter 10). If, understandably, they do not naturally

think about their business as one of a set of elements in a Statistical sample

but as a unique (to them) system that they work hard to control,it is difficult

to see how else they might generate their estimates.

If we compare studies of the calibration of probability assessments con-

cerningindividual uniqueevents (e.g. Wright & Ayton, 1992) with those where

assessments have been made for repetitive predictions of weather events, e.g.

rain (see Murphy & Brown, 1985), we can observe that relatively poor cali-

bration has been observed in the former whereasrelatively good calibration

has been observed in the latter. Bolger and Wright (1994) argue that this

differential forecasting performanceis due, in part, to the existence of rapid

and meaningful feedback to the weather forecasters in terms of both the

relative frequency of probability predictions and the predicted event’s

occurrence. Such prediction-feedback frequency information may well be

ideal for the achievement of frequentistic-based accuracy. An empirical study

by Bensonand Onkal (1992) found that simple outcome feedback had very

little impact on the performance of forecasters’ probabilistic judgements;

however, performance feedback,i.e. information aboutthe accuracy of the

forecasters’ judgements and the outcomesthat occur, did improve forecasting.

While, doubtless, people register outcome feedback about the stream ofidi-

osyncratic “one off” events in their lives it is harder to believe that they will

ordinarily be in receipt of performance feedback for their informal forecasts

of these unrelated events.

Weconclude our perusalof the issues surrounding the evaluation of human
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judgementsof probability with a final point concerning a possible special case
for subjective probabilities. On occasion there will be single events for which
no obviousreference class exists and then one will plainly be unable to assess
likelihoodaccording to an outside view, or by taking the frequentist approach.
Consider, for example, the possibility, in the mid 1980s, that Saddam Hussein
would attack Kuwait. How could President Bush’s administration have gone
about assessing a subjective probability for this unique proposition? As van
der Heijden (Chapter 22) discusses, such an assessment task may place
unrealistic demands on theforecaster. He argues that in planning for such
plausible, high-consequence, unique events, application of scenario planning
techniquesaid the creation of a robust strategy that works well under a range
of plausible futures. As a methodology for dealing with uncertainty, scenario
planning accepts and downplays the decision-maker’s poor ability to make
realistic probability assessments for single events. Ecologically, the accepta-
bility of scenario-planning techniques to senior managers, andtherelative dis-
dain with which decision analysis is viewed, may reflect an intuitive
appreciation of the poor quality of probabilistic judgements for the occurrence
of unique events. By contrast, in the psychological laboratory, subjects will,
helpfully, produce probabilities for unique future events as required by the
experimenter. Since most of our knowledge about probabilistic judgement has
been derived from laboratory studies, the documentation of the heuristics and
biases implicated in the assessment of probability may be valid but unrelated
to the way in which decision-makers choose to deal with uncertainty given a
free choice.

How should a person go about assessing numerical subjective probabilities
for such unique events? By definition, it is difficult to see how any reference
class of similar events could be selected for such events. However, one might
perfectly be able to account for the (no doubtvarying) subjective probabilities
offered by a sample of people by referring to various judgemental heuristics.
But, note that, without any reference class, we have no meansof evaluating
the validity of any judgements that might be offered. A single probability that
is unconstrained by reference to any parent distribution admits no standard
for evaluation. The probability of unique events remains something of a
mystery.

NOTES

(1) Savage (1954), introducing Bayesian ideas to the newly emerging field of decision
analysis, proposed that these probabilities should be understood as a property of the
person andfor this reason suggested that they be knownas personal probabilities. The
expression hasneverreally caught on in general usage whichis perhapsa pity; for some,
the term “subjective” automatically evokes negative connotations that the word
“personal” would avoid.
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(2) For the sake of simplicity our example neglects those outcomes such as dead
heats or races where no horses finished which could nonetheless, in principle, be
included.

(3) Edwards and his colleagues actually conducted many of their experiments not
using book-bags at all but a display consisting of 48 numbered locations each

containing a push button and a red and greenlight. On pushing the button, one of the
lights was illuminated. Subjects are told that this is equivalent to sampling a chip of
the corresponding colour from a book-bag. The program wascarefully prepared so that
the sample would be representative of the book-bag being sampled.It is possiblethat
this “artificial” book-bag might induce subjects to respond in ways that they might not
if they could see a real book-bag being sampled (cf. Winefield, 1966; Gigerenzer, Hell
& Blank, 1988).

(4) In their experiment two, Gigerenzer, Hell & Blank (1988) found Bayesian
conservatism in their subjects. This apparent reappearance of conservatism occurred
in subjects asked to predict the final scores of football matches given the half-time
scores. Subjects were unable to do so optimally; they underestimated the extent to
which the half-time score predicted the result and tended to give too much emphasis
to their estimate of the prior strength of the teams. By their own argumentthis is a task
with which the subjects would be very familiar and yet they did not indulge in the
correct amount of opinion revision. It is not clear whether such a result constitutes
evidence for cognitive bias.

(5) However, it may be that there are differentmechanisms which underlie different
judgements. Teigen (Chapter 10) argues that subjective judgements of probability can
be arrived at by a number of different processes. These processes may produce
responsesthat are at variance with one another or somestandard. As we mentionlater,
postulated heuristics are very successful at accounting for the responses generated by
sometasks, while the notion that people can utilise encoded frequencies is very helpful
for explaining the responses from other experimentaltasks.
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9.1 INTRODUCTION

All processes display variation. As a consequence,decisions entail uncertainty.

A standard procedure in decision analysis—the practice of and techniques for

aiding decision-making—is to attempt to formally incorporate the uncertainty

through a metric, typically probability. Even in more informal decision-

making, we deliberate risks and uncertainties in arriving at our decisions.

Thus, probability assessment has arisen as a major topic in the study of

decision-making.

Since the product of probability assessment(i.e. a subjective probability) is

clearly a judgment,it is not very surprising that assessment usually has been

described as a judgmentalactivity or process. Judgment, as a process, involves

a weighing or scaling activity by which a stimulusis evaluated against some

criterion or, in this case, along some dimension (the 0-1 probability scale).

However, the process by which the output judgment is constructed is not

purely or even primarily judgmental. Instead, the process is dominated by the

construction of reasoned arguments.

Subjective Probability. Edited by G. Wright and P. Ayton.
© 1994 John Wiley & Sons Ltd.
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It is this general statement that motivates and summarizesthis chapter. In

Section 9.2 we characterize current accounts of probability assessment as being

primarily judgmental in nature. The section ends by noting how researchers
have begun to implicitly acknowledge that such an account has important

limitations. Section 9.3 takes a step beyond the boundaries of a judgmental
account of probability assessment; it derives a theoretical framework that

encompasses reasoning and other nonjudgmental processes in a cognitive

theory of probability construction. This account is applied in Section 9.4 in
looking back at and reinterpreting “judgmental” phenomena that have been
documented in the behavioral decision literature. Finally, Section 9.5 notes
that progress consistent with the theory of this chapter is being made by
researchers, and expresses the hope that this progress will continue.

9.2 JUDGMENTAL ACCOUNTS OF PROBABILITY

Moststudies have focused on probabilities as measures of likelihood or covari-
ation. As likelihood measures, probabilities have been evaluated in decision

and forecasting tasks. Examples of such measures include the probability of

precipitation as assessed by a weather forecaster, and the probability that a

stock will increase in price as assessed by a securities analyst. A variant of the

likelihood assessment is the use of probability as a confidence measure. A
typical task has subjects responding to general-knowledge questions, such as:
Whichstate has the larger population, Minnesota or Wisconsin? The subject
answers the question and then assesses a probability that the answeris correct.

The probability is interpreted as a measure of confidence in being correct.

As measures of covariation, probabilities are communicated in pairs. For

example, one can express a covariant relationship between X and bystating
two conditional probabilities: P(X | Y) and P(X | not Y). To the extent that
these two quantities differ, there is a relationship between the variables. An

example of such measuresare thesensitivity, P(positive test | disease X), and

specificity, P(negative test | without disease X), of a diagnostic test as used in

medical diagnosis. A test is useful for diagnosing disease X to the extent that

its sensitivity differs from [1 — (specificity)] .

In either case, the predominant conceptualization of probability construc-
tion has been judgmental. The lens model of social judgment theory (see
Hammondet al., 1975) provides a concise representation of the judgmental

account. The goal is to assess the probability of some target event: Will a

company’s stock price be higher six months from today? Figure 9.1 illustrates

this as being accomplished by judgmentally weighing environmental cues to
arrive at a summary response, e.g. a numerical probability. As illustrated by

the left side ofthe figure, the environment supplies cues (.X1, X2,..., Xn) that
mayrelate to the target event’s actual occurrence in the environment (Y,). For

example, the target event may depend upon the company’s current earnings,
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Figure 9.1 Representation of the lens model

the current stock price, projected earnings, etc. In turn, as shownatright, the
forecaster uses cues to make a subjective assessment (Y,). The forecaster’s per-
formance depends on the degree of correspondence between Y, and Y,, e.g.
as measured bya scoring rule (e.g. Yates, 1982).

Thus, the model represents forecasting as a judgmental weighing in which
evidential cues are combined through a covert process to arrive at some scale
value forecast. Intended as only a paramorphic model, the lens model can

afford to conceptualize the process of assessment as essentially judgmental.
However, it is our contention that this conceptualization is inadequate. Both
prescriptive and descriptive decision research point to this conclusion. We
discuss each in turn.©

Prescriptively, within the decision analysis paradigm, probabilities are
elicited by a decision analyst from a domain expert through a structured
interview process. The interview process described by Spetzler and Stael von

Holstein (1975) and revised and amplified by Stael von Holstein and Matheson
(1979) remains the standard of current practice (Kirkwood, 1990; Merkhofer,
1987). Although not originally conceptualized in this manner, the interview
process consists of two distinct phases: belief assessment, the evocation and

application of relevant knowledge to form belief, and response assessment,
the attachment of a numerical qualifier to the belief (Benson, Curley & Smith,
1994). Accordingly, probability assessment can be improved by supporting
either belief or response assessment activity.

To date, research has focused almost exclusively on response assessment,
which isessentially a judgmental scaling process involving the matching of
numbers to beliefs. Unfortunately, improvements in response methods have

provided only marginal improvements in assessed probabilities. In fact,

analysts have argued that there is little to distinguish the different response
mechanisms (von Winterfeldt & Edwards, 1986; Wallsten & Budescu, 1983).

Their practical advice is to employ multiple encoding techniques as a means
of identifying inconsistencies in the expert’s assessments. As such, the use of

multiple methodsserves as an ad hoc stopping mechanism: Whenthe response
modessufficiently correspond, the interview stops. If the different response
modeslead to different values, then the interview returns to belief assessment.
It is belief assessment that ultimately bears the burden of the quality of
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probability assessment. Yet, a cognitive account of belief assessment is
lacking. It remains cloaked in a black box labelled “judgment.”

Morerecently, the prescriptive literature has begun to recognize that assess-
ment is more than a hiddenscaling activity. Decision analysts have begun to

pay moreattention to belief assessment activity. Knowledge mapsandrelated

graphical techniquesserve to aid the evocation of evidence andto organizeit

once identified (Benson, Curley & Smith, 1994). The main idea driving these
interventions is that the probability of an event can be assessed by decom-
posing the target event into lower-level events. These lower-level events are
then assessed through judgment and recombined throughcalculation. In fact,
knowledge maps andrelated graphical techniques were developed to exploit
the recombination alternatives offered by the standard probability calculus.

Thus, while offering some support for belief assessment, they are still more

concernedwith scaling and calculation than with developing belief assessment.
However, by beginning to focus attention on belief assessment, these new
structuring techniques do argue the value of going beyond judgmentto the
study of the processes involved in belief construction.
From a descriptive perspective, the “heuristics and biases” research

spearheaded by Kahneman and Tversky has serveda similar function (see

Kahneman, Slovic & Tversky, 1982). Heuristics are informal strategies for

drawing conclusions from evidence whose applications may lead to various
biases. Althoughstill tied to a conceptualization of probability assessmentas
judgmental, these studies begin to address the cognitive underpinnings of

assessment. They clearly indicate that there is more to assessment than

weighing evidence and scaling responses.

One consequence of this realization has been a movement away from a
purely subjective, judgment-oriented interpretation of probability. The
subjective view is often contrasted with earlier views of probability, like the
frequentist or logical views (Fishburn, 1964; Good, 1959; Weatherford,

1982). The frequentist view, by defining probability in terms of long-run
frequencies, and the logical view, by defining probability as a consequence of

logical relationships between propositions, both place the locus of probability
external to the assessor. The locus of assessment for the subjectivist is internal;
a probability is an individual’s likelihood judgment and is not externally

constrained. This interpretation allowed subjectivism a generality that led
to its favored status in behavioral decision research. However, this pure

subjectivism has recently been challenged by an emerging constructive inter-
pretation of probability (Payne, Bettman & Johnson, 1992; Shafer, 1981).
In the constructive view, the locus of assessmentis in the relationship of the
internal assessor to the external environment. An assessor constructs the prob-
ability from knowledge of the real world that relates to the target event.

Construction implies a moreactive, conscious process, unlike the more covert,

unconscious, judgmental processing of the subjective view. Again, wesee
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an indication that the judgmental account of probability assessment is

inadequate.

To address the inadequacy we must consider what besides judgmentis

involved in the construction of probabilities. The next section confrontsthis

issue.

9.3 BEYOND JUDGMENT

Whyis a probability assessment referred to as a “degree of belief?” Howis

it constructed? What does a probability capture? Most proximally, it is

produced by response assessment, but thereis an integral belief assessment as

well. Whatis the connection between the two activities? How do they operate

in conjunction?

The answers to these questions begin with an understanding of belief

(Smith, Benson & Curley, 1991). A belief (“I believe that it will rain

tomorrow”) is a connection between a proposition (“it will rain tomorrow”)

and a person (“I”). Unlike wishes, desires and such, a belief attributes a

correspondence between an internal state and an external reality. In language,

we use the term “belief” in two senses. In a narrow sense,it communicates the

adoption of a proposition as knowledge or near-knowledge. Thatis, the belief

has a certainty about it. In a broadersense, it communicates an entertaining

of a proposition. Thus, I can entertain and assess probabilities for both the

proposition that it will rain tomorrow and the proposition thatit will not rain

tomorrow. However, I can only adopt at most one of these as a belief in the

narrow sense. It is in the broader sense of entertaining a proposition that

researchers use the phrase “degree of belief,” as we do in this chapter. _

Most beliefs that we entertain do not attain the status of knowledge. By

knowledge, we refer to that subset of our beliefs that is justified and true

(Shope, 1983). To the extent that the belief does not attain knowledge, we

ascribe uncertainty to the proposition. Thus, uncertainty is a secondary

construct indicating a gap between belief and knowledge in our evaluation of

a proposition. A key lesson of all this is the relational nature of beliefs and

the engendered uncertainty. A belief expresses a relation between the believer

andthe believed, between the internal and the external, between the subjective

and the objective.

Anotherlesson is that beliefs are constructed. We bring our knowledge and

other beliefs to bear in an attempt to justify the target proposition as true.

That is, we consciously deliberate in an attempt to move from entertaining to

adopting a proposition, with the goal of attaining knowledge. To the extent

that this goal is not or cannot be reached, we say we are uncertain and we

attempt to communicate a degree ofbelief.
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The general means by which we bring evidence to bear in an attempt to

establish a belief is called beliefprocessing. Belief processing also can lead to

a judgmental qualification of the belief when certainty is not attained. Framed

in this way,it is clear that probability assessmentis not purely judgmental, but

involves other cognitive activities through which we draw conclusions as

embodied in target propositions.

We turn nowto a description of the different cognitive capacities that are

brought to bearin establishing beliefs. Then, in the following section, we build

these into a cognitive model of the belief processing from which probabilities

arise.

9.3.1 Cognitive Abilities in Belief Processing

Humans draw conclusions by at least four general means: calculation,

reasoning, judgment, andrecall. Calculation is purely symbolic. The summa-

tion 2 + 2 = 4 holds whether we mean 4 apples, 4 trolls, or 4 psychologists. The

content is nonessential, the symbols themselves drive the conclusion. Logical

deduction also exemplifies calculation, for example:

Premises: If A then B;

A;
Conclusion: B.

The content of A and B are irrelevant to the movement from evidence to

claim.

In contrast, practical (everyday, informal) reasoning is symbolic, but the

meaning or content of the symbols is relevant. In reasoning, the meanings of

the statements, not simply their arrangementin the formalstructure, drive the

derivation of the conclusion. We arrive at conclusions through structural

assumptions about the way the world works. For example, that events have

causes formsthe basis of causal reasoning. Or, if A and B are similar in some

respects, they may besimilar in other respects: This is the core of similarity-

based reasoning by parallel case. In reasoning, we use our knowledge and

beliefs to draw conclusions and form other beliefs. We argue from one

proposition to another by applying our world knowledge concerningrelation-

ships among the propositions.

Evidence: Bill Clinton will be an incumbent candidate in 1996.

Warrant: An incumbent lost the last election.

Claim: Bill Clinton will not be re-elected president in 1996.

The evidence in this argument implicates the claim through a warrant based

on experiential knowledge about the outcomeofthe last election. In general,

practical reasoning is a movement from evidence to claim through some

warrant involving our world knowledge (Toulmin, 1958). Although it is
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possible to rewrite this argument in the form of a logical deduction, the

resulting structure is less important in deriving the conclusion than the content

of the propositions. Further, such structures do not need to be involved in

forming conclusions through practical reasoning. Because of its use of

evidence andbeliefs to derive other beliefs, reasoning plays an integral role in

belief processing.

Unlike the other means of drawing conclusions, judgment is not symbolic.

It is a scaling activity used to characterize stimuli along some scale or

dimension. It may involve a combination of evidence througha subjective

weighing to arrive at an aggregate judgment, or it may involve a matching or

comparison process along a dimensionor against some criterion. Examples are

the grading of students, or Olympic scoring in diving or gymnastics. The

process is relatively covert and indescribable. It is a “black box” process, the

kind that has dominated conceptualizations of probability assessment.

Finally, recall may or may not be symbolic, and encompassestheinteraction

of long-term and working memories. Although memory research clearly

suggests that recall is a constructive process, individuals do not generally

perceive it as such (e.g. Mayer, 1992, Chapters 8 and 9). Wecan recall

conclusions without a consciousness of any transformation from data to claim

or of any evidence underlying the claim.

These distinctions among cognitive processes are believed to be useful,

though there is clearly interaction among them. For example, calculation

involves the abstraction of reality into some model of reality. While the model

is a strictly symbolic representation, it gains power from a mapping to

contentful propositions that describe reality (Chervany, Benson & Iyer, 1980;

Coombs, Raiffa & Thrall, 1954). Simply put, there is a reasoning counterpart

to a calculation. One can conclude from one proposition to another directly

through reasoning; or, one can strip away the content and employ parallel

calculation. Calculation formalizes reasoning; it operates without content

while reasoning operates with content (Curley eft al., 1994a).

In probability assessment, all of these means of drawing conclusions may

be brought to bear in forming a belief and in constructing the probability

response. Thus, to conceptualize assessmentsolely in terms of judgmentis too

limiting. A cognitive analysis can usefully supplement the judgmental account.

The judgmental account connects judgments of, for example, causality,

covariation, and similarity at one end to judgments of probabilities at the

other end. But, between these judgments is a belief formation process

dominated by reasoning.

The importance of recognizing and developing the role of reasoningis that,

unlike judgment, reasoningis fairly overt. The reasons that conclusions hold

can be made explicit, and so there is a better opportunity for improving

reasoning than judgment. Withthis realization, there is motivation to open the

black box and augment the judgmental account of assessment, thereby
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expanding opportunities for designing interventions to aid knowledge
evocation and application.
A parallel can be drawnwith studiesof the quality of assessed probabilities,

particularly their external correspondence as measured via scoring rules
(Yates, 1982). The focus in this research has been on calibration, which is a
scaling phenomenon. Less attention has been paid to discrimination, as
measured for example by resolution, which is a content phenomenon.Training
has been shown to improve calibration but not discrimination (Benson &
Onkal, 1992). How can evidence better support the task of discriminating
when events occur and when they do not? Our claim is that improvementsin
discrimination, arguably a morecritical aspect of performance for probability
assessors than calibration, will arise from improved understanding ofthe
reasoning that underlies assessment. Reasoningis thecritical activity.

Asa first step in understanding the role of reasoning in probability assess-
ment, we develop a model of the belief processing that supports probability
construction. This model is briefly described in the next subsection.

9.3.2 Model of Belief Processing

Figure 9.2 explicitly highlights the role of reasoning in probability assessment.
Thefigure and the following description are adapted from Smith, Benson and
Curley (1991) and Benson, Curley and Smith (1994). The figure presents a
competence model, depicting human capacities that can be performed in a
constructive probability assessment. It describes what people are capable of
doing in a deliberative assessment, not what necessarily occurs each time a
probability is assessed.

The figure is divided into three modules of activity: data generation,
argument construction, and qualifier construction. These modular activities
are interactive, rather than sequential. The rectangles within the modules
denote argument construction components, the production of which is driven
by reasoning. Ovals denote judgmental assessments. Diamondsrefer to the
external inputs and outputs of probability assessment.

Data generation module

Probability assessmentis initiated by some stimulus or expressed need for an
assessment. For example, a securities analyst may need to produce an
earnings-per-share (EPS) forecast for a company shefollows. This stimulus
triggers the belief formation process. If a belief has previously been formed,
it may simply be recalled. Memory-retrieval research demonstrates that
humans can recall significant conclusions and probabilities previously
generated, but that the underlying details of the evidence and arguments
leading to the conclusionsare not fully retrievable (Wyer & Hartwick, 1980).
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Such lack of detail may partly result from the forecaster opting for a sparer
representation to avoid the cognitive costs of increasing the precision of
recalled data (Brainerd & Rayna, 1990).

If the needed belief has not already been formed, various sources are tapped
for data relevant to the proposition or issue in question. The data sources are
external (e.g. obtained from the company in question or from historical
records) and internal (e.g. obtained through introspection: How has this
company dealt with me—the analyst—in the past? What do I know aboutthis
company andits industry?). Someor all of these data ultimately support the
construction of arguments. Data generation diminishes over time as sources
are exhausted. Alternatively, it stops abruptly if a definitive argumentarises.
Data generation may also be stimulated by particular arguments or

argument types. There is an interdependence between arguments and data:
arguments are formed from data, but also serve to evoke data. For example,
the analyst might consciously search for data that support a particular possible
conclusion; or, she might search for a similar situation that could be used in
identifying relevant evidence and in generating convincing arguments. Thus,
a consideration of possible arguments could itself prompt and guide data
evocation.

Argument construction module

Having generated information, the assessor must now applyit to the target
propositions. The major function of the argument construction module is to
bring evidence to bear in forming arguments. An initial need is for the
selection of evidence for further processing. Thus, the model contains a screen
or filter between data—the information that is generated—and evidence—the
information that is actually used to support conclusions. The screen consists
of reliability and relevance judgments that are applied to the generated data.
Data might arise from internal recall or from perception of an external

source. A judgmental assessment ofthe veridicality of these processes and
sources induces a perceived reliability of the data. For example, the securities
analyst might think that the memorytrace had eroded over time, or she might
believe that an external information source is biased, or she could judge that
the perceptual conditions are poor (a recognition of signal-to-noise ratio as a
perceptual determinant). Consequently, the analyst could downgrade the
reliability of the data. Also, the data may consist of a belief formed from some
prior belief formation processing of the type described by Figure 9.2. This
belief may have a qualification associated with it that impacts the perceived
reliability of the belief as data.

Relevance is a relational concept between a datum and a propositional
conclusion, and is evaluated through the argument in which the datum and
proposition are embedded. It concerns the applicability of the data for
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argument construction; a datum is relevant if it bears on the truth of the

proposition. Thus,the securities analyst may recall that her uncle owns stock

in the company beinganalyzed, but this datum is unlikely to be perceived as

relevant for use in an argument concerning the company’s expected EPS. The

relevance mechanism determines which arguments are developed and analyzed

in thebelief formation process. Accordingly, it bears major responsibility for

beliefs that are formed and probabilities that are assessed.

If the data are unreliable or irrelevant (below some threshold level), they

maybe screened out. Alternatively, low reliability and low relevance may only

serve to weaken the argument for which the data are used as evidence. Such

an effect is captured in the qualifier construction module by the arrow from

the data screen to argumentstrength. In this way, low reliability and relevance

can impact the assessed qualifier, e.g. the probability assessment.

Next, the module’s argument component shows the movements from

evidence to conclusions through warrants. The resulting arguments, con-

structed through reasoning, bring evidence to bear on the target proposition.

Some arguments may conclude one way, for example, in favor of increasing

EPS (C+), whereas others may imply the contrary claim, that EPS will

decrease (C—).

Having constructed arguments, an overall conclusion muststill be reached:

Will the EPSrise or decline? Weighing arguments towardthis final conclusion

is judgmental. The final conclusion expresses one’s belief regarding the

originating stimulus: “I believe that EPS will rise.”

Qualifier construction module

Paralleling the argument construction process are cognitive activities within

the qualifier construction module that assess aspects of the data generation and

argument construction activities. These generate one or more responses or

qualifications. For example, the final conclusion or one or more of the

intermediary conclusions can be qualified with a probability judgment.

Therelative strengths of the individual arguments are the major source of

such qualifications. An argument’srelative strength is affected by the assessed

reliability and relevance of the evidence within the argument and byfactors

intrinsic to the argumentitself, such as the type of warrant employed. Thus,

an argument from analogy might be regarded as havingless strength than a

causal argument.

Factors arising from a consideration of sets of arguments also can serve to

qualify beliefs. Completeness is one such factor. Not all recognized needs for

data will be satisfied; the securities analyst may wish to know what new

products are in development, but this evidence may be unavailable. The final

conclusion will be qualified accordingly. In addition, completeness can be

assessed by considering the time and effort devoted to argumentconstruction.
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Evenif all arguments favor the conclusion that EPS will rise, the analyst may
acknowledge that she had insufficient time to conduct a full analysis and
qualify the conclusion. Another factor is the internal coherence of the
generated arguments. If a set of arguments does not form a cohesive whole,
the strength of the conclusion that they supportis lessened.

Eventually, all the various assessments converge to form a judgmentof the
cumulative strength of the arguments as a whole. This, in turn, is translated
into an appropriate qualifier of the final conclusion, e.g. a probability number
expressing judged likelihood or a rating of confidence.

9.4 LOOKING BACK: EXPLAINING
“JUDGMENTAL” PHENOMENA

As Figure 9.2 indicates, probability assessment, which traditionally has been
described largely in judgmental terms, involves considerably more than simply
judgment. The goal of this section is to use examples of “judgmental”
behavioral decision phenomenato indicate howthe accountillustrated by
Figure 9.2 helps to usefully reconceptualize these phenomena. In so doing we
are opening the black box labelled “judgment” and expanding ourability to
study the underlying cognitive processing.
Opening the black box also leads to a cohesion of otherwise distinct

phenomena. The heuristics-and-biases research of the past twenty years has
identified numerous behavioral biases that can result from individuals’ use of
heuristics to process information for decision making (Kahneman, Slovic
& Tversky, 1982; Tversky & Kahneman, 1974). One shortcoming of this
important body of workis the lack ofan integrating framework (Einhorn &
Hogarth, 1981). Without integration, we are left with a disparate collection of
heuristics and limited understanding. A theory like that in Figure 9.2,
identifying the cognitive activity underlying decision tasks, moves us in the
direction of such a framework. We begin by applying the theory to some of
the more prominent heuristics to demonstrate this capability.

9.4.1 “Judgmental” Heuristics

In a recent review of introductory psychology texts, Van Wallendael (1992)
noted that students’ principal exposure to behavioral decision theory research
is through the heuristics literature, and morespecifically through the represent-
ativeness and availability heuristics. We begin by looking at these two
judgmental heuristics.
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Representativeness

The representativeness heuristic wasfirst identified by Kahneman and Tversky

(1972) and continues to be of interest to researchers (e.g. Bar-Hillel 1984;

Nisbett et al., 1983; Saks & Kidd, 1986; Well, Pollatsek & Boyce, 1990). As
applied to judgments of probability, the heuristic essentially states that the

probability of an event reflects a similarity relationship between a sample and
its parent population or between an event and its generating process. For

example, after being told that a sample offive will be drawn from a population

of 70 lawyers and 30 engineers, subjects respondedto descriptions of members

of the sample, such as the following:

Jack is a 45-year old man. Heis married and has four children. Heis generally
conservative, careful, and ambitious. He showsnointerest in political and social
issues and spends most of his free time on his many hobbies which include home
carpentry, sailing, and mathematical puzzles. The probability that Jack is one of
the 30 engineers in the sample of 100 is ___%. (Kahneman & Tversky, 1973,
p. 241)

Other subjects responded to the same descriptions after being told that the
population consisted of 70 engineers and 30 lawyers. The modal responsein

the experiment, with either base rate, was to respond in a mannerconsistent

with ignoring the base-rate evidence and judging the similarity of the
description of Jack to the target events, lawyer and engineer.
While this explanation is indeed valid, having been reliably established

experimentally, we believe that it can be amplified with the belief-processing
model described in the previous section. In assessing the probability of Jack
being an engineer, we attempt to form a belief as to Jack’s profession. We do
so by constructing arguments, that is, by reasoning. We establish a belief
regarding Jack’s profession; and then,to assess the strength of our belief, we
apply judgment to evaluate aspects of our belief formation process. Do we
have justification for believing Jack is an engineer? Howstrongis the justifi-

cation, i.e. to what extent do webelieve it? Finally, the strength assessment
is scaled to a probability response.

Framed in this fashion, representativeness is a means by which we reason
to form beliefs, by which we move fromone proposition (evidence) to another

(conclusion). In rhetoric, Brockriede and Ehninger (1960) observed that

arguments can be classified in terms of the means by which they accomplish
this movement among propositions, and they developeda preliminaryclassifi-
cation schemebasedonthis insight. If valid, such a classification system would
allow us to more specifically identify representativeness with the type of
reasoning employed.
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Curley et al. (1994a) provided this validation while extending Brockriede

and Ehninger’s analysis in three important ways. First, they identified that

arguments arise from the application of our world knowledge about the

relationships among propositions. This reframing allowed an expansion of

Brockriede and Ehninger’s typology, and it allowed the typology to be

groundedin the psychology of a cognitive representation of knowledge. Table

9.1 summarizes the argument typology and provides examples of each

argument type. These types are organized by the form of the underlying

knowledge relationship from which the arguments arise (Curley et al., 1994b,

has more detailed descriptions and other examples of the arguments). Second,

they established that these argument types could be reliably coded from verbal

protocols of subjects’ reasoning. This provided support for the framework’s

validity. Third, they observed that reasoning involving these argument types

actually occurred in probability assessment; and, indeed, that reasoning was

the central activity in assessment, supporting the validity of the general

accountillustrated by Figure 9.2.

The representativeness heuristic stems from the use of knowledge connections

that are hierarchical. Hierarchical relationships represent instances, categories,

and subcategories with associated features (Collins & Michalski, 1989).

Thus, in the example above, we reason as to whetherJack is an instance of

the category lawyer or of the category engineer. This reasoning is based on the

content of the description as it relates to our world knowledge about lawyers

and engineers as stored in a hierarchical knowledge base.

A keyfactor in such argumentsis the homogeneity among instances grouped

under a category. Homogeneity refers to the uniformity of instances within a

category; heterogeneity, its complement, describes perceived variation in the

instances (Nisbett et al., 1983). Our ability to reason from instances to

categories, and vice versa, depends on a perception of homogeneity among

instances (Curley et al., 1994a). We judge category membership bythe pre-

sence of commonalities among instances; these commonalities are then used

in reasoning.

The bias is not in applying this reasoning; the reasoning is appropriate and

has a sound basis as a meansof establishing a belief in Jack’s occupation. The

bias results from ignoring useful base-rate, relative frequency evidence, and

using only reasoning from hierarchical world knowledge. Subjects show a

preference in this task for reasoning from hierarchical world knowledge rather

than from recalled or observed relative frequency data. Knowledge of such

tendencies is important for understanding probability assessment, but cannot

be fully exploited until we frame and understand assessment in terms of the

reasoning being employed.

Let us be clear about how weperceive the theoretical account of the

representativeness phenomenonthat we havejust put forth. The contribution

is not in providing an alternative explanation. Our account is completely



Relationship

Causal

Covariational

Hierarchical

Resemblance

External

Domain

Argument type

Causal

Motivational

in cause

Motivational

in effect

Sign

Generalization

Individuation

Categorization

Hierarchical

exclusion

Hierarchical

combination

Parallel case

Analogy

Authority

Description

Non-intentional causal link between data

and claim

Intentions of human agents used as a
cause of someresult

Concludes that some human intention
exists

Interprets data as symptomsor clues and
establishes a covariant relationship

Induction from a sample to its population

Concluding fromthe general population to
a specific individual

Establishes membership in acategory
from the presence of certain features

A necessity appeal among instances that
are mutually exclusive

The conjunction of an exhaustive set of
instances implies their superset

Concludes based on a similarity between
instances

Concludes based on a similarity of
relationship with something outside of the
current domain ofinterest

Appeal to an external source with
potentially relevant knowledge

Example

The product will be profitable because
those responsible are very competent.

The product will be successful because the
CEOis determined for it to succeed.

The CEO is determined to succeed because

his job is dependent upon success.

Japan has a high GNP because they have a
developed high-tech industry.

Roughly 10% of the parts in the
warehouse are defective because 10%of
the sampled parts were defective.

All employees want job security. Thus,
Chuck, being an employee, wants job
security.

Chuck is an employee because he has a
75% time appointment with our firm.

The product will not have a demand in
department or hardwarestores, so its
demand must come from service stations
and auto partsstores.

The market is covered because we are
selling in grocery and conveniencestores,
discount chains, and drugstores.

It will take 25 minutes to drive to the
airport because that is what it took last
time.

Our corporate strategy is like a stool;
therefore, we need all three components
to be successful.

The economy will rebound because
the leading economists have so predicted.

66
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consistent with the representativeness explanation. It is also not merely a
rewording of an existing phenomenon. Our explanation movesthe focus of
attention from the black box of judgment to existing work in cognitive
psychology. By so doing, representativeness is recognized as a label for one
specific form of reasoning. Rather than trying to obtain or study judgments
of representativeness, this account encourages a movementofresearchers’
attention to the study of the underlying cognitive processes. The explanation
is thus intended to broaden the understanding of the representativeness
process by groundingit in the cognitive roots from whichit arises. Represent-
ativeness andother heuristics need not be treatedin isolation. Theyreflect the
manifestation of basic cognitive activities that have been and arethe study of
cognitive psychologists. Let us demonstrate this perspective with another
heuristic: availability.

Availability

The availability heuristic was introduced by Tversky and Kahneman (1973)
and, like representativeness, has received continuing attention (e.g. Brown &
Siegler, 1992; Nisbett et al., 1983; Poses & Anthony, 1991). The basic idea is
that an individual will use ease of recall of instances to judge the frequencies
and likelihoods of target events. The heuristic and associated bias were
described by Tversky and Kahneman (1973) through the following example:

Suppose you sample a word at random from an English text. Is it more likely
that the word starts with a K,or that K is its third letter? According to ourthesis,
people answer such a question by comparing the availability of the two
categories, i.e., by assessing the ease with which instances of the two categories
come to mind.It is certainly easier to think of words that start with a K than of
words where is in the third position. If the judgment of frequency is mediated
by assessed availability, then words that start with K should be judged more
frequent. In fact, a typical text contains twice as many wordsin which is in
the third position than words that start with K. (page 211)

As predicted, their empirical study demonstrated that subjects’ modal
response was to judge the first position as more frequent, supporting use of
the availability heuristic.

Tversky and Kahneman were concerned with why such responses were
biased. Theavailability heuristic is one explanation. Webelieve that the frame-
work presented in this chapter enables us to go a step beyond this explanation.
By viewing the phenomenon through a broader cognitive framework, we
can begin to address how, why, and when people use the availability
heuristic.



Applying a Cognitive Perspective to Probability Construction___ 201

The key task characteristic in the above example is that the question is

perceived as a general knowledge question. Such questions also have been

termed “almanac questions” since the correct responses can be obtained by

consulting an almanac or similar source. (In the word-count example, the

authors’ source of the definitive answer was a word-count study by Mayzner

& Tresselt, 1965.) Tversky and Kahneman described these as retrieval tasks.

Thus, the respondent perceives that a correct answerexists, at least in theory,

which prompts the use of recall as an appropriate means of drawing

conclusions for the task.

One can then qualify this recall process. The availability heuristic proposes

that the qualification reflects an ease of recall judgment. Thus, the term “avail-

ability heuristic” is a label for the application of a recall process and a

judgment process to a general knowledgetask.

But, there are other conditions under which the availability heuristic has

been applied. Consider the following word-construction task from Tversky

and Kahneman(1973):

Each problem consisted of a 3 xX 3 matrix containing nine letters from which

wordsof three letters or more were to be constructed... . For each problem, they

were given 7 sec to estimate the number of words whichthey believed they could

produce in 2 min. Following each estimate, they were given two minutesto write

down (on numberedlines) as many wordsas they could construct from theletters

in the matrix. (page 209)

The consistent finding in construction tasks of this form was that subjects’

estimates correlated highly with the frequencies of constructed instances.

Under the label of availability, Tversky and Kahneman hypothesized that

subjects could use the numberof instances constructed in 7 secondsto estimate

the number of items that could be identified in 2 minutes.

Of note in this example is that there is a connection being made between past

time and future time, i.e. from recall to prediction. Such a connection is

legitimized when there is a perception of homogeneity in recall performance

over time. This allows performances at different times to be grouped as

instances of a more general category that includes both past and future

performances. Given this, one can use an historical frequency to conclude

future frequencies. Thus, judgments of homogeneity, groundedin hierarchical

knowledge bases, should impact the applicability of the availability heuristic

in construction tasks.

The applicationto likelihood assessment of this connection across time is

demonstrated by another example:

Whatis the likelihood that the Minnesota Timberwolves basketball team will win

its next game?
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In assessing the likelihood, it is reasonable to expect an assessor to use the
question:

How frequently do the Minnesota Timberwolves win?

This second question captures a conversion from future time to past time,i.e.
a conversion from prediction to recall. The conversion is allowed by a
judgment of homogeneity among games, past and future. This allows
reasoning by generalization (Table 9.1) from past games to other gamesthis

season, followed by reasoning by individuation from games in general to a
particular future game (Curley et al., 1994b, has other examples of such
reasoning). In this way, the assessor can apply the availability heuristic to the
likelihood question. In other words, the recall of wins and losses and the
judgment of their frequencies can be used as evidence to assess likelihood in
the same waythatrecall is used to judge frequency in the word construction
example.

In the Timberwolves example, the desired response can be constructed

through deliberative reasoning, with the frequency question producing the
generalization and individuation arguments outlined above. Other arguments
might be constructed,as well, using other evidenceas available, e.g. the team’s
recent performance, the team’s opponent, or the site of the game. Alter-
natively, the reasoning may be automated through experience, as might occur
with the word-construction task. Adults have considerable experience with
words, even to the point where the construction of actual words in 7 seconds
may not be needed to accomplish the task. Recognition processes, along with
judgment, maysuffice (see Hart, 1967 and Beyth-Marom & Fischhoff, 1977,

regarding the separation of recognition andrecall processes in memory and in

availability, respectively).

This analysis broadensthe generality of the availability heuristic. It does so

by revealing that the heuristic captures different patterns of processing. In the
word-count example,a recall process is followed by a judgmentprocess. In the
word-construction example, reasoning from homogeneous instances in a
hierarchical knowledge base (possibly automatized to a judgmentprocess)is
applied. Thus, the availability heuristic can operate in at least two distinct situ-

ations: (a) in general knowledge tasks, and (b) in situations when inferences
from instances available at one point in time are madeto instancesat a later
time. Future research should acknowledge such differences. For the purposes
of this chapter, it is enough to identify that such insights arise from the
broader, cognitive analysis of assessment that we advocate.

Again,the benefit of the present accountis not in supplanting the represent-

ativeness or availability explanations, but in complementing them. Heuristics
are the manifestations of basic underlying cognitive processes. Attention
should be directed at these processes.How do judgment, reasoning,recall, and
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calculation operate to produce a probability response? Whenis eachtriggered?

Whatrole does each play? What situational features influence their operation?

The use of a cognitive account grounded in more basic cognitive processesis

a subtle but important shift in the means used to understand probability

assessment. Figure 9.2 represents a preliminary step in this direction.

In the next two sections, we show howthe attention to reasoning and the

cognitive underpinnings of assessment helps to inform our understanding of

other behavioral decision phenomena.First, we consider ambiguity; then, we

look at the use of probabilities as measures of likelihood and support.

9.4.2 Ambiguity

Ellsberg (1961) conjectured that individuals would prefer to wager on an urn

of known composition (e.g., 50 red balls and SO black balls) than on an urn

of uncertain composition (e.g., 100 red and/or black balls in some unstated

proportion). He showed that this behavior was inconsistent with even a

qualitative measure of probability. Ellsberg attributed such behavior to an

avoidance of ambiguity, the additional uncertainty present in the second urn.

Morespecifically, Ellsberg defined ambiguity as “a quality depending on the

amount, type, reliability and ‘unanimity’ of information, and giving rise to

one’s degree of ‘confidence’ in an estimate of relative likelihoods” (page 657).

Thus, in the case of the second urn,thereis greater ambiguity since there is

a lesser amount of information available. The significance of ambiguity lies in

the empirical regularity with which individuals’ choices are influenced by

ambiguity in a variety of contexts (Curley, Eraker & Yates, 1984; Curley &

Yates, 1989; Einhorn & Hogarth, 1986; Hogarth & Kunreuther, 1989).

Ambiguity results from the different judgments that accompany belief

processing. Figure 9.2 emphasizes that in forming a belief, its qualification can

arise from several sources. For example, the assessor may wish to qualify a

belief based on evidential unreliability, perceived weaknesses in the arguments,

and/or incompleteness of the evidence. To form a probability response, these

judgments must be mergedandscaled to a single response, e.g. a number from

0 to 1. Ultimately, such a response communicates one or more aspects of the

belief and the qualification process.

Forexample, in the two-urn situation used by Ellsberg, when asked to judge

the likelihood of selecting a red ball, subjects’ modal response is 0.50 with

either urn. This response reflects a subject’s use of the probability scale to

communicaterelative frequencies, along with assumptions of equallikelihood:

each ball is equally likely to be drawn; each possible distribution is equally

likely for the second urn.

When asked to choose an urn for wagering, another consideration merges

into the communicated response: the incompleteness of evidence. Note that

this aspect of the situation does not impact the probability response; subjects
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simply communicate the perceived relative frequencies. However, the choice
response communicates different aspects of the situation; both frequency and
completeness judgments impact the choice response.

In general, response measures can be conceived as languages with which
decision-makers qualify their beliefs (Shafer & Tversky, 1985). Different
languages maycapture different aspects of belief scaling (i.e. different aspects
of the means by which beliefs are qualified), and be moreor less appropriate
in different situations. Operationally, the different languages for commu-
nicating one’s degrees of belief are presumed to arise from the various
judgments surrounding belief assessment. This linking of response languages
to the underlying belief assessment process provides a means of grounding
these assessments cognitively in a way that is not currently done.

Additionally, it is possible to generalize the account of reactions to
ambiguity by recognizing the role that reasoning plays in assessment. Oneof
the motives that has been suggested as impacting choiceis the desire to justify
one’s choices. Curley, Yates & Abrams (1986) observed that this motivation
wasatleast partially responsible for subjects’ reactions to ambiguity. Subjects
incorporate considerations of the amountof evidence into their choice because
they perceive that it will impact their ability to justify their choice to others.
Hogarth (1992) also noted the role of justification and argumentin reactions
to ambiguity. Again, an analysis of the cognitive underpinnings of assessment
promisesto further our understanding of isolated phenomenain a unified way.

9.4.3 Likelihood and Support

Finally, we address an issue that traces its roots to the early history of prob-
ability: the distinction between likelihood and support. As noted earlier, in
forming beliefs we aspire to knowledge; we communicate degrees ofbelief to
the extent that this aspiration is not attained. As the goal state of belief
formation, knowledge represents those beliefs that are justified and true
(Shope, 1983). Thus, in defining a degree of belief, we can do so against either
of two criteria: truth or justification. Historically, the conceptions of prob-
ability arising from these different criteria appear in the distinction between
Pascalian probability (truth) and Baconian probability (justification) (Cohen,
1977; Shafer, 1978). We follow Smith, Benson, and Curley (1991) in referring
to the distinction as likelihood (truth) versus support (justification).

Probability theory has traditionally interpreted degrees of belief as
likelihoods:

A probability, according to Bayesianslike ourselves, is simply a number between
zero and one that represents the extent to which a somewhatidealized. person
believes a statement to be true. (Edwards, 1982, p. 359)
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In contrast, measures can be developed that express support, for use in

situations emphasizing justification. Possible examples are legal settings

(where the goal is to remove doubt, not to determine truth), andsecurity

analyses (where the emphasis is on justifying a recommendationto client).

One major structural difference between support and likelihood is that

increased support for a hypothesis does not necessarily affect the support for

its complement, whereas an increase in the likelihood of a hypothesis

necessitates a reduction in its complement’s likelihood. Shafer (1976), building

on the work of Dempster (1968), proposed a set of belief function measures

that accomplish this separation between an hypothesis and its complement,

and so lend themselves to measuring support. Subjects have been shown to be

able to assess these measures reliably (Curley & Golden, 1994).

In terms of Figure 9.2, support measures presumably tap into the judgment

activity accompanying assessment differently than do probability responses.

An indication of this difference is foreshadowed by Keynes (1921): |

But it seems that there may be anotherrespect in which some kind of quantitative

comparison between arguments is possible. This comparison turns upon a

balance, not between the favourable and the unfavourable evidence, but between

the absolute amounts of relevant knowledge and of relevant ignorance

respectively. (page 71)

Keynes’ description acknowledges the importance of support, and suggests

that support is tied more closely to underlying completeness judgments than

is likelihood. This conjecture is consistent with observed reactions to
ambiguity.

In sum, a cognitive analysis of assessment indicates that there are clearly

multiple sources of qualification arising from belief formation activity. These

multiple sources of qualification are somehowreflected in whatever response

is elicited. However, different responses need not tap equally into these inter-

mediary judgments. For example, completeness assessments might affect

support responses but not likelihood responses. Different measures will

communicatedifferent things and serve different purposes. To say that any one

measure, such as probability, can adequately describe all that we might

consider important in a degree of belief seems unwarranted. Infact, when

trying to do so, certain behavioural “anomalies”, e.g. reactions to ambiguity,

are observed. |

9.5 WHERE DO WE GO FROM HERE?

In the last fifty years, behavioral researchers have madesignificant advances

in our understanding of probability. This book is testament to the progress
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made. Our purpose in writing this chapter has been to encourage a new
research direction that has the potential to substantially increase our current
understanding. We havebriefly laid out a pathway. Moredetails are contained

in Benson, Curley & Smith (1994); Curley et al. (1994a; 1994b); and Smith,
Benson & Curley (1991). This chapter provides a framework that reveals a
number of issues and questions that have not been addressed dueto the lack
of such a framework. We have noted just a few of these in the preceding
sections.

Weare encouraged that research is beginning to move in this direction.
Attention to the cognitive processes underlying decision making, attention to
the role of argumentation and justification in decisions, and attention to
constructive processes in probability and preference assessmentare all current
tendencies in behavioral decision research. A few specific examples will

demonstrate the point.

Perkins, Allen and Hafner (1983) observed strategies that subjects used in

countering their own reasoning about commonproblems. Their analysis offers
a fuller basis for counterfactual reasoning and broadensthe application of the
prescription to elicit counterarguments—one of the few strategies that has

been successful in improving subjects’ judgments (Fischhoff, 1982). Brained

and Reyna (1990, 1992; Reyna & Brainerd, 1992) have tied the role and nature

of recall as a cognitive process to various “judgmental” biases. The inter-

relatedness between reasoning andrecall and the importance of each for
understanding assessment are central themes in their research. Bostrom,
Fischhoff and Morgan (1992) analyzed the content of subject’s reasoning

aboutthe risks of radon. They characterized thecognitive representations that

the subjects used to organize their knowledge about the hazard, and were able

to identify representational sources of subjects’ misrepresentations of radon’s

risks. Fletcher and Huff (1990) analyzed arguments made by AT&Tinits
1973—84 annual reports. The analysis offered a unique perspective on the
company’s strategic decision-making during that period, and allowed the
researchers to map interdependent changes among four strategic thrusts in
the organization.

It is our hope and belief that these studies represent only the beginning of

what can be achieved. We look forward to a future in which the current

emphasis on judgmentprocesses in decision-making research is broadened to
encompassreasoning.It is only by opening the black box of judgment that we
will be able to understand and exploit the processes by which people deal with
the uncertainty that is omnipresent in real-world decisions.
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Chapter 10

Variants of Subjective
Probabilities: Concepts, Norms,

and Biases

Karl Halvor Teigen
University of Tromse

Sometimesit is difficult to know what to believe, what to expect, or whatis

the case. It can be even harderto tell how strongly you believe it, how much

you expect it, or how close it is to the truth. Yet, that is what probability

judgments are about.

To make things even more complicated, most people are aware that, in

addition to their intuitive probabilities and uncertainties, there are certain

rules of the game. And theyare right. For many investigators, these rules and

their violations) have top priority, even if they are telling their subjects to go

ahead and give probability estimates solely according to what they “feel”,

rather than to engage themselves in mental calculations (the calculations

already having been performed by the experimenter, to his or her own

satisfaction).

The correspondences and, particularly, the noncorrespondences, between

subjects’ judgments and the experimenter’s calculations have become the

subject of a rich literature on probability inaccuracies, shortcomings and

biases, as can betestified to by several contributions to this volume.It has also

becomea central issue in the debate about humanrationality (Cohen, 1981;

Jungermann, 1983).

Subjective Probability. Edited by G. Wright and P. Ayton.

© 1994 John Wiley & Sons Ltd.
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The position taken in the present chapter is that subjective judgments of
probability can be, and are, arrived at by a numberof different processes,
which may or may notcause them to deviate from the experimenter’s norms.
This is not the place to enter into a debate about whenthey should or should
not conform to thosenorms,i.e. the appropriateness and normativity of the
rules themselves. A more descriptive approach would be to ask under which
conditions are judgments and norms most often in agreement, and when are
they not?

To do so, wewill first discuss two different avenues, the rule-dictated (quasi-
mathematical) versus the intuitive approach, which maybetakentoarrive at
probability judgments. Next, we will present a “family” of subjective prob-
ability concepts, which can be activated under different circumstances and give
rise to different judgmental biases. Thirdly, we will give a brief overview of
circumstances that appearto affect the “normativity” of subjective probability
estimates.

10.1 THE RULE-DICTATED APPROACH

Imagine that you are asked to draw a floor plan of your apartment. There are
basically two ways of going aboutthe task.

(1) You may start with the entrance, or any other room of your choice,

reproducing it shape and proportions as well as you remember, adding
windowsand doors,then turn to the next room and do the same,until you

discover that the totality of the plan is becoming impossible, rooms
Sticking outin all directions like the petals of a flower, unrestricted by any

architecturally admissible exterior wall.

(2) The other, more professional (although less intuitively appealing) way,is
to work according to a rule that is known to be correct, for instance that
the house as a whole has a rectangular ground plan, that all rooms have

adjacent walls and must fit within the same general framework with all
Space accounted for.

Similarly, probability judgments can be madeeither intuitively from the
weight of arguments, feelings of conviction, degree of knowledge, or from

whatever judgmental heuristic that seems to be most appropriate for evaluating
the phenomenonunderconsideration; or more indirectly, via rules that are not
themselves seen as integral parts of the object of evaluation, but rather
belongingto the domain of probability calculus, as far as this is understood
by the subject. We maycall the latter “rule-dictated” probability assessments,
or “quasi-mathematical”, to emphasize that the subject is using somethinglike

a mathematical rule, but not necessarily the appropriate one.
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Thevast literature on fallacies and biases of probabilistic thinking seems to

indicate that probability judgmentsare less rule-dictated than they “ought”to

be. That is not surprising, if one considers that the rules are, in some sense,

external to the objects of judgment. For instanceit is natural to think thatthe

probability of a horse winning a particular race would be estimated better by

someone with a knowledge about racehorses than by someone with a

knowledge about probabilities. But sometimes, the latter knowledgeis noless

essential than the former.

At the same time, education and daily life experiences have taught most

peoplea few elementary probability rules. Indeed, the traditional claim is that

the theory of probability itself can be regarded as a formalization and

explication of “bon sense” (Laplace, 1816). Also, probability judgments are

typically made on 0—100% or 0—1.00 probability scales, making people aware

that there are some similarities between probability estimates, percentages

and/or proportions. At the very least, it suggests a scale with a lower and an

upper limit—for instance, one is not allowed to be 300%sure.

Perhaps because most attention has been given to deviations from the rule,

few investigators seem to have focused upon whichrules people generally seem

to accept as valid (even if they do not always abide by them).

Provisionally, I will suggest the following ones:

The 50/50 rule. When two outcomes, or alternatives seem equally possible,

the probability of either is }, or 50%.
The proportion rule. When oneresult, or alternative, can be obtained in a

number of equivalent ways, its probability can be estimated as the proportion

ajn, where a is the number of outcomesyielding the result in question, and

n is the total number of equivalent outcomes.

This is the classical “urn” case, where e.g. the probability of drawing a red

bead from an urn with 30 red beads out of a total of 100 is estimated to be

0.30.
Proportions can also be represented spatially. For instance the probability

of getting “red” with a fortune wheel with 60%red sectors (Figure 10.1) will,

by most people, be estimated to be 0.60.

The I/n rule. When several outcomes,or alternatives, seem equally possible

(e.g. the six sides of a die), the probability of one of them is acknowledged

to be 1/n.
These three rules are, of course, all reducible to the same generalprinciple

of classical probability calculus, namely that p values should reflect the

proportion of “favourable” outcomes. But in practice, they may be not be

understood as such. At least it seems that the first principle is easier to grasp

and to apply than the second and especially the third one.

The relativefrequency rule. When something has happenedin the past with

a relative frequency of a/n, its probability of happening in the future can also

be estimated as a/n.
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This is, of course, the basic principle of the frequentistic conception of

probabilities, often assumedto establish the classical probability doctrine on

a sounder and more empirical basis than the proportion rule. Our experience

is, however, that people more often fail to see the relevance of relative

frequencies, over time, than of relative proportions. In other words, the

probability of throwing a six with a regular die is assumed to be 1/6, not

because the six comes up 1/6 of the time, but because the die has sides.
Relative frequencies are seen to reflect probabilities (and can hence be taken

as indications or approximations), but do not create them. If there is any
cause-effect relationship at work here, it goes from probabilities to

frequencies and not the other way around.
The complementarity rule. If the probability of something happening is

calculated or estimated to be p, then the probability for something else

happening is, by implication, 1—p. This assumes additivity, or a “distri-

butive” probability concept, which seemsto be attended to only under favour-

able circumstances, even if it also follows from the proportion and therelative

frequency rules (for nonadditivity see e.g. Teigen, 1974a, 1974b, 1983c;

Robinson & Hastie, 1985). But at least occasionally, subjects will calculate a

probability by this rule instead of intuiting it. For instance, somebody would

say: “Since I am 99% sure, I assume I have a 1% chance of being wrong”(or

the other way around,if the 99% figure was due to the 1%estimate). This rule

is also in many cases forced upon subjects when they are told to make sure

that their p estimates add up to 100%, or are required to make graphical

estimates on a 100%line, or on a pie chart which does not permit violations

of the complementarity principle.

Students with a basis in statistics may use more advanced probability rules,

as for instance the product rule for arriving at the p value of a conjunction,

but such applications seem to be extremely rare (cf. Tversky & Kahneman,

1983; Nahinsky, Ash & Cohen, 1986). And even when computations are used,

the resulting estimate may beincorrect, as when the 50/50 rule is misapplied

to situations involving uneven proportions, or more than twoalternatives.

In Kahneman and Tversky’s well-known study of base-rate negligence

(1973), Subjects were confronted with a hypothetical individual drawn from

a sample of 30 engineers and 70 lawyers. Only when given no information

whatsoever about this individual did the majority of subjects correctly apply

the proportion rule, estimating his probability of being an engineer as 30%.

When given an uninformative description (that could equally well characterize

engineers and lawyers), most subjects switched to a 50/50 rule, regardless of

base rates. With somewhat more diagnostic descriptions, no calculations

seemed to be performed, probability judgments apparently following an

intuitive “representativeness” heuristic.

In other cases one can observe how a calculated estimate is felt to be in

conflict with one’s less educated intuitions. For instance, if Tom is competing
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for a job with four other, equally qualified applicants, his chances will be

estimated—according to the 1/n rule—to be about 20%. But when asked to

select the most appropriate verbal phrase characterizing his candidacy, a

majority will prefer high-probability expressions (e.g. “he has a good chance”)

to low-probability phrases (e.g. “it is doubtful”). Yet few people will consider

20% as a “good chance” (Teigen, 1988a).

10.2 VARIANTS OF INTUITIVE PROBABILITIES

When people leave the tidy world of rules (because they don’t know howto

calculate p values, or the rules don’t seem to apply), and start judging prob-

abilities on an intuitive basis, it turns out that they have several intuitions to

choose from. We may speak of them as a family of subjective probability

concepts, or, following Kahnemanand Tversky (1982), “variants of uncer-

tainty”. In their article, Kahneman and Tverskydistinguish between external

and internal attributions of uncertainty, and go on to subdivide the former

into frequency-based and propensity-based probabilities; the latter into

probabilities based on arguments vs probabilities based on introspective

convincingness.

The variants of uncertainty discussed in the present chapter follow a related

scheme, partly based on the external/internal distinction. However, instead of

the further subdivisions described by Kahneman and Tversky, which seem to

refer primarily to which kind of evidence that can be marshalledin favor

of a particular probability judgment, we will suggest an indetermination/

determination distinction cutting across the external/internal dimension,

creating altogether four conceptually different uncertainties. In addition, we

will discuss uncertainty in the world of action, in terms of control and lack of

control; and in the world offiction, in terms of plausibility and coherence (or

lack thereof). An overview ofthese six species of probability conceptsis given

in Table 10.1.

External vs internal uncertainties. This distinction refers to the fact that we

sometimes think of tendencies and lack of determination as being a part of the

external world, whereas at other times, it is more due to our “internal”state

of knowledge and belief. For instance, many people would say that the

outcome of a lottery is undecided because of the random character of the

drawing process. Similarly, downhill skiing may be considered to be inherently

risky because of uncontrollable external factors that can easily turn an enjoy-

able activity into its opposite. On the other hand, if I say that New Yorkis

“probably”north of Paris,it is not becauseit is hard to tell New York’s where-

abouts these days, but because my geographical knowledge is not precise

enough for meto offer a decisive opinion.
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Table 10.1 Intuitive probability concepts

 

 

External Internal

Emphasis on
indetermination I Chance IV Ignorance,

uncertainty

Emphasis on
tendency II Disposition, III Confidence,

propensity belief

Pragmatic V_ Controllability

Fictional VI Plausibility

 

Determinists may of course claim that even a throw ofdiceis only uncertain
because we do not knowall factors involved (all probabilities being internal),
whereas frequentists will have a hard time accepting “my” probability of the
location of New York, unless it is taken to mean my estimate of how often
I will be right when answering this type of question, as all probabilities,
according to this view, need an objective relative frequency as their external
reference (this is in fact the logic behind all so-called calibration curves). In
the history of probability calculus, we find a similar distinction between
“epistemic” and “aleatory” probabilities (Hacking, 1975). For our purpose,
however, the point is that, under different circumstances, people seem to
acknowledge and make use of both kinds of uncertainties, although the
distinction may at times be blurred. Consider the following example.

After a storm, a ship is reported missing. The newsreporter writes: “For
every hourthat goes by, the chances of finding the crew alive are decreasing.”
The statement is ambiguous. The decrease in chances can refer to external
probabilities, if we think of the crew as drowning or freezing to death if not
found within the next few hours. Butit mayalso refer to internal probabilities:
a disaster may have happened, but we do not know for sure. For every hour
that goes by without a sign of life, our probability of finding survivors
decreases because we will have stronger reasons to believe the worst.

Tendencies vs. indetermination. Whether one has to do with judgments of
external or internal probabilities, the task will often be one of focusing upon
a particular outcomeorpossibility, trying to determine the extent to which this
particular alternative can be counted on as being (or becoming) the case. Do
we have strong or weak reasonsto believe it? Is it close to or far from actually
taking place? In these cases, probability judgments can be regardedasesti-
mations of the strength of a tendency: for external probabilities, this will be
the disposition or propensity for something to occur, as when wespeakof a
disease as “probably fatal”, meaning that it is within its powerto kill those
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afflicted. For internal probabilities, we can similarly speak of a tendency in my

mind to believe or feel confident about something.

Indetermination refers to the other side of the coin, or, to use a slightly

different metaphor, it refers to the hole rather than to the doughnut. There

may bereasonsto believe, or to think in terms of tendencies, but there are also

reasons for agnosticism and ambiguity. From an external perspective, we may

claim that many phenomenain themselves are indeterminate, with moreorless

randomnessinvolved. From an internal perspective, uncertainty arises due to

lack of essential information or because of conflicting knowledge. In both

cases, we may be concerned with the existence of several possibilities rather

than just one.

The feeling that uncertainty and probability do not refer to exactly the same

thing hasstruck several authors who have been grappling with the problem of

finding a general term to cover all phenomenaof subjective probabilities and

uncertainties (Smithson, 1988; Howell & Burnett, 1978; Peterson & Pitz,

1988). Hacking (1975) suggested that the terms “probability” and “uncer-

tainty” should be used to refer to external and internal probabilities,

respectively. I think it is more in line with commonusage to identify these

words with the tendency/indeterminacy distinction. When we speak ofprob-

abilities, we usually think of the tendency of an outcometo occur, whereas
uncertainty more often refers to the existence of alternatives, and the lack of

(external or internal) determination. Peterson and Pitz (1988) draw similar

distinction between “confidence” and “uncertainty”, the latter referring to “a

set of outcomes that has a fixed probability” (page 85). This is a question of

the range of possibilities, rather than degree of expectancyor belief associated

with one in particular.

10.2.1 Chance Probabilities (Type I)

As is well known, probability calculus evolved from studies of games of

chance. These are basically situations of external indetermination, character-

ized by a numberpossible outcome, the two sides of a coin, the six sides of

a die, the 37 sectors of a roulette wheel, or the 52 cards in a deck,there being

no obvious way of deciding in favourof one rather than anotheralternative.

Undersuch circumstances, people seem relatively willing to follow elementary

laws of probability, and to calculate p values in accordance with the “rules”.

These are of course the situations Laplace had in mind whenhereferred to

probability calculus as an extension of commonsense,yet it is well worth

noticing that he did not refer to the intuitions of just anybody, but to those

of “l’esprits justes” (the just spirits). Moreover, Laplace included a chapter

“Concerning illusions in the estimation of probabilities”, discussing typical

errors of chance like the gamblers’ fallacy. Still, it seems that probabilistic

reasoningis at its best (or rather at its most normative), when thesituation 1s
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conceived as one in which chance playsa role in producingthe results (Nisbett
et al., 1983; Hoch, 1985; Ginossar & Trope, 1987; Wasserman, Lampert &
Hastie, 1991).

The concept of chance probability has, however, two serious limitations.
Oneis the expectation that a chance event should “look” random, which for
most people means an absenceof any apparent biases and regularities. That
means for instance that a random number between 1 and 20 will not be
expected to be close to the extremes, like 1, 2, 19, or 20, nor will it be in the

exact middle, like 10, or too regular, like 5 and 15 (Teigen, 1983a). In a

randomseries, repetitions, symmetries, orders, and other apparentregularities
are not expected to occur. This means that even when equiprobability of
outcomesis admitted on principle, some outcomesare, to paraphrase Orwell,
more equal than others. These are the outcomes that, in Kahneman &

Tversky’s terms seem to be “representative” of the set we are sampling from,

as well as of the sampling process.

Problems mayalso be dueto a process we could call “subjective significance
testing”. People, and researchers, seem to share theprinciple that “If some-
thing has a low probability of occurring by chance, it is probably due to

something other than chance.” This generally sound heuristic is limited by the

fact that even low probability events can happen by chance.In fact it is in the

very nature of chance to make improbable things happen, at least from time
to time. For instanceevery single hand of cards dealt in a game of bridge has
a vanishingly low probability of occurring. Yet it takes some reflection to
accept Agathon’s warning (as quoted byAristotle):

One might perchance say this was probable:
That things improbable oft will happen to men.
(Rethorics, 1402b).

The “significance heuristic” also fails to take into accountthat in manycases,
there is no plausible alternative hypothesis. Five heads in a row by chance may
be quite unlikely (although not more than any other sequence of coin tosses).
It may be more compatible with an alternative hypothesis about /uck, but then
we have to forget that the luck hypothesis itself is not very plausible, being
rather incompatible with our other, morescientific beliefs.

These two heuristics, “representativeness” and “subjective significance
testing”, can together create a climate in which the chance concept of prob-
abilities is too easily discarded. According to the former, a numberof chance
outcomes will seem improbable, and according to thelatter, this is taken to
indicate that they are not due to chanceafter all. In areas in which no other.
explanations are readily available, the concept of good and bad luck fills the
gap. According to Proctor (1887), gamblers’ theory of luck contain two pre-
dictions: (a) it follows the player who is “in vein”, makingit likely that after



Variants of Subjective Probabilities=D

winning, he will go on winning, but (b) it may be used up, making it more

likely that after some winning, he will suddenly start losing again. The

unpredictable part is that one never knows whenit will change from (a) to (b),

making the theory practically useless and theoretically unfalsifiable. But

similar theories of luck seem still to be popularly accepted (Wagenaar, 1988;

see also Chapter 19).

10.2.2 Dispositional Probabilities (Type ID)

Researchers of subjective probabilities have often been struck by the fact that

people seem to treat probabilities as attributes of particular outcomesrather

than relative to the set of outcomes. Evidence of this comes from studies

showing subjects’ neglect of base rates as well as violations of the comple-

mentarity rule (nonadditive probabilities).

It can, for instance be shown that estimated probabilities of a particular

outcome and a group of outcomes (containing that particular value) will be

nearly the same (Alberoni, 1962; Teigen, 1974b). Also a person’s probability

to choose a particular occupation, or to win a particular contest, will not

change much by adding or subtracting occupations, or contestants, from the

list of alternatives (Teigen, 1983c). Similarly, the probability of a particular

hypothesis may not change when evidence is supplied that changesthelikeli-

hood of rival hypotheses (Robinson & Hastie, 1985). This phenomenon may

also throw somelight on the neglect of the category of “other” (unspecified)

outcomes or alternatives. In studies of “pruned” decision trees it has been

shown that the subjective probabilities of unspecified outcomes are easily

underestimated, and this is all the more so the more they cover (Fischhoff,

Slovic & Lichtenstein, 1978). While it is easy to see that there is a substantial

probability that your car will notstart for this or that particular reason, which

had an obvious potential for interfering with its normal functioning, it is

harder to see how “other” (unspecified) factors carry the same (or an even

greater) potential.

Dispositional probability thinking may comecloseto a reification of prob-

abilities. Some behaviors or substances may for instance be thought of as

inherently dangerous, regardless of how they are handled. Some people are

“born winners”, regardless of the number and quality of their competitors.

Even a chance probability, originally calculated by a proportion orrelative

frequency rule, may later on be regarded as dispositional. The gamblers’

fallacy can perhapsbeinterpreted along these lines, as a particular disposition

on the part of the coin to keep the pattern of outcomes in a kind of

homeostatic balance.

How do people estimate dispusitional probabilities?

Since these probabilities are conceived as tendencies to actual occurrence,

their magnitude should be most directly estimated by some measure of how
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easily the outcome in question may occur, or how close it is to becoming
realized. For instance, a cup balanced on the edgeof a table will seem to have

a high probability of falling down becauseit is so close to toppling over, and
a fall can so easily happen(a light push or shakewill be enough). Thus we may
overestimate the probability of a particular outcome, e.g. an airplane crash,
if we think of all the things that can go wrong and how small the safety
margins seem to be.

Descriptions of accidents and near missesoffer rich material for studying the
easiness and closeness mechanism.Forinstance in a Norwegian student popu-
lation, 50-75% claim to have experienced (and survived) a life-threatening
situation (Teigen & Brun, unpublished data). When asked to estimate their
probabilities of actually being killed, nearly all gave p values in the range of
0.50—0.99, indicating, if taken literally, that a substantial percentage(at least

one third) of the Norwegian population should not be expected to achieve
adulthood. From the descriptions, probabilities seem to reflect judgments of
closeness (often in terms of seconds and centimeters) to catastrophe.
Even if not imminent, an outcome may be considered highly probable if

there is a tendencyclearly pointing in its direction. To stand one foot away
from thecliff may be considered dangerous, to approachit (even several feet
away) may appear even moreso. Nearaccident stories are replete with such

descriptions, the situations being of a kind that seems headed toward disaster.
Again,this is a kind of scenario in which the probability of disaster tends to
become overestimated, compared to actual accident frequencies.
To support the claim that a particular outcome can be expected or not ex-

pected to happen, people will draw upon their knowledge of how commonthe
phenomenonseemsto be, andits typicality, or “representativeness” (Kahneman
& Tversky, 1972). Both principles have been endorsed as legitimate ways of
establishing probabilities by classical writers like Hume (1748/1976) and
Laplace (1816). But these principles have also a psychological counterpart,
in the two basic laws of association: contiguity and similarity, making our

subjective judgments of probabilities related to, but not identical to what they
“ought” to be (the strength of an association also obeying secondarylaws,like
recency and vividness). There is a clear parallel between theseprinciples and
the judgmental heuristics of availability and representativeness introduced by
Kahneman and Tversky (1972; Tversky & Kahneman, 1973; cf. Teigen, 1989).

10.2.3. Confidence (Type IID

Confidence, or degree of belief, can be regardedas an internal counterpart of
dispositional probabilities. In both cases, we are trying to quantify a particular
tendency, but in onecaseit is the tendency for something to take place outside

of the observer, in the otherit is about its existence in his mind, as a more or
less strongconviction.
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It is usually assumed that these two tendencies should mirror each other, or

specifically, that the internal should mirror the external one. “The wise man,”

wrote Hume, “proportions his belief to the evidence... . He weighs the

Opposite experiments: He considers which side is supported by the greater

number of experiments: to that side he inclines, with doubt and hesitation”

(1748/1957, pages 110-111). But even the wise man may run into some

problems, particularly when he does not know the evidence. For instance,

after election day, most external uncertainty about whois going to be the next

president is gone, the candidates’ probabilities being either zero or close to

one. The wisest of hermits, without an access to newspapers and broadcasts,

must howeverstick to his internal probabilities, perhaps with an acute feeling

that they now are becominga very private affair with no external counterparts.

The difference between estimated external probabilities and estimated

confidence refers to the difference between the two questions: “How certain

is it?” and “Howcertain are you?”, two questions that seem to invite one to

an objective vs. a subjective (introspective) orientation, reminiscent of the

Gibsonian distinction between perception and sensation (Gibson, 1966,

referring back to Reid, 1785). The two may match when subjects have access

to all relevant information and are trying to base their judgments on“the

whole truth and nothing but the truth” (cf. Beach & Wise, 1969). They will

be out of step when relevant knowledge exists that is for the moment unavail-

able for the person. Such situations have been referred to as “ambiguous”

(Frisch & Baron, 1988), and are often described as more uncomfortable than

other equally uncertain situations, but where the internal and external prob-

abilities are more comparable. For instance, people have a clear preference for

guessing the outcome of an event before rather than after it has taken place

(Brun & Teigen, 1990).

There are also occasions in which subjective confidence exceeds the

estimated external probabilities. Such cases have not received much attention

in the probability judgment literature, but is well known from otherfields,

including clinical psychology and the studyof religious beliefs. In fact, faith

is often defined as “belief despite the absence of external evidence”, and has

often been defended precisely on the grounds of its irrationality (cf.

Tertullian’s “credo quia absurdum”). In line with the above reasoning,it is

natural to guess that in these cases, the person mayfeel that he has a privileged

access to more information (perhaps of a highly private nature) than is

generally available.

Thusthe difference between confidence and probability becomesespecially

clear when there is a discrepancy between what we think we know and what

is to be known, either because our knowledge is scarce, or because the facts

themselves are unknowable, making everything “a question of belief”. As is

well known from the history of religious ideas, agnosticism is a hard position

to hold, although easyto justify.
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Confidence estimations are often made as a kind of secondary, or second-
order judgments, after subjects have already madetheir choice as to what they
think is, or will be the case. Keren (1991), in his conceptual and methodo-
logical review of the calibration literature, describes confidence judgments as
a two-step affair (selection preceding estimation), which may or may not be
the case with judgments of external probabilities. It follows that it is
unproblematic to ask for (external) probability estimates of alternatives one
does notreally believe in, whereas a question about confidence presupposes an

already favored candidate. This may even be the case with doubt: Thereis no
reason for having strong doubts about a particular hypothesis or outcome
unless it has already been singled out as an object for belief. Hence, beliefs
and doubtsare not necessarily of complementary magnitudes. For instance the
Same specific (a opposed to a more general) statement was selected by a

majority of respondents as the one they were most confident as well as most
skeptical about (Teigen, 1990).

Confidence judgments will thus depend upon a number of factors, in
addition to estimated probabilities. In one investigation (Teigen, 1983d) they
were found to be inversely related to the amount of chance assumed to be
involved. They have often been found to increase with subjects’ degree of

expertise (Bradley, 1981), and with the amountof information available, even

without a parallel increase in judgment accuracy (e.g. Oskamp, 1965). This
phenomenonhas been explained as partly based on an expected link between
knowledge and accuracy, carried over to areas which cannot be safely
predicted, not even by experts. In addition, the more information, the easier
it is to find some good reason for the phenomenon to occur exactly as
predicted. It should of course also be easier to see that something e/se may be
the case. But in confidence judgments, this is a less pressing question, unless

specifically asked for (Hoch, 1985). The most “focalized” phenomena(to use
a term borrowed from Klar, 1990, 1991) are usually the belief and its positive
reasons.

The subjective character of beliefs make them readily influenced by our
imagination. Kahneman and Tversky’s “simulation” heuristic (1982), and
similar mechanisms, such as availability and vividness, are all examples of

attempts to go from “what is easy to think” to “what is easy to believe”. The
common denominator of these mechanisms was clearly expressed by John
Stuart Mill as the “a priori fallacy” to believe that our imaginationmirrors the
world, so what is most natural for us to think must also exist, and what we
cannot conceive must be non-existent. “.. .even of things not altogether incon-
ceivable, what wecan conceive with the greatest ease is likeliest to be true”
(Mill, 1856, page 312).

Perhaps the most distinguishing and interesting aspect of belief (setting it
clearly apart from external probabilities) is its relationship to personal
decisions, which mayaffect it more strongly than external facts. We speak of
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faith in the absence of evidence, and trustin the face of interpersonalrisks,

and seem in both cases to assume that there are certainties that can (and

should) be chosen as a matter of principle, not because they are intellectually

convincing, but because they are morally better and/or pragmatically superior

than their opposites (Gambetta, 1988).

10.2.4 Uncertainty by Ignorance (Type IV)

Apart from having greater and less confidence in our chosen hypothesis, or

prediction, we can feel moreor less certain about which hypotheses or predic-

tions to choose. For all we know, there may beseveral different possibilities.

Peterson and Pitz (1986, 1988) have introduced an interesting distinction

between “confidence” and “uncertainty” of a prediction. While the first is

commonly measured by asking for a likelihood or probability that a prediction

is correct, the second refers to a person’s belief about the variability of

possible outcomes. What is the range of possibilities, and how much should

one of them bepreferred to the others? Peterson and Pitz go on to compare

this distinction to the difference between hypothesis generation and hypothesis

testing. In a prediction task, people may either generate possible outcomes,

which can besaid to reflect their uncertainty, or they may evaluate an already

selected outcome, yielding their level of confidence (Peterson & Pitz, 1988).

Although confidence and uncertainty can be thoughtof as logical comple-

ments, it seems that they can, psychologically, vary to some extent indepen-

dently of each other. There may be cases whereseveral alternatives can be

ruled out, and there is only one possibility left. We may in such cases say that

“the only possibility”, or “the only explanation” must be so and so, but

without any positive evidence our confidence maystill be quite low evenif the

variability of options has narrowed down considerably (cf. Chapter 15). In

their investigations, Peterson and Pitz (1986, 1988) show that added infor-

mation can increase both confidence and uncertainty,in the sense that a person

attaches a stronger belief in his chosen prediction, but is also more willing to

admit that several other outcomes are possible. This can be shown to apply

also to one’s own performances. For instance, members of a running club

became more confident about their “best guess” of their own race time, the

closer they came to (and presumably the more they knew about) the actual

race. But at the same time their confidence intervals concerning potential race

times increased significantly (Pitz & Peterson, 1987). Their explanation is that

the information acquired inpreparation for the race suggested more outcomes

to be possible than were previously considered.

Peterson and Pitz’s “uncertainty” concept obviously refers to experiences of

being “open” or “undecided” amongalternatives. To the extent that this is

attributed to lack of diagnostic information, we can term this particular

variant of uncertainty “uncertainty by ignorance”. The finding that this
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uncertainty can increase with general knowledge can perhaps be regarded as
a demonstration of the proverbial awareness of ignorance acquired by
education: “the more we know the more we know we don’t know”.
With quantitative judgments, degree of uncertainty/ignorance can often be

expressed as interval rather than point predictions. The size of the chosen
interval, or the prediction’s coarseness, indicates the person’s range of
possibilities. Yaniv and Foster (1992) refer to this aspect of uncertainty as
“graininess of judgment”, and report a close relationship between subjects’
choice of judgment scale (with broad rather than fine intervals), width of
confidenceintervals, and lack of expertise. But grain is not chosen just to make
sure thereis no error. In their example, somebodywhois asked to predict next
year’s inflation rate would not say “between 1 and 150%” just to be on the
safe side. Since people also want to be as informative as possible, they will
probably choose an interval (grain) that is precise enough to be regarded as
informative, yet wide enough to be approximately right. This “tradeoff”
between accuracy and informativeness will often lead to hyperprecision,
particularly since confidence intervals are usually underestimated. Somewhat
paradoxically, a precise statement is also more readily believed than a more
vague or unspecified prediction, even if the latter include the former, and thus
has a better chance of actually being correct (Teigen, 1990). This means that
the person’s choice of “grain” in prediction and judgmentwill not only reflect
his relative ignorance and subjective chances of getting it right, but also his
wish to be informative and to be believed. Of experts, we don’t just expect
truth, but confidence and precision (Shanteau, 1987).

10.2.5 Controllability

In theoriesof attribution and locusof control, the internal/external distinction
is used in a different sense than the one introduced above. Instead of referring
to the causes of our uncertainty, attribution theorists refer to the causes of the
event itself, which can be regarded as external, if independent of the perceiver,
and internal, if his qualities or actions are seen to be instrumental in bringing
it about. If a person believes that what is happening in his life is largely
dependent upon his own behavior, and his own decisions, he is said to have
an internal locus of control (Rotter, 1966; Lefcourt, 1982).

Perceptions of degree of control can be regarded as an aspect of uncertainty
not readily explained by the variants of uncertainty discussedtill now. In their
“cognitive taxonomy” of uncertainty measurement, Howell and Burnett
(1978) refer to degree of control as an internal/external dimension, whereasin
our terminology, controllability refers chiefly to external factors, in the sense
that the probabilities of controllable as well as uncontrollable outcomes are
not dependent upon whatthe person knowsorthinks, but what he (or some-
body else) more orless successfully does. At the same time, personal control
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gives a sense ofcertainty that is phenomenologically different from knowing

for sure what is going to happenas a result of outside forces. At the positive

end of the scale, this is reflected in the distinction between “self-confidence”

and “trust”, or more abstractly, belief in free will vs. determinism (or

fatalism). At the negative end we can distinguish between uncertainty due to

an indecisive or incompetent person or to an unpredictable environment.

Onthis dimension, uncertainty refers to the status and the efficacy of one’s

own decisions. Uncertainty is felt to be high when I don’t know “what to do”.

On closer examination, this may mean twoslightly different things. (a) That

I don’t fully know what I intend to bring about, I have not yet made up my

mind. For example, I am still debating on whether I shall say yes or no to write

a book chapter. This is a question of the status of my decision. Is it made or

am

I

still hovering aroundin a predecisional state? (b) That I don’t knowfully

how to bring about something I have decided to do. For example, I have

agreed to write the chapter but for various reasons of an external or internal

nature, I am not sure I can makeit before the deadline. This is a question of

the efficacy of mydecisions, whether I really can master myself and my

environment according to my choice.

The celebrated and much envied “decisive” person is usually believed to be

privileged in both respects, certain about what to do as well as how to do it.

The distinction may be blurred because ofthe belief most people have (rightly

or wrongly) about the dynamic character, or inherent efficacy of decisions.

Unlike decision theorists, who usually regard a decision as the end point of a

complicated cognitive process, ordinary people seem moreinclined to think of

a decision as a first step towardsaction, the decisionitself taking an‘active part

in producing the result (Teigen, unpublished data).

Subjective probabilities of preferred events have regularly been found to be

overrated (compared to the probabilities of neutral or negative events), a

phenomenonoften referred to as “wishful thinking”, “preference—expectancy

link”, or “unrealistic optimism” (Weinstein, 1980), and has been given a

variety of possible explanations. In this connection,it is noteworthy that such

overoptimism is particularly likely to occur with events believed to be to some

degree personally controllable (Weinstein, 1980; Zakay, 1984). Howell and

Burnett (1978) suggest that a person will overvalue the certainty of an outcome

the moreit can be attributed to his own ability or effort. For instance, students

regarded their own probability of becoming involved in a car accident when

driving as less than that of a fellow student, whereas their chancesas backseat

passengers were not estimated differently (Zakay, 1984).

10.2.6 Plausibility

The variants of subjective probabilities discussed thus far all pertain to the
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relationship between a tentative description of reality on one hand, and what
is really the case, on the other. A highly probable state of affairs is “almost”
real, either because it can readily happen (external probabilities), or the person
has almost enough knowledge to be sure (internal probability), or almost
enough power to make it happen at will (controllability). Yet there are
situations in which we speak about probabilities with no reference to outer
reality. For instance it is common to describe a completely fictional character
or the plot in a novel as being moreorless “probable”, without implying any
belief in its existence outside the world of fiction. The ambiguity of the
probability concept in literature can be readily observed in documentary
books,for instance biographies, where we can sometimes wonderif the author
has succeeded increating a character that is “too goodto be true”, painting
a picture that is very convincing in and ofitself, but not necessarily truthful
of the real person to be portrayed.

On the other hand,a description of an event known to have taken place can
sound so unconvincing that we have to admit that even if true, it does not
appear very probable. In this and other contexts one is sometimes asked to
“make” the story more probable, not by changing its content but the wayit
is told. This implies that the probability of a particular event, prediction or
explanation, is not fixed but can be considered relative to the way it is
presented.

How do weassess plausibilities? If other probabilities are about closeness
to reality, or closeness to truth, these fictional probabilities can be concept-
ualized as closenessto a fictional “truth”; how well a given descriptionfits into
a created rather than external reality. The means with which this can be done
have not been systematically explored in the probability judgmentliterature.
It seems reasonable to believe that plausibilities are affected, among other
factors, by the following:

(1) Completeness of a description (it sounds convincing if enough concrete
details are added to make it “come alive”).

(2) Coherence. The description is perceived to be logical and does not
contain internal contradictions.

(3) Causal elements. The description is more than a mere enumeration of
facts, but contains also explanations (causes, motives) for the events.

(4) Suggestiveness. The description gives rise to expectations of events and
explanationsnotexplicitly stated, as when a novelist tells us that his characters
are starting to havea life of their own,telling Aim what will happen instead
of the other way around.

(5) Familiarity, acceptability. The description contains enough familiar
elements to be recognized as something that “could” exist under the given
circumstances. This means that the story can be assimilated to schemas(e.g.
implicit personality theories) already existing in the listener’s or reader’s mind.
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(6) Explicitness of premises. It follows from the previous point that plausi-
bility requires that something sounds natural under the given circumstances.
It is therefore important to distinguish between the circumstances on one side,
which do not haveto be natural, and their consequences, which should follow
morenaturally. A surrealistic story, like one of Kafka’s, can have a great deal
of plausibility if we are led to believe that it all follows from the “given”
premises (which may be weird). Wefeel less comfortable with a description in
which the premises are changing throughout(the author constantly pulling the
strings).

One reason for mismatch between subjective and “objective” probability
estimates may be due to subjects offering a plausibility rather than an external
probability judgment. This may be the mechanism behind at least some
instances of the so-called “conjunction fallacy” (Tversky & Kahneman,1983).
In one of their examples, describing John P., arather suspicious businessman,
subjects gave a higher probability rating to the statement “Mr P. killed one
of his employees to prevent him from talking to the police”, than to the
simpler statement “Mr P. killed one of his employees”, even if the latter
includes the former. According to Macdonald (1986) this can only be regarded
as a fallacy if we assume that Kahneman and Tversky and their subjects are
referring to the sameprobability concept. From

a

plausibility point of view,
“a story can become more believable asit develops despite the fact that there
is necessarily more to believe” (Macdonald, 1981, p. 19). In line with the
present analysis, this interpretation of probabilities in terms of plausibility is
particularly defensible, as the subjects are probably right in assumingthat they
are estimating the probability of a completely fictional event.

10.3_ VARIANTS OF UNCERTAINTY AND BIASES
OF PROBABILITY ESTIMATION

Table 10.1 gives an overview of the family of uncertainty concepts discussed
in this chapter. By “family” I mean that they are sufficiently related to affect
each other and to be confusedwith each Other, while at the same time being
independent enough to follow different principles and sometimes yield
divergentresults. ,
The difference between “statistical” and “causal” thinkingis a case in point,

the former typically implying probabilities of Type I, and the second prob-
abilities of Type II or V. An individual event will usually be explained and
predicted from causal considerations, yielding a dispositional probability, or
a judgmentof controllability. If asked what “my chances” are to succeed in
One particular business venture, others’ failure frequencies will often be
consideredirrelevant, or at mostas a roughindication ofthe level of difficulty
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in the area (if not as an indication of my competitors’ lack ofskill). Repeated

events are easier to conceptualize alongstatistical lines, at least if there are no

obvious reasons why I should succeed on occasion 2, 5 and 6, but not on 1,

3, and 4. This may be one of the reasons why subjects behave differently in

situations involving unique versus repeated gambles (Keren & Wagenaar,

1987). In an attempt to “make statistical illusions disappear”, Gigerenzer

(1991; Gigerenzer, Hoffrage & Kleinbélting, 1991) shows how typical “errors”

in probabilistic reasoning can be reduced when the problemsare recast in

terms of relative frequencies, rather than as single cases. For instance, if

people are asked how many times out of n they think they are right, they will

display less overconfidence than whey askedto state their degree of confidence

in one particular answer (Gigerenzer, Hoffrage & Kleinbdlting, 1991). This

does not, however, invalidate the overconfidence phenomenon,since one may

well ask (a) why the problem is changed by reformulating it in terms of

frequencies, and (b) whether subjects are willing to accept their relative

frequencies as probabilities. The idea of a “family” of probability concepts

supports Gigerenzer’s claim that the usual calibration studies, in which

subjective confidence judgments are checked against hit frequencies, are not

comparing apples to apples, but it goes further by encouraging the study of

differences between apples and pears.

The problem of apples and pears seems also to be partly responsible for

some other puzzles of probabilistic reasoning. Why do people neglect base

rates in the original versions of the engineers’ and lawyers’ problem

(Kahneman & Tversky, 1973), but pay attention to them in some other studies

(Manis et al., 1980; Fischhoff & Bar-Hillel, 1984; Gigerenzer, Hell & Blank,

1988). One obvious problem in the original version is that subjects are invited

to combine a probability due to random sampling (a description being drawn

from a 30/70 set), with a completely different kind of probability based upon

the content of the descriptions. So the a priori odds have to do with chance

probabilities (Type I), whereas the more or less diagnostic likelihood ratio is

dispositional (Type IJ), if not completely internal (Type III—IV) or fictional

(Type VI). From theliterature on social stereotypesit is evident that @ priori

probabilities (even fictional ones) will be taken into consideration when

considered“causally relevant”—i.e. when they are seen as dispositional rather

than chance. Base rates in the 30/70 type of design will also be attendedto if

descriptions are less diagnostic (Manis etal., 1980; Fischhoff & Bar-Hillel,

1984) and accordingly less relevant, or when the problem becomesrecast as

primarily a sampling task by letting subjects actually draw the description

from an urn (Gigerenzer, Hell & Blank, 1988).

The probability of a complex event will also be judged differently depending

upon the type of probability involved. Subjects in Tversky and Kahneman’s

original study on “conjunction fallacy” (1983) strongly believed that Bjorn

Borg’s probability of losing the first set but winning the match in the
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Wimbledonfinals was higher than his losing the first set, period (nothing said

about winning and losing the match). Obviously they were not thinking in

terms of pure chances butaccording to the champion’s alleged propensities for

winning. In the world of chance, conjunctions are viewed completely

differently, namely as “coincidences”, which have often been singled out as

examples of extremely low-probability events. Indeed, it has been argued that

the probability of coincidences is usually underestimated, especially when they

are experienced personally (Falk, 1982—83; 1989).

Not only are probabilities estimated differently according to which prob-

ability concept is being activated, the meaning of the same p value will also

differ. For instance, most people prefer to bet upon an uncertain event they

know something about, or can control to some extent, compared to an equally

uncertain chance event (Heath & Tversky, 1991). Heath and Tversky refer to

this as a “competence” effect, and speculate that it has to do with attributions

of credits and blame. In an area that can to some extent be known or

controlled, successes and failures are readily attributed to the person, which

would make him prefer such bets over chance bets (where nobody can be

credited or blamed), as long as the probabilities of succeeding are substantial,

whereas it would make him prefer chance bets if probabilities of success are

small.

One bias that seems to be widespread amongall variants of probability is

a tendency to underestimate variability and unpredictability. Our minds are

generally on the side of law and order. This takes, however, different forms

with different probability concepts and should be named accordingly. With

uncertainties of Type I and IV it takes the form of under-variability, or hyper-

precision. Random events are not assumed to fluctuate too widely from

“ideal” randomness, and confidence intervals for imperfectly known

quantities are usually underestimated. When it comesto dispositional prob-

abilities (Type II) overestimation is a common occurrence, especially in areas

in which there are more than two alternative outcomes (Teigen, 1983c). For

probabilities of Type III, overconfidence is more often reported than under-

confidence except with very easy tasks. In the area of control (Type V), over-

estimation of controllability (e.g. illusion of control) is more often reported

than the opposite (cf. Langer, 1975).

Overestimation of plausibility (gullibility) in the realm of fiction (VI) is

harder to prove, due to the lack of norms. What is a “well-calibrated” reader

of fiction? Still, the ease with which we seem to accept the contents and

“internal logic” in most works of fiction, even if incomplete and unfamiliar,

being the creation of a different mind than our own,attests to the fact that

we are more readyto believe than to doubt. To put on theattitude of critic,

pointing out weaknesses and inconsistencies, requires a determined, conscious

effort and seems less natural than going along as far as possible, trying to

accept whatis being offered at face value. According to someclassical moral
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philosophers (Montaigne, 1588/1885; Holberg, 1748/1945), our minds are
susceptible to a peculiar bias when being told something “incredible” or
strange: People ask whyit is the case, instead of questioning whatis really the
case. “They leave things and runne for causes. ... They commonly beginne

thus: How is such a thing done? Whereas they should say: Js such a thing

done?” (Montaigne, 1588/1885, page 526).
This general “belief bias” can be given motivational explanations in terms

of “basic trust” and similar concepts. It may also be defended on the grounds
that it feels better to be convinced about what one thinks and does, than to
be constantly troubled and inhibited by nagging (even legitimate) doubts.
From a cognitive point of view it has been explained primarily as an atten-
tional bias: it is difficult to focus on all alternatives at the same time, and the

easiest choice is usually the one that is suggested to us (byothers or by
ourselves), along with what speaksin its favour (Klar, 1990, 1991). Baron

refers to “insufficient search, or the failure to consideralternative possibilities,

goals, and additional evidence” (1988, page 217) as a central bias, explaining
the typical overestimation phenomena.

Anothergeneral, perhaps related bias, has recently been described by Griffin
and Tversky (1992) as a tendency to focus on the strength or extremeness of
the available evidence, with insufficient regard for its weight or credence. This
means in many cases overconfidence or overestimation of probabilities, but
also in some cases underconfidence (when tendencies are not strong, but

reliable). Griffin and Tversky show this phenomenonto occur with chance
probabilities as well as confidence estimates. It seems also akin to the well-
known psychometrical “fallacy” of believing in validity as independent from
(occasionally even opposed to) reliability. Again it may be a question of
attentional focus: Upon the magnitude of the tendency one can “see”, as
opposed to uponthe strength of its less visible basis.

10.4 CONDITIONS OF NORMATIVITY

Our excursion into the numerous variants of intuitive uncertainties was
prompted by an initial question: When are subjects’ probability estimates in
agreement with the experimenter’s calculated p values, and whenare they not?

In line with Ginossar and Trope’s (1987) conception of probability esti-
mation as a problem-solving process, it is suggested that any judgmentis
dependentupon(a) externally available information; (b) subjectively available
concepts and strategies; (c) the kind of task to be solved, and the goal to be
achieved. From the research reviewed, and the concepts discussed in this
chapter, it seems reasonable to suggest the following conditions as favorable
for “normative” probability estimates.
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(1) Availability of relevant numerical information. For instance, when

subjects are explicitly informed about the percentages covered by different

sectors of a gambling wheel, the majority will use these percentagesas their

probabilities. For the wheel shown in Figure 10.1, the probability of sector B

is (correctly) estimated to be 0.25, while the estimated probability of a red

sector (A, C, E, G) is 0.60.

(2) Focusing on the randomness of the sampling process (perceived chance

rather than causal determination). Traditional “Pascalian” probabilities came

from the study of gambles, and seem easiest to understand and to apply in the

context of chance probabilities (Nisbett ef a/., 1983; Hoch, 1985; Ginossar &

Trope, 1987). These are also situations in which subjects are most willing to

use a rule-dictated approach, whetherit be becauseof training, readily avail-

able numerical solutions, or because the “correct” values somehow match

their intuitions. But even in a typical chance situation, like the fortune wheel,

with the relevant numerical information clearly in sight, a varying number of

subjects will find reasons to deviate from the norms, depending uponthecir-

cumstances, as shown below.

(3) Estimation vs. choice. When estimation of probabilities is preceded by

a choice, normative probabilities seem less relevant. In the fortune wheel

example, subjects asked to makea choice of sector (or color) often failed to

use the corresponding percentages as their subsequent probability estimates.

This was especially the case for those who chose one of the smaller sectors,

5%
15%

5%

15% 
5% 15%

Figure 10.1 Fortune wheel with four red sectors (A, C, E, G) and four blue sectors

(B, D, F, H) used in experiment on subjective probabilities
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or blue color rather than red. These non-normative choices (favored by 20—50%

of the subjects) were nearly always followed by a non-normative p estimate.
(4) Twovs. several alternative outcomes. Whenthree or morealternatives

are to be considered, subjects frequently fail to use the “complementarity

rule”, particularly with non-chance probabilities, and this is more so if more

alternatives are available (Teigen, 1983c).

(5) External vs. internal probabilities. Subjects who were askedto state the
“probability” of their chosen color (or sector) in the fortune wheel experiment

gave more consistently estimates correspondingto its relative area (cf. 1), than
did subjects who were asked to estimate how “certain” they were (both on a
scale from 0—100%).

(6) Simple vs. complex situations. A complex situation can be one where

several probabilities have to be combined(as in base-rate problems), or where

the probability of a combined event has to beevaluated (as in conjunction

problems), or where the answeris arrived at by a complex decision process.
For instance, in the gambling wheel situation, subjects who were asked to
predict color before choosing their favourite sector (or vice versa), often felt

trappedby their first answer, “red” being taken to imply one of the less probable

letters (Teigen, 1983b). In such cases, very few subjects anchoredtheir

subsequent probability (or certainty) estimates in the area percentages, even

amongthose whofinally chose the normatively correct sector B (Figure 10.2).

Experiment 1 Experiment 2
100 tS

   

 

  

80

 

Probability

m7 Certainty

Sector Sector _ Sector Sector
first second first second

Figure 10.2 Percentages of subjects agreeing with the normative probability (0.25) as
an estimate of the “probability” and degree of “certainty” of obtaining sector B.
Subjects in the “sector second” condition were first asked to guess color. Data from
two experiments (7 = 86 and n= 71)
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(7) Condition focus vs. outcome focus. In some judgment situations the

emphasis will be upon what will happen under the given circumstances, or

what are the explanations of a given event. In both cases, subjects are invited

to consider and compare several alternatives, which may be conducive to a

more realistic attitude than when a particular outcome (or a particular

hypothesis) is already selected and judged in isolation. Probabilities of Type

I and IV will typically be more “condition focused” than probabilities of

TypesII and III. This principle is obviously relatedto the estimation vs. choice

difference described above.

(8) Numerical vs. verbal estimates. Occasionally the argument has been

madethat probability judgments are inaccurate or biased because subjects are

required to make a numerical response even if they are not particularly

familiar with thinking in terms of numbers, and they may find it more natural

to convey their ideas of chances and uncertainties through verbal phrases(like

“perhaps”, “very likely”, “somewhat doubtful”, etc). But when attempts are

madeto translate these phrases into numbers, it is hard to findclear cut

correspondences,at least at an individual level (Lichtenstein & Newman, 1967;

Beyth-Marom, 1982; Brun & Teigen, 1988). One is left with an impression that

linguistic probabilities are very imprecise, or very idiosyncratic, or that their

primary purposeis to convey something different from degrees of probabilities

(Fox, 1987; Teigen, 1988b). For example: “It is uncertain” may indicate

unwillingness to come up with any precise probability estimate. Other expres-

sions, like “there is a small probability”, may indicate, literally, a small p

value, but at the same time,its “attentional focus” (Moxey, Sanford & Barton,

1990), or “argumentative function” (Champaud & Bassano, 1987) concerns

the possible occurrence rather than the non-occurrence of the phenomenon in

question. Byreferring to it as “somewhat doubtful”, or “not quite certain” we

may have a higher probability in mind but at the sametimefeeling more right

if the phenomenonin question doesnot occur (Teigen, 1988b; Teigen & Brun,

In press).

The impreciseness of verbal probabilities can make them a less adequate

basis for making decisions (Budescu, Weinberg & Wallsten, 1988). Also,

verbal and numerical probabilities may activate different probability concepts.

A point in case was given on p.215 in relation to equiprobable outcomes,

whose numerical probabilities are usually estimated according to the 1/7 rule,

whereas the corresponding verbal expressions tend to emphasize the “good”

chances associated with the particular alternative (Teigen, 1988a).

- A careful investigation of how people ta/k about uncertainties may be a

promising way of finding out more about subjective probability concepts and

their relationships. Researchers in the heuristics and biases tradition have

occasionally expressed their amazement that people are so deficient in

estimating numerical probabilities despite the fact that we are living in an

uncertain (probabilistic) world (Kahneman, Slovic & Tversky, 1982; Nisbett

& Ross, 1980). The variety of terms and concepts used to express and



234 K.H. Teigen

communicate uncertainty in language tells a somewhat different story. My

guess is that we are very sophisticated probabilists in most respects except the
quantitative one. (To some, this may seem a facetious statement, akin to

Wilde’s “I can resist everything but temptations”.) But even in the sphere of

action, some of the “non-normative” probability concepts may prove their

practical usefulness. For instance it can be more important to know whether

something is “close” to, or can “easily” happen, than to think ofits relative
frequencies in the long run. At the same time psychological research is needed
to establish the conditions, persistence and consequences (positive and
negative) of such beliefs.

Obviously, probability judgment studies have madea habit out of comparing

apples and pears (cf. above). This is no objection, on the contrary the study

should be extended to oranges and bananas. Onereasonis to find out how

manyfruits there are to be had, anotheris that only by comparison do we learn

about their different qualities and how easily, or with how muchdifficulty,
they mix.
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Chapter 11

The Origins of Probability
Judgment: A Review of Data

and Theories

Valerie F. Reyna and Charles J. Brainerd
University of Arizona

Developmental studies of probability judgment provide a unique and important

perspective on adult conceptions of probability. Charting the origins of prob-

ability concepts deepens our understanding of adult reasoning in two ways.

First, it supplies an independent body of evidence that can be usedto select

among competing theories. Second,it generates sensible explanations of other-

wise puzzling aspects of adult reasoning by rooting them in ontogenetic

mechanisms. With respect to this second point, in particular, we shall see that

developmental research has helped makesense of someof the most surprising

results of research on adult conceptions of probability (e.g. Kahneman,Slovic,

& Tversky 1982).

During the past quarter-century, research on cognitive development has

passed through three stages (Reyna & Brainerd 1990): a Piagetian period of

grand theory, followed by a second stage that focused on information

processing, followed, most recently, by a third stage that emphasizes intuitive

reasoning. These same three stages are apparent in developmentalresearch on

probability judgment, and we exploit this fact to review such research. We

present work from eachof the three stages seriatim, reviewing majortheories,

paradigms, and findings. We conclude by discussing the implications of

Subjective Probability. Edited by G. Wright and P. Ayton.
© 1994 John Wiley & Sons Ltd.
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research in the third stage for broader theoretical questions of rationality and
cognitive competence.

11.1 STAGE 1: THE LOGICIST APPROACH TO
PROBABILITY JUDGMENT

11.1.1 Theory

The developmental analysis of probability judgment begins with the work of
Piaget and his colleagues (Inhelder & Piaget, 1958; Piaget, 1950; Piaget &
Inhelder, 1951). According to Piaget, conceptions of probability develop from
a preoperational (prelogical) stage in which chance and non-chance events

cannot be distinguished, through a subsequent concrete operational stage in

which such events can be distinguished, to an ultimate stage of formal

operations in which the mathematics of probability is at last understood.
During the preoperationalstage (roughly ages 2—7), children do not grasp the
logic of causeandeffect, and so the origin of non-chance events is mysterious.

The concept of chance emerges from the insight that a non-chance eventis

causally determined whereas a chance event is not. Until that insight is

achieved, chance events are viewed either as miraculous, or, at the other

extreme, aS inevitable, rather than random. The first achievement in the

development of probability concepts, then, is the ability to discriminate
random events from those that are causally determined.
Although concrete operational children understand the logic of cause and

effect, and they appreciate the distinction between chance and non-chance
events, their ability to think logically has limitations. These children judge
probabilities based on the odds of alternative outcomes, so long as the logic

does not become too complicated. Two complications include keeping track

of possible outcomes andrelations amongsets, both essential to working with

ratios or proportions. For example, given a sample consisting of three sets—

blue tokens, red tokens, and yellow tokens—the probability of randomly

drawing a blue token can be expressed as the ratio of blue tokensto thetotal
number of possible outcomes. Concrete operational children have difficulty

keeping track of such outcomes when the number of outcomes becomeslarge,
and, it is claimed, they have difficulty thinking of sets separately and, at the
same time, as part of the total (i.e. assigning blue tokens to both numerator
and denominator simultaneously). It is only at the final stage of formal

operations that these complications are assumedto be fully mastered. Correct

quantification of probabilities follows directly on sorting out the logic of

possible outcomesandtheir relations. Thus, development progresses from an

initial awareness that events can be causally determined; during middle child-
hood, that awareness sets the stage for the analysis of events that are not
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determined, until the logical quantification of probabilities becomes perfected

in formal operations.

11.1.2 Data

The Piagetian account of the development of probability judgment was

compelling and, for many years, dominated theorizing. The evidence for this

view, however, was sketchy, and not entirely consistent. Most of the

supportive findings were contained in one volume (Piaget and Inhelder, 1951).

The key experiments were as follows: in the first experiment, two rows of

beads were lined up on opposite ends of a tray, red beads on oneside and white

ones on the other. The tray was then tilted so that the beads were mixed. This

process was repeated until the red and white beads became thoroughly inter-

mingled (ostensibly randomly). Children were asked to predict the outcomeof

the first tilting, of subsequent tiltings, and of a large number oftiltings.

Preoperational children ascribed a lawfulness to the trajectories of the

beads—either that they would eventually return to their original segregated

state, or that they would cross over symmetrically.

In other studies, children were asked to predict the shapes of distributions
of marbles poured through a funnel, of beads shaken onto a piece of paper,

or of spins of a roulette wheel (which was subsequently rigged; younger

children failed to differentiate the random spins from the nonrandom ones).

Although older children had predicted greater irregularity in the mixture of

beads in the first experiment, they predicted greater regularity in the distri-

bution experiments, especially as sample size increased (e.g. as the number of

marbles increased). Predictions of greater regularity with larger sample sizes

were said to reflect an appreciation of the law of large numbers(itself

predicated on understanding proportionality).

The last group of experiments involved random draws from sampling

spaces. In one experiment, children were shown tokens with a circle on one

side and a cross on the other. The task was analogousto predicting the flip

of a coin. Children were asked to predict the outcome(circle or cross) of

tossing one token, andthe distribution of outcomesif the entire set of tokens

was tossed. However, the experimenter substituted tokens with crosses on both

sides. As with the rigged roulette wheel, younger children did not suspect that

outcomes were nonrandom despite consistent outcomes of only one type, and

they predicted similar results for two-outcome and one-outcome(crosses on

both sides) situations. In the remaining experiments, children were asked to

predict the outcomes of random draws either from one or two sampling

spaces. For example, colored tokens of varying frequencies (e.g. 15 blue, 10

yellow, 5 red, and 2 green) might be placed in a bag, and children would

predict the colors of successive pairs drawn from the bag. In the two-sample
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experiments, children judged which of two containers was morelikely to yield
a token of a certain type, say a blue token (see Figure 11.1).

In both the one-sample and two-sample experiments, frequencies of
outcomes were varied, a feature that would becomea focusoflater research.
Piaget and his colleagues observed that older children handled frequency
information better than younger ones. Younger children’s difficulties were
taken to be logical rather than computational, however. Specifically, it was
argued that preoperational children failed to exploit frequency information
becauseof their inability to differentiate probabilistic from nonprobabilistic
causes. On the other hand, although concrete operational children used
frequencyinformation, they did not understand the complexities of relations
among outcomes. For example, they failed to keep track of the effects of
successive draws—that early outcomes constrained later ones when tokens
were not replaced. At the formal operational stage, however, such com-
plexities were supposedly understood, including the relation between absolute
frequencies of separate outcomesandthetotal frequency across outcomes(i.e.
proportions).

Initial studies (e.g. Pire, 1958) wereglobally consistent with the Piagetian
account of the development of probability judgment. Younger children were
confused, sometimes imputing miraculous causes for chance events; and, older
children’s judgments were more likely to be based onrelative frequencies.
However, the theoretical rationale proposed by Piaget was not specifically
tested in these early studies. At about the same time, there was growing
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Figure 11.1 One- versus two-sample probability judgment tasks.
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criticism of Piaget’s methods. Braine (1959), for example, argued that

requiring verbal explanations, resistance to countersuggestions, andthelike,

in order to be credited with a correct response, led to underestimation of

children’s reasoning competence. In other words, such proceduresresulted in

a high rate of false negative errors (see Reyna & Brainerd, 1990, for a

contemporary review of these methodological arguments). A new era of

assessment was usheredin, characterized by greater concern for the extraneous

demands of different methods, and by more careful attention to the link

between experimental manipulations and specific hypotheses.

11.2 STAGE 2: DETAILS, DETAILS

In the first stage, research on probability judgment led to important theoretical

and empirical discoveries. Although research in the second stage wasinitially

motivated by the needto fill in details in the Piagetian program, these “details”

ultimately became crucial elements in theoretical debates. Researchers

systematically varied the nature of the subject’s response (e.g. verbal versus

nonverbal), the task (e.g. one- versus two-sample), and the problem (e.g. the

discrepancy between probabilities of alternative outcomes). Although some

theorists might dismiss the first-stage data as indeterminate because they were

gathered using Piaget’s “clinical method,” the more finely tuned experiments

of the second stage cannotbe similarly dismissed. The bulk of our knowledge

about probability judgment was generated in Stage 2, and any theory

purporting to explain it must account for these data.

11.2.1 Varying Spurious Performance Factors

Yost, Siegel, and Andrews (1962) assessed the contribution of extraneous

performance demands to children’s probability judgments by explicitly

comparing Piaget’s methods to more direct tests of underlying competence.

There were five performance factors that Yost et al. identified as potential

barriers to displaying competence, including requiring elaborate verbal expla-

nations from young children, failing to control for color preferences (so that

children made preference judgments rather than probability judgments), and

failing to provide reinforcement for correct answers (so that children were

insufficiently motivated to perform difficult reasoning operations). To address

these concerns, Yost et al. embedded probability judgmentin a choice task in

which children selected one of two containers morelikely to deliver a reward.

After the child’s selection, a token was drawn from the designated container,

and the child received a toy if the payoff color was indeed drawn.In addition

to using a more motivating task, Yost et al. controlled for other performance

biases (e.g. color preferences). They found that children’s predictions were
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correct 75% of the time and concluded that even “4-year-olds have some
understanding of probability” (page 779).

Because Yost et al. had changed Piaget’s procedures in multiple ways,
researchers subsequently attempted to isolate which changes had produced the
large improvements in performance. Davies (1965), for example, compared
performance with verbal versus nonverbal responses, and obtained the now
familiar result that performance wasvastly superior with nonverbal methods:
With nonverbal responses, 3-year-olds showed some evidence of under-
standing probability, but it was not until age 9 that children were able to
consistently verbalize that understanding. Goldberg (1966) separated the
motivational effects of receiving a reward from the informational effects of
knowing the outcome of a draw. Performancein a Piagetian prediction task
was compared to that in Yost et al.’s two-sample decision-making task—
except that the child did not receive a reward. In both the prediction and the
decision-making tasks, however, children were informed of the outcome of
each draw. Despite the absence of a reward, 75%of the children (3 to 5 years
of age) performed abovechancein the decision making task. However,infor-
mation about draws wasnotthe key ingredient for success because only 35%
of children in the Piagetian prediction task performed above chance. In
addition to the facilitation provided by nonverbal methods, something else
about the two-sample decision-making task apparently madeit easier than the
Piagetian prediction task.

11.2.2 Examining the Two-sample Facilitation Effect

Researchers were particularly interested in solving the mystery of the two-
sample facilitation effect because manybelieved its solution had direct impli-
cations for the question of early competence. Unfortunately, subsequent
research failed to entirely resolve this question. Explanations for the two-
sample facilitation effect fell into two categories, differing according to
whether competence wasbelieved to be overestimated in such tasks. Piaget and
Inhelder (1951) initially suggested that the two-sample task overestimated
competence. According to this view, although the two samples each contain
targets (e.g. blue tokens) and nontargets (e.g. tokens of other colors), the two-
sample task does not require decompositionof possible outcomes.If the total
frequency is the same for the two samples, children need only compare the
number of targets (e.g. blue tokens) in one sample to the numberoftargets
in the other; nontargets can be ignored. On the other hand, in the one-sample
task, the number of targets and nontargets must be compared in order to
predict which will be drawn. Thus, the one-sample task may offer a truer

picture of conceptual competence becauseits solution involves some under-
standing of relations among different classes of outcomes.
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Hoemann and Ross (1971) tested the hypothesis that the two-sample task

elicited magnitude comparisons of targets, as Piaget and Inhelder (1951) had

claimed, rather than true probability judgments. In their first experiment,

virtually identical situations were presented to two groupsof children, a two-

spinner task in which the relative proportions of black and white areas varied

(see Figure 11.2). One group received probability instructions; they were asked

to point to the spinner where black would be the winner (white wasalso used

as the target on half of the trials). The group receiving magnitude estimation

instructions, however, was told to point to the circle (the spinner had been

removed) which had the “most” black (white was also used on half thetrials).

There were no differences between instructional groups at any of the ages

tested (from 4 to 10 years), prompting Hoemann and Rossto conclude that

children could have relied on magnitude estimation in the probability task.

In Experiment 2, children made both probability and magnitude judgments

for a single spinner. Children were asked which color the spinner would point

to for probability questions and which color was “most” for magnitude

questions. In contrast to the first experiment, probability instructions

produced more errors than magnitude instructions at all ages for which

comparisons were available (magnitude judgments were not obtained for the

two oldest groups because they were assumed to beatceiling). Four-year-olds

did not perform significantly above chance on the probability questions, and

errors continued to decrease through age 12. Consistent with Piaget and

Inhelder, Hoemann and Rossinterpreted the greater difficulty of probability

versus magnitude judgments, and the improvements with age, as evidence in

favor of the magnitude estimation hypothesis: Youngerchildren did notreally

understand probability, and made magnitude rather than probability

judgments in two-sample tasks, leading to overestimates of their true

competence (see also Hoemann & Ross 1982).

Perner (1979) also systematically examined the basis of the “double spinner

facilitation effect,” which, he argued, was not always replicable, and must

 

Figure 11.2 Two-sample spinner task in which (if black is designated the winning
color) a 7/8 chance of winning (Panel A) is pitted against a 3/8 chance of winning
(Panel B).



246C«V“«CCF. Reyna andC.J. Brainerd

therefore, depend on more than magnitude estimation. He offered two alter-
natives to the magnitude estimation hypothesis. First he noted that those
studies finding superior performance with two spinners had also induced a
“set” to express a preference. Hence, choices would tend to reflect subjects’
preferences for more of the winning color, facilitating performance in two-

sample tasks. Second, Perner pointed out that there had been morevariation

in the sizes of spinner segments (or numberof objects) in the two-sample than

in the one-sample experiments. Such variation, he reasoned, might have

focused greater attention on the critical dimension (e.g. area size) in the

two-sample tasks. These hypotheses were not supported, however. Neither

preference instructions nor greater variability along critical dimensions

facilitated performance. Althoughfailures to find facilitation effects remained

unexplained, the magnitude estimation hypothesis seemed to account for such

effects when they occurred.

Two-sample tasks can easily be modified so that comparing magnitudes no

longer affords a correct solution to probability questions. For example, as
Figure 11.3 shows, if blue tokens are designated as winners, a sample of 1 blue

and 2 red tokens can be pitted against a sample of 2 blue and 6 red tokens(see

Surber & Haines, 1987, for problem types). Although absolute frequency

favors the second sample, relative frequency (proportions) favors the first

sample. Clearly, if children use the magnitude estimation strategy, they will
erroneously choose the second sample because of the greater magnitude of

targets. Chapman (1975), Ross and Hoemann (1975), and Hoemannand Ross

 
Which container would you pick to draw a blue token?

Figure 11.3 Two-sample task in which targets (i.e blue tokens) are more probable in
option A but more numerousin option B.
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(1971, in their third and fourth experiments) included modified problems, andfound that they were more difficult than the standard type in which totalfrequency was kept constant across the two samples. Apparently, childrenrelied on magnitude estimation in two-sample tasks. The implication that
children were incapable of making true probability judgments under any
circumstances, however, wasstill a matter of dispute.

11.2.3 Information-processing Approaches to Probability Judgment
The Stage 2 research we have reviewed thus far can be characterized as“neo-Piagetian” in the sense that it dealt primarily with phenomenaand with
theoretical hypotheses that had been introduced by Piaget. In these studies,
age variations in probability judgment were generally attributed to logical
deficits (e.g. the magnitudeestimation hypothesis). Eventually, however, therewas a shift towards information-processing explanations of age variability.
The reasons for that shift were many, and cannot be reviewed in any depth
here (but see Siegler, 1983). It is useful to mention, however, that the kind ofexperiment performed by Yost etal. was conducted for many of the other
reasoning paradigms introduced by Piaget with similar results: removing
spurious performance obstacles extended estimates of operational competencewell into what should have been the preoperational stage (Siegel, 1978).Moreover, training studies of various types showedthat such competence
couldbeinstilled in young “preoperational” children, with ample evidence of
conceptual understanding (Brainerd, 1978). For example, such children could
correctly explainthe basis for their judgments, and could correctly solve new
tasks that differed superficially from training tasks (Brainerd, 1982). In the
face of such contradictory evidence, the notion that young childrenlackedcertain logical structures (making it impossible for them to know,or even tolearn, certain ways of thinking) wasdifficult to sustain.
Researchers wereattracted to the information-processing approach not onlybecause of the perceived shortcomings of Piagetian theory, but because of therichness ofthe “mind-as-computer” metaphor. A host of new constructsbecame available to explain variations in children’s performance. Theseincluded perceptual processes, working-memorycapacity, retrieval as opposed

to storage, and so on (e.g. Bjorklund, 1989; Brainerd, 1981, 1983; Siegler,1981, 1983). In contrast to Plaget’s stage approach,limitations in informationProcessing were generally viewed as nonconceptualdeficits.
The processing of quantitative information was a particular focus ofresearch. Although Perner (1979) had failed to support his main hypotheses

about two-sample effects, later reviewers (e.g. Brainerd, 1981; Hoemann &Ross, 1982) made muchofeffects that he did find for differences in magni-
tudes. Perner had evaluated the performance of younger (4—5) and older (6—7)children in standard one and two-spinnertasks, as well as ina “deceptive disk”
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condition. In both of the standardtasks, older children performed better when

odds were highly discrepant (7: 1) than when theywere close (5:3). Younger

children also showed an effect of discrepancies in odds for the two-spinner

task, but not for the one-spinner task. These results replicate Hoemann and

Ross’s (1971) findings that—except for the 4-year-olds in the one-spinner

task—children were sensitive to the degree of disparity between outcome

frequencies in one- and two-spinnertasks.

In Perner’s deceptive disk condition, spinner segments were made to appear

to vary in area contrary to the actual odds. In this condition, older children

again performed better with discrepant oddsin both the one-spinner and two-

spinner tasks, and the younger group was again inconsistent. Now, however,

the younger group showedthe effect for the one-spinner, rather than the two-

spinner, task. Although these effects of odds differences have been interpreted

as supporting the magnitude estimation hypothesis in the two-samplecase (e.g.

Hoemann & Ross, 1982), differences of the same order of magnitude have

been found in one-sample tasks. Moreover, such differences were found for

children from 5 through 13 years of age (e.g. Hoemann and Ross, 1971). Thus,

older children, in a task that is widely agreed to involve probability judgment,

were also sensitive to disparities in odds. Of course, in these kinds of tasks,

predictions should ideally be affected only by the direction of differences in

odds, not by their magnitude.

In an unpublished dissertation, Callahan (1989) reported a study: of quan-

titative processing in older Anglo and Apache children (third and sixth

graders). He presented two-sample probability problems via computer using a

display with two buckets, each containing targets and nontargets. Children

were instructed to choose the bucket that would afford them the best chance

of randomly drawing a target. The computer was programmed to measure

responselatencies, as well as to analyze patterns of responses and assign them

to strategic categories, such as the magnitude estimation strategy (“most

winners”). As the odds-disparity results in prior studies indicated, even older

children tended to focus on comparing the magnitudes of winners.

Children received computer-administered tutorials that specifically targeted

weaknessesin their individual strategies. For example, children using a magni-

tude estimation strategy would receive critical problems of the type described

in Figure 11.3, namely problems in which absolute frequencies differed in a

misleading direction (the two sample sizes were unequal). Such children shifted

to strategies focusing on both targets and nontargets, but tended to return to

the simpler unidimensional strategies after a delay. Interestingly, simpler

strategies were associated with faster response latencies, even after the tutorial,

suggesting that subjects “knew” the correct strategy but traded accuracy for

speed. Similarly, Offenbach, Gruen, and Caskey (1984) reported that,

although sixth-graders preferred a “more target” strategy, using it on a

majority of trials, they occasionally used a proportional strategy. In the
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Offenbach et al. study, as in the Callahan study, most problems could be

correctly solved using the simpler strategy. Again, the implication is that older

subjects were aware of more complex and universallyapplicable strategies, but

chose to make simple frequency estimates.

Brainerd (1981) found that young children (4- and 5-year-olds) also

processed frequency information (contrary to Piagetian theory). In a series of

twelve experiments, he used Markov models to estimate the contributions of

various information-processing factors to probability judgments. In these

experiments, there were 12 types of tokens affixed with colored pictures of

different animals. Children placed tokens of two or three types (e.g. seven

monkeys and three cows) into an opaque container. After the two orthreesets

were placed into the container, the experimenter shook it (mixing the tokens).

Children were then asked to predict a series of one-element draws from the

container. Thus, this was the more stringent one-sample task; sampling was

done with and without replacement.

Onthefirst trial, younger (4—5 years) and older (7—8 years) children based

predictions on frequencies. That is, choice probabilities on Trial 1 preserved

the ordering of the event probabilities. Children were more likely to pick the

more frequent type of animal, but even older children’s responses did not

conform entirely to event frequencies. After Trial 1, however, children at both

ages shifted to nonfrequency-based strategies. When feedback about previous

draws was unavailable, children used a response-alternation strategy roughly

similar to the gambler’s fallacy exhibited by adults (e.g. Baron 1988). They

predicted the response that they had not predicted on the previoustrial. When

feedback about outcomes was available, however, children perseverated with

previous outcomes. Because responses on Trials 2—5 were not frequency-

based, summingacrossall trials (as Piaget and Inhelder did) would have given

the erroneous impression that children had not used frequency information.

Nevertheless, it is clear that children’s performance was not optimal.

Brainerd tested several information-processing explanations for children’s

nonoptimal performance.First, he eliminated storage failure (failure to main-

tain accurate frequency information in memoryacrosstrials) as a source of

errors by presenting children with an “external store.” The same number of

animal tokens of a given type that had been placed in the container was also

placed in a row in front of the container. Response probabilities were

unaffected by this manipulation for either age group suggesting, that failure

to store frequency information did not explain the failure to use such

information on Trials 2—S.

Since storage failure did not appear to be the culprit, other experiments were

designed to determine whetherfailure to retrieve stored frequency information

might be a problem. Theretrieval-failure hypothesis was pitted against a rule-

failure hypothesis. According to the rule-failure hypothesis, even if children

stored and retrieved frequency information onlatertrials, they simply did not
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know howto apply it correctly. (The reader will recognize the latter as an

instance of a conceptual deficit explanation in the spirit of Piagetian theory.)

In orderto discriminate between these hypotheses, Brainerd presented younger

and older children with three event classes of unequal frequency. The two
hypotheses lead to different predictions about performanceafter Trial 1.

Taking the first hypothesis, let us assume that children do not retrieve

frequency information after Trial 1. Because of response alternation, the most

frequent class would not beselected on Trial 2. However, if frequency infor-

mation is not retrieved, then there is no principled basis on which to decide

between the two remaining classes. Therefore, children might guess in order
to decide between the two remaining classes, or engage in idiosyncratic strate-

gies. On the other hand, if frequency information is retrieved after Trial 1,

choices should reflect that information (if children know howto use it) because

of the indeterminacy of the response alternation rule. In other words, with

three rather than two classes, the response alternation rule does not uniquely

identify which of the remainingclasses should be chosen onTrial2. If children
retrieve frequency information on Trial 2 (and later), and know thatit is

applicable, indeterminacy should be resolved on the basis of relative

frequencies.

For younger children, the probabilities of choosing the remaining two

classes were equal, consistent with a strategy of guessing between theclasses

that had not been selected on the previous trial. For older children, however,

there was evidence ofretrieving and implementing frequency information on

later trials; 7- and 8-year-olds tended to choose the more frequent of the two

classes that had not been selected on the previoustrial. Although such results

can be interpreted as evidence that older children are morelikely to sponta-

neously retrieve frequency information on latertrials, it is still possible that

younger children were unable to apply information appropriately on later

trials (i.e. rule failure could also be a problem). In order to determine the

extent to which retrieval failure as opposedto rule failure accounted for errors

as well as developmental differences, Brainerd inducedretrieval of frequency

information prior to probability judgments.

Inducing retrieval of frequency information produced large increases in the

accuracy of probability judgments for both age groups. For youngerchildren,

correct responses jumped to 94% (not significantly different from unity) on

Trial 1, and to 86% on Trials 2—5. For the older children, the percentage of

correct responses was 99%on Trial 1, and 96% on Trials 2—5. Conditional

probabilities revealed that better retrieval in older subjects could account for

their slight superiority in probability judgments. Since children were never

provided with any explanation of how to use the retrieved information

(retrieval amountedto a re-presentationofthe original problem information),

it could be inferred that rule failure (inability to apply frequency information

correctly) had not been a source of prior poor performance. However, if
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children knew howto apply frequency information correctly once it had been

retrieved into working memory—if they had the correct rule—why had they

not usedit in earlier experiments?

Brainerd concluded that children lacked sufficient working memorycapacity

to accommodate frequency information as well as the other information that

they maintained about the problems (e.g. previous responses). Similarly,

developmental differences were explained as differences in memory capacity.

Older children had more memorycapacity than younger ones, and, so could

maintain retrieved frequencies as well as other ancillary information. He based

these conclusions on two kinds of evidence. First, accuracy declined for prob-

ability judgments when memory load wasincreased by presenting (additional)

irrelevant information, especially for younger children (Experiments 4 and

10). Althoughit is clear that younger children are moredistractable than older

children, this does not imply that working memory capacity is a source of

errors in probability judgment under less distracting conditions. The second

type of evidence implicating memory capacity seemed unassailable, however.

Whenchildrenwere probed for their memory for frequencies, and probability

judgments were conditionalized on those probe responses, judgments were

found to be stochastically dependent on memory performance. If judgments

were correct, the probability was high that memory probes had been answered

correctly. If judgments were wrong, memory responses tended to be random.

In sum, studies by Perner (1979), Hoemann and Ross (1971), and Brainerd

(1981) appeared to demonstrate that frequency information wascritical for

probability judgments. Callahan’s (1989) and Offenbach, Gruen & Caskey’s

(1984) data suggested that older children compared frequencies of targets in

two-sample tasks for the sake of simplicity, despite awareness of more univer-

sally accurate strategies. Brainerd’s results further indicated that failure to

retrieve frequency information was the proximalsource of errors in prob-

ability judgments, and that younger children wereless likely to retrieve such

information than older ones. Although earlier workers interpreted the failure

to use frequency information by younger children as a logical or conceptual

deficit, Brainerd showed that children could use such information with a high

degree of accuracy whenits retrieval was prompted. The fact that the con-

ditional probability of predicting the most frequent class, given success on a

memory probe, was not reliably different from unity appeared to provide

strong quantitative evidence of the link between memory for frequency and

probability judgment.

11.3 STAGE 3: INTUITIVE PROCESSES

As we haveseen,the first stage of research on probability judgment had a

monolithic quality to it, having been dominated by the only available theory
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at the time, Piagetian logicism. The second stage was concernedprimarily with
filling in empirical details, and with methodological controversies. Most
studies focused on quantitative processing, namely whether and how
frequency information was used by young children. Two viewpoints emerged
from the second stage: that probability judgments were based on simple
magnitude estimation—in which case young children (and maybe older ones
too) lacked logical competence; and, alternatively, that frequency processing
was limited by working memory andretrieval failure—in which case con-
ceptual competence was present in young children, and performance
variations reflected nonconceptual factors.

This conflict between findings of precocity on the one hand, andlate
emergence on the other, has continuedinto the third stage. Using increasingly
sensitive measures, some studies have shownthat youngerchildren are able to
demonstrate competence. At the same time, older children and adults have
exhibited a number of biases that place their competence in question. In

contrast to thehomogeneity of the Piagetian period, variability in results and
in theoretical explanations has become the rule. The neat developmental
divisions that earlier researchers envisioned, even the idea that thinking

necessarily progresses in a linear fashion, are now being questioned. In order
to accountfor this variability, several researchers have introduced a distinction

between intuitive (or qualitative) processing and quantitative processing.

These different ways of thinking are notstrictly identified with ages or with

developmental stages, however. Although some researchers have become

resigned to task and domain specificity, invoking qualitative and quantitative
thinking as selections from a cognitive menu, others are attempting to
integrate these disparate findings into a general theory of cognitive
development—a “new intuitionism.”

11.3.1 Task Variability

For any regular reader of psychological research, it is by no meanssurprising

to discover that performancediffers across tasks that ostensibly tap the same

competence (see Ceci 1990, for an excellent review). This is true also in

children’s probability judgment. Research on task variability in probability
judgment has examined effects of the context of judgments (social versus

object judgments), problem content (whether extraneous information is

presented), and methods of assessment (information-integration techniques or

rule assessment). The upshot of these studies is that young children can

perform advanced processing operations (under certain conditions). The
implications of task variability, however, are controversial, with some
theorists claiming that variability itself proves that children (and perhaps

adults) do not really understand probability.
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Jacobs and Potenza (1991) compared probability judgments for scenarios
involving objects as opposed to social judgments. For object judgments,
children weretold, for example, that a dresser drawer contained three pairs of
white socks and six pairs of colored socks, and were asked to predict which
kind of socks would be obtained if someone reached in and grabbed

a

pair
without looking. An example ofa social judgmentinvolved 10 girls trying out
to be cheerleaders, and 20 trying out for the band, the task being to predict
which activity a given individual was likely to be trying out for. In addition,
some scenarios included qualitative information designed to bias predictions
(e.g. Juanita is “very popular and very pretty. ... Do you think Juanita is
trying out to be a cheerleader or for the band?”). This information was
designed so that subjects who relied on the similarity between the qualitative
description and a stereotype for a category(the “representativeness heuristic”)
would choose the less frequent category.

Jacobs and Potenza found that predictions were less apt to be based on
frequency information for social judgments than for object Judgments. In
fact, frequencies were likely to be ignored for social scenarios when biasing
information was included (the bias effect was smaller for object judgments).
Interestingly, developmental trends differed depending on the domain,social
or object, and the information provided. When biasing information was not
provided, object judgments did not differ from first grade throughcollege age;
all age groups predicted the more frequentclass (e.g. colored socks). However,
for the social scenarios, there was an age trend. Frequency-based judgments
increased with age for the social scenarios that lacked biasing information.
Thus, even when biasing information was omitted, the domain of the
judgment—objects or a social situation—affected whether children used
frequencies to make probability judgments.
Whenbiasing information was included, developmentaldifferences emerged

for object judgments as well. Younger children were more likely to be
distracted by such information than were older children and adults. This result
is consistent with Brainerd’s (1981) finding that young children used presented
information even when it was irrelevant for judging probability. (See
Dempster, 1992 for an excellent review of interference effects in a variety of
cognitive developmental tasks.) Surprisingly, the age trend reversed when
biasing information was provided in the social scenarios. Older subjects,
including adults, generally ignored frequencies when the qualitative infor-
mation matched the stereotype of the less frequent category. Although the
youngest group was prone to the samebias,its magnitude was somewhat
smaller. (Jacobs and Potenzaalso elicited verbal explanations for predictions,
obtaining the usual finding that choices consistent with the use of a given
strategy—either frequencies or the representativeness heuristic—preceded the
ability to articulate that strategy.) With respect to adults, this study is another
replication of so-called errors and biases in probability judgment (e.g.
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Kahneman,Slovic, & Tversky, 1982). Jacobs and Potenza have provided the

first evidence, however, that such errors increase with age.

Jacobs and Potenza’s studyillustrates the effect of problem content, how

the context and type of information affects probability judgments (see also,

Reyna & Brainerd, 1991a, 1993). Most of the discussion about task variability

in probability judgment, however, has centered around comparisons of two

assessment methods:Siegler’s (e.g. 1981) rule assessment and Anderson’s(e.g.

1980) information integration procedures. Kerkman and Wright (1988) com-

pared results using the two methods for probability judgment, as well as for

other tasks. They concluded that different methods yielded different results,

and recommended rule assessment for younger children, and information

integration theory for older children because of its greater sensitivity to

advanced computational strategies. Surber and Haines (1987), in their review

of proportional reasoning tasks, also discussed differences between the two

methods, but they reached the opposite conclusion: “The rule assessment

approach emphasizes analytic or computational knowledge of proportional

reasoning, whereas the information integration approach 1s better suited to

intuitive or qualitative knowledge” (page 52).

Despite disagreements about the advantages of different measures, there 1S

consensus that results vary across methods. For example, in Siegler’s (1981)

study, probability judgment lagged behind other proportional compensation

tasks, and a minority of 8-year-olds had the correct quantitative rule. In

Anderson’s (1980) study, on the other hand, five-year-olds’ responses fit a

linear fan pattern characteristic of the correct rule. These differences in results

may have to do with processing differences induced by the methods, in

addition to any intrinsic properties of the measures. A clue is provided in a

study by Hommers (1980). Like Anderson (1980), Hommers assessed

children’s knowledge of the expected values of bets involving two dimensions,

probabilities and payoffs. Performance in a choice task (in which children

picked the option they preferred) was compared to that in a rating task (in

which they rated the “likeability” of bets). Children in the choice task who

processed only one dimension were able to combine two dimensionsin their

ratings of bets. Similar findings have been obtained with adults (Payne, 1982).

Thus, choice tasks, such as those used in Siegler’s rule assessment procedure,

may encourage simpler information-processing strategies, compared to rating

tasks, such as those typically used in information integration experiments

(Reyna & Brainerd, 1991b, 1992).

This interpretation is consistent with the results of Acredolo et al. (1989).

First, third, and fifth graders were askedto estimate the probabilities of a

series of events based on the numberof potential successful outcomesand the

total number of possible outcomes (numerator and denominator values,

respectively). Three levels of numerator (1, 2, and 3) and of denominator
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(6, 8, and 10) values were crossed, producing nine problems, each of which

was presented three times. The task was presented as one in which a teacher

wanted to draw a jelly bean of a given color from a bag without looking.

Children rated probability by sliding a marker along a “happy-face” scale. A

bag with none of the designated color (sad) and one with only the designated

color (happy) were used to indicate the endpoints of the scale. According to

information integration theory, children possess tacit knowledge of the

relations between dimensions long before they are capable of applying the

appropriate mathematics. This knowledge is reflected in the pattern of their

estimated values. The happy-facescale provided 32 points with which children

could convey such estimates of probability.

Results indicated that all three age groups took into account variationsin

the numerator and in the denominator, as well as the interaction of these two

dimensions. Numerators influenced ratings more than denominators, but

greater variance among the probabilities was in fact associated with the

numerator because of the specific values that had been presented. So, for

example, children assigned a higher rating to 3/10 than to 2/6 (a typical error

when actual differences in probability are small). Acredolo et al. conducted

several types of individual subject analyses, categorizing the ordering of

subjects’ ratings as consistent or inconsistent with their objectively correct

ordering. As in the group analysis, category assignments were not associated

with grade.

In a second experiment, Acredolo et al. changed the problem set to include

matched pairs of “critical” problems of the sort noted above (3/10 vs. 2/6).

Instead of judging the probability of drawing a jelly bean from a bag, children

judged whether a bug who jumpedinto a box would land on a flower rather

than a spider. Boxes contained varying frequencies of “good”(i.e. flowers)

and “bad” (i.e. spiders) outcomes. Again, there was no effect of grade, and

children took both dimensions and their interaction into effect in assigning

probability ratings. Numerator and denominator were weighted more

appropriately than they had beenin thefirst study; not surprisingly, therefore,

children seldom erred on thecritical problem pairs. However, children did

exhibit a consistent bias when probabilities were equal, as in 5/10 versus 3/6,

assigning the higher rating to the more numerous stimulus (5/10 in this

example). Fischbein, Pampu, and Manzat (1970) reported similar results. As

Acredolo et al. and Reyna and Brainerd (1993) discuss, analogous behavior

occurs in adults. Despite equal expected values, a choice between $100 for sure

and a 50% chance of $200, for instance, does notelicit indifference (Tversky

& Kahneman, 1981). In sum,then, in contrast to earlier studies using a binary

choice paradigm (see also Wilkening & Anderson, 1982), Acredolo et al.

concluded that “children do have the ability to choose on the basis of odds

generated through the construction of proportions” (pages 943-4).
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11.3.2 Intuitive Thought

Our review of research on task variability suggests that younger and older

children process information in qualitatively similar ways, but that younger

children are moresensitive to certain features of the task. Younger children

generally perform better when they are not distracted by irrelevant infor-

mation, and when, according to Acredolo et al., they estimate likelihoods

rather than make choices. According to Acredolo et al., the high level of

performance they observedis achieved by “rough estimation” (page 944)

before children are capable of precise mathematical computations. The nature

of “rough estimation” is not completely spelled out, however. In particular,

Acredolo et al.’s results do not pinpoint the degree to which children’s

processing is quantitative. For example, children might process exact

frequencies—they might count the number of targets and non-targets (and

then combine them intuitively)—or they might simply estimate their relative

magnitude.

In an ingenious follow-up study, Lovett and Singer (1991) examined

whetherchildren estimated probabilities in an essentially quantitative or non-

quantitative manner. Using Acredolo et al.’s second task, subjects ranging in

age from kindergarten through college estimated “how good or bad the box

is” that a bug might jumpinto on a happy-facescale. In addition to recording

probability estimates, however, Lovett and Singer also measured the timeit

took subjects to make their estimates. Across three experiments, they did

obtain age differences in children’s estimates. However, although the younger

subjects (especially kindergartners) deviated somewhat from an ideal response

pattern, results were similar to Acredolo et al.’s in thatfirst graders’ and older

children’s responses demonstrated a sophisticated knowledge of probability.

The key results involved response times. Lovett and Singer reasoned that,

if children counted the items in a box, response times should increase as the

number of items increased. So, they performed regression analysis for each

subject using the size of the denominator (total number of items) as the
predictor variable and responsetimeas thecriterion variable. The regression

analysis reached significance (indicative of counting) for only abouthalf of the

subjects at each grade level (and for even fewer kindergartners). Thus,

although children performed surprisingly well at estimating probability, a

sizeable number of subjects did not appear to count the numberof items in

a box.

In order to discover how children managed to perform so well without
processing exact frequencies, Lovett and Singer decided to test the limits of

children’s abilities to solve the task nonquantitatively. In a second experiment,

children saw one of two displays. The first display was a pond withan out-

cropping of rock. Children were asked to estimate howlikely it was that “the
bug will land on the rock and not in the water when it jumps into the
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pond.” Both the length of rock and the water were drawn as continuous

variables, and therefore their magnitudes could not be estimated by counting

(children were not allowed to use tools, such as a ruler, to measure the

display). The second, quantitative, display, was again a box with flowers and

spiders. Here, children were explicitly instructed to count the items, and the

items were scrambled to make it difficult to estimate their frequencies

perceptually.
Despite using an array of performance measures, no effects of display

condition were detected. Children and adults performed equally well when

quantitative cues were available, and subjects were told to use them, as when

such cues were unavailable. In a third experiment, Lovett and Singer presented

a single display that supported either counting or perceptual estimation. In

contrast to Experiments 1 and 2, in which items had been positioned

randomly, flowers were grouped together and spiders were grouped together.

Regression analyses on responsetimes in this task revealed that most subjects

failed to count the numberof flowers and spiders, presumably estimating their

relative magnitudes perceptually. Interestingly, the developmental trend was

nonmonotonic. The age groups that were least likely to count were at each

extreme: kindergartners and adults. Indeed, only 25% of adults processed the

display quantitatively when they had the option to estimate magnitudes

perceptually. This result contrasts with the increase with age in the use of

counting observed in Experiment 1, a task in which scrambling virtually

eliminated the option of perceptual estimation. Thus, older children and

adults apparently estimate probabilities both intuitively and computationally,

depending on the task, but intuition is the default option.

Surber and Haines (1987) makea similar distinction between computational

strategies (e.g. counting) and intuitive, or qualitative, strategies. They assume,

with Inhelder and Piaget (1958), that intuitive strategies are more primitive

than computational ones. However, they acknowledge that most studies of

probability judgment used problems that do not require computational

solutions, making it difficult to determine whether young children are capable

of such advanced processing. Moore, Dixon, and Haines (1991) compared

intuitive and computational processing in a proportional reasoning task. Like

Lovett and Singer, Mooreet al. presented two versions of a task, one in which

estimation was required (i.e. numerical information was unavailable) and one

in which numbers were presented and subjects were explicitly instructed to

compute their responses. Moore et al. compared performance in these two

types of task for second, fifth, and eighth graders, and college students.

At every age level, the intuitive version of the task was easier than the

computational version.

Mooreet al. also analyzed the quality of each subject’s understanding of

the task. Six prototype categories of levels of understanding were developed

(each prototype being composed of various components of understanding).



258C«WV«CF. Reyna and C.J. Brainerd

Individual subjects were assigned to categories based on the degree to which
their responsesfit the prototype for that category. As expected, subjects in the
intuitive condition were less likely to exhibit a computational strategy and
those in the computational condition wereless likely to exhibit an intuitive
strategy. Moreover, lower-level strategies were more likely to be used by
subjects in the computational condition. Thus, the quality of children’s
strategies (especially for younger children) was generally higher in the intuitive
condition.

The Moore et al. data conflict with the traditional Piagetian view that
intuitive thinking forms the basis for, and is supplanted by, concrete and
formal operational thinking. First, significant differences remained for the
older subjects (long past the preoperational stage) between the intuitive and
computational conditions. This is consistent with Lovett and Singer’s finding
that adults, when they had both options, preferred intuitive over quantitative
processing. Second, quantitative proportional reasoning apparently does not
follow automatically from mature intuitive proportional reasoning. As Moore
et al. indicate, “The relation between intuitive understanding and the process
of arriving at a computational scheme deserves further research” (page 456).
Although Mooreet al. differ from the traditional view in asserting that compu-
tational reasoning does notderive directly from qualitative understanding—
that, indeed, there may be “multiple developmental paths” (page 457), they
adhere to the traditional assumption that computational reasoning is the apex
of development. Siegler’s model (e.g. 1981) also incorporates the assumption
that correct reasoning (as opposed to performance) requires the application of
appropriate quantitative rules. This assumption, however, is by no means
universal.

Fischbein (1975) was the first to advance the idea that children could
correctly solve probability problems intuitively and, moreover, that such
thinking could reflect an initial understanding of probability. Of course in
Piagetian theory, “intuitive understanding” is an oxymoron becauseintuitive
thought presupposes a lack of appreciation for the defining features of the
probability concept. The hegemonyof Piagetian theory probably accounts for
the fact that, as Hoemann andRoss(1982) note, Fischbein’s proposal received
little attention when it was first introduced. In the third stage, however,
Fischbein’s ideas have found increasing acceptance.

Fischbein distinguished between a natural intuition of probability and the
ability to quantify that intuition. According to Fischbein, preschoolers
respond to probability questions appropriately given the limits of their
quantitative skills. Such children estimate relevant quantities or areas
perceptually, comparing subjective odds, but they are unable to construct
ratios or evaluate them computationally. For younger children, then, task
difficulty is a function of perceptual complexity (see also Spinillo & Bryant
1991). Consistent with Fischbein’s interpretation, Huber and Huber (1987)
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found that young children affirmed six formal- axioms of qualitative

(nonnumerical) probability.

11.3.3 Reconciling Earlier and Later Findings

As we have noted, research on intuitive estimation of probability indicates that

children exhibit advanced knowledge of how numerators and denominators

should be integrated before they are able to perform precise computations.

They seem to achieve this level of performance by engaging in qualitative,

often perceptual, processing in proportional reasoning tasks generally,

including probability judgment. Moreover, intuitive strategies persist into

adulthood. This emphasis on nonquantitative reasoning contrasts sharply with

the emphasis on quantitative reasoning in the second stage. In that stage, even

children who supposedly misunderstood probability were said to process

frequencies (e.g. they compared the numberoftargets), and it was universally

agreed that adults processed frequencies. The questionin the third stage, then,

is how to reconcile these seemingly contradictory interpretations.

If children process probability qualitatively, howcan one explain theeffects

of such numerical nuances as, for example, discrepancies in odds? Fischbein

explains variations across one-sample and two-sample tasks (e.g. in Hoemann

and Ross’s, 1971, study) in terms of perceptual discriminability. The same

argument can be applied to differences in odds; as such differences get bigger,

they are also moreperceptually discriminable. A difference between 7/8 and

1/8 is more salient than a difference between 7/8 and 5/8 (see Spinillo &

Bryant, 1991). Moreover, spinners at the same level of differences are not

numerically identical; absolute frequencies differ, for example, 7/8 and 3/8

versus 3/4 and 1/4. [Absolute frequencies do not appearto predict probability

judgments in adults either (e.g. Allen & Estes, 1972; Estes, 1976).] Thus,

global differences that can be estimated perceptually, rather than exact

frequencies, couldexplain effects of odds differences. Such a hypothesis would

also explain biases favoring the more numerous (hence, more perceptually

salient) stimulus for close ratios, such as 3/10 and 2/6, and for equivalent

ratios, such as 3/9 and 2/6.

Further support for this proposal is provided by research on memory for

frequencies. Marx (1985, 1986) varied presentation frequencies for different

stimuli (e.g. words), instructing subjects to remember the exact number of

times each stimulus appeared. Subjects then judged relative frequency, such

as which word of a pair had been presented more often. He found that, for

adults, judgments werenotrelated to retrieval of presentation frequencies, but

were associated with global, gist-like, impressions of relative frequency. Marx

compared subjects’ reports of having used these two kindsof representations,

frequency memory versus global impressions, across age groups. Amongthe

youngest subjects tested, fifth graders, few reported using global impressions,
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and most justified their judgments by referring to exact frequencies of
presentation. The reverse was true for adults. Surprisingly, although fewer
judgments were reportedly based on retrieval of frequencies with age, the
accuracy of those judgments improved.

Wemight account for effects that seemed quantitative in origin, therefore,
with assumptions about perceptual processing and the nature of memoryfor
frequencies. However, under conditions in which memory was not a factor
(i.e. frequencies were displayed in the external store conditions), Brainerd
(1981) appeared to have proved that young children’s probability judgments
were dependent on frequencies (at least for Trial 1; nonnumerical strategies
predominated thereafter). However, Brainerd did not actually assess memory
for frequencies. For memory probes, children were simply asked which of the
sets had been more numerous. These global judgments about which set had
more were then related to probability judgments. The probability judgments
were similarly ordinal. TheMarkov models that werefitted to these data only
evaluated whether children’s choices (of which set was more probable) went
in the correct direction (i.e. whether choices correspondedto the correct
ordering of the sets according to their probabilities). Relationships between
numerical frequencies and numerical probability judgments were not, in fact,
measured.

In 1985, Brainerd and Kingmadirectly tested the proposition that prob-
ability judgments were dependent on memory for exact frequencies, with

surprising results. They found that judgments and memory for frequencies
were independent. Alternative explanations for these findings, such as
measurement insensitivity, were ruled out (see also Brainerd & Kingma, 1984;
Brainerd & Reyna, 1992). Brainerd and Kingma (1985) suggested that
reasoning performance might be based on memoriesfor the gist of presented
problem information (as opposed to details such as exact frequencies). There
wasno explanation, however, for whythis might be so, and no comprehensive

theory was offered to reconcile this anomaly with the tenets of the
information-processing approach.

11.3.4 Fuzzy-trace Theory: The New Intuitionism

Attempts to reconcile the reasoning—remembering independenceeffect, asit
came to becalled, with information-processing assumptions were ultimately
unsuccessful. The independence effect called into question the assumption
that, in reasoning tasks such as probability judgment, problem information
was processed in a working memory with limited capacity. If that were so,
reasoning and memory would necessarily be dependent, rather than inde-
pendent (as observed). For example, in probability judgment, the argument
that judgments are based on global impressions rather than memory for
frequencies does not explain away the independenceeffect in a mannerthatis
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consistent with basic information-processing assumptions. This is because

those global impressions must, in turn, have been derived from problem infor-

mation that wasinitially represented in working memory. Thus,if probability

judgments were only indirectly linked to initial representations of frequency

information in working memory, dependency wouldstill be detected—andit

was not (see Brainerd & Reyna, 1992 and Reyna 1992 for reviews of the

arguments and evidence on this point). These kinds of disconfirmations

eventually forced a reassessment of information-processing accounts of

reasoning.

In 1990, two papers appeared (Brainerd & Reyna, 1990a; Reyna & Brainerd,

1990) that introduced fuzzy-trace theory. The initial impetus for fuzzy-trace

theory was the need to resolve contradictions that had arisen in the wake of

information-processing theory (Reyna & Brainerd, 1992). For example,

despite findings of reasoning—remembering independence,it is self-evident

that children’s reasoning must somehow “depend on” memories that are

related to problem information. Children’s responses do vary with problem

information—such as frequencies in probability judgment—and their

responses are often correct. How could they managethis if they failed to

process problem information?

The solution to this dilemma that is advanced in fuzzy-trace theory is to

assumethat there is another kind of memoryrepresentation that is separate

from memory for the problem per se. These other memoriesare for the gist

of the problem information, the global patterns instantiated by the stimuli

(e.g. “more than,” “increasing”) rather than the stimuli themselves (i.e two

spinner segments with differing areas, a row of rods increasing in length,

respectively). After reasoning paradigms of many types were surveyed,it

became clear that reliance on gist, as opposed to verbatim traces, was

pervasive (for a review, see Reyna & Brainerd, 1991a). This reliance wasevi-

dent even when verbatim memory was found to be highly accurate (e.g.,

Reyna, 1991). This led to a reorientation of theory about reasoning, memory,

and especially, their relationship.

Hitherto, the relationship between memory and reasoning was presumed to

be hand-in-glove. One of the contributions of the information-processing

approach had been to emphasize the role of memoryin problem solving,a role

that many theorists claimed had been neglected by Piaget. A classic demon-

stration was provided by Bryant and Trabasso (1971), who found that the

probability of correct reasoning could be predicted by the probability of

remembering presented information. Dual-task interference effects (that per-

forming a concurrent task such as finger tapping interferes with reasoning)

were also seen as favoring the importance of accurate memory for accurate

reasoning (e.g. Bjorklund, 1989). As we have noted, however, direct tests of

the relationship between reasoning and memoryfailed to uncover expected

dependencies. In addition to accounting for independenceresults, fuzzy-trace
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theory offered alternative explanations for dual-task interference and for

supposed memoryeffects in reasoning tasks, bringing seemingly contradictory

findings together under the same theoretical umbrella.

Although fuzzy-trace theory has been extended in a variety of ways (see

Brainerd & Reyna, 1993a; Reyna & Brainerd, 199la, for reviews), incor-

porating a set of interrelated principles about encoding,retrieval, processing,

and retention, we will focus here on just three principles that are especially

relevant to probability judgment. These are fuzzy-to-verbatim represent-

ational continua, the fuzzy-processing preference, and memory-to-reasoning

interference. According to fuzzy-trace theory, reasoners encode multiple
representations of problem information that vary in specificity (or fuzziness).

These representations are functionally dissociated early in processing. Thatis,

gist is not derived from verbatim representations of problem information;

instead, they are encoded in parallel. Given multiple representations,

reasoning is governed by a fuzzy-processing preference. Reasoning gravitates

to the fuzziest, least specified, level of representation that can be used to

successfully solve a problem. So, for example, reasoners deciding which

numberis larger, 294 or 7, would tend to rely on gross magnitude estimation,

as opposed to processing the exact numbers (e.g. Link, 1990). Functional

dissociation and the fuzzy-processing preference, then, explain why verbatim

memories and gist-based reasoning would be independent of one anotherin

probability judgment (as well as other tasks).

Althoughit is a fundamental assumption of information-processing theories

that memory accuracyis positively related to reasoning accuracy, according to

fuzzy-trace theory, accurate memory can adversely affect reasoning. In class-

inclusion reasoning, for instance, when children are asked if there are more

cows or more animals, focusing on problem facts, including that there are

more cows than horses, leads to systematic errors. The ability to ignore

verbatim information, and operate on thegist of relationships, increases with

age (Dempster, 1992). Not coincidentally, the functional dissociation between

gist and verbatim memory, as well as the fuzzy-processing preference, also

increase with age (Brainerd & Reyna, 1993; Reyna, 1991).

In sum, rather than explaining reasoning accuracy in terms of local

breakdownsin memory(e.g. effects of memory “load”), although these can

be demonstrated, reliance on gist implies that reasoning is not mainly deter-

mined bysucherrors (see Estes, 1980, for similar arguments). Thus, studying

variations in working memory for “bits” of information is unlikely to

illuminate the origins of intelligent behavior. Fuzzy-trace theory shifts the

explanatory focus away from memory for information to the ability to

recognize andrepresent the global patterns embedded in that information. The

theory departs sharply from traditional approachesin assigning a central role

to gist in advanced reasoning. In this view, a “fuzzy-processing preference”

represents a system-wide adaptation to the limits of information processing,

a means of avoiding systematic errors caused by poor verbatim memory.
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In fuzzy-trace theory, therefore, thinkingis seen as fundamentally intuitive.
This contrasts with the Piagetian conception of thinking as the rigid appli-
cation of logical rules to premise-like inputs. It also contrasts with the mind-
as-computer metaphor of information-processing, which emphasizes rich
elaborations (“knowledge representations”) of inputs, and identifies precision
and quantification with accuracy. Not only does the conception of thinking
differ in fuzzy-trace theory, so do ideas about development. The fuzzy-
processing preferenceis ascribed to mature reasoners, and representsa flexible
and adaptive approach to reasoning that, overall, has the effect of reducing
errors. This is the opposite of the traditional view that developmentprogresses
away from intuition towards greater logic or computation.

11.3.5 Explaining Probability Judgment Intuitively

It is clear from several studies that children as young as five or six can make
accurate probability judgments, and that they can apply the logic ofratios to
these judgments—despite the fact that they cannot yet divide. The data of
Brainerd (1981), Acredolo et al. (1989), Lovett and Singer (1991) and Jacobs
and Potenza (1991) support such a conclusion. In addition, Huber and Huber
(1987) showed that young children understood qualitative axioms of prob-
ability, and Anderson (1980) and Hommers (1980) showed that they could
apply their knowledge of probability in rating tasks (see also Fischbein, 1975).
However, it is also clear that younger children are sometimes distracted by
irrelevant information, including their ownprior responses (Brainerd, 1981;
Jacobs & Potenza, 1991).

If our review stopped here, we would conclude that the probability concept
is present early in development, although implementing that competence
steadily improves with age. The implication would be that once those same
children becameadults, they would perform atleast as well, if not better than,
young children. However, if we define “better” as processing ratios of
frequencies, that implication is false. Second stage research showed that,
although the magnitude estimation hypothesis was initially supposed to
explain why youngerchildren’s judgments were inferior to older children’s,
evidence (e.g., odds disparity effects) indicated that this simple strategy was
used by older subjects. Callahan’s (1989) and Offenbach, Gruen & Caskey’s
(1984) findings further suggested that older subjects were aware of, and able
to use, ratio strategies, but they preferred magnitude estimation instead.

Morerecent research concurred in demonstrating that older reasoners often
failed to compute ratios. Older children and adults were morelikely to reject
frequency information in a biasing context than younger children (Jacobs &
Potenza, 1991); they were more likely to makeintuitive rather than frequency-
based judgments when thelatter were optional (Lovett & Singer, 1991); and
intuitive tasks were easier (andelicited more advanced reasoning) comparedto
computational tasks even for adults (Surber & Haines, 1987). Finally, adults’
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errors in probability judgment have been demonstrated in numerousstudies on

“heuristics and biases” (Kahneman,Slovic & Tversky, 1982). It is not just that

adult cognition is less advanced than once thought. The heuristics and biases

research and the developmental research imply diametrically opposedviews of

adult competence in judging probability.

One might argue, based on this collection of findings, that children and

adults select from a menu of rules (Siegler, 1988) depending on the task, and

that the variability across tasks cannot be spanned by domain-general assump-

tions. Alternatively, one might argue, with Piaget, that such variability proves

that formal competence has not been acquired because such competence, by

definition, spans tasks that differ superficially. Of course, by this standard,

one would be forced to conclude that adults lack the probability concept.

In contrast, fuzzy-trace theory would argue that adults are able to process

information in a quantitative fashion, but that they tend not to engage in such

processing unless the task requires it. Thus, the probability concept is present

in adults (as shown in studies in which sensitive measures reveal advanced

competence), and advanced understanding of that concept can be achieved

intuitively (Acredolo et al. 1989; Fischbein 1975; Huber & Huber 1987).

Youngerchildren, at least as young as first graders, also have the probability

concept, but they cannot inhibit output interference and interference from

irrelevant problem information (e.g. Brainerd & Reyna, 1993; Reyna &

Brainerd, 1989). Development, in this view, consists of increasing resistance

to interference, and greater reliance on the gist of magnituderelationships—as

opposed to precise computation (although computational skills clearly

improveduring childhood and, for some tasks, must be invoked).

Naturally, intuitive processing has predictable pitfalls such as “denominator

neglect,” the tendency to assume equal denominators when comparing ratios,

in order to apply magnitude estimation (which if denominators were actually

equal, would deliver consistently correct responses). Such denominator neglect

was observed by Offenbach, Gruen & Caskey (1984) and by Callahan (1989),

and similar examples from everyday cognition are discussed by Reyna &

Brainerd (1993). Another bias likely to result from intuitive probability

judgmentis analogous to rounding error, namely the confusion of close ratios

(e.g. 3/10 and 2/6). Ideally, however, probability judgments in the standard

task should be entirely dissociated from numerical disparities such as odds

differences or the exact level of probabilities. In fuzzy-trace theory, as Surber

and Haines (1987) argue, quantitative and intuitive processing are indeed

separate and independent, especially for adults.

11.3.6 Is Intuition Irrational?

To say that adults possess underlying competence, that they have the prob-

ability concept, and have had it from early childhood, is not necessarily to
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claim that their reasoning is rational. The definition of rationality has been

debated by great minds, and we cannot begin to do the concept justice here.

However, with respect to probability judgment, there are several distinct

features of rationality that have been proposed, and that bear onthe issue of

whether intuition is rational.

The question of rationality is central to developmental research for two

reasons. First, theorists have assumed that cognitive developmentis progress

toward rationality (e.g. Piaget, 1931; Werner, 1948). Second, intuition is

assumedto beirrational. As we have seen, however, this places us on the horns

of a dilemma: We must accept experimental data (showing that adults reason

intuitively and that young children reason logically), but we must also

somehow explain the course of development. Like manysituations in which

theoretical conflicts occur, however,it turns out that implicit definitions of key

concepts differ—inthis case, critically, of rationality. By carefully exploring

definitions of rationality, these conflicts can be reconciled.

Tversky and Kahneman(e.g. 1983) have used the term “intuitive” to refer

to the kind of natural processing that leads to biases and errors in probability

judgment(e.g. the conjunction fallacy). In this usage, they can be grouped

roughly with Piaget, for whom intuition was, by its nature, the absence of

rationality (i.e. the absence of logic). However, Tversky and Kahneman (and

others) have discussed at least three kinds of rationality, including corre-

spondence to extensional reality, correspondence to formal rules (e.g. prin-

ciples of inferential statistics), and various forms of internal coherence among

judgments (e.g. the invariance axiom).

Extensional reality refers, for example, to whether preferences between

choices map onto actual differences in wealth (Tversky & Kahneman, 1981,

1986). To oversimplify somewhat, to pick an option that makes one poorerin

reality (compared to its alternative) is irrational (assuming that one would

prefer to be richer). Nonmonetary consequences, including emotional con-

sequences such as anticipated regret should be takeninto account. But there

is still something disquieting about asserting that happiness predicated on an

illusion of greater wealth is rational simply because the dupe thinks heis

happy. If reality were no concern, then the paranoid who believes that there

is a plot to get him, whenthere is no plot, would be rational. In this respect,

reality separates the rational from theirrational.

Gist does not representliteral reality; it is an abstract representation of

underlying patterns. Nevertheless, one can evaluate those representations for

their consistency with reality. So, there is nothing intrinsic to gist-based

representations that would entail any contradiction with reality. Moreover, the

fuzzy-processing preference is generally constrained by the level of precision

demanded in a task. For example, when alternatives begin to diverge in

expected value, subjects do note the nonequivalence of options and shift

responses (though not necessarily sufficiently, see Reyna & Brainerd, 1991b).
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Further, processing fuzzy, or gist-level, representations tends to minimize

reasoning errors (Estes, 1980; Reyna & Brainerd, 199la). Taken together,

these considerations suggest that intuitive processing allows the individual to

maximize overall performance by trading off precision and simplicity.

For many judgments,it is difficult to determine what reality is. In these

cases, the second criterion of rationality—correspondence to formal rules—is

used. In Jacobs and Potenza’s (1991) example given earlier about cheerleaders,

for instance, the probability that cheerleaders are “pretty” or “popular” is

unknown; in Tversky and Kahneman’s (1983) well-known Linda problem,

there is no way to knowthe probability that Linda (or someone fitting her

description) is a feminist. Logic, mathematics, and other formal systems,

however, allow us to place constraints on relations among judgments without

knowingthe exact state of reality. Tversky and Kahneman qualify their attri-

butions of biases and errors in probability judgments relative to specific

canons of logic, Bayesian probability theory, and other formal systems. In

other words, if the validity of those systems is not granted, then subjects’
responses are not necessarily errors.

Gigerenzer and colleagues (e.g. Gigerenzer & Murray, 1987) have challenged

Tversky and Kahneman’s formal analyses of some probability problems, and

argued that subjects are not really making errors. The general thrust of these

arguments is that problems are “ambiguous,” and so subjects make additional

assumptions that go beyondthe presented information. Given these assump-

tions, there are alternative conceptions of probability that support subjects’
responses. Similar arguments could be applied here to explain the variability

in results that we have discussed. However,thereis little direct evidence that

subjects make these additional assumptions, or that they adhereto alternative

theories of probability—except that their responses violate standard

formalisms. The theoretical tack is reminiscent of Henle’s (1962) arguments

that subjects import additional premises from their pragmatic knowledge of
the world, andoncethese are accepted, their logic is impeccable. The problem

with such an approach,of course,is that all errors can be construed postfacto

as successes (especially if the theorist is not limited by considerations of

parsimony), yet the fact remains that the reasoner has not solved the problem

as presented correctly by some standard, often one the reasoner claims to

adhere to.

As our review indicates, this criterion—adherence to logical and com-

putational formalisms—has been a prime concern of developmental research

on probability judgment. It is obvious from this research that, however

subjects manage magnitude estimation and dimensional integration (e.g.

Acredoloet al., 1989), they do not necessarily process information logically

Or quantitatively. In that sense, intuitive processing is irrational. However,

although reason has historically been defined with respect to logic and

mathematics, it is conceivable that a truly psychological definition of reason
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might someday be derived that is not drawn from these analogies. (Such a

definition might also encompass those aspects of advanced reasoning, such as

creativity, that are not well captured by conventional models.) Thus, although

intuition does not fit the historical definition of reason, developmental

research on probability judgment establishes that intuition is a feature ofits

psychological definition.

The most basic criterion of rationality does not require any particular

definition of reason. Nor doesit require exact knowledge of reality. Whatever

the basis for subjects’ responses, the minimal condition that those responses

must satisfy, as Tversky and Kahneman(1986) have compellingly argued, is

invariance. Judgments of the same information by the same individual should

at least (barring statistical error, the passage of time, or changes in circum-

stances) be consistent with one another. If judgments are inconsistent, it is

difficult to claim that there is some rational basis for those judgments. For

example, we noted earlier that most people prefer a sure gain (e.g. of $100)

whenit is pitted against a gamble of equal expected value (a 50% chance of

$200). However,if the same numbersare given, but the choices involve losses,

most people prefer the gamble (i.e. the chance of a higher loss over a sure but

smaller loss). Even when given an endowment fromwhich losses are to be

deducted (making the net gain equal to that in the positively worded problem),

subjects still prefer the gamble. So, superficial changes in wording—although

the same amount of moneywill be gained—cause subjects to shift from risk

aversion to risk seeking. This shift is taken as evidence of irrationality (e.g.

Tversky & Kahneman, 1986). So, violations of invariance do not apply to

situations in which problems really change—forinstance, if the amount to be

gained actually changes; they do not have to do with adaptation to changing

circumstances. Instead, they have to do with inconsistent responses to

superficially different presentations of the same information.

By this most fundamental criterion, gist is the key to rationality. By

operating on the underlying gist of information, rather than on verbatim

details, reasoning can be invariant acrosssuperficially different problems. But,

is it? Developmentally, according to fuzzy-trace theory, reasoning becomes

increasingly invariant. That is, correct reasoning is applied to a wider range

of tasks that abstractly instantiate the same concepts. (Two classic examples

are oddity transfer and learning sets generally, Reyna & Brainerd, 199la,

1992.) Correct reasoning, however, involves more than just recognizing the

appropriate gist in problem information. It also involves inhibitinginter-

ference from irrelevant details, editing out irrelevant gists, knowing the relevant

reasoning principle (e.g., proportionality), retrieving that principle in context,

and correctly implementing that principle (i.e., correctly applying the principle

to the gist representation of the problem). Each of these components has been

shown to make independent contributions to successful reasoning (e.g. Brainerd,

1983; Brainerd & Reyna, 1990b; 1993; Reyna, 1991; Wilkinson, 1982).



268CV<«S#F,. Reyna and C.J. Brainerd

With development, children becomeless subject to interference from both

verbatim details (Brainerd & Reyna, 1993; Reyna, 1991) and from competing

gists (Reyna & Brainerd, 1991la). They also morereliably retrieve and process

relevant principles. All of this fosters the development of invariance.

Interestingly, across the many reasoning tasks that have been investigated,

recognizing the appropriate gist and knowing the reasoning principle do not

seem to be the source of much developmental variation, especially after first
grade. Among both children and adults, it is common for an array ofgists to

be activated in a specific problem-solving context, despite the fact that most

are not used. In addition, adults sometimes are systematically misled by salient

patterns into responding to the wronggist (Tversky & Kahneman,1981, 1983).

Thus, it would be incorrect to conclude that reasoning ever becomesentirely

invariant. There seem to be somepredictable pitfalls in reasoningthat are

created by the need toretain flexibility. By flexibility, again, we do not mean

the ability to shift reasoning in differing circumstances, but the ability to

respond to the same information in different ways. Reasoners appear to trade
off two competing aims, the need to use the same information in different ways

and for different purposes, and the need to respond to similar situations

consistently.

11.4 SUMMARY AND CONCLUSIONS

Wehave divided research on the origins of probability judgment into three
stages. The first stage was dominated by the theory and data of Piaget and
Inhelder (e.g. 1951). Their theory provided a comprehensive view of human

thinking and its ontogenesis, but its empirical foundation was shaky. Stage 2

research redressed the imbalance between theory and data. Althoughit began

as an effort to validate Piagetian claims, Stage 2 research ultimately proceeded
in unexpected directions, generating findings that contradicted the Piagetian
program. These findings included that spurious performance obstacles led to
underestimation of children’s ability to reason about probability, that younger

and older children used simple magnitude estimation to judge probabilities
(despite awareness of ratio strategies), and that younger children could use

ratio strategies correctly in tasks that were not solvable by magnitude

estimation (e.g. if retrieval of frequency information was cued).

Thus, Stage 3 began in a theoretical quandary. Younger children were more

advanced and older children were less advanced (e.g. they, too, used simple
magnitude estimation) than should have been the case, according to Piagetian

theory. Further research merely lengthenedthelist of contradictions: Findings

of early proficiency such as those in Acredoloet al.’s (1989) study wereoffset

by studies such as Jacobs and Potenza’s (1991) in which certain kinds of

judgmenterrors actually increased with age. Researchers ultimately concluded
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that children and adults solved probability judgment problems both by

intuitive estimation and by quantitative proportional reasoning—and there

was little dispute that intuition was easier.

Theoretical opinion continues to diverge, however, with respect to the

implications of these differing approaches to probability judgment. Some

theorists believe that reasoning is determined primarily by local task demands;

theories, therefore, should be task-specific. Other theorists believe that vari-

ability in performance, vulnerability to biases, and intuitive processing,

especially in adults, all indicate that the probability concept is never fully

acquired by most reasoners. Still others—for example, fuzzy-trace theorists—

believe that intuitive processing is the key to achieving the mostbasic criterion

of rationality, invariance. In this view, development is progress toward

invariance—the ability to screen out irrelevancies and respond consistently to

the core gist of problems. Hence, reasoners understand probability at an early

age, but they increasingly rely on intuitive processes as they get older.

Apparently, reasoning never advancesto perfect invariance because the system

serves competing goals: that reality should be represented veridically but

simply, that processing should be accurate but easy, and, most important, that

the same information should be perceived similarly and differently.
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Recently the ambiguity effect (Ellsberg, 1961) has received a great deal of

attention from psychologists and philosophers interested in decision theory

(Einhorn & Hogarth, 1985; Frisch & Baron, 1988; Gardenfors & Sahlin, 1982;

Heath & Tversky, 1991). The original ambiguity effect was the finding that

people often prefer to bet on gambles with a known chance of winning as

opposed to those where the chance of winning is unknown. For example,

consider the following two gambles:

Gamble I: A marble will be drawn from an urn containing 50 black marbles

and 50 white marbles. You win $100 if the marble is black. (Or, you can pick

a color and you win if that color is drawn.)

Gamble 2: An urn contains 100 marbles. Between 0 and 100 are black and the

rest are white. A marble will be selected at random from the urn. You win $100

if the marble is black. (Or, you can pick a color and you win if that color is

drawn.)

Subjective Probability. Edited by G. Wright and P. Ayton.
© 1994 John Wiley & Sons Ltd.
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From the perspective of expected-utility theory, as we shall explain, these
two gambles are equivalent. There is no reason to think that black is more or
less likely than white in either case, and there is no other possible outcome.
It therefore makessenseto think that the probability of winning is1/2 in either
case. Nonetheless, many people prefer Gamble 1. Ellsberg used the term
ambiguity for the kind of unknownrisk in Gamble 2. A situation in which the
“probability is unknown”is called ambiguous.

In principle, you can make money from someone whodislikes ambiguous
bets (Camerer and Weber, 1992, page 359). You can remove the ambiguity

from Gamble 2 by flipping a coin in order to decide which color wins (Raiffa,
1961): the chance of winningis clearly 50% in this case. An ambiguity averter
holding a ticket on “black in Gamble 2” will therefore pay you to trade it for
“black if heads and whiteif tails”. Then flip the coin.If it is heads, do nothing,

and you have been paid to return the personto heroriginal state. If it is tails,
get her to trade her bet on white fora bet on black. (Surely she is indifferent
between these.) Again she has paid you to get her back whereshestarted.
Although this particular con game has apparently not been tried, Tversky

and Kahneman asked subjects about the following game: “Two boxes each
contain red and green marbles. A marble is drawn from each box;if their
colors match, you win $60. In game A, both boxes have 50% red marbles and
50% green marbles... . In game C, both boxes have the same composition of
red and green marbles, but the composition is unknown” (cited by Camerer
& Weber, 1992, page 359). Most subjects preferred to play game A, but the
chance of winning is higher in C. The decision rules that people follow thus
fail to maximize their winnings in the long run. This fact suggests that aversion
to ambiguity is an error. Weshall examinethis suggestion.

In a three-color version of the Ellsberg paradox, an urn contains 90 balls.
Thirty of them are red, and 60 of them areeither black or yellow—wedo not
know which.A ball is to be drawn from the urn, and we can win some money,
depending on whichball is drawn and which option we take, as shown in Table
12.1.

Most subjects lean toward option X. They “know” that they have a
3 chance of winning in this case (30 out of 90 balls). They do not like option
Y because they feel that they do not even know whatthe “real probability”
of winning is. It appears to them that it could be as high as 3 or as low as0.

Table 12.1

30 red 60 balls
balls black yellow

Option X $100 $0 $0
Option Y $0 $100 $0



Ambiguous Probabilities and Expected Utility __-———CSCS~7

Now consider the following pair of options given in Table 12.2. In this
example, most subjects prefer option W, because they “know” that their

chance of winning is 4, whereas their chance of winning with option V could
be as low as } or as high as 1.
Note that subjects reversed their choice merely because the “yellow” column

was changed. According to the independence principle, you should ignore any

columnthat has the sameentries for both options. So your choice should not

be affected by whether the “yellow”-column contains $100 for both optionsor

$0. Hence, this pattern violates the independenceprinciple.

Manypeople, nonetheless, feel a strong temptation to make the choices as
Ellsberg’s subjects (mostly economists) did, choosing X and W. Becker and

Brownson (1964) have even found that subjects will pay money to avoid

making choices in which the probabilities seem to be “unknown”.

Kashima & Maher (1994; see also Maher, 1993) examined a modification of

the Ellsberg paradox in which youare first told whether or not the ball is

yellow. Then, if the ball is not yellow, you have a choice between X and Y

or between V and W. Ellsberg-type subjects asked what they would chooseif
the ball were not yellow favored X and V (thus not violating independence)
rather than X and W. (The switch cannotbe explained in termsof information

supplied by the fact that the ball is not yellow. If anything, that should raise

the probability of a black ball and incline the subject toward W.) All that

changed was the order in which information was revealed before the choice

took effect, yet the subjects could have anticipated such revelations in the

original version. Again, this fact suggests that ambiguity aversion is an error.

The Ellsberg example is a particularly clear case, but it is not isolated.

Ambiguity enters many of our real decisions and opinions, such as those

concerning the safety of nuclear power plants or of genetically engineered

food. The ambiguity effect pits strong intuitions about an example against a
powerful normative theory—that of expected-utility (EU) maximization.

Manytheorists (Shafer, 1976, 1981; Gardenfors & Sahlin, 1982) have takenit,

or closely related phenomena,asa starting point for the development of what

they take to be alternatives to EU theory and the Bayesian probability theory

that it implies. Rawls (1971) argued for the worst-case decision rule in cases

of ambiguity in the “original position”, and the use of this rule provided a

Table 12.2

30 red 60 balls
balls black yellow

Option V $100 $0 $100
Option W $0 $100 $100
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major argument for the difference principle, in which primary goods are
distributed so as to benefit the least advantaged group.

This phenomenonandrelated examples demonstrating subjects’ aversion to
ambiguity has led to empirical research examining the causes and effects of

ambiguity (Curley & Yates, 1985, 1989; Curley, Yates, & Abrams, 1986;

Einhorn & Hogarth, 1985; Heath & Tversky, 1991), as well as theoretical work
attempting to specify the relevance of ambiguity for normative models of
decision-making (reviewed by Camerer & Weber, 1992).
More generally, Ellsberg’s (1961) seminal finding has been important

because it calls into question three fundamental claims in utility theory, as
presented by Savage (1954). Savage (1954) showed that the principle of

maximizing EU could be derived from a set of seemingly uncontroversial

axioms. Utility theory, as presented by Savage, consists of three related claims:

Measurement claim: Subjective probabilities can be defined in terms of

preferences among gambles.
Descriptive claim: Utility theory describes people’s behavior.

Normative claim: The rule of maximizing EU is a normative rule of

decision-making.

First, Savage showed thatsubjective probabilities could be defined in terms

of preferences (if certain “axioms” were true of sets of preferences). By

defining probabilities in terms of preferences, Savage was able to develop the
concept of subjective probability in a way that was acceptable to behaviorally

oriented theoreticians.

Second, Savage proposedhis theory as a descriptive model of choice under

uncertainty. Utility theory was assumed to be a reasonably accurate modelof

people’s choices under uncertainty. A crucial implication of this theory is that

there is no meaningful distinction between “knownrisk” and “uncertainty”.

Finally, Savage showed that the principle of maximizing EU followed

from a set of intuitively compelling axioms. Thus, Savage presented a strong

justification of utility theory as a normative model. In Savage’s (1954) theory,

choice is a function ofutilities and probabilities, where probabilities are one’s

subjective estimates of the likelihood of states of the world.

The ambiguity effect provides first-blush evidence against all three of

Savage’s claims. While previous discussions of ambiguity have noted the

relevance of ambiguity for each of these claims, the implications have not been

distinguished very clearly. In this paper, we shall discuss the implications of

ambiguity for each of Savage’s claims and show how the ambiguity effect

leads to new insights into the uses and limits of utility theory. We conclude

with a discussion of prescriptive implications, that is, implications for

practice.
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12.1 THE MEASUREMENT CLAIM

There are two distinct ways of operationalizing the notion of “degree of

belief” or subjective probability (Ramsey, 1931). First, one can define a

subjective probability as an intuitive judgment of probability. On this view,
the way to measure subjective probabilities is to ask people. We cancall this
tradition the introspective interpretation of subjective probabilities. Alter-
natively, one can define subjective probability as a theoretical entity that is
inferred from a person’s choices. We can call this tradition the behaviorist
interpretation of subjective probabilities, since probabilities are defined in
terms of choices and are inferred from choices. One of Savage’s contributions
wasto showthat if certain constraints were true of people’s preferences, then
probabilities could be inferred from choices. Savage’s theory was very useful
to researchers wanting to apply the behaviorist interpretation.

WhenEllsberg (1961) first discussed the issue of ambiguity, most researchers

were committed to the behaviorist interpretation of subjective probabilities.
Ramsey (1931) and others (Marschak, 1975) argued that one cannot just ask
people for probability judgments. They claimed that if you ask people for
probabilities, the answers you get are not necessarily meaningful. Both
Ramsey (1931) and Savage (1954) suggested that people may not have access
to intuitions about “How likely is X?” They also suggested that such intuitions
may have nothing to do with behavior. Ramsey argues: “...the quantitative

aspects of beliefs as the basis of action are evidently more important than the
intensities of belief-feelings.” (page 171). Savage puts it quite clearly: “Even
if the concept were so completely intuitive, which might justify direct inter-
rogation as a subject worthy of some psychological study, what could such

interrogation have to do with the behavior of a person in the face of
uncertainty, except of course for his verbal behavior underinterrogation?”
(page 27).

Thus, when Ellsberg wrote his paper, many researchers believed that the
only sensible way to define subjective probabilities was in terms of behavior.
The ambiguity effect demonstrated that the probabilities inferred from choices
are not coherent. That is, if a person states a pattern of preferences in which
ambiguity is avoided (or preferred), then it is impossible to assign coherent
probabilities to that person. For example, if the person prefers Gamble 1
whether black or white is associated with the payoff, then the probability of
white in Gamble 2 mustbe less than the probability of white in Gamble 1, and
the probability of black in Gamble 2 must beless than the probability of black
in Gamble 1. If the probability of white and black in Gamble 1 is 0.5, then
the probabilities of the two outcomes of Gamble 2 must add toless than one.
Thus, Ellsberg’s finding called into question the validity of the concept of
subjective probability. This finding was obviously troubling to researchers
in decision-making. If observable behavior (choices) is the only type of
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admissible data and the probabilities inferred from this observable behavior

are incoherent, then one could not develop a theory of decision-making in

terms ofprobabilities and utilities.

In the past two decades, researchers have becomeincreasingly comfortable

with the practice of asking people for probability judgments directly (e.g.

Kahneman, Slovic & Tversky, 1982). Although such data were inadmissible 25

years ago (see e.g. Marschak, 1975), today the practice of asking subjects to

give probability assessments is very common. For example, Kahneman and

Tversky’s work on judgment underuncertainty largely involves experiments in

which subjects are explicitly asked for probability ratings. Perhaps this

increased willingness to ask for numerical judgments is a result of the

increased use of scoring rules both in theory (see Chapter 1) and practice

(Murphy & Winkler, 1977): scoring rules provide a behaviorist constraint on

numerical judgments. |

Nonetheless, we cannot assumethatall problems with probability elicitation

have been solved. Until they have been solved, and so long as hypothetical

decisions are used to elicit probabilities, the ambiguity effect is relevant to

probability measurement as well as to decision-making.

12.2 THE DESCRIPTIVE CLAIM

Given that psychologists have become increasingly comfortable assessing

probabilities directly as opposed to inferring them from preferences, it now

makes sense to ask whether ambiguity affects preferences directly or through

an effect on probabilities. Although this question would not have madesense

to Savage or Ellsberg,it is a reasonable question today, since we acceptas data

both probability judgments and preference judgments.

An important goal of research on ambiguity is to explain why ambiguity

influences choices in the ways it does. There have been two basic approaches

to explaining ambiguity, one in which ambiguity affects beliefs (probabilities)

and one in which ambiguity affects preferences directly.

12.2.1 Effects on Belief

Some authors have attempted to explain ambiguity as an effect on belief.

Einhorn and Hogarth (1985) account for ambiguity effects in terms of

distortion of beliefs. In particular, when subjects are given an ambiguous

probability—or someresults that imply one—they use that probability as an

anchor and they adjust it, as if they were adjusting toward somecentral point

by regression. Adjustment is less when the anchoris near 0 or | than whenit

is more central. The central point itself depends on the subject and the

situation; it may be taken as an index of optimism or pessimism when the
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outcomes differ in utility. The mechanism for this adjustment is the

imagination of values both higher and lower than the anchor, and the

averaging of these imagined values. The adjusted probability is then entered

into the decision as if it were a stated probability.

In order to obtain results that support this view, subjects must not be told

the overall “marginal” probability, or else they must be discouraged from

taking it too seriously. When this is done, most results support the theory.

(Camerer and Weber, 1992, provide a thorough review.) The most important

result is that the stated probabilities assigned to complementary events can

systematically sum to less than one (Einhorn & Hogarth, 1985). For example,

one subject, told that four witnesses had identified a car as blue and one

had identified it as green gave 0.77 as the probability that it was blue. On

anothertrial of the experiment, the subject gave 0.18 as the probability that

the car was green, based on the same data (Table 4 in Einhorn & Hogarth,

1985).

The Einhorn/Hogarth model predicts that adjustments resulting from

ambiguity will be greater for more extreme probabilities. It therefore accounts

for the fact that some people prefer to bet on an ambiguous urn when the

probability of winning is very low: each urn contains 1000 balls; you win if

#683 is drawn; in the unambiguous urn, the balls are numbered1 to 1000;

and in the ambiguous urn, each ball can have any numberin that range.

(According to Becker & Brownson, 1964, such preference for ambiguity was

observed by Ellsberg; Einhorn & Hogarth, 1986, present additional supporting

data.) Accordingto the model, subjects assumethat the probability of drawing

#683 is greater in the ambiguous urn. Although this prediction has not been

directly tested by asking subjects to comparethe probabilities, no other model

has been proposed to account for such findings.

The regression of belief strength toward somereferencelevel is a reasonable

strategy when evidence is poor. For example, if you are told that the prob-

ability of streptococcus infection is 10% in people with fever, sore throat, and

swollen glands, but a recent study of 10 patients with sore eyes in addition

found that 9 of them had this infection, a reasonable estimate of the true prob-

ability for a patient with all four symptoms would be closer to 0.40 than to

0.90. This regression heuristic can be overgeneralized to cases in whichit is

inappropriate, however. In the context of an experiment, adjusting beliefs

amounts to perversity when an experimenter specifies that they should not be

adjusted, For example, when subjects are told that the probability of a disease

depends on membership in a risk group, but membership in therisk group 1s

unknowable andthe overall probability of the disease is X (taking into account

both members and nonmembers), the subject would be perversenot to accept

the value of X as the probability. Of course, a subject who accepted thevalue

of X mightstill prefer to bet on some other event with the same probability.

That is a different issue.
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In real life, however, probabilities are not so constrained. When the Food
and Drug Administration tells us that the increased lifetime risk of cancer
from somebirth-control methodis 0.003, we are not necessarily irrational to
adjust that figure upward. In particular, we might have good reasonto believe
that such figures are generally underestimates and that the tendency to under-
estimate risk is greater when less information is available. Studies of changes
in expert probability estimates as a function of increased data are needed.
(Loewenstein & Mather, 1990, report such data for public perceptions.) It may
well turn out that risk estimates first increase as a risk first enters our
consciousness on the basis of preliminary findings and then decrease, in part
because of regression to the mean (since studies would not be doneif no risk
is perceived) and in part becauseinitial estimates are often based on “worst
case” assumptions. These assumptions, of course, are the result of psycho-
logical processes like those described by Einhorn and Hogarth. Thus, non-
experts may be unwise to adjust reported probability estimates upward, if the
estimates have already been revised upward once by the experts who produced
them.

More generally, whether probability estimates should be adjusted depends
on the social context in which they were generated. Therationality of adjust-
ment depends onthefacts of the matter in the social context. It could go either
way. In sum, the adjustment of beliefs because information is ambiguousis
a useful heuristic that may sometimes be overused.

12.2.2 Effects on Preference

Although Einhorn and Hogarth (1985) present evidence demonstrating that
ambiguity can influence choice through an effect on beliefs, this is not a
sufficient explanation for all ambiguity effects. In Ellsberg-type experiments,
at least the more sophisticated subjects can figure out the marginal probability
for themselves, so accounts in terms ofbelief are unlikely to account for these
results. Frisch (1988), Ritov and Baron (1990), and Heath and Tversky(1991)
gave subjects the marginal probabilities, or askedsubjects to provide them, so
their results clearly demandan explanation in terms of preference rather than
belief.

Frisch and Baron (1988) provide an explanation for why ambiguity
influences preferences, independent ofbeliefs. Ambiguity effects may be a
result of our perception that important information is missing from the
description of the decision (Frisch & Baron, 1988). Perhaps, then, we avoid
ambiguous options because wereally want to exercise another option: that of
obtaining more information. (Roberts, 1963, p. 335, attributes this idea to
Ward Edwards.) When this other option is available—as it often is—it is
perfectly rational to choose it, providing that the information is worth
obtaining. When the information is not available, however, or not worth the
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cost, we would do better to put aside our desire to obtain it and go ahead

on the best evidence we have, even if it is “ambiguous”. More generally, we
can think of our tendency to avoid ambiguousdecisions as a useful heuristic

that points us toward the option of obtaining more information. From a

prescriptive point of view, we probably do well to follow a rule of thumb that

tells us to avoid irreversible commitments when information is missing. If we

can learn to put this rule aside when the missing information is too costly or

truly unavailable, however, we shall achieve our goals more fully in the long

run.

Note that the effect of missing information is a matter of perception. In

principle, an apparently unambiguous option could become ambiguous by

calling attention to missing information. For example, in an urn with 50 red

balls and 50 white ones, the probability of a red ball seems to be 0.5, without

ambiguity. But think about the top layer of balls, from which the ball will

actually be drawn. Wehavenoidea what the proportion of red balls is in that

layer; it could be anywhere from 100% to 0%, just like the proportion of black

to yellow balls in the Ellsberg paradox. By thinking aboutthesituation in this

way, we have turned an unambiguoussituation into an ambiguous one. The

idea that some probabilities are “objective” is simply a consequenceof our not

paying attention to unknown determinants of each event.

Support for our proposal comes from a study of hypothetical vaccination

decisions (Ritov and Baron, 1990). In one experiment, subjects were told to

imagine that their child had a 10 out of 10000 chance of death from a flu

epidemic, a vaccine could prevent the flu, but the vaccineitself could kill some

number of children. Subjects were asked to indicate the maximum overall

death rate for vaccinated children for which they would be willing to vaccinate

their child. Most subjects answered well below 9 per 10 000. Of the subjects

who showedthis kind of reluctance, the mean tolerable risk was about 5 out

of 10 000, that is, half the risk of the illness itself. The results are also found

when the subject is asked to take the position of a policy-maker deciding for

large numbers of children. This result was interpreted as biased toward

omission, toward the default option of not vaccinating.

Of interest here is what happened when this manipulation was combined

with ambiguity. In two experiments, subjects were told that the effect of

vaccination, or of the flu, depended heavily on whetherthe child was in a “risk

group”. Children not in the risk group weresafe, but those in the risk group

were subject to a considerablerisk. The test for the risk group was not avail-

able. Thus, all that could be known was the overall probability of death in
each case. The risk group was a form of salient missing information, which

should, according to Frisch and Baron, induce a reluctance to choose the

option in question. Subjects were in fact less willing to vaccinate when the

result of vaccination was affected by membership in the risk group, thus

supporting our hypothesis. Interestingly, the risk group did not affect
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preference whenit applied to the effect of the flu. It seems that the effect of

missing information reduces the tendency to act but has no effect on the
tendency to omit action. This asymmetry deserves further investigation.

Heath and Tversky (1991) provide an account of ambiguity effects that is
similar to that of Frisch and Baron (1988). They argue that people prefer to
bet when their perceived competenceis high. In several experiments, subjects
were asked to give probabilities of answers to various questions, such as

questions about general knowledge, football predictions, or political

predictions. Subjects were then asked whether they would prefer to bet on

their answers or on chancelotteries (based on coloured poker chips) with the
same probabilities. Subjects chose their answers when the probability they had
assigned was high (indicating competence) or when they knew a lot about the

subject. Subjects chose the lotteries when their probabilities were low or when

they knew little. Heath and Tversky interpreted these results as follows:

... holding judged probability constant—people prefer to bet in a context where
they consider themselves knowledgeable or competent than in a context where
they feel ignorant or uninformed. We assumethat our feeling of competencein
a given context is determined by what we knowrelative to what can be known.
Thus, it is enhanced by general knowledge, familiarity, and experience, and is
diminished, for example, by calling attention to relevant information that is not
available to the decision maker, especially if it is available to others (page 7).

They suggested that this competence effect has both cognitive and moti-

vational determinants. Cognitively, the effect results from an overgeneraliz-
ation of a rule that people do better in situations about which they have more
information. Motivationally, Heath and Tversky suggest that the effect can

result from anticipations of credit and blame: a subject would expect more

blame for a wrong guess on a lottery than for a wrong guess on an equally

probable item in which the subject was expert. Such an expectation, however,
requires the subject to assume that others are committing a cognitive error.
Either this is true, in which case a cognitive error is being made somewhere,

or not, in which case the subject is making an error in predicting the reactions

of others. We also have no reasonto think that subjects would expect others
to make such an error, unless the error were often made. Thus, we regard the

motivational account as secondary to somesort of cognitive account,if it is
true.

Regardless of the source of this competence effect, its similarity to our

earlier hypothesis is striking. In both accounts, the appearance of missing
information leads to an unwillingness to bet, and Heath and Tversky’s
cognitive account is similar to our account in terms of overgeneralization of
the reluctance to act when missing information might be available.
Some effects attributed to effects on beliefs (as postulated by Einhorn &

Hogarth, 1985) might be at least partially the result of direct effects of
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perceived missing information on choice. For example, Kunreuther and

Hogarth (1989) describe the effects of ambiguity on decisions about buying

and selling (hypothetical) insurance contracts. In their experiments—done

with actuaries as well as business students—subjects set higher prices for

insurance whenrisks were ambiguous. Ambiguity was manipulated bytelling

subjects that experts disagreed about the probability of the adverse event in

question. Subjects were also told the mean of the experts’ judgments,

however, and this was held constant between ambiguous and unambiguous

conditions. It therefore seemslikely that subjects regarded the question of why

the experts disagreed as missing information, so they were more reluctant to

accept the risk.

In sum, two different mechanisms seem to produce ambiguity effects, one

involving belief and the other involving preference. The former tends to

moderate extreme beliefs when they are ambiguous. Thelatter inhibits people

from choosing an option when they feel that information about its

consequences is missing.

12.3 THE NORMATIVE CLAIM

Savage (1954) provided a rationale for a normative theory which implies that

uncertain states of the world are all assigned personal probabilities and

decisions are consistent with the maximization of expected utility based on

these probabilities. An important implication of Savage’s theory is that “...

for a ‘rational’ man—all uncertainties can be reduced to risks” (Ellsberg,

1961; page 645). The ambiguity effect demonstrates that many people do make

a distinction betweendifferent types of risk. Thus, people’s intuitions are in

conflict with a normative theory.

Central to Savage’s theory is a form of the independence principle, which

can itself be violated by people who aresensitive to ambiguity. Similar prin-

ciples, along with the principle of transitivity, are used in later developments

along the same lines (see Krantz et a/l., 1971, Chapter 8).

12.3.1 Justification of the Independence Principle

Independence (in one form) requires an analysis of decisions into options,

uncertain states of the world, and outcomes, which depend on the option and

the state. According to the independenceprinciple, if the option chosen does

not affect the outcomes in somestates of the world, then we can ignore the

nature of these outcomes inthose states. For example, in option A, you get

a 1/1000 chance to win $1000 if a coin flip comes up heads, and $Z for sure
if it comes uptails. In option B, you get $1 for sure if it comes up heads, and

$Z for sure if it comes uptails. Z has the same value in both options. By the
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independenceprinciple, you should make the same choice regardless of the
value of Z, because in thestate of the world “tails” the outcomeis the same
regardless of your choice. Your choice really comes down to whether you
prefer the dollar or the chance to win $1000.
More generally, the independence principle can be described in terms of

Table 12.3, in whichthe rowsare the options and the columnsare uncertain
events or states of the world (as described by Jeffrey, 1983).
The entries in the table are the outcomes (V—Z). In the example just given,

state 3 corresponds to tails, state 1 corresponds to heads and winning the
lottery, state 2, to heads and losing. W and are both $1, V is $1000, and
X is $0. By assumption, the entries in one column(state 3) are identical. The
options therefore differ as a function of the choice only in the other columns.
The independenceprinciple states that the outcomesin the identical column
(Z, here) should notaffect the decision. The non-identical columnsaffect the
decision in the same way, regardless of what is in the identical column.

If you follow independenceand transitivity (plus other axioms that are less
important), then you must make decisions as though you assigned prob-
abilities to uncertain states of the world, assigned utilities to outcomes, multi-

plied the probability of each outcomebyits utility, added up these products
for the possible outcomes of each option, and chose the option with the
highest sum (EU). If you accept the axiomsas constraints on your decision,
then, normatively, you should not violate this EU formula.

Howcan the independence axiom bejustified? Onelineof justification may
be based on the definition of utility in terms of goal achievement (or, equiva-
lently for this purpose, desire satisfaction). Importantly, we take utility to be
a real property of states of the world, not an intervening variable designed to
explain preferences. Thus, as Kahneman andSnell (1992) argue, judgments of
utility are more like predictions than reports of inner states. When we make
a judgment of the utility of an outcome, we are predicting how muchthat
outcomewill achieve all of our goals taken together. Note that, by this view,
to say that two entries in the table are the same(e.g. to label them with the
sameletter) is to say that they are equivalent in terms of achieving goals.
Now,given this kind of table, we have two possibilities. Either the identical

State (state 3) occurs or one of the non-identical states (state 1 or 2). If the
identical state occurs, then the nature of the identical outcome (Z) does not

Table 12.3

state 1 state 2 state 3

option A V X Z
option B W Y Z
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affect the achievement of goals as a function of the option chosen, since the

outcome is the same regardless of the option chosen. If one of the non-

identical states occurs, then the nature of the identical outcome doesnotaffect

the achievement of goals either, because the identical outcome (Z) does not

occur. Achievementof a goal is a matter of fact, so it depends on whatis true

of the world after the decision is made. (Recall that we have assumed that no

goals concern counterfactual outcomes.) In sum,the nature of Z, the identical

outcome, does not matter if Z occurs, and it does not matter if Z does not

occur, so it does not matter. Independencetherefore follows from the idea that

rational decisions should be determined by the extent to which their outcomes

achieve goals. (The same kind of argument can be used to defend related

principles, such as those involving dominance or independence ofirrelevant

alternatives.)

12.3.2 Why People might still want to violate Independence

The independenceprinciple is usually illustrated with monetary outcomes, as

in the Ellsberg paradox. When the entries in the table represent monetary

outcomes, people may want to violate the principle for a couple of reasons.

First, forgone or counterfactual outcomes affect their emotions, or more

generally, the way in which consequences are experienced (before, during, or

after they occur). For example, if Z is $1 in Table 12.3 then X ($0) could cause

a feeling of regret, since you would realize that if you had chosen B you would

have won something no matter what. If Z is $0, however, it will be easier for

youto tell yourself that you might have won nothing anyway. Your experience

of X is therefore changed by your knowledge of Z. In terms of goal achieve-

ment, then, X is no longer the same outcomefor different values of Z. It

should be represented with different symbols depending on the value of Z.

Because the independenceprinciple for goal achievement requires that X be

the same consequence, the premise of the independence principle is not true,

and you have not violated it if you make different choices for different values

of Z. In sum, violations of independence (or of EU itself) that depend on

emotional experiences need not be violations at all once the experiences are

included in the descriptions of consequences. The trouble comes from

describing the consequences as amounts of money. (Frisch & Jones, 1993,

make a similar point.) Evidence that subjects take such experiences into

account in makingdecisions is summarized by Harless (1992).

In caseit is difficult to imagine when the assumptions of the independence

condition are met, consider the case of (what weshall call) Other decisions,

in which each decision is made for another person, who does not know what

the rejected options or counterfactual outcomeswere, and in which we cannot

assume that the Other has goals concerning the effect of these unknowns on

choice (Baron, 1993). If the decision-maker truly took into account only the
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utilities of the recipient, not her own utilities connected with making the
decision, the emotional effects of forgone or counterfactual outcomes would
largely disappear. If the recipient’s utilities concerned only the outcomesthat
he would know about, these effects would disappear completely.
For Self decisions (those madefortheself), the fact that the same nominal

outcome(e.g. “$1000”) may lead to different real outcomes as a function of
forgone options or counterfactual outcomes makesit difficult to test EU as a
descriptive theory from behavior alone. Totest the theory for Self decisions,
we must measurethe utility of outcomes in the context of the decision itself,
using other methods than how people makedecisions underrisk (Baron, 1994,
ch. 17). We can use the theory normatively and prescriptively in the same way,
i.e., by describing the outcomes in the context of the whole decision and
allowingits utility to depend on events that did not happen andoptionsthat
were not chosen.

If we wantthe utilities of outcomes to be independent of the context, we
do well to think about Other decisions. Our arguments in favor of the
independence principle applied most clearly to this case. If we use Other
decisions to test the theorydescriptively, we will probably find all the same
violations that have been found in Self decisions, such as the effect of
certainty. Some experiments have used Other decisions (Baron &Hershey,
1988; Kahneman & Tversky, 1984; Ritov & Baron, 1990; Spranca, Minsk &
Baron, 1991),finding that the theory still did not apply descriptively. In parti-
cular, the ambiguity effect found by Ritov and Baron (1990) wasin the context
of an Other decision, the vaccination of a child or (equally) a policy for
vaccination of many children. When the conditions are met for the inde-
pendenceprinciple to apply, violations of that principle, such as the Ellsberg
paradox, subvert the achievement of goals. In that sense, the pattern of
choices observed in the Ellsberg paradox is nonnormative. We suggest that
more research be done using Other decisions. Ambiguity effects in Self deci-
sions are not clearly nonnormative. When these effects—and other effects—
occur in Other decisions, they are more clearly nonnormative. They may be
considered as overgeneralizations of heuristics that might be useful for Self
decisions.

In sum, we have provided a defense of the independenceprinciple in terms
of goal achievement. This defenseis intended as an answertocriticisms of the
more traditional approach, which derives from the intuitive appeal of the
axioms themselves (e.g. Slovic & Tversky, 1974).

12.4 THE ALLAIS PARADOX

The Allais paradox is another case in which the independence principleis
violated (Allais, 1953). Consider the gambles shown in Table 12.4, in which



Ambiguous Probabilities and Expected Utility... ——OSsSCSsa2877

Table 12.4

Numberof ball drawn

] 2-11 12-100

Situation X

Option 1 $1000 $1000 $1000

Option 2 0 5000 1000

Situation Y

Option 3 $1000 $1000 $0
Option 4 0 5000 0

the outcomeis decided by drawing a ball at random from an urn containing

100 balls with the numbers 1 through 100 written on them. Manypeoplein this

situation are tempted to choose Option 1 in Situation X and Option 4 in

Situation Y. In situation X, they are not willing to give up the certainty of

winning $1000 in option 1 for the chance of winning $5000 in option 2: This

extra possible gain would expose them to the risk of winning nothingatall.

(If you do not happento feel this way, try replacing the $5000 with a lower

figure, until you do. Then use that figure in choice 4 as well.) In situation Y,

they reason that the difference between the two probabilities of winning is

small, so they are willing to try for the larger amount.

This pattern of choices violates the independence principle. Balls 12—100

lead to the same outcome ($1000) regardless of whether we choose Option 1

or 2 in Situation X, and they lead to the same outcome ($0) whether we choose

Options 3 or 4 in Situation Y. By the independenceprinciple, you should

choose Options 1 and 3, or Options 2 and 4, but you should not choose

Options 1 and 4. Usually, the independenceprinciple is intuitively attractive,

but many people are prone to violate it by choosing Options 1 and 4.

Shafer (1986) argues that it is not necessarily irrational to choose Options

1 and 4. He says that the “constant” outcomes—those that are the same

regardless of our choice—affect our goals or desires in the situation. (Lopes,

1987, makes a similar argument.) When wesee that we can win a substantial

sum of moneyfor sure in Option 1, this reduces ourdesire for the larger sum.

When wesee that we arelikely to lose no matter what, in Options 3 and 4,

our desire to “win big” increases.

This argument is less relevant if we change the example. Instead of the

decision-maker getting the money, it is donated anonymously and without

explanation to his favorite nephew, or whoever. This is an Other decision. The

nephew does not know what options were foregone or what states did not

occur, so his experiences are unaffected by these things. Moreover (we

assume), the decision-maker has no reason to think that the nephew has any

particular goals concerning options that were not chosen,orstates that did not
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occur, in having decisions made on his behalf. The nephew’sutilities thus
cannot be affected by counterfactual outcomes, so Shafer’s argument does not
apply. We see here how Other decisions are, in a sense, simpler than Self
decisions. By Shafer’s account, the assumptions of the independenceprinciple
are typically not metin Self decisions, but it is easy to imagine how they might
be met in Other decisions.
The perspective of Other decisions also strengthens another argument for

the independenceprinciple. Raiffa (cited in McClennan, 1983) points out that
we may view the original problem as a sequential decision, as follows:

First, a ball will be drawn out of an urn with balls numbered 1—100. If the
number drawn is between 12 and 100 inclusive, the outcome is $1000 (for
Situation X) or $0 (for Situation Y). Otherwise, a second draw is made from a
new urn with balls numbered | through 12. For Option 5, the outcome of the
second draw is $1000, no matter what. For Option 6, the outcomeis $5000 if the
numberis between 2 and 11 inclusive but $0 if the ball is 1.

If we get to the stage of making the choice between Options 5 and 6, then the
outcome for number 12—100 is irrelevant, for it did not occur. Raiffa argues

that it should be irrelevant whether we make the decision before we know

whether we get to the second stage of the game(asin the original Situations
X and Y) or after we know (as in this example). McClennan (1983), points
out that Raiffa and others who makesimilar arguments give no reason why
the timingof the decision should not matter; they simply assert it, or suggest
that most people’s intuition would agree. But, to answer McClennan,it is clear
that the timing would not matter to some Other who simply experienced the
consequences without knowing the sequence of events that led to it (assuming
that the Other has no goals concerning these non-experienced events).

12.5 ISSUES IN APPLICATION

We have argued that ambiguity effects can result from overgeneralization of
heuristics concerning the postponementof decision-making when information
is perceived as missing. These effects can be nonnormative, that is, in
opposition to the optimal achievement of our goals. Butissues remain
concerning the practical treatment of situations in which information is
missing, for example, cases in which probability judgments disagree and we
lack information about how to resolve the conflict. We discuss this problem
here, as well as the problem ofdefining true probability in practical contexts,
and the role of experts in decisions under ambiguity.
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12.5.1 Confict

Lindsey, Tversky, and Brown (1979) have discussed the problem of conflictingjudgments from a Bayesian point of view. Theoretically, they assume thatjudgments are a function of some underlying probability that we mightcall“true”. If assumptions are made aboutthe probability of each judgmentgiveneach possible true probability, then Bayes’ theorem can be used to derive aprobability distribution over the possible true probabilities, and the mean ofthis distribution can be taken as the best estimate. In this way, judgmentsmade bydifferent methods or by different people can be reconciled. Lindseyet al. give several examples.

12.5.2 True Probability

But the true probability is still known only probabilistically. In fact, theconcept of true probability requires explication. The very distinction thatinspired Ellsberg, that between uncertainty and risk (Knight, 1921; Luce andRaiffa, 1957) implies that some probabilities can be known with certainty butothers cannot be known, only judged. This distinction lies at the heart of anumber ofrecent alternatives to EU theory, reviewed by Camerer & Weber(1992). Bayesians in the tradition of Savage are skeptical about thisdistinction, however. They see cases of “known risk” as merely convenientsimplification, in which various Judges and methods agree closely on theprobability. In somecases, this agreement has resulted from overwhelming ofpriors by extensive data. In other cases, it results from ignoring relevant data,as when a judgmentis made about the probability of a certain patient havinga disease on the basis of population statistics, ignoring potentially relevantdata aboutthe individual. From this Bayesian point of view, the only possible“true” probabilities are zero and one, and these apply mostly after the fact.Everything else involves judgments based on incomplete information.
This sort of Bayesian stance runsinto conflict with our way of talking aboutprobabilities. We say things like, “I thought that the probability was X, butit was really Y.” In some cases, laws and regulations are stated in terms ofprobabilities, such as limits on the probability of disease caused by exposureto a chemical. These regulations are written as if the probability were anobjective fact.

Brown(1993) proposed a Bayesian analysis of the idea of true probability,an analysis that allows such ways of talking to make sense. The true prob-ability is the judgment that experts would converge on, as further relevantinformation became too costly to collect. In each case, the specific informationrequired would differ, and a true probability need not exist in every case. Forexample, in determining the cancerrisk from a chemical, the true probabilitymight be thought of as the estimate derived from epidemiological data



290
J. Baron and D. Frisch

concerning cancer rate as a function of yearly exposure in the whole popu-

lation of interest. Experts would form their priors on the basis of animal

studies and theoretical beliefs about the form of the dose—response function.

As more data were collected, these beliefs would approach the same

asymptote.In principle, given sufficient time, data like these could be collected

for different groups of patients. But such data on the interaction between

exposure and individual characteristics would presumably be too costly to

collect, so the population asymptote would be the one that experts would have

in mind as the “true probability”. Thus, Brown’s analysis assumes both that

an intermediate asymptote exists and that expert judgments would converge.

He argues for the plausibility of these assumptions in many cases.

This definition of true probability avoids the conclusion that “the true prob-

ability is always just 0 or 1”. It assumes that there is somesort of standard

body of evidence that people want in each case. To take another example, a

doctor might sensibly say, “I can’t assign a probability that the patient has

cancer until we get backall the test results.” Here, the standard tests constitute

the standard evidence. Note that a biopsy would be definitive here, but that

is not included in the standard tests because it is considerably morecostly (and

perhaps becauseit would not make sense to speak of probabilities at all if it

were available).

Brown’s account fits neatly with our own theory of ambiguity as missing

information. When a standard body of evidence exists and has not been

obtained, people will be aware that this information is missing, and they will

desire to collect it before acting. In most cases, this hesitation will be justified.

In some cases, however, the situation will be classified as one in which the

standard informationis easily available, when, in fact, the information is not

available at reasonable cost. From this perspective, then, ambiguity effects

arise in situations seen as similar to those in which additional information is

available. In the Ellsberg urn, for example, the proportion of balls is seen as

something that is usually given. The unique aspect of the problem is that the

experimenter won’t tell.

12.5.3 Expert Judgment vs. Democracy

People fear risks that are not well known (Slovic, Lichtenstein & Fischhoff,

1984). These risks include those of new technologies such as genetic

engineering. Another example is the risks resulting from changesinlegal

standards: part of the US “liability crisis” of the 1980s was the unwillingness

of insurance companies to write liability policies when court standards could

change retroactively, as they did several times in recent years (Huber, 1988).

Hacking (1986) makes an argument with which many would probably

sympathize. He is happy enough to have policy decisions made on his behalf

by decision analysis when probabilities of relevant outcomes are well known,
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but not when probabilities are subjectively judged. Presumably, probabilities

would be well known for things like the success rate of various medical

therapies for various disorders. Probabilities would not be well known for

events such as meltdowns of nuclear powerplants (especially when their design

is new). In cases of the latter type, we would have to rely moreheavily on

traditional methods of decision-making, which stress participation of those

affected, or holistic subjective judgments by elected representatives.

On the other hand, we have argued that missing information is always

present whenever probabilities are involved. What changes from case to case

is its psychological salience. Normatively, we ought to make decisions on the

basis of our best estimate of the probability, it would seem.

An exception to this argument occurs when the risk to one person is

correlated with the risk to another and whentheutility function for harm is

nonlinear with the number of people. Correlated risks are found in the case

of disasters, e.g. hurricanes or earthquakes, since harm to one person from

such a source implies that others are morelikely to be harmed as well. But the

argument as stated here applies to individuals.

As we have noted already, the “best estimate” could be systematically biased

against caution in the case of new technologies. Often, the best estimate is

arrived at by trying to imagineall possible ways in which something could go

wrong. Yet, as Fischhoff, Slovic & Lichtenstein (1978) have shown, we might

tend to err on the side of leaving things out because of our inability to think

of them, and therefore estimate on the low side. The public’s intuition that

experts underestimate risks (“You’ve been wrong so manytimes before, so

why should we believe you now?”) might be justified.

On the other hand, the public could be basing its judgment on a biased

sample of cases that come to mind simply because the experts erred against

caution, such as the Three Miles Island nuclear incident and the problems with

someintrauterine devices. Perhaps as many, or more, cases could be foundin

which experts erred in favor of caution. Experts, too, could besensitive to

ambiguity effects. (The US Food and Drug Administration is said to routinely

boost risk estimates when the data on which they are based are in any way

inadequate.)

In principle, these problems are remediable. Enough experience exists with

risk estimates to allow a direct test of the existence of bias. Such tests have not

been done. In the meantime, risk analysts ought to do the best they can.

Perhaps they should correct for various sources of error. Putting this another

way, Ourtrue bestestimate should include a correction—if needed—for under-

or overestimation as a function of the amount of informationavailable.

Analysts can also use risk analysis to determine when moredatawill be helpful

and when it will not.

Political factors are sometimes relevant. One of the purposesof risk analysis

is to help reducepolitical friction. For this purpose, the risk analysis ought to
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be opento criticism by the public. Conceivably, such criticism can improve the
accuracy of risk analysis, but even if it impairs accuracy it might be worth
soliciting. In addition to soliciting public input, risk analysis should also
consider educating the public about such matters as the ambiguity effect just
described. The intuition that “we should not act until we know the prob-
ability” should be understood as one that has a legitimate basis only insofar
as systematic bias enters the process of risk analysis or insofar as collection of
additional data is worthwhile. .

Intertwined with the ambiguity effect is also a bias toward the status quo,

or toward inaction (Ritov & Baron, 1990). Ambiguity seems to exaggerate this
bias (Ritov & Baron, 1990), but it is present in any case. The amount of money
that people will pay to rid themselves of a risk they already haveis far less than
the amount that they will accept in order to take on the samerisk (Thaler,
1980; Viscusi, Magat & Huber, 1987). If people could learn to overcomethis
bias—and it seems that they can to some extent (Larrick, Morgan & Nisbett,

1990)—wecould take their resistance to new technology more seriously. The
existence of this bias toward inaction therefore makes moreplausible the claim
that people subvert their own goals by favoring present risks over smaller risks
that just happen to be new.

What of Hacking’s argument? In cases in which the public has reason to
distrust thosein charge of a decision analysis, traditional methods of decision-
making might be better. As noted, self-serving bias—the basis of distrust—
can be minimized by precautions surrounding the analysis itself. If substantial
self-serving bias is absent, however, or if adequate precautions are taken to
avoid its effects, perhaps Hacking would do well to trust his fate to the best
guess of experts rather than to the political process. The political processitself
is hardly perfect.
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Chapter 13

Risk Perception: Main Issues,
Approaches and Findings

Wibecke Brun
University of Bergen

Risk is a fact of life. A fact we all face and act upon daily. Yet the ways we

perceive and reactto the fears and hazards surroundingus are poorly under-

stood andhardto predict. Although researchers for years havetried to clarify

and understand humanresponsesto dangers, there arestill controversies about

basic issues as to how risk should be defined and which componentsconstitute

or composean intuitive risk concept (Vlek & Stallen, 1980; Drottz-Sjoberg,

1991; Lopes, 1987; Hansson, 1989; Vlek & Keren, 1992; Jungerman & Slovic,

1992; Yates & Stone, 1992a).

This chapter will first present some definitions of risk and discuss different
decompositions of the risk concept. Next we will give a short presentation of
the main approachesto the study of risk perception, along with some oftheir

main findings. Wewill then take a closer look at the psychological mechanisms

or “cognitive components” that are hypothesizedor found to be of importance

as determinants for lay perceptions of risk. These components (or “dimensions

of risk”), can be grouped according to the nature of the risks, whether these

components have to do with the causes of the risks, the characteristics of the
hazards and their consequences, or with our relationship to and reactions

towards these hazards. Risk judgments also vary according to the degree and

type of uncertainty involved and the waythe risk information is obtained.

Subjective Probability. Edited by G. Wright and P. Ayton.
© 1994 John Wiley & Sons Ltd.
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13.1 DEFINITIONS OF RISK

Different definitions of risk have been proposed. Some of them areclosely
linked to formal probability theory and aimed at providing a rule or a pro-
cedure for calculatingrisk in an “objective” way, for instance, by defining risk
as a product of the probability of a loss and its magnitude. These definitions
vary regarding the basis for the estimation of the probability and the severity
components. What is, for instance, the “natural” unit of risk: reduced life

expectancy? probability of death per hour of exposure? Furthermore, there
exist different views as to the relative importance of the probability and the

severity components (Drottz-Sjéberg, 1991). Should the uncertainty and
severity componentsbe treated as multiplicative in the sense that a small prob-

ability of a large loss is considered equivalent to a larger probability of a

smaller loss? Research indicates that this does not necessarily reflect the way

laypeople think (Bettmann, 1973; 1975; Slovic, 1967; Slovic, Fischhoff &

Lichtenstein, 1980). If one takes the view that risk should be objectively

measured, there is still the problem of which rule to follow, e.g. how these
components should be merged into one. Should for instance the subjective
significance of losses (their disutility) be taken into account? Should the value

of possible gains from a risky product or activity be included? How should the

question of ambiguity (uncertain probabilities) be handled? In one definition
Allais (1953, cited in Vlek & Stallen, 1980) defines risk as the variance of the

probability distribution over the utilities of all possible consequences. Other
examples of formal definitions can be found in Vlek and Stallen (1980) and
Kaplan & Garrick (1981).

Other definitions focus more closely upon lay perceptions and are aimed at

reflecting what laypeople intuitively understand by the term. These more

descriptive definitions are typically linked to a subjectivistic view of prob-

ability. Yates and Stone (1992a), considering risk as a subjective construct,
give one such general definition. They state that risk has to do with /osses, the
significance of those losses and the wncertainty associated with them.

According to Viek and Hendrickx (1988) the experience of risk has to do with

a lack of perceived control associated with a serious undesired consequence.

It is important to note that some definitions focus upon the uncertainty

associated with one given outcome. Other definitions stress that risk is a joint
estimate of several accident possibilities, and focus upon the “openness” of a

situation where several possible accident scenarios exist. Both these categories
refer to risk as some sort of product of the probability and severity of loss.

A slightly different perspective is present in definitions that refer moredirectly

to the process or mechanism underlying how an accident may come about. The

definition of risk as “lack of controllability” could be seen as belonging to this
last category. Here the uncertainty aspect of risk refers to the individual’s own

lack of control or competence, e.g. possibility or ability to master, alter or
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avoid a given outcome. Given complete control no accident would occur,hence risk refers to lack of control.
Apparently most definitions of risk include an estimate of uncertainty (alikelihood,possibility or judged subjective probability) for a negative event tohappen(a possible loss or a negative consequenceof an action). It follows thatrisk perception has a perceived probability/uncertainty aspect as well as aperceived severity aspect toit.
Since probability is one of the main components in most definitions of risk,many issues discussed within the area of risk estimation and risk perceptionparallel discussions within the area of probability theory andits applications.Here wefind the main fronts represented by the frequentists, who interpretprobability as relative frequency, and the subjectivists, who interpret prob-ability as degree of belief (Shafer, 1993). In attempts to integrate thesedifferent views probabilities have been seen as possibilities of an event forwhichthere is somesort of proof, reason or evidence. The Strength of a beliefmay be moreorless warranted by empirical data. One may let knowledge oflong-run frequencies of relevant States of the world justify a feeling of confi-dence orbelief in a given outcome, orthe belief may be justified or influencedby moresubjective aspects, such as how easyit is to construct mental scenariosrepresenting a given outcome,or the availability of it (Kahneman & Tversky,1982a; Tversky & Kahneman, 1982). It has been suggested that the differencebetween objective and subjective probabilities is related to the amount and/orthe quality of the available information on which the probability judgmentisbased, for instance the perceived completeness of the given information(Frisch & Baron, 1988; Kaplan & Garrick, 1981). The same reasoning canreadily be applied to risk estimates.

Is it possible to formulate a valid definition of risk that holds for differentrisky situations? It may bethat the content or meaning ofthe term risk is soclosely linked to the nature of the particular event in question, thatitsdefinition has to depend upon an interpretation of the total context whereitis used. According to Vlek andStallen (1980) it is quite plausible that “risk”is primarily associated with the probability of a loss whenever possible lossesare small and of a similar magnitude and probabilities are well specified, butthat “risk” refers to the size of a loss (e.g. the possible magnitude orseverityof an accident) in contexts where negative consequencescan be serious, but theprobabilities are vague and hard to assess.
Anotherrelevant question to be asked is whether the interpretation of thewordrisk differs between different individuals to such an extent thatit is hardto speak of a common understanding of the term. One way to try to approachthis topic is simply to ask what people mean by the term. Drottz-Sjéberg(1991) gave her subjects the choice between four alternative answers.Altogether 26.4% agreed that “the meaning of the risk conceptis entirelybased on the natureofthe event”, 21.8% agreed that “risk is mainly a question
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of the extent of the consequences of an event”, 21.5% agreed that “risk is a

combination of probability and consequence”, while 45.8% agreed that “risk

is mainly a question of the probability of an event.”! The study further

showed the subjects’ risk definitions to be of consequence for their estimates

of magnitudeof a particular risk. Subjects who defined risk in terms of prob-

abilities gave lower risk ratings than those subjects who defined risk in terms

of adverse consequences. Unfortunately Drottz-Sjoberg did not ask those

subjects who claimed that the meaning ofrisk is entirely based on the nature

of the event, to explain more precisely what they had in mind.

A small-scale Norwegian study provides a somewhatdifferent perspective to

the lay concept of risk (Brun, unpublished data). After the subjects (university

students, n = 72) had listened to a short introduction on different perspectives

of risk (probability, consequences and exposure) they were told that different

people seem to attach different meanings to the term and that we wanted them

to give their opinion by completing the sentence: “When I’m using the word

risk, I mean ...”. After this introduction 62.5% of the subjects defined risk

in a way that could be classified as a combination of the probability and

consequence aspects (for instance: “ — that the chances are great that I will

be hurt or hit, or fail in a situation”, or “... there is a chance for something

negative to happen”). 34.7% of the answers could beclassified as mainly or

entirely focused on the consequences Or the severity of the risk (e.g. “...

something isdangerous”). Only two persons (2.8%) focused exclusively on the

probability or uncertainty aspect, defining risk as “the probability 1s great

that something will happen” and “... something I am not sure of (feel

uncertain about). If I’m to do something for the very first time”. When the

same subjects later were given the following three scales (1—7), their ratings

again confirm the importance of probability and severity of consequences as

risk determinants. Mean rating on Scale A (If something is to be called risky

possible consequences must be serious) was 5.5 (SD = 1.34). Meanrating on

Scale B (If something is to be called risky there is a great probability that

something negative will happen) was 5.2 (SD = 1.86). The subjects did not,

however, agree to the statement in Scale C (If something is to be called risky

it has to be widespread, hit or have an impact on many people): mean rating

2.2, SD =2.09. When the subjects later were randomly divided into three

groups and askedtorate

a

set of 75risks with regard to either probability for

a negative outcome, the size of a negative outcome or the generality of the

hazard, these estimates were found to correlate substantially with risk

magnitude estimates for the same hazards, given by another group (r= 0.81,

0.68, 0.64 for probability, seriousness and exposure respectively).

The main result is that most of our subjects in general expressed that risk

has to do with both the severity of an event and the uncertainty associated with

it. Secondly the subjects expressed a very individualistic risk perspective.

Although risk exposure (e.g. how many people are exposed to the risk) was
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specifically mentioned in the introduction of the study, only one person made
any mention of risk exposure, and then by denyingits relevance (“The prob-
ability of big (negative) consequencesis great, but it does not necessarily hit
many people”). That laypeople often take an individualistic perspective has
been foundearlier in studies of risk perception (Teigen, Brun & Slovic, 1988)
and in the interpretation of probability phrases in general (Murphyetal.,
1980; Brun & Teigen, 1988).

Though disagreement exists as to how the aspects of probability and
severity/magnitude of risk should be estimated, combined or adressed, they
are still important aspects in both laypeople and expert risk definitions. But
laypeople differ from experts by also allowing other characteristics of therisks,
such as the dread feeling they evoke or the catastrophic potential that is
associated with them, to influence their judgments. Theresult is that some
hazards are perceived as riskier andothersasless risky than what is accounted
for by statistical risk estimates like annual fatalities (Slovic, Fischhoff &
Lichtenstein, 1980). These characteristics may influence risk perceptions
in various ways. They may contribute directly to lay perceptions of risk
magnitude (as when a newrisk is perceived as riskier than an old one of the
same “objective” magnitude) or probability of occurrence (a new risk may be
seen as more uncertain and lowstatistical death rate is harder to trust than
equal fatality rates, given an old and well-knownrisk source). Or they may
have a more indirect impact on risk perceptions, by influencing the way the
public perceive the significance of a given loss. Further it may influence public
attitudes towards responsibility for risk management (Brun, 1992), accept-
ability of risk (risk tolerance) and willingness to pay for risk reductions
(McDaniels, Kamlet & Fischer, 1992). Some risk dimensions mayalso predict
whether an accidentis seen as a warning, signalizing future accidents (Slovic,
Lichtenstein & Fischhoff, 1984).
Does a discrepancy between “actual” risk measureslike statistical fatality

estimates and the subjectively perceived risk really constitute a problem? The
importance of having inter-subjective consensus and clear operational defi-
nitions of risk is obvious in the area of risk assessmentandrisk comparisons,
but seemsless important whenit comes to capturing and understandingthelay
perceptions themselves. Fischhoff (1989) suggests that both objective risk
assessments (e.g. fatality rates) and subjective risk judgments can be seen as
alternative risk perceptions—made by “the experts” or by the lay public,
respectively.

Studies of how hazards are viewed in terms of more qualitative risk
characteristics provide an opportunity to capture a lay conceptionofrisk, but
are also useful by providing insight into laypersons’ general reactions towards
hazards and hazard management. Studies within the psychometric tradition
have especially adressed this problem. An important assumption in this
tradition is that risk is inherently subjective. Risk does not exist “out there”,
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waiting to be measured, but is a concept the human mindhasinvented to help

us understand and cope with the dangers and uncertainties of life. From these

studies it becomes obvious that the lay concept of risk is a complex and

multidimensional one that is hard to reduce to a single figure (Slovic, 1987;

1992).

13.2 HOWCAN RISK PERCEPTIONS BE STUDIED?

The main body of research within the area of risk perception have been

revolving around basically two issues. Several studies has been conducted

where the main goal has been to gain knowledge of what the major public

concerns are, and whether these concerns differfrom the concerns of therisk

experts or the authorities. Which kinds of risks do people fear and which do

they tolerate? The interest in public preferences for, or attitudes towards,

certain categories of risks has yielded a large body of applied research. Several

studies have focused on individual hazards of special concern like means of

transportation, energy production and chemical waste sites, and have been

partly financed by relevant industries or governmental agencies.

The second, and more theoretically important question, is what “psycho-

logical mechanisms” can explain public reactions (attitudes and actions)

towards hazards? If there is a discrepancy between expert andlay perceptions

of risk, how should it be understood? What “psychological laws” do risk

judgments follow? When answering these questions public reactions to specific

hazardsare not interesting in their own right, but can be taken as indicators

of the more general cognitive or judgmental strategies that people use when

facing uncertainty and dangers.

These two main questions/perspectives give answers that are not too easy to

integrate within the same general framework. To complicate the picture

further, some studies focus on laypeople’s general reactions towards a given

phenomenon,like means of transportation, and include both positive and

negative aspects. Other studies are more focused directly on risky activities

related to the use of the risk source,andstill others are asking for lay reactions

to a given hypothetical accident. For example, some focus upon hazards

(threats to humansand whatthey value) while others are studies of risk (some

quantitative measure of the probability of harm or loss) from a given hazard.

Furthermore some ask for personal risk, and others for estimates of risk for

the society as a whole. The different perspectives have given results that are

not easy to compareacross different studies. It has also been noted that risk

perceptions and risky behavior are not necessarily directly related. Risk

perception may be one—among several—determinants of risk behavior.

Studies within the experimental approach to risk have primarily focused upon

studying determinants for risk behavior, while the psychometric approach has
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been aimed at demonstrating cognitive components important for lay

perceptions of risk. Thus, in the following, we will pay most attention to

results gained from research within the psychometric approach.

Asis well knownfrom risk studies as well as other areas of decision-making,

the way questions are asked, choice of response format or the given context

may have an influence on the answers, through framing effects, anchoring

processes and attention biases (Tversky & Kahneman, 1981; Fischhoff &

MacGregor, 1983; Eiser & Hoepfner, 1991). When asked to rate or compare

different risky activities, subjects’ attention is focused towards these given

risks, with the possibility of neglecting or underestimating other and maybe

equally important characteristics. Several studies specifically address the

question of whether different methods or judgmental tasks give rise to

different representations of risk (Johnson & Tversky, 1984; Tyszka &

Goszczynska, 1993).

13.2.1 The Experimental Approach to Risk

The “traditional” way to study risky decision-making in psychology and

economics has been through gambling studies. Here subjects are presented

with “lotteries”, described in terms of possible outcomes(gains and losses) and

the uncertainties (probabilities/relative frequencies) associated with these

outcomes, and are asked to betor to express their preferences fordifferent

lotteries, or asked to rate or compare their riskiness. Outcomes and prob-

abilities are easily manipulated and the methodological stringency of the

studies is appealing. These lotteries have been hypothesized to model risky

choice in the real world, and models ofrisky behavior have been constructed

on the basis of the results (Lopes, 1987). Many studies have focused on

violations of utility models and have aimed at testing general rules for risky

choice. People have been found to be “satisfizing” rather than “optimizing”

when confronted with decision tasks, and to use risk strategies that do not

necessarily maximize benefits, but assure positive payoffs and avoid major

disasters. In addition to the basic risk elements of the gambles (probabilities

and magnitude of consequences); individual, situational/contextual and social

characteristics have been studied as predictors of risky behavior (Slovic, 1972;

Lopes, 1987; Shurr, 1987; Lamm, 1988, Mann, 1992; Shoemaker, 1990;

Bromiley & Curley, 1992; Davis, Kameda & Stasson, 1992).

It is generally suggested that the weights people use in evaluating gambles

are not identical to the objective probabilities; they may for instance ignore

small probabilities and treat them as nonexistent (as is also said to be the case

when people judge traffic accident risk), or optimistically assign more weight

to them than is warrantedby the objective rules of the game (as when buying

lottery tickets). According to Lopes (1987), most experimentalists explain

risky choice by positing an internal process for evaluating gambles that is
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structurally similar to computing expected values, with the difference that
objective values are replaced by subjective values (utilities) and objective
probabilities by subjective uncertainty weights.

The methodological advantage of the gambling approach could also be
viewed as a weakness. In real life people are not presented with well-defined
decision options with all relevant parameters clearly laid out. Real-life gains
andlosses are often multidimensional (physical, psychological and economical
losses, damage to nature and environment, etc.) and the associated uncer-
tainties often ambiguous and vague. In addition, real-life choices are
frequently made under time pressure. This makesriskylife situations more
complex and unclear than normallaboratory tasks. On the other handreal-life
Situations provide the subjects with contextual information and cues that
normally facilitate the handling of the task.

Criticisms of the fruitfulness of the gambling/betting perspective of risk

have also come from researchers within the paradigm. Lopes (1983; 1987)
suggested that studying risks as static lotteries has limited our understanding
of the psychological processes involved because it has not provided an
opportunity for related and important issues to be investigated. Some recent
experimental studies have tried to meet some of these criticisms by studying
risk taking in real-life contexts like driving a car (see for instance Hendrickx

& Vlek, 1991a).

13.2.2 The Psychometric Approach to Risk

Dissatisfaction with the gambling paradigm as being ecologically invalid and
irrelevant for understanding everyday reactions to risk, led in the 1960s and
1970s to other—and apparently more valid—approaches.

Starr (1969) based his studies of risk acceptance upon the method of
_revealedpreferences. His assumption was that society over time arrives at
levelsofrisk for different areas that it finds acceptable due to a risk—benefit
trade-off. By examining currentlevels of risk (numberof fatalities, amount of
damages etc.), one can estimate the levels of risk society is willing to accept
also for other sources of risk. Although this view was found appealing and
interesting, several limitations and problems could be pointed out. Does
accepted risk mean the same as acceptable risk? Are laypeople rational in the
sense that they are able to—and actually do estimate levels of risks and
benefits? This position is based on a view of society and its members as
well-informed decision makers who accept and reject risks according to a
consistent set of criteria.

This assumption wasespeciallychallenged bythe.“Oregongroup”,‘Paul
Slovic,Sarah Lichtenstein.andBaruchFischhof , who“founded”thepsycho-
‘metric‘approach|toriskperception.(for a more thoroughdescription of the
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historical development of the psychometric approach, see Slovic, 1992).

Rather than focusing upon the revealed preferences they focused on the

expressed preferences of the public. There were several indicators that lay-

people held different conceptionsofrisk compared tothe experts.

stating theirperceivedrisk anactivityorahazard,theexpertsrelie
       

important (Slovic, Fischhoff & Lichtenstein, 1980; von Winterfeldt, John &

Borcherding, 1981). How can this be explained? The fact that laypeople are

able to give relatively well-calibrated estimates of fatality rates showed that the

discrepancies were not due to erroneous calculations, so explanations had to

be sought elsewhere. Laypeople simply didn’t have the same risk concept as

risk experts. This led to a long-lasting search for “risk dimensions” or “risk

characteristics” capable of explaining the “unexplained variance” of lay risk

perception. Lowrance (1976) had originally presenteda list of 10 risk consider-

ations or dimensions that he hypothesized would influence safety judgments.

These and other risk dimensions were later empirically studied as factors likely

to influence lay perceptions of risk (Fischhoff et a/., 1978). Surveys were

conducted to establish perceived magnitude of risk and benefit of several

different risk sources, while other groups rated the same hazards on several

other more qualitative risk characteristics, like dread and familiarity. Through

factor-analytic procedures several different dimensions (from 9 up to 18) have

been reduced to two (or sometimes three) more basic factors, explaining a

substantial proportion of the total variance. From these two factors a “factor-

analytic space” can be constructed where the given hazards are plotted and

comparisons between them can be made (Fischhoff et al., 1978; Slovic,

Fischhoff & Lichtenstein, 1980; 1985). Severalstudies haveshowedtheJames

 

thedimensionsdread,fatality, catastrophicpotential and lack ofcontrol)and

anotherfactor thatcanbe.labeledunknown.risk(characterizedby. dimensions

like.unfamiliarity,unknowntoscienceand.unknowntothose:exposedto:the

risk).TTh 2 studies generallyshow that layperceptions of magnitudeof risk can

berelatively well explained from ratingson the dread factor, but are relatively

independent of the factor unknownrisk. A similar study by Vlek and Stallen

(1981) gave the same general pattern with two factors explaining most of the

variance. The factors in this study were labeled catastrophic risk and degree

of organized safety control, and have a substantial similarity with the factors

found by Slovic and his associates. As in the former studies, the catastrophic

risk was foundto predict lay judgments of risk magnitude, whereas the second

factor was unrelated to this measure. Teigen, Brun & Slovic (1988) and Brun

(1992) labeled their two main factors the potencyfactor and the active-passive

factor. The active-passive dimension could be seen asreferring to uncertainty

regarding the cause of a risk, while the potency factor to a larger extent refers

to the effects ofit.

 

fatalitystatistics,while for the public these estimates seemed to be less
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The main criticism of the psychometric tradition has been raised on

methodological issues and has especially concerned the correlational nature of

the studies. When particular dimensions of risk are found to co-vary with

perceived magnitude of risk, this may indicate a causal relationship, but could

also be an artifact due to the particular stimulus set. Most studies within this

tradition has been of an exploratory kind, and confirmatory testing of the

theoretical framework developed by the psychometric tradition is now needed

(Slovic, 1992). Experimental studies of the effect of various risk dimensions on

risk perception or risk-taking propensity, based upon ratings of ecologically

valid scenario descriptions, could be one way to go (see Hendrickx, Vlek &

Oppewal, 1989; Hendrickx, Vlek & Caljé, 1992). But even in such designsit

is hard to secure full experimental control and separate the effect of each risk

dimension from the others, since risk dimensions tend to be confoundedin real

life. It is for instance hard to vary a given risk’s “novelty” without affecting

“knowledge of risk” at the same time.

Anothercriticism addresses the problem of inter-individual variability. The

main body of studies within the psychometric approach have been based on

correlations between meanratings of various risks. These aggregated data may

have concealed important individual differences, and the generalized risk

perceptions presented may not be representative at an individual level. Vlek

and Stallen (1981) and Kuyper and Vlek (1984) have for instance found that

the average correlation between subjects (over stimuli) is quite low for esti-

mates of catastrophic potential, and even lower for estimates of probability.

The Generality of Risk Perception

Over the past years numerousstudies have been conducted within the psycho-

metric paradigm using the same or similar methodology with respondents

from different social and cultural groups and with different sets of hazards.

The studies have commonly concluded that risk perceptions follow a remark-

ably similar pattern. A replication study conducted by Slovic andhis associates

after an interval of 10 years showed substantial stability of the factor structure

(Slovic, 1992). Neither differences of culture (nationality), nor changes in the

set of hazards in the studies have altered the general picture of the factory-

analytic representations or “dimensionality” of risk (Englander et al., 1986;

Teigen, Brun & Slovic, 1988; Keown, 1989; Goszczynska, Tyszka & Slovic,

1991; Kleinhesselink & Rosa, 1991). These studies have normally focused upon

man-maderisks. Including a set of natural hazards led, however, in one study

to the appearance of a third factor (a novelty factor) in addition to the two

basic factors, one potency factor and one active—passive factor found

previously (Brun, 1992).

Analysis of risk perceptions of various accident scenarios within a single

hazard domainis another wayof testing the generality of the risk dimensions.
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Psychometric analyses of lay perceptions of a set of railroad accidents and

a set of car accidents have provided the same “factor-analytic space”

represented by the factorsdreadriskandunknownriskas found in analyses

across different hazards (Slovic,‘MacGregor &Kraus,1987; Kraus & Slovic,

1988). Gardneret al. (1982) studied perceptions of risk from nuclear power on

an individual level and found basically the same pattern of correlations

between ratings of magnitude of risk and the major risk dimensions (dread,

catastrophic potential and environmental damage) as reported in the studies

based on aggregated data. The similarities in perceptions of the main dimen-

sions of risk across subjects and domains have maderesearchers ask whether

these risk dimensions represent a “universal” way of perceiving risk, and

answersthe criticism that the “representations of risk” from a given studyis

heavily dependent uponthe set of risks selected for the study.

But somestriking differences between studies have also been found. These

refer mainly to estimates of perceived magnitude of risk, e.g. what are

perceived as the major concerns of the individual and the society. When this

issue is raised the answers seem to vary for different social (Borcherding,

Rohrmann & Eppel, 1986) and national groups (Englander et al., 1986;

Teigen, Brun & Slovic, 1988; Hoefer & Raju, 1991; Mechitov & Rebrik, 1990;

Goszczynska, Tyszka & Slovic, 1991). Subjects from America and HongKong

have generally expressed the highest levels of risk, and subjects from Hungary

and what was the Soviet Union the lowest. Nor have the rankings of hazards

been the same. Apart from a common fear of nuclear power, Hungarians

have for instance expressed greatest concern over common and everyday

hazards (motor vehicles, caffeine), Americans have shown greater concern

over chemical substances and new technologies, Poles rate the dangers of

warfare and nuclear weaponsespecially high, while Norwegians have shown

greater concern over narcotics and psycho-active drugs than the othernational

samples. And females have generally been found to give higher risk ratings

than men,especially with respect to risk from nuclear power (Slovic, Kraus,

Letzel & Malmfors, 1989; and Slovic, Kraus, Lappe & Major, 1991, both cited

in Slovic, 1992; Bastide et al., 1989; Hoefer & Raju, 1991; Sjoberg, 1993). To

summarize: There seems to be a substantial amount of similarity in risk

perception as long as we refer to the main representations of risk (risk

dimensions), but less so if we focus upon the expressed level of riskiness

associated with given hazards.

13.2.3 Qualitative Studies of Risk Perception

There have also been some attempts to study risk perception by more quali-

tative methods: By use of verbal protocols/reports (Tyszka & Goszczynska,

1993), repertory grid techniques (Green & Brown, 1980, cited in Slovic,

Fischhoff & Lichtenstein, 1984), and interviews or “open-ended” questionnaires
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(Fischer et al., 1991). Instead of making the subjects choose among,or rate

risks from, ready-madelists constructed by the experimenter, subjects in these

studies have normally been asked to focus upon and list the risks they

personally think of as important. In some cases subjects are asked to produce

unrestricted lists of risks, in others they are asked to select a given number of

risks of major concern. The domains can be completely open (“whatever

comes to your mind”) or specified by the experimenter (e.g. “health, safety

and environmental risks”).

This approach has provided a different perspective upon what are the main

public concerns from studies within the psychometric approach. From the

latter it has been concluded that the public shows great concern and worry

about technological hazards like nuclear power plants as opposed to “everyday

hazards” like risks from transportation. But when subjects were asked to

produce their own lists, Fischer et al. (1991) found that the category

“accidents” was the most frequently mentioned (37% of the responses), with

motorvehicle accidents alone accounting for 21.6%of the responses. Diseases
were the second most commoncategory of concern. When another group was

asked to list the “health, safety and environmental risks” of major concern,

various environmental risks were mentioned most often (44.1%), followed by

health risks (23.8%) and safety risks (22.4%), with general societal risks

(10.7%) ranking last. Similar results were found in a Norwegian interview

study (Teigen, unpublished data). Here diseases and accidents accounted for

68%of the answers to questions about what the subjects personally were most

worried about, while environmental damages were the most frequent category

(28%) for perceived risks to society. In these open-endedrisk studies one also

finds topics like failures in self-realization, job and studies, interpersonal

relationships, economical affairs etc.; risks rarely to be included in the

traditional risk studies (Fischer et al., 1991; MacGregor, 1991; Teigen,

unpublished data; Brun, unpublished data).

13.2.4 Alternative Perspectives

Studies within the so-called “cultural theory” of risk have recently offered a

challenge to the traditional psychological risk studies. This approach is based

on the work by the anthropologist Mary Douglas (1966) andlater refined and

developed by anthropologists, psychologists and sociologists (Douglas &

~“Wildavsky, 1982; Thompson, 1980; Buss & Craik, 1983; Buss, Craik & Dake,

1986; Dake, 1991; Rayner, 1992). The cultural theory states that cultural

biases and world-views shared by broader social groups shape the individuals’

perceptions of risk, and that people select risks in order to defend their pre-

ferred lifestyles. The culture provides the individual with socially constructed

systems of beliefs or “cultural biases”, which the individual internalizes and

which shapethe individual perception of risk. Wildavsky and Dake (1990) have

made an attempt to empirically test different explanations of risk perception,
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andfind that cultural theory is a better predictor of lay perceptionsof risk than

political orientations, personality factors and people’s knowledgeofrisk.

A recent development is the theory of social amplification of risk

(Kasperson et al., 1988; Kasperson, 1992). This theory or model attempts to

supply a framework for understanding individual perceptions of risk by

placing them within a broader network of social processes. The assumption 1s

that the occurrence of a hazardous event influences psychological, social,

institutional and cultural processes in ways that can further heighten or

attenuate perceptions of risk and shape risk behavior. Behavioral responsesto

risk generate secondary social or economic consequences extending beyond the

direct harm to humanhealth and environment, and these secondaryeffects will

again trigger demands for additional institutional responses or, conversely,

responses aimed at suppressingthe risk. The theory has been criticized for

being too general (Svenson, 1988) and impossible to falsify (Rayner, 1988), but

a recent study used confirmatory analyses to test the assumptions in the model

and found support for them (Rennetal., 1992).

Risk can be studied from different perspectives and with different methods.

Most psychological studies have taken an individualistic perspective, trying to

explain risk perception and risk-taking behavior in terms ofgeneral cognitive

and judgmentalstrategies, personality traits and situational demands. Some

studies have had a moresocial psychological perspective focusing on group

processes in judgment, as seen for instance in the literature on grouppolariz-

ation and the “risky shift” phenomenon (Lamm, 1988), but this perspective

also discusses risk on a micro-level. The cultural theory andthe theory ofsocial

amplification of risk present a broader perspective claiming that individual risk

perception must be related to social, institutional and cultural processes.

13.3 CHARACTERISTICS OF PERCEIVED RISK

Different classifications of risks have been suggested according to the nature

of the risk in question. Johnson and Tversky (1984) suggest from similarity

estimates and clustering techniques that risks can be grouped asviolentacts,

hazards, accidents, technological disasters and diseases. Others haveclassified

risks as technological risks, substances, and activities as opposed to natural

hazards. Others have found an even coarser categorization of risks in

manmadeversus natural type as fruitful for understanding public perceptions

of—and reactions to—hazards (Baum, Fleming & Davidson, 1983; Baum,

1988; Kasperson & Pijawka, 1985; Pijawka, Cuthbertson & Olson, 1987—88;

Brun, 1992). The assumptions behind these taxonomies are that people’s

reactions are similar for hazards that are perceived to share some common

features, and that attitudes and reactions to a given hazardare influenced by

features of the broader category to which the hazard belongs. Classifications
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of risks in broader categories are accordingly seen as useful tools for risk
communication and risk management purposes.

Cvetkovich and Earle (1985) argue for a more process-orientedclassification
based on the hazard’s “life history”. Hazards could be differentiated
according to their causes, their physical and psychosocial characteristics and
typical individual and aggregate responsesto hazards.

13.3.1 Causesof Risk

There are reasonsto believe that the origin of a risk affects howit is perceived.
For instance, a man-madeas opposedto a natural risk implies that someone
can be blamed for an accident. “Self-induced” accidents are perceived
differently than “chance” events where nobody can be seen as immediately
responsible for the outcome. For example, people have expressed reluctance
to vaccinate a child when the vaccinationitself can cause death, even whenthis
is muchless likely than death from the disease itself (Ritov & Baron, 1990).
This is also reflected in the amount of media coverages allotted to humanvs.
non-human factors in accidents.
The degree to which a given technology is perceived as intended to harm

living organismshas been foundto berelated to overall estimates of perceived
risk, while no correspondence was found for estimates of annual mortality
(Hohenemser, Kates & Slovic, 1983). Vlek and Keren (1992) suggest that the
nature of the source or cause of a possible risk constitutes a separate dimen-
sion of risk which they have labeled “harmful intentionality”. Some classes of
risks are seen as generally dangerous if they are designed to harm living
organisms, while others are perceived as benign even if they happen to have
harmful “side-effects”, because the harm is not intended.

13.3.2 Characteristics of the Hazards

One important information for societal risk estimates is the universality of a
given risk source, e.g. the size of the population at risk. This can have a wide
impact on policy strategies for risk communication and risk acceptance. From
a societal perspective it is sometimeseasier to accept an activity of high relative
risk if very few people belong to the risk group, but it is also easier to take
drastic measuresagainstit, e.g. makeit illegal. In some factor-analytic studies
of perception of societal risk, number ofpeople exposed to a risk has come
out as a separate factor, independent of the dread and knowledge factors
(Slovic, Fischhoff & Lichtenstein, 1980). But we have also seen that laypeople
normally hold an individualistic perspective and do not paysufficient attention
to the number of people exposed to a risk when estimating risk magnitude

_(Teigen, Brun & Slovic, 1988).
Another important dimension of risk is novelty. The interpretation of an

accident seemsto be influenced by whether the hazard is seen as new orold.
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Ifasmallaccidenthappensiinan: unfamiliarandpoorlyunderstoodsystem
(e.g.chemicalproduction, nuclear technology,|geneticengineeringetc.)the

accident may serve asa signal,confirming oursuspicions that the technology
or.activity isdangerous, andhinting: at the possibilityfor even‘greater

accidentsto.happen(the“tipoftheiceberg”phenomenon)...The signal

potential of a risk appears to be systematically related to dimensions loading

on boththedreadandthe unknownfactors (Slovic, Lichtenstein& Fischhoff,

1984). Fornewanddreadfulevents,it seemsthatitisthepotentialoroo
possibility,notthenumericalprobabilitygivenfrom.fatalityrates,that|3

 

‘matters,Anincrease‘offatalities is generally relatedto perceived risk (Slovic,

Fischhoff&Lichtenstein, 1980) and increases in new and unknownsystem will

be taken as a sign of danger (Slovic, Fischhoff & Lichtenstein, 1985), while

increases of fatalities in older systems are morelikely to be seen as natural
fluctuations.

13.3.3 Characteristics of the Consequences

This group of risk characteristics is primarily focused on the accident potential

of a risk source and what negative consequences an accident may have. But
relevant also are other consequences the risk source may have, primarily its

benefits. Most of the common “everydayrisks” like driving cars and eating

unhealthy food are primarily thought of in terms of their benefits, not as

potential sources of injuries or death. So risk is not seen as the main

characteristic of such activities although we all know from statistics that they
are the source of manyfatalities.

Also the temporal and spatial distribution of the consequences seems
important (Vlek & Stallen, 1980; Lindell & Earle, 1983). Immediate benefits

for oneself or close persons count more than risks that will affect strangers,

or will only happenat a later time. This has been referred to as the NIMBY

(“not in my backyard”) effect (Marks & von Winterfeldt, 1984).

Probably one of the most mentioned single aspects in this group is the
“disaster potential” of a hazard (Green & Brown, 1978; Slovic, Fischhoff &

Lichtenstein, 1980). The maximal size of a possible accident and the maximal

mortality rate (maximum loss) have been found to predict lay estimates of

overall perceived risk (Vlek & Stallen, 1981; Hohenemser, Kates & Slovic,

1983). This challenges the notion of risk as a unidimensional and additive

concept, e.g. that several small losses should count the same as one or a few
more severe accidents with the same total number of lives lost. Both on
empirical and theoretical grounds it has been arguedthat this is not the only

natural and rational way to perceive risk (Hansson, 1989). Most empirical

studies show that a large catastrophic event is perceived to be worse than

several smaller accidents (von Winterfeldt, John & Borcherding, 1981), but the
opposite view has also been claimed: that large accidents should be given

proportionally lower weights because they normally occur in geographically
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restricted areas, they often kill whole families and therefore will have an

impact on fewer survivors altogether (Zeckhauser, 1975).

“Deaths” are not calculated as “cold numbers” by the public: boththe

question of “who” and “how”is important. Some ways of dying (painful or

dreadful deaths) are perceived as worse than others. The existence of a special

vulnerable and innocent risk group (e.g. children) also matters and may make

a risk appear especially negative. There are also rational arguments for

counting the death of a young and healthy child as moresevere(in years lost)

than the death of an elderly person. But onealso finds arguments for the view

that hazardsthatliterally “hit out of blue” are perceived as more frightening

than well-defined andpredictable hazards. A quote from the Head of The

Medical Advisary Board of the Norwegian Sport Federation illustrates the

point. When asked to comment on the sudden deaths of some Nordic runners

in orienteering races he told the newspaper: “Yes, I am frightened, what’s

horrible with the TWAR-bacteria is that it can hit anybody” (Verdens Gang

17 November, 1992).

More generally the distribution of risks and benefits in the population and

the question of equity plays a majorrole in discussions of the acceptability of

risks. It should be noted that how widespreada risk source is in the public and

the actual distribution of the risky consequences are not necessarily the same

thing. For instance, if the risk has delayed and irreversible effects with a

potential for harmful consequences on future generations it is perceived as

especially serious. Especially new environmental risks seem to be associated

with a high ambiguity concerning the probability of harm and the possible

consequencesthat may follow. High ambiguity is generally found to influence

the evaluation of an event in a negative way (Curley, Yates & Abrahams,

1986). Subjects are, for instance, found to be willing to pay for reductions in

chance ambiguity (Becker & Browson 1964 cited in Vlek & Stallen, 1980), and

insurance experts have been found to suggest considerably higher prices for

insurances against events when the probabilities are ambiguous compared to

when they are well specified (Hogarth & Kunreuther, 1992). The potency

factor found in the psychometric studies can be seen to reflect both psycho-

logical effects of a hazard, suchas feelings of dread and lack of control, and

the physical (actual) consequences like catastrophic potential, delayed and

fatal consequences.

13.3.4 The Person’s Relation to the Hazard

Risk is sometimes defined as insufficient controllability. Psychologically this

aspect is then seen as the main determinant of the uncertainty a person feels

when confronted with a possible negative event. The aspect of control is seen

as important in various areas of risk perception and risky decision-making

(Weinstein, 1984; Langer, 1975; DeJoy, 1989; Hendrickx & Vlek, 1991b).
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Whendriversperceiveless risk for a car accident than their passengers do, this

may be due to the greater perceived control on the part of the driver (Bragg

& Finn, 1982 cited in Jonah, 1986). Cognitive strategies of “coping behavior”

are also relevant here. Feelings of being in control, either by being able to ward

off an accident or by being able to mitigate its effects, contribute to the

person’s psychological state of well-being.

Related to controllability is the frequently mentionedrisk characteristic

“voluntariness of exposure to risk” (Wildavsky, 1986; Lyng, 1990). According

to Starr (1969; 1985), the public seems willing to accept higher risks from

voluntary activities than involuntary ones that provide the samelevel of benefit,

voluntariness of exposure of risk being the key mediator of risk acceptance.

Somefactor-analytic studies have found this risk characteristic to constitute

a basic dimension in public perceptions of risk, but it seems unrelated to

measures of magnitude of risk and more important for laypeople’s views on

risk management (Teigen, Brun & Slovic, 1988; Brun, 1992).

A third relevant aspect is the amount of accumulated knowledge of risk

(Johnson, 1993). Studies have found the dimensions of amount of personal

and scientific knowledgeof risk to be related to measures of risk magnitude,

although the way these measures are related seems to differ cross-culturally

(Teigen, Brun & Slovic, 1988).

13.3.5 Responses to Hazards

Thereis a great variety of responses to hazards. Theseinclude possible actions

for accident prevention and more intra-psychological effects as feelings of

fear, dread and helplessness. Risks differ according to how much horror and

dread they evoke in the public. Some risks have consequencesthat people have

learned to live with and can think of relatively calmly, others evoke strong

emotional reactions, and this is found to be a main predictor of perceived

magnitude ofrisk. There is also reason to believe that the choice of preferred

agentfor risk managementis related to several such qualitative characteristics

of the hazards (Brun, 1992). Risks are also judged differently according to the

possibilities of human intervention. Is the risk predictable? Is it possible for

anybodyto prevent the risk from occurring? Andis it possible to escape the

risk? Studies show the aspect of perceived control over risk to be an important

factor which, together with perceived size of a hazard, predicts whether

individuals will take protective measures (Beck, 1984). Preference for risk

management agent is also related to type or kind of risk in focus. While

societal agents are seen as responsible for managing new and dreadful hazards

like damage to the ozonelayer, biotechnology and acid rain, voluntary and

“common killers”, like smoking, consumption of alcoholic beverages and

motor vehicle travel, are expected to be managed on an individual basis

(Fischer et al., 1991; Brun, 1992).
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13.4 UNDERSTANDING PERCEIVED RISK: RISK
CHARACTERISTICS, JUDGMENTAL STRATEGIES
AND VARIANTS OF UNCERTAINTY

Whatis the status of the risk dimensions? Some of them seem to be rather
“objective” descriptions of relevant properties of the hazard, while others are
determined by the relationship betweenthe individual and the hazard, and
hence of a moresubjective or relative kind. These characteristics are found (or
hypothesized) to be of importance when laypeople makerisk judgments, but
their explanatory poweris still a matter of debate. Some of them haverela-
tively strong empirical support, while others must be seen as more hypothetical
and in need of further empirical testing.

How should these risk attributes be understood and how dothey influence
risk perceptions? Krimsky (1992) has suggestedthat they function as heuristics
when laypeople perceive and evaluate risk. Risk attributes serve as filters and
a priori categories through which individuals experience events as risky or not.
From this perspective one would think that they provide cues or signals for
how individuals should evaluate a given risk, and what the optimal strategies
for risk managementare. The risk dimensions may mediate risk perceptions
differently for variousclasses ofrisks (e.g. the significance of perceived novelty
differs for manmade and natural risks), and the significance of the various
dimensions will most likely differ between individuals and groups of
individuals, according to personal characteristics and prevailing social,
cultural and political attitudes.
How are the risk characteristics related to the traditional, normative

components of risk? According to Hendrickx (1991, p. 14) the “catastrophic
potential” associated with the dread factor in the risk perception studies
parallels the “amountto lose” in the the gambling paradigm, while a dimen-
sion like “personal control” is related to the “probability of loss”. Yates and
Stone (1992b) similarly suggest that the two main factors found in the psycho-
metric studies of risk—dread risk and unknown risk—correspond to the two
main components of the risk concept, loss significance and loss uncertainty.
Both these components are multidimensional. When considering the aspect of
loss significance people may be concernedwith several aspects of the dread and
horror therisk evokes, such as the catastrophic potential of the risk and the
fatality of the effects. When concerned with the loss uncertainty there are
again multiple aspects going beyond the mere probability of injury or death.
These could be lack of knowledgeof a risk, the noveltyof it or the ambiguity
of the risk information. Following these arguments theattributes “dread” and
“catastrophic potential” most likely facilitate the perception of a hazard as
risky by strengthening and amplifying the perceived negative consequences of
the risk, while dimensions like “novelty” and “lack of knowledge” focus the
attention towards the ambiguity and uncertainty aspect of a hazard,i.e.its
probability component.
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Teigen (1994, see Chapter 10) discusses different conceptualizations of

uncertainty and suggests that there exist several different uncertainty (or intui-

tive probability) concepts. According to this framework some “erroneous”

examples of probability judgments could be understood as expressions of

someothertype of uncertainty, such as plausibility, propensity, or lack of con-

trol rather than estimates of probability in a more traditional (e.g. frequen-

tistic) sense of the word. This reasoning seems highly relevant for risk

judgments. Seemingly “overestimated”risks could be explained by assuming

that the probability component in the risk estimate is substituted by some

other variant of uncertainty. If, for instance, a situation appears open andit

is hard to comeup with arguments favoring one abovethe other possible out-

comes, they will all appear “probable” (Teigen, 1988). If the causal

mechanisms ofa disease are not known andthere does not exist a knownrisk

group, everyonein the population may appearat risk. Likewise whenthesitu-

ation seems representative of an accidentsituation it may be judgedrisky, even

if the “true” probability is low. If an event or a substance is seen as having

the potentiality of being fatal, this possibility may be all that matters—not

how big or small the probability really is. As one of our subjects said when

stating his own definition of risk: “It doesn’t need to be a high probability,

but I have to know that the threatening consequences might happen.” Overes-

timations are also found when oneis perceived to be close to an accident and

where one easily could imagine small changes that would have fatal conse-

quences(even if this rarely happens) or there is verylittle extra effort needed

for the risk to become materialized (as when oneis said to be “one second

from death”). Such situations show a tendency orare pointing in the direction

of an accident. This meansthat the risk estimate does not haveto reflect a high

probability for an accident, but can refer to a possibility, a disposition or a

tendency for the accident to occur. In other words people may be judging the

“realism” of a disastrous outcome, rather than its probability (Teigen, 1993).

Several events appearhighly realistic, convincing and plausible in spite of their

low probability and will hence be judged as disproportionately risky.

Risk perception cannot be understood separately from the more general

mental models and judgmental strategies people use when facing uncertainty

(Thiiring & Jungermann, 1986; Svenson, 1988; Bostrom, Fischhoff & Morgan,

1992). Hendrickx and Vlek(1991b) ask whether different types of risk elicit

different cognitive strategies for risk judgments andstate that the quality and

type of probabilistic information provided are important determinants for the

strategy used. The importanceof the nature and the quality of the probabilistic

information has been stressed by several authors in the area of risky decision-

making (Howell & Burnett, 1978; Kahneman & Tversky, 1982b; Palmer &

Sainfort, 1992). Hendrickx and Vlek (1991b) suggest that two fundamentally

different types of information underlie probability judgments: frequency

information based on the outcomesof similar situations in the past, and

process information based on knowledge of the mechanismsthat determine an
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activity’s future course and outcome. Corresponding to these types of infor-
mation there exist different types of mental strategies for likelihood
judgments. Frequentistic information will normally facilitate traditional
probability estimates. Process information in simple domains(like tossing a
coin) will lead to logical deductions of the probability estimates, but will in
complex domains serve as a basis for constructing mental scenarios that
specify how future accidents might happen. Empirical studies (Hendrickx,
Vlek & Oppewal, 1989; Hendrickx, Vlek & Caljé, 1992) have shownpeople to
be sensitive to both types of information, but their relative importance varies
with the type of risky activity. For small-scale personally controllablerisks,
scenario information dominated, while for large-scale and uncontrollable risks
frequency information was more important.
Apparently one can arrive at risk estimates through several different mental

strategies, some more intuitively (subjective) based and others more rule
based. In very simple domains and whentherisk is notrelated to one’s own
person and competence, the “objectivistic” or rule-based approaches can be
used. But when people are personally involved (as is the case when risks are
controllable) the natural way of evaluating is through one’s own experience of
the same or similar situations in the past and by judgments of one’s own
competence. Hence, it probably seems irrelevant to base judgments on
statistical frequencies, since the importance of one’s own behavior appears
much moresalient. When makingrisk estimations for new technologies with
no history of accidents, one will simply be forced to rely on mental construc-
tions of scenarios describing possible mechanisms or causes of an accident,
since no reliable frequency information is available. In these situations prob-
ability estimates may be replaced bypossibility judgments instead. Following
this line of thought one can suggest that frequentistic information and process
information in simple domainsserveas basis for probability estimates (in the
classical sense of the word), while process information, especially in new and
complex domains, serves as a basis for estimates of the degree of “realism”
(judged, for instance, by the possibility, plausibility or representativeness) of
a given outcomerather than its probability.

In agreement with the psychometric tradition we will conclude that risk is
multidimensional. Wewill further stress that this also applies to—and could
be analyzed at the level of—the basic risk components. It has long been stated
that the loss componentof risk must be seen as multidimensional, including
different types of losses, some more material and others psychological, some
quantifiable and others more vague and harder to assess. Apparently, not only
the loss componentbutalso the probability/uncertainty component must be
seen as multidimensional. There exists a diversity of different forms of losses,
and likewise different variants-of uncertainty. They may combinein different
ways and constitute different lay concepts of risk. Whether peoplerely on rule-
based orintuitive strategies for risk judgments may be dependent ontherisk
concept activated.
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Chapter 14

Relations Between Confidence and

Skilled Performance

Nigel Harvey
University College, London

Procedural knowledge is concerned with “knowing how” whereas declarative

knowledge is concerned with “knowing that” (cf. Ryle, 1949). Various

arguments have been put forward to support the psychological reality of this

distinction. For example, amnesic patients havedifficulty in using or acquiring

declarative knowledge but are still able to use and acquire procedural

knowledge (Cohen & Squire, 1980).

Performance of sometasks depends primarily on exercise of innate abilities.

Tests of perceptual acuity comeinto this category. Performance of other tasks

dependsprimarily (though not exclusively) on use of procedural knowledge

that has been acquiredthrough learning. These tasks are termed skilled tasks.

They are characterized by individual differences in performance that are

related to the amount of practice that the individuals have experienced.

Here I shall discuss the relationship between how well people perform

skilled tasks and the confidence that they havein their performance.I shall not

cover confidence in answers to general knowledge tests (e.g. Lichtenstein,

Fischhoff & Phillips, 1982) or confidence in use of innate abilities in tests of

perceptual acuity (e.g. Keren, 1988). These topics are covered in chapters by

other authors (e.g. McClelland & Bolger, Chapter 18, this volume; Gigerenzer,

Chapter 7, this volume).

Subjective Probability. Edited by G. Wright and P. Ayton.
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Skilled tasks are often divided into those that are motor (e.g. surgery,
driving), cognitive (e.g. clinical decision-making, judgemental forecasting),
perceptual (e.g. reading X-rays, determining the sex of chickens) and social
(e.g. bargaining, negotiation). Most of the work to which I shall refer focused
on motorskills and cognitive skills. However, if similar principles underlie
acquisition and performance of all different types of skill (Rosenbloom &
Newell, 1986; Welford, 1980), the findings can be expected to generalize to
other domains.

Few psychologists working on skilled behaviour have been interested in
confidence per se. Instead they have used confidence measuresastools to test
various theories. In somecases,this has led them to study whether confidence
accurately reflects performance and whether changes in performance produce
changes in confidence. In other words, performanceis treated as the cause and
confidence as the effect. Sometimes, however, their theoretical concerns have

led them to examine how confidence influences performance. In this case,
confidence is treated as the cause and performanceastheeffect.

In this chapter I shall review both types of study. As far as I am aware, they
have not been treated together before. By doing this, I hope to show that
people working on each one have produced findings relevant to, but ignored
by, those working on the other. An integrative approach would paytheoretical
dividends for both. Confidence and performance should be viewed as coupled
together as a dynamical system; neither should be seen as just a cause noras
just an effect.

Both confidence and performance can be measuredin various different
ways. Performance can be measured by the proportion of times that a goalis
reached (“shecleared the five-foot bar eight out of ten times”), by error along
some performance-relevant dimension (“she was five inches short”) or by
measuring performance along that dimension (“she jumped four feet”). In
some studies, more than one measure must be taken. For example, in goal-
setting experiments, conditions that cause people to fail more often lead to
performance improvement (“the proportion of times that she cleared the bar
dropped from 0.8 to 0.6 when it was raised six inches but the average height
of her jumpsincreased by four inches”).

Confidence can be measured byasking people to provide a ratingon a fixed-
point scale, by asking them toestimate a probability that they are successful
or by asking them to estimate the frequency with which they are successful.
It can also be assessed by asking them to estimate their performance(or the
error in it) along somerelevant dimension or by asking them how muchthey
will bet on being successful. No methodis perfect; each one has problemsthat
have been well documented (e.g. Cohen, Dearnaley & Hansel, 1956a, 1957;
Keren, 1991; Poulton, 1989).

Confidence judgements also differ in another important way; they can be
prospective orretrospective. Assessmentis prospective when it is made before
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a performance starts (or without a performance ever taking place). For

example, someone might judgethat they have a 15% probability of clearing

a six-foot bar. Assessmentis retrospective whenit is made after a performance

has finished but before its effectiveness has been revealed. For example,

consider a skater in an international competition. After she has finished

performing but before the judges announcetheir scores, she estimates that she

has a 90% probability of exceeding her previous best. These two types of

judgement are used in different situations. Studies of risk perception use

prospective assessment, whereas people studying motor learning and skill

training use retrospective assessment.

In whatfollows, I shall deal first with studies of how well confidencereflects

performance. ThenI shall turn to studies of the influence that confidence has

on performance. In both cases, I shall group them according to the various

theoretical traditions to which they belong. I shall finish with some comments

aboutthe relationships between these different types of study and the findings

that they have produced.

Many books have been written on most of the content areas that I shall

review. My aimsare necessarily modest: for each area, I want to outline the

theoretical issues that prompted work on confidence and to give an idea of

what has been found out and what problems remain.

14.1 DOES CONFIDENCE REFLECT PERFORMANCE?

In what follows, I shall cover work on motorskill acquisition; illusions of

learning and control; self-assessment in skilled tasks; risk assessment and

preference. I shall then discuss whether models designed to account for confi-

dence in declarative knowledge (see McClelland & Bolger, Chapter 18, this

volume)are useful for accounting for the results that have emerged from these

areas of work.

14.1.1 Motor Skill Acquisition

Much of the work on the relationship between confidence and performance

in motorskill was stimulated by Adams’ (1971) closed-loop theory of skill

acquisition. According to this theory, movements are determined by two

internal representations: the memory trace and the perceptual trace. The

memory trace is a simple motor program.It is responsible for initiating all

movements and for terminating those that are rapid and ballistic (i.e. made

without reference to feedback). The perceptual trace is a store of the sensory

consequencesassociated with the correct response. It is a representation of the

“central tendency” of past feedback states that have occurred when the
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response was designated as correct. Whenever knowledge of results (KR)
specifies that a correct response has been made, both perceptual and memory
traces are strengthened.

When movements are slow and controlled, the perceptual trace is conti-
nually compared with sensory information coming from the ongoing moment.
Action is terminated only when a matchis obtained. Because a match has been
obtained, people cannot perceive anerror in their own movement. However,
they are more confident that a movementis correct whentheir criterion for the
correctness of movementis better(i.e. when the perceptual trace is stronger).
Consequently, for this type of movement, confidence increases with experience
of the correct response but does not depend on the magnitudeofthe objective
error in the movement.

When movementsare rapid andballistic, the perceptual trace is matched to
the sensory consequences of the finished movement: the larger the difference,
the greater the perceived error in the movement and the less confident the
person is in having made the correct movement. Of course, people will feel
more certain about both these judgements when they are based on better
criteria (i.e. when the perceptual trace is stronger). Hence, for this type of
movement, confidence will increase with experience of the correct response
andwill be directly related to the accuracy of the movement. Furthermore, the
relationship between confidence and accuracy will increase with experience of
the correct response.

Adams’theory in its original and in its modified form (Schmidt, 1975) led
to many experiments. Researchers were primarily interested in testing the
predictions for ballistic movements: does people’s ability to monitor the
accuracy of their fast movements improve with practice? In a typical experi-
ment, subjects were required to movea slide over a fixed distance in a target
time (7). After each attempt, they had to estimate the time that they took (£).
The experimenter compared this with their actual movement time (A). There
have been many experiments of this general type (e.g. Adams & Goetz, 1973;
Adams, Goetz & Marshall, 1972; Harvey, Garwood & Palencia, 1987;
Kantowitz, 1974; Koch & Dorfman, 1979; McCracken & Stelmach, 1977:
Marshall, 1972; Newell, 1974; Newell & Boucher, 1974; Newell & Chew, 1974;
Newell & Shapiro, 1976; Schmidt & White, 1972; Schmidt & Wrisberg, 1973;
Turpin, 1980; Wallace, De Oreo & Roberts, 1976; Zelaznik & Spring, 1976).
To test the predictions, experimenters compared actual and estimated move-
ment times by correlating these two variables or by calculating the absolute
difference between them (i.e. |A-—£]|). The main findings are easily
summarized.

First, people do have someinsight into their own individual performances.
Correlations between actual and estimated movements have usually been
found to be around 0.5. Second, with few exceptions, the size of this corre-
lation has not been found to changewith practice at the task. Third, when KR
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is provided, the absolute difference between actual and estimated movement

decreases over trials. Fourth, when KR is withdrawn, this difference tends to

increase. The size and speed of the increase depend on the numberoftrials

with KR that were provided prior to KR withdrawal. When fewer have been

provided, the increase is larger and faster.

The decrease in the size of the absolute difference between actual and

estimated movement as people experience more trials with KR is consistent

with a strengthening of the perceptual trace. The absence of any corresponding

increase in the correlation between the two variables can be explained by

assuming that practice also restricts the range of one or both of them (Koch

& Dorfman, 1979). This is a reasonable assumption:it is well known that

responses become less variable as people learn to perform a task (e.g.

McCracken & Stelmach, 1977).

The increase in the size of the absolute difference between actual and

estimated movement after KR withdrawal is consistent with forgetting caused

by fading of the perceptual trace. Again, the lack of any corresponding

decrease in the correlation between the two variables is to be expected if

forgetting causes an increase in variability of one or both of them.

Workto test Adams’ theory has shownthat people have someinsight into

their own performance andthat this insight improves with practice. However,

it tells us nothing about whether people are underconfident or overconfident.

This is because of the measure that the researchers used to test the theory(i.e.

absolute difference between actual and estimated movement). To assess

over/underconfidence they would have had to calculate the subjective—
objective error difference: i.e. the difference between the absolute size of the

actual movement time error and the absolute size of error derived from the

estimates of movement time. For example, suppose that the target time for

producing the movementis 200 ms andthatits actual duration is 220 ms. If

its estimated duration is 210 ms, the absolute difference between actual and

estimated duration (|A—E£|) is 10 ms and the subjective—objective error

difference (| T—A|-— |T— E|) shows 10 ms overconfidence. However,if its
estimated duration is 230 ms, the absolute difference between actual and

estimated duration is still 10 ms but the subjective—objective error difference

now shows 10 ms underconfidence.

14.1.2 Illusions of Learning

In some of the experiments designed to test Adams’ theory, people were asked

to make an additional response on eachtrial. After estimating the duration of

their movement, they hadto use a fixed-point scale to rate their confidence that

their movement was within a narrow range of the target. Analyses of this

variable are not so easy to summarize. However, despite the inconsistencies,

certain aspects of the results are intriguing.



326CN.Harvey

Marshall (1972) found that practice improved performance but had no
systematic effect on confidence. Correlations between these two variables were
close to zero. Adams & Goetz (1973) found that practice improved
performance without raising confidence in one of their experiments but

obtained the reverse pattern of results in the other. They did not report corre-

lations. Schmidt & White (1972) tested people for 120 trials on a first day and

for 50 trials on a second day. On both days, performance improved and confi-

dence increased. This is what Adams’ theory predicts. However, on each day

confidence reached an asymptote after only five trials. Furthermore, at the
start of the second dayit had dropped back to the same lowlevel as at the start
of the first day. Although this drop in confidence from one day to the next
could have been dueto forgetting of the perceptual trace, the authors felt that

the transitory nature of the increase on each day suggested a more cognitive

explanation. Subjects may have had a “set” that “dictated” to them that they
should not be confident on the first few trials of any task. Ratings increased
because confidence wasreleased from the suppressive effects of this set rather
than because of strengthening of the perceptual trace.

Other work tends to confirm Schmidt and White’s suspicions about the

importance of cognitive effects related to set and expectancy. Newell &

Boucher’s (1974) subjects moved a slide along a track until it hit a block. They

could not see their movements. After 20 trials, they estimated the movement
distance. One group of subjects made their estimates in inches and another
made them in millimetres. The block was then removed and all subjects

attempted to reproduce the movement. There was no difference in accuracy

between the groups but ratings on a seven-point scale showed that confidence

in accuracy was higher for the groupthat had earlier estimated the movement’s
length in millimetres than for the group that had estimated it in inches. People
appear to expect precision to be associated with accuracy. Those that have
estimated theirmovement precisely expect to perform it accurately!

On eachtrial of their experiment, Harvey, Garwood & Palencia (1987)

played subjects a musical interval and asked them to sing it. After each

attempt, subjects used a seven-point scale to rate their confidence in having
reproduced the target interval correctly. Two of their findings are of interest
to us here. First, correlations between confidence and performance wereclose
to zero: people could not monitor their own performance. However, confi-

dence did increase over a sequence of 24 test trials. As there was no corre-
sponding improvementin performance, it appears that this increase occurred
because people expected practice at the task to improve their performance.
Second, subjects who had previously practised the task actively by singing
musical intervals themselves were more confident on the test trials than

those who had just listened to the experimenter perform the task. However,
as there was no corresponding difference between how well the two groups
performed onthetest trials, this effect must have arisen because the expected
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improvement from active (singing) practice was greater than the expected

improvement from passive (listening) practice.

Athird example of a between-groups effect that can be attributed to the

groups’ having different expectations about the effects of practice is provided

by Adams & Goetz (1973, Experiment 2). Subjects who had more experience

with a criterion stimulus did not perform any better but did have higher

confidence in their performance. Presumably both groupsstarted off with

the same level of confidence and this (but apparently not memory for the

criterion) was incremented as moreexperience was gained. These increments

must have been based on the expected rather than on the actual effects of

experience.

Wesaw in the last section that people have some ability to estimate the

duration of their own movements. This ability increases overtrials if they are

given post-estimate information about the actual duration of their movements.

In contrast, the work that I reviewed in this section reveals no evidence of a

relationship between confidence in the correctness of a movement and how

close a movementis to being correct. Also the relationship between confidence

in correctness and length and type of practice seems to depend largely on

people’s expectations about the effects of practice rather than on the actual

effects of practice. In cases in which no learningoccurs (e.g. Adams & Goetz,

1973, Experiment 2; Harvey, Garwood & Palencia, 1987), these expectations

produce “illusions of learning”. Presumably people are susceptible to them

wheneverthey assumea skill orientation. These illusions can be thoughtof as

biases arising from use of heuristics that normally serve people well. Practice

usually serves to improve performance and active learning is usually more

effective than passive observation. In situations where people cannot monitor

their own chances of success, they can obtain an estimate of them by using

theseheuristics. It is only in situations in which practice does not haveits usual

effects that the illusions appear.

Before going on to discuss a similar but better known type of illusion

(Langer, 1975), it is worth mentioning that illusions of learning are not

restricted to motorskills studied in the laboratory. Marteauet al. (1989) found

that nurses with considerablepractice in performing resuscitation were more

confident but no better than those who hadless practice at the skill. Marteau

et al. (1990) replicated this finding on doctors.

14.1.3. Illusions of Control

Langer (1975) examined people’s confidence of success in situations in which

actual success was governed by chance alone. She found that confidence was

affected by factors that could be expected to influence performance only when

people have real control over events. People assume skill orientation when

it is inappropriate: they have an illusion of control.
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Among the phenomenathatsheinterpreted asillusions of control were the
following. First, people betting on who will draw the higher card from a
shuffled deck bet more when their opponent appears incompetent than when
their opponent appears competent. Second, people require a higherprice to
sell lottery tickets that they have selected themselves than lottery tickets that
they have been given. Third, in a motor task in which the correctness of the
response depends on purely random factors, people are more confident in the
correctness of their own responses than in those of an experimenter. They are
also more confident when they have familiarized themselves with the
apparatus. Langer argues that assessmentof the competition, personal control
over which response is madeorselected and familiarity with apparatusareall
factors that should affect confidence of success in skilled tasks. However, they
could only have influenced confidence inher studies if people inappropriately
adopted a skill orientation.

Langer arguedthat people are poor at discriminating controllable from
uncontrollable events becausechanceis involved in manyskilled tasks. Hence,
heuristics appropriate for determining confidence in success in skilled tasks are
overgeneralized to produce illusions of control. Langer pointed out that
illusions of control (overgeneralization of a learnt dependence between actions
and events) could be regarded as the converse of learned helplessness (over-
generalization of a learnt independence between actions and events). This
latter phenomenon occurs when long experience with uncontrollable eventsis
followed by a failure to attempt to influence controllable ones. People
suffering from depression are knownto exhibit learned helplessness (Seligman,
1975). If Langer is correct, they should not also be subject to illusions of
control. Manystudies have been doneto test this prediction. In the majority
of them, it has been borneout(e.g. Alloy, Abramson & Viscusi, 1981; Golin,
Terrell & Johnson, 1977; Golin et al., 1979).

It is important to be aware of a conflict between the implicit and explicit
definitionsof illusions of control. It is the implicit definition that is used as a
criterion for their presence. Specifically, illusions of control are taken to be
present when subjects’ confidence in their own performance in uncontrollable
situations is influenced by factors that experimenters think should influence
performance in controllable ones. This is quite different from their explicit
definition: “An illusion of control is defined as an expectancy ofa personal
success probability inappropriately higher than the objective probability
would warrant” (Langer, 1975, page 313). In fact, subjects are not asked for
their estimates of their probability of success in experiments carried out within
the illusion of control paradigm. It is possible (though admittedly unlikely)
that Langer’s subjects could have producedall the effects cited above without
ever showing the overconfidence that the explicit definition requires.

Behaviourin line with the implicit definition tells us something about the
grounds on which people are making their judgements about performance:it
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indicates that they are assuming that events depend on their actions. What are

the circumstances in which adoption of this assumption will result in the over-

confidence demandedbythe explicit definition? If adopting a skill orientation

results in people believing that probability of success is increased bytheirinter-

vention, then overconfidence can be expected whenpeople know what the

probability of success would be if they did not intervene or if they responded

randomly. However, in many tasks, people are not told what this probability

is and cannot find it out: the structure of the task provides few cues, thereis

little opportunity to make random ornull responses and no feedbackis given.

Whenprobability of success without intervention is relatively high, range-

frequency effects may cause people to underestimate it (Poulton, 1989). For

example, they may estimate it to be 75% whenit is actually 90%. If they then

judge that their intervention will raise probability of success by 10% andif

their control is completely illusory, they will be 5% underconfident.

14.1.4 Self-assessment of Performance:

Overconfidence or Underconfidence

None of the work that I have discussed so far has allowed determination of

whether people are underconfident or overconfident in their performance.

However, somestudies do allow us to say something aboutthis matter. In this

section, I shall deal with retrospective judgements; in the next section I shall

cover prospective ones.

If people are overconfident in their performance, they may fail to make an

effort to attend to or seek the KR that would inform them ofthe truestate

of affairs and that would help them improvetheir skills. Conversely, if they

are underconfident, they may expend effort needlessly acquiring costly KR.It

is hardly surprising that applied psychologists are interested in the validity of

self-assessment (Mabe & Wells, 1982).

The procedures used to measure retrospective confidence in procedural

knowledge are directly analogous to those used to measure confidence in

declarative knowledge (e.g. Lichtenstein et al., 1982). The results are very

similar, too. Harvey (1990a) asked people to use their judgementto alter the

parameters of a dynamical system to bring its output into a target range. After

each control response, people estimated the probability that it had been

effective. Calibration analyses showed that people wereoverconfident and that

this overconfidence increased as difficulty of the task increased.

. When frequency estimation rather than probability estimation is used to

measure confidence, underconfidence rather than overconfidence appears.

Harvey (1988) required people to intercept 1000 targets in a step-tracking task.

After every block of 100 targets, subjects estimated how many they had

actually succeeded in hitting. They were 20% underconfident after the first

block of trials but less than 10% underconfident after each of the last three
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blocks. This decrease in overconfidence occurred as people becamebetter at

the tracking task: i.e. as it became easier for them.

These findings of difficulty-dependent overconfidence with probability

estimation and of underconfidence with frequency estimation are directly

analogous to many that have been obtained when declarative knowledge has

been assessed by multiple-choice general knowledge tests (e.g. Gigerenzer,

Hoffrage & Kleinbdlting, 1991; Lichtenstein, Fischhoff & Phillips, 1982; May,

1986; Sniezek & Switzer, 1989). Later I shall consider whether they are open

to the same sort of theoretical explanations.

Before moving on, it is worth mentioning one paradoxical result. Harvey

(1990b) asked people to intercept targets. After each interception, they had to

decide whether or not they hadbeen faster than on the previoustrial and then

give a probability estimate that this decision was correct. As they became

better at the interception task, the difference between successive interception

times decreased. This meant that their decisions about whether they were

faster than on the previous trial became harder and that their overconfidence

in those decisions increased. Thus, as people becamebetter at their task, they

became more overconfident in judgements of their performance. It would be

interesting to discover how well this finding generalizes to other performance

criteria.

14.1.5 Risk Assessment and Risk Preference

There are manydefinitions of risk (Pidgeon et al., 1992). For present purposes,

I shall adopt a commonly accepted one:risk is the probability of undesired

consequences. Given thatfailure is an undesired consequence of performance,

someone who overestimates their probability of success in a task under-

estimates risk. It is useful to distinguish risk assessment from risk preference.

In risk assessment experiments, we ask people to estimate their probabilities

of success (or failure) under various conditions. However, they do not have

to act on the basis of those assessments. In risk preference studies, we decrease

risk until people say that they are willing to act (or else increaserisk until they

say that they are no longerwilling to act). From our studies of risk assessment,

we can then identify the subjective probability of failure associated with this

point. This tells us what degree of risk people prefer.

Cohen, Dearnaley & Hansel (1956b) performed an experiment at abus

drivers’ training school. The task was to drive an eight-ton double-decker bus

between two woodenposts that were six feet (1.8 m) high. First, prospective

confidence was measured by frequency estimation. The gap between the posts

wasinitially much too narrow for the bus. It was increased in small steps. At

each point, the driver estimated the numberof times out of five that he could

drive through the posts without touching them. Performance was then

assessed bytelling the drivers to drive through gaps of various sizes five times
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each. Figure 14.1 showsthe results. Various points are worth noting.First, the

classic finding of overconfidence except when the task was very easy appears

again. However, in this case, it was obtained with a frequency estimation

rather than a probability estimation task.

The second point to note is that, although more experienced drivers were

more skilled, they were not significantly better at assessing how goodtheir
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Figure 14.1 Estimated and actual frequencies of success (out of five attempts) at

driving a bus through twoposts placed different distances apart. The left-hand vertical
lines indicate the width of the bus. Theright-hand vertical lines indicate the average

minimum distance between posts that drivers would voluntarily attempt when given a

free choice. (Graphsare plotted from Cohen, Dearnaley & Hansel’s (1956b) tabulated

data. Reproduced by permission of the Operational Research Society.)
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performance would be. Even an experienced driving instructor showed some
degree of overconfidence. This aspect of Cohen, Dearnaley & Hansel’s (1956b)
results is consistent with the findings obtained for retrospective judgements by
those testing Adams’ theory (e.g. Marshall, 1972). Even when outcomefeed-
backis given, practice haslittle effect (or acts very slowly) on the relationship
between confidence and performance.

Cohen, Dearnaley & Hansel were interested in risk preference as well as risk
assessment. Whatlevel of risk were drivers willing to adopt in practice? To
find out, they determined the minimum gap through which drivers would
voluntarily attempt to pass. The average size of these gaps is shown by the
right-hand vertical lines in Figure 14.1. (The left-hand vertical lines show the
actual width of the buses.) Overconfidence is again evident. Novice drivers

were willing to attempt a gap that they later failed to drive through on an

average of more than 50% of occasions. Actions of the more experienced
drivers were still overconfident but the effect was reduced somewhat. The
driving instructor did not attempt any gap that he did not later pass through
on 100% of occasions. Cohen, Dearnaley & Hansel conclude that over-

confidence is present in actions as well as in verbal estimates of performance.
However, while practice has little effect on verbal estimates of riskiness, it

reduces riskiness of actions. It affects risk preference rather than risk

assessment.

In a similar experiment, Cohen, Dearnaley & Hansel (1958) found that
drivers who had drunkalcohol attempted smaller gaps but required larger ones
to succeed five times out offive. However, alcohol had noeffect on the pro-

portion of times that they estimated that they would successfully drive through

a gap of the size that they attempted. Thus alcohol increased theriskiness of
bus drivers’ actions but had no effect on their verbal estimates of risk. It
affected risk preference rather than risk assessment.
Cohen & Dearnaley (1962) examined the relationship between confidence

and performance in professional, university and school football team
members. They tested them individually on a field containing only the oppo-
sition goalkeeper. They asked each playerto start in his half of the field and
walk downthe centre of the pitch towards the opposition goal until he was at
the distance from it at which hefirst felt that he could score once out of 100

attempts. Next, he was told to movecloser and closer and to specify when he
first felt that he could score once, twice, three times and four times out offive

attempts. Finally, he movedcloserstill to the point at which hefelt that he
could score 99 times out of 100 attempts.

Afterwards, each player made five attempts to score from five of the six
estimated distances. (The authors do not report data for the distance from
which subjects estimated that they had only a one in 100 chance of success.)

Number of successes at each point was recorded. As Figure 14.2 shows,
players were quite accurate in estimating their performance. However, they
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Figure 14.2 Estimated and actual proportions of success at shooting balls into an

opponent’s goal from different distances. No data were collected for actual perfor-

manceat the distance estimated to produce success onein every 100 attempts. (Graphs

are plotted from Cohen & Dearnaley’s (1962) tabulated data. Reproduced from the

British Journal of Psychology by permission of The British Psychological Society.)

were generally about 5% overconfident except when their task was very easy:

again, the classic finding appears but with frequency rather than probability

estimation.

Asin their previous experiments, Cohen & Dearnaley (1962) were interested

not just in verbal estimates of risk but also in the risks that people are actually

willing to take. Hence, before the performance assessments just described,

they asked each player to run with the ball at his feet towards the opposition

goal and to shootat the first appropriate moment. This was the longest shot

that a player would voluntarily attempt. Cohen and Dearnaley examined two

indices. The first, which they termed the margin of hazard, was the difference

between the longest shot that a player would voluntarily attempt and the

longest distance at which he succeeded in scoring onfive out of five attempts

in the later performance assessment. The second index, which they called the

margin of safety, was the difference between the longest shot that a player

would voluntarily attempt and the longest distance from which he estimated

that he would succeed in scoring on 99 out of 100 attempts. They found that

players’ margins of hazard varied significantly across teams from which they

were drawnbut that marginsof safety did not do so. Thus, again,a factor that

affected riskiness of actions did not appear to influence verbal estimates of

risk. Risk preference varied but risk assessment did not.

Wehaveseenthat certain variables (practice, drug dosage, group member-

ship) affect riskiness of actions without influencing verbal estimates ofrisk.
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These dissociations imply that the underlying psychological processes differ in
some way. Verbalestimatesjust reflect ability to assess probabilities of success
and failure under various conditions whereas the action-based measuresreflect
both this and decisions about the levels of acceptable risk under these
conditions.

14.1.6 Theories of Overconfidence in Procedural Knowledge

Overconfidence except whentasks are very easy is not a phenomenonthatis
restricted to tests of procedural knowledge. It also occurs when declarative
knowledge is tested in multiple-choice questions (Lichtenstein, Fischhoff &
Phillips, 1982). Are theories that have been developed in that context relevant
to self-assessment of skilled performance? Some appear to be moreapplicable
than others.

Poulton (1989) has proposedthat overconfidence with difficult items and
underconfidence with easy ones arise because people are reluctant to use the
extremes of probability scales. This suggests that the direction of the bias
shouldswitch aroundthe centre of the scale that they use for their assessment.
However, the switch generally seems to occur muchcloser to the top end of
the scale than this (cf. Figures 14.1 and 14.2).
Although Poulton’s basic model appears to be inadequate, Ferrell &

McGoey(1980) have developed a signal detection model that is also based on
the notion that people take insufficient account of differences in item difficulty
when using the probability scale to express their feelings of certainty. Until
recently (McClelland & Bolger, Chapter 18, this volume),relatively little atten-
tion has been paid to their model. However, taken in conjunction with Adams’
(1971) proposal that people have an internal representation of the sensory
feedback associated with correct performance, it appears to have considerable
potential for being developed into an account of judgements of confidence in
skilled behaviour. However,the result of any such theoretical confluence would
be more appropriate for explaining retrospective thanprospective judgements.

Gigerenzer, Hoffrage & Kleinbolting (1991) have proposed that people
answer questions by searching through potentially relevant probabilistic cues
until they discover one that can be activated. After using it to answer the
question, they express their confidence as equalto the validity of the cue. For
example, suppose that people must decide which of two Germancities has the
larger population. First they test the highest validity cue. This might specify
that if one of the cities is in the area that used to be East Germany butthe
other is in what used to be West Germany,then there is an 85% probability
that the latter city has the larger population. However, bothcities in question
are in West Germany. Consequently, this cue cannot be activated and the next
most valid one must be tested. This might specify that if one city has a team
in the German football league but the other does not, then there is an 80%
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probability that the former has the larger population. The person answering

the question knows that only one city does, in fact, have a team in the league.

Consequently, the cueis activated: that city is given as the answer with an

estimated probability of being correct of 80%.

Gigerenzer, Hoffrage & Kleinbdlting argue that people are well adapted to

their environments: internal cue validities approximate closely to their corre-

sponding environmental probabilities. Overconfidence obtained in experi-

ments is an artefact. It has arisen because experimenters have not selected

alternatives in multiple-choice questions in a representative manner. Only this

way ofchoosing will produce correct answers with probabilities equal to their

cue validities. However, instead of doing this, experimenters have chosen

alternatives in a way that causes activated cues to fail more often than would

be expected on the basis of their validity. For example, alternatives in

questions about Germancity populations have been chosenso that the football

league cue fails on 40% rather than on 20%of occasions on whichitis used.

The resulting 20% overconfidence reflects a question-setting bias of the

experimenterrather than a question-answering bias of the subject. Support for

Gigerenzer et al.’s theory comes from experiments that have shown that

selecting the alternatives in multiple-choice questions in a representative

manner causes overconfidence to disappear (e.g. Juslin, 1993, 1994).

Can Gigerenzer et al.’s theory explain the overconfidence that Cohen and

his colleagues found to be present in self-assessments made by busdrivers and

football players? Although the experiments were performed outside the

laboratory in contexts that had some degree of ecological validity, people had

fewer cues to help them judgethe difficulty of their task than they would have

had when really practising their skill. Footballers made their estimates while

stationary and with the opposition goalkeeper as the only other player on the

field. Bus drivers made their judgements while stationary and in anoff-street

setting. However, a random reduction in the number of cues could only be

expected to make self-assessment worse; there appears to be no reason to

suppose that it would introduce a bias towards overconfidence. Subjects

deprived of their highest validity cue would use one with a lowervalidity but

the effectiveness of this substitute cue would not be distorted. At the very least,

we must conclude that Gigerenzeretal.’s theory requires some elaborationif

it is to account for overconfidence in skilled performance.

Various theories have been proposed that explain overconfidence in declar-

ative knowledge in terms of abias in the assessment of arguments for and

against the chosen alternative. For example, Koriat, Lichtenstein & Fischhoff

(1980) argued that peoplefirst select an alternative answer and then search for

arguments in favourofit (or against the rejected one) in order to producetheir

confidence judgement. Because they seek to confirm but not disconfirm their

own choices, overconfidence is produced. More recently, Griffin & Tversky

(1992) have explained overconfidence in terms of a tendency to take into
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account strength of evidence (e.g. proportion of arguments in favour of the
chosen alternative) while paying too little attention to its weight (e.g. total
number of arguments being considered).

These ideas can be extended to account for overconfidence in procedural
knowledge. For example, someone mayfeel that they have a high chance of
successfully skiing down a black run because they emerged in one piece when
they tried it previously. However, they mayfail to take accountof the fact that
this-judgementis based on just one previous experience that took place when
they were younger and fitter. They mayalso ignore the many falls that they
have suffered when skiing downeasier runs. However, although this approach
appears to havepotential, it is not one that has been developedin the context
of skilled performance. Perhaps formulating precise predictions from it or
devising good tests of them is particularly difficult in this domain. For
example, the implicit, non-verbalizable nature of procedural knowledge may
frustrate people’s attempts to express their reasons for having confidenceinit.
Another explanation of overconfidenceattributes it to unrealistic optimism

(e.g. Weinstein, 1980, 1989) or wishful thinking (e.g. Babad, 1987; Harvey,
1992). In other words, it is caused by a generalized tendency to overestimate
the probability of positive (favourable) events andto underestimate the prob-
ability of negative (unfavourable) ones. Proponents of this view do not see the
bias as restricted to events over which people feel that they have control. Over-
confidence in skilled performanceis just an example of a much moregeneral
phenomenon that can also be observed in manysituations in which people
cannot expect to influence outcomes. For instance, Babad (1987) asked foot-
ball supporters to predict outcomes of matches. The more strongly affiliated
they felt to a team, the morelikely they felt that it would win.

Attributing overconfidence to an unrealistic optimismbias begs questions
about the mechanisms responsible for producing the bias. It could be just
programmed into us by evolutionary processes because its advantages
outweigh its disadvantages (Taylor & Brown, 1988). Alternatively, it could be
generated by the sort of argument recruitment processes proposed by Koriat,
Lichtenstein & Fischhoff (1980).

Finally, overconfidence may arise because of the control that people
perceive they have over outcomesin tasks that they perform (Howell, 1971).
Weoverestimate the power of ourintellectual abilities (Dawes, 1980) and our
skills (Svenson, 1981). This leads to overconfidencein tests of declarative
and procedural knowledge, respectively. But why do we overestimate our
intellectual capabilities and skills? Wright and Wishuda (1982) argued that
intelligence and knowledge are highly regarded by others and that there is
therefore a positive social utility in expressing certainty in their products.

Recently, McKenna (1993) has reported experiments designed to determine
whether overconfidence in skilled performanceis best explained by a general
unrealistic optimism bias or by the perceived control that people have over
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outcomes. First, he found that drivers think that they areless likely than the

average driver to experience an accident whenthey are driving themselves but

as likely as the average driver to suffer one when they are passengers. Second,

he found that this effect was strong and significant in high-control scenarios

(e.g. “assess the likelihood of an accident in which the car that you are driving

hits the car in front”) but small and insignificant in low-control scenarios(e.g.

“assess the likelihood of anaccident caused by anothervehicle hitting the car

youare in from behind”). These findings suggest that overconfidencein skilled

performanceis better explained in terms of perceived control than in terms of

a generalized bias towards unrealistic optimism.

Neither wishful thinking nor perceived control explains the underconfidence

that is typically observed with very easy tasks. Jones (1977) argues that it can

be interpreted as anticipatory face-saving; it would be humiliating to fail very

easy tasks and so people try to view them as less easy than they are. As

objective probability of success increases, the strength of this bias rises and

that of opposite biases (e.g. wishful thinking) declines. At any given level of

task difficulty, opposing biases summate algebraically to determine whether

overconfidence or underconfidence is present.

14.2 DOES CONFIDENCE INFLUENCE
PERFORMANCE?

Workrelevant to this question emanates from research on levels of aspiration,

work motivation and goal-setting. I shall discuss each of these issues in turn.

14.2.1 Levels of Aspiration

Whendifferent versions of a task vary in difficulty level, a performer must

decide which version to attempt. The version that is chosen defines the

performer’s level of aspiration. What determines level of aspiration? How

does it depend on confidence of success? Psychologists have studied this issue

for over 50 years (e.g. Festinger, 1942; Lewin et al., 1944). Because ofits

relevance to entrepreneurship and economic development (e.g. McClelland,

1955), they have been primarily interested in whether consistent individual

differences in level of aspiration exist and, if they do, whether they can be

explained in terms of personality variables (Atkinson, 1957, 1964; Sorrentino,

Hewitt & Raso-Knott, 1992).

As Feather (1959a) pointed out, early analyses of level of aspiration inter-

preted choice of task difficulty as a process akin to maximization of subjective

expected utility (SEU). Lewin et al. (1944) suggested, not unreasonably, that

subjective probability of success decreases as task difficulty increases. More

controversially, they also argued that the valence (utility) of success increases



338UN. Harvey

as task difficulty increases. Because of this latter claim, their theory implies
that utility and subjective probability of success are inversely related and,
therefore, that their product (SEU) is at a maximum when subjective prob-
ability of success is 0.5. In the absence of other externally set rewards, people
should be mostlikely to choosetasks in which they feel that they have an evens
chance of success.

Various experiments confirmed that the attractiveness of succeeding in a
task is inversely related to subjective probability of success (e.g. Feather,
1959b) and provided some general support for this SEU type of approach. For
example, Litwin (cited in Whiting, 1979) performed the following experiment
in 1958. People took part in a game in which they had to throw rings over a
peg from different distances (up to a maximum 4.6 m (15 ft)). Before actually
throwing the rings, they made two sets of judgements. First, they had to
estimate how manytimes out of 100 attempts an average player would achieve
success at each of the six distances. Second, they had to estimate how much
money (out of a maximum of $1.00) would be suitable as a prize for a
successful throw from each distance. After making these judgements, they
threw the ring 400 times. The proportion of times that each distance was
chosen was well predicted both by the product of subjective probability of
success and its complement and by the product of subjective probability of
success and the value of the prize that had been associated with success.

Litwin also reported the actual probability of success at each distance. As
wasto be expected from the work of Cohen and colleagues, people were highly
overconfident; objective probability of success was about 25% lower thanits
subjective counterpart. If people modify their prospective confidenceon the
basis of feedback, this overestimation should lessen with practice in which KR
is provided. In Litwin’s task, a shorter distance should be associated with a
perception of an evens chanceof success. Practice should reduce thedifficulty
of the task that people decide to attempt.

Results from various experiments are consistent with this prediction. For
example, Hamilton (1974) found that the average distance that people
attemptedin their first 10 throws in Litwin’s task was 3.5 m (11.5 ft). He then
gave them 10 trials’ practice at each of 13 different distances. For each subject,
he calculated the distances that were associated with different probabilities of
success (0.1 to 1.0 in 0.1 steps). Markers containing this probability infor-
mation were placed at the appropriate distances from the thrower. Each
subject then selected distances for a final 10 attempts at the task. The average
distance chosen for these attempts was 3 m (9.9 ft) significantly less than that
for the first 10 attempts. So, in line with Cohen, Dearnaley & Hansel (1956b),
practice reduced riskiness of actions.

Task performancecan improve becauseskill learning occurs. How doesthis
(and knowledgeofit as a possibility) affect level of aspiration? This is an issue
that has not been adequately researched. In practice, study of theeffect of
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performance improvement on level of aspiration has proved difficult. One

problem is in demonstrating that learning has occurred whenthere are simul-

taneous changesin the versions of the task that people attempt. For example,

Hamilton (1974) found that probability of success increased from 0.19 at the

start of his experiment up to 0.39 after practice. He argued that this improve-

ment was produced not only because people selected simpler tasks but also

because they had learnt to perform better. To support this assertion, he

weighted each success by the distance at which it was obtained and then

totalled up the results to obtain an overall score. He concluded that learning

had occurred becausethis score was 17.5 before practice and 29.3 afterwards.

The difficulty with this procedureis that it involves assuming that doubling the

distance of a throw makes it twice as hard. In fact, Hamilton’s own data

suggest that, within the range 0.9-3.6 m (3-12 ft), doubling the distance

makes the task four times as hard. Given this, it seems unlikely that any

learning occurred in his study.

Most of the research on level of aspiration has focused on individual

differences. Atkinson (1957, 1964) proposed that there is a subset of people

who do notselect from task variants by choosing one with a subjective prob-

ability of success close to 0.5 and that these people are motivated more by a

fear of failure than by a desire for success. To avoid the anxiety and social

humiliation associated with failing in a task in which there is a chance of

success, they adopt one of two strategies. They either attempt very easy tasks

that they have negligible chance of failing or else they tackle extremely difficult

tasks. In the latter case, no humiliation is associated with failure because

no-one can really be expected to succeed.

Many experiments set out to test whether people scoring higher in a test of

fear of failure than in a test of need for achievement do respond in the way

that Atkinson suggested. The results of this work have been reviewed many

times (e.g. Meyer, Folkes & Weiner, 1976; Weiner, 1980; McClelland, 1987).

The consensus is clear. Failure-oriented people (who are more concerned

about failure than about success) respond in a similar way to success-oriented

people (who are more concerned about success than about failure). In both

cases, they prefer tasks that they perceive to be of intermediate difficulty.

There have been two broad classes of response to the failure of Atkinson’s

predictions. The first was based on observations from some of the experiments

suggesting that levels of aspiration of success-oriented and failure-oriented

individuals might still differ in certain consistent ways. For example, there

were hints that the curve relating strength of preference to task difficulty might

haveless kurtosis or more skewin failure-oriented individuals (e.g. De Charms

& Davé, 1965). As a consequence, the original theory was elaborated (Kuhl,

1978; Raynor, 1969) and reformulated (Atkinson & Birch, 1970; Kuhl and

Blankenship, 1979a) to produce new predictions about how the two groups’

levels of aspiration should differ. Unfortunately, these new predictions have
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proved to be much moredifficult to subject to convincing experimentaltests
(e.g. Kuhl & Blankenship, 1979b, page 561).
The second type of response was moreradical. Trope & Brickman (1975)

challenged the view that accomplishing moredifficult tasks is inherently more
rewarding. They felt that the SEU style of analysis described above was
inappropriate. Instead they argued that people select level of task difficulty to
maximize the information that task outcomes provide about their level of
ability. They show how a Bayesian analysis of this selection process can
explain why people prefer tasks of intermediate difficulty.

Suppose that people with high (#7) ability and people with low (L) ability
perform a task that has only two possible outcomes, success (S) and failure
(F’). For one task variant, P(S| H) = 0.97 and P(S| ZL) = 0.80. For the other,
P(S| H)=0.52 and P(S|L)=0.48. Here thefirst task variant provides a
better means of distinguishing ability levels. It is more diagnostic.
Very easy and very difficult task variants cannot be so diagnostic as

intermediate-difficulty task variants. In general, P(S)=P(S|H)P(H)+
P(S|L)P(L). Suppose that people with low and people with high ability are
equally common and contribute equally to the overall determination of
difficulty of task variants. Initial probabilities of high and low ability will then
both be 0.5. This means that initial probabilities of success must be
symmetrical about the overall difficulty level. Clearly P(S|H) and P(S|L)
can (and usually would) be further apart when they haveto average out at 0.5
than they can be when they haveto averageout at 0.9 or 0.1. People tend to
select task variants in which they have an evens chance of success because these
situations are most diagnostic of their ability.
To test their analysis, Trope & Brickman (1975) contrived a situation in

which the hardand easy task variants were more diagnostic than the one of
intermediate difficulty. In these conditions, the latter alternative was the least
favoured rather than the most favoured task variant. They concluded that

people were motivated by a desire to find out about their ownabilities rather
than by the reward inherent in success. Work by Trope (1975) and Meyer,
Folkes & Weiner (1976) provided additional support for their view.
Given these findings, we might expect individuals who are motivated to

discover new things about themselves and their environment (uncertainty-
oriented people) to behave differently from those who ignore or avoid new or
inconsistent information about themselves and their environment (certainty-
oriented people). Sorrentino, Hewitt & Raso-Knott (1992) usedpersonality
tests to select subjects for their experiment. They accepted only those who
scored at the extremes of the uncertainty-oriented/certainty-oriented and
success-oriented/failure-oriented continua. They tested the resulting four
groups on Litwin’s ring-throwing task. Those who were uncertainty-oriented
showed the classic preference for intermediate-difficulty task variants. This
preference was somewhat weakerin failure-oriented than in success-oriented
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people. Those who were both certainty-oriented and failure-oriented displayed

a complete reversal of the classic pattern; task variants of intermediate

difficulty were the least preferred. Sorrentino et al. suggest that an effect of

success-orientation/ failure-orientation had not been previously found because

researchers testing Atkinson’s theory did not separate out certainty-oriented

anduncertainty-oriented people and the majority of those whom theytested

were uncertainty-oriented. |

Sorrentinoet al. found that the two personality variables that they examined

had additive effects on performance. This suggests that people separately

assess thedifficulty of a task variant and the diagnosticity of its possible

outcomes. Do they take anything else into account whenselecting their level

of aspiration? There maybesituations in which high levels of aspiration are

rewarded quite independently of the quality of the performancesthat follow

them. For example, Damm (1968) argued that people may publicly set high

levels of aspiration for themselves because it is socially desirable to appear

competitive and ambitious.

To examine effects of rewarding level of aspiration rather than per-

formance, Feather (1964) studied people in a card-sorting task. On eachtrial,

they first had to estimate how manycardsthey would be able to sort within

the time limit. Their performance was successful whenthe numberof cards

that they sorted equalled or exceeded their estimate. When points for success

equalled their estimate but points for failure equalled the numberof cards they

actually sorted, level of aspiration was set high. It exceeded performance;

people appeared to be overconfident. However, when the points that they

received equalled the numberof cards that they actually sorted irrespective of

their success or failure, level of aspiration was much lower. Overconfidence

appeared much reduced. (By giving people zero points when they failed,

Feather could reduce level of aspiration still more; people appeared to be

underconfident.)

Via its effects on judged difficulty and diagnosticity of task variants,

subjective probability of success influences level of aspiration. However,it is

clear from the work of Feather (1964) and others (e.g. Smith, 1963) that level

of aspiration is affected by other factors as well. For a given subjective prob-

ability of success, it may be raised or lowered (Kuhl, 1978). We knowthat

these factors relate to personalities of individual performers but they are also

likely to relate to task characteristics. In sometasks, it is important to act even

thoughrisk is high; in others, it is better to withhold action in such conditions.

To select an appropriate level of aspiration for a given task, people mustlearn

both the risk levels associated with eachtask variant and the level of risk that

it is most appropriate to adopt given the circumstances. Cohen, Dearnaley &

Hansel’s (1958) research on bus drivers (discussed above) suggests that these

different types of information are acquired separately and that, in experts, the

latter may compensate for errors in the former.
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14.2.2 Expectancies in Work Motivation

Expectancy theories of work motivation adopt an SEU type of approach to
explain the amount of effort that people put into occupational tasks (e.g.
Campbell et al., 1970; Galbraith & Cummings, 1967; Georgopolous, Mahoney

& Jones, 1957; Vroom, 1964). These theories and the empirical studies
designed to test them have beenthe subject of frequent reviews (e.g. Campbell
& Pritchard, 1976; Heneman& Schwab, 1972; Mitchell, 1974, 1979; Schwab,

Olian-Gottlieb & Heneman, 1979).

People are generally assumed to have internal representations of the
relationships between effort and performance, between performance and
outcomes and between outcomes and utilities. They make use of them when
deciding how mucheffort to put into their work. The effort—performance
relationship is assumedto be probabilistic in nature; it is usually measured by
asking subjects for their estimates of the probabilities that various different
performancelevels will be met at each effort level. Nowadays the performance
—outcomerelationship is often assumed to be probabilistic as well. Henceit
can be measuredin a similar way; subjects can be askedfortheir estimates of
the probabilities that various different outcomes will arise from each of a
number of levels of performance.

With, say, six levels of effort, six levels of performance and fourlevels of

outcome, this procedure gives two subjective probability matrices of 36 and
24 cells for each subject. Given the amount of data, composite scores that
reduce each matrix to a single value are often used to test expectancytheory
predictions about the overall effects of critical independent variables. For
example, Ilgen, Nebeker & Pritchard (1981) wanted to study the effects of
switching from a flat-rate to an incentive-payment system on people’s
perceptions of the effort—performance and performance—outcomerelation-
shipsin a clerical task. They extracted an expected value score (£) from each
matrix, where

i=1 j=1

Here R; is the ith performancelevel (i.e. 11, 15, 19, 23, 27 and 31 blocks of
workper hour); C; is the jth effort level (i.e. 30, 36, 42, 48, 54 and 60 minutes
of work per hour) or the jth outcomelevel(i.e. one of four levels of pay); m

is the numberof effort or outcomelevels (six and four, respectively); and ri;

is the subjective probability that the ith level of performance would be
associated with the jth level of effort or outcome.

Tests of predictions from expectancy theories have produced some findings
that appear relevant to the issue of how confidence influences performance.
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However, a numberof factors make their interpretation difficult. First, actual

performanceis not always assessed. Instead, changes in performance due to

learning or increased effort are often hypothesized as ways of explaining the

effects of independent variables on subjective probabilities. Second, as we

have seen, results are often reported as composite scores (e.g. Dachler &

Mobley, 1973; Ilgen, Nebeker & Pritchard, 1981). Changes in these scores can

result from different types of changes in the factors that make them up.

Different types of underlying change have different implications for models of

the interaction between confidence and performance. However,the additional

analyses required to identify the nature of the underlying change in composite

scores are seldom reported.

14.2.3 Goal-setting

Mace (1935) found that people told to reach specific scores on each trial of a

task improved muchfaster than those who werejust told to do their best. In

an experimental bargaining task Siegal & Fouraker (1960) found that people

with a high level of aspiration at the start of the bargaining process actually

achieved higher profits in the end. Feather’s (1964) manipulations, which

changed level of aspiration, also appear to have moved performance in the

same direction. In all these studies, people performed better whenthey had

more difficult goals to meet.

The potential importance of these findings for work motivation in organiz-

ational settings has been appreciated. Over the past 25 years, a large corpus

of research on goal-setting effects has accumulated. (For reviews, see Latham

& Locke, 1991; Locke & Latham, 1990; and Lockeet al., 1981.) Some broad

generalizations can be extracted from it. Given that level of ability is

controlled, performance generally increases linearly with task difficulty.

Specific difficult goals lead to better performance than goals that are easier or

vaguer. Such goals serve to direct attention, increase effort and motivate

peopleto develop moreefficient task strategies. In some domains(e.g. sport),

evidence for goal-setting effects is currently equivocal; this may be because of

methodological problems (Locke, 1991) or because motivational processes are

idiosyncratic in these areas (Weinberg, 1992; Weinberg & Weigand, 1993).

Goal-setting theory does not address the issue of the relationship between

confidence and performance directly. It predicts that “harder goals lead to

better performance than easy goals, despite their lower probability of being

reached”(Lockeet al., 1981). The reference hereis to the objective probability

of success. (In goal-setting studies, people are usually provided with explicit

information about the difficulty of their task. This is often done bytelling

them what proportion of their peers have succeeded in the past.) Confidence

only enters the picture because the above prediction is not always fulfilled.

For example, Motowidlo, Loehr & Dunnette (1978) found a curvilinear
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relationship between performance and objective probability of success.
Maximum performance occurred at an intermediate rather than at the lowest
probability level.

To account for such findings, goal-setting theory includes assumptions
about goal commitment. Any downturn in performanceat high difficulty levels
occurs because people have decided that the goals that are very difficult to
reach are not worth attempting. When anindividual’s subjective probability
of success drops below some personal criterion value, goal commitment
declines. Consequently, performance no longer increases with task difficulty
but starts to decrease. Locke (1969) showedthat the effort that people put into
a task generally decreased when their subjective probability of success dropped
below 0.5. However, for a subgroup of people whosaid that they werestill
trying to succeed despite low subjective probabilities of success, this decline in
effort was not statistically significant.
Locke & Latham (1990, pages 83-5) point out that this analysis is consistent

with level of aspiration studies that show that people prefer(i.e. are committed
most to) task variants that they perceive to be of intermediate difficulty. Of
course, it does assumethat judgements of subjective probability of success are
made before goal commitmentdecisions. In other words, these judgements
represent people’s estimates of the probability that they would succeed given
that they were trying as hard as they could. This appears to have implications
for the relationship between subjective and objective probabilities of success.
Suppose that people would be well calibrated if they actually tried as hard

as they couldat all difficulty levels. However, on the basis of their subjective
probability judgements, they decide not to be fully committed to very difficult
versions of the task. For these versions only, objective probabilities of success
would be depressed below their subjective counterparts. (Subjective prob-
abilities could not reflect the depression of objective ones because they are used
as a basis for the commitment decisions causing the depression.) Conse-
quently, overconfidence would be observed for these difficult versions of the
task but for no others. If we assume that commitment is a matter of degree
rather than all-or-none and that people become less committed as tasks
become more difficult, then we can expect overconfidence to increase as
difficulty increases. Unwittingly, Locke and Latham have provided us with
another explanation of this classic finding (e.g. Cohen et al., 1956b).
When it has been assessed, the relationship between performance and

subjective probability of success has been found to beeither positive (Arvey,
1972; Motowidlo, Loehr & Dunnette, 1978) or absent (Mento, Cartledge &
Locke, 1980). As Locke & Latham (1990, pages 66—7) point out, these findings
do not have to be seen as conflicting with those supporting goal-setting.
Higher-performing (higher-goal) groups have lower expectations of success
than lower-performing (lower-goal) groups. However, within each goal-
specific group, people with higher expectations could still perform better. The
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overall correlation between performance and subjective probability for all

subjects in all groups would depend on the relative contribution of these

between-group and within-groupeffects.

Wehaveseen that those working on goal-setting have examined the relation-

ship between performance and objective probability of success and between

performance and subjective probability of success. However, the relationship

between objective and subjective probability of success has not been one of

their concerns. Only correlations between the base-rate probabilities (provided

to subjects asdifficulty information) and subjective probabilities of success are

calculated as manipulation checks. I suggested above that overconfidence may

be relevant to goal-setting theories. However, it has not been recognized as

such and, therefore, it has not been measured.

14.3 CONCLUSION

Wehave seen that measures of confidence in research on skilled behaviour

have beenused to test theories of motor learning, risk-taking, work motivation

and individual differences in levels of aspiration. The main point that I want

to emphasize here is that people working in each of these areas have paid

relatively little attention to the findings produced by colleagues researching the

other domains. Those studying motor learning have rarely considered the

relevance of overconfidence biases to their work; those interested in risk

assessment and preference have seldom considered the importance of research

on goal-setting and levels of aspiration; those workingin these latter two areas

do not appear to have taken full account of the possibility that their subjects

are overconfident and learn during experiments.

The types of study that we have considered fall into two broad classes. The

first is concerned with how well confidence reflects performance (past or

future). This issue is similar to the one addressed by those working on

calibration of confidence in declarative knowledge (e.g. Lichtenstein,

Fischhoff & Phillips, 1982; McClelland & Bolger, Chapter 18, this volume;

Keren, 1991). However, we have seen thatit is not always easy to transfer the-

ories from this domain to the procedural one. There are various reasons for

this. Those working on confidence in declarative knowledge rarely take

account of factors that are known to influence skilled behaviour: e.g. the

possibility of learning during experimental sessions; the degree of awareness

of any such learning; potential effects of fatigue.

The second type of study differs from thefirst type in two important ways.

First, variations in confidence are seen as causes rather than effects of varia-

tions in performancelevel. Second, theoretical concerns focus on motivational

factors (effort, aspiration, arousal, fatigue) rather than on cognitive ones (cue
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validities, memorytraces, judgemental biases). This type of study includes the

work that we have reviewedin thelast three sections.

These two types of study remain conceptually separate. People working on

each one makeimplicit but unreasonably strong assumptions aboutthe other.

For example, cognitive psychologists employing confidence as a dependent

variable typically assume that people are as motivated to performdifficult

tasks as easy ones. Conversely, motivational psychologists employing confi-

dence as an independent variable typically assume that no learning occurs

during experiments and that individuals’ internal assessments of factors such

as goal difficulty and goal acceptance are explicit (i.e. conscious and

verbalizable).

Theoretical integration of cognitive and motivational substrates of

behaviouris currently one of the major developments within psychology(e.g.

Oatley & Johnson-Laird, 1987; Ortony, Clore & Foss, 1987; Sloman, 1987).

In this chapter I have contributed little to that integration but I hope that I

havebeen able to show that there is great scope for it within the area thatI
have covered. Some interaction across the cognitive-motivational divide is

already taking place. For example, Henry & Sniezek (1993) have suggested that

subjective probabilities given as prospective judgements of confidence in an

information-retrieval task could themselves act as self-set goals. Horgan (1992)

has argued that changes in these judgements in response to previous successes

and failures can be used to characterize individual motivationalstyles.

Neither performance nor confidence should be thought of solely in terms of

cause or solely in terms of effect. We should think of them as part of a unitary

dynamical system that produces a pair of time series as output. It may be

possible to model the system and produce computersimulationsof its output

series. These could be compared with real series produced by people. Given

that previous dynamic models of the performance series alone have proved

hard to test (Kuhl & Blankenship, 1979a), this more ambitious endeavour

would certainly be a challenging one. However, the foundations for it have

already been laid (e.g. Kuhl, 1986).
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It is seldom,ifever, that human beings are not actively searchingfor something.
They may be searching for the next correct turning in the road they travel; for
a misplaced object of value; for a name to put to the familiarface that suddenly
confronts them; or for a solution of tomorrow’s problems. All such search is

beset with uncertainties. (Bell, 1979, page 14)

Imagine searching for a paragraph that you read some time ago. You have a

visual memory of that paragraph on a right-hand page of a book, toward the

top. Though you think you remember the particular book, you are not

absolutely certain. Systematically, you begin leafing through the book’s 10

chapters. The paragraphdoes not turn up in the first chapter, orin the second,

third ... . As you proceed without success through the chapters, does your

hope of finding the paragraph in the next chapter increase or decrease?

Subjective Probability. Edited by G. Wright and P. Ayton.
© 1994 John Wiley & Sons Ltd.
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And what of your hopeoffinding it in the book at all? Imagining yourself in

this familiar situation, you may feel that before you reached the end of the

book, despair would set in (“this must be the wrong book”). On the other

hand, the longer you search the more reluctant you may beto quit, not only

because of the efforts invested up to now, but becauseof a persisting intuition

that the chances of finding the paragraphin the next chapter increase after

each successive disappointment.

Weall too often find ourselves in this type of search process. Without a

realistic assessment of the uncertainties involved, we may either overestimate

our chance of success, thus wasting more time in a futile search, or under-

estimate our chances, giving up too early in frustration and unjustified despair

(MacGregor, Fischhoff, & Blackshaw, 1987). Considering the simplicity of the

search situation in question and everybody’s familiarity with the experience,

it has surprised us to find that studies analyzing probabilistic reasoning in such

Situations are scarce. The psychological studies concerning search that we

found deal mostlywith seeking strategies, not with the course of the searcher’s

optimism throughout a systematic search characterized by prior uncertainty.
(We makethis statement despite realizing that our own searchstrategies might

have been suboptimal; we might have abandonedthe search prematurely.)

Bell (1979) reviews investigations of several types of physical search,

conducted mainly by John Cohen and his collaborators. In their studies,

subjects (children) choose locations in which to search for an object whichis

known for sure to be in one of the available locations (see, e.g., Cohen &

Meudell, 1968, Experiment 4). Thus, subjects’ hope assessments (confidence

ratings) in these studies confound probabilistic judgments with evaluations of

the wisdom of their own choices. Another class of studies concerns search

decisions and confidence assessments in complex hierarchical systems. These

studies include investigations of locating general items of knowledge in a

Statistical Abstract, and searching computerized databases (see, for example,

MacGregor, Fischhoff & Blackshaw, 1987, and references therein).

The more typical real-worldsearch process involves situations whereinitial

uncertainty about the existence of a target object in a finite field of locations

is followed by a systematic search of these locations, with a series of negative

results. We have encountered variations of such situations in math-education

journals, in popular scientific literature, in fiction, and in daily living.

Consider the following four examples. |

Example 1 The Case of Sherlock Holmes. In Arthur Conan Doyle’sstory,

The Six Napoleons (cited by Jones, 1966), the great detective Sherlock Holmes

deduces that one of six plaster busts of Napoleon conceals a priceless pearl.

As the story unfolds, the busts are smashed one byone, until Sherlock finds

and dramatically smashes the last one, recovering the pearl. As usual, the

detective reveals his reasoning, noting that the numerical chances of finding
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the pearl in the next bust increased as their number dwindled, until with the

last bust it reached certainty. Jones (1966) points out that the scientific

viewpoint would doubt Sherlock’s initial certainty, and wouldstart with, say,

only a 50% chance that Sherlock’s theory is right: “As successive busts are

smashed and nopearl is found, the rising chance of finding it in the next is

balanced by the evidence of this growing succession of failures that Sherlock

is wrong, and that there isn’t any pearl at all.” (page 466)

Example 2 Doctor Fischer’s Bomb Party. Graham Greene’s (1980) Dr

Fischer wants to test the limits of greediness. He invites six wealthy guests to

a party and shows them a barrel in a corner of his garden in which are six

Christmas crackers. Five of the crackers, he explains, contain a cheque for two

million Swiss Francs. The sixth contains enough explosive so primedas to end

the life of whoever pulls the cracker. The guests are challenged to approach

the barrel one by one andtry their luck. Dr Fischer assures them that the

cheques are there, but the matter is complicated by the possibility that the

presence of the bomb might be a hoax. While one of the guests prepares

(hesitantly) to make his move, he is preempted by Mrs Montgomery who

pushes ahead of him to the barrel, explaining that “the odds would never be

as favorable again” (Greene, 1980, page 127). Is she right? (See Ayton &

McClelland’s, 1987, delightful paper on that ghastly party.)

Example 3 The Key Problem. A man comes home at night during a

blackout. He has two similar bunchesof keys in his pocket; one for home, one

for work. In the darkness, he picks one bunch from his pocket. The bunch

comprises n keys of which only one will fit his door; if, that is, he has picked

the right bunch.Hetries the keys successively (sampling without replacement).

Weare interested in his confidence that he’s got the right bunch,and in his

immediate expectancy of unlocking the door whenkeyafter key fails to do the

job (L.V. Glickman, personal communication, 1984. Adapted from a problem

in Feller, 1957, page 54).

Example 4 Let Sleeping Flies Lie. Raphael Falk, a Hebrew University

geneticist, told us about his experience of expecting a phonecall from the Dean

of his faculty. The Dean hadtold him the previous day that he might call him

in his lab between 10 and 11 a.m. Raphael spent that morning examining

successive bottles inhabited by Drosophila flies, looking for a certain rare

mutant. His routine was to etherize the flies in each bottle for a few minutes

and then inspect them underthe microscope.If the inspection wereto beinter-

rupted, the flies would wake up and fly away. He kept working calmly until

about 10:30a.m., by which time the Dean hadstill not called. Raphael

reported feeling that the chances of the Dean calling were dropping steadily

as time went on. However, he becameincreasingly nervous about etherizing
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theflies in each successive bottle, fearing that the Dean’s impendingcall would
disrupt the inspection

In order to investigate the nature of probabilistic reasoning in situations like
those describedabove, we devised two experimental problems, each of which
involved two hope questions (long- and short-term). Problem 1 (inspired by
Meshalkin, 1963/1973, page 21) concerns a standard search situation (similar
to Example 3). Problem 2 involves an equivalent wait situation (similar to
Example 4). The twosituations are structurally analogous, although thefirst
describes an active search process while the second describes an extended wait
for a target event to occur.

Wewill present the two standard problemsalong with the Bayesian solution.
Then we will discuss a number of features of the solution by applying it to a
variety of situations including the four examples just cited. After describing
how our subjects reasoned about the standard problems, wewill present a
didactic device we developed to make the search problem more conducive to
resolution. Finally, we will explore subjects’ ability to transfer the lesson
learned from the didactic device to the analogous wait problem.

15.1 STANDARD PROBLEMS AND THEIR
SOLUTION

Problem 1 The Standard Search Problem. The Desk: Seek and you Shall
Find?

Long-term probability version (Desk-Long—DL). Imagine that you are
searching for an importantletter that you received some time ago. Usually
yourassistant puts yourletters in the drawers of your desk after you have read
them. He remembersto do this in 80% of the cases, and in 20% of the cases
he leaves them somewhereelse. |

There are eight drawers in your desk.If indeed yourassistant has placed the
letter in your desk, you know from past experiencethat it is equally likely to
be in any of the eight drawers.
You start a thorough and systematic search of your desk.

(A) You search the first drawer, and theletter is not there. How would you
nowevaluate the probability that the letter is in the desk?

(B) You continue to search the next three drawers, until altogether you have
searched four drawers. The letter is not there.
How would you nowevaluatethe probability that the letter is in the desk?

(C) You continue to search three more drawers, until altogether you have
searched seven drawers. The letter is not there.
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How would you now evaluate the probability that the letter is in the

desk?

Short-term probability version (Desk-Short—DS). Same problem-stem as

DL, but the three questions are:

(A) You searchthefirst drawer, and the letter is not there. How would you

now evaluate the probability that the letter is in the next drawer(i.e., in

the second drawer)?

(B) You continue to search the next three drawers, until altogether you have

searched four drawers. Theletter is not there.

How would you nowevaluate the probability that the letter is in the next

drawer(i.e., in the fifth drawer)?

(C) You continue to search three more drawers, until altogether you have

searched seven drawers. Theletter is not there.

How would you now evaluate the probability that the letter is in the next

drawer(i.e., in the eighth drawer)?

Problem 2 The Standard Wait Problem. At the Bus Stop.

Long-term probability version (Bus-Long—BL). Imagine that you and your

friendare tourists in a big foreign city. You find yourself late in the evening

looking for transportation back to your hotel. You approach a busstop that

doesn’t display any timetable. You know, however, that the busesin this city

run punctually each half hour during the evening, only it is now solate that

you are somewhat worried that they might have already stopped running.

You know that 60% of the bus routesin the city operate this late, and 40%

do not, but you don’t know whetherthis particular busis still running or not.

It is now 11:30 p.m., and you decide to wait until either the bus arrives or

midnight, whichever happensfirst.

Since you have no idea about the bus’s exact schedule, you figure that the

bus is equally likely to arrive in any of the six five-minute intervals during the

coming half-hour (if indeed it is still running).

(A) The bus does notarrive in the first five minutes. It is now 11:35.

How would you now evaluate the probability that the bus will arrive

sometime before midnight?

(B) Another ten minutes elapse. The time is now 11:45, and the bus has not

arrived.

How would you now evaluate the probability that the bus will arrive

sometime before midnight?

(C) Ten more minutes go by. The time is now 11:55, andthe bus has not

arrived.

How would you now evaluate the probability that the bus will arrive

sometime before midnight?



358C@R.éFallk, A. Lipson and C. Konold

Short-term probability version (Bus-Short—BS). Same problem-stem as BL,

but the three questions are:

(A) The bus does not arrive in the first five minutes. It is now 11:35.

How would you now evaluate the probability that the bus will arrive

during the next five minutes (i.e., between 11:35 and 11:40)?

(B) Another ten minutes elapse. The time is now 11:45, and the bus has not

arrived.

How would you now evaluate the probability that the bus will arrive

during the next five minutes (i.e., between 11:45 and 11:50)?

(C) Ten more minutes go by. The time is now 11:55, and the bus has not

arrived.

How would you now evaluate the probability that the bus will arrive

during the next five minutes (i.e., between 11:55 and midnight)?

15.1.1 The Mathematical Long- and Short-run Functions

Wesolve the Standard Search Problem (Problem 1) for the general case of n

equally likely drawers and prior probability Lo that the letter is in the desk.

The solution applies as well to the isomorphic Wait Problem (Problem 2). If

the letter is in the desk, the conditional probability of not finding it when

searching the first i drawers is (nm —i)/n; if the letter is out of the desk, not

finding it in the first 7 drawers is a certainty. Let’s denote the respective long-

and short-term posterior probabilities we wish to find by L; =P (letter is in

desk | letter was notin first i drawers), S; = P (letter is in next drawer| letter

wasnotin first i drawers). Clearly, So = Lo/n, and S; = L;/(n — i). By Bayes’

rule,

L: [(n — 1)/n]Lo

~ [a — dn} Lo + (1 — Lo)
A few algebraic manipulationsyield

 

i, =<“DL i=0,1,2,...,n—-l,n (15.1)
n— iLo

Lo
S;= =0,1,2,...,n-1 | 15.2nil I n (15.2)

Formulas (15.1) and (15.2) describe the hope functions for the long run (L;)

andthe short run (S;), given / initial failures.

Table 15.1 presents the specific forms which L; and S; assumein the case

of Problems | and 2, along with the answers to the questions posed in the

Problems. The numbers in Table 15.1, as well as formulas (15.1) and (15.2),

indicate that the long-term hope function, L;, decreases as i grows, whereas

the short-term hope function, S;, increases with 7, until Ln-1 = Sy-1.
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Table 15.1 Long- and short-term hope functions for the
desk and bus problems (Problems 1 & 2)
 

  

   

Long Run Short Run

DL DS

Problem 1 Li= Bri S;=1
10-i 10-i

Desk

Lo = 0.80 (A) i= 1 7/9 = 77.8% 1/9 = 11.1%
n=8 (B) i=4 4/6 = 66.7% 1/6 = 16.7%

(C) 1=7 1/3 = 33.3% 1/3 = 33.3%

BL BS

Problem 2 a
10-1 10-1

Bus

Lo = 0.60 (A) i= 1 5/9 = 55.6% 1/9= 11.1%
n=6 (B) i= 3 3/7 = 42.9% 1/7 = 14.3%

(C) i=5 1/5 = 20.0% 1/5 = 20.0%
 

15.1.2 Further Explorations

A numberof issues surface as we extend our formal analysis to the examples
cited earlier. Suppose Lo = 1, as in the case of Sherlock’s absolute confidence
that the pearl is hidden in one of the busts (Example 1). If indeed there is no
doubt whatsoever about the existence of the target object in one ofthe avail-
able locations, no initial sequence of failures, long as it may be, will shatter
that (long-term)certainty. L; will equal | forall values of i. The short-term
probability of success in the next unit (location or time slot) will equal the
inverse of the number of remaining units and will thus rise to 1 when only one
unit remains(i.e., for i=n—1). The results for the case of initial certainty
may also be obtained from formulas (15.1) and (15.2) by substituting 1 for Lo.
These formulasare, in fact, valid for the entire range of possible values of Lo,
including the end points 1 and 0.

Figure 15.1 presents the long- and the short-term hope functions for the data
of the standard search problem (Problem 1). Sherlock’s short-term hope
function (Example 1), in which Lo =1 and n=8,is added for comparison
(inspired by Jones, 1966).
Dr Fischer’s bomb party (Example 2) raises a third question, in addition to

our long- and short-run questions: Which (if any) is the safest serial position
beforehand? Thea priori probability of blowing the bomb (finding the object)
in ordinal position (location) i, denoted A i, can be successively computed,
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Figure 15.1 Long- and short-term hope functions for Lo = 0.80 and n= 8 (Lo=1 in

Sherlock’s case)

given Lo. Suppose Lo = 1, Let n be 6, as in Greene’s (1980) story. The

conditional probability L; that a bombexists in the barrel, given that / crackers

have been safely pulled, is obtained by applying (15 .1) to the present case:

6-i ; |
Li=s57j i=0,1,2,...,6

For player i, we multiply the probability of the previous /— 1 players not

detonating the bombby the conditional probability of the presence of a bomb

given that information (i.e., Li-1). Wethen multiply that result by the prob-

ability of player i pulling the bomb-cracker out of the remaining 6—i+ 1

crackers. These three factors are listed, in turn, in each row of Table 15.2.

Computing these products, we see that the a priori probabilities of pulling the

bombare the sameforall the ordinal positions (Ayton & McClelland, 1987).

The function A; is thus constant overall the valuesof /. There was no reason

for Mrs Montgomeryto rushto play first.

In hindsight, it should have been obvious that, prior to starting the game,

all the participants are equally likely to detonate the bomb(just as the a priori

probabilities of finding theletter in any of the drawers of the desk are equal).

Without loss of generality, we can imagine that instead of going in turn, the

six players are assigned a crackerat random,andthey all pull simultaneously.

The modified version is evidently symmetric with respect to all players.

Consequently, their chances of detonating the bomb are equal(see Falk, 1993,

Problems 2.3.3, 2.4.12, and 2.4.13).
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Table 15.2 A priori probabilities of
blowing the bomb asa function ofserial
position. Lo = 0.50; n = 6 (Example 2)

l Aj

] 1xtytit
2 6 12

2 Nyoytlt
12 11 5 12

10 4 =1 ~«1
3 — X — X— = —

12 10 4 12

4 934iLd

12 9 3 12

8 2 1 #1
5 —X-X>=—

2 8 2 12

6 Jix et
12 7 12

As we saw, our hope functions, which are defined as conditional prob-

abilities given an initial sequence of i negative outcomes, are generally not

constant (see Figure 15.1). This is true for all cases, barring L; when Lo= 1
(Example 1). In terms of Dr Fischer’s bomb party (Example 2), the course of
the function L implies that “if we entertain any degree of doubt concerning

the presence of a bombin any of the crackers then that doubt will be fuelled

the more crackers that are pulled without a bomb exploding” (Ayton &

McClelland, 1987, page 180). At the same time, the course of the function 6
indicates that the risk of the next cracker blowing up increases with the number
of innocuous crackers that have been pulled.
By the same token, the man whotries consecutive keys in the bunchandfails

to unlock the door (Example 3) should realize that the possibility he holds the

wrong bunch is becoming more and more probable. On the other hand,heis

not to blame for persisting in his attempts with the same bunch, because in
each successivetrial he is slightly morelikely to succeed.
Suppose the police are scanning house after house in a given neighborhood

in search of an escaped prisoner. The information that the runaway might be
in the neighborhood was received from a source thatis usually reliable. The
police are right to becomeincreasingly alert when moving from one house to

the next. Their mounting apprehension, however, does not contradict the
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assessmentthat the overall chances of finding the escapee in the neighborhood

keep dropping as the search progresses unsuccessfully. These two apparently

conflicting tendencies characterize all situations where we sequentially search

for an object in a given space, provided we lack complete certainty thatit is

there and the object is equally likely at the beginning to be in each unit of the

space.

Whenwaiting for an initially uncertain event to happen in consecutive time

units, the long- and short-range conditional probabilities of occurrence behave

precisely as the respective hope functions in search situations. Thus, the

geneticist (Example 4) wasjustified as time elapsed both in losing confidence

that the Dean would call, and in hesitating to anesthetize another batch of

flies. His feelings matched the course of the actual long- and short-term prob-

abilities of receiving the phonecall.

Finally, the search (or wait) for Mr Right is roughly subject to the same

apparently paradoxical rules. Patterns of nuptiality in several societies from

about ages 18 to 30 indicate that although individuals who do not marry for

several years are less likely ever to do so, their short-term conditional prob-

abilities of marrying within a year keep rising for a while (Gabriel, 1960). The

long- and short-term functions describe the two faces of our optimism, or

pessimism, depending on the desirability of the target event.

15.2 SUBJECTIVE HOPE

The ordinary person looking for some lost object instinctively holds to the

scientific viewpoint ... . He is neither philosophically unmoved by the progress

of the search, nor does his optimism rise increasingly as successive possibilities

are eliminated. His initial cautious hope is increasingly balanced by the growing

conviction, born of successive failures, that it’s not there, that it’s not anywhere:

and when he regards this as adequately proven, he gives up. (Jones, 1966,

page 466)

To find out whether Jones’ evaluation of the “ordinary person”is true, we

asked subjects to answer the questions posed in Problems 1 and 2. The general

question of whether people intuitively grasp the Bayesian solution can be

decomposed into several more specific questions. To what extent is base-rate

information (prior probability) taken into account? Howis the ongoingfailure

to find the object incorporated into the reasoning? Do people correctly assess

the direction of the two functions, namely, the simultaneous descent of the

long-term hope (L) and ascent of the short-term hope (S$)? Do they experience

an intuitive conflict when trying to evaluate S;, sensing that the general hope

is decreasing but the diminishing number of remaining possibilities suggests

that success in the next trial becomes morelikely?
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In addition to the numerical versions of Problems 1 and2 given above, we

composed directional versions of these examples whichdiffered only in asking

about directions instead of numbers. Thus, for example, question (A) in

directional DL version asked whether the probability that the letter is in the

desk is now greater than, equal to, or less than 80%. Question (B) asked

whether the same probability is now greater than, equal to, or less than what

it was in (A), and (C) asked to comparethe target probability with what it was

in (B). The same wastrue for the directional DS version which asked in (A)

whether the probability that the letter is in the next drawer is nowless than,

equal to, or greater than whatit was for the first drawer. Question (B) asked

for a comparison of theshort-run probability with that of (A), and so on.

Equivalent changes were introduced into the directional versions of BL and

BS.

The design included eight kinds of problems made up of all combinations

of three binary variables: (1) story (desk or bus), (2) range (long or short), (3)

question type (numerical or directional). Sixty-one subjects—36 under-

graduate students of psychology from the University of Massachusetts,

Amherst, and 25 senior high-school students (of ages 17 & 18) from

Massachusetts— answered two problems. The two forms each subject got

differed on all three dimensions. Thus, a subject whofirst got directional BL

would then receive numerical DS. Order of administration and all other

aspects of design were counterbalanced. Subjects were instructed at the head

of the form to read the problem carefully and trust their common sense in

answering the questions. They were asked at the end to explain their

reasoning.

15.2.1 Directional and Numerical Assessments

Wefirst analyzed the data ordinally. Ignoring the exact values in the numerical

versions, we sorted responses into three main types: strictly increasing, strictly

decreasing, or a constant function. A fourth category (other) included

functions which changed directions or were weakly monotonic. (The under-

graduate and senior high-school students’ responses were pooled since the

patterns of responses of the two groups were very similar.) Table 15.3 shows

the two-dimensionaldistribution, pooled acrossstory types, of the 61 subjects

according to the kind of Z and S functions which they produced.

The results in Table 15.3 show that a majority of the subjects (35) intuitively

sensed the decline of the Z function. The modal group of subjects (27) pro-

duced an increasing S function. Yet, only about one fifth of the subjects

(12) generated the correct combination of a decreasing L and an increasing S

function. It is noteworthy that in a pilot study with 42 undergraduate law

students at the Hebrew University of Jerusalem, about onefifth (8) produced

the correct combination. The pilot study used different but isomorphicstories
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Table 15.3 Subjects classified according to the long- and short-term hope
functions they produced

Long-run hope

Short-run hope Increasing Decreasing Constant Other Total

Increasing — 12 11 4 27
Decreasing — 7 1 1 9
Constant — 6 7 1 14
Other — 10 — 1 11

Total — 35 19 7 61

(searching an escapedprisonerin successive houses, and waiting for a forgetful

professor to come to an appointment).

Noneofthe 61 subjects responded with a correct triplet of numerical prob-
abilities to any of the L or S forms. This wastruefor all the numerical versions

and for many of the directional versions in which subjects gave numerical
answers while explaining their choices. Overall, it is clear that students of

fairly high ability are incapable of correctly assessing the L and S hopeprob-

abilities, but they have a rudimentary conception of the correct directions of

the two functions.

15.2.2 Principal Assumptions Underlying Solution Strategies

Solution strategies are suggested by the pattern of subjects’ numerical

responses and the explanations they provided. In examining these, a few

heuristics appear to us to be guiding a substantial number of responses. In

particular, in many cases assumptions of constancy underlie the choice of the

three answers.

Suppose one assumesthat the given Lo of 0.80 in Problem 1 (desk) stays

unchangeddespite failing to find the letter in the first i drawers. That assump-

tion, which we label constant L, entails an identical response of 0.80 to all

questions of DL andan increasing triplet of answers to DS—(A) 0.114 (i.e.,
0.80/7), (B) 0.20, (C) 0.80 (see the correct set of answers in Table 15.1). One
may, however, assumethat the probability of success per drawer (unit) stays
unchanged. Welabel that assumption constant S. It entails an identical
response of 0.10 (i.e., So) to all the questions in DS and a decreasing triplet
of answers to DL—(A) 0.70, (B) 0.40, (C) 0.10 (cf. Table 15.1). The corre-
sponding predictions of responses to BL and BS under the two constancy
assumptions can be easily obtained.

The responses of twelve subjects to the two forms were compatible with the

constant L assumption. Six subjects assumed constant S across both forms,
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and another 13 assumed constant L in answering one form and constant S in

the other. Among the remaining 30 subjects, 19 assumed constancy in only one

of the forms (6 constant ZL, and 13 constant S). Overall, of the 122 forms

answered by 61 subjects, 81 (i.e., 66.4%) were based on constancy assump-

tions: 43 constant L, and 38 constant S.

The heuristic of adhering to one constant parameter of the setup (whether

Lo or So) reduces the complexity of the hope problems. But it may also reflect

subjects’ conception of probability as an unchanging propensity of the situa-

tion at hand. Kahnemanand Tversky (1982) draw a distinction between two

loci to which uncertainty can be attributed: the external world or ourstate of

knowledge. Real-world systems are frequently perceived as having dispositions

to produce different events, and the probabilities of these events are judged by

assessing the strength of these dispositions. The propensity of the desk (or

drawer) to produce the missingletter (or, for that matter, of the transportation

system to produce the bus) may have been considered a fixed parameter of the

setup by manyof our subjects. This would explain whythey refused to update

that parameter in light of the accumulating search results. They did not

interpret the question as addressing their state of knowledge, and were

consequently imperviousto the effect of new evidence.

Subjects often explicitly expressed the idea that constant probability was a

characteristic disposition of the chance setup. The following statements were

made by subjects who respondedinvariably with an answer of 80% to all the

questions in numerical DL: “The probability that the letter is in the desk is

80%, and that’s it!” A deliberate attempt to ignore the information about

successive failures (as if the subject is wary of falling prey to the gambler’s

fallacy) is notable in another subject’s words: “Like the lottery, no matter how

many times you play or what numberyou use, you have the same probability

in winning. So each desk has an 80% chance of having the letter.” Similar

insistence on the irrelevance of the reported outcomesis found in: “Finding

empty drawers doesn’t change probability that letter is in desk,” and “The

letter is equally likely (80%) to be in any of the drawers—so the fact that x

number of drawers was checked does not lower the probability.”

The constancy of the long-run hope for the arrival of the bus (Problem 2)

was justified by “Ifigure that the exact time between 11:30 and 12:00 (11:35,

11:45, 11:55) doesn’t really matter—since 60% of the buses operate this late

I think thereis still a 60% chance that a bus will come.” However, the same

subject assumed constancy per unit when asked about short-term prob-

abilities: “Since there are 8 drawers andtheletter,if it is in any of the drawers,

is equally likely to be in any of the drawers, the probability that the letter is

in any one drawer is 10%. This doesn’t change if the letter is not in one or

more of the other drawers [italics added] .” Had this discussion taken place

in class, the teacher could have asked at that point, “and what if the letter is

foundin the th drawer, would youstill think the probability doesn’t change?”
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Assuming constant S when answering numerical BL,results in a decreasing

L function ((A) 50%, (B) 30%, (C) 10%). This was typically justified by

answerssuch as: “I estimatedthat since there was 60% chance that the bus was

still running ... the chance ofit arriving decreased by 10% as each 5 minute
(of 6) passed.” Another subject’s explanation repeats the same rationale for

DL: “There is 80 percent chance of letter in desk and 20% not. Checking one
drawer with an unsuccessful try drops your chancesof it being there by 10%,

to 70%, and so on.”

In terms of the issue of “Evidential Impact of Base Rates”(the title of a
paper by Tversky & Kahneman,1982), an assumption of constant L represents
an extreme point of “conservatism” on the continuum ofuse versus neglect of

base-rate data. In fact, constant Z is the reverse of the “base-rate fallacy”

according to which subjects typically ignore the base rate and consider only the

specific evidence about the case at hand (as in Tversky & Kahneman’s well-

known cab problem). The constant S assumption, although resulting in

exaggerated decrease of the Z function, keeps the base-rate unit unchanged
instead of duly increasing it in light of the evidence. In this sense, constant S
is conservative as well.

Our impression is that subjects’ conservatism, as revealed by the prevalence

of the constancy assumptions, is a consequence of their external attribution

of uncertainty (Kahneman & Tversky, 1982). The parameters Lo and/or So are
apparently perceived as properties that belong to the desk,like color, size and

texture. Subjects think of these parametersin terms of “the probabilities of the
desk”, whereas the Bayesian view would imply expressionslike “my probabil-

ity of the target event”. Thus, subjects fail to incorporate the additional

knowledge they acquire when given successive searchresults.

15.2.3 Other Strategies

Several subjects denied the presence of chance altogether andacted asif it were
certain that the letter was in the desk (the bus is going to come), and others
embraced the historic position of equal ignorance and responded with

“fifty—fifty,” in apparent disregard of the givens of the problem.

Eleven subjects relied on assumption of certainty in response to one of the
problems they answered. Another three subjects assumed certainty in both
problems. Most of the certainty-based responses were made by subjects
assuming either constant L or constant S. Thus, for example, assuminginitial

certainty and constant S when responding to numerical BL means that
So = 17% = %, and that So is subtracted from the L function (starting with
Lo = 100%) for every five-minute interval in which the bus doesnot arrive.
This results in: (A) 83%, (B) 50%, (C) 17%. One subject justified this triplet
as follows: “I made a time table of 30 minutes. I take a fraction of how much
time has elapsed, then divide by 100%, giving the answer.” Note that this
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subject was not disturbed bythe fact that probability of 83% followinga five-

minute wait for the bus was higher than the given initial probability of 60%.

The double assumption of initial certainty and constant ZL means that

Lo = 100% stays unchanged. Thus, when answering numerical DS, these 100

percents are divided each time in equal shares among the remaining drawers,

resulting in (A) 14% =4, (B) 25%, (C) 100%. We quote one subject’s

elaborate justification of the abovetriplet: “If you didn’t eliminate drawers

and randomly pointed to any drawerthere would bestill § probability because

there is replacement. But here we don’t have replacement and each draweris

equally likely of containing the letter, so however many drawers you haveits

1/N probability.”
Noless surprising than the responses that converted the initial probability

of 80% (or 60%) into certainty were those that assumed total ignorance and

concluded therefore that the target probability should be one half. Ten

subjects appeared to invoke the maxim of “insufficient reason” assigning

equal probabilities to the two possible outcomes. Consider the explanation of

a subject who gave a constant 50% answerto all three BS questions: “Because

since you don’t have any idea what time the busarrives and you don’t even

know if the bus is coming, then it is equally likely to arrive at any time.”

Another subject, who responded similarly, wrote: “It doesn’t matter that the

bus didn’t arrive in the last S minutes. There is always a 50% chanceit will

come and a 50% chanceit will not come.” A uniform 50% response to the

three BL questions was explained by: “There is no Tf in probability it will come

because there’s only 5 min left—there’s still a 50/50 chanceit will either come

or its doesn’t.” One subject’s “ingenious” reasoning with respect to BL

resulted in: (A) 41.6%, (B) 25%, (C) 8.3%. His telegraphic-style explanation

ran as follows:

6 5 min intervals from 11:30—12:00

—said it was =ly likely at 11:30 (50%)
50% :6 = 8.3
each 5 min interval decreases probability by 8.3%

Wesee here an interesting combination of the equal-ignorance and constant-S

heuristics.

The human tendency to remove chance from our considerations has been

observed in various judgmental contexts (several examples are reviewed by

Falk & Konold, 1992). The sameis true for people’s inclination to assume

equal likelihood once uncertainty is acknowledged. The tendencyto identify

randomness with equiprobability and thus assign equal chances to the

available options has been widely documented in empirical investigations

(e.g., Konold et al., 1991; Shimojo & Ichikawa, 1989). The primacy of the

equiprobability intuition has been described in studies of the historical
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development of probability theory. Uniformity was the first presumption on
which probability calculations were based (Gigerenzer et al., 1989; Hacking,
1975, Chapter 14). Converging evidence thustestifies to the genuine power of
the intuitive bent toward symmetry (Falk, 1992; Zabell, 1988).

Paradoxically, subjects’ assumptions of certainty and of equal ignorance,
although diametrically at odds with each other, might be viewed as the two
Janus-faces of the same orientation. Konold (1989) has referred to that
Orientation as the outcome approach. People reasoning via the outcome
approach tend to interpret a request for a probability of some event as a

request to predict whether or not that event will occur on the nexttrial.
Contrary to current scientific thinking, these reasoners do not view probability
as a measure of one’s uncertainty, nor as answering the question about the
relative frequency of occurrence of the target event in manyrepeatedtrials.
According to Konold’s (1989) description, outcome-oriented subjects translate
probability values into yes/no decisions, transforming their probability
evaluations into certainty. Thus, a probability of 20% means “it won’t
happen,” a probability of 80% means “it wi// happen.” When they sense a
total lack of knowledge about the outcome, however, theyexpress it by the
50/50 numerical probability, which means “it either will happen or won’t

happen—don’t know which.” Konold found in several studies that a certain

subgroup of the subjects (not necessarily a majority) was fairly consistent in

responding according to this outcome-oriented perspective.
Although we cannot predict whether an outcome-oriented subject would

convert the probabilities given in our problems into certainty or into equal
ignorance, it stands to reason that the former would occur more often when

the probabilities are close to 100% (or to zero) and the latter when the prob-

abilities are close to 50%. Our data show roughly this pattern. Of the 17 forms

which elicited certainty-based responses, 10 were desk problems(Lo = 80%)
and 7 bus problems (Lo = 60%). In contrast, of the 10 equally likely answers,
3 were given in response to thedesk story and 7 to the bus. These include two
subjects who respondedbycertainty to the desk and by equal ignorance to the
bus. Overall, the conjecture that the outcome approach has played somerole
in answering the hope problems is weakly supported. It remains a possibility
that should be further explored.

15.2.4 Toward a Solution

It was somewhatsurprising that we did not find amongthe explanationsof the

S problems an explication of the conflict between the diminishing long-term

hope andtheincreasing immediate hope implied by the fewer remaining units.

One subject who produced a constant S function in response to directional BS
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did describe another conflict: “The probability that the bus will arrive in any

given time slot is the same. Although myintuition would urge me to expect

to see the bus more (meaning—I would assume the probability would be

greater) as time elapsed,I believe that the ‘laws’ of probability would haveit

otherwise. But—as I think aboutit more, this could be argued against, saying

that the probability changes as each unknown 5-minute segment became

known.” Several subjects, who produced a decreasing L function in response

to directional versions (without giving numbers), gave a correct Bayesian-like

explanation (e.g. “Well, if it is not in a drawer, then it could fall in the 20%

zone and the more drawers you open without it being in there the lower the

probability that it’s in there”).

Only one subject (No. 62), a precollege student enrolled at the Hebrew

University of Jerusalem, responded correctly to both problems,in this case to

numerical BL and directional DS. These were his explanations:

BL: At 11:30 the probability of the bus arriving by midnight was 3,

and of not: %
At 11:35 the probability of the bus arriving by midnight was 3,

and of not: §
At 11:45 the probability of the bus arriving by midnight was 3,

and of not: #
At 11:55 the probability of the bus arriving by midnight was ,

and of not: 3
DS: At the beginning of the search the letter could be in one of 10 “locations”:

8 drawers and 2 “others.” The 2 “others” stay in constant amount,

whereas the number of drawers keeps decreasing. Therefore, the chance

of finding the letter in the first drawer was only 10% (i.e., 1/10), in the

second 1/9, in the fifth 1/6 and in the eighth 1/3.

These considerations yielded the same results (for each /) as the Bayesian

computations. Note, however, that whenever several units are eliminated, the

posterior probability distribution over the remaining units (including the

imaginary “other” locations) stays uniform. That is why this subject’s

reasoning matchedthe Bayesian results. The same method would not workif

applied to problemslike that of the three prisoners, or Monty’s notorious TV

game “Let’s make a deal” (Falk, 1992).

Inspired by that subject’s method of solution, we devised a simplified

version of the desk problem. The main change in the modified version was the

addition of a concrete representation of the sample space that includes the two

“locations” out of the desk.
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15.3 THE HOPE PROBLEM—SIMPLIFIED

The simplified desk problem, presented below, is isomorphic to Problem 1:

Problem 1R The Revised Desk Problem. (Revised-Desk-Long—RDL;
Revised-Desk-Short—RDS). The problem stem of both RDL and RDSreads
as follows:

Imagine that you are searching for an importantletter that you received some
time ago. Your assistant always puts yourletters in the drawers of your desk
after you have read them.

There are ten drawers in your desk. You knowthattheletter is equally likely
to be in any of the ten drawers. You notice, however, that drawers #9 and

#10 are locked (see figure), and your assistant has gone home with the
keys. You realize the chancesthat the letter is in one of the unlocked drawers
is 80%. So you start a thorough andsystematic search of the eight unlocked
drawers.

Figure 15.2 presents the drawing which appeared in each form. Thethree
questions in RDL were the sameas in DL of Problem 1, except they asked for
an evaluation of the probability that the letter is in one of the unlocked
drawers. RDSincluded exactly the same questions as DS of Problem 1. Only
numerical revised forms were prepared.
A pilot test was run at the University of Massachusetts, Amherst with 13

subjects (including graduate and postgraduate students). Each subject
responded to only one form: 6 to RDL and 7 to RDS.Three of the responses
to RDL and6 of the responses to RDS were perfectly correct. Of the other
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Figure 15.2 A desk with 10 drawers
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3 RDLs,subjects gave 2 constant L responses and 1 constant S response. The

seventh RDS answer assumed constant L.

Basedon theresults of this pretest, we conducted larger-scale surveys. Our

aim was both to confirm the indications that the revised versions facilitate

reachingthe correct solution and to test whether subjects who succeed in

solving Problem 1R would transferthe solution principle to the Standard Wait

Problem (Problem 2) as originally phrased.

Fifty four subjects—34 undergraduate psychology students from the

University of Massachusetts, Amherst and 20 senior high-school students from

Massachusetts—participated in the first survey. Each subject was asked to

answer two problems: either RDL and numerical BL, or RDS and numerical

BS. The revised desk problem wasalwaysgiven first; 26 subjects received two

L versions and 28 received two S versions.

Eighteen of the 54 revised forms were answered correctly (9 RDLs, and 9

RDSs). Compared with no correct answers to numerical DL and DS in the

original group of 61 subjects, the rise to 33.3% correct represents a

“dramatic” improvement. The 36 incorrect responses to the revised forms

included 14 based on constancy assumptions(12 constant S and 2 constant L),

2 based on certainty and 1 on equal ignorance (i.e., 50/50).

None of the 54 bus problems was answeredcorrectly, indicating no transfer

of the solution strategy by those 18 subjects who have just solved a search

problem (desk). Incorrect responses included 26 constancy-based answers (20

constant S and 6 constant L), 10 certainty and 5 equal ignorance.

Correct answers to the revised desk problem were often accompanied by

lucid explanations of the underlying reasoning. Here is one example given in

response to RDL: “The probability that I gave is the number of unlocked

drawers remaining (unsearched) divided by the total number of drawers

remaining (unlocked + locked).”

Similar to the explanations of incorrect answers to Problem 1, a constant

80% answer to RDL wasjustified by: “The overall probability doesn’t change

no matter how many drawers are searched,” and, as maintained by another

subject: “regardless of whether I looked in them or not.” Some subjects who

responded 80% throughout seemed to work hard not to be swayed bythe given

results: “It’s like the boy/girl baby problem, even if you get BBBBBBBBBG

the probability still remains at chance—50/50.” Constant S responses to RDL

were justified by, “I was almost fooled, but upon further thought I decided

that as drawers are searched and found emptythestatistics of the problem do

not change. Same as if weather person says 50% chance of rain & it rains.

Thenis probability of rain 50% or 100%? It’s still 50%.” One subject, who

gave 50% answers to RDS, explained: “The possibility of finding the letter was

50%, just like yes or no.”

In a second survey, each subject received RDL and RDS, with order of

presentation counterbalanced, and a bus problem of the same range (L or S)
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as the second of the two revised problems. The 109 subjects were under-
graduate students of psychology or graduate students of education at the
Hebrew University of Jerusalem. Fifty three got RDS, RDL,BL,in that order,
and 56 got RDL, RDS, BS. Because of the extra length of this assignment
subjects were not asked to explain their reasoning.

Correct responses were given to 48 of the 109 RDLs (44%), and to 73 out
of 109 RDSs (67%), which is 56% correct overall. Every subject who correctly
solved RDL correctly solved RDS as well, but not vice versa, suggesting that
the revised short-term problem is moretransparent. This makes sense if one
notes that answering the S versions involves adjustment of only the denomi-
nator (the total numberof remaining units) since the numeratoris always one,
whereas answering the L versions requires adjustment of both numerator and
denominator. Assumptionsof constancy, certainty, and equal ignorance were
observed amongthe incorrectly answered forms. However, the absence of
supporting explanations prevented a determination of subjects’ underlying
reasoning.

No single correct triplet of answers was given to any of the 109 bus
problems. This was true despite the high rate of correct solutions of the
immediately preceding revised desk problems. In particular, 58 of 109 subjects
solved their second revised desk problem but not the equivalent bus problem
of the same range. In conclusion, while the revised desk problemselicited more
than half correct solutions, transfer of the method of solution to the bus
problem failed to occur.

15.4 DISCUSSION

On the whole, subjects were unable to solve the numerical long- and short-
term hope problemsthe way they were originally presented. To summarize our
findings, we list several solution methods that subjects employed and beliefs
they expressed. To besure, this list is not exhaustive.
The load of processing the various details given in Problems 1 and 2 is eased

if one of the givens (either Lo or So, which is inferred from Lo) is held
constant. Many subjects indeed based their answers on one of these constancy
assumptions, solving the problem by reducing the number of variables
involved. In so doing, they ignored one type of evidence, namely the search
results, and considered only the a priori success probability and sometimes
also the numberof units.

Subjects’ choice of the type of evidence may be linked to an externalattri-
bution ofuncertainty. Many of the explanations cited above indicate that the
prior was viewed as an inherent and unalterable characteristic of the setup. It
may seem more “objective” than the information about the subsequentfruit-
less search (wait), and may therefore come to dominate subjects’ reasoning.
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Somesubjects clearly resisted the urge to use epistemic considerations. The

burden of providing the required probability, they insisted, should lie with the
desk (bus system). We should note that all subjects had had some kind of

introductory statistics course. Their cursory statistical knowledge apparently

alerted them to the gambler’s fallacy. The first examples of randomprocesses

usually given in class (successive coin tosses, childbirths, lotteries, etc.) are

typically characterized by statistical independence. Students learn that they

should not learn from experience sincea coin has no memory. This lesson may

be overgeneralized to the case of the hope problems, where successive failures

do have a diagnostic value.

Those subjects who were aware of the need to consider the changesin their

state of knowledge usually sensed the direction of the hope functions but did

not know how to update their probabilities arithmetically. The concrete aid
offered in the revised desk problem helped many of these subjects to simul-

taneously see the whole sample space and the subspace in which success may
occur.

Failures in responding to the revised versions occurred when subjects were

strongly committed to constancy assumptions. Whoever believes that the

probability of finding theletter is 10% per drawer, regardless of how many

drawers have been searched,will fail to adjust for the changing total number

of drawers and will simply obtain the Z function by multiplying 10% by the

number of unlocked drawers that have not yet been eliminated.

In addition, a certain subgroup of subjects who answered the original

problems, and the revised desk problem, was apparently outcomeoriented.

They resorted either to certainty or to complete indifference, both of which

resulted in incorrect answers.

15.4.1 Why Didn’t the Transfer Work?

Wewere puzzled bythe failure of all the subjects who had solvedthe revised

desk problem to transfer the solution’s rationale to the bus problem. However,

on second thought, and as a result of postexperimental discussions with some
of the subjects, we have one possible reason for this failure of transfer.

The solution in the revised version was suggested by extending the dimen-

sion along which the search was carried out: two units (drawers) were added

so that subjects could visualize the whole sample space andsee the reason for

the a priori Lo of 80%. As they eliminated drawers, they could see the
remaining “favorable” (unlocked) and “unfavorable” (locked) units of the
changing space. When facing the bus problem, however, one cannot apply

the sametrick without changing the nature of the story. Extending the units

of wait beyond midnight would not help to see the reason why Lo is 60%. That
prior reflects the fact that 60% of the bus routes operate this late, and 40%

do not. A revision, equivalent to that of the desk problem, would havethe bus
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certain to arrive sometime between 11:30 and 12:20, with equal probabilities

for all the 10 five-minute intervals. The tourists, however, decide to wait until

either the bus arrives or midnight, whichever happens first. Viewing the

original bus problem as isomorphic to the revised desk problem was

apparently too much to expect of subjects in an experimental situation.

The locked-drawers device can easily be applied to Dr Fischer’s bomb

situation (Example 2). Withoutloss of generality, we can changethe story so

that there are 12 Christmas crackers: one contains a bombforsure, 11 contain

checks. Only six, however, are at the guests’ disposal for this party. Theother

six are kept for the next party. It is now easy to see that Lo is 50%andto assess
the LZ and S probabilities of pulling the bomb throughout the game’s progress.

We didn’t pose this problem to our subjects. Our guess, however, is that

transfer from the revised desk problem to this particular problem would have

been within reach of some subjects.

15.4.2 Possible Extensions

Several subjects who viewed the search/wait process as analogous to coin

flipping, incidentally raised an interesting question: what if the search were to

be conducted with replacement? Suppose the man who comes homein the
darkness with two bunchesof keys(Example 3) is drunk. He would not be able
to remove keys that have failed to unlock the door (see Feller, 1957, page 46).
Or, imagine that an absent-mindedprofessor is looking for a misplaced letter

through the drawers of her desk (Problem 1) while her mind is deeply engaged

in some other problem, thus forgetting instantaneously which drawers have

been already searched. A “with replacement search”thus describes the case in
which a key maybetried again after being found not to work or a drawer may
be searched again after being found empty.
Does it make sense to think of waiting for the bus “with replacement”?

Ennis (1985) describes a situation perfectly suited for our case. He imagines

waiting for a bus on a route whichoffers a “15-minute service”. Because of heavy
traffic, the buses do not arrive at exact 15-minute intervals but randomly. The
operators (Poisson Motor Services) do, however, provide a service which
averages out at 15 minutes between buses. (page 27)

Weonly need to change 15 to 30 minutes, add the qualification that the

chances are 60%that the busis running that late, and Poisson Motor Services
provide us a wait problem with replacement.
The computation of the long-term (L’) and the short-term (S’') hope

functions for sampling with replacement requires a minor adjustment of
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formulas (15.1) and (15.2). One easily obtains, for the case of sampling with

replacement:

(n—1)'Lo a,Li = ————_—""— 15.1
(n —1)'Lo + n'(1 — Lo) ( )

, 1, teal
S/ =-L} (15.2')

n

In both formulas 7=0, 1, 2,...,n-—l1,n,...

In contrast to the case of sampling without replacement, where the function

L; decreases with i and S; increases (Figure 15.1), in the case of sampling with

replacement, both L; and S; decrease. The rate of their decline, however,is

slower than that of L;. Figure 15.3 presents the course of the functions L; and

Si; compared with that of L; and S;, for the desk problem. In the limit, as /

growsindefinitely, both L; and S; tend to zero. This meansthat despair creeps

in justifiably in an extended fruitless search (wait) with replacement. In a

without-replacement search, the rising S function may boost our morale to

some degree. It is probably the short-range increase in hope that keeps most

of us going.

Another extension of the original probabilistic model is obtained if in

Problem 1 we allow for a less than perfect search. One may assume, for

instance, that the conditional probability of finding the letter in a drawer,

givenit is there, is always p (such that 0 < p < 1). This would,in fact, describe

more realistically the state of affairs in desks of peoplelike ourselves. In
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Figure 15.3. Long-term (L’) and short-term (S’) hope functions “with replacement”

(compared with LZ and S)
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addition to that, one may monitor the course of the hope functions while
searching within each drawer. This will amount to extending the problem from
the discrete to the continuous case.

Decisions of whether to continue or end a search (wait) depend not only on
the long- and short-term success probabilities. The considerations should
include the costs and benefits associated with each decision. These, however
may change as the search proceeds.

Note that our search and wait problems involved desirable outcomes. The
desirability of the target event makes no difference formally. It would be
interesting to see, however, whether people’s subjective functions, based on
the same objective statistics, differ in any way when viewing the target event
as “success” versus “failure.” Clearly, picking one of two bunches of keys
(Example 3) and trying them successively with or without replacement, is
isomorphic to picking one of two guns, knowing that there is a bullet in one
of them, and playing Russian Roulette with or without replacement. The
“target” event, however, is so dramatically different in these two cases, that
finding differences in probabilistic assessments would not be surprising.
Likewise, waiting for malignant symptoms to reappear duringa five-year
period after treatment, although structurally equivalent to waiting for your
loved one to cometo a date during five successive short-time intervals, may
be evaluated differently in probabilistic terms. Clearly, continued study of
these phenomenais required. | .
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Part Three

Accuracy of Probability
Judgments



Chapter 16

Subjective Probability
Accuracy Analysis

J. Frank Yates
The University of Michigan

Sally Miller belongs to a parole board. So does Bill Coleman. They are

participating in a parole hearing for Charles Starks. Ms Miller votes to deny

parole, contending that “Mr Starksis clearly a bad risk.” She expects that,if

released, Mr Starks would soon commit other serious crimes and,if society is

lucky, end up right back in the penitentiary. In contrast, Mr Coleman thinks

that Mr Starks has responded well to the prison’s rehabilitation efforts. In his

view, if Mr Starks were allowed to leave, he would be a “productive, law-

abiding citizen.” Such disagreements between Sally Miller and Bill Coleman

are not uncommon.In fact, Ms Miller and Mr Coleman seldom concur on the

prospects of potential parolees returning to lives of crime. Thus, more often

than not, their votes on the parole board offset each other, forcing the

sentiments of Irene Thomas, the third board member, to carry the day.

The scene described above provides a good illustration of the issues

addressed in this chapter. Whenevera prisoner is brought before the parole

board, Sally Miller forms an opinion of howlikely it is that the prisoner would

get in trouble if released from confinementearly. If that opinionis sufficiently

pessimistic, she votes to deny parole. Bill Coleman and Irene Thomas use

similar decision rules. But, as we have seen, all the board members tend to

differ in their judgments of the chances that particular inmates would resume

Subjective Probability. Edited by G. Wright and P. Ayton.

© 1994 John Wiley & Sons Ltd.
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their criminal activities. The following are sensible questions we might then
ask: |

@ Overall accuracy. How good are the opinions of the parole board members
as predictions of inmates’ actual post-prison criminal behavior? Which board
members’ opinions are best, and whose are worst? Hence, whose opinions
should be relied on most heavily and whose should be given less weight?

@ Incentives. We can imagine various reasons why board members might be
disinclined to offer their “best” opinions about parolees’ recidivism
chances. How might theybe induced to do otherwise?

@ Accuracy elements and contributors. In what specific ways are board
members’ forecasts of post-release activity especially good or poor—and
why? That is, what are distinguishable components of judgmentaccuracy,
and what conditions and skills affect those elements?

@ 7raining. Suppose the parole board decides that it wants to improveits
members’ skills at predicting parolees’ post-release behavior. How could
such training be effected?

@ Selection. Eventually, new parole board members will be required. How
could the prison commission select board members who are good at
anticipating prisoners’ chances of “going straight” if released from prison
early?

As they are articulated here, these questions apply to ourfictional parole
board. But situations formally equivalent to these circumstances are
ubiquitous. That is, people must often form opinions about the chances of
various events occurring. Sometimes they must act on, or even publicly report,
those opinions. Andin each ofthese situations questions similar to the present
ones arise. This chapter surveys how such questions can be approached
generally, in all kinds of contexts.

What do these issues have to do with subjective probability? In actual
practice, only occasionally are people required to render their opinions inthe
form of subjective probability judgments per se. But in principle they could
be asked to do so at any time.For instance, our parole board memberscould
be requested to state P’(No trouble) for every prospective parolee who
appears before them. In this notation, P’ denotes a subjective probability
judgment and “Notrouble” describes the event that a parolee remains free of
criminalactivity for a specified time period. The approaches to answering the
questions reviewed here all assume that the focal individuals have in fact
indicated their opinions as subjective probability judgments. Indeed,the avail-
ability of these analytic techniques is a major advantage of having opinions
expressed as probability statements. Most of these methods apply to
judgmentsfor categorical events, e.g. “No trouble,”asin the current example.
But some work concerns judgments for quantities, e.g. the number of weeks
a parolee stays out of trouble (e.g. Matheson & Winkler, 1976; Schaefer &
Borcherding, 1973; Seaver, von Winterfeldt, & Edwards, 1978). Because of
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space limitations, we can discuss only the simplest discrete event methods. One

consolation, however, is that the essential ideas generalize.

16.1 OVERALL ACCURACY MEASURES:
A PERSPECTIVE

Conceptually, probability judgments are said to be accurate overall if events

that actually occur tend to be assigned high probabilities while events that do

not happenreceive low ones. In the extreme, probability judgments of 1 and

0 are given to events that do and do not occur, respectively. For instance, an

ideal, clairvoyant recidivism forecaster would report P’(No trouble) = 1 for

each parolee who stays free of criminal activity and P’(No trouble) = 0 for

every one who does not. Implicit is the general strategy commonly employed

for characterizing the overall accuracy of subjective probability assessments.

Whyshould overall accuracy measures interest us? First of all, they could

be useful in the selection of judges. A hallowed principle in all selection proce-

dures is that a good predictor of future performance is past performance.

Thus, a judgment “consumer” should seek the assessments of judges who have

earned good accuracy scores in the past. Accuracy measures have been

expected to have incentive value, too. Since the judgment consumer’s aim is

accuracy, then it only makes sense that judges should be compensated on the

accuracy scores they achieve. If they are, then this should encourage judgesto

devote appropriate effort. This leads naturally to a third potential use for

accuracy scores—training. Such measures could be useful as feedback in

improvement efforts. They could guide the course of those activities, e.g.

the retention of training operations that tend to improve scores and the

abandonment of ones that do not.

A variety of overall accuracy measures have been proposed (cf. Winkler &

Murphy, 1968; Yates, 1984, 1990). However, we focus here on only one of

them, the quadratic score. It is by far the most frequently employed of these

measures. The quadratic score has several important features in common with

those other measures and thus can be usedtoillustrate those features. Butit

also has useful properties that the others do not (cast against, of course, the

strengths of those other approaches).

16.2 THE QUADRATIC SCORE

16.2.1 Notation

Werepresent a probability judgment for a given target event A, e.g. “No

trouble,” by

f= P'(A)
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Typically, studies of probability judgment accuracy do not require that—or
even examine whether—such judgments conform to probability theory
axioms. Thus, it is an open question whether,strictly speaking, such state-
ments constitute true subjective “probabilities.” Instead, the focus is solely on
what is called the “substantive goodness” (Winkler & Murphy, 1968), the
“external correspondence” (Yates, 1982), or, as here, simply the “accuracy”
of those judgments as predictions of real-world occurrences (Yates, 1990).
Nevertheless, analysts normally impose on their data the minimalconstraint
that judgments for complementary events sum to 1, i.e. that P'(AS)=1—-/,
where A‘ represents the complement of event A.
An indicator variable called the outcome index (d) can be defined as

follows:

d=1 when A occurs

and

d =0 otherwise, i.e., when A°* occurs

It sometimeshelps our intuitions to think of d metaphorically as the judgment
of a clairvoyant. Such an individual reports P’(A) = 1 whenevertarget event

A occurs and P’(A)=0 whenit does not.

16.2.2 The Rule

The quadratic score essentially says that a real person’s judgmentsare accurate
to the degree that they are close to the judgments of ourfictional clairvoyant.
Andit entails a specific interpretation of what “close” means. Oneparticular
form of the quadratic scoring rule is the following:

O(f, d)=1-(f-day (16.1)

Thus, larger scores indicate greater accuracy. Perfect accuracy is indicated
when Q = 1, for in that instance there is a perfect match (f= d) between the
assessments of the clairvoyant and the real judge. Values of Q decrease
quadratically with increasing discrepancies between f and d. The extremeis
observed whenthe judge is absolutely sure that A will occur (f= P’(A) 1),

but it does not (d=0), or vice versa. Of course, analysts normally are
interested in mean values of Q for representative collections of cases,i.e.

Q=(1/N)ZO (16.2)

for samples of size N.

In practice, the most commonly used version of the quadratic score is a
linear transformation knownas the probability score (PS):

PS =(f-dy (16.3)
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Clearly, the ideal value of PS is 0, and the worst possible accuracyis indicated
when PS = 1. The mean value of PS,

PS = (1/N)= PS (16.4)

for a sample of N observations, describes typical judgmental accuracy. PS is

also often described as the Brier score, after the meteorological statistician

whointroduced it (Brier, 1950).

16.2.3 Standards

Suppose a judge’s accuracy is being graded and perhaps rewardedaccording
to a scoring rule, say, PS. Then we might expect the judge to do his or her

best to optimize that score. But motivation research suggests that this might
well not occur. Indeed, a sizable literature indicates distinct advantages of

specific performance goals over “do-your-best” appeals (e.g. Locke etal.,
1981). If a judge (or the consumer of his assessments) wants to set such

concrete targets, which ones are reasonable? This implies the need for

accuracy score standards, for ways of answering the question, “Is this good

enough?” Here we discuss several answers to this question.

Human judge standards. One reasonable standard that might be set for a
given judge is defined by the performance of other human judges:

@ The best judge. Suppose that records have been kept onlots of judges who
have considered similar if not identical cases. Then the best score of those
competing judges is one standard one mightset.

@ The typical expertjudge. Especially for a beginning judge, the performance
of the best judge ever observed might be too exacting a standard. The
implied performancelevel might be so highthat it is out of reach and hence
useless as a realistic target. But suppose there are judges who, for various
reasons, are considered experts. Then the average performance of those

individuals might constitute a more suitable goal.

@ The averagepeerjudge. Suppose a more modest but perhaps moreeffective

goal is sought. Then the standardset by the judge’s peers could makesense.
Forinstance, a judge mightfind it especially compelling to try to achieve
a value of PS better than those earned by half the other individuals
assessing similar cases.

 

Artificialjudge standards. In some judgmentsituations there exist artificial

judges designed to accomplish the same task as humanjudges. Typically, these
are computer-driven models. They might be ones instantiating optimal

Statistical procedures (as illustrated below). Or they could be production rule
models intended to mimic acknowledged human experts.

Constant judge standards. A constant judge is an idealized individual

whoreports the same judgment for each case that comes along. That is, no
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distinctions are made among thesituations that arise; f= P’(A)=c, a

constant, is reported in every instance, regardless of the particulars of the case.

For example, a constant judge in a medical diagnosis situation might report

P'(Hepatitis) = 0.18 for every patient considered, no matter what the patient’s

signs and symptomsare. Onthefaceofit, it seems that any judge “worth his

salt” ought to be able to outperform such a constant judge. Nevertheless, as

described here, several constant judges are commonly used as meaningful

standards:

@ The uniform judge. Suppose an individual believes that he knowssolittle

that he can say nothing defensible about whether target event A will or will

not occur. Then that judge—inthe spirit of the Laplace (1951) decision rule

for conditions of ignorance—might then consider all possibilities equally

likely. When only A and its complement A“ are distinguished, behavinglike

such a “uniform judge” would imply reporting f= P’'(A)=0.5 in every

case. It is easy to show that such a uniform judge would earn a mean

probability score of PS =0.25, regardless of how often the target event

actually occurs. It might seem that the uniform judge is such a modest

performance standard that no one would everfail to achieve it. Not so; in

certain contexts, people commonly fall short of the uniform judge’s

standard (e.g. Staél von Holstein, 1972; Yates, McDaniel, & Brown, 1991;

Yates et al., 1989). In fact, it is of considerable psychological interest how

and why this happens as often asit does.

@ The historical base rate judge. Suppose that over somespecified collection

of past cases, target event A has occurred at a historical base rate of h. For

instances suppose that for each of a given numberof years, stocks of a

certain class have risen in price 35% of the time. Then the pertinent

historical base rate is h = P’(Price increase) = 0.35. Now, suppose that for

a collection of current cases 0.35 is reported for every stock. That is, the

judge indicates P'(Price increase) = h = 0.35 for each new security, regard-

less of the company involved. Then this individual is behaving like a

“historical base rate judge.” The performance level of this particular

constant judge is another standard that might be applied to the assessments

of real, human judges. Such a standard is indeed used in the US National

Weather Service, where it is described as the “climatological” forecaster

(e.g., Murphyet al., 1985).

@ The sample base rate judge. Suppose a judge considers N cases. In the

notation introduced previously, the relative frequency or sample base rate

for the target event in that collection of cases is

d=(1/N)Ld (16.5)

Imagine that there is a judge (a semi-clairvoyant?) who can somehowanti-

cipate the sample base rate and reports f= P’(A) = for each of the N
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cases considered. Such fictional individualis described as a “(sample) base

rate judge.” As can be shown with decompositions of PS described

below, the mean probability score earned by an arbitrary constant judge

who reports f= P'(A)=c for every case is given by

PSconstant = d(1 ~ da) + (c ~~ d)* (16.6)

It is thus apparent that the base rate judge is the best possible constant

judge, one that earns a mean probability score of

PSpase rate — d(1 _ d) (16.7)

16.2.4 The Properness Concept: Expected Compensation for Candor

Wecan easily imagine reasons a judge might withhold his or her true opinion

about the chances of a target event’s occurrence, to hedgein one direction or

the other. For instance, a physician making diagnoses might want to report

probabilities of disease that are somewhat higher than the physician really

believes, feeling that this is in the patient’s best interests (Wallsten, 1981). A

certain class of accuracy scores—which includes the quadratic rule—has a
propertycalled “properness”that in principle should discourage such hedging.

Simply put, the propernessidea is the following(see Yates, 1990, Chapter

8): Suppose a judge is being compensated for accuracy according to score S,

such that high scores are good (e.g. Q=1-— PS). On a given judgment

occasion, the judge has a true opinion /; = P’(A). On the other hand,the

judge might consider reporting any number of judgments /r, all but one of

them different from /7. From the judge’s perspective, the subjective expected

score (SEV) for reporting fr is thus:

SEV(Report fr) = P'(A)Score(When fr is reported and A occurs)

+ P'(A‘)Score(When fp is reported and A* occurs)

In our current notation, we have

SEV(Report fr) =/1S(fr, d= 1)+ (1 —fr)SCfr, d= 0)

Wesay that the scoring rule S is proper (Winkler & Murphy, 1968) or

reproducing (Shuford, Albert, & Massengill, 1966) if SEV is maximized when

Sr=/r. That is, a scoring rule is proper if the judge maximizes his or her

subjective expected score by candidly reporting his or her actual opinion.

Thus, since the quadratic score is proper, this constitutes something of a

“fringe benefit” of using it as a means of compensating judges for their

accuracy.
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16.2.5 Implementation

Have scoring rules like PS been applied as means of compensating judges?
Although not common, applications do exist. For instance, they are not
unusual in experimental situations as a means of encouragingsubjects to take
tasks seriously and to be forthright (e.g., Yates, McDaniel, & Brown, 1991).

US National Weather Service meteorologists make various kinds of
forecasts in probability form, e.g. their precipitation predictions. The
accuracy of these forecasts is indexed by a form of the quadratic score. It is
unclear whether the meteorologists are financially rewarded according to their
individual scores (Murphy & Winkler, 1984). However, the mere fact that their
performance is graded on that basis implies a form of compensation, to the
extent that the forecasters are concerned about how their supervisors and peers
regard their work.

Academic testing is another context in which judges can, in essence, be
compensatedon the quality oftheir assessments as indexed by accuracyscores.
Take, for instance, the kinds of multiple choice tests medical students at the
University of Connecticut have taken sometimes (Rippey & Voytovich, 1983).
For each item in these tests, the student does not state categorically which
alternative answeris correct. Instead, the student indicates a subjective prob-
ability that each option is the right one. The student’s grade for the test is a
function of the logarithmic scores for all the items. The logarithmic scoreis
an accuracy measure in the class of proper scoring rules that includes the
quadratic score (Yates, 1984).

16.2.6 Effectiveness

Are scoring rules effective as a tool for inducing people to produce and report
better judgments? Curiously, despite the fact that the scoring rule idea has
been around for a long time, no one appears to have attempted a definitive

study of the issue. What is required, of course, is a controlled experiment. In
one group subjects would make judgments given the promise of rewardsorat
least feedback accordingto the quality of those judgments as evaluated via the
kinds of accuracy scores we have discussed. Control subjects would be given
no such promise. Several studies have approached this ideal, but have not
quite arrived there.

A study by Fischer (1982) in some respects was perhapsthe closest to having
a suitable design. In that investigation, subjects made probabilistic post-
dictions of other students’ grade point averages. Some subjects were promised
payoffs according to a so-called truncated logarithmic score. Other subjects -
not only were given this promise, but also learned the score they earned on
each trial. Fischer found that the promise of compensation based onscores
had a positive effect on judgmentaccuracy, but that case-by-case scoring rule
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feedback did not. Fischer did not attribute the observed incentive effect to

scoring rules per se, however. Instead, subjects’ response patterns suggested

that the effect was probably due to the fact that the log rule yields very large

negative scores for extreme misjudgments(e.g. reporting= 99% for an event

that does not occur), a property that is not shared by other rules, such as the

quadratic. Another feature of the experiment further limits the conclusionsit

permits: the truncated log score is not proper (Shuford, Albert & Massengill,

1966).

Staél von Holstein’s (1972) study of probabilistic stock market forecasting

cameclose to having a sufficient design, too. A stated major purposeof that

study was to determine whether providing periodic quadratic score feedback

would allow subjects to improve the accuracy of their predictions of stock

price movements. It did not. Several considerations suggest that accepting this

negative result as definitive might be premature. There wasnodistinctcontrol

group as such in the experiment. Instead, given the within-subjects design,

each subject served as his or her own control. The expectation was that, if

feedback wereeffective, then as the experiment proceeded, accuracy should

have improved.It is conceivable that the performanceof a true control group

would havebeen consistently worse than that ofall the subjects, from the very

beginning of the experiment; all groups in the study were promised feedback

from the outset. Another potential problem is that subjects were required to

forecast stock price changes over successive two-week periods. Some finance

experts could contend that such short time horizons make the prediction task

so difficult that realistically no one could be expected to improve.

Echternacht (1972) has reviewed the use of scoring rules in academictesting

situations. He concluded that there is little evidence of their effectiveness.

However, the scoring rules used in academic settings almost always have been

truncated logarithmic rules, which have several problems associated with

them, e.g. that they are not proper.

16.3 OVERALL ACCURACY MEASURE
DECOMPOSITIONS: A PERSPECTIVE

It is possible that scoring rule feedback “works” in the sense that—especially

when tied to compensation—it encourages great effort by the judge. But such

feedback might be too coarse to inform such a motivated individual about

precisely how to improve his or her judgments. This is consistent with the

results of Staél von Holstein’s (1972) stock market forecasting experiment.

Detailed information aboutspecific aspects of judgment performancethat are

particularly good or poor might be required.

More generally, decomposition efforts have been envisioned as a tool for

explaining how and whyjudges achievethe levels of performance indicated by
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measures of the overall accuracy of their assessments. These analyses typically
do not definitively provide detailed explanations directly. Instead, they narrow
the range of possibilities, directing the analyst toward plausible hypotheses
that can be tested more pointedly by other methods, such as experimentation.
Here we describe andillustrate two of the more popular approaches. Other
methodsexist that apply to the same types of judgments as well as others(e.g.
Blattenberger & Lad, 1985; Hsu & Murphy, 1986; Murphy & Winkler, 1992;
Shapiro, 1977; Stewart, 1990). Space limitations preclude discussion of them,
however.

The present analysis differs from most previous ones. Earlier discussions
have been limited mainly to statistical issues. The emphasis here is on the
judgment procedures and other forces that might underlie various statistical
indicators. This is important to both scientific and practical aims. There have
been numerousstudies in which researchers have provided subjects with feed-
back about their performance in the form of the measures identified below.
These efforts have met with only mixed success. There is reason to suspect that
this disappointing record is at least partly due to subjects not knowing
specifically what they can do to improve their performance measures. The
requisite concrete advice is implicit in the conceptual analyses offered here.

16.4 THE MURPHY DECOMPOSITION

16.4.1 The Decomposition

The most frequently used PS decomposition is due to Murphy (1973). That
decomposition can be expressed as follows (Yates, 1990, Chapter 3):

PS =d(1-d)+CI-DI (16.8)

In this equation, note the following:

@ d(1—d) is the variance of the outcome index, Var(d), since d is an
indicator variable.

@ Cl is called the calibration index and is defined by

J ~

CI=(1/N) 4, Ni(fi ~ 43) (16.9)

Here the judge’s probability assessments are restricted (or rounded after the

fact) to J categories. For instance,if the judge reports only deciles, we would
have J= 11, with f; =0%, f2=10%, ... , fi: = 100%. The term N;indicates
that judgment category fj is used that many times, e.g. for each of N>2 = 35
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stocks, an analyst might report a probability of f2 = 10% that the stock will

increase in price, with

J

N= >, Nj.
J=1

The term d@; can be thought of as a conditional base rate or conditional

observed proportion, the proportion of times the target event actually occurs

given that judgment/; is reported. For instance, if the prices really do increase

for 7 of 35 stocks judged to have 10% chances of increasing, then

dj = 7/35 = 20%. A judgeis said to exhibit good calibration to the extent that

that individual’s judgments match the corresponding relative frequencies with

which the target event actually happens. Given its form, C/ clearly measures

the judge’s calibration skill, with small values indicating better calibration.

@ DI is the discrimination index and is defined thus:

J _ —

DI=(1/N) >, Nj(d;- @) (16.10)
j=l

In this equation, all the terms are as described previously. The discrimination

index measures the degree to which the judge’s assessments exhibit the

discrimination or resolution of events. The discrimination concept entails

significant subtleties, so some discussion is in order.

Two kinds of judgment occasions exist, those on which target event A

actually happens and those on which event A fails to happen. Suppose a judge

is capable of placing these two kinds of occasionsinto distinct categories; the

judge never puts into the same class two different occasions, one of which

results in event A’s occurrence, the other of which does not. Then clearly this

judge is capable of perfectly discriminating instances when eventA is destined

to happen from those whenit is not. The discrimination index DJ measures

one’s ability to attain this kind of discriminative categorization.

In the probability judgment situations of interest here, the judge can apply

any one of labels fi, /2, ..., fy to each case that comes along. Suppose that

our perfectly discriminative judge decides—perhaps even arbitrarily—to put

some of thoselabels, say, 0%, 30%, 70%, and 90%, into Group 1. The judge

then forms another, disjoint collection of labels we can call Group 2,

including, say, 10% and 80%. (Note that not all categories must be used.)

Since our judge has perfect discrimination skill, she can attach any of the

labels in Group 1 to instances when she “knows”that event A will occur, and

any label in Group 2 to instances when she realizes that A will not happen.

Wecan showthatthis perfectly discriminative judge’s probability assignments

will attain the best possible value of DJ = Var(d) = d(1 — d@).
At the opposite extreme, the worst possible value of DJ=0 would be

achieved when there is no connection at all between a judge’s tendency to
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select a judgment category and the tendency for the target event to occur or
not occur. For under those conditions, the relative frequency of the target
event’s occurrence when an arbitrary categoryj is used (dj) is the same as
it is when any other category j* is selected (d;*). That is, all conditional
proportions must be identical to one another(i.e., d} =d:=---=dy,) and
hence to the overall base rate of the target event (d).
Note that discrimination performance hasnothing to do with which labels

the judge assigns to event A on particular occasions. All that matters is that
different labels be given when event A is going to occur than whenit is not.
In contrast, calibration, as reflected in CI, essentially reflects a label-selection
activity, the assignment of “appropriate” numerical labels to cases in given
categories.

16.4.1 Contributors

In terms of underlying mechanisms, the Murphy decomposition is most easily
understood with the aid of schematics like that shown in Figure 16.1. At
the highest level of the tree is the overall accuracy construct, as indexed by the
measure PS. That construct is derived from three others, as isolated in the

OverallAccuracy
(PS)

Incidence Calibration Discrimination
(d, Var(d)) (CT) (DI)

LRareness/ Matching Cue
commonness recall selection
(UC) (C) (C)

Bias Cue
factors use

(C/UC) (C)
Cue

quality

(UC)

Cue
access

(UC/C)

Figure 16.1 Schematic representation of overall accuracy in terms of its aspects as
distinguished in the Murphy decomposition of the mean probability score, along with
controllable (C) and uncontrollable (UC) factors that plausibly contribute to those
aspects.
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Murphy decomposition.First is the incidence for the target event, as reflected

in the base rate d or, equivalently, the outcome index variance Var(d). Then

there is the calibration construct measured by the calibration index C/. And,

finally, there is discrimination, evaluated by the discrimination index DI. Each

of these constructs in turn rests on one or more contributing factors. Figure

16.1 identifies a non-exhaustive collection of plausible ones.

Asindicatedin the figure, some contributing factors are controllable by the

judge while others are not. The distinction is useful in evaluating judges.

Suppose that Judges A and tell a prospective consumer that their overall

accuracy scores are the same. The consumer would beinclined to think that

the judges are equally skilled. But suppose that Judge A accumulated his

accuracy record in a context where accuracyis largely dictated by uncontrol-

lable factors. In contrast, Judge B established his credentials under conditions

in whichuncontrollable factors played little part. Then obviously Judge B is

the better judge. The controllable/uncontrollable distinction is pertinent to

improvementefforts, too. In seeking means of enhancing accuracy, we should

only pay attention to those performance dimensionsthat are subject to what

the judge actually does. We nowreview various contributors, according to the

Murphydecomposition elements they affect.

Incidence. The incidence of the target event entails a particular kind of

judgment difficulty. As such, it is, of course, outside the judge’s control.

Specifically, it is the type of difficulty implicit in the target event’s rareness or

commonness, what we mightcall incidence difficulty. An example illustrates

the concept.

Imagine a country that has dry and rainy seasons. In the dry season,it

almost never rains; precipitation is observed on only about 3% of the days

during that period. In contrast, during the rainy season, rain is recorded on

roughly half the days. Many people would saythat, intuitively, it seems quite

easy to predict the weather on any given day during the dry season because rain

virtually never occurs then. If categorical, nonprobabilistic judgments were

required, they would advise, “Just say, ‘No, it’s not going to rain.’” In our

scenario, this would guarantee a 97% hit rate. But such a simple strategy

works poorly during the rainy season, when on any given day oneis just as

likely to see rain as not. The “Norain,” constant prediction policy would yield

a hit rate of only 50%. The probabilistic analog to such a policyis the strategy

of a sample base rate judge, the best possible constant probabilistic judge. As

indicated in Equation (16.7), in the dry season (assuming the current season

is representative) the base rate judge would achieve a mean probability score

Of PSbase rate = (0.30)(0.97) = 0.0291. But in the rainy season, the base

rate judge would earn a much worse PSbase rate = (0.5)(0.5) = 0.25.
Calibration. The calibration construct should be largely though not

completely controllable. As indicated in Figure 16.1, it can be affected by
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detailed recall about the match or mismatch of the judge’s assessments and the
corresponding relative frequencies of the target event’s occurrence. Indeed,
there have been numerous demonstrations that feedback about CI (including
graphical depictionsof it) can be an effective means of improving calibration
(e.g. Benson & Onkal, 1992; Lichtenstein & Fischhoff, 1980; Murphyetal.,
1985). Such feedback can beseen as a kind of structured recall support. “Bias”
is a common and special form of miscalibration which can affect
miscalibration more generally,.as measured by CI. Since bias is moreeasily

understood in the context of the covariance decomposition of PS, the
discussion of it is deferred until that decomposition is introduced below.

Discrimination. In order to exhibit any discrimination beyond a chance
level, the judge must rely on diagnostic information or “cues” presented by the

judgmentsituation. “Diagnostic” means that there is a statistical association

between target event A and thegiven cue, e.g. between a firm’s eventual stock

price change and somecharacteristic of the firm. As suggested in Figure 16.1,
there are at least two controllable contributors to discrimination. Thefirst is
the judge’s selection of cues. Out of the myriad items of information typically

available in a judgmentsituation, the judge must chooseto attend to some and

ignore the rest. To the extent that the selected cues really are diagnostic and

the ignored ones are not, then the chances of good discrimination are

enhanced. These chances will not be realized, though, unless the other

controllable contributor is favorable, that the judge uses the selected cues
appropriately. For instance, the judge should respond sharply to highly

diagnostic cues and moreregressively to weaker cues. Andthereis little reason

to expect that real people will always behave this way (e.g. Ganzach & Krantz,

1990; Kahneman & Tversky, 1973).

Certain uncontrollable discrimination contributors imply another kind of

judgment difficulty (cf. Yaniv, Yates, & Smith, 1991), what we mightcall
cue-based difficulty. Once more, an example highlights the idea. Consider

predicting rain during the rainy season in the country described above. Also

consider predicting whether a head will appear on a given toss of a fair coin.

In both situations, the target event base rate is about 0.5; hence the incidence

difficulty is the same. But most of us would say that predicting coin toss

outcomesis far more difficult, bordering on “impossible.” Why? The differ-
ence lies in the quality of accessible cues. In the case of rain, the appearance

of the sky has someassociation with subsequent precipitation. And as long as

we can look out the window, we can exploit that association. However, in the

coin tossing case, such diagnostic cues either do not exist or are beyond current

powers of discernment. More generally, situations can be expected to differ

substantially in their possession of high-quality, diagnostic cues. Those

situationswill also differ in the access they allow to such cues. Sometimes that

access can be improved(e.g. by the development and deployment of weather

satellites), but sometimes not.
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16.4.2 An Example: Pneumonia Diagnoses

Tape et al. (1991) asked physicians at medical centers in Virginia,Illinois, and

Nebraska to make probabilistic pneumonia diagnoses,i.e P’(Pneumonia), for

all patients with complaints suggesting pneumonia asa possibility. Figure 16.2

shows the results of a Murphy decomposition analysis of those diagnoses.'

The displays in Figure 16.2 are called calibration graphs. Potential judgment

categories (f;) are shown onthe abscissa, and the corresponding proportions

of times the target event actually occurred (d;) appear on the ordinate. For

instance, the Virginia graph shows a point at about (0.65, 0.42), with the

number 9 next to it. This indicates that there were 9 instances when the

Virginia physicians indicated that patients had 65% chances of pneumonia and

that about 42% of those patients ultimately were confirmed to have that

disease. The calibration graphs shownin Figure 16.2 are enhancedin that the

areas of the points are proportionate to the associated frequencies.” This

allows the viewer to immediately and perceptually appreciate the significance

of those points; recall (Equations (16.9) and (16.10)) that the calibration and

discrimination measures CJ and DI essentially weight points by the numbers

of cases they entail (N;). Also observe that each graph contains a horizontal

dotted line at an elevation corresponding to the sample base rate d. Pertinent

decomposition statistics are shown in the body of each graph as well.

Consider the Virginia graph. There wesee that the overall accuracy of the

physicians’ judgments, as indexed by PS, was superior to that of any con-

stant judge, since it surpassed that of the base rate judge. The same wastrue

for the Nebraska diagnoses, but not for the onesin Illinois. In other words,

in terms of PS, the Illinois physicians would have done better had they

reported P’(Pneumonia) = base rate = 11% as a diagnosis for each of their

patients. It is significant that the base rates for pneumonia were radically

different in the three locations, implying that in the sense of incidence

difficulty, the diagnostic task was far harder in Nebraska than in either

Virginia or Illinois. Nevertheless the Nebraska diagnoses were muchbetter.

The rest of the analysis offers at least some clues about how and whythis

happened.

The calibration indexes, CJ, indicate that, although the calibration

performance levels of the Virginia and Illinois physicians were comparable,

that of the Nebraska physicians was markedly superior. This is apparent

graphically, too. Acalibration graph indicates good calibration to the degree

that the points in the graphlie close to the 1:1 diagonal. The fit is distinctly

better in the Nebraska graph.

Recall that large values ofthe discrimination index D/ imply gooddiscrimi-

nation. We see that, as in the case of calibration, there were substantial

location differences in discrimination, although the pattern of strengths and

weaknesses was somewhat different than was observed for calibration. The
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Figure 16.2 Calibration graphs of probabilistic diagnoses of pneumonia in (a)

Virginia, (b) Illinois, and (c) Nebraska, as reported by Tapeet al. (1991).

Illinois DJ measure wasless than a quarter that of the Virginia value, and more

than 6 times smaller than the Nebraskastatistic. Pictorially, good discrimi-

nation is evidenced by points that are vertically distant from the horizontal d

line. Once again, the impressions created by the graphs are consistent with the

numerical measures.

Since the best possible value of the discrimination index is Var(d) = d(1-— a),

this implies different bounds on D/, depending onthe baserate. A particular

DI score, say, 0.12, means something quite different when the baserateis 0.45

than whenit is 0.85. In the formercase, the observed value of DJ is only about

half as large as it could possibly be, while in the latter, it has nearly reached

its limit. Such observations led Sharp, Cutler, and Penrod (1988) to

recommendreporting an 7” statistic, which Yaniv et al. (1991) describe as the

normalized discrimination index (NDI), defined as follows:

NDIDi] (d(1 - d)] (16.11)

In essence, NDI measuresrelative discrimination, indicating how goodis the

obtained degree of discrimination in comparison to the best that is possible
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given the base rate. Yaniv et al. (1991) showed that ND/Jis a biased estimator
of the corresponding population statistic. They also demonstrated that a
particular transformation of NDI, the adjusted normalized discrimination
index, ANDI, is unbiased.

Across-location comparisons of NDI and ANDI suggest less dramatic
location differences in discrimination than did the DI comparisons. This is a
goodillustration of the effects of base rate and sample size on discrimination
measures. Nevertheless, the discrimination differences are still quite remark-
able: The Virginia and Nebraska physicians were able to get more than
halfway to the maximum possible discrimination, while the Illinois physicians
failed to reach even a quarter. The R? statistics shownin the calibration graphs
implicate an intriguing partial answer to the mystery posed bythesevariations.

Before makinga diagnosis for a given patient, each physician who parti-
cipated in the study was required to note and record a standardset of facts
about each patient, including demographic features as well as various medical
Signs and symptoms that might be helpful in the diagnosis, e.g. gender,
wheezing history, and bronchial breath sounds. Tapeet al. (1991) constructed
optimal statistical models for predicting pneumonia from thesevariouspatient
characteristics in each location. The values of R2Z shown in Figure 16.2
indicate the proportions of variance in patients’ actual medical states predict-
able from the available information via those models. As wesee, the pro-
portions are surprisingly different from one location to another. In particular,
pneumoniain Illinois was far less predictable than in either other location,
but especially in comparison to Nebraska. This seems to be a particularly
compelling demonstration of the notion of cue-based judgment difficulty.
Apparently, the available cues for diagnosing pneumonia are simply less valid
in Illinois than in Virginia and Nebraska. Whythis should be so awaits further
study.

16.4.3. Another Example: Intensive Care Prognoses

The physicians who participated in a study by McClish and Powell (1989)
made a probabilistic prognostic judgment for each patient admitted to their
intensive care unit. Specifically, the attending physician provided a response
coded as P’(Die), where “Die” meant that the patient would never bedis-
charged from the hospital alive. McClish and Powell constructed a logistic
regression model that provided such judgments, too. The primary variable in
this model is an APACHEII score. The APACHE(Acute Physiology Score
and Chronic Health Evaluation) system is a commonly used method for
evaluating the condition of intensive care patients. APACHEscores can be
calculated easily by nursing staff through the completion of a simple scoring
sheet based on readily available patient characteristics, such as heart rate,

white blood count, and hematocrit level. McClish and Powell also formed a
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composite statistical model that combined the judgments of the physicians and

the APACHEII model in an optimal way.

Table 16.1 shows the results of Murphy decomposition analyses derived

from the statistics reported by McClish and Powell. Several results are note-

worthy. Observe that all the “real judges” outperformed the best constant

judge, the judge who would alwaysreport the baserate, i.e. P’(Die) = 0.25 for

every patient. Table 16.1 also indicates the necessary fact that the entire value

Of PSbase rate is due to the target event incidence, i.e. that 25% of the

patients died in the hospital. Further, since all the judges considered the same

cases, the incidence portion of PS had to be the same for each of them. We

are also reminded that the base rate judge has perfect calibration but nil

discrimination.

Note that, in terms of overall accuracy, the physicians outperformed the

APACHEII model. At first glance, this seems inconsistent with the apparent

consensusof the literature that actuarial models almost always surpass human

judges (e.g. Dawes, Faust, & Meehl, 1989). However, the decomposition

analysis reveals how this superiority was achieved in this instance and high-

lights an important caveat that is often neglected when wereadtheliterature

on model vs. human comparisons.

Table 16.1 shows that the calibration of the APACHEII model was far

superior to that of the physicians.? But the physicians had an advantagein dis-

crimination. The calibration advantage of the modelis, in fact, consistent with

previousindications that the strong suit of models is their ability to optimally

extract the statistical import of available evidence (the matchingrecall require-

ment for good calibration mentioned in Figure 16.1) and to do so reliably. On

the other hand, the physicians’ discrimination advantage most plausibly

Table 16.1 Murphy decomposition analysis statistics for intensive care unit mortality

prognostic judgements [P'(Die)] reported by McClish and Powell (1989)

Overall
Judgment accuracy: Incidence: Calibration: Discrimination:
source PS Var(d) CI DI

Base rate 0.1875 0.1875 0.0000 0.0000

judge
(d = 0.25)

Physicians 0.1240 0.1875 0.0210 0.0845

APACHEII 0.1330 0.1875 0.0030 0.0575
model

Composite 0.1015 0.1875 0.0005 . 0.0865
model
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resulted from the physicians’ access to more information than the APACHE
system; the physicians were free to use any information sources they liked

whereas the APACHEprotocolis rigid and limited in scope. In most model
vs. human comparisons,statistical and human judgeshaverelied on identical
information.

The final significant conclusion brought out by Table 16.1 concerns the
composite model. Wesee that it did better than both the physicians and the
APACHE model. As we would hope, it seemed to take the best of each,
resulting in both better calibration and better discrimination than either.

16.5 THE COVARIANCE DECOMPOSITION

16.5.1 The Decomposition

The covariance decomposition of PS can be described asfollows (Yates, 1982;
1988; Yates & Curley, 1985):

PS = Var(d) + MinVar(/) + Scat + Bias*—2[Slope][Var(d)] (16.12)

Wehavealready seen that Var(d) =d(1 —d), the first term in the Murphy

decomposition. Thus, the covariance decomposition can be viewed as
providing an alternative partition of the calibration and discrimination por-
tions of the Murphy decomposition. The new terms in Equation (16.12) are
defined and interpreted as follows:

@ Bias =f—d, where f/ is the overall mean judgmentfor the target event A.
So the biasstatistic reflects a gross form of calibration, the tendency for the
judgeto effectively over- or underestimate the incidence of the target event.
Ideally, we should observe Bias = 0.

@ Slope =/i — fo, where f; is the mean judgment for the target event A
reported on occasions whenit actually happens, and /p is the corresponding
average for those occasions when that event does not occur. In the best of

circumstances, Slope=1, for in that instance the judge always reports
f= P'(A)=1 when event A occurs (d=1) and f=0 when it does not
(d=0).

@ MinVar(/) = Slope*Var(d). This is the variability in the judge’s assess-
ments thatis statistically required by the given value of Slope and the given
base rate.

@ Scat = [MiVar(fi) + NoVar(/o)]/[Ni + No]. This “scatter” statistic reflects
the variability in judgments that is not required by the given slope and base
rate. As such, it indexes the amount of variability in judgment that is
unrelated to the event in question. It is essentially “noise” as far as the
judge’s aims are concerned.
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16.5.2 Contributors

The schematic in Figure 16.3 offers a useful means of understanding the

covariance decomposition. As in the schematic for the Murphy decomposition

(Figure 16.1), the second level of the tree describes the accuracy elementsthat

yield overall accuracy. At the bottom level are controllable and uncontrollable

factors that in turn contribute to each of these elements. Since we have already

discussed incidence, we can proceed to the other constructs. At the outset, it

is worth acknowledging that the covariance decomposition partitions overall

accuracy more finely than does the Murphy decomposition. Thus, as we might

expect, the contributing factors tend to be more molecular, too.

Bias. One controllable bias contributor is the extent to which the judge can

recall the correspondence between the typical value of his or her judgments

Overall Accuracy

(PS)

Incidence Bias Separation Noise

(d, Var(d)) (f-d) (fi — fo) (Scat)

|Rareness/ Gross Discrimination Invalid cue
commonness matching factors reliance
(UC) recall (C) (UC/C) (C)

Base rate — Conditional Consistency
awareness matching (C)
(C) recall (C)

Cue Valid
access cue
balance responsiveness

(UC/C) (C)

Cue
selection
balance

(C)

Report
incentives

(C)

Figure 16.3. Schematic representation of overall accuracy in terms of its aspects as
distinguished in the covariance decomposition of the mean probability score, along
with controllable (C) and uncontrollable (UC) factors that plausibly contribute to those
aspects.
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and the incidence of the target event. This gross matching recall is a coarser

version of the kind of recall that supports calibration more generally.

A closely related controllable bias contributor is awareness of the pertinent

historical base rate. Depending on the nature of the underlying judgment

process, if the judge believes that rate is very different from whatit actually

is, this almost guarantees significant bias. For instance, imagine a securities
analyst who has been working in one industry and then movesto another. She

might simply assumethat the baserate for price increases in her new industry

is the same as in her old one whenin fact it ismuch lower. Then we should

expect positive biases in her predictions.

We can imagine situations in which the cues available to a judge are
directionally unbalanced, inappropriately favoring either event A or its

complement. For example, it seems plausible that the tendency for sports fans

to over predict the success oftheir local teams is partly due to such access

imbalances. Because readerslike them, local newspapers tend to contain more

stories applauding and elaborating on the successes of the local team than

similar stories about the team’s opponents.
We might expect similar imbalances in how judgesselect the cues they use.

The confirmation bias hypothesis (cf. Klayman & Ha, 1987) suggests as much.

The claim is that, for various reasons, weare inclined to seek out information

sources we have reason to expect will confirm our initial hypotheses about

propositions.

The final controllable bias contributor we consider consists of incentives to

report assessmentseither higher or lower than the judge believes to be the

correct ones. Such incentives were discussed in our previous treatment of

scoring rule properness.

Separation. The term “separation” implicates the fact that the judge

produces twosets of judgments f= P’(A), one for instances when thetarget

event A occurs, the other for when it does not. Under the best of circum-

stances, these distributions would be maximally different or “separate” from

each other. In particular, the difference in the conditional means of those

distributions, Slope = f; — fo, would be 1. Separation represents a blend of

certain aspects of the discrimination and calibration constructs. Thus, in

Figure 16.3, one class of separation contributors consists of the “discrimi-

nation factors” discussed in the context of the Murphy decomposition (Figure

16.1). The calibration aspect of separation should be especially sensitive to

conditional matching recall, whereby the judge attempts to recollect average

judgments conditional on the target event’s occurrence and nonoccurrence.

Finally, separation should be enhanced to the extent that the judge responds

to cues In an appropriately regressive manner,i.e. in relation to their validity.

Noise. Two major factors can be expected to affect the noisiness of the

judge’s assessments. First, scatter should increase when the judgeselects and

uses cues that are invalid rather than valid. That is because those cues will
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induce the judge to vary judgments independently of the target event’s

occurrence. Judgments should also becomenoisier to the degree that the judge

executes his or her judgment procedureinconsistently, responding to the same

cues in different ways on different occasions. Such inconsistency appearsto be

the primary reason human judges are often outperformed by models of

various kinds (Daweset al., 1989).

16.5.3 An Example: Pneumonia Diagnoses Revisited

The previously discussed pneumonia diagnoses by the physicians studied by

Tape et al. (1991) were analyzed using covariance decomposition techniques.

Figure 16.4 shows the covariance graphs entailed in the analysis. Observe that

such graphsconsist mainly of two histograms of judgments f= P'(A), one for

the N; instances when thetarget event occurs (on the right), another forthe

No cases when it does not (on the left). (The scale is indicated by the
frequencies in parentheses on the longest bars.) The abscissa of a covariance
graph has a dual interpretation. The endpoints represent the alternative values

of the outcome index d, while the intermediate values mark off potential

locations of the overall base rate, the mean of the outcome index. Thus, the

line connecting the conditional means fi and fo is a regression line, with slope

Ai-fo.
The overall accuracy measures in the study are necessarily the same as

before. So we begin with bias, indexed byf— d. Bias is readily seen pictorially

in a covariance graph. The vertical and horizontal dotted lines identify the

base rate d and overall mean judgment f, respectively. When judgments are

unbiased, the intersection of these lines lies on the 1:1 diagonal. The
magnitude of “miscalibration in the large” is thus indicated by the distance of
that intersection from the diagonal. We immediately see that while the
physicians in Virginia and Illinois grossly overpredicted pneumonia, by

comparison, the bias of the Nebraska physicians was very slight. Factors

related to base rate awareness are plausibly a contributor to the observedbias

differences. Note that the base rates for pneumonia differed markedly across
the locations, by about 20 percentage points. To some extent the physicians’
judgments weresensitive to these differences. But the variability in average
judgments seemed to lag.It is possible that the physicians in all the locations
started with the same expectation of pneumonia incidence rates. However,

consistent with other instances of anchoring and insufficient adjustment
(Tversky & Kahneman, 1974), perhapsthey did not alter those expectations to
the degree they should have in response to local conditions.

Bias is often the major contributor to more general miscalibration, as

revealed in Murphy decomposition analyses. That seems to have been the case

here. Although bias is more clearly evident in covariance graphs, it is also
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Figure 16.4 Covariance graphs of probabilistic diagnoses of pneumonia in (a)Virginia, (b) Illinois, and (c) Nebraska, as reported by Tapeet al. (1991)

discernible in calibration graphs as a horizontal displacement of the plot ofpoints to the left or right of the diagonal (see Figure 16.2).
Separation, as measured by the slope statistics (and as evident by the slopesof the regression lines), was comparable for the Virginia and Nebraska

diagnoses, although the opinions from Nebraska were slightly better. But
separation was markedly worseforthe Illinois assessments. As suggested by
Figure 16.3, there are several potential reasons for the differences. However,the most plausible is that it is due to the cue-based difficulty of diagnosing
pneumoniaatthe Illinois site.
As in most comparisons, noise was worst (i.e. greatest) in Illinois and bestin Nebraska. Noise, as measured by thescatter statistic, can be apprehended

visually by the dispersion of the conditional judgmentdistributions on bothsides of a covariance graph. (TheScatstatistic is simply a weighted mean ofthe conditional variances.) The more dispersed the distributions, the greaterthe noise. The previous discussion Suggested two reasonable potential expla-
nations for the noise differences. The first is that, relatively speaking, the
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Illinois physicians might have been especially inconsistent in applying their

judgment policies. Analyses by Tape et al. (1991) yielded some evidence

consonant with this reliability hypothesis. The other possibility is that the

Illinois physicians relied on cues that were only weakly associated with

pneumonia. Additional analyses by Tape et al. suggested that the judgment

policy used bytheIllinois physicians wasvery close to the best that one could

use under the circumstances. But recall that the circumstances were actually

quitedifferent in thethree locations. Standard predictors of pneumonia were

simply not very goodin an absolute sense in Illinois. So reliance on those cues

necessarily would imply greater scatter, as was in fact observed.

16.5.4 A Final Example: Cross-National Variations

Consider the following question: Which country has greater oil reserves: (a)

Venezuela or (b) Nigeria? After picking (a) or (b), you are to report a prob-

ability between 50% and 100%that your selected alternative is in fact correct.

General knowledge questions like this have been the focus of the most

commonuse of PS decomposition analyses. Typically, emphasis has been on

whatis called the bias statistic in covariance decomposition analysis. Imagine

a subject respondingto a large numberof items in the above format. The mean

judgment f is usually taken as an index of the respondent’s confidence. This

seems appropriate since the target event in this instanceis actually “I chose the

correct alternative.” The base rate d is the proportion of itemsthe subject in

fact answered correctly. Hence, Bias = f-—d is often considered a measure of

over- or underconfidence. For some time, it has been known that over-

confidence in such general knowledge tasks is widespread (Lichtenstein,

Fischhoff, & Phillips, 1982). The origins and limits of the phenomenonare the

subject of intense study today (€.g. Gigerenzer, Hoffrage, & Kleinbdlting,

1991).

In the late 1970s, in a series of studies, a group led by Wright and Phillips

documented reliable cross-national variation in general knowledge over-

confidence (e.g. Wright et al., 1978). They repeatedly found what most people

consider to be a very surprising result, that overconfidence was more

pronounced among various groups of southeast Asian subjects than among

British subjects. Yates et al. (1989) tested the generality of those results to

other Western and Asian countries and to other aspects of accuracy besides

bias or overconfidence. Table 16.2 shows the results of a covariance decom-

position analysis of judgments made by subjects in mainland China and the

United States. It provides a goodillustration of the technique.

The bias column showsthat the previous differences did indeed generalize,

with the overconfidence measure for the Chinese subjects being almost twice

the size of that for the American subjects. But the story was actually much

more interesting. Observe, forinstance, that overall accuracy was essentially
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Table 16.2 Medianvalues of covariance decomposition statistics for Chinese and

American subjects’ general knowledge question judgments [P’(Correct)] reported by

Yates et al. (1989).

  

Overall
Country accuracy: Incidence: Bias: Separation: Noise:

Ps d f-d fi -Sfo scat

China 0.2214 0.690 0.134 0.117 0.0323

United 0.2121 0.655 0.072 0.089 0.0252

States

Signif. ns ns <0.005 <0.03 <0.001

level

 

identical for the groups. Also note that the Chinese judgments were signi-

ficantly noisier than the American assessments. Given the compensatory

character of the covariance decomposition, the pattern of comparisons among

PS, Bias, and Scat necessarily required that therewas some accuracy dimen-

sion on which the Chinese subjects excelled. As we see, it was separation, as

indexed by Slope = fi —/fo.
Whydothere exist such cross-national variations in probability judgment

accuracy dimensions? This, too, is the subject of current study. Evidence is

accumulating that the overconfidence difference is not mediated by affective

processes, e.g. that Asian subjects have even moreinflated opinions of their

personalabilities than do Western subjects (e.g., Yates et al., 1991). It appears

that, instead, such differences implicate fundamental differences in how people

in different cultures approach judgment tasks cognitively (Yates, Lee, &

Shinotsuka, 1992).
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(2) There exist computer programsthat construct calibration graphs like these, as
well as covariance graphs. One is Probability Analyzer, available through the
University of Michigan’s Judgment and Decision Laboratory and Information
Technology Division.

(3) Asis typical in medicine, McClish and Powell also performed an ROC analysis,
the major products of which are measuresof discrimination, such as the area underthe
ROCcurve. The discrimination index D/ provides an alternative to such measures and
appears to be consistent with them generally (e.g. Yates et al., 1990).
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Chapter 17

Discrete Subjective Probabilities
and Decision Analysis:

Elicitation, Calibration and

Combination

William R. Ferrell
The University of Arizona

17.1 INTRODUCTION

Subjective probability has found practical applications in industry for control,

optimization and scheduling, in medicine for diagnosis and prediction, in

government for assessing and communicating risks, and in decision analysis

generally for evaluation andselection of strategies, alternatives and projects.

Moreover, subjective probability is finding its way increasingly into the day-

to-day routine of business, management and engineering through widely

marketed software for decision trees and influence diagrams, Monte Carlo

simulation with spreadsheets, and multiattribute utility analysis, all of which

depend on probability judgments. This chapter focuses on several practical

issues in subjective probability for discrete events from the standpoint of

decision analysis. Decision analysis sets the standards for the use of subjective

probability and points the way for other applications. It has become not only

a technicalfield with different “schools” and exponents, but a small industry.

Assuchit has a high stakein the success of subjective probability methods and

Subjective Probability. Edited by G. Wright and P. Ayton.
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a high commitmentto ensuringtheir reliability and validity. Of course, it also
has a high stake in fostering and maintaining confidence in its product and
methods. Hence, it should be madeclear at the outset that the authoris not
a decision analyst and has nostake, either way.
The objective in this chapter is to examine elicitation, calibration and

combination of discrete subjective probabilities in the light of a model that
explains and brings order to a considerable amount of confusing experimental
data. Calibration, the extent to which the observed proportions of events that
occur agree with the assigned probability values, directly affects the quality of
decision analysis and is the central issue. Elicitation, the process by which
judgments are obtained, and combination, the process by which probabilities
of the same event from different judges are aggregated, are intimately related
to calibration and are considered from that standpoint. Although extremely
importantin decision analysis, probabilities for continuous quantities will not
be addressed because muchless is known aboutsubjective probability density
functions and because models explaining their calibration properties are less
well developed (Curtis, Ferrell & Solomon, 1985). First, the general nature of
decision analysis will be outlined and then subjective probability elicitation,
calibration and combination will be considered in turn.

17.2, DECISION ANALYSIS AND SUBJECTIVE
PROBABILITY

17.2.1 Structure of Decision Analysis

“Decision making” in Ronald Howard’sclassic definition, “is what you do
when you don’t know what to do” (Howard, 1980). Decision analysis (a term
coined by Howard) applies to decision making (1) the formal tools of decision
theory, probability theory, and mathematical modelling, (2) the accumulated
researchfindingsin the area of behavioral judgment and decision-making, and
(3) the skilled judgment of analysts and of subject matter experts.It is costly
in time and resources, so it is applied mainly to decision situations that are
both important and complex. Keeney (1982) lists twelve typical sources of
complexity:

(1) Multiple objectives, not all of which can be achieved
(2) Difficulty of identifying good alternatives
(3) The importance of intangible factors such as “morale” or “goodwill”
(4) Long time horizons with effects extending far into the future
(5) Many groups being affected and concerns for equity
(6) Risk and uncertainty from manysources including the actions of others,

changesin priorities over time and lack ofdata or inherent unpredictability
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(7) Risks to life and limb and other potentially dire consequences

(8) Need for expert knowledge from different disciplines

(9) Multiple decision makers and stakeholders

(10) Significant value trade-offs

(11) Attitudes toward risk taking must be considered

(12) Decisions being sequential, earlier ones conditioning those that follow

To deal with these complexities, decision analysis takes as its scope not just

the comparative evaluation of decision alternatives, but the entire process

leading upto it of structuring the problem, generating alternatives, modeling

their probable impact, and assessing the preferences of the decision-makers.

The steps are shown in Figure 17.1 along with the complexities that are

addressed at each step. The objective of the analysis is not to select an

optimum alternative which must be chosen, but to provide insight about the

problem and to promotecreativity in dealing with it and commitmentto the

alternative finally selected (Keeney, 1982).

17.2.2 Subjective Probabilities in Decision Analysis

Subjective probability can enter at any stage of the decision analysis process,

implicitly or explicitly as a way of dealing with uncertainty. In generatingalter-

natives, candidates may be rejected or accepted for further analysis on the

basis of the subjective probability of instrumental efficacy or of side effects.

Parameters of the models linking alternatives to consequences, such as disease

detection probabilities, may be judged quantities for lack of measured values,

and the determination of preferences may involve subjective probabilities

when utility is measured or attribute weights determined using lotteries.

Subjective probabilities enter most explicitly, however, as the means of

quantifying the uncertainties in the models that relate the alternatives to

possible consequences. Quantification enables the computation of a prob-

ability distribution over those consequences for each alternative. In the

evaluation stage, the alternatives are usually compared on the basis of

expected utility. A weighted average of the utilities of the possible outcomes

of each alternative is computed, using the outcome probabilities as weights,

to obtain a single figure of merit for each alternative. Other criteria, such as

the utility of the worst possible outcome, may be considered, but among

feasible alternatives, expected utility is by far the most widely used basis for

over-all comparison (von Winterfeldt & Edwards, 1986).

17.2.3 Quality of Decision Analysis

Decision analysis is not always highly dependent on probabilities, other

aspects of the problem being morecritical. But, in many cases subjective
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probability judgments and their quality are extremely important. First, one

can ask about the quality of decision analysis itself. Is it a reliable, valid, and

effective approach to decision-making? Unfortunately, this question is not

easily answered. Decisions with the complexity of those that merit the cost of

decision analysis are usually quite different from each other and are seldom

repetitive, preventing direct comparison of outcomes when decision analysis

is used with outcomes when it is not. One might still expect that, on the

whole, decisions aided by decision analysis have better results than those

that are not thus aided. Although a generous sample of decision analyses

havebeen reported in the literature (e.g. Keeney, 1982), they have not been

reported with the detail, the temporal perspective, or the comparative data

from decisions taken without it that would allow evaluation based on

results.

The only alternative is to rely on the quality of the process by which decision

analysis is carried out, under the assumption that, if the procedure is sound,

one can have confidence thatit will be conducive to the best decision given the

resources devoted to it. Howard has suggested a format for appraisal of

decision quality that explicitly considers the quality and completeness of

elements of the successive steps represented in Figure 17.1 (Howard, 1988).

Procedural quality depends upon the process being comprehensive, having a

sound theoretical basis and being carefully and systematically applied. In

general, decision analysis aims to be comprehensive, to addressall aspects of

the decision problem to the extent that they are relevant to choice. Its basic

principles, as normative theory, are exceptionally convincing (Keeney, 1982;

Howard, 1983) and rarely subject to serious attack, although there are signi-

ficant differences in style and emphasis among practitioners (Phillips, 1989).

This is not to say that all the procedures used in analyzing decisions are

theoretically sound. The widely applied “analytical hierarchy process”, for

example, is on shaky ground (Dyer, 1990). Finally, although the care and

attention with which the techniquesare used differ according to the individual

practitioners, the application standards set by the principal decision analysis

groupsare strikingly high.

This same reliance on the procedural guarantee of quality carries over to |

subjective probability within decision analysis. Concerning the theoretical

basis, probability, as a mathematical construct, is well grounded, but thereis

considerable debate about the philosophical and psychological status of

subjective probability, as is evident throughout this volume. Asa practical

matter, however, its use is not in doubt. Scarcely anyone wouldrejectit and

forego probabilistic modeling if no other source of information about

uncertainty were available. Nonetheless, because of its slipperiness there

should bean especially strong emphasis in decision analysis on the careful and

systematic application of a comprehensive subjective probability elicitation

process.
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17.3. SUBJECTIVE PROBABILITY ELICITATION

Decision analysis requires a model relating the choiceof an alternativeto its

relevant consequences. Almost invariably there is uncertainty about these, and

the usual method of dealing with uncertainty is for the model to provide a
probability distribution over the possible consequences for each alternative.
The model maybe highly aggregated, perhapsjust the probability distribution

itself or it may be highly disaggregated, with the relevant probabilities

computed according to an elaborate physical or logical modelof the situation.

Although only the final distribution over the outcomes is important for the

ultimate comparison of alternatives on the basis of expected utility, a model

has the important objective of relating the probabilities that are needed for the

distribution to ones that can be obtained with accuracy and at low cost, and

of enabling computation of such useful quantities as the value of greater

accuracy or of more information.

17.3.1 Steps in Elicitation

The usual practice for obtaining the subjective probabilities needed for the

model is for a decision analyst, a person knowledgeable about the tools and

practices of decision analysis, to interview the client or an expert, a person

with substantive knowledge about the events whose uncertainty is to be
assessed. The analyst applies knowledge of probability theory, of modeling,
and of behavioral judgment to attempt to ensure that the encoding of the
uncertainty into subjective probability is free of bias, consistent, and valid.
The procedure recommended by the decision analysis group at Stanford

Research Institute (Staél von Holstein & Matheson, 1979; Merkhofer, 1987)

has five stages: (1) motivating, informing the expert and assessing the expert’s
motivation, (2) structuring, defining the events to be encoded (3) conditioning,
making the expert aware of sources of bias, (4) encoding, obtaining the
numerical judgments, and (5) verifying. Much of the following summary

description is drawn from Merkhofer (1987), von Winterfeldt & Edwards
(1986) and Spetzler & Staél von Holstein (1975).

(1) In motivating the expert properly, the decision analyst explains the

decision model, the elicitation process, the importance of the probabilities to
be elicited, and how they will be used in the analysis. The analyst also tries to

determine, through discussion, whether there may be potential bias due to the

expert’s relationship to the problem. Several types of bias are possible. If the

expert or client is in a position to affect the uncertain events, there may be a
bias toward the outcomesthat are intended to be produced. If the occurrence
of an event is a goal of the expert, optimism can be expected. If the expert
thinks that expertise entails being highly confident about predictions, then too
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little uncertainty about the events can be expected. In addition, the analyst

should attempt to determine the extent to which the expert will benefit

personally from the events in question or fromthe outcomeofthe analysis.

Bringing such factors to light may be sufficient, or it may be possible to

restructure the model so that the relation of the events being assessed to the

outcomes in which the expert has a personal stake are not apparent.

(2) Structuring refers to defining the specific events being considered and to

the way in which the expert thinks about them,the cognitive structure in which

information about them is stored. The events mustbe so clearly defined that

there would be no ambiguity at all about whether or not they have occurred

and they must be ones for which the expert’s knowledge is adequate and in an

appropriate form. In addition, they should also be ones that are minimally

susceptible to cognitive biases. The event of “installation of the system within

a month”will not do, a specific starting state and ending state and a specified

number of working days is necessary to avoid any misunderstanding or

miscommunication. The analyst must consider whether the model needs to be

modified to accommodate the expert’s knowledge. It might be more accurate

to ask for probabilities associated with existing systems the expert is familiar

with and use the model to extrapolate to a newtype of system. The model

may also need to be disaggregated further to minimize various biases

associated with judgment under uncertainty. For example, the probability of

the system installation taking less than a certain time might require the occur-

rence of a sequence of several independent events, a combination that, by

being a causal scenario, may be judged more probable thanit 1s in fact. Such

a bias may be avoided if the probabilities of the events can be assessed

separately and combined using probability theory. When the events to be

assessed have been selected andare well specified, the analyst and expert need

to be clear about the assumptions the expert is making when considering them.

The expert may implicitly ignore some conditioning events, e.g. a labor strike

or bad weather. If circumstances suchasthesearesignificant, it may be helpful

to make assessments for each such scenario separately.

(3) In conditioning the judgments, the analyst attempts to stimulate the

expert’s awareness of all relevant information and to draw the expert’s

attention to possible problems in using it. The literature on subjective prob-

ability of the past 20 years; is filled with examples of bias and error in

subjective judgments when compared with normative standards (Kahneman,

Slovic, & Tversky, 1982). Although the literature itself may be biased toward

calling attention to bias (Christensen-Szalanski & Beach, 1984), it is prudent

to make the expert aware of the possibilities for it and of the ways it can come

about. There is, as yet, no clear understanding of how instruction and

guidance,i.e. stimulating awareness and giving advice, can be usedto reduce

bias, but there is a fair amount of evidence that establishing appropriate

expectations and providing relevant information can have a beneficial, though
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often insufficient, effect (Fischhoff, 1982a; Koriat, Lichtenstein, & Fischhoff,

1980; Kahneman & Tversky, 1979). The analyst tries to get the expert to

become awareof all the kinds of information that bear upon the judgments,

and throughthis discussion can assess whatsorts of bias are especially likely.

The analyst can then point out the bias and illustrate how it can come about.
Typical biases would be neglect of base rate or distributional information in
favour of case-specific evidence (Bar-Hillel, 1980; Kahneman & Tversky,

1973), overconfidence (Cooper, Woo, & Dunkelberg, 1988), over-reliance on

recent or vivid instances or information (Tversky & Kahneman, 1973), the

inappropriate application of judgment heuristics (Tversky & Kahneman,
1974), etc. Sometimesexercises or demonstrations, in which the expert makes

judgments about things that are known andis later scored, are used to
emphasize the possibility for bias. In a few cases, where there is sufficient

information, it may be possible to adjust the expert’s judgments to allow for

bias, with the expert’s understanding and concurrence (Merkhofer, 1987).

(4) Encoding is giving numerical expression to the expert’s considered

opinions. The most obvious source of bias in this for probabilities of discrete
events is the type of response requested of the expert. Someone familiar with

horse racing or gambling may feel more comfortable expressing uncertainty in

odds, the ratio of the probability of the event to the probability of its comple-

ment, or a technically trained person may feel more comfortable with the

probability scale. In the event that very large or small probabilities are

involved, log-odds or log-probability scales have been found to reduce the
rather commontendency to hedge extreme probabilities (Phillips & Edwards,
1966; Goodman, 1972). For those who to not feel comfortable using either

probability or odds, the analyst can use a standard event for comparison,

asking whether the expert would rather bet on the standard event or on the

event in question to win a prize. When the probability of the standard event

has beenadjusted so that the expert is indifferent, that probability is taken as

the subjective probability of the event. A wheel that can be spun andthat has

an adjustable segment is sometimes used. The nominal probability that the
wheel will stop spinning with the segment opposite a fixed pointer is the

relative size of the segment. However, since the relative size of the segmentis

so easily judged visually, this method may, in effect, be no different from

requesting a numerical estimate (von Winterfeldt & Edwards, 1986). There are

other encoding methodsthat involve inferring subjective probability from

amounts bet. They require knowing the expert’s utility for those amounts, and

if a sure thing is compared with a gamble, they involve the expert’s attitude

toward risk. These restrictions may not matter; for small, hypothetical

amounts, one can suppose utility linear with amount and a risk neutral

attitude. An important use of such methodscan be to test for consistency. In

their survey of encoding, Walsten & Budescu (1983) stated, “The interesting

conclusion emerges from the literature that high agreement exists among
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various encoding methods, and that generally none conformsto the rules of

additive probability theory” (page 167).

(5) Verifying is the process whereby the analyst attempts to ensure that the

expert has given his or her true opinion and that these opinions are coherent,

i.e., consistent with probability theory. This is done by such techniques as

reformulating questions in logically equivalent ways to see if the results are

consistent and by asking questions about events whoseprobabilities can be

inferred from previous answers. Almost invariably there are inconsistencies,

and these are broughtto the attention of the expert and resolved by discussion

andreconsideration. The question of whether this enforced coherencedistorts

experts’ judgments has been asked(Walsten & Budescu, 1983) but not studied.

Howeverit is essential that there be coherence amongthe probabilities in the

decision model.

17.3.2 Improvement of the Elicitation Process

The elicitation process described above relies largely on ad hoc efforts to

forestall biases that have been found empirically. The processis well conceived

and informedby practice, but it is not based on a clear representation of what

the expert actually does in producing a subjective probability judgment. Lopes

(1987) has shown that precise knowledge of the judgmentprocess can lead to

showing respondents how to organize their behavior to make essentially

correct judgments, i.e. up to the Bayesian standard,in a sequential probability

judgment task where other debiasing efforts, directed at compensating for

poor performance by changing the responsescale (Phillips & Edwards, 1966)

or altering the nature of the judgmentitself (Eils, Seaver, & Edwards, 1977),

have been only partially successful. This level of understanding of the (far

more complex) general probability judgment task leading to specification of

appropriate judgment processes, is needed if one is to have confidence that

elicited subjective probabilities are free of bias and well calibrated.

Following elicitation, a further step is often undertaken, one in which the

subjective probabilities obtained from different experts are combined in an

effort to improve judgment quality. The results of combination will be

examined, but first it is necessary to consider an important aspect of the

quality that is sought, calibration.

17.4 CALIBRATION

17.4.1 Definition and Implications for Decision Analysis

Probability judgments should agree with actual relative frequencies of the

event judged or with normatively computed probabilities. This kind of
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agreementis called external validity (Walsten & Budescu, 1983). When events
are unique, however, and there are no relevant relative frequencies, or when
evidence is such that no normative computations can serve as a standard,
subjective probabilities should still have good calibration. Good calibration
means a relative frequency of occurrence x, in the longrun, for all those
events given a subjective probability of x. Calibration is typically represented
by a graph of the observed relative frequency of occurrence vs. subjective
probability. With good calibration, subjective probabilities can be taken at
face value—e.g. an event given a probability of 0.3 considered equivalent in
uncertainty to a random draw ofa red ball from an urn with 3 red and 7 white
balls. Highexternal validity guarantees good calibration, but good calibration
does not guarantee high external validity. Low external validity or poor
calibration, or even the possibility of poor calibration, pose problems for
decision analysis and can result in seriously suboptimal choices.
Clemen & Murphy (1990) use the example of weather forecasting to show

that small improvementsto the already extremely good calibration of weather
forecasters could produce significant savings for those who usethe forecast
probabilities to compute whether or not to adopt measures to mitigate the
effects of bad weather, i.e. who use them in decision analysis. If adequate
information is available, they show that it is possible to recalibrate forecasts
which are expected to be miscalibrated. It is unlikely that sufficient infor-
mation would be available for most of the types of subjective probability used
in decision analysis.

Even the possibility ofmiscalibration of subjective probabilities, as opposed
to the possibility of their just being in error, raises potentially serious
problems. This has been clearly shown by Harrison (1977). It is of prime
importance in decision analysis to attempt to structure a model so that events
whoseprobability is to be assessed are independent, as it simplifies both the
elicitation task and the computational complexity of the model. From the
standpoint of the decision analysis or of an expert whose judgmentsare used,
however, the possibility of miscalibration implies that events whose subjective
probabilities are given can not be assumed independent even thoughthey are
quite unrelated, and those considered dependent have their dependencies
altered. It is easy to see why (and Harrison gives a good numerical example
in illustration). If there were miscalibration, knowing the outcomes for some
of the events would lead oneto revise the subjective probabilities of the others.
Butthe independenceof two events implies that knowing the outcomefor one
event has no effect on the probability of the other. Hence the expectation of
having to revise in this way implies that one cannot consider the events
independent. The problem is not because of known miscalibration, where a
correction can be made, as discussed by Clemen & Murphy (1990), or just
because of uncertainty about the correct values of the probabilities of the
events, but because of potential, but uncertain, miscalibration—the potential
for a systematic error.
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17.4.2 Results of Studies of Calibration

Theelicitation procedures of decision analysis are designed to reduce the

impact of possible causes of miscalibration that have been inferred from

experiments. Important reviews of calibration are Lichtenstein, Fischhoff, &

Phillips (1982), Keren (1991), and Walsten & Budescu (1983). In brief, the

principal facts about calibration of discrete probabilities that have good

empirical support are:

(1) Overconfidence is most frequently observed.

(2) There are systematic effects: (a) due to the difficulty of discriminating

event occurrence from non-occurrence, and (b) due to the relative

frequency of occurrence, the base rate of the events in question.

(3) Experts do not necessarily have better calibration.

(4) Calibration is rather easily changed with training, but improvement

doesn’t appear to generalize to other probability judgment tasks.

Overconfidence means subjective judgments are more extreme, closer to

zero or one away from the default value for maximum uncertainty, than their

corresponding relative frequencies. Underconfidenceis the reverse. In effect,

respondents give too muchortoolittle weight to the evidence they have for

responding with a value different from the default or base rate value. Over-

and underconfidenceshould be distinguished from over- and underestimation,

in which responses over the whole range tend to be greater or smaller than

they should be. Most studies of calibration, for reasons ofefficiency and

statistical power, pool the judgments of many people, each of whom makes

a limited number of judgments. The reported effects, however, have all been

observed for individuals. A very large numberofcalibration studies have been

reported in the literature and the results described in the following sections are

quite robust to different circumstances. However,it is important to point out

that in none of these studies, as far as the author knows, were the full

techniques of probability elicitation used that are recommendedfor decision

analysis.

Overconfidence and the effects of discriminability and base rates

The half-range task of selecting one of two answers to a question and giving

a subjective probability on the interval [0.5—1] of having chosen correctly is

rarely relevant to decision analysis, but is widely used in research. The

discrimination involved is between true and false answers. Discriminability is

directly measured by the proportion of correct choices p(C). When the

proportion correct is increased, the curve shifts in the direction of under-

confidence and whenit is decreased, in the direction of overconfidence. For

questions that draw upon general knowledge, there is usually fairly good

calibration when the proportion correct is about 75%. Typical examples of
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calibration for general knowledge questions are shownin Figure 17.2. (For the
time being, references in the figures to the calibration model should be
ignored. The model will be discussed further on.)
For the less frequently studied, but more practically relevant, full-range

tasks of giving a subjective probability on [0—1] that a proposition is true or
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Figure 17.2. The discriminability (or “hard—easy”) effect for half-range judgments.
Data from Lichtenstein & Fischhoff (1977), experiment 5, for separate tests with general
knowledge questions (Adapted from Ferrell & McGoey, 1980, by permission of
Academic Press and the authors.)
Model: Normal, {0.347, 0.570, 0.744, 0.982, 1.219}, p(C) as shown
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Figure 17.3(a) The discriminability effect for full-range judgments (Data from Braun
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permission.)
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Figure 17.3(b) The discriminability effect for full-range judgments. (Data from
Braun & Yaniv, 1992 for expert forecasts of recession three quarters ahead.
Reproduced by permission.)
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that an event will occur or has occurred, discriminability is also between truth

and falsity, or between occurrence and non-occurrence. It can be measured,

without bias, by, for example, signal detection methods (Green & Swets,

1974). Full-range tasks also show relative underconfidence for higher

discriminability and overconfidence for lower discriminability. Figures 17.3a

and b demonstrate this for expert forecasts of economic recession for the

current calendar quarter and for three quarters ahead. Measured discrimi-

nability for three quarters ahead is aboutonefifth that for the current quarter

andcalibration becomes extremely overconfident for forecasts greater than the

base frequency of about 0.2.

What is here called the discriminability effect is usually called the

“hard—easy” effect in the calibration literature, but that is something of a

misnomer. Theeffect is observed for the full-range task of responding to an

open-ended question by giving an answer and a probability that itis correct.
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Figure 17.4 The base-rate effect (Data from Lichtenstein & Fischhoff as published in

Lichtenstein, Fischhoff & Phillips, 1982, for judgments of the truth of propositions

with different percentages of true test items. Adapted by permission of Cambridge
University Press.)
Model: Normal, A=1, B=1, {-—0.9, 0, 0.7, 1.2} p(C) as shown
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Figure 17.5 The combination of discriminability and base-rate effects. Data for

students judging the probability their exam answers are correct. Students were

separated into groups on the basis of their scores P(C) and discriminability d’

(Adapted from Ferrell & McGoey, 1980, by permission of Academic Press.)

Model: Normal, A =d', B=1, {-1.4, —0.6, —0.2, 0.65} p(C) and d’ as shown
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The effect then does not depend on whether the questions are hard or easy,

but on the discriminability of correct from incorrect answers (Ferrell &

McGoey, 1980).

For full-range tasks, there is an additional effect due to the the base rate,

the overall frequency of the events. Increasing the base rate moves the whole

calibration curve upward on the graph, giving general underestimation, and

decreasing it moves the curve downward, giving general overestimation. This

can be observed in Figure 17.4 for judgments of the probability of the truth

of general knowledge statements with different proportions of true statements

in the set.

The effects of discriminability and base rate combine to produce the

resultant calibration curve. Figure 17.5 shows four curves representing the

pooled judgments of four groups of students who gave subjective probabilities

that their examination answers would be rated correct. The groups were

separated by individual discriminability d' between correct and incorrect

answers and bybase rate, the proportion of correct answers p(C). Individual

d' and p(C)values were uncorrelated. Students with high proportion correct

and low discriminability have a combination of overestimation and

overconfidence which shifts their curve upwardandtilts it to the right. The

curves from the other groups show comparable combined effects of their

discriminability and base rate.

Expertise

Experts, those with much experience and domain-specific knowledge, might be

expected to be better calibrated than others. The excellent calibration of

weather forecasters (Murphy & Winkler, 1977) is usually cited. As another

example, Keren (1987) found that expert bridge players were better calibrated

than amateurs when judging the subjective probabilities of making the

contracts they had bid even though they made slightly smaller proportion of

them. The calibration curves are shown in Figures 17.6a and b. Others have

also found experts better calibrated (Dowie, 1976), but it is clear from a

number of studies with negative results, especially with physicians (Lusted,

1977) and with economic forecasters (Braun & Yaniv, 1992), that expertise is

not a sufficient condition for good calibration.

The conditions that are believed necessary to foster improvement in

judgment skills, and presumably in calibration, are quite demanding

(Fischhoff, 1989):

(1) Abundant practice with a set of reasonably homogeneoustasks

(2) Clear-cut criterion events for outcome feedback

(3) Task-specific reinforcement

(4) Explicit admission of the need for learning.
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Figure 17.6(a) Amateur calibration. (Adapted from Keren, 1987, for judgments by
amateur bridge players of the probability of making their contracts, by permission of
Academic Press and the author.)
Model: Normal, A = 0.85, B= 1.08, {-1.2, —1.1, —0.95, —0.8, 0.2, 0.4, 0.76, 1.08}
D(C) = 0.6
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Figure 17.6(b) Expert calibration. (Adapted from Keren, 1987, for judgments by

expert bridge players of the probability of making their contracts, by permission of

Academic Press and the author.)

Model: Normal, A = 1.56, B= 1.31, {-0.9, —0.6, —0.2, 0.2, 0.4, 0.8, 1.2, 1.5, 1.9,

2.5}, p(C) = 0.56
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There is ampleevidence that these conditions are often not fulfilled for experts
(Wright & Bolger, 1992).

Training

The final fact about calibration that seems to be well established is that it can
be improved,relatively easily, but the change in performance does not tend to
generalize to judgments aboutother types of event (Lichtenstein & Fishchhoff,
1980). A modest amountof training for calibration in which judgmentsare
made and calibration feedback is given, e.g. 200 judgments about general
knowledge, clearly improves calibration for the same task (Lichtenstein &
Fishchhoff, 1980). Just feedback of outcomes does not necessarily improve
it (Sharp, 1988). A simple manipulation is to preface the questions to be used
for determining calibration with a few (e.g. 5) that are deceptively difficult
(assuming calibration will be overconfident) (Arkes et al., 1987). These
methods would all seem to affect the judges’ responsecriteria, i.e., choice of
numerical values.

A different methodis to train the respondentsso they can better discriminate
the events being judged (Lichtenstein & Fischhoff, 1977), or, though it is much
less effective, to encourage the respondent to consider ways in which the event
could fail to occur or to supply reasons for expecting a different outcome
(Koriat, Lichtenstein & Fischhoff, 1982b).

17.4.3 Consequences of Calibration Results for Decision Analysis

The facts about calibration, described above are both worrisome and
comforting in their implications for decision analysis. It is worrisome that
decision analysis is frequently concerned with conditions which might be
characterized as having low baserates and low discriminability, both of which
are associated with poorcalibration, with overestimation and overconfidence,
respectively. Moreover, those from whom subjective probabilities are elicited,
though selected for their knowledge, are seldom experts in the sense that the
requirementslisted above are met. Often they are people who, though highly
familiar with the situation of interest, such as a particular business, do not
habitually characterize its uncertainties with probabilities, or get adequate
feedback on the outcomes. Substantive expertise by itself does not guarantee
good calibration.

On the other hand, it is comforting that calibration can be improved
relatively easily by suggestion and bytraining. It supports the hope that the
procedural methods used to ensure the quality of subjective probability
elicitation by decision analysts are effective. This optimism must be tempered
by the findings that debiasing effects are seldom large and that training to
improve calibration does not seem to generalize very well, so that, for
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example, demonstration exercises to illustrate overconfidence on general

knowledge questions, as is sometimes advocated, maynotaffect calibration in

the area of substantive knowledge relevant to the analysis.

17.4.4 Explanations

No general consensus has emerged among judgment and decision making

researchers on a unified account of the effects described above . General

models of probability judgment and judgmental forecasting (Beach, Barnes,

& Christensen-Szalanski, 1986; Smith, Benson, & Curley, 1991) have not

attempted to address calibration specifically. The base-rate effect is largely a

consequence of the mathematical fact that the mean value of the ordinate of

the calibration curve, the average over r of p(C |r), must be equal to p(C).

There are, however, several accounts of overconfidence and the discrimina-

bility effect. First, it is widely observed that people often are overconfident

about what they believe in the ordinary (as opposed tocalibration) meaning

of overconfident, (e.g. Cooper, Woo & Dunkelberg, 1988). Assuming people

use numbers accurately to represent their feelings, it seems reasonable that

calibration will surely reflect any biases of this kind. But no detailed account

has been offered that would show howthis by itself results in an effect that

is SO systematic with discriminability.

It has been proposed that the discriminability effect is due to an artifact of

the experimental questions used in calibration experiments. Gigerenzer,

Hoffrage, & Kleinbodlting (1991) have developed a model in which the

subjective probabilities are the experienced validities of the cues used to decide

the question. They attribute overconfidence or underconfidence to the

selection of questions for which the available cues are unrepresentatively

effective (underconfidence) or ineffective (overconfidence). On this account,

if the selection of questions and the respondents’ experience are both

unbiased with respect to a body of knowledge, then calibration is expected

to be good, whatever the level of knowledge, i.e., value of p(C). This, of

course, substitutes calibration of cue validity for calibration of subjective

probability.

Griffin & Tversky (1992) have proposed that the discriminability effect is due

to people’s giving too much emphasis to whatthe evidence considered indi-

cates and not enoughto its quality, as, for example, attending too much to

the proportion of events and insufficiently to the sample size with a sample

from a Bernoulli sequence. This can lead to certain patterns of under-

confidence and overconfidence. Their arguments are based almostentirely on

external validity experiments, and, although they have considerable merit,

they don’t go very far toward explaining observed calibration effects.

Whenthe authors do give an example of how their idea might apply to a

calibration task, they give an instance of the model to be described below.
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17.4.5 A Model of Calibration

von Winterfeldt & Edwards (1986) observe, “Research evidence about
calibration is abundant but singularly hard to make sense of” (page 127). In
what follows, a model that has been proposedfor certain types of probability
judgment (Ferrell & McGoey, 1980) is examined as a wayto bring order to
much ofthat evidence and as a basis for assessing the impact of the calibration
problem on decision analysis. First, it is necessary to consider the type of
judgment to which the modelapplies.

It is possible to distinguish at least two different ways in which numerical
subjective probability responses might be produced, or perhaps there is a
continuum with two extremes. At one extreme,the entire cognitive procedure
may be based on mental computations or manipulations that involve
numerical values, as, for example, when test of external validity is made by
giving the respondent numerical information about base rates and evidence
reliability. In such a case the reasoning can be done with numbers so that a
numerical result follows naturally. This is not to say that non-numerical
information does not influence the process. The numerical result will reflect
cognitive and attentional biases throughthe selection of computations that are
performed and the heuristics used and through errors, approximations,etc.
Andthe final reasoned result may be adjusted under the influence of a non-
numerical impression or disposition. This description would appear to apply
to many external validity studies, such as those of Griffin & Tversky (1992).
At the other extreme, the evidential basis for a subjective probability

judgment may have no numerical information whatever. It seems reasonable
to suppose that judgments of whethera visual or auditory signal is present are
of this kind. A response numberis assigned to the magnitude of someinternal
variable that is determined by processes that are not consciously numerical. Of
course one maybe told howlikely it is that a signal is present, or how many
possibilities there are to consider, etc., so the numberfinally assigned would
be influenced by these numbers, but the basic evidence, the result of cognitive
processes that attempt to discriminate signal events from non-signal events and
on which one would makea decision,is an internal feeling or impression that
has magnitude butno intrinsic numerical labels or natural metric that implies
numerical values. There is a substantial body of experimental andtheoretical
work in signal detection that supports this conception (Green & Swets, 1974;
Swets, Tanner, & Birdsall, 1961), and there is a model of the way in which the
internal variable is categorized to produce responses, the rating model (Egan,
Schulman & Greenberg, 1959).

The conceptual task in probability judgment, as in detection, is discrimi-
nation between the occurrence of an “event” and its non-occurrence. One
seeks a basis for deciding whichis the case, even though perfect discrimination
may be impossible. It seems likely that probability judgment tasks besides
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those involving just sensory discriminations, tasks that are essentially

cognitive, may also produce an internal magnitude, without an implicit scale,

to which a number must be assigned to produce a subjective probability

response, and to which the rating modelof signal detection is appropriate. The

fact that signal detection theory has been applied so widely in psychology is

evidence for its applicability beyond sensory psychophysics.

If this is so it can be argued thatthe judgments required in decision analysis

are frequently of this sort. The decision analysis process attempts to model the

probabilistic features of the problem explicitly, in the interests of an accurate

and objective representation of the decision situation. The subjective inputs

tend to be those that cannot easily be modeled or derived by normatively

inspired, computationally based methods of reasoning such as those described

by Shafer & Tversky (1985).

A model of calibration, based on signal-detection theory, was proposed by

Ferrell. It is described in detail in Ferrell & McGoey (1980) and presented

tutorially in Smith & Ferrell, (1983). The model offers a straightforward expla-

nation of the discriminability effect, the base rate effect and the ease with

which training improves calibration but fails to generalize. In addition it

reveals conditions under which perfect (or even good) calibration is

impossible, it fits a large amount of published data, and in manyinstancesit

makes specific, quantitative predictions of calibration curves and response

distributions. Moreover, since it describes mainly the numerical assignment

process, it is quite compatible with much of the theoretical and empirical

cognitive psychological research on calibration, which can be interpreted as

dealing, for the most part, with determinants of the magnitudeof the internal

decision variable that is partitioned in the model.

The model assumes that consideration of a proposition about which a

subjective probability is to be given results in a value of an internal decision

variable, i.e. a variable with the property that it is larger, on average, when

the proposition in question is true than whenit is not. The decision variable

_ range is partitioned into intervals in themannerof the signal detection rating

model. Responses, which may be numerical or verbal or even arbitrary, but

having some ordinal property, are assigned in increasing order to successive

intervals on the decision variable. For subjective probabilities, an appropriate

set of probability numbers is used. When a question is considered, a value of

the decision variable is generated and the response that corresponds to the

interval in which the valuelies is given.

A calibration experiment produces two distributions of values of the

internal decision variable X, one when the event in question E occurs f(X | E£),

and one whenit does not f(X | — E). The calibration value p(E | r) associated

with a givenresponse category r is just the proportion of times that the event

occurred whenthe internal variable took on a value within that category. If

one can estimate the two distributions, the base rate p(£), and the values of
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{xi} that partition the internal variable, then the model produces the
calibration curve and the proportion of responses in each category. The model
is not described in greater detail here for lack of space; a fuller accountis
available in Ferrell & McGoey (1980). A comprehensive technical review is
currently in preparation.

In what follows, the way the model explains the salient experimental
findings about calibration will be illustrated by showing its fit to data
representing a range of subjective probability judgment tasks. Finally,
implications for decision analysis will be drawn.

17.4.6 Results from the Model of Calibration

The discriminability effect

The discriminability effect—relative overconfidence for events that are harder
to discriminate and underconfidence for those that are easier to
discriminate—is explained by the model as the respondents’ maintaining the
samecriteria, the same cutoff values {x;} on the decision variable, or adjusting
them insufficiently, when discriminability changes. If clues are inadequate to
indicate the change, the respondent has no basis for adjusting the cutoffs.

Figure 17.2’ showsthe calibration curves and response proportions for two
tests using two-alternative general knowledge questions, given to different
groups, from Lichtenstein & Fischhoff (1977). The proportions of correct
responses p(C) for the two sets of questions were different by design. The
questions wereselected from a larger set used previously. For each question
on the easy test there was one on the harder test that scored 20 percentage
points lower. The model wasfitted to the data for the hard test by matching
the response proportions exactly. The same cutoffs {x;} were then assumedfor
the selected set. Using only one parameter estimated from the data,
p(C)=0.80, the model predicts all the calibration proportions andthe
response proportions for the easy set. The difference in p(C) accounts for the
difference in calibration. In this model, as in all those presented here, normal
distributions are assumed onthe internal variable. That they fit so wellis
probably due in part to the group nature ofthe calibration data. The form of
the distributions, however is a parameter of the model, and can be expected
to be different with different tasks.

Clues can indicate that discriminability is worse and lead respondents to
adjust their responsecriteria to attempt to maintain goodcalibration in spite
of the change. An example is forecasts with a longer time horizon, as reported
by Braun & Yaniv (1992). Subjective probabilities on the full-range [0,1] of
future recession were given by members of a survey panel of professional
economic forecasters. Figure 17.3 shows the data and the fitted model for the
current quarter and for three quarters ahead, respectively. The model was
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fitted to the data using the maximum likelihood method (Dorfman & Alf,
1969; Grey & Morgan, 1972)* with results shown as “model” values on the

graphs.

For both forecasts, the proportion of actual recessions was approximately

0.2. The discriminability, measured by the separation of the underlying

normaldistributions, is about one fifth as great for the longer time horizon.

Us a result, the judgments are extremely overconfident. The cutoffs differ just

as one would expect; those for three quarters ahead are much morestrict than

those for the current quarter. A forecaster must have stronger evidence, a

more extreme value (extreme relative to the value of the internal variable

associated with the base rate) before responding with the same probability

number. But the experts’ adjustment of their cutoffs is not sufficient. Indeed,

manipulation of the model showsthatit is impossible to have good calibration

for responses above about 0.25 when the baserate and discriminability are so

low; no amount of adjustmentof the criteria will suffice. However, excellent

calibration can be achieved with a restricted response set, e.g. {0, 0.1, 0.2,

0.25}. Analysis also reveals that the forecasters could have been much better

calibrated at one quarter ahead for responses of 0.4 and up had they used the

cutoffs they adopted for the longer time horizon, instead, as is shown by the

indicated calibration curve. This suggests that training for calibration would

have been of benefit for the shorter horizon even thoughit could not possibly

produce good performance for the longer one at the higher response values.

The base rate effect

For full-range judgments, relative overestimation with lower base rates and

relative underestimation with higher ones is the base-rate effect. It is explained

by the model as the respondents’ maintaining the same cutoffs, or adjusting

them insufficiently, when the base rate changes. If clues to the base rate are

inadequate, the respondent has no basis for adjusting the cutoff. With

true—false questions, one expects, perhaps from experience, that about half of

them will be true. If it is hard to discriminate true from false, then it will be

hard to learn the actual base rate of true statements and one will tend to adopt

criteria appropriate to a default base rate of about 0.5.

Figure 17.4 illustrates the base-rate effect with data from Lichtenstein and-

Fischhoff given in Lichtenstein, Fischhoff & Phillips (1982). The model was

fitted by eye to the data for probability true p(7) = 50%. Unfortunately, the

response proportions were not available. Then, keeping the samecriteria, the

value of p(7) only was changed to equal the values for the other curves on

the graph. The model then predicts those curves, as shown in the figure. In

contrast, the expert economic forecasters of Figure 17.3, who presumably

knowthe baserate of recessions, 0.2, very well, do not show anyeffect ofits

being different from expected.
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The discriminability effect and base-rate effect combine, and the model

reflects this. The model was applied to the student judgments of Figure 17.5

by fitting those for d' = 1, p(C) = 0.71 to obtain the cutoffs. The model, with

only the d’ and p(C) values for each of the other groups, then predicts their
calibration curves and response proportions quite accurately.

Expertise

Experts are not always better calibrated, but in some cases they are much

superior to non-experts and the model helps to show why. Keren (1987)

compared expert and amateur contract bridge players’ calibration for the

probability of makinga contract that they had bid,i.e. the probability of

doing at least as well as promised in the subsequent round of card playing.

Figures 6a and 6b showthecalibration curves and response proportions for

experts and amateurs, with the modelfitted by maximumlikelihood. Although

they had a slightly smaller base-rate of contracts actually made (0.56 as

Experts p(C)=0.56
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Figure 17.7 Graphical representation of the models for Keren’s (1987) amateur and

expert bridge players, showing the better discrimination and morewidely spaced cutoffs
of the experts.
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opposed to 0.60), the experts are much more able to discriminate contracts

they can make from ones they cannot. This canbe seen in Figure 17.7. In

particular, experts’ criteria are more uniformly spread, especially over the

distribution for contracts made, andthe relative variability of that distribution

is significantly smaller.

Training

In the model, the response cutoffs are, in principle, independent of the under-

lying distributions on the internal decision variable. To what extent, if the

model is correct, they actually are independent of the cognitive processes that

generate instances of the internal variable is an empirical question. The ability

to change calibration through a modest amountof training (Lichtenstein &

Fishchhoff, 1980) or cueing by a preliminary set of questions that establish

an expectation of difficulty (Arkes et al., 1987) suggests that the criteria are

easily changed with appropriate information, cues or feedback.

Weather forecasters are, by now, famously well calibrated (Murphy &

Winkler, 1977). To be so they haveto adjust their calibration to match weather

conditions that vary from season to season and from year to year. Since they

observe weather outcomes andtheir calibration results they have a basis for

doing this. An example is a comparison of the precipitation forecasts for San

Francisco for the years 1956—57 and 1957—58. There wasa substantial increase

from thefirst year to the second in the probability of rain and someincrease

in its discriminability. Figure 17.8 shows the calibration curves and response

proportions with the modelfitted to them (by eye). The forecasters modified

their cutoffs as a result of the change. Had they remained the same in the

second year, the model’s calibration curve would have been as shown.Instead,

the calibration is quite good. The difference in calibration between the two

years is not due just to the different conditions, but required an adjustment

of responsecriteria in reaction to those changed conditions, which is to be

expected of experts with suitable feedback.

17.4.7 Implications of the Decision Variable Partition Model for

Decision Analysis

If the calibration modelis a valid theory, a good representation of the under-

lying structure of how somesubjective probabilities are generated and given

quantitative expression, then those probabilities must be incoherent, in the

sense of not satisfying the axioms of probability when taken as a whole. In

theory, probabilities are measures on an absolute scale. There is no general

permissible transformation, no function of probabilities, that preserves all

their information,just as there is no transformation of counts of discrete items

that does not distort their meaning. The partitioning and response assignment
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Figure 17.8 Precipitation forecast calibration curves for San Francisco from Root
(1962) showing a changein calibration from one year to the next as the detectability
of rain and the base rate of rain both increase. Forecasters changed their criteria to
avoid overconfidence under the new conditions.
Model: 56-57: Normal, A = 1.24, B= 1, {—0.5, —2.5, 0.1, 0.45, 0.65, 0.8, 0.95, 1.15,
1.6, 2.8} p(rain) = 0.21.
57—58: Normal, A = 1.34, B=1, {-1.1, —0.55, —0.2, 0.05, 0.2, 0.35, 0.6, 1.1, 1.6,
2.8} p(rain) = 0.37
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processes described by the model preserve only the ordinal properties of the

internal decision variable, whatever properties it may have before being

expressed as a number. This is not good news, but, paradoxically, it argues

overwhelmingly in favor of the decision analysis process which seeks to give

coherence to the entire choice situation by means of modeling. The oppor-

tunity for the evaluation of uncertain alternatives to be misdirected by

incoherent probability judgments is far greater if the judgments are holistic

than if they are disaggregated and are knitted together by a careful analysis

of the situation.

The model suggests that the numberassignment aspect of subjective prob-

ability judgment, in certain cases, may notnecessarily be tightly coupled to the

process by which the non-numerical part of the judgmentis produced. Thisis

why the model is compatible with other cognitive research on reasoning and

judgment, both numerical assignment and reasoning can be sources of over-

or underconfidence. Clearly, this is a matter for empirical determination, but

if it is the case, it appears to offer new opportunities for training for

calibration and for guidance of the subjective probability elicitation process.

Since the model considers probability judgments themselvesto bethe result

of decisions, an explicit consideration of this in decision analysis as in Levi

(1985) may provide a firmer basis for, and give even more weightto, efforts

in elicitation to avoid the judge’s having any stake in the outcomeof the event

being judged.

In the presentation of their general framework for judgment under uncer-

tainty Smith, Benson & Curley (1991) conclude “In our view, while the

evidence to numbertranslation is poorly understood, it is unlikely to be the

critical factor in assessment. Weanticipate that judgmentis less variable and

influential than reasoning in determining numerical outcomes” (page 314).

This view certainly requires re-examination.

17.5 SUBJECTIVE PROBABILITY COMBINATION

17.5.1 Quality of Aggregated Judgments

The practice of combining subjective probabilities from several experts 1s

intendedto improvethe quality of the probabilities used in a decision analysis.

Aggregation methods can beclassified as mathematical, of which there are

many, simple averaging being a good example, behavioral, in which the

experts agree on a value, and mixed, in which there is controlled interaction

usually followed by mathematical combination (Ferrell, 1985). Mixed methods

are generally designed to inhibit the negative effects in interacting groups of

such things as dominating personalities, or status differences, but to retain the

useful sharing of information.



440 W.R.Ferrell

 

It is not obvious how subjective probability quality and calibration in
particular are affected by combination. Coherenceis violated by many mathe-
matical methods, such as averaging, but it is enforced by the analyst with
respect to the total set of probabilities used in a decision model. Subjective
probabilities should represent the true opinion of the judge, andthis is ensured
for individuals, as far as possible, by the elicitation process, but it is not a
relevant consideration for aggregated values except, perhaps, for group
consensus. Reliability is almost invariably increased by combination methods,
since they reducevariability. Validity has at least two aspects, discriminability
and calibration. Discriminability is likely to be increased. If those whose
judgments reflect greater knowledge have more influence by being weighted
more heavily, by being in a majority, or by influencing others, the group
output will be more discriminating between the occurrence and non-
occurrence of the events in question by a kind of voting effect. Discriminability
affects the calibration of individuals’ judgments, as was shownin the previous
section, with increases leading to shifts in the direction of underconfidence.
This might be expected for aggregated judgments, as well. There are other
features of combination methodsthat potentially can affect calibration, so the
over-all effects need to be determined empirically for different combination
methods.

17.5.2 Seaver’s Experiments

The main experimental work on calibration of combinations of subjective
probabilities was done for his dissertation by Seaver (1979). The general
structure of his experiment for discrete probabilities is diagrammed in
Figure 17.9. Groups of four people, acquainted with each other, responded
individually to 20 general knowledge questions by choosing one of two

Consensus (one group only)

Judge Weight Judge Weight
probabilities members probabilities members

Mathematical Groups Mathematical | Groups
combination before combination after

interaction interaction

Individuals Individuals

before after
interaction interaction

individual's task and

calibration analyses

Figure 17.9 The structure of the calibration experiments of Seaver (1979).
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answers andgiving a probability of being correct on the interval [0.5,1]. For

each question, they also assigned weights to members. Next, they considered

each question as a group according to one of a numberof structured methods

such as Delphi, and finally they again responded individually to the set of

questions and assigned weights to members. In one interaction condition, they

discussed each question until reaching a consensus. Three different mathe-

matical combination methods were then applied to the individual judgments

before and after each interaction condition and using each of three weightings,

equal, deGroot (1974), and normalized self-weighting. The mathematical

combination methods, ones commonly used or proposed, were as follows:

e linear

4

Po= dy WiDi (1)
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Figure 17.10(a) Data from Seaver (1979) for individuals and equally weighted average

before andafter interaction, pooled over interaction type (Reproduced from Ferrell &

Rehm, 1980. Adapted from Seaver, 1979, by permission of the author.)
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@ weighted geometric mean

(2)

4 .Dc I Di 5 (3)

These produce a group probability for the correct hypothesis from individual
probabilities p; where the value of p; is the individual’s half-range response
r; if the correct choice was made and (1 — r;) if not. The group choice andits
half-range response rg are similarly related to the group probability Pg.
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Figure 17.10(b) Model results corresponding to the conditions of (a) showing the
same effects of aggregation and interaction. (Reproduced from Ferrell & Rehm, 1980.)
Model: Normal, {0.2, 0.36, 0.53, 1.045}, p(C) = 0.65
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17.5.2 Seaver’s Results

In keeping with most other research on the subject (Wainer, 1976 and for a

review, Ferrell, 1985), Seaver found that the three weighting methodsdid not

differ significantly and did not havea significant effect on the results. He also

found that the interaction methods did notsignificantly differ among them-

selves, but they did havea significant effect on both the quadratic probability

score and on calibration.

Seaver’s main results were that mathematical combination, except for the

likelihood ratio method, substantially reduced the overconfidence of

individuals’ judgments, and that interaction reduced overconfidence for

individuals, but increased it for the mathematically combined group

judgments. Figure 17.10a showsthe results for individuals compared to the

equally weighted average and Figure 17.11a showsthe results for the different

combination methods. Calibration for consensus is not shown; that curve is

1.0
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(a)

Figure 17.11(a) Data from Seaver (1979) for different types of mathematical

aggregation before and after interaction, pooled over interaction type. Only the case

of equal weights is included (Reproduced from Ferrell & Rehm, 1980. Adapted from

Seaver, 1979, by permission of the author.)
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Figure 17.11(b) Model results corresponding to the conditions of Figure 17.11(a),
showing similar effects of aggregation and interaction (Reproduced from Ferrell &
Rehm, 1980).
Model: Normal, {0.2, 0.36, 0.53, 1.045}, p(C) = 0.65

rough, being based on only 20 responses, but it appears to fall about on the
curve for the geometric mean beforeinteraction.

17.5.3 Explanation

These results can be fully explained by two competing effects, both of which
are induced by mathematical combination and by the interaction process,
discriminability and extremeness. Consider mathematical combinationfirst. If
individuals are correct more often than not, then when their responses are
mathematically combined, thegroup response will be correct even moreoften,
just as in voting. This will increase discriminability, which, as was discussed
in the previous section, shifts the calibration curve toward underconfidence.
Mathematical combination can also result in somewhat more extreme
responses, closer to zero or one, shifting the calibration curve in the opposite
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direction toward overconfidence. The likelihood ratio method produces the

most extremeness. For example, if all members were to give a subjective prob-

ability of 0.6, the group probability using the likelihood ratio methodis 0.835.

The average produces no extremenessat all and the geometric mean is in

between. The net effect with the likelihood ratio method is that the increase

in discriminability and the extremeness cancel each other out so that the

calibration has the same overconfidence as that of individuals. The average,

with essentially no extremeness, is much less overconfident than individuals,

and the geometric mean is in between the other two.

These same two factors, discriminability and extremeness, also result from

interaction as a consequence of two very well-documented effects of group

process, conformity (Insko & Schopler, 1972) and polarization (Lamm &

Myers, 1978), respectively. Conformity produces a movementof individual

opinion toward the group mean and polarization moves it away from the

neutral point in the direction favored by the group mean. Seaver concluded,

“Overall, interaction did produce a convergence of judgments”(page 42), and

_ assessments tended to become more extremeafter interaction” (page 39).

Conformity, being an averaging process, induces increased discriminability,

whereas polarization increases extremeness. With individuals, in this case, at

least, conformity dominates, so that their calibration becomes somewhatless

overconfident after interaction. However, conformity uses up part of the

potential of combination to increase discriminability, so the effect of inter-

action plus mathematical combination is that of combination with additional

extremeness added from polarization. Hence, combination after interaction

shifts the calibration less in the direction of underconfidence than it does

without interaction.

17.5.4 Application of the Model

The interpretation of Seaver’s results given aboveis substantiated by a Monte

Carlo simulation of his experiment using the calibration model described in

the previous section. This model has the appropriate distinction between the

underlying confidence dimension which is affected by interaction and the

numerical expression ofthat confidence which is manipulated by combination.

Ferrell & Rehm (1980) fitted the model to the calibration for individuals in

Seaver’s experiment, and using the partition {x;} and proportion correct D(C)

estimated from this, along with an addition to the model necessary to represent

the effects of groups, determined calibration curves for interaction and the

different types of combination. The addition was that judgments were

assumed to be intercorrelated and interaction was simulated by a transform-

ation x’ of individual confidence values x based on the average of the other

three in the group X3. |
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x'=xX+k1 03 —x) + ko (17.4)

where k; and kz are constants representing conformity and polarization,
respectively.

Four unit-normal random numbers(with p = 0.4 to represent the common-
ality of shared information and a mean appropriate to p(C)of 0.65 from the
fitted model) were generated for each question. These represent the
individuals’ initial feelings of confidence. Negative values are for choice of
the wrong answer. These initial values of x were transformed into subjective
probability response values r by the partition from the fitted model (assumed
symmetrical about zero) andthe results are those for individuals before inter-
action. The response values r were then combined according to equations
(17.1)-(17.3) using equal weights, to give the results for groups beforeinter-
action. The initial x values were then transformed by equation (17.4) (with
k; = 0.1 and k2 = 0.2) and responses r determined from thepartition to give
results for individuals after interaction. When these are combined by
equations (17.1)—(17.3) they give results for groups after interaction.
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Figure 17.12 The effect on group calibration, predicted by the model when
individuals are well calibrated. Groups are then underconfident (Reproduced from
Ferrell & Rehm, 1980).
Model: Normal, {0.5, 1.1, 1.85, 3.55}, p(C) = 0.65
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The model output is shown in Figures 17.10b and 17.11b. Comparison with

Seaver’s data in Figures 17.10a and 17.1la showsthat the model captures the

overall structure of Seaver’s results, and shows the sameeffects of both combi-

nation and interaction and of the two together. In all, seven calibration curves

are “predicted” from a total of eight parameter values. The lack of smooth-

ness of Seaver’s calibration curves is, presumably, dueto the relatively small

number of responses represented by each one.

A major implication of Seaver’s results as interpreted through the calibration

modelis that interaction and/or combination do not improve the calibration

of individuals, they just change it in a systematic way. From the standpoint

of decision analysis there is a serious problem if this is so.A decision analyst

who hascarefully elicited probabilities from an expert and considers them to

be well calibrated, cannot combine them either behaviorally or mathematically

with those from another expert without expecting the result to be mis-

calibrated, to be underconfident. If underconfidenceis not expected, then the

original probabilities cannot be considered well calibrated, they must be over-

confident. To illustrate, if the calibration model cutoffs that produce good

calibration are used in the Monte Carlo simulation instead of those that fit the

results for Seaver’s individuals, the calibration curves of Figure 17.12 are

obtained for individuals after interaction and for combination by averaging.

Averaging produces extremely underconfident group results from otherwise

well-calibrated individual judgments.

17.6 CONCLUSIONS

Decision analysis relies for its validity on the quality of the process it

represents and on the soundness of the procedures by which the process1s

implemented. The decision theory basis of the over-all process is excellent. The

procedures for elicitation of subjective probability judgments for reducing

bias and error are sophisticated and well grounded in empirical observation.

They are not, however, based on a theory of judgment, nor on a detailed

knowledge of the process by which a subjective probability is produced.

Empirical results of calibration studies indicate that there are at least three

sources of systematic miscalibration to which subjective probabilities in

decision analysis are susceptible—low discriminability, base rates and combi-

nation. One tends to use judgment to assess whatis difficult to know other-

wise, and so events whose occurrence is hard to discriminate are likely to be

appraised by subjective probability judgments. An example is the prediction

of recession shown in Figure 17.3b. It might be observed that the relative

frequencyof the high probability judgmentsis quite small, so that their contri-

bution to a probability score is small and the calibration is not as bad as the

graph makesit look. But probability scores do not measure the importance of
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decisions taken with the probabilities, nor their costs. Base rates pose a
problem, too. If the base rate of a critical phenomenonin an analysis is
unknown, or wrongly assumed,all the probabilities contingent on it may be
miscalibrated. And even when the baserate is known,it is difficult to know
how sensitive judgment should be to it. Combination doesn’t solve the
problems.It almost certainly produces a changein calibration. Averaging, the
most commonly recommended approach to combining subjective prob-
abilities, shifts calibration toward underconfidence,a shift for the better only
if the judgments being combined are appropriately overconfident.

It is concluded that subjective probability elicitation and combination needs
a firmer theoretical structure if elicitation methods to prevent bias and combi-
nation methods to improve quality are to be used with confidence. This
chapter has drawn attention to, and provided new evidence in support of, a
model of subjective probability judgment and calibration that may be capable
of providing a frameworkfor that theoretical structure. The model organizes
manyof the empirical results that have been found puzzling and,in particular,
gives a coherentpicture of how the discriminability and base rateeffects come
about. It can represent a wide range of calibration data and provides a basis
for quantitative prediction of calibration. Although it was not explained here,
the model provides a unifying account of how responses to probability ques-
tions of different types (one, manyor no-alternatives, probability true or prob-
ability correct) relate to each other (Ferrell & McGoey, 1980). Andit relates
cognitive inference and reasoning processes to numerical assignment, showing
how they each can contribute separately to calibration. Consequently, if due
allowanceis made for types of judgmenttask, it is consistent with other, more
cognitively focused, research on judgment underuncertainty.

This modelis not asolution to major problems of subjective probability in
decision analysis, but it is a possible step in that direction. It has, of course,
its share of difficulties, puzzles and, perhaps, inconsistencies. Presenting
challenges that are closer to psychophysics or engineering than to cognitive
science, it may be considered unfashionable in psychological circles. Perhaps
that is whyit has been neglected by researchers over the past 10 years. Its con-
sideration in Chapter 18 may beindicative of a change.

NOTES

(1) The model shownis fully specified in the following way in each figure caption:
Half-range models: form of the distribution, cutoff values, proportion correct. Full
range models: form of the distributions, A (the distance between meansin units of
sigma for the signal distribution), B (the ratio of noise to signal standard deviation),
cutoff values (zero at mean of the noise distribution), base rate.

(2) The program, ROCFIT, was obtained courtesy of Dr Charles Metz, Dept. of
Radiology, University of Illinois, in whose laboratory it was developed.
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Chapter 18
 

The Calibration of Subjective
Probabilities: Theories and

Models 1980—94

Alastair G.R. McClelland and Fergus Bolger
University College London

18.1 INTRODUCTION

Why are individuals so often badly calibrated when making subjective

probability judgements? In particular, why is overconfidence so frequently

observed (the “overconfidence effect”) and why does the degree of miscali-

bration seem to vary systematically with task difficulty (the “hard—easy”

effect)? In the conclusion to their well-known review of research up to 1980

on the calibration of probabilities, Lichtenstein, Fischhoff & Phillips (1982,

page 333) noted that

... a Striking aspect of much of the literature reviewed hereis its “dust-bowl

empiricism”. Psychological theory is often absent, either as motivation for

research or as an explanation ofthe results.

The aim of this chapter is to review the current situation, by providing a

critical analysis of a number of substantive theories and models of subjective

probability judgement for discrete propositions which have appeared in the

last 14 years. Little will be said regarding the empirical research which has been
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reported since Lichtenstein et al.’s review, excepting that which, in our view,
provides either strong support for, or militates against, a particular model.

18.2 THE OVERCONFIDENCE EFFECT AND THE
HARD-EASY EFFECT

Errors in probability judgements are not randomly distributed around the
“target” value (e.g. the normative answer derived from the application of
Bayes’ theorem, or the proportion of correct answers associated with a
particular subjective probability judgement). Rather, systematic errors or
“biases” are frequently observed in a variety of tasks requiring individuals to
produce probability judgements. So robust and compelling are these effects
that they have been christened “cognitive illusions” by a numberof authors
(e.g. Kahneman & Tversky, 1982; von Winterfeldt & Edwards, 1986). In the
calibration literature, the most commonly observedbias is the overconfidence
effect. Subjects deliver probability estimates which are too high when
measured against either the relative frequency of occurrence of an event
assigned a particular probability estimate, or the proportion correct of answers
which have been assigned a particular probability value.

A closely related phenomenonis the hard—easyeffect; this is the observation
that overconfidence decreases as task difficulty (usually indexed by the overall
proportion correct) decreases. With easy tasks (over about 80%correct answers
on a half-range probability scale, in a two-alternative forced-choice [2AFC]
task’) the overconfidence effect disappears, and underconfidence is often
observed. The main challenge facing theories and models of confidenceis to
explain these two effects.” It should be noted however, that there are clear
anomalies in the literature. Good calibration has been found for “difficult”
tasks (e.g. Keren, 1988); marked differences in calibration performancehave
been observed at the samelevel of task difficulty (e.g. McClelland, Coulson

& Icke, 1990; Wright, 1982) as has good calibration at differentlevels of item
difficulty (Juslin, 1993). Reversals of the hard—easy effect have also been
noted, where the degree of overconfidence for a harder task is less than for an

easier task (Keren, 1988; Ronis & Yates, 1987). Any principled account of how
individuals make subjective probability judgements has to provide an expla-
nation for these results, as well as the overconfidence effect and the hard—easy
effect.

18.3 THE LOCUS OF BIAS IN PROBABILITY
JUDGEMENTS

Over the last twenty years or so, two rival schools have developed, each with
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a radically different view as to the locus of the observedbiases in calibration

and other probability tasks. Jungermann (1983) termed one camp “the

pessimists” and the other “the optimists”. The pessimists believe that biases

are in people—the optimists believe that biases are in research. The most

representative members of the pessimist school are Daniel Kahneman and

Amos Tversky. In their “heuristics and biases program” (Gigerenzer, 1991,

page 85) they have argued that the locus of the bias is within the cognitive

system, and have provided many demonstrations of the apparent irrationality

of individuals when engagedin probabilistic reasoning (e.g. Kahneman,Slovic

& Tversky, 1982; Tversky & Kahneman, 1974, 1983). Kahneman and Tversky

claim that an explanation for this irrationality is that individuals use a variety

of heuristics when reasoning probabilistically. Several of these heuristics have

been cited as explanations (or partial explanations) for miscalibration, most

notably the “anchor-and-adjust” heuristic. For example, Keren (1991)

proposed that in laboratory-based 2AFCtasks, the expectation of the subjects

regarding task difficulty might act as an anchor, and explain the relationship

between difficulty and over/underconfidence. He suggested that subjects might

anchor on a probability estimate reflecting intermediate difficulty (75%).

Whenconfronted with an item perceived to be either very easyorverydifficult,

they would adjust accordingly, but not sufficiently, and this would lead to

under- or overconfidencerespectively. Ferrell & McGoey (1986) made a similar

suggestion. Wright (1982) also appealed to the anchor-and-adjust heuristic in

order to explain the difference in calibration for past-event questions(e.g. has

at least one member of the British Parliament died within the last fourteen

days? (a) yes, (b) no) and future-event questions(e.g. will at least one member

of the British Parliament die within the next fourteen days? (a) yes, (b) no).

He suggested that the response anchor for past event questions might be 1.0

(reflecting certainty) whereas for future event questions it might be 0.5

(reflecting uncertainty). A failure to adjust sufficiently from these anchors

would lead to the observed overconfidence for past-event questions and

underconfidence for future-event questions.

Other theorists have sought explanations for miscalibration (and parti-

cularly overconfidence) in terms of cognitive style (Wright & Phillips, 1984),

ignorance of processing limitations (Pitz, 1974), motivation (Milburn, 1978;

Zakay, 1983), cognitive optimism (Dawes, 1980), and response-scale effects

(Poulton, 1989). However, as Keren (1991) noted, many of these explanations

are post hoc in nature, and whilst most of them are consistent with the finding

of overconfidence, they cannot explain observations of underconfidence, good

calibration and the hard—easyeffect. The feature they have in commonis that

they all attribute miscalibration to humanfailing.

The most vigorous champion of the optimist school is Gerd Gigerenzer. In

a number of papers (Gigerenzer 1991, this volume; Gigerenzer, Hoffrage &

Kleinbélting, 1991) he and his colleagues have argued strongly against the
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pessimist school, and in particular the heuristics and biases approach. They
have provided both a theoretical framework and empirical evidence to back
the claim that biases in probabilistic reasoning are essentially artifacts,
encouraged bythe use ofartificial and sometimes misleading tasks, and the
nonrepresentative sampling of stimulus materials. In addition to suggesting
that the locus of bias is in the main outside the cognitive system, Gigerenzer
has also questioned the nature of probabilistic representations within the
cognitive system. He has argued that the “intuitive statistician” within us is a
frequentist, and not a Bayesian. Thus for Gigerenzer, probabilities are
represented in terms of frequencies—and not as beliefs. This, Gigerenzer
argues, has profound consequencesbothforthe interpretation of the empirical
evidence and for the nature of the theories and models required to explain
human probability judgement, as we will discuss in a later section.

18.4 THEORIES AND MODELS

In this section, each of the theories and models we have chosen to review is
briefly described, and in thenext section critically evaluated. Although not
exhaustive, we hope that we have included most of the major theoretical work
from 1980 to date. Some of the modelsare clearly within the pessimist camp
(locating the bias within the individual) and others the optimist camp(locating
the bias within the experimental procedure, and in particular the nature of the
stimulus materials). In addition, it is clear that some are domain specific (e.g.
restricted to general-knowledge tasks), whereas others are presented as quite
general models. Some of the models seem moreapplicable to situations in
which the stimulus items are essentially similar (Ronis & Yates, 1987) or
related (Keren, 1987, 1991) that is, they share commoncharacteristics, whereas
others are applicable to situations in which the stimulus items are essentially
unique or unrelated (Keren, 1991). Despite these differences, we attempt a
comparison of the models in a later section. The models are presented in
chronological order.

18.4.1 The Stage Model

Koriat, Lichtenstein & Fischhoff (1980) proposed a three-stage model of the
cognitive processes involved in answering a two-alternative general-knowledge
question, and giving an associated confidencerating. In the first stage, memory
is searched for relevant information and an answerchosen;in the secondstage
the evidenceis assessed toarrive at a feeling of certainty, and in the third stage
this feeling is translated into a numerical response. Koriat et al. suggested that
unwarranted certainty (overconfidence) might be linked to one or moreofthe
three stages.
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They proposedthatin the first stage, individuals might be biased in the way

they elicitknowledge, favouring positive rather than negative evidence. In the

second stage, they suggested that individuals might have a tendency to

disregard evidence inconsistent with the chosen answer. This tendencytoelicit

positive evidence, and disregard evidence contrary to the chosen alternative,

would lead to overconfidence. Finally, they noted that in addition to the

cognitive biases operating at the first two stages, there might be an inappro-

priate translation of feelings of certainty into a probability value. If this

mistranslation were such that individuals gave values that were generally too

high, this would also contribute to the overconfidence effect.

18.4.2 The Detection Model

Ferrell & McGoey (1980) proposed a model for calibration based on signal

detection theory (also see Ferrell, this volume, and Smith & Ferrell, 1983).

These authors not only provided an explanation of how perceived truth of

propositions might be translated into numerical judgements of confidence

(corresponding to the third stage in Koriat, Lichtenstein and Fischhoff’s

model), but also sought to explain the overconfidence effect, the hard—easy

effect, and the effects of base-rate change oncalibration performance.

Ferrell and McGoey suggested that the task facing subjects in a calibration

study can be broken down into two parts; the first being a detection process,

described by a signal detection model, and the second the assignmentof a

numerical probability value on the basis of the result from thefirst stage. The

decision variable used is partitioned by a set ofcriterion values, one interval

for each possible probability response (7). Each question generates a particular

value on the decision variable, and the interval into which that value falls then

determines the numerical response. In a 2AFCtask, it is assumed that each

alternative produces a value of apparent truth, and the subject chooses the

alternative with the higher value. For simplicity, the distributions of apparent

truth for the two alternatives are assumed to be normally distributed with

equal variance. The decision variable is then taken to be the absolute

difference between the truth values for the two alternatives, the larger the

difference the greater the confidence that the correct alternative has been

selected. The distributions of absolute difference when the correct answer

producedthe larger truth value, and whenthe incorrect answer producedit,

are normaldistributions truncatedbelow zero. Calibration can then be deter-

mined from (1) the probability of a correct response [p(C)] , (2) the cumulative

distribution functions of the decision variable when the responseis correct and

not correct, and (3) the partition of the decision variable.

In order to be perfectly calibrated, subjects must choose a partitioning such

that for each interval, p(C |r) =r. However, Ferrell and McGoey assumethat

the partition is determined by information obtained prior to the task (subjects
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appeartoset their criteria for a task of intermediate difficulty, i.e. about 75%
correct—seeFerrell & McGoey, 1980, page 40) andthat it will not change
unless feedback about performanceis provided. In a two-alternative task, the
partitioning should be determinedsolely by discriminability (as base rate is
fixed at 50%). If subjects haveset their partitioning for a task whichis easier
than the task actually presented, they will exhibit overconfidence—if on the
other hand,the partitioning is set for a task harder than the one presented they
will exhibit underconfidence. Ferrell and McGoeyalso showed that the model
is not restricted to 2AFC tasks, but can be applied quite generally to any
calibration task format. Finally, with the assumption that subjects are
insensitive to changes in base rate as well as discriminability, they also
provided predictions concerning the effects of base rate change on calibration
performance in full-range tasks (see also Smith & Ferrell, 1983, and Ferrell,
this volume for further details of the model).

18.4.3 The Process Model

May (1986a, 1986b) proposed a process model of subjective probability judge-
ments which she claimed would allow the degree and direction of miscali-
bration to be predicted. In common with the later ecological models (see
below) she argued that miscalibration should neither be seen as a bias in
inferential reasoning, nor as a result of mistranslation of a feeling of uncer-
tainty into a numerical response (cf. Ferrell & McGoey, 1980). Instead, she
Suggested that it was a consequence of the specific background knowledge
possessed by subjects, of the tasks given to subjects, and theselection of items
within the tasks.

Following Koriat, Lichtenstein & Fischhoff (1980) her model has three
stages, which she labelled problem-solving, emergence of subjective certainty
and quantification respectively, but she placed the origin of miscalibration at
the first stage. She also identified two sources of difficulty which would affect
the proportion of correct responses in a calibration task. The first source
(Difficulty 1) was seen as a characteristic of the task such as the objective
distance between twostimuli in a psychophysical task. The second source
(Difficulty 2) was attributed to the subject having “wrong knowledge” (such
as a distorted cognitive map when makinga latitude judgement).

In May (1986a) two possible internal representations based ona subject’s
knowledge are presented. The first mental modelis in the form of a syllogism,
which Mayproposed might be used to answera question such as “Which city
has more inhabitants? (a) Hyderabad, (b) Islamabad.” The second is in the
form of a cognitive map, and she suggested that this type of representation
might be used to answer a question such as “Which city is further north? (a)
Rome, (b) New York.”
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With the syllogistic representation, May speculated that a subject might
reason in the following way; Capital cities tend to have many inhabitants,
Islamabadis a capital city, and therefore Islamabad is likely to have many
inhabitants. On this basis, the subject would choose Islamabad as the answer.°
May proposed that the confidence expressed by the subject would be a
function of the perceived extent of the intersection between the set of capital
cities andthe set of cities with alarge population, andpossibly other relevant
background knowledge. She argued that if the items (pairs of cities) were
randomly sampled from the population ofcities, good calibration would be
expected in thelong run, but if a set of items were selected so as to include
a large number of “misleading” items (i.e. items for which the inference
produced the wrong answer—asin the example above), overconfidence would
result.

With the cognitive-map representation, May proposedthat the difficulty of
an item (e.g. deciding which of twocities was further north) would depend
upon the subjective distance between them,and this would bereflected directly
in the confidence given.However,distortions in subjects’ cognitive maps could
lead them to pick the wrong alternative, and depending onthe extent of the
distortion, to pick the wrong alternative with considerable confidence. Again,
a large number of such “misleading” items in a set would produce over-
confidence. In the cognitive-map representation, the probability of a correct
answer (the reaction probability in May’s terminology) is determined by the
subjective relationship between thecities (i.e. which is subjectively further
north) and the confidence (or subjective probability) by the subjective distance
between thecities.

Finally, May draws a distinction between populationwise calibration and
itemwise calibration. The former defines calibration for the universe of items
that could be constructed within a certain knowledge domain. She suggests
that defined this way, perfect calibration is impossible when misleading items
are present. Itemwisecalibration is defined with respect to single items, so that
an item is calibrated when the mean reaction probability is identical to the
mean subjective probability. Thus, by definition, only non-misleading items
could be well calibrated in this sense.

18.4.4 The Memory Trace Model

Albert & Sponsler (1989) presented a mathematical model for the calibration
of subjective probabilities. They proposed that the brain subconsciously
makes subjective probability estimates based upon memories of similar prior
experiences.
The basic principles underlying the model are fairly simple. Albert &

Sponsler (1989) assume that when confronted with a new “fact pattern”, the
brain abstracts cues which permit it to identify a set of prior experiences
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characterized by asimilar set of cues. For example, a weather forecaster

might, on the basis of current weather conditions, identify days in the past

upon whicha similar pattern of weather conditions prevailed. The memory

trace which is retrieved is considered to be composed of the results of

predictions of a series of binary events (e.g. rain, no rain) which either did or

did not occur. Successful predictions are imagined to be encoded as Is and

unsuccessful predictions as Os. The “true” subjective probability is the relative

frequency of successful predictions in the past for the entire set of events.

Albert and Sponsler suggested that an individual maynotbeable to retrieve

the entire set of previous predictions, but rather a subset of the entire memory

trace. The particular subjective probability estimate is then taken to be the

relative frequency of successful predictions within the subset identified. An

expert* estimator, according to the authors, will be able to identify the full set,

and thushis or her estimate will match the true subjective probability. A less

expert estimator will be able to retrieve only a subset of the full set of prior

predictions, and thus his or her prediction will not necessarily correspond to

the true subjective probability (the actual estimate depending upon the relative

frequency of successes in the subset). .

From this basic model, the authors derive the permissible range of subjective

probability estimates allowed by the model for various values of the true

subjective probability, and for various proportions of the memory trace

retrieved. The range of possible subjective probability estimates a subject

could produceis constrained (according to the model) by both the proportion

of successful predictions in the full memory trace, and by the proportion of

the trace retrieved on a given occasion. The authors assumed that, on average,

the subjective probability estimate given is the midpoint of the range of

permitted values for a given value ofthe true subjective probability and a given

proportion retrieved. The rationale for this hypothesis is simply that when the

midpoints are plotted against the true subjective probability values for various

proportions retrieved, overconfidence is observed in that the midpoint values

are greater than the corresponding true probabilities. The authors also

conclude that the choice of subsets cannot be random (suchthatall subsets of

a particular size are equally likely to be retrieved) as they show that this leads

to an expected value of the subjective probability estimates whichis equal to

the true subjective probability value for all sample sizes. In other words,if the

choice was random,subjects would in the long run be perfectly calibrated, and

not demonstrate overconfidence.

In the remainder of their paper the authors speculated as to the possible

shape of the distribution of the probability estimates in the various permitted

ranges, and suggested that a transformation of the Beta distribution was

particularly promising. They discussed the problems with attempting to

estimate empirically the parameters in their model, and this leads to further

speculation concerning the possible shape of the distribution of estimated true
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subjective probabilities. Two equations are givento calculate the expected
value of the true probability estimates, one assuminga uniform distribution
of values over the permitted range, and the other for a non-uniform distri-

bution. The authors also note that an estimate of the true subjective prob-

ability could be obtained directly from an individual’s calibration curve.

Albert & Sponsler (1989) conclude that “... the entire theory demands, and

it is hoped will receive, experimental verification” (page 308).

18.4.5 The Ecological Models

Working independently, Gigerenzer, Hoffrage & Kleinbdélting (1991), and

Juslin (1993, 1994) produced two models of remarkable similarity. We have

termed these the “ecological” models. Both of these models are founded on
the simple but powerful notion that, as a result of interaction with the natural

environment, individuals encodethe frequencies of co-occurrences of events

in the environment, and use this information in a very direct fashion when

making judgements about discrete propositions and attaching confidence

ratings to those judgements.

The theory of probabilistic mental models (PMM theory) proposed by

Gigerenzer, Hoffrage & Kleinbélting (1991) was developed to explain per-

formance in 2AFCgeneral-knowledge tasks, but the authors do suggest that

the model could also be applied to 2AFC perceptual tasks. The authorsoutline

the circumstances under which goodcalibration is to be expected, and provide

explanations for the overconfidence effect, the hard—easy effect, observed

reversals of the hard—easy effect, and a hitherto unobserved third phenomenon,

termed the confidence—frequency effect (described below).

Underlying the model are the following assumptions;

(1) individuals are well adapted to their environments (see Brunswick, 1943,

1955),

(2) individuals are able to extract and store accurately, information regarding

the frequency of occurrence of events in the environment—anddoso with

little if any conscious effort (see Hasher and Zacks, 1984 for a review),

(3) the basis for probability judgements are these stored frequencies—the

“intuitive statistician” is a frequentist.

Gigerenzer, Hoffrage & Kleinbdlting (1991) propose that if a solution to a
given general-knowledge item cannot be obtained directly (e.g. via direct

retrieval from memory, or by use of an elementary logical operation such as

the method of exclusion) the subject will set up a probabilistic mental model

(PMM). To take an example used by Gigerenzeret al., imagine that the task

consists of deciding which of two German cities with more than 100 000

inhabitants (a or b) is the larger. The PMMwill contain the reference class

(all cities in Germany with more than 100 000 inhabitants), a target variable
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(city size), probability cues (other variables related to the reference class) and

cue validities. Gigerenzer et al. suggested that potential probability cues might

include a soccer team cue (onecity has a team in the Bundesliga and the other

does not), an industrial cue (one city is located in an industrial area and the

other a rural area), and a state capital cue (one city is a state capital and

the other is not). A variable is a probability cue for the target variable in the

reference class if the conditional probability of alternative a being the correct

answeris different from the conditional probability of b being correct. For this

example, a subject might use a soccer-team cue; that is choose the city which

has a team in the German soccer Bundesliga (note that this assumes the cue

can be activated; if both or neither of the cities had a team in the Bundesliga

it could not be used). The ecological validity of this cue is 0.91, in that if all

pairs in which onecity has a team in the Bundesliga and the other does not

are checked, one wouldfind that in 91% of cases the city with the team in the

Bundesliga has more inhabitants.

Cues are assumedto be generated, andif possible activated, in a hierarchical
fashion. The probability cue with the highest validity is generated and tested

first; if it can be activated it is used, if not, a further cue is generated and

tested. If no cue can be activated, it is assumed that the subject chooses

randomly and gives a 50% confidencerating.

Gigerenzer, Hoffrage and Kleinbdlting argued that through interaction with

the natural environment the ecological validities of cues become internalized
through a process of observing the frequencies of co-occurrences of environ-

mental events, and becomethe cue validities in the PMM.An individual uses

a probability cue to both select an answer, and as the source of the confidence;

once a choice is made, the cue validity is given as the confidencerating. If

individuals have had repeated experience with a particular reference class, a

target variable, and cues in the environment, it is assumed that the cue

validities correspond well to the ecological validities. However, if a subject in

a calibration experimentis given a set of items which are not representative of

the reference class in the environment, performance will be systematically

biased, as the cue validities used will not be appropriate.

Gigerenzer, Hoffrage & Kleinbdlting (1991) made a numberof predictions
based on PMMtheory. Thefirst was that typical general-knowledge items

(which have been used extensively in calibration studies) will produce both

overconfidence and accurate judgements concerning the number of items

correctly answered(frequency judgements). Overconfidenceis attributed to a

biased selection of items, with difficult, and importantly, “misleading” items,

being over-represented. The use of cues and cue validities which would
produce good calibration for a representative set of items leads to over-

confidence with a selected “difficult” set. Imagine that a subject uses a cue with

an ecological validity of 0.90 to answer ten questions. If these have been

sampled randomly,the set of ten questions would be expected to contain one
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misleading item—an item wherethecuefails to deliver the correct answer. The

subject would be expected to get 9 correct, and give a confidence of 0.90 for

each answer. If however the set has been informally selected, there may be,

say, 3 such misleading items present, in which case the subject would only get

7 correct, but would still give a 0.90 confidence rating for each of the 10

questions. Hence the subject would be overconfident. However, the authors

also predicted that if subjects were asked “how many items do you think you

answeredcorrectly?” they should give accurate estimates, as thereference class

is now past general-knowledgetests that they have taken. If the current test

is typical of the general-knowledge tests they have experienced in the past

(i.e. representative of the reference class of general-knowledge tests), good

calibration with respect to frequency estimates is to be expected. A corollary

to the first prediction is that if subjects are given a set of items randomly

selected from a particular reference class, they will exhibit good calibration

with respect to confidence judgements, but should now underestimate the

number of items correctly answered. Gigerenzer, Hoffrage & Kleinbdlting

(1991) referred to this as the confidence—frequency effect. They further predict

that if two sets of items, hard and easy, are generated by the same sampling

process (be it random or biased) the hard—easy effect should disappear.

Finally, they predicted that if a set of items is representative of a “hard”

referenceclass, and a secondsetis selected to be “difficult” but from an “easy”

reference class, a reversal of the hard—easy effect should be observed.

Empirical evidence is presented (and results in the literature reinterpreted)

which, in the main, support the predictions from the model.

The arguments developed by Juslin (1993, 1994) to explain the over-

confidence effect and the hard—easy effect are, in all essentials, the same as

those of Gigerenzer, Hoffrage & Kleinbélting (1991). However, Juslin did not

make the further predictions concerning the calibration of frequency judge-

ments, nor did he predict the possible reversal of the hard—easy effect.

18.4.6 The Strength and Weight Model

Griffin & Tversky (1992) have provided the most complete model within the

heuristics and biases program to explain the patterns of overconfidence and

underconfidence observed not only in calibration studies, but also in other

investigations of judgement under uncertainty. In this respect, it has simi-

larities with Gigerenzer’s (1991) attempt to explain apparent biases in many

situations using a small number of explanatoryprinciples.

The two concepts central to Griffin & Tversky’s (1992) argument are those

of “strength” and “weight”. Neither of these conceptsis rigidly defined, but

by strength they mean the “extremeness” of available evidence, and by weight

the “predictive validity” of the evidence. They note that the distinction

between these two conceptsis closely related to the distinction betweenthesize
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of a statistical effect (e.g. the difference between two means)anditsreliability
(e.g. the standard error of the difference). Griffin and Tversky argue that
individuals focus on the strength of evidence and may make some adjustment
(albeit insufficient) in response to the weight. This thesis makes particular use
of two of the heuristics identified in the heuristics and biases program
“representativeness” and “anchor-and-adjust”. For example, individuals may
makeuse of the representativeness heuristic (judging an interviewee on how
much heor she “lookslike” a successful manager) whilst ignoring (or paying
scant attention to) other factors controlling predictive validity. Any adjust-
ment that is made to take into account the weight of evidence is deemed
insufficient; i.e. individuals make use of the anchor-and-adjust heuristic, but
fail to adjust sufficiently.

Griffin and Tversky claimed that their hypothesis predicts a distinctive
pattern of overconfidence and underconfidence. When,in a given situation,
strength is high but weight is low, subjects exhibit overconfidence. However,
when strength is low and weight is high, individuals should exhibit under-
confidence. Inthefirst half of the paper, they were concerned withtesting their
predictions with respect to the evaluation of statistical hypotheses; in the
second half of the paper they extended their argument to confidence judge-
ments, and in particular to the calibration of general-knowledge questions.
The authors noted that there is a problem with the application of the theory
within the calibration domain, as strength and weight cannot be experi-
mentally controlled. However, Griffin and Tversky offer an “analogy to a
chance setup” (page 425) as a model of the processes involved when making
confidence judgements in a calibration study.

In this model, the balance of arguments for a (two-alternative) general-
knowledge problem is represented by the proportion of red and white balls in
a sample; difficulty (discriminability) is the difference between the probability
of obtaining a red ball under each of two competing hypotheses (the correct
alternative and the incorrect alternative). Expressed confidenceis given by the
balance of arguments,i.e. the proportion of red balls in the sample (where a
red ball represents an argument in favour ofthe correct alternative). For any
given sample size, and anypair of probabilities of obtaining a red ball under
the competing hypotheses, the normative or “correct” confidence response can
be computed for each sample composition (i.e. 1 red, 2 reds, etc.) from the
Binomial distribution and the application of Bayes’ theorem. Griffin and
Tversky assumethat the confidence judgementgiven by an individualis simply
the proportion of red balls they observe (i.e. the strength of the evidence).
Thus neither the level of difficulty as indexed by the discriminability of the
hypotheses, nor the sample size (both aspects of the weight of the evidence)
are taken into account. Ina simulation of the model, the authors generated
three calibration curves, by plotting the normative (posterior) probability
solution against the proportion of red balls in the sample (balance of
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arguments) for three pairs of hypotheses defining three levels of difficulty. The

probabilities of obtaining a red ball under the competing hypotheses were 0.50

and 0.40 for the “easy” task, 0.50 and 0.45 for the “difficult” task, and 0.50

under both hypotheses for the “impossible” task. Griffin and Tversky chose

non-symmetrical hypotheses “to allow for an initial bias that is often observed

in calibration data” (page 426).° The sample size (10) was held constant. The

three curves bore astriking resemblance to empirical calibration curves
obtained by Lichtenstein & Fischhoff (1977) for three levels of item difficulty

(as indexed by overall proportion correct). Calibration was reasonably good

for easy items (with slight underconfidence for lower confidence ratings and

slight overconfidence for higher ratings), there was marked overconfidence for

difficult items, and a flat calibration curve for impossible items. Thus the

model appears to provide an explanation for both the overconfidence

phenomenonand the hard—easy effect. It would also be an easy matter to

simulate changes in base rate with this model, but this was not investigated by

the authors.

18.5 EVALUATION OF THE MODELS

In this section, we providea critical evaluation of the models described above.

Weassess each model with respect to the empirical evidence, and in terms of

psychological plausibility. We also try to highlight the similarities and

differences between the models.

18.5.1 The Stage Model

Koriat, Lichtenstein & Fischhoff (1980) presented some empirical evidence to

support the view that overconfidence can be attributed to biases operating at

the first and secondstages of their model. They noted a bias in the production

of reasons for and against a particular alternative, favouring evidence for over

evidence against. They also provided some empirical support for the notion

that subjects disregard evidence inconsistent with their chosen answer. Forcing

subjects to write down a contradictory reason did improvethe realism of their

confidence assessments as indexed by calibration scores. However, the

decrease in overconfidence was very small (2%) and non-significant. In a

replication of the study Fischhoff & McGregor (1982) failed to find an effect

of disconfirming evidence. Gigerenzer, Hoffrage & Kleinbolting (1991, page
521) argued that these negative results were consistent with PMM theory,

which predicts no change in expressed confidence when subjects are asked to

produce disconfirming evidence.

Despite the underspecification of the stage model, and the lack of empirical

support in its favour, it is useful when viewed as a framework within which
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other models of calibration can be located. For example, the process and

ecological models are concerned with the first stage, the strength and weight

model attributes miscalibration to the first and second stages, and the

detection model to the third stage.

18.5.2 The Detection Model

Ferrell and his colleagues (Ferrell, this volume; Ferrell & McGoey, 1980; Smith

& Ferrell, 1983) have provided an impressive amount of evidence in support

of their model. They have shownthat it provides a good fit to a wide range

of data sets, collected using a variety of task formats and types of stimulus

materials.

With respect to task difficulty in the standard 2AFC probability-correct

task, Ferrell & McGoey (1980) have shown that even with the estimation of a

single parameter [p(C)], both the calibration curve and the usage of the

response categories can be well predicted. For example, they estimatedthe

cutoffs (the position of the criteria on the decision variable) for the entire data

set collected by Lichtenstein & Fischhoff (1977), and showedthat this set of

criteria provided a goodfit to the data for subsets of items (e.g. “hard” items

and“easy” items). They concluded that such findings were consistent with the

hypothesis that a set of cutoffs appropriate to a proportion correct of about

75% was maintained even when p(C) was substantially different from 75%.

The failure to adjust the cutoffs (or to adjust them sufficiently) led to the

hard—easyeffect.

Ferrell & McGoey (1980) and Smith & Ferrell (1983) also showed that in a

full-range probability-true task, the shift of the calibration curve under

different base-rate conditions was again predictable if the cutoffs for the 50%

condition were used to model the data collected with base rates either above

or below 50%. Again, they concludedthat the effect could be attributed to the

subjects’ failure to adjust their criteria with changes in baserate.

Despite the success of the detection model,°® it has been criticized on the

groundsthat it does not elucidate the cognitive processes involved in making

subjective probability judgements. For example, Keren (1991, page 262)

remarked that “Unfortunately, the model provides little insight into the

possible cognitive processes governing probability judgements.” Of course,

this does not mean that the model is wrong—it could indeed be the case that

miscalibration is caused by a problem with translating a feeling of certainty

into a numerical estimate, and haslittle to do with the use of heuristics, or the

operation of other cognitive processes.

However, there are some empirical results which suggest that calibration

performance may depend on more than the numerical assessment process. For

example, Juslin (1993) found excellent calibration in four subsets of data

where p(C) varied from 66% to 80%. Thus the subjects in this experiment
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were able to maintain good calibration at rather different levels of difficulty—

a finding inconsistent with the predictions of the detection model. Further, a

fundamental assumption underlying the predictions derived from the modelis

that when miscalibration is observed, subjects haveset their criteria for a task

which they believe to be either easier (leading to overconfidence) or harder

(leading to underconfidence) than the task actually presented. However,

Gigerenzer, Hoffrage & Kleinbodlting (1991) have presented convincing

evidence that subjects are apparently able to anticipate very accurately the

difficulty of a typical general-knowledge test (i.e. one representative of the

reference class “general-knowledge tests”) in that they can give good estimates

of the numbers of items they have correctly answered, butstill remain very

overconfident in their calibration of individual items. In addition, with a

randomly sampled set of items, subjects underestimate the frequency of

correct answers but show good calibration. Both of these findings present

problems for the detection model; with task difficulty correctly determined

good calibration would be predicted, and whentaskdifficulty is overestimated,

underconfidence should be the result.

In conclusion, the detection model can be regarded as being a modelof the

last of Koriat, Lichtenstein & Fischhoff’s (1980) three stages—the stage where

subjective feelings of uncertainty are mapped onto numeric probability

responses. The detection modelhaslittle to say about the cognitive processes

leading to the formation of these feelings other than that some feature (or

features) of the task generates (in an unspecified manner) a value on an

unscaled internal variable (the decision variable). By making the simple

assumptions that probability responses are read off from a partitioning of this

variable and that—in the absence of feedback—this partitioning is not

appropriately matched to the task difficulty the detection model can account

for empirical data from a number of domains. This fact suggests that in most

calibration tasks we need not look at earlier stages in Koriat et al.’s framework

in order to account for the observed phenomena. However, for other tasks we

may need to look further. For example, as emphasized above, the detection

model makesno prediction of miscalibration when feedbackis present. In the

majority of judgement tasks outside the laboratory feedback of some kind is

available, but in a number of suchtasks miscalibration has still been found

(e.g. Staél von Holstein, 1971, 1972; Yates, 1982; Yates and Curley, 1985).

Further, the detection modelis not applicable to tasks where explicit reasoning

about numbers or proportions is required, such as in Bayesian probability

revision or “book-bag-and-poker-chip” experiments. In these tasks—which

Ferrell refers to as “external validity tasks” (see Chapter 17)—no value is

generated on the internal decision variable, hence no probability response can

be generated as required by the detection model. It would seem then that the

detection model can only provide a partial explanation for poor calibration

performance.
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18.5.3. The Process Model

The two papersoutlining the process model (May, 1986a, 1986b) contain many
interesting and novel ideas, some of which were taken upin the later ecological
models. For example, May recognized that the degree of miscalibration
observedin a particular general-knowledgetask waslikely to depend upon the
nature of the selection process used to generate the items, and she argued
against the notion that miscalibration couldbe attributed to shortcomings in
humaninferential or intellectual reasoning. Finally, she introduced the notion
of the mental model as the basis for subjective probability judgement.
May proposedthat there might be at least two types of representation that

could be used to answer general-knowledge problems. With respect to the
syllogistic mental model wherethe individual uses inference to choose between
two alternatives in a 2AFC item, Gigerenzer, Hoffrage & Kleinbélting (1991)
have argued that the probabilistic syllogism as presented by May would not
lead to good calibration in the long run, becauseit did not include information
about both the alternative answers. They proposed a modified version of the
model (the double-syllogism model) which, they claimed, would result in long-
run calibration (see Gigerenzer, Hoffrage & Kleinbélting, 1991, page 523).
For the second form of representation (a cognitive map) May argued that

perfect calibration was impossible if the map contained distortions. With this
form of representation, misleading items are misleading because of “false
knowledge” possessed by subjects. She showed that confidence was highly
correlated not with the objective distances and geographical relationships
between cities, but with the subjective distances and relationships, and that
these were distorted. Thus she argued that the reason that subjects gave a mean
confidence rating of 80% when answeringthe question “Which is further
North? (a) Rome, (b) New York”, though the solution probability was
somewhat under 30%, was because of a serious distortion in the subjects’
cognitive map, with North Americancities shifted too far North with respect
to Europeancities.

However, a simpler explanation can be derived from the ecological
models—subjects used a climate cue to answer the question knowing that in
general, a colder climate indicates a higher latitude. This would lead them to
pick the wrong answer(i.e. New York) and mayalso lead them to believe that
New York really is further North than Rome—resulting in a distorted
cognitive map. The subjects had obviously never seen a map on which the
latitudes of these two cities are reversed, so why did they have distorted
cognitive maps? Theidea that subjects use probability cues in answering such
questions supplies an answer to both why subjects get this item wrong with
high confidence, and why they have distorted cognitive maps. Differences in
the confidence expressed for different pairs of items can be attributed to the
use of a variety of cues with varying cue probabilities.
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Although forthe example above, the use of probability cues may provide
a more parsimonious explanation of calibration performance, May is not

alone inbelieving that different representations might be used in different

stimulus domains. Bjérkman, Juslin and Winman (1993) argue that for

psychophysical judgements, the distance between stimulus items on the

dimension to be judgedis indeed the representation used—butbelieve that for

general-knowledge items probability cues are used.

Maywasclearly wrongin believing that perfect calibration was only possible

in the absence of “misleading” items (see Gigerenzer, Hoffrage & Kleinbdlting

1991; Juslin, 1993, 1994), and for the general-knowledge tasks that she

considered, the ecological models would seem to provide a better description

of the cognitive processes and representations underlying subjective prob-

ability judgements than is furnished by her process model.

18.5.3. The MemoryTrace Model

There are a numberof problems with this model as a general explanation of
calibration performance.Firstly, it would only seem applicable to situations

in which the assessor has had past experience of a set of similar events to those

presentedat test, and has received outcome feedback(e.g. a weather forecaster

predicting rain). The model does not seem applicableto tests where the items

are essentially unique (Keren, 1991) or indeed any task which is novel (e.g.

choosing which of apair of countries has the larger population) although the

stimulus domain maybe familiar (e.g. countries of the world). Indeed, Albert

and Sponsler (1989) stated that confidence is based on a record of past suc-

cesses and failures at predicting the outcomes of events the brain “deems

similar” (page 298).
Secondly, the model only predicts the overconfidence effect—indeed, the

authors seem to have been unawareofthe fact that with very easy tests under-

confidence is observed. Their apparent belief that it is only overconfidence

whichhasto be explained (andtheir faith in the robustnessof this finding) was

critical to their rejecting the notion that all subsets of the full memorytrace

are equally likely to be selected because this would, in the long run,lead to

perfect calibration. Accordingto this model, perfect calibration can only be
achieved whentheassessorretrieves the entirememory trace—implying that

only an assessor with perfect memory for the outcomes of the predictions can

be perfectly calibrated.

The model does, however, have somesimilarities with the ecological models,

in that the cognitive representation which guides both the decision and

subjective probability estimate is in terms of frequencies. However, unlike the
ecological models, the frequencies simply represent past successes and failures

at prediction, and not the validities of various probability cues associated with

a particular target variable and a particular referenceclass.
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Finally, no distinction is drawn between performance in termsofrelative

frequency of success in the past, and confidence in individual items.

Gigerenzer, Hoffrage and Kleinbdlting (1991) have drawn a distinction

between the reference class of past success on similar tests, and the reference

class relating to the content of individual items, and have provided evidence

for the psychological reality of this distinction. In the memory trace model

they are one and the same. If subjects can produce good estimates of the

frequency of success in the past they should also be well calibrated—but

Gigerenzer et al. have shown that this is not so.

In summary, this is a model designed to explain individual differences in

calibration performance (cf. Phillips & Wright, 1977) but suggests that

differences in the calibration performance of difference assessors is entirely

attributable to the quality of their memories. It fails to capture many of the

empirical findings relating to calibration performance, and would seem to be

an implausible candidate for either a general or domain-specific explanation

of subjective probability judgement.

18.5.4 The Ecological Models

The PMMtheory described by Gigerenzer, Hoffrage and Kleinbdlting (1991)

is the most complete model for the calibration of subjective probabilities that

has so far been produced. It elegantly explains the overconfidence effect, the

hard—easy effect, the circumstances under which good calibration is to be

expected, and the confidence—frequency effect. It also makes strong and

testable predictions concerning the circumstances under which a reversal of the

hard—easy effect should occur. The model also explains a number of other

apparently anomalous findingsin the literature. The authors argue that the

locus of miscalibration for general-knowledge items is in the test materials

themselves, and is not the result of biased probabilistic reasoning on the part
of the subjects.

However, the empirical evidence presented by Gigerenzer, Hoffrage &

Kleinb6élting (1991) is somewhat less convincing than the model. The problem

is that difficulty as indexed by proportion correct co-varies with the type of

item selection—items which are selected to be a good test of an individual’s

general knowledge (and thus not representative of the reference class) will on

average be harder than those randomly selected from the reference class. Thus

the demonstration that calibration for randomly selected city items is better

than for standard general-knowledge items could be viewed as just another

example of the hard—easy effect. However, the finding that subjects can be

overconfident with respect to calibration based on the confidence expressed for

individual items, and simultaneously well calibrated with respect to their

overall performance with informally selected items, or well calibrated for

individual ratings and underconfident about their overall performance with
randomly selected items, is much more compelling.
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The model proposed by Juslin (1993, 1994) based on internal cue theory

(Bjorkman,in press), is in most respects identical to the PMM theory. Juslin’s

model wasrestricted to an explanation of the overconfidence effect and the

hard—easy effect, and he did not predict the confidence—frequency effect.

However, Juslin (1993) provided an impressive empirical test of his own

model, and thereby, PMMtheory. Juslin predicted that if the randomly

generated geography items used in his experiment were divided into four

subgroups, not on the basis of proportion correct (as in Lichtenstein &

Fischhoff, 1977) but on the basis of the mean familiarity rating given to the

pair of countries forming an item, the hard—easy effect would be abolished,

and good calibration should be observed—despite differences in the pro-

portion of items correct across the subgroups. The reasoning wasasfollows:

for highly familiar items, a large number of relevant cues can be generated,

and thus there is a high probability of a cue with a high validity being

activated. This will lead to a high proportion of correct answers. For items

with low familiarity the reverse is true; they are likely to be answered using

cues with low validities, and thus a low proportion correct is to be expected.

In both cases, the cues used should be ecologically valid, as the generating

process was random and thus good calibration would be expected. This

prediction was supported by the data; for the most familiar items the

proportion correct was 0.80 and for the least familiar 0.66, but for all

subgroups calibration was excellent. Hence Juslin (1993) successfully

decoupled cue appropriateness and item difficulty.

Wehaveidentified two potential problems with the ecological models. The

first concerns the degree to which the models can be extended beyond the

domain of knowledge questions, and beyond the 2AFC task format.

Gigerenzer, et al. argued that PMMtheory wasapplicable to perceptual tasks,

and that good calibration would be anticipated as long as the items were not

chosen to be misleading (i.e. not selected for perceptual illusions). They also

predicted that with two perceptual tasks, which varied in discriminability but

with stimuli generated by the same sampling process, the hard—easy effect

should disappear. However, we have shownthat overconfidence in a percep-

tual task varies systematically with discriminability (the hard—easy effect)

despite the fact that the stimuli were indeed generated by the same random

process (McClelland, Bolger & Tonks, 1992). It should be noted, however,

that we used a full-range probability true task, and that the task was novel to

the subjects, but nevertheless this finding does not square with either of

Gigerenzer et al.’s predictions. With respect to the question of the generality

of the probability cue notion, Juslin has taken an alternative approach,

arguing that internal cue theory is only applicable within the knowledge

domain, and that a different representation is used with psychophysical tasks

(see Bjérkman, Juslin & Winman, 1993).

The second problem concerns the plausibility of individuals actually

learning the appropriate cuevalidities for the probability cues with respect to



472_0TCAG.R. McClelland andF. Bolger

a target variable in a particular knowledge domain. To take Gigerenzeret al.’s
example (although the argument also applies to Juslin, 1993, 1994) the
frequency whichthe individuals would have to record is the number of times
that one city with more than 100 000 inhabitants has a larger population than
anothercity with more that 100 000 inhabitants when the first city has a team
in the Bundesliga and the second city does not. Further to obtain an accurate
cue validity, all possible pairs of cities would have to be examined,oratleast
to obtain an unbiased estimate, a random sampleofall possible pairings would
have to be selected. The appropriate cue validities could not be learnt if
individuals merely noted thatlarge cities tend to have teamsin the Bundesliga,
and smaller cities do not. Note also that if the target variable and probability
cue are reversed (e.g. a decision has to be madeas to which of twocities has
a team in the Bundesliga, with population used as a cue) a different value
would have to be recorded, as conditional probabilities are only symmetrical
under veryrestricted circumstances. How plausible this is remains an open
question.

In addition, both Harvey and Rawles (1992) and Griffin and Tversky (1992)
have provided evidence inconsistent with the ecological models. Harvey and
Rawles questioned the PMM assumption that subjects always choose the
alternative with the higher value onthe probability cue, and suggested instead
that subjects “probability match” (Estes, 1964). Thus for a cue with a validity
of 0.90, subjects would choose the alternative with the 0.90 probability 90%
of the time, and the other alternative 10% of the time. Using a simulation
technique, they found that probability matching model produced a very good
fit to the data (from ageneral-knowledgetest), whereas the PMM model gave
a very poorfit.

The results inconsistent with the ecological models provided by Griffin and
Tversky are described below.

18.5.5 The Strength and Weight Model

Griffin and Tversky (1992) presented both a general framework for under-
standing the relationship between confidence and accuracy, and a specific
model for laboratory-based calibration experiments.
As described earlier, the specific model was in the form of an analogy (a

chance setup) and the authors demonstrated that a plot of the “normative”
solutions derived from Bayes’ theorem against a measure of the strength of
evidence (presumed to be the subjective probability estimates) produced
calibration curves which mimicked the empirical curves from Lichtenstein and
Fischhoff (1977).

It seems to us that this modelis essentially a version of the detection model
(Ferrell & McGoey, 1980) which makes use of a discrete probability distri-
bution (the binomial distribution) rather than a continuousdistribution (the
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normal distribution). This view is shared byFerrell (personal communication)
whohas developed anotherdiscrete version of the detection model (based on

the symmetrical criterion model presented in Smith & Ferrell, 1983, pages

475—6). In this version, red balls represent evidence in favour of one of the

alternatives in the 2AFC task (which may or may notbe thecorrect answer)

and white balls represent evidence in favour of the other alternative. If more

red balls are present in the sample, the hypothetical subject would choose one

alternative—if more white balls, the other. A sample containing exactly five

red balls (out of 10) would lead to a random selection of an alternative, and

a probability judgement of 0.50. This model producesslightly different curves

from the Griffin and Tversky model, and the two models only coincide when

the hypotheses are symmetrical. It should also be noted that the Griffin and

Tversky model actually produces posterior probability values across the full

probability range (from 0% to 100%) despite the fact that it is designed to be

an analogy to a 2AFC task. To be consistent with Lichtenstein and Fischhoff’s

(1977) data, the authors are forced to “cut off” the calibration curves, and

only plot values from 50% to 100%. The Ferrell version has the advantagethat

it does not predict confidence ratings below 50%, andthus the values fall in

the half-range—as they should.

What are substantive differences between the strength and weight modei and

the detection model? Griffin and Tversky suggest that the strength of evidence

is better represented by a balance of arguments, whereas Ferrell and McGoey

suggest it is better represented by the absolute difference in apparent truth

between the alternatives, measured on a continuous scale. The strength and

weight model never allows for perfect calibration (even with feedback) as the

proportion of balls in the sample is never the sameasthe posterior probability

(except trivially, at the 50% point for an impossible task). The response

criteria in this model are by necessity fixed (the number ofred balls in the

sample), whereas in the detection model it is possible for the criteria to be

adjusted (with feedback) in order to improve calibration performance. In

other respects, the models are very similar, in that they both assume that

subjects base their probability judgements on the strength of evidence, and

ignore the weight of evidence. Finally, if the sample size in the strength and

weight model were allowed to tend to infinity, the binomial distributions

would tend to normality and the probability scale would become continuous—

as in the detection model.

In addition to the simulation of their model, Griffin and Tversky also

reported some empirical results from an experiment (Griffin & Tversky, 1992,

Study 5) which they interpreted as supporting the strength and weight

approach, andas being inconsistent with PMM theory (Gigerenzer, Hoffrage

& Kleinbdlting, 1991). They showedthat for a representative (random) sample

of 30 pairs of American states, subjects were consistently overconfident in

their predictions concerning population, high-school graduation rates, and the
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difference in voting rates between the last two presidential elections. In

addition, they had predicted that for population judgements both accuracy

and confidence would be high (on the grounds that individuals should be

knowledgeable about population) for voting both confidence and accuracy

would be low (because they would not be knowledgeable about voting rates)

and for education, accuracy would be low and confidence high. This last

prediction was made on the groundsthat subjects would be likely to use cues

such as the number of famous universities or cultural events within a state to

guide their judgements, whenin reality the correlations between these cues and

high-school graduations rates are very low—a type of “false knowledge” in

May’s terms (May, 1986a, 1986b). The predictions received empirical support.

In particular, performance for both voting and high-school graduation wasat

chance level, although the mean confidence rating for education (65.6%) was

significantly higher than that for voting (59.7%). The subjects were also asked

to estimate how many of the questions they thought they had answered

correctly, and it was found that for all three types of judgement the judged
frequency was below the actual frequency (for voting and education the

estimates were well below chance).

Griffin and Tversky concluded that overconfidence in calibration studies

cannot be attributed to either an artifact of item selection or a by-product of

task difficulty, and clearly their empirical findings would seem to pose a

problem for the ecological models. However, Juslin (1993, 1994) had

observed excellent calibration for population judgements—so the Griffin and

Tversky result (6.5% overconfidence) for this attribute 1s somewhat of an

anomaly. With respect to the other two attributes (high-school graduation and

voting) performance was at chance level. This implies that these attributes

were not part of the subjects’ knowledge base (so effectively the task was

impossible) but does not explain why subjects were overconfident (as the
stimuli were randomly selected) or the difference in overconfidence between

voting and education. However, the samples presented to subjects were very

small (15 items per attribute) and could have contained a number of

misleading items just by chance. Further, for solution probabilities around

50%, overconfidence would be expected simply because of the range

restriction at the lower end of the probability scale (May, 1986b; Poulton,

1989). Finally, subjects are rarely faced with an impossible task, and may have

suffered from a degree of evaluation apprehension, as well as wishing to be

“good subjects” (McBurney, 1990). This may have led them to give confidence

ratings higher than they truly felt appropriate, in an attempt to demonstrate

that they could do the task. If the subjects were students (the source of the

subjects is not stated) they inight have felt that the experimenters would expect

them to have knowledge concerning the educationattribute in particular. This

would lead them to provide higher confidence ratings for the education

attribute than the voting attribute.
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Griffin and Tversky’s predictions do pay lip service to the notion that

subjects use probability cues, but the implication is that subjects have “false

knowledge”—they believe the cues to have highervalidities than they actually

do. Whythis should be so is unclear from Griffin and Tversky’s account.

18.5.6 Evaluation Summary

Wehavebriefly described and critically reviewed seven models of subjective

probability calibration. In the light of this review, should webe pessimistic or

optimistic about the ability of individuals to be well calibrated?

Three of the models are clearly pessimistic; Albert and Sponsler (1989)

suggest that overconfidenceis a direct consequence of howthe brain stores and

retrieves information concerning past efforts at prediction. Both Koriat,

Lichtenstein and Fischhoff (1980) and Griffin and Tversky (1992) argue that

overconfidence can be attributed to the use of heuristics, which leads

individuals to ignore vital information, which, in the view of these authors,is

required to produce accurate probability estimates. Koriat et al. suggested that

individuals are both biased in the retrieval of information (favouring positive

evidence) and in their evaluation of the evidence (disregarding negative

evidence); Griffin and Tversky suggested that individuals base their confidence

on the strength of evidence available, and either ignore or under-utilize the

weight of evidence. Thereis little empirical support for the Koriat et al. stage

model, but some for the Griffin and Tversky strength and weight model.

Like Griffin and Tversky, Ferrelland McGoey (1980) are also pessimistic to

the extent that they believe that information concerning predictive validity

(such as discriminability and base-rate) is ignored, but imply that this can be

corrected by the use of appropriate feedback. Unfortunately, the evidence that

training will markedly improve calibration performance is weak (see below).

May (1986a, 1986b) is somewhat more optimistic, in that she argued that

good calibration is expected if no “misleading” items are present, and the

subjects are relying simply on theirsensitivity to objective physical differences.

However, Bjérkman, Juslin and Winman(1993) have shown that for true

psychophysical judgements, underconfidence is observed, which they attribute

to the fixed sensitivity of the sensory system andclaim it is impossible to avoid.

With respect to general-knowledge items, May claimed that with random

sampling and the use of simple inference (a probabilistic syllogism) good

calibration could be achieved, but that overconfidence was to be expected if

the sampling procedure was biased. However, she believed that if items were

misleading because subjects held “false knowledge” (such as a distorted

cognitive map) then overconfidence would result.

Clearly the most optimistic theorists are those responsible for developing the

ecological models. Both Gigerenzer, Hoffrage and Kleinbdlting (1991) and

Juslin (1993, 1994) believe that the miscalibration observed in general-
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knowledgetests can be attributed to the biased sampling of stimulus items, and
that with representative sampling individuals are well calibrated. Both models
(and PMMtheoryin particular) provide the most complete explanation for the
empirical findings (the Griffin and Tversky results notwithstanding), although
to what extent these ideas can be extended beyond thegeneral-knowledge
domain remains to be seen.

Juslin believes that different mental representations are used in different
stimulus domains, and neither internal cue theory nor PMM theory can
providea general explanation for the calibration of probabilities. Gigerenzer
et al. have implied that PMM theory is general, and that it can explain
calibration data in perceptual as well as cognitive tasks. However, the evidence
for this proposal is not conclusive, andfurther research is required.

18.6 CAN ONE LEARN TO BE “WELL
CALIBRATED”?

The attempts to improve individuals’ calibration performance through the use
of training with feedback have met with limited success. Ferrell (see Chapter
17)states that “... it is comforting that calibration can be improvedrelatively
easily by suggestion andbytraining”, but notes that “This optimism must be
tempered by thefindings that training ... does not seem to generalize very
well” (page 430). Keren (1991) is even less optimistic; “The most disturbing
finding obtained from training studies is that whatever modest improvement
is achieved, it is hardly ever generalized to other tasks” (page 238). Other
authors, however, put a very positive spin on the evidence for improvement
through training. Russo and Schoemaker (1992) boldly state that “We believe
that timely feedback and accountability can gradually reduce the bias toward
overconfidencein almost all professions. Being ‘well calibrated’is a teachable,
learnableskill” (page11, italics theirs). However, the evidence that outcome
feedback aloneis effective in reducing miscalibration is not encouraging (see
Benson & Onkal, 1992 for a review).
The models we have reviewed vary in the amountof optimism they engender

regarding the learning of good calibration. The most pessimistic models
suggest that neither training nor experience will have an effect on calibration
performance. This is either because miscalibration is a consequence of the
mannerin which the brain stores information (the memory trace model) or
because the same heuristics—with the samelimitations—are always used (the
strength and weight model). Albert and Sponsler (1989) imply that someone
with a poor memorywill never be well calibrated, and that the miscalibration
will be in the direction of overconfidence. Griffin and Tversky (1992) suggested
that the bias in favour of the strength of evidence over its weight is
incorrigible, and argued that calibration performance dependsheavily on the
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predictability of outcomes in a target domain. For example, they suggested
that experts will be more overconfident than non-experts in an unpredictable

domain(e.g. clinical psychology or the stock market) because they will give

unwarranted credence to the validity of their expert knowledge.

The detection model is not entirely pessimistic because it allows for an

improvement in calibration performance with outcome feedback, which

allows the assessor to adjust his or her criteria on the evidence variable

appropriately. However, this does not imply that an individual who becomes
well calibrated in one domainwill be well calibrated in another, and as we have

noted, the evidence that outcome feedback improvescalibration performance

is very weak.

The expectations derived from the stage and process models are that certain

types of training will lead to improvementin calibration undercertain circum-

stances. For the stage model, training must be in the form of the generation
of counter-arguments as described by Koriat, Lichtenstein and Fischhoff

(1980), but again this seemedto havelittle effect on calibration performance.

In the case of the process model we would anticipate that training in the form

of the correction of false knowledge should lead to a reduction in over-

confidence and thereby improvecalibration.

Finally, we turn to the ecological models, which furnish quite specific

predictions as to when training will, and will not have a beneficial effect on

calibration, and provide a simple explanation for the poor results obtained

when training with feedback has been examined. Training with outcome

feedback should be effective when subjects are confronted with novel tasks,

as this will allow them to learn the appropriate cues and cue validities

required to make predictions. Any procedure which allows individuals to
observe the covariation between variables in an ecologically valid setting

should lead to an improvementin the quality of their subjective probability

judgements.

Training with outcome feedback will not be effective with tasks such as

standard general-knowledgetests, which contain an unrepresentative sample

ofitems from the reference class. This prediction stems from the assumption

that subjects will continue to use cues and report cue validities which are

ecologically valid, but are not valid for non-representative stimuli. As Keren

(1991) pointed out, most training investigations have used general-knowledge

items, and weagree with him that the modest improvements which havebeen

noted can be attributed to the fact that subjects receiving continuous feedback

that their probability responsesare too high will naturally lower them,but this

is merely a “technical correction”, and has nothing to do with improving

probability judgements. This analysis also explains why any improvement does

not generalize to other tasks. The quality of the calibration performance

depends on the experience the subject has had with the target domain, and

crucially, on how the stimuli used in the test have been selected. Thus, from
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the perspective of the ecological models, there is cause for optimism with

respect to training—butnot for the notion of a generaltraining in calibration.

18.7 CONCLUSIONS

We have argued that the ecological models, and PMM theory (Gigerenzer,
Hoffrage & Kleinbdlting, 1991) in particular, provide the most coherent
account of how individuals realize subjective probability judgements, and

afford the most satisfactory explanation of calibration performance with

general-knowledge items.

The calibration of subjective probabilities has been studied in a variety of

other task domains, and it remains an open question as to how successfully

the ecological approach can be applied in other settings. For example,

Bjorkman, Juslin & Winman (1993) have provided evidence that, when
making psychophysical judgements, an alternative representation which leads
to underconfidence is used. The representation is based on the subjective dis-

tance between the stimuli, and BjOrkmanetal. argue that due to thefixed sen-

sitivity of the sensory system, the bias cannot be avoided.’ They also provide

evidence that training has no effect on the underconfidence bias. However,in

a recent paper Baranski and Petrusic (1994) have questioned the subjective dis-
tance model. In three experiments, these authors showedthatit is possible to
obtain overconfidence in psychophysical judgments when responseaccuracyis
sufficiently reduced—either by putting the subjects under speed stress, or by
reducing discriminability sufficiently under accuracy stress. They also studied

decision time conditionalized on confidence category, and argued that their
results were incompatible with both the subjective distance model and the
detection model described earlier.

There are other task domains in which it may be implausible that PMM
theory or internal cue theory applies in the form suggested by the ecological
models. For example, weather forecasters are notoriously well calibrated

(Murphy and Winkler, 1977; 1984) but it would seem unreasonable (but not

impossible!) that a single cue is used to arrive at both a decision concerning
precipitation and the associated probability. It is also difficult to see how the
models can be applied to episodic memory tasks. Whatsort of interaction with
the environment and encoding of the co-occurrences of events would help to

decide that a stimulus item was present or absent during the encoding phase

in a recognition memory experiment? Wagenaar (1988) showedthat subjects
were quite well calibrated (but demonstrated some overconfidence) for “old”
items but extremely poorly so for “new” items in an old/new recognitiontest
using words, syllables and numbers as stimuli. McClelland (1992) obtained
similar results in a face recognition study. Wagenaar also showed that

calibration was reasonably good when subjects were able to retrieve
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information directly from episodic memory, but overconfidence becameevi-

dent whenthey relied on inference rather than direct memoryretrieval. We

believe that in experiments of this type, probability judgements may be based

on a form of representation not well captured by either PMM theory or

internal cue theory in their present form. Further empirical and theoretical

workis clearly needed.

With respect to a general model of calibration performance, Baranski and

Petrusic (1994) have argued that the properties of decision timesin calibration

tasks place tight constraints on possible candidates (see also Wright & Ayton,

1988). Baranski and Petrusic suggest that an “appealing avenuefor theoretical

consideration” (page 426) might be a variant of Ferrell and McGoey’s (1980)

detection model—one which could account for the pattern of reaction-time

and response probability relationships observed in their experiments. They

favour an approach based on some form of evidence accumulator model(e.g.

Link, 1992; Petrusic, 1992; Vickers 1970, 1979).

Recently, a colleague of ours who works in the area of judgement and

decision making commentedin a rather exasperated tone that it was about

time that the calibration issue “was laid to rest”. That outcome maystill be

some way off, but we feel confident that the days of “dust-bowl empiricism”

are over, and that there is now a rich enough source of theoretical ideas to

drive calibration research in a more productive direction.
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NOTES

(1) The majority of calibration studies have used a 2AFC paradigm.For each item

(e.g. “Absinthe is (a) a preciousstone, (b) a liqueur”) the subject selects one alternative

and gives a probability rating that the choice is correct on a scale between 50% and

100%. In a full-range probability true task, the subject responds on ascale between 0%

and100% to indicate the degree to which they believe each statement to betrue (e.g.

“Absinthe is a precious stone”) or confidence in the outcome of a future event(e.g.

“What is the probability that it will rain tomorrow?”). For other task formats see

Ferrell & McGoey (1980).

(2) In full-range tasks, base rate (the relative frequency of statementsactually true,

or of the occurrence of an event) has also been found to have aneffect on calibration

performance (see Smith & Ferrell, 1983). However the overestimation of the

appropriate relative frequencies with base rates below 50%, and underestimation with

base rates above 50%, has received far less attention than the overconfidence and

hard—easyeffects.

(3) Although information concerning the other alternative is not explicitly present
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in the syllogism, it must presumably be the case that the individual knows that

Hyderabadis not a capital city (see also, Gigerenzer, Hoffrage & Kleinbdlting, 1991,
page 523).

(4) Albert and Sponsler (1989) use the concept of “expertise” with respect to the

accuracy of an assessor in making subjective probability judgements, and not to

indicate the degree to which an individual is regarded as an expert withina particular
knowledge domain.

(5) We assumethis is a reference to the slight underconfidence that is often observed
at the 50% point on the subjective probability scale in 2AFCtasks.

(6) However, Ferrell and McGoey (1980) noted that in manycases, the fit of the
model was notso precise as to bestatistically indistinguishable from the data.

(7) Whilst thismay be true for psychophysical tasks, it does not follow thatit is true
for all perceptual tasks. Extracting information predictive of a target event from a
complex andnoisy stimulusdisplayis likely to be a learnableskill, leading to improved
calibration.
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Gambling, or games of chance, served as a major (though not exclusive—see

Daston 1988; Hacking 1975) impetus to the development of probability theory

and the conceptualization of uncertainty. Throughout its entire history, the

reasoning associated with gambling is characterized by a complex blend of

rational and nonrational components. This is best illustrated in one of the

earliest texts on gambling written in the beginning of the 16th century by

Gerolamo Cardano. The book,entitled The Book on Games ofChance (Liber

De Ludo Aleae) is supposedly the first mathematical attempt to construct the

initial elements of what eventually became the theory of probability
(Gigerenzeret al., 1989: Hacking, 1975). At the same time, however, a bulky

part of the book contains assertions and beliefs that are completely remote

from anyrational framework. Indeed,it is the lack of discrimination between

rational and nonrational considerations which ultimately leads to different

paradoxes of gambling behavior (Wagenaar, 1988).

How could one account for this mixture of rational and non-rational
considerations? Bruner (1984) proposed to distinguish between two different

and irreducible fundamental modes of thought. One, which he termed the

paradigmatic (or logico-scientific) mode, is epistemological in nature andis
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based on the abstract rules of logic regulated by the basic requirements of

consistency and noncontradiction. Theother mode, termednarrative, is more

phenomenological in nature, and is concerned with the explication of

intentional and goal-oriented actions and the consequent associated conscious

experience. Unlike the paradigmatic mode, it is thus context-sensitive and

particular. A radical difference between the two modesis the manner by which

they establish truth: whereas the former mode employs formal verification

procedures andempirical proof, the latter, according to Bruner, “establishes

not truth but truth-likeness or verisimilitude.” In other words, whereas the

paradigmatic modeis based on evaluation standards that are presumed to be

“objective”, the narrative modeis in principle subjective. Bruner has further

claimed that the two modes of cognitive functioning are irreducible. This

assertion, however, should be qualified: the two modesare irreducible from

a “paradigmatic” standpoint, not necessarily from a “narrative” view.In fact,

human behavior can be frequently depicted by an interplay between these two

modes despite the fact that they are incongruent.

Nowhereis this more apparent than in gambling behavior and gamblers’

conceptualization of uncertainty. The fact that people gambleatall in face of

negative expected values, is one of the main paradoxes of gambling behavior.

However, the paradox exists only under the assumptions of the paradigmatic

view. Once these are relaxed, the paradox (see Wagenar 1988), relies at least

to someextent on narrative facets. Indeed, I suggest that many erroneous

convictions and biases regarding the uncertainty calculus shared by gamblers

and nongamblers alike, stem from failures to (completely) disassociate the
paradigmatic and narrative modes of reasoning.

The purpose of the present chapter is to describe gamblers’ conceptualiz-

ation of uncertainty in light of the paradigmatic—narrative distinction. I first

discuss briefly the meaning of uncertainty and the nature of probabilistic state-

ments from a normative and descriptive (mainly phenomenological) point of
view. Subsequently, fundamental errors and misconceptions of gamblerswill

be presented and analyzed. Implications for the psychology of uncertainty and

for gambling behavior are summarizedin the last section.

While the presentation is inherently descriptive in nature, it will be assessed

against the normative theory of probability as dictated by the paradigmatic

mode.

19.1 ON THE MEANINGOF UNCERTAINTY AND
THE INTERPRETATION OF PROBABILITY

There is a consensus among mostscientists that probability theoryis in thefirst

place a formal theory in pure mathematics, the most commonand acceptable
version of which is based on Kolmogorov’s axioms and definitions (Shafer,
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1993). Except for probability, which in the formal theory remains an

undefined concept, all the other terms in the probability calculus have well-

established meanings that are taken from logic and mathematics (Salmon,

1966). It is in this respect that Daston (1988) correctly asserted that “The

mathematical theory itself preserved full conceptual independence” from any

possible interpretation that may be attached to it. Thus, the psychological

considerations associated with the meaning of the undefined term of

“probability” are not part of the formal system.

It is the moment at whichthe theory is applied that an interpretation of the

concept of probability is unavoidable, and it is this stage which remains

controversial to this date. Within the logico-scientific (i.e. paradigmatic)

mode, there is a long-lasting literature concerning the possible meanings of

probability, a discussion of which is beyond the scope of the present chapter. I

Briefly, the most commoninterpretations advanced by Keynes and Carnap,

maintain that probability measures the degree of confidence that would

be justified by the available evidence; the frequentistic interpretation

advocated by von Mises, which interprets probability in terms of the relative

frequency in an infinite sequence of events; and the personalistic viewpoint as

represented by De Finetti and Savage, according to which probabilities are

purely subjective and reflect degrees of actual belief.

Several attempts have been made to reconcile between the various inter-

pretations (e.g. Lindley, Tversky, & Brown, 1979; Shafer, 1993) thoughtheir

success remains questionable. Notwithstanding, it is important to emphasize

that the explications of all these interpretations as well as the reconciliation

attempts are conducted within the paradigmatic mode and thus satisfy the

fundamental requirements of the logico-scientific mode such as coherence and

consistency.” Consequently (because the foundation of each interpretation is

basedon the formal mathematical axiomatization), each interpretation claims

to have a normative status. Gamblers’ reasoning about uncertainty and their

conceptualization of probabilities is frequently incongruent with the conven-

tional interpretations: the framework underlying their probabilistic assessment

is often in violation of the fundamental requirements of coherence and

consistency, for the simple reason thatit is based not just on paradigmatic but

also on narrative accounts.

The normativescientific analyses of probability as reflected in philosophical,

statistical, and decision-theoretical articles, is solely based on paradigmatic

norms and as such cannot provide an adequate description of gamblers’

perspective and their conceptualization of uncertainty. To achieve that

purpose, a more phenomenological approach is needed, like the one proposed

by Howell and Burnett (1978) and more recently by Kahneman and Tversky

(1982). Howell and Burnett proposed to distinguish between internal and

external uncertainty. Internal uncertaintyis said to relate to events that people

can control (at least to some extent), such as predicting performance on a
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skilled task. External uncertainty refers to events that are solely determined by
external generators which cannot be controlled by a person. Following these
definitions, it is also important to distinguish between “control” and
“perceived control”. Thelatter canalso beillusory, a topic which is elaborated
on later in this chapter.

A slightly similar distinction has been proposed by Kahneman and Tversky
(1982), but their emphasis is on the location to which uncertainty can be
attributed: the external world or one’s state of mind. The external world is
perceived as containing different dispositions that yield different events or
outcomes. Judged probabilities supposedly reflect the assessed relative
strength of these competing dispositions. In contrast, internal probabilities
constitute a reflection of the state of mind and are a measure of ignorance.
Kahneman and Tversky (1982) further propose a second level of analysis

within each of the two main categories. Uncertainty attributed to the external
world can be assessed by (1) a distributional mode, whererelative frequencies
are known or can be assessed, and (2) when frequencies are unavailable, by
a singular mode whereprobabilities are assessed as propensities of a particular
case or event. These authors conjectured a tendency amongpeople to prefer
the singular mode in which it is suggested that people can take an “inside
view’” over an “outside view” that is based on a sampling schema. Studies on
gambling behavior which are reviewed in the next section, strongly support
this conjecture.

Internal probabilities, according to Kahneman and Tversky, can also be
separated into (1) those that are reasoned, namely supported by arguments
(regardless of their validity) and, (2) those established by introspections (based
on intuitions thatcannotbe articulated within a rational framework)andtheir
strength expressed in terms of confidence. As I will argue, it is often those
types of internal probabilities that cannot be readily accommodated in a
rational framework which often dominate gamblers’ reasoning insituations of
uncertainty. Note that the aboveclassification, which intends to be descriptive,
contains both paradigmatic and narrative components, whereas the
external—frequentistic and the internal—reasoned modes lend themselves
naturally to a narrative interpretation. It is indeed under these latter variants
that the formal laws of probability are not necessarily compelling.

19.2 GAMBLERS CONCEPTUALIZATION OF
UNCERTAINTY: CHANCE AND LUCK ARE NOT
THE SAME

Where exactly does the gambler’s mind deviate from the traditional para-
digmatic interpretations? A possible starting point for answering this question
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concerns the concept of determinism, which played an important role in the
history of gambling and the development of probability theory.

The development of gambling devices (i.e. devices that can produce

unpredictable random events) can be traced to ancient times (David, 1962).

These devices were frequently employed to find out the will or the command

of the deity (e.g. should the tribe initiate a war against a rival tribe), and to

obtain the truth which is only known to God(e.g. did the defendant omit the
crime?). Underlying these rituals was obviously a strong belief in a theological

deterministic world: reality has been determined in advance, and the function

of gambling devices was, so to speak, to unfold the “truth” and reveal God’s

command. There have been other versions of determinism beside the theo-

logical one. For instance, physical determinism was substantiated during the

seventeenth and eighteenth centuries by the discovery that the motions of the

heavenly bodies were not only regular but could be described within laws of

a high mathematical precision. The conclusion was that the behavior of these

bodies followed unchangeable laws of nature that could not be violated.

Interestingly, determinism was also deduced from the analysis of statistical

data. Specifically, many scholars have interpreted the stability of stochastic

processes provenby thelimit theorems as evidence of divine design (Hacking,

1975). For instance, the constant regularity observed in the births of males and

females was interpreted by John Arbuthnot(in a paper printed in 1710/11) as

evidence for divine providence and the conclusion that it could not be a matter
of chance (for a detailed exposition, see Hacking 1975—Chapter 18). This

example is representative of the misunderstandingof Bernoulli’s limit theorem

and reflects two essential points that were shared by manyscholars at that
time: the belief in determinism and the failure to understand the meaning of

randomness. To this day, in the minds of many people, these two facets

continue to dominate the conceptualization of chance events.

Until this century, determinism was accepted (explicitly or implicitly) by the

large majority of students of probability, regardless of which interpretation of

probability they adopted. It is only in the twentieth century that the pendulum

has started to shift away from determinism, mainly due to developmentsin

quantum theory, which asserts that certain aspects of the behavior of single

electrons is basically a matter of chance. According to this view uncertainty

is said to be an inherent part of nature. Whether indeed this important concep-

tual change has also caught broadercircles as recently suggested by Hacking

(1990) remains an open question.

The belief in determinism has important psychological consequences. At

least in its most extreme andstringent interpretation it implies lack of control

over outcomes. There is ample evidence suggesting that people strongly value

control—or the perception of control—and are reluctant to relinquish it.

Gamblers are certainly not an exception in this regard, and many of them

endorse the conviction that they are able (at least partially) to beat the laws
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of chance (Langer, 1977). The fact that the conviction is illusory apparently

does not significantly weaken the gamblers’ belief in it.

Gamblers have different, and often complicated, methods by which they

believe they have the ability to exert control. We may distinguish between

attempts at direct active control, where the gambler takes an explicit action,

and attempts at indirect control, which are supposedly accomplished by an

alleged ability to predict.

Casual and systematic observations suggest that gamblers employ different

methods in an attempt to influence the outcomes.’ For instance, Henslin

(1967) noted that gamblers strongly believe they can influence the outcomes of

a die by tossing it softly if they wish a low number, and tossing it hard when

a high numberis desired. As another example, Keren and Wagenaar (1985)

observed that Blackjack players had strategies for changing the direction of

their fate. Specifically, after a streak of losses they said they switched to

another table. Other players reported an even more sophisticated method by

which they supposedly reversed the direction of fate by interfering with the
predetermined pattern of events (i.e. the predetermined order of the cards

which allegedly governed their fortune). This was done by drawing an

additional card which they normally would not draw (and would usually lead

to a loss on this round). By committing such a “sacrifice” players thought they

could break the predetermined allocation of cards (to players and dealer, and
thus reverse their current fate).

People’s belief in their ability to control randomly generated outcomesis

well illustrated by Langer (1975). She designed an ingenious experiment in

whichshesoldlottery tickets under two conditions: in one condition, subjects

who were willing to purchase a ticket (priced at $1.00 per ticket) were given

the choice and selected the ticket themselves. In the other condition the
subjects were given no choice andthe ticket was selected bytheseller (i.e. the

experimenter). When approachedat a later stage (and before thelottery took

place) and asked the price for which they would be willing to sell their ticket,

the mean amount of money required by subjects in the choice condition was

$8.67 compared with $1.96 in the no choice condition. Langer inferred that

subjects in the choice condition believed that they could exert control over the

outcome and coinedthis belief as the illusion of control.

It is importantto note that the illusory belief of being able to control chance

events is not necessarily incompatible witha deterministic view, at least not in

the gambler’s eyes. While events in the external world are predetermined,

gamblers maintain the view that they can exploit it by unveiling the outcome

in advance. This interpretation is more difficult to apply when onebelievesin

a personal (rather than external outcomes) deterministic fate, as may be the

case in Langer’s experiment, a possible course of action in this case could be

to use some prayers or magical words to influence the divine. Alternatively,

one could interpret subjects’ behavior in Langer’s experimentas evidence that
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they believe that their fate has indeed been determined andthatbysellingtheir

ticket they take action against their predetermined fate. In this case, the high

price required by the subjects could be interpreted as a premium insuring

against the possible regret that may occur if the sold ticket does indeed win.

The illusory control of chance events is frequently associated with skill

(Keren & Wagenaar, 1988). For instance, Oldman (1974) reports that roulette

players perceive the gameas requiring a skill that consists of the construction

and adaptation of prediction models. Similarly, Keren and Wagenaar (1985)

observed among Blackjack players several methods which supposedly required

skills such as identifying a “lucky dealer” or a “well-running box”, and

(skillful) methods for controlling one’s fate. Wagenaar (1988) proposed that

gamblers find it very difficult to appreciate the probabilistic nature of the out-

comes and thus alwaystendto attribute at least part of the outcomesto their

ownactions. The belief in an alleged skill is also revealed in post hoc examina-

tions of roulette and Blackjack players who laboriously try to explain the out-

come(after it has become known) and point out how it could be avoided by

using skills. Needless to say that all these post-mortem analyses are demonstra-

tions of the well-known hindsight bias (Fischhoff, 1975).

The mannerby which gamblers exercise control is frequently associated with

their belief that they can predict events that are actually governed by chance.

The belief in the ability to predict is based on two different types of consider-

ations which may be referred to as quasi-logical and magical respectively

(admittedly the demarcation line between these twois not alwayswell defined).

Quasi-logical considerations have a paradigmatic nature (at least in the

gamblers’ view) even though they may contain some erroneous components.

The quasi-logical mode is exemplified in strategies and procedures that

gamblers attemptto rationalize in a seemingly rational framework,yet contain

some erroneous components. The quasi-logical mode is exemplified in

strategies and procedures that gamblers attempt to rationalize in a seemingly

rational framework, yet contain basic misconceptions and violations of the

cannonsof logic. The best-known example isthe so-called gambler’s fallacy,

which refers to the inability to comprehendstatistical independence. Thus,

gamblers believe that after observing a long run of red onthe roulette wheel,

the probability of black on the subsequenttrial(s) is enhanced, resulting in an

improved prediction ability. The gambler’s fallacy is also shared by Blackjack

players in real casino playing (Keren and Wagenaar, 1985) and is frequently

observed in situations other than pure gambling.

Underlying the gambler’s fallacy are several erroneousbeliefs. In particular,
it reflects the misperception of randomness (Bar-Hillel and Wagenaar, 1993).

Normatively, whether a sequence is random ornotis, strictly speaking, deter-

mined only by the nature in which it was generated. Yet, most people (and

particularly gamblers) believe that randomness is characterized by certain

patterns according to which randomness can be determined. For example,
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consider the following outcomes of coin tossing: Following Tversky and

Kahneman(1974), people regard the sequence H-T-H-T-T-H to be morelikely

than the sequence H-H-H-H-T-H (supposedly because the latter does not

represent the “fairness” of the coin), and to be morelikely than the sequence

H-H-H-T-T-T (because the latter is too structured and lacks randomness). *

In the gambler’s mind, underlying these convictions, there is often the

supposition of an “invisible hand” that ensures some “fairness”. Thus, under
this perspective, even if the world is considered to be deterministic there is a

certain so-to-speak order in the deterministic world upon which gamblers

believe that they can rely.

Another manifestation of quasi-logical reasoning is reflected in what

Tversky and Kahneman (1971) have termed the “law of small numbers”

according to which people believe that small samples are highly representative

of the population. Theinsensitivity to sample size has been demonstrated in

various studies and different contexts and accounts, among other things, for

the gambler’s fallacy. In a recent study (Keren and Lewis, in press) we tested

the insensitivity to sample size in a gambling context. Specifically, casual

observations show that casino gamblers frequently record the outcomesof the

roulette wheel. These records are employed by gamblers in two different

strategies. Following one strategy, the gambler attempts to detect long runs

(e.g. the outcome during the past n spinnings has always been “red” and then

bet on the outcomethat is supposed to “balance” the sequence(e.g. “black”).

This is a manifestation of the well-known gambler’s fallacy which wecall Type

1. Note that the underlying strategy is the implicit assumption that the roulette

wheel is perfectly calibrated implying that (in the long run) each numberis

equally likely to occur(i.e. in a roulette wheel with 37 numbers, the probability

for each numberis the same and equals 1/37).

The assumption underlying the alternative strategy frequently used by

gamblers is that a wheel may be biased, implying that one or more numbers

have a higher probability of occurrence. The recordings are then used for the

detection of biased or favorable number(s). The possibility of a biased roulette

wheelis certainly a viable one, yet detecting such a wheel is moredifficult than

might be thought. As Wilson (1965) noted:

We wholeheartedly invite any interested professional mathematicianto attack the
problem, namely, on whatstatistical basis should you decide whether to play a

given roulette number? The mathematician might first confine himself to the

“simple” case, in which the true probabilities of occurrence of numbers are

assumed constant (not changing in time). If any genius then wishes to become
sophisticated, let him considerthe possibility that the changing physical situation

causes the probabilities to change with time! (page 39).

Manygamblers, however, believe that detecting a favorable numberis a simple

task which can be achieved with a relatively small sample, a phenomenon
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which wecall the gambler’s fallacy Type II. In several experiments (Keren and

Lewis, in press) we asked subjects to estimate the number of rounds(i.e.

sample size) that would berequired to detect a favorable number where the

probability of the favorable number was explicitly stated. For favorable

numbers with a small advantage (e.g. probability of 1/34 for the favorable

number compared with 1/39.09 for each of the remaining numbers) the median

estimates were smaller by a factor of 10 and more compared with the norma-
tive appropriate sample size. The phenomenonis robust and holds even for a

highly favorable numberwith probability of 1/20, though the underestimation

is reduced (mainly because of a floor effect, i.e. a minimum numberoftrials

is always necessary).

As another example of a quasi-logical strategy, my colleague Willem

Wagenaarand I were told by a professional Blackjack dealer about a method

by which the following card can be predicted: he “discovered” that in most

cases the sum of any two successive cards adds upto 10, 11 or 12. Thusafter

a six would comea six or a five, after a three a seven or eight andso forth.

Consequently, he claimed that he was able to predict above chance level the

value of the following card and even claimed that he employed the method in

practice.

The above examples are all based on a certain line of reasoning, albeit

faulty, which represent misunderstandings ofthe calculus of chance. They are

not rational but are nevertheless basedon a certain rationale, andit is for this

reason that I haveclassified them as quasi-logical. Gamblers’ probabilistic

reasoning andtheir predictions are also frequently based on what gamblers

refer to as intuitions (or gut feelings) which, from a paradigmatic perspective,

may represent magical reasoning. These intuitions are internal and occur in

what Kahnemanand Tversky (1982) refer to as the introspective mode.
A vital concept in this context is that of /uck. Luck in the gambler’s mind

is clearly distinguished from chance consideration. Instudying the behaviorof

Blackjack players in a real life casino setting we (Keren and Wagenaar, 1985)

asked a sample of 28 players the following question: “in playing Blackjack

there are three important factors, namely chance, skill, and luck. How

importantis eachof these three factors? Give your answer in percentages so

that they addup to 100%”. With the exception of 6 players (who claimed that

there is no difference between chance and luck) the mean percentage ascribed

to chanceskill, and luck was 18%, 37% and 45% respectively. In a separate

study (Keren and Wagenaar, 1987) we asked a sample of 29 studentsto predict

the outcomes of various soccer games. We then posed the question of the
relative importance of skill luck and chance in predicting soccer games. The

means were 44, 27, and 29 forskill, chance, and luck, respectively. Evidently,

the belief in luck is shared by gamblers and non-gamblersalike.

Whatthen are the differences between chance and luck? Chanceis perceived

as reflecting causelessness (Wagenaar and Keren, 1988), and consequently is



494 G. Keren

deemed to be utterly out of control (Friedland, 1992). It is this component

which supposedly is envisaged as entirely deterministic. In contrast, it is

luck that is used as a vehicle to exert control (which from a paradigmatic

perspective remains illusory). Thus Friedland (1992) presents empirical

evidence supporting the proposition that the greater the need for control, the

stronger the tendency to invoke luck as an explanation of events. In addition,
luck offers a tool by which outcomes can be accounted for after the fact (the

hindsight phenomenon). Attributions of luck are often considered to be more

forceful and convincing explanations than a simple attribution to randomness

and chance. |

Luck is clearly part of the narrative repertoire and therefore its potential

internal contradictions (as determined by paradigmatic criteria) can be

tolerated. Luck is regarded as a concept that refers to a person,° contrasted

with chance whichreflects properties of the outside world. Some people may

be luckier than others, and luck of a given person varies at different times. In
some respect luck mayalso be perceived to be deterministic: “It is as though
you were fated in advanceto be enriched or despoiled” (Cardano, 1961/1520).

Nevertheless, luck in the gambler’s eye may provide some means ofcontrol.

Specifically, it varies with time, and the skill is to detect the lucky moments

and utilize them accordingly. As one gambler noted, luck follows a sinusoidal

pattern where the whole trick is to find out whether the tide is high or low.

Indeed, in an interview conducted witha sample of 33 Blackjack players, 27

players claimed that luck cannot be predicted yet 23 of those players claimed

that it could be detected (Keren and Wagenaar, 1985).

The identification of luck (a lucky number,a lucky color, a lucky day)is

frequently achieved by alleged intuitions (supposedly processed in what

Kahneman and Tversky termed the introspective mode). Alternatively, luck

can be disclosed by seemingly (thoughillusory) paradigmatic methods. For

instance, long runs in continued gamblingare often attributed to good or bad

luck, indicating the misperception of random sequences (Bar-Hillel and

Wagenaar, 1993). The tendency to account for long runs of a random

sequence by employing mystical beliefs such as luck, is not restricted to

gamblers. Gilovich, Vallone, and Tversky (1985) have argued that what

basketball fans describe as a “hot hand” (which occurs when a player’s

performanceduring a particular period is significantly better than expected on
the basis of the player’s overall record—i.e. the player’s base-rate), is not more

than a long run of a sequence that is generated by a random process.

Apparently, misperceptions of chance and the belief in the “law of small

numbers”are frequently associated with illusory and magical narratives such

as “luck”, the “hot hand”, and alike.

It seems as if luck often serves as a vehicle to explain randomness or

ambiguity (when probabilities are unknown). It is almost always used for
explaining outcomes after the fact following the well-known hindsight bias.
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Indeed, Keren and Wagenaar (1985) observed that Blackjack players

frequently tend to ignore the original uncertainty that was involved before the

cards were dealt and to exaggerate what could have been anticipated with

foresight. In fact, the formation of the frame of luck is based to a large extent

on a hindsight view that estimates the role of uncertainty which actually

dominates gambling situations. In addition, luck has a strong emotional

component that is devoid of chance. For instance, in a lottery drawing a

number next to the winning numberis often interpreted as constituting bad

luck. In this context luck serves as an expression for emotional feelings like

regret and as such is a pure narrative term.

Unlikethe narrative calculus of chance, which is neutral with regard to the

consequences of potential outcomes, gamblers’ probabilistic assessments are
contaminated by their desires and associated emotions. Several studies have

shown that estimates of uncertain outcomes are strongly influenced by a

wishful-thinking bias. A particularly compelling demonstration is reported by

Babad (1987) who asked a large sample of soccer fans to predict the outcomes

of different games, and has shownthatthe stronger they felt affiliated with a

team, the morelikely they were to assign a win to that team. Even predictions

that were made at half-time, when the favorite team trailed decisively, were

characterized by a pervasive tendency of wishful thinking. Similarly, Uhlaner

and Grofman (1986) analyzed the American National Election Study and

found that candidate supporters exhibited a dramatic bias in estimating their

candidate’s likelihood of success. |

19.3 SUMMARY AND CONCLUDING COMMENTS

A major conclusion from the preceding review of gambling behavioris that

the normative theory of probability, regardless of which of thetraditional

interpretations is attached to it, can not serve as an adequate descriptive

theory. The main claim of the present chapter is that the normative theory of

probability is solely based on paradigmatic mode. In reality, gamblers and

nongamblers often lack the competence required by the formal logico-

scientific approach which apparently is not part of a human’s intuitive

repertoire. Moreover, the evaluation of uncertainty is often associated with

narrative componentswhichentails criteria that are different from—and often

conflicting with—those postulated by the paradigmatic mode.

Although there is ample evidence that (what was termed here as) magical

reasoning plays an importantrole in the assessment of uncertainty, its weight

relative to paradigmatic considerations is not clear and would depend, among

other things, on personality and situational factors. The interplay between the

paradigmatic and narrative accounts is already evident in the writings of

Gerolamo Cardanoin the 16th century. There is no doubt that Cardano was
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a highly talented man who was amongthefirst to lay the groundsfora rational

treatment of uncertainty as reflected in the normative theory of probability.

At the sametime he wasalso an inveterate gambler, and his book provides an

excellent foundation for a descriptive theory of the psychology of gambling.

The perpetual contention between the paradigmatic (rational) and the

narrative (nonrational) modes is frequently apparent in his writing. For

example, after describing the importance of luck in gambling he adds the

following final comment:

But whetherthe cause of that luck, be it in the conjunction of the stars or in the
construction of a certain order of the universe, can affect the cards, which are
considered bad or good only according to the conventions of men (since they
signify nothing of themselves) is so worthy of doubt that it easier to find a cause

of this fact without that purposethan with it; without it the matter can well be

reduced to chance, as in the constitution of the clouds, the scattering of beans,
and the like.

Whether gamblers in general have similar reservations remains an open

question. Based on my ownresearch and casual observations of the gambling

world, I have serious doubts.

While the present chapter has focused on gamblers’ conceptualization of

uncertainty, I strongly believe that the faulty reasoning and magical (or

irrational) beliefs described here are not limited to gamblers. As Wagenaar
(1988) pointedout, the proportion of people engaged in gambling in one way

or another is so high that makesit a sufficiently universal phenomenon that

“cannot be explained by a defect in a minority of people” (page 4). Many of

thelogical fallacies and violations of the normative theory of probability that

are exhibited by gamblers have also been documentedin situations other than

gambling (e.g. Kahneman, Slovic, and Tversky 1982). Similarly, beliefs in

nonrational concepts such as luck are also shared by nongamblers and are

applicable to situations other than gambling (e.g. Wagenaar and Keren, 1988).

During the past 20 years there has been an ongoing debate concerning

humanrationality (e.g. Cohen, 1979; Jungermann, 1983). Those who postu-

late that human behavioris generally rational have dismissed research that was

incompatible with this view. Proponents of rationality have argued that most

of this research (which casts doubts on humanrationality) has been conducted

in an artificial environment with a clear attempt to “trick” people and force

them to perform in a mannerthat is incompatible with the canonsof ration-

ality. The brief review of gambler’s behavior, presented in this chapter, strongly

suggests that violations of rationality are not limited to the psychological

laboratory. If we accept the claim that the gambler population (with perhaps

few exceptions) is not necessarily a pathological one, then postulating exclu-

sive rationality (which implies the rejection of the narrative mode)is certainly

unwarranted. Clearly, in this view, the formal theory of probability (regardless
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of the interpretation being used) is an inadequate descriptive theory of how
people deal with uncertainty.

NOTES

(1) An excellent exposition of the different schools of probability is given by Salmon

(1966).
(2) Salmon, for example, proposed several criteria for testing the adequacy of an

interpretation. The most important one is admissibility which requires that the meaning

assigned to the primitive terms by a given interpretation should transform the axioms

and all consequent theoremsinto true statements. This implies that under anyinter-
pretation the mathematical relations specified by the calculus of probability should not
be violated and consequently provides a safeguard against incoherent betting systems.

(3) Whether indeed people really believe that their actions influence the outcome
may be, under certain conditions, questionable. Shafir and Tversky (1992) introduce
the term “quasi-magical” thinking referring to situations “in which people act as if they

erroneously believe that their actions influence the outcome, even though they do not

really hold that belief” (page 463).
(4) Statistical methods for testing randomness (Pashley, 1993) are actually also based

on outcomefeatures (and can onlyassess the likelihood that a sequence was produced

by a random generator). Referring to gamblers’ conceptualization as being quasi-
logical implies that there may be somesimilarity in the underlying reasoning(i.e. the

frequencies of a fair coin on the long run), yet is “quasi” because of departures from

the normative rule (i.e. misunderstanding what is the long run) and basic violations of

somelogical dictates.
(5) This is also reflected in the daily use of the term. It is more natural to say “it was

my lucky day” or “this is my lucky number” than to say “it is a lucky day” or “it is

a lucky number”.
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 Chapter 20

Uncertainty and Subjective
Probability in AI Systems

Paul J. Krause and Dominic A. Clark
Imperial Cancer Research Fund, London

20.1 INTRODUCTION

There is one thing I am sure of, and that is how ignorant I am. This familiar

antinomy could be a very apt motto for many workersin thefield ofartificial

intelligence (AI), for many problemsin AI require some methodfor reasoning

effectively under a state of partial ignorance. For example, what conclusions
can we draw about a ship when wedo not knowprecisely whereit is, but we

do knowthatit is “at sea”? Should major, “possibly” life threatening, surgery

be performed if a patient is judged to “almost certainly” have a malignant

tumour, even thoughthere is “still a possibility” that it might turn out to be

benign? People manageto reason and act on the basis of such information,
although not always in an optimal way, and one of the major challenges of

AI has been the development of effective computational models of these

processes. |
The two examples of the preceding paragraph illustrated two different

classes of ignorance, imprecision and uncertainty. In the first case our source

of information, or “sensor”, had been imprecise about the exact location of
an object. In the second case, our sensors could not berelied upon to enable
us to draw certainconclusions aboutthe truestate of affairs. It is this second

aspect of ignorance, uncertainty, whichis the main focus of this chapter.
 

Subjective Probability. Edited by G. Wright and P. Ayton.
© 1994 John Wiley & Sons Ltd.
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In particular we will review the contribution to AI of the Bayesian view of

probability as a subjective measure of belief and probability theory as a

frameworkfor plausible reasoning. However, we muststate at the outset that

we do notbelieve that Bayesian probability is necessarily always the best model

to use for problems which involve imprecision (see, for example, (Clark, 1990;

Krause & Clark, 1993) for a review of alternative formalisms). Wewill expand
on this claim in the final sections of this chapter, but primarily we will be

addressing the use of probability for well-defined problems involving precise

concepts in knowledge domains for which numerical coefficients can confi-
dently be elicited.

20.2 REVISION OF BASIC CONCEPTS

Wewill start our discussion of the use of probability in AI systems with a very

brief review of some ofthe basic concepts. This will emphasize those aspects

which wethink are particularly relevant to the development of computer-based

applications.

Subjective probability provides a normative framework for the represent-

ation and updatingof beliefs. The rationality of this framework has been well

discussed, appealing to it as the basis upon which an agent should decide how

to act given an uncertain situation (de Finetti 1937; Savage, 1962). We will

have a little more to say about the use of point value numerical probabilities

towards the endof this chapter, but in most of what follows we will focus on
the use of single-valued probabilities assigned to precisely defined concepts.

We will take conditional probabilities as the basic expressions of the

Bayesian formalism. We will also claim that Bayesian reasoning is as much

about structure as it is about numbers. For to say that the probability of a

hypothesis is conditional on one or moreitems is to identify the relevant

information to the problem at hand. In addition, we may specify that the

identification of an item of evidence influences the degree of belief in a

hypothesis. This places a directionality on the relevance links between

evidences and hypotheses.

The directionality placed on the links will depend on the way in which the

problem is structured. The term “causal networks” has often been used for

larger scale probabilistic networks because a direction corresponding to causal

influence can be the most meaningful. For example, we might say that measles

“causes” red spots. Using a directionality based on causal influenceis often

useful because assessing the probability of a symptom given a cause can be an

easier problem thanassessing the probability of a cause given a symptom.In

general, however, the ordering need not be based on causality. The pointis to

take any natural cognitive ordering which will enable a confident assessment
of the associated probability to be made.
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Figure 20.1. Very simple influence network

The notion of relevance embodied in the use of conditional probabilities

also influences the elicitation of the probability values. For example, to say

that p(red spots | measles) = p meansthat we can assign probability p to “red

spots” if measles is observed and only measles is observed. If any further

evidence e is relevant to the likelihood of the occurrence of red spots, then we

will be required to determine p(red spots | measles,e).

A final basic point to emphasize is that the Bayesian rule of updating is

central to the subjective Bayesian conception of probabilistic reasoning. We

restate it here for completeness:

p(r| ey =PEL (20.1)

That is, the revised belief in, or posterior probability of, a hypothesis h on

observing evidence e, p(h |e), is obtained by multiplying the prior belief in A,

p(h), by the probability p(e|h) that e will materialize if h is true. p(e), the

prior probability of the evidence, acts as a normalization coefficient (the degree

of belief that accrues to a hypothesis on the basis of some evidenceis clearly

dependent on the prior frequency of occurrence of that evidence). So, in the

previous example, it may beeasiest to elicit the probability of red spots given

measles. But, given this value, we can use Bayes’ rule to reason from red spots

as evidence to obtain the posterior probability of measles as a hypothesis

(provided we knowthe prior probability for measles).

The subjective Bayesian approach provides a framework for answering the

query “Given that I know e, what is my belief in h”. In order to be able to

develop functioning AI systems, we need to develop techniques for reasoning

efficiently over knowledge domains representing hundreds, thousands, maybe

millions even, of facts. We will need to look at how Bayesian reasoning can

be scaled up from simple problems involving a few related propositions, to

very large-scale networks. However, first of all we will look at some basic

semantic issues of uncertain inference in AI systems.
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20.3 PROBABILITY AND RULE-BASED SYSTEMS

Manyexpert systems have been, and continueto be, developed as “rule-based”

systems. That is, the knowledge embodiedin the system is represented as a set

of “if—then” rules of the form; if antecedent then consequent (the antecedent

of the rule may be a conjunction of conditions). Such a rule may beread as:

“if the conditions in antecedent are true, then consequent is the case.” A

classic example is “if red spots then measles.” Clearly, such rules may not be

categorical. In a diagnostic expert system, for example, observation of a

specific symptom, or set of symptoms, would usually be merely suggestive of

a pathological state, not confirmation of it. This leads to a refinement of rule-

based systems in which a numerical “certainty factor” is associated with each

rule. The confidence in, or certainty of, the consequent of a rule is then

calculated as a simple function of the certainty in the antecedent and the

certainty factor of the rule. MYCIN (Shortliffe, 1976) and Prospector

(Gashnig, 1982) are particularly notable examples of this approach. Unfor-

tunately there is a conflict between the truth functionality of rule-based

systems and the intentionality of probabilistic systems.

Let us first say what we mean by “truthfunctionality” in this context. In

formal logic, propositions may be combined using simple syntactic principles

and the truth value of the resulting formula obtained as a simple function of

the truth values of the sub-formulae. Thus we can obtain the truth value of

A & B from thetruth values of A and of B.' In an analogous way,in rule-

based systems we wantthe belief in the consequent of a rule to be a simple

function of numerical coefficients associated with that rule and with its

antecedent. That is what we mean here by “truth functional”. Probabilities,

in contrast, cannot be composedin this way. For example, if we know p(A)

and p(B) wecannot, in general, combine these values in any simple way to

obtain the probability p(A, B) of their conjunction. We do have that

P(A, B) = p(A |B): p(B)

However,it is only if p(A | B) = p(A) that we can obtain p(A, B) as a simple

conjunction: p(A, B) = p(A): p(B). We will have p(A | B) = p(A) if it is the

case that knowing B has no effect on our belief in A. That is, A and B are

marginally independent.

Now, as we havesaid, in many rule-based expert systems certainty factors

are associated with the rules and combined using simple syntactic principles as

the rules are fired. This extensional or syntactic approach to uncertainty

handling is computationally efficient. But unless strong independence assump-

tions can legitimately be made, it is semantically sloppy as illustrated in the

previous paragraph. This contrasts with a fully intensional probabilistic

approach, which is semantically coherent but in the general case computation-

ally intractable (Pearl, 1988).
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What gives rule-based systems their computational advantage is their
modularity. By modularity is meant that the only requirement for a rule “if

A then B”to befired is the presence of A in the database, no matter howit

has been obtained and no matter what else is in the database. This can be

illustrated with what is now fairly classic problem of diagnosing weather

conditions from observations about the state of a garden. In this example, a

rule-base contains information about possible causes (such as the lawn

becoming wet can be caused byrain), as well as possible effects (such as the

neighbour’s sprinkler being on will make the lawn wet). For example, it may

contain a diagnostic rule such as:

if wet lawn then rain (0.8)

and a predictive rule such as:

if sprinkler on then wet lawn (0.95)

Suppose, now, “wet lawn” is observed. Rain will be concluded, with a

certainty of 0.8. But, if the database also contains “sprinkler on” this explains

“wet lawn” and the belief in “rain” should be reduced. That is, other

information that is relevant to the problem should have been considered.

Suppose, on the other hand, the database only contains “sprinkler on”.

Then the second rule will be fired to conclude “wet lawn” (0.95). Once “wet

lawn” has been concluded,the first rule will be fired to conclude “rain” (0.76)

(using a very naive multiplicative rule to chain probabilities). Thus, ignoring

the fact that “wet lawn” has been obtained as a prediction, and notas a fact

requiring explanation, has led to a quite erroneous conclusion; the distinction

between diagnostic and predictive rules is confounded. Equally, if rain is
observed, we cannotuse the first rule to predict “wet lawn”. In order to make

this prediction, we could add to the database a separate rule such as:

if rain then wet lawn

However,this then opens upthe possibility of circular reasoning, with “rain”

supporting “wet lawn”, “ wet lawn” supporting “rain” (by the first rule) and

sO on.

Basically we want to use rules for abductive, as well as deductive, reasoning.

Such bidirectional inferences can be handled by probability. By exploiting

Bayes’ rule, we can make diagnostic as well as predictive inferences; reason

from evidence to hypothesis as well as from hypothesis to evidence.
As well as allowing bidirectional inferences, we also wish to allow some

capability for explaining away. That is, to allow a revision in the belief in a

possible explanation if an alternative explanation is actually observed. This

arose in the above example when weanticipated that confirmation of one

possible explanation of the wet lawn (the sprinkler being on) should result in
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a decrease in belief in the alternative explanation (rain). Again, this can be
handled by framing the problem in a probabilistic framework.
A third difficulty with the rule-based approach,is the problem of correlated

sources of evidence. Evidences e; and e2 may both add support to hypothesis
h. But if they have both been derived from a commonsource the combined
support they give to the hypothesis should not be as strong as that obtained
were they independent evidences. Again, a rigorous probabilistic model can
handle this correctly.

The difficulty, however, is that the probabilistic approach can be compu-
tationally intractable. A naive representation of a problem in a probabilistic
framework would require theelicitation of a probability distribution function
defined over all the propositions of interest. For example, if we let A stand
for “wet lawn”, B for “rain” and C for “sprinkler on”, in order to model the
above problem we would needtoelicit p(a, b, c), p(a, — 5,c), p(a,b,-c),

p(a, b,c), p(-4, 5, c), p(-4,-48, ¢), p(74,5,-4¢), and

p(—4, b,-4c). A problem involving n propositions, A1, A2, ..., An, will
require the elicitation of 2” such values. With respect to computation,
calculating the marginal probability p(A;) that A; is true will, for example,

require summing over the 2”~' values for which A; is true. Some method of

easing the knowledgeelicitation and computational tasks is clearly needed.
This section has discussed well-knownproperties of probabilistic reasoning.

Wehaverevisited them in this section because we wished to emphasize the
following points in connection with the development of AI systems. To recap-
itulate, the modularity of rule-based systems makes them computationally

efficient. But they require an extensive representation of the inferences which
may be drawn from them. Ontheother hand, the intensional, or semantic,
approach takenin a rigorousprobabilistic model is computationally intensive.
Butit does enable deduction, abduction andexplaining away to be modelled,
and correlated sources of evidence to be handled correctly. The drawback of
their computational intensity has, however, been addressed by careful
exploitation of the structure in probabilistic networks. We will discuss the
basis for this next.

20.4 INDEPENDENCE PROPERTIES

In much of the preceding discussion we have focused on conditional prob-
abilities and dependencies rather than joint probability distributions. The
motivation behind the work of Pearl, Spiegelhalter and others in producing
network representations of probabilistic knowledge is to “make intensional
systems operational by makingrelevancerelationships explicit” (Pearl, 1988).
By formalizing and exploiting the conditions under which discrete sections

of the network of propositions may be regarded as independent, we may
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transform belief revision from an intractable global operation into a sequence

of local operations. In addition, the problem of eliciting massive joint distri-

bution tables is reduced to that of eliciting the conceptually much more

meaningful conditional probabilities between semantically related propositions.

Wefirst recall the chain rule for probabilities. Let p(A1, Az, ..., An) be

a probability distribution over the propositions A,, A2, ..., An). Then

D(A), Az, ..., An) =p(An|An-1, -.., A1)

*pP(An-1|An-2, -..,A1)* **** p(A2|A1)* p(A1) (20.2)

Now,two propositions are independent if knowing oneto be true has no

effect on our belief in the other. That is, A is independent of B, given C, if

P(A|B, C) = P(A|C). Wewill now revise three different representations for
a probability distribution over a set of propositions {A,B,C}. They each

embody different conditional independence assumptions which are made

explicit through graphical representations.

Returningfirst to the “wet lawn” example of the previous section. Both rain

and the sprinkler being on may causethe lawn to become wet. This problem

may be represented in graphical form by the directed graph shownin Figure

20.2.

In this example, A (rain) and B (sprinkler on) are marginally independent,

but conditionally dependent given C (wet lawn); once the lawn is seen to be

wet, conditioning on either of A or B should affect our belief in the other.

Application of the chain rule to the probability distribution p(A, B, C) gives

p(A, B, C) = p(C| A, B)- p(A| B): p(B)

Since A and B are marginally independent, we have p(A |B) =p(A), but

are unable to reduce the expression p(C| A,B) any further. Thus, for this

graph

p(A, B,C) =p(C|A, B): p(A): p(B)

Consider, now,the following scenario. Red spots and Koplick’s spots are both

symptoms of measles; measles “causes” both red spots and Koplick’s spots

(which are small white spots found inside the mouth). This can be represented

by the graphical structure of Figure 20.3.

Sprinkler on

 

Figure 20.2 Nodes A and B are conditionally dependent given C
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Koplick's spots

Figure 20.3. A and B are conditionally independent given C

In this case, in contrast to the previous example, given that the patient is

suffering from measles, the observation of red spots will have no influence at

all on the belief that Koplick’s spots will be observed; A and B are condition-

ally independent given C. Applying the chainrule again,

P(A, B, C) = p(A|B,C)- p(B| C): p(C)

Since A and B are independent given C, p(A |B, C)=p(A|C). Hence

P(A, B,C) = p(A|C): p(B|C): p(C)

The final case we will consider is another example of conditional

independence. The disease A = “kawasaki disease” is known to cause the

pathological process C= “myocardial ischaemia”. This in turn has an

associated symptom B= “chest pain” (Figure 20.4).

Now,the observation of B maylead to an increase in belief in C and sub-

sequently of A. But, once C has been confirmed, the observation of B can have

no further influence on diagnosing Aas the ultimate cause of C. So, as in the

previous example, A and B are conditionally independent given C, and

p(A, B,C) = p(B| A, C): p(C| A): p(A)
= p(B|C): p(C| A): p(A)

Wehavestill been using very simple examples. However, it should be clear
from this discussion that theelicitation of a belief network, or influence

diagram, as a directed acyclic graph is a natural way of representing many

types of belief relationship. One of the results which is an important compo-

nent of Judea Pearl’s workis that all the conditional independencerelation-

ships can be derived from a directed acyclic graph (Geiger & Pearl, 1988;

Verma & Pearl, 1988) using a notion of “d-separation”. A detailed coverage

Kawasaki Myocardial Chest
disease ischaemia pain

Figure 20.4 A and B are conditionally independent given C



Uncertainty and Subjective Probability in AI Systems 509

of d-separation and the subsequent developmentofa fast algorithm for belief

propagation in Bayesian networks can be found in Pearl (1988) and

Neapolitan (1990). However, the resulting algorithm is perhaps not as widely

applicable as that of Lauritzen and Spiegelhalter. As space is limited we can

only discuss one algorithm and will continue with a discussion of the way in

which the Lauritzen and Spiegelhalter algorithm exploits independencies to

enable the rapid updating of belief networks.

Wehave shown how independencerelationships may be exploited in simple

problemsto give a more semantically meaningful representation than the naive

probability distribution over the set of propositions. This approach can be

extended quite naturally to produce a probability representation for larger

problems. Consider, for example, the network shown in Figure 20.5. By

repeated use of the three independence relationships considered earlier, it

should be quite easy to confirm that the following is a correct representation

of the probability distribution for this network:

p(A, B, C, D, E, F,G,H)
= p(G|F): p(A|E, F): p(F|C, D)- p(C| A): p(A): p| B)

-p(E| B): p(B)

= p(A): p(B): p(C|A): p(D| B): p(E| B): p(F|C, D)

-p(G|F): p(A|E, F)

(The second form is just a rearrangement ofthe first.)

Wewill call the nodes immediately preceding a givennode in the graph the

parents of that node. So, for example, C and D are the parents of F, F and

E are theparents of H. Wewill also refer to the set of nodes which cannot

be reached by a directed path from a given nodeas the anterior nodesto that

node. For example, the nodes anterior to node F are {A, B,C, D, E}, those

 
Figure 20.5 A simple belief network
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anterior to node B are {A, C}. Then this equation is expressing the fact that

the probability of each node in the graph is conditionally independentofits

anterior nodes given its parent nodes.

The above equation can be expressed in a very simple general form. Let V

be a set of nodes, andlet parents(v) be the set of parent nodes for any ve V.

Then the second equality is just a specific instance of the general equation:

D(V)= IY D(v| parents (v)) (20.3)

In this section we have shown hownotions of dependence and independence

may be exploited in structuring a belief network. As a result, the probability

distribution for a large set of propositions may be represented by a product

of conditional probability relationships between small clusters of semantically

related propositions. We will now consider a very simple example to demon-

strate how evidence maybeefficiently propagated through a belief network.

20.5 BELIEF PROPAGATION THROUGH LOCAL
COMPUTATION

The following is a simplified account of the Lauritzen and Spiegelhalter

algorithm for belief propagation (Lauritzen & Spiegelhalter, 1988). It is based

around a simple example first used in (Spiegelhalter, 1986) and is intended to

be illustrative of the principles behind the algorithm, rather than a complete

description of it. Rigorous descriptions can be found in Lauritzen &

Spiegelhalter (1988) and Neapolitan (1990).

The essence of this approach is to represent hypotheses andrelations in the

domain under consideration as a directed graph. This is illustrated for the

following, deliberately restricted, piece of medical knowledge:

Metastatic cancer is a possible cause of a brain tumour, andis also an expla-

nation for increased total serum [calcium] count. In turn, either of these could

explain a patient falling into a coma. Severe headacheis also possibly associated
with a brain tumour. (Spiegelhalter, 1986)

The qualitative representation of this knowledgeis shownin Figure 20.6. Here

the nodes represent hypotheses and links indicate “causal” or probability

relationships. These do not have to derive from direct physiological reasoning

but “any natural cognitive ordering that will ... allow reasonably confident

probability assessments”. (Spiegelhalter, 1986), as we discussed inSection

20.2.
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‘Metastatic
cancer’

  

 

"Increased ‘Brain

total serum | tumour'

count'

‘Severe
headaches'

‘Coma'

Figure 20.6 Belief network for metastatic cancer example

The probability distribution may now be decomposed into a product of

conditional probabilities. Exploiting the independencies implicit in the graph,

we have

p((A, B,C, D, E) = p(E|C): p(D| B,C): p(B| A): p(C| A): p(A)

Hypothetical assignments for these probabilities, together with some expla-

nation, are shown in Table 20.1.

Now, we have emphasized that probabilistic reasoning need not be con-

strained by the directionality of the graphical representation; we may reason

both forwards and backwards through the graph. Indeed, evidence may be

received about any of the nodes in the graph and the consequences propagated

Table 20.1 Hypothetical conditional probabilities for Figure 20.6.

(adapted from Spiegelhalter 1986)
 

 

Attribute Value Explanation

p(e|-c) 0.60 Headaches are common
p(e|c) 0.80 but more common if tumour present

p(d|5,-4¢) 0.05 Comais rare,
p(d|b,-c) 0.80 but commonif
p(d|—8,c) 0.80 either cause is present

p(d| b,c) 0.80

p(b|—a) 0.20 Increased calcium uncommon, but
p(b\a) 0.80 common consequences of metastasis

p(c|-a) 0.05 Brain tumour rare and uncommon
p(c|a) 0.20 consequence of metastasis

p(a) 0.20 Incidence in relevant clinic
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throughout the graph. Thus, although the directedgraph is appropriate for

structuring the problem, we needto convert this to an undirected graphical

representation inorder to allow completeflexibility in reasoning over the graph.

In this example, the directed/recursive model may be converted to an

undirected graphical model in two steps. Firstly a “vacuous rule” linking

nodes B and C is introduced (Wermuth & Lauritzen, 1983). All arrows are then

removed from the edges (Figure 20.7). In this simple example, the addition of

the one rule isall that is needed to enable the graphical model to be decom-
posed into a sequence of “cliques”. Technically, the requirement is that the

graph be “triangulated”. In general, this may be achieved byfirst “marrying”

all parent nodes (to produce the “moral graph”), and then searching through

the graph and adding links where necessary to ensure that the graph is

triangulated. Thatis, that there are no closed cycles of length greater than four

nodes without anintersecting chord. The cliques are then maximalsubsets of

nodes in which each nodein cliqueis linked to all other nodes in the same

clique. In the example of Figure 20.7, the cliques are the sets of nodes:
{A,B,C}, and {B, C, D} and {C, £}.

This example has glossed over a numberof technical results which inform

the choice of dividing the graph up in this way. Basically, the end result of

structuring the graph so,is that we are guaranteed to have a “decomposable”

graph.

To illustrate what is meant by “decomposable”, we may write the joint

distribution as

D(A, B,C, D, E)

= p(E|C)- p(D| B,C): p(C| A): p(B| A): p(A)
from equation (20.3)

_ D(C, E) p(B, C, D)= ‘D(A, B,C by conditional probabilitpic) pec) PO) Y provanuy
 

‘Metastatic
cancer’

‘Increased
total serum

count'

‘Severe
headaches'

 

‘Coma’

Figure 20.7 Representation as an undirected graph
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This is simply the product of the marginal distributions on the cliques
divided by the product of the distributions on their intersections. These values

can be derived from the original assessments of Table 20.1. For example, for

the clique {A, B, C}, the relation p(A, B, C) = p(C| A): p(B| A): p(A) used

in the above derivation enables us to calculate from Table 20.1 that

p(a, b,c) = 0.032, p(— 4, b, c) = 0.008, p(a,—b, c) = 0.008, p(— a4, 5, c)

= 0.032, p(a, b, 4c) = 0.128, p(—a, b, —c) = 0.152, p(a, 4b, 4c) = 0.032

and p(— a,b, 4c) = 0.608.
From these marginal distributions it is then possible to derive the prior

probabilities of all the events specified (i.e. p(b)=0.32, p(c)=0.08,

p(d)=0.32, p(e)=0.616). These are obtained by taking the probability

distribution for a clique containing the node corresponding to the event of

interest and summing overall the possible 'values for the other nodesin the

clique. For example,

p(a)=p(a, b, c)+ p(a,—), c)+ p(a,b, =c)+ p(a,-)b, 4c)

= 2, p(a,B,C) (20.4)
{A,B,C}

(Here we meanthe sum overall possible states of the clique {A, B, C} but with

node A instantiated to true, @).

The impact of information on any node may nowbe propagated through

the graph. In order to do this, we convert the graph into a directed “hypertree”
of cliques. First the nodes must be numbered. This is done as follows. The

node whose evidence is observed is labelled as the first node. For example,

suppose wewishto assessthe effect of the observation of severe headaches on

the probability of a patient lapsing into a coma. Then we would take node FE

as the starting point. The labelling is then continued by successively numbering

the nodes attached to the maximum numberof nodesthat are already labelled.

 

Figure 20.8 A possible numbering using maximum cardinality search
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Ties may be broken at random. This is known as the “maximum cardinality

search” and a possible numbering for thecurrent problem is shownin Figure

20.8.

The cliques are then ranked according to the highest numbered nodein each

clique. This gives the sequence {C, FE}, {A,B,C}, {B,C, D}. We now have a

tree of clusters of nodes. That is, a hypertree (Figure 20.9). |

This sequence of cliques may now berecursively updated. If the current

belief given the available evidence is indicated by an asterisk, p*, we have for

clique J,

p*(c)=p(c|e) =22
P(e)

For clique II,

p*(a, b, c) = p(a, b, c|e) by defn.
=p(a,b|c,e):p(c|e) by conditioning
= p(a,b|c)- p*(c) independence and defn of p*(c)

*

= p(a, b,c):eS definition of conditional probability

In turn, for clique III,

p*(b, c,d) =p(b, c, dle)
= p(d| b, Cc, e): p(b, cle)

p™(b, c)p(b, c,d) D(b, c)

The revised distribution for each successive clique is given by the original

belief multiplied by the ratio of the revised belief to the original belief for those
nodes onthe intersection of the preceding clique. Thus in turn, p*(c) can be

obtained from clique I to enablethe distribution on clique II to be revised;

p"(b, c) may then be obtained from the revised distribution of clique II and

 

 

 

Figure 20.9 Hypertree representation
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the distribution for clique III revised. In this particular example, after condi-
tion on node E (severe headacheis observed) the revised distribution for node

III yields a revised marginal probability for the occurrence of coma as

p*(d) = 0.333.
Although we have used an almost trivial example, it doesillustrate the basic

concepts underlying the Lauritzen—Spiegelhalter algorithm. The represent-

ation of the problemas a directed acyclic graph provides an intuitive way of
structuring the problem. It also simplifies the elicitation of the probability

distribution by breaking it down into a product of conditional probabilities

involving small numbers of semantically related propositions. To enable the

propagation of evidence in any direction, this representation must then be

transformed into one associated with an undirected graph, which may be

decomposed into a sequence of “cliques”. The influence on the probability

distribution of a clique due to evidence from a neighbouring clique may then

be calculated using only local computations. In this way, evidence from any

node may be propagated efficiently through the graph, provided the average

clique size is reasonably small.

20.6 NORMATIVE EXPERT SYSTEMS?

Oneofthe justifications for using classical probability as the core of a model

of decision-makingis that it supports a normative theory of decision-making.

That is, it provides a gold standard for decision-making; a prescription for

how people should make judgements on the basis of uncertain information.

There have been a numberof studies which show that people generally do not

behave according to these standards (Tversky & Kahneman, 1974; Kahneman

et al., 1982). The more ad hoc uncertainty calculi used by some early expert

systems (notably Mycin and Prospector) have been criticized by manyas being

subject to the same biases and mistakes. The main justification for using these

more ad hoc approachesis that they are computationally efficient, whereas

Bayesian updating is known to be an NP-hard problem in the general case

(Cooper, 1988). Now that efficient algorithms have been developed for the

rapid updating of belief networksthis last advantage of ad hoc approaches can

be matched andthefield is open for the development of “normative expert

systems” (Heckerman, 1991).

Medicine is one domain where high standards of decision-making are

particularly essential. An incorrect decision maylead to a patient not receiving

treatment for a condition at an early stage which later turns out to be life

threatening. Alternatively, it may lead to a patient being unnecessarily subject

to costly and distressing treatment. High-quality computer-based decision

support has the potential for being an invaluable check on theintegrity of

medical decision-making, provided it can demonstrably guard against the
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errors and biases which experts may be subject to. This is the claim that is
made bythose that are developing Bayesian expert systems for medicine. In
order to give some idea of the functionality of such systems, we will look at
one, MUNIN,in moredetail.

MUNIN(for MUscle and Nerve Inference Network) was developed for use
in the specific domain of electromyography,to assist in the diagnosis of neuro-
muscular disorders (Andreassen et al., 1987). Electromyographyinvolves the
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Figure 20.10 The a priori probabilities for individual disease states (left) are

propagated through the layer of pathophysiological nodes (middle) to the findings

nodes(right). The length of the bar indicates the probability of the corresponding node
state (simplified from Andreassen et al., 1987).

P.J. Krause and D.A. Clark

 



Uncertainty and Subjective Probability in AI Systems 517

diagnosis of muscle and nerve diseases through the analysis ofbioelectrical
signals from the affected muscle and nerve tissues. The examples we will

use are derived from a network modelling a single muscle. The final system

comprises many such networks.

A slightly simplified MUNIN model for a single muscle is shown in Figure

20.10. The lengths of the horizontal bars indicate the probabilities of the

various states of the nodes—thepriordistribution for the network. This model
has threelevels. The disease noderepresents the possible neuromuscularstates.
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Figure 20.11 Findings corresponding to a typical case of “moderate chronic axonal
neuropathy” have been entered. The broken horizontal 100% bars correspond to the

entered findings (simplified from Andreassen et al., 1987).
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(Notice the state “other”, which corresponds to support for a neuromuscular

disorder other than normality or one of the three mentioned diseases.) The

disease nodeis then linked to nodesrepresenting possible, pathophysiological

conditions. These are the physical manifestations of the underlying diseases.

The pathophysiological disorders are difficult or impossible to observe directly

and non-invasively, but they can be deduced indirectly through the electro-
myographical tests. The third layer of the model consists of the findings nodes

for such tests. The pathophysiological nodes maybelinked to the findings

nodesindirectly through intermediate nodes which integrate information from

several of the findings nodes.
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Figure 20.12 Expectations corresponding to “moderate chronic axonal neuropathy”
(simplified from Andreassen et al., 1987).
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Construction of the model required medical knowledge of the domain to be

employedin three distinct tasks. First, the number and character of the nodes

needed to be chosen. Note, for example, that very few of the nodes have

binary states corresponding to yes/no answers. Secondly the “causal” links

had to be assigned between the various nodes. Then,finally, the prior and

conditional probabilities had to be assessed for the disease states andthelinks

between the node states respectively. Each of these is a nontrival task and

requires the developmentofeffective elicitation and validation methods. Soft-

ware tools are under development to support the effective elicitation of the

network and the probabilities. For example Heckerman (1991) describes the

use of “similarity networks” as a tool for building the network structure, and

“partitions” as a tool for assessing the associated probabilities.

Havingconstructed the network andelicited the required probabilities, the

findings for a specific case may be entered. MUNIN’s use of the

Lauritzen—Spiegelhalter algorithm enables the findings to be entered andtheir

effects to be propagated through the networkinteractively. In Figure 20.11 the

findings of a hypothetical case have been entered. These findings result in high

probabilities for the patient suffering from moderate or severe chronic axonal

neuropathy (dashed lines indicate nodes which have been conditioned on).

Notice also that the expected values for several of the so far unobserved

findings nodes have also changed from Figure 20.10 (see for example, the

expected values for “TA.CONCLUSION”).

The network mayalso be used for hypothetical reasoning. Thisis illustrated

in Figure 20.12, where the system has been consulted for the expected findings

given a moderate case of chronic axonal neuropathy.

The technology underlying MUNIN was developed over the latter part of

the 1980s and is now available commercially in the expert system shell

HUGIN.This technologyisstill undergoing many refinements, one of which

is to introduce a learning capability. We will discuss this next.

20.7 TURNING “SUBJECTIVE” TO “OBJECTIVE”

Most probabilistic expert systems will be dependent on the elicitation of

subjective estimates for the majority of the required conditional probability

values. There simply is not the casedata available to produce reliable statistical

estimates of the probabilities. For example, a complete specification of the

FORCEnode of Figure 20.10, p(FORCE | MU.LOSS, MU.STRUCTURE),

would require the elicitation of 6x 5x9=270 probabilities to cover all

combinations of the states of the three nodes. At least 10 000 cases would be

required to generate reliable objective estimates of these probabilities. This is

simply untenable. Instead, the MUNIN team used subjective estimates which

were critiqued using an underlying “deep knowledge model” derived from
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current understanding of the pathophysiological processes involved
(Andreassen et al., 1987).

However, once a system is in use, case data will clearly become available.
If the true state of a patient, say, is eventually ascertained, this can be used
to critique the state predicted by the system. Essentially, one can exploit “the
ability of Bayesian probabilistic reasoning to become Bayesian statistical
reasoning” (Spiegelhalter & Cowell, 1991); as case data passes through the
system, the information can be usedto revise the parameters, the probabilities,
of the network. This is illustrated in a system which is being developed for
diagnosing congenital heart disease (Spiegelhalter et al., 1992).

Congenital heart disease requires rapid and accurate diagnosis. Its effects
can be immediately apparent at birth, resulting in cyanosis (“blue” babies) or
heart failure (breathlessness). In the hope of improving the reliability and
speed of diagnosis, the Great OrmondStreet Hospital for Sick Children (a
major referral centre for congenital heart disease in the South East of
England) has becomeactively involved in the developmentof the probabilistic
expert system referred to in the previous paragraph.

This system is based on five-layer model (Figure 20.13). Two risk factors
directly influence the likelihood of specific diseases. During diagnosis,
reported clinicalfeatures may differ from true clinicalfeatures due to observer

Birth | Aae
asphyxia, ge

    
“ray runtingDOG

Figure 20.13 Five layer model for the diagnosis of “blue” babies. The top layer
represents risk factors. The disease itself is manifest as a pathophysiological
disturbance (third layer). These produce clinical features (fourth layer) which may
differ from the reported clinical features (fifth layer) (after Spiegelhalter er a/., 1991,
by permission of David Spiegelhalter.)
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error. The true clinical features reflect specific physiological disturbances,

which in turn are caused by the specific diseases of interest.

This graphical model was constructed in consultation with consultant

paediatric cardiologists at Great Ormond Street Hospital. The next step was

to elicit the probabilities for the model. A large amount of case data was

available, but still not enough to provide reliable estimates for all the required
values. So, as with MUNIN,extensive tables of subjective probabilities had to

be elicited. In many cases the experts were not prepared to commit to a point

value, and so the probability was specified as a range of values. For example,

it was believed that 80—90%of cases of lung disease would exhibit “grunting”.

Aswe Shall see, the algorithm for updating these probabilities on the basis of

case data relies on some simple assumptions about the interpretation of this

interval being made.

In the above example, the expert’s opinion wasthat the proportion ofcases

of lung disease (1d) which they would expect to exhibit grunting (g) was

between 80 and 90%. This has a mean value of 85%, so p(g| 1d) is taken to

be 0.85. Subjective probability may be interpreted as an estimate of the
frequency of occurrence obtained from an implicit population of cases
underlying the expert’s experience. The imprecision in the subjective prob-

ability then correspondsto a prior distribution over the domain of possible

frequencies; the moreprecise estimates reflecting a larger implicit sample size.

It is straightforward to estimate the implicit population size. We make the

assumption that the range either side of the mean value may be taken to
represent one standard deviation, and that the expected value has a Gaussian

distribution about the mean. Then standard binomial theory for a binary state

variable gives

(i — p)
n

Here, o is standard deviation, p is the mean value and n is the implicit

population size.

For the example of grunting given lung disease, this gives m= 50. The

expert’s opinion is then interpreted as though p(g| 1d) = 42.5/50. It is simple

to updatethis value as data passes through the system. Suppose a baby1s now

admitted to the hospital who turns out to have lung disease, but did not exhibit
grunting. It may then besaid that 42.5 cases exhibit grunting (unchanged) out

of a population of 51 (changed). That is, p(g| 1d) = 42.5/51 =0.83. This is

a small change, but as real data accumulates the revised probabilities will

converge towards the “true” (objective) value.

This unfortunately is still not very satisfactory. The trouble is that if the

expert’s judgement was very muchin error, it can take a long time for the

revised estimates to stabilize at a final objective value. Although many of

the probabilities elicited for the Great Ormond Street system were in good
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agreement with thelater case data, it turned out that the above probability for
grunting was not. Of sixteen babies with lung disease, only four exhibited
grunting. Using the above learning technique, the revised value after these
sixteen cases was p(g| 1d) = 46.5/66 = 0.7; still a long way from the much
lower value which seemsto be suggested by the case data. Intuitively it would
appearat this stage that the expert’s prior belief had been widely in error and
that more reliable results would be obtained if this value were rejected in
favour of a more objective reference prior. Figure 20.14 showsthe revisions
of the expert’s prior belief over the sixteen cases. It also shows the revisions
that would have been made if the expert’s judgement had been rejected in
favour of the reference value of p(g| 1d) =0.5, with an implicit sample size
of 1.

It is clear that in the case of grunting given lung disease the reference prior
turned out to be the better value to take as a starting point for the learning
algorithm. Significance tests have been developed which provide a measure of
the discrepancy between the expert’s assessment and the observed data
(Spiegelhalter & Lauritzen, 1990; Spiegelhalter & Cowell, 1991). This provides
a formalbasis forthe rapid rejection of the expert’s prior assessment in favour
of a reference value which would provide better predictions.

It is quite possible that modifications to the graphical structure of the model
may have more influence on improvingthereliability of the predictions than
identifying inaccuracies in the numerical coefficients. Work is also underway
to develop techniquesfor critiquing and systematically modifying the structure
of the model.
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Figure 20.14 Revisions of predictive probabilities that next case of lung disease be
reported to grunt. Starting point for the top curveis assessed prior, that for the bottom
curve is the reference prior. Asterisks mark positive observations (after Spiegelhalter
et al., 1991b, by permission of David Spiegelhalter.)
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20.8 IMPRECISION AND UNCERTAINTY

In the introductory section we drew a distinction between uncertainty and

imprecision. Two alternative uncertainty calculi, Dempster-Shafer theory

(Smets, 1988), and possibility theory (Dubois and Prade, 1988), augment a

numerical calculus with a set-theoretic component in order to incorporate a

mechanism for handling imprecision. An analysis of the respective roles of

the set-theoretic and the numerical components of these calculi has been

performed in Kruse, Schwecke & Heinsohn, (1991) andwe will briefly outline

this workhere to give an indication of how the expressiveness of probability

may be enhanced by these more recently developed calculi.

Byimprecision is meantthat the exact value wo of some datum is not known,

but is restricted to some subset which covers wo. We gave the example that

whilst we may not knowtheprecise location of a ship, we maybe able to say

it is “at sea” (the set of all possible locations in the oceans). By uncertainty

it is meant that the validity of the datum has to be determined. That is, how

much do webelieve the proposition “the ship is at sea”? If Q is the frame of

discernment(the set of all possible outcomes) then imprecision is modelled by

allowing data to be expressed as subsets of the frame of discernment, while

uncertainty induces a mass assignment m to subsets, where m:2°— [0,1].

First consider the case of precise data. Here we mayconsidera set of sensors

or agents © as providing data as elements of the frame of discernment Q);

r:© ~Q where I is an “observation mapping”. The sensors may be

unreliable. If each sensor has an associated probability of giving the correct

value, then the observation mapping I will map this to a probability distri-

bution over 2. Suppose nowthesensors can only give imprecise data. Thatis,

they can only return a subset which covers the true value of the datum of

interest. In this case the observation mapping mapssensors to elements of

the power set of 2; T:© > 2°. Then I mapsthe probability assigned to the

sensors to (probability) mass assignments on subsets of the frame of

discernment.

A further refinement is to allow not just imprecise, but vague concepts. In

the case of “the ship is at sea” the set of possible values for the datum of

interest (the location of the ship) has “crisp” boundaries. That is, there is an

equal possibility of finding the ship at any of the locations in “the sea”, and

zero possibility of finding it anywhere else. By convention, the possibility of

the ship being at sea is taken to be unity. In the case of vague data, the range

of possible values for a datum is constrained by a fuzzyset, not a crisp set.
For example, if we say “Paul is of mediumheight” wearestill offering a distri-
bution of possible values for Paul’s height. But here we are imposing a grading

of the possibilities. We are not saying that Paul’s height could take any value

between 1.65 m and 1.80 m, say, but that there is a small possibility of his

height being 1.65 m, a high possibility of its being 1.73 m and again a low
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possibility of its being 1.80m (we would normally assign some numerical

grading to the possible values).

In Kruse, Schwecke & Heinsohn (1991) vagueness is modelled using

“L-sets”. L-sets arise as a mathematical representation for the case when the

identification problem can be considered from a numberofdifferent points of

view, or contexts. An imprecise description of the datum wo € 0 ofinterest is

obtained in each of these contexts. So the sensors return a class of subsets

instead of a single subset; T': —- F¥_(Q), where F_(Q)is the set of layered sets

of W. For the case of vague data Kruse et al. introduce the notion of a

generalized massdistribution in which the evidence mass may beassigned to

elements of FL(Q).

The following completes a very crude outline of Kruse ef al.,’s model. Let

© be a set of sensors or agents, @ a class of probabilities on ©. Then if I’ is

an observation mapping from © to Q, 2°, or ¥L(Q), where Q is the frame of

discernment, the pair (®, I’) is an information source. One needs now to

consider the dynamic aspects of the model; methods of updating the mass

assignments derived from an information source in the light of additional

information. In the case where ':© — 2”, the combination of evidence from

two independent information sources corresponds to Dempster’s rule of

combination. As well as combining information sources, methods of updating

information sources are also considered in two basic forms; conditioning and

data revision. The first is the case of integrating absolutely reliable but

imprecise evidence. That is, the datum of interest is known with certainty to

lie in a subset of E of 0, and the massdistribution derived from an infor-

mation source must be revised accordingly. The second case correspondsto an

actual revision of the observation mapping I’.

Now, Bayesian probability, Dempster—Shafer theory and possibility theory

are all mathematical models for reasoning under partial ignorance. Theyall

have well-defined properties and well-understood behaviours. We havetried to
give a brief and rapid introduction to the aspects of ignorance which the

Dempster-Shafer and possibility theories particularly address because we

firmly believe that probability theory does not a priori have a case for being

the only valid model. It is a matter of choosing the model whose properties

and behaviour best suits the application to hand.

20.9 DISCUSSION

In the late 1970s and early 1980s it began to seem that there was a fundamental

conflict between the computational requirements for effective AI applications

and the demands for the full semantic expressiveness of probabilistic
reasoning. What we havetried to showis that it is possible for AI system

builders to have their cake andeatit; a great deal of recent work has addressed
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the knowledgeelicitation problems and computational problems inherent in

fully intentional probabilistic systems. The computational algorithms are not

completely general, there are theoretical grounds for believing that no such

algorithm is possible (Cooper, 1990), but it looks as though they can be

applied to a wide range of problems.

Wehave emphasized that using a Bayesian inference model involves two

steps:

(1) construction of the relevant qualitative inference network, and
(2) elicitation of the relevant prior and conditional probabilities within this

structure.

Having constructed the network, the Bayesian calculus imposes strict

discipline on the knowledge engineering aspect of eliciting a coherent set of

probabilities. This discipline can help in the elimination of manyof the biases
involved with the elicitation of subjective probabilities which have been

discussed in the literature (e.g. von Winterfeldt and Edwards, 1986). In

addition, we have discussed how over- or underconfident estimates of prob-

abilities can be rapidly identified and revised as case data becomesavailable.

Critiquing the actual network may well prove harder to place on a more

formal basis. The network should contain face validity; that is, it should

appear to the end user to represent meaningful relationships between the

semantic entities it contains. However, how can webesurethat all the relevant

nodes have been included? For example, in Figure 20.13, while reports of

clinical features may have a strong statistical association withtheir corre-

sponding clinical features, they are not categorical indicants of them.

Especially if the observation of certain signs contained a large subjective

element, it was found (empirically) that the report and the actual occurrence

of clinical features should be separated out. A prototype of the network of

Figure 20.13 which did not include the additional nodesrelating to reports had

a much lowerpredictive accuracy thanthefinal model (Spiegelhalter, personal

communication). In this particular case, the refinement of the network arose

during the validation phase. However, as we have mentionedin Section 20.6,
work is under way to develop tools to support the effective elicitation of the

network (Heckerman, 1991).

Although we have focused on many recent advances,this is not to say that

there are not still problems with the use of probabilistic reasoning in AI

systems. There are domainswherethe useof numerical uncertainty coefficients

has been “officially” objected to, as conferring an unwarranted degree of

confidencein the values assigned to the possible outcomes (DOH,1992). A full

probabilistic solution also requires the recompilation of the belief network,

whereasthere are problems whereit is highly desirable to construct and modify

the belief network “on the fly” as the solution progresses and more infor-

mation becomesavailable. And finally, as we have mentioned, there are cases



526 P.J. Krause and D.A. Clark

whereaspects of imprecision and vagueness may be moreeffectively addressed

with one of the alternative calculi (Krause and Clark, 1993, give a compre-

hensive review of the various alternative symbolic and numerical approaches

to uncertainty handling). The application of probability in AI systems has seen

some very impressive recent developments. But uncertainty handling in AIis

most certainly not a closed book.
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NOTE

(1) Here and in the following we use capital letters (e.g. A) to denote variables which

may beinstantiatedwith an arbitrary proposition, and lower-case letters to denote the
actual states of the proposition (e.g. “a” for A is true; “—a”for A is false).

REFERENCES

Andreassen, S, Woldbye, M., Falck, B. & Andersen, S. (1987) MUNIN—A Causal

Probabilistic Network for Interpretation of Electromyographic Findings, In
Proceedings of the 10th IJCAT, Milan, Italy, pages 366-72.

Clark, D. (1990) Numerical and symbolic approaches to uncertainty managementin
Al, Artificial Intelligence Review, 4, 109—46.

Cooper, G. (1990) The Computational Complexity of probabilistic inference using

Bayesian belief networks, Artificial Intelligence, 42, 393—405.

deFinetti, B. (1937) La prévision: Ses lois logiques, ses sources objectives, Annales de

l’Institut Henri Poincaré, 7, 1-68 Translated in H. Kyberg & H. Smokler (1964)
Studies in Subjective Probability, Wiley, New York.

DOH (1992) Report of Committee on Carcinogenicity of Chemicals in Food,

Department of Health. ,

Dubois, D. & Prade, H. (1988) Possibility Theory: An Approach to Computerised

Processing of Uncertainty, Plenum Press, New York.

Gashnig, J. (1982) PROSPECTOR:an expert system for mineral exploration. In D.

Michie, (ed.), Expert Systems in the Microelectronic Age, Edinburgh University
Press, Edinburgh, pages 153-67.

Geiger, D. & Pearl, J. (1988) Onthe logic of causal models. In Proceedings of the
Fourth Workshop on Uncertainty in Artificial Intelligence, Minneapolis, MN, pages
136—47.

Heckerman,D.(1991) Probabilistic Similarity Networks, MIT Press, Cambridge, MA.

Kahneman,D., Slovic, P. & Tversky, A. (eds.), (1982) Judgement Under Uncertainty:

Heuristics and Biases, Cambridge University Press, Cambridge.



Uncertainty and Subjective Probability in AI Systems 527

Krause, P. & Clark, D. (1993) Representing Uncertain Knowledge: An Artificial Intel-

ligence Approach, Intellect, Oxford.
Kruse, R., Schwecke, E. & Heinsohn, J. (1991) Uncertainty and Vagueness in
Knowledge Based Systems, Springer, Heidelberg.

Lauritzen, S.L. & Spiegelhalter, D. (1988) Local computations with probabilities on

graphical structures and their application to expert systems. Journal of the Royal
Statistical Society, B50, 157-224.

Neapolitan, R. (1990) ProbabilisticReasoning in Expert Systems. Wiley, Chichester.

Pearl, J. (1988) Probabilistic Reasoning in Intelligent Systems. Morgan-Kaufmann,

San-Mateo, CA.
Savage, L. (1962) The Foundations of Statistical Inference. Wiley, Chichester.

Shortliffe, E. (1976) Computer Based Medical Consultations: MYCIN.Elsevier, New

York.
Smets, P. (1988) Belief functions. In P. Smets, E. Mamdani, D. Dubois & H.Prade,

Non-standard Logics for Automated Reasoning, Academic Press, New York, pages

253-86.
Spiegelhalter, D. (1986) Probabilistic Reasoning in Predictive Expert Systems. In

L. Kanal and J. Lemmer (eds.), Uncertainty in Artificial Intelligence. Elsevier,

North-Holland, Amsterdam, pages 47—67.

Spiegelhalter, D. & Cowell, R. (1991) Learning in Probabilistic Expert Systems,
Proceedings of the Fourth International Meeting on Bayesian Statistics, Peniscola,

Spain.
Spiegelhalter, D. & Lauritzen, S. (1990) Sequential updating of conditional prob-

abilities on directed graphical structures. Networks, 20, 579-605.
Spiegelhalter, D., Harris, N., Bull, K. & Franklin, R. (1991) Empirical evaluation of

prior beliefs about frequencies: methodology and a case study in congenital heart

disease. BAIES Report BR-24, MRC.Biostatistics Unit, Cambridge, England.
Tversky, A. & Kahneman. D. (1974) Judgement under uncertainty: Heuristics and

biases, Science, 185, 1124-31.
Verma, T. & Pearl, J. (1988) Causal Networks: Semantics and Expressiveness.

Proceedings of the Fourth Workshop on Uncertainty in Artificial Intelligence,

Minneapolis, MN, pages 352-9.
von Winterfeldt, D. & Edwards, W. (1986) Decision Analysis and Behavioural

Research. Cambridge University Press, Cambridge.
Wermuth, N. & Lauritzen, S. (1983) Graphical and recursive models for contingency

tables. Biometrika, 70, 537-52.



 Chapter 21

The Subjective Probability
of Guilt

Willem A. Wagenaar
Leiden University, The Netherlands

In all systemsof criminal law judges’ apply somecriterion of “beyond reason-

able doubt”. The notion is formulated differently in various countries, but the

principle is the same: judges seek a level of subjective probability that is high

enough according to somecriterion, without reaching absolute certainty.

There is a paradox here: if judges are not absolutely certain, this must mean

that there is a logical possibility that the accused is innocent; why, then,is this

possibility not a reason for doubt? The answeris that the logical possibility

is not reasonable, by which is meant that reasonable assumptions reduce the

probability of innocence to zero. Since the law does not provide a definition

of what assumptions are reasonable or unreasonable, it is obvious that the

criterion of reasonable doubtis highly subjective. How, then, do judges deal

with this important task of probability assessment and probabilistic decision-

making? I will discuss some of the theories that have been put forward, and
illustrate them with some examples from my ownpractice as a court expert on

problems of memory andidentification.

21.1 THE LEGAL MODEL

Characteristically, since the judgementis left to the subjective opinion of
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individual judges, the legal community has never attempted to formulate a

theory that prescribes a judge’s probabilistic thinking. In fact thestill leading

theory of proof, formulated by Wigmore (1937) assumes that the problem of

probability can be evaded altogether by a painstaking process of specification.

Assume, for instance, that an accused is charged with theft. Theft is a legal

notion that applies when at least four conditions are met:

® property,

@ belonging wholly or partially to another person,

@ is taken,

@ with the intent to appropriate it unlawfully.

The facts needed to establish theft follow directly from this specification: the

stolen matter should be property, it should belong to another person, etc.

However, the establishment of fact is not simply changed into a counting-off

procedure, becauseit is not clear what notionslike “property”, “belonging”,

or “another person” mean. Whatis property? A pound of sugar and a car may

be property; but what about a song, a computer program, an idea? Lawyers

havesolved such problems, again through specification. Something qualifies

as property when a numberof further conditions are met. Likewise one may

check whether all conditions for “belonging” are fulfilled. But within the

process of specification weare verylikely to encounter new problems, because

the termsrequire still further specification. Thus, the process of proof is

turned into an almost endless regression of embedded conditions that are
checked one byone. Wigmoredescribed this process as the probandum (e.g.

theft), which is specified by splitting it up into a large number of facta

probanda(the conditions), which are finally matched with facta probantia (the

evidence). It is believed that legal proof can reach any required level of
precision, simply through an extension of the specification process.

I would argue that this last conclusion is incorrect. The regression of

conditions only postpones the problem;it does not solve it. At the end of the

specification process there is still the task of matching a condition with

evidence. It is not clear that any degree of specification will guarantee that we

can establish with full certainty whether or not a condition is met. Take the

example of “belonging”. One may claim that having paid for a TV-set estab-

lishes ownership. But how do we knowthat a person paid for the TV-set? He

may produce a receipt, but how do we knowit is genuine, and how do we

knowthereceipt was for this particular set? The set may havea serial number,

but these are easy to fake. The shopowner maytestify that he sold this

particular set to this particular client, but witnesses may be mistaken, or may

even be lying. At some point the specification process must stop; further

questionsare barred, andit is assumedthat the evidence provesthe fulfilment

of a condition. The law provides such stop rules; an example is the wnis testis

rule, which says that one witness is not enough, implying that two independent
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concordanttestimonies prove a fact. But the testimony of two witnessesis not

always treated as indisputable; hence the acceptance of the stop rule is a

decision based upon a subjective certainty criterion. More generally,

Wigmore’s process of matching facta probanda with facta probantia does not

exclude the role of subjective probability.

21.2 REVISION OF OPINION

Statisticians and psychologists have proposed an alternative model of

courtroom decision-making: the Bayesian revision-of-opinion process. The

basic idea is that the judge starts with some degree of belief in the accused

person’s guilt. The ratio of the degrees of belief in guilt and innocenceis taken

as the relevant indicator, on which the verdict is founded.Initially this ratio

is assumed to be very low, because of the much acclaimed “presumption of

innocence”. Then prosecution and defence contribute evidence; the court

determines the diagnostic value of each piece of evidence and revises its

previous opinion according to the formula:

new ratio = old ratio x diagnostic value (21.1)

When, at the end of the trial, the revised ratio has transgressed a certain

predefined certainty criterion, the accusedis declared guilty. This model, based

onBayes’rule for the revision of opinion (1763), reflects in a way the normal

procedure of hypothesis testing that is adopted in scientific research. This may

explain whyscientists tend to prescribe it as a normative model for courtroom
decision-making, even though there are substantial theoretical and practical

difficulties. I will summarize the problems under four headings:

@ the initial opinion

@ the diagnostic value of evidence

@ the revision process

@ the decision criterion.

The initial opinion. Presumption of innocence means that the judge will

assumethe innocence of the accused, unless proof to the contrary is provided.

But, in Formula 1, the prior belief in guilt cannot be zero, because otherwise

the multiplication will have no effect. In principle a judge should accept the

theoretical possibility that the accused is guilty indeed. How strong can this

initial belief be? In fact there are good reasons to assumethat it can be quite

strong. One reason is that in most countries the base rate of guilt 1s around

90% from a person whostandstrial. Is it unnatural for a judge to assume that

this base rate applies also to individual cases? Another reason that applies in

some countries, is that judges read the file before the beginning of the actual

trial. This has a large effect on the final decision, as was demonstrated in a
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series of studies by Schiinemann and his coworkers. In one of these studies

(Schinemann, 1983) two groups of professional judges were used as subjects.

The first group did not read the file before the trial, the other group did. In

both conditions the judges decided without juries. All of those who read the

file before the trial convicted the accused; in the second group only 27% of

the judges convicted. All judges received the sameinformationatthetrial. But

the first group was biased by the initial file which, as is normal in many

countries, is filled exclusively by the prosecution. What remains of the

presumption of innocence, then?

A practical illustration of the problem is encountered in a case in which I

served as an expert witness on memory problems. Danny Rijkbloem was

accused of shooting the father of his girlfriend Nicole. Nicole’s parents had

convinced her that she should end herrelationship with Danny, because he was

a violent man and a criminal. Nicole and her parents went to Danny’s house,

to collect her clothes. There was an argument,butit is unclear what happened.

Nicole and her motherstated that Danny got a gun and shot the father from

a distance of 50cm. Danny claimed that the mother drew a small gun from

her handbag, and pointedit at him. He “experienced that as unpleasant”, and

hit her arm. The gun went off, and the father was hit by accident, from a

distance of 2m. Whatarethe prior odds that Dannykilled Nicole’s father?

One estimate would be 1/15 000 000: there are fifteen million people living in

my country, and the presumption of innocence means that Danny is as

innocent as anybody else. But that would be rathersilly: there were only four

people present, one of whom wasthe victim. There are only two possible

suspects, hencethe prior odds are | to 1! Still another choice can be based upon

the empirical fact that about 95% of the defendants in mycountry are actually

guilty, which poses the odds at 19 to 1. Bayesian revision of opinion does not

deal with this problem, although the Swedish psychologist Goldsmith (1980)

suggested a solution. In his “evidentiary value theory” it is proposed that

Judges determine the degree to which evidence supports the indictment; before

the presentation of evidence this estimate is put at zero. But Goldsmith’s

modelsuffers from the further drawbacks, listed below.

Diagnosticity. How does a judge determine the extent to which new evidence

is diagnostic for guilt? In principle a performancetable is needed,like the one

presented in Table 21.1.

The diagnostic value of a confession is defined by the ratio of hits and false
alarms; the diagnostic value of adenial by the ratio of correct rejections and

misses. Wigmore (1970) claimed that confessions are more diagnostic than any

othertype of evidence. That belief may be the basis for the Anglo-Saxon rule

that a confession provides complete proof of guilt. In my own country there

is an explicit rule that a confession cannotbe accepted as complete proof.
Empirical data, which maybe used to support either view, are largely absent:

we do not know howoften confessions are true or false. But is it reasonable



The Subjective Probability of Guilt 533

Table 21.1 Performance table, representing the diag-

nosticity of confessions
 

 

The defendant The defendant
was in reality: Confessed Denied

Guilty Hit Miss

Innocent False alarm Correct rejection
 

to assume that a confession is correct more often than a fingerprint test, a

recognition test, being caughtin the act of the crime, being accused bya large

number of witnesses? There are many reasons why people may makefalse

confessions: in order to protect the real perpetrator, in order to be tried for

a lesser offence, because of police pressure or trickery, or simply because of

a pathological tendency to confess to crimes never committed. A judge cannot

know the general diagnosticity of a confession, and has in a specific case no

clear basis for the estimation of diagnosticity.

The problem of diagnosticity may be solved in the law, as was donefor

confessions in the Anglo-Saxon countries: there the law states that confessions

are fully diagnostic. But this does not really help, since confessions are only
one kind of evidence. What about the diagnosticity of witness testimony,

forensic tests, expert opinion, recognitions, the behaviour of the defendant in

court, criminal records, etc.? The almost violent battles over the diagnosticity

of the polygraph test (Carroll, 1988) and the anatomically correct dolls test

constitute excellent demonstrations of the problem: judges cannot know the

diagnosticity of that sort of evidence. In reality the diagnostic value of such

tests may be quite low,as illustrated in Table 21.2.
The result looks good, but the diagnostic value of the outcome “sexually

abused” is only 9/2 = 4.5. If, for instance, the presumptionof innocence iS

modelled by 1 : 20 oddsin favour of innocence,the revision on the basis of the

dolls’ test is to odds of 4.5/20, still favouring innocence. A lot more is needed
for conviction, but in the Netherlands defendants have frequently been
convicted on the basis of this test only (cf. Rossen & Schuijer, 1992).

Table 21.2 Performance table for the anatomically

correct dolls test (after Jampole & Weber, 1987)
 

Expert opinion based ontest

The child was: Abused Not abused
 

Sexually abused 9 1
Not sexually abused 2 8
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Obviously judges were not aware of the low diagnosticity, or what is even
morelikely, were not thinking in terms of diagnosticity. This suggestion stems
from the simple fact that judges rarely ask the experts about the reliability of
their methodsandthe validity of their results. The diagnostic value of 4.5 can
be put into context by comparingit to the diagnostic value of a well-organized
lineup procedure, which can amount to about 15 (Wagenaar & Veefkind, 1 992).
The textbook demonstration of diagnosticity problemsis the case of People

v. Collins, described by Finkelstein & Fairley (1970), and extensively discussed
by Tribe (1971). The case concerned a robbery by a young womanwith a
blondepigtail, who escaped in a yellow sports car, driven by a black man. The
man had a moustache and a beard. A few days later the police arrested a
couple that fitted the description precisely. The diagnostic value of the
description was based on these estimated probabilities:

Yellow sports car 1/10
Moustache 1/4
Black man ‘with beard 1/10
Womanwith pigtail 1/10

Blonde woman 1/3
Interracial couple 1/1000

The joint probability of all these properties is one in twelve million. With the
prior oddsset at 1/20 in favour of innocence,the final odds are 600 000 to 1
in favour of guilt. The problems of this approach are obvious. How do we
knowall these statistics? Should wetakestatistics for the world, for the US,
for Los Angeles, for the particular neighbourhood? How do weknowthatall
these properties are independent: is having a moustache independentof having
a beard? Do blonde women havepigtails more often than black women?
A more subtle problem is the role of a concentrated police hunt. The prob-

ability calculus applies when suspects have been caught for other reasons than
the properties mentioned. It would be very surprising indeed if, for instance,
a couple spending the stolen money happened to fit the description just by
accident. But as soon as the police start a search for people fitting the
description, the probabilistic reasoning is invalidated. Even if only one in
twelve million couples fit the description, it can almost be guaranteed that
several such couples can be found in California. Discovery of one such couple
only demonstrates the thoroughness of the search, not the diagnosticity of the
description.

Revision. The process of revision, as described by the Bayesian model,
assumesatleast five properties that are in fact quite unrealistic. The arguments
here are partially based upon Jonathan Cohen’s (1977) thorough analysis of
the use of probabilities in legal decision making, which covers more than the
Bayesian approach.
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The first of these properties is compensation: a very diagnostic piece of

exonerating evidence can be compensated by a numberofless diagnostic facts

pointing in the other direction. Take as an example the case of Danny

Rijkbloem, mentioned above. There were four people in the room: Rijkbloem

(the suspect), Mr Lammerts (the victim), Mrs Lammerts (the victim’s wife),

and Nicole (their daughter). The two women claimed that Rijkbloem had shot
Mr Lammerts from a distance of 50 cm. Rijkbloem said that Mrs Rijkbloem

had pointed a gun at him, which is why he hit her on thewrist; the gun went

off by accident and Lammerts washit from below and from distance of over

2m. The forensic report confirmed every detail of Danny’s account; the

version produced by the two women wasnear to impossible. But this highly

diagnostic evidence was compensated by a numberofless diagnostic pieces of
information, such as Danny’s known aggressiveness, the fact that Mrs

Lammerts was not known to own a gun,andthat an accidental hit is very

unlikely. Is it reasonable to let one very diagnostic forensic report be cancelled

by a host of less diagnostic facts?

A second property of Bayesian updating is the assumed independence of

diagnostic values. Assumethat Nicole had stated that Danny’s gun had a price

tag on it; a rather unlikely observation that does not, by itself, much increase

the belief that she had seen a weapon in Danny’s hands. A similar statement,

made by the mother only, would have an equally small impact. But if both

womendescribe the price tag, the seemingly insignificant observations may

obtain an overwhelming significance: the probability of producing the same

fantasy twice is very low. The independence problem can be avoided by a

redefinition of facts. The two observations can be combined into a single fact:

two witnesses producing the same odd detail. But the Bayesian model does

not provide any rules for recombination, and it must be feared that in actual

cases many or even most details obtain their diagnostic value only through

their relationships with other, seemingly insignificant pieces of evidence.

Diagnosticity is not an independent property of evidence, but is derived from

the entire narrative context. The overwhelming reasoning problems that occur

whenit is attempted to put some of the facts in the context of other evidence

is illustrated in an influential paper by Lindley (1971). Although he discusses

one example only, the argument should be convincing to everybody: the

assumption that judges or jury members are able to reason in this way 1s

absurd.

A third property is that of decomposition and recomposition. The indict-

ment is broken down into a large number of independent facts for which

evidence is sought. The final probability, which is found by combination of

all partial probabilities, does not reflect which elements in the decomposition
contributed high or low probabilities. It makes no difference whether a high

probability was contributed by recognitions in a lineup, relevant for the



536 W.A. Wagenaar

identity problem, or by the analysis of the body, relevant for the question of

whether a murder was committed at all. Should not a judge, in case of doubt,
besides the overall probability assessment, also consider the sources of his

doubt?

The fourth property assumed by Bayesian inference is transitivity of

probabilistic statements. “If A then probably B; if B then probably C”

implies: “If A then probably C”. Here is a simple example of a violation of
transitivity. When I testify in court, I am probably in the Netherlands. It is

also true that, when I am in the Netherlands, I am probably nottestifying.

Concatenation yields: when I testify in court I am probably not testifying.

Similar problems occur in the legal setting. If Danny Rijkbloem belonged to

the criminal scene, he was probably in the possession of a gun. If it can be

shownthat he possessed a gun, he is probably the one who shot Mr Lammerts,

because he denied the possession of a gun. But the concatenation, with the

exclusion of the possession and its denial, may be very misleading. It is not
necessarily true that Danny was the most likely suspect, just because he

belonged to the criminal scene.

The fifth property of Bayesian decision makingis that it requires the formu-

lation of an alternative hypothesis. Broadly speaking the alternative to the

hypothesis of guilt is the hypothesis of innocence. But which scenarios will

actually be considered in the case of Danny Rijkbloem? All scenarios in which

Danny is innocent? Only the scenario proposed by Danny, in which Mrs

Lammerts shot her own husband? Or, maybe, no scenario at all, because a

jixed probability of innocence is assumed, which is the sameacrossall trials?

Normatively all scenarios should be considered; but that is practically imposs-

ible. Consideration of the defence’s account of the facts would be a mistake,
because many innocent defendants lie about what really happened, for
instance in order to protect the real perpetrator, or to hide other crimes or

offences, for which they are not charged. A simple example ofthis is the case

of Gerrit Kraft. In a fight Hans Monkswasinjured in the bar owned by Gerrit

and Tom Kraft. In order to protect Tom, Gerrit stated that Tom had not even

been present at the fight. When both Gerrit and Tom were sentenced to six

years in prison, Gerrit withdrew his statement: Tom had been present, and

was actually the one who had kicked Monks. Most witnesses confirmed this

version, but Gerrit’s initial statement, after being proven false, boomeranged

against him. The court, after proving one alternative theory false, refused to

consider his later version.

The criterion. The final problem of the Bayesian modelis the definition of

the decision criterion. When are the odds in favourof guilt high enough for

conviction? The model does not specify how sucha criterion is chosen, nor

whether the criterion is constant or flexible. Is the same amountof certainty

neededin cases of shoplifting and mass murder? Thelaw doesnot provide any

clues here. Signal detection theory, on the other hand, prescribes that the
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criterion must be more lenient when the costs of Type-2 errors increase.
Acquitting a suspected child abuser, an IRAterrorist, or a serial murderer,

may have such enormous consequencesthat less evidence is required. This may

lead to the paradoxical position that the more severe the punishment, theless

evidence is needed. And indeed, it was found by Wagenaar, Van Koppen, &

Crombag (1993, Chapter 4) that in practice Dutch judges may apply such a

rationale. It is essential that a theory of courtroom decision-making provides
a model of this aspect of the decision process; but the Bayesian model does

not.

Manyofthe issues raised here are discussed in detail by Jonathan Koehler

(1991a, 1991b, 1992), Koehler & Shaviro (1990) and Edwards (1991). The

discussion is complex, and does not seem to convergeto a single conclusion.

But the worst of all problems posed by the Bayesian model of legal decision-

making is that it conflicts with actual rulings of courts. This is more

elaborately documented by Wagenaar, Van Koppen, & Crombag (1993). Here

I will restrict the illustration to the case of Danny Rijkbloem,described above.

Thestarting position was not so good for Danny. Hewasliving from petty

crime, for which he was convicted before. He was knownto be a violent man,

and was on record for attacking Nicole before. He was charged in another

murder case, in which he put forward the same defence, viz. being accused

falsely by the real perpetrators. The Lammerts were middle class people,

without any criminal record. All these facts were known to the court; in a

Bayesian fashion the prior odds would berather in favour of guilt. But then

came the evidence.

@ Danny’s hands were tested for traces of gunpowder. They were clean.

Dannyhadinsisted, right at the scene of the crime, that the hands of Mrs

Lammerts should be tested, but the police refused this, because she was the

main witness.
@ The murder weapon was never found. The two womensaid that Danny

took it when he left the house to call the ambulance. Danny had been away

for five minutes, and along his route to the phone boothan extensive search

was executed. No weapon was found. Danny, onhis part, had immediately

insisted that the two womenshould be searched because one of them carried

the gun, a small Derringer that fits easily in a purse. The police refused to

do this.

@ No shell was found, although the type of gun allegedly used by Danny

throws shells. The explanation given was that Danny had also removed the

shell. A small Derringer does not throw shells.

@ The forensic report disproved the two women’s account of the shooting,

and supported Danny’s version.

It is not easy to see howthese facts, used in a Bayesian fashion, may increase

the prior belief of guilt to such an extent that a reasonable decision criterion
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is surpassed. Still Danny was convicted. The evidence cited by the court (in my

country the courts must give reasons for their verdicts) illustrates nicely what

happened: the court did not combineall evidence into one verdict, but selected

the evidence in favourof guilt, while evidence in favour of innocence wasfully

neglected. The selected evidence consisted of the statements by the two eye-

witnesses (who themselves were the only other possible suspects) and the

presence of a body. Nothing was said about the problems with the shell and

the gun, nothing about the forensic report. What sort of theory can describe

how the court decided to convict Danny Rijkbloem, with most evidence in

favour of his innocence?

21.3 JUDGING THE PLAUSIBILITY OF
NARRATIVES

The leading theory about how people judge the probability of a unique event

assumes the application of a heuristic. The three best-known heuristics are
availability, representativeness, and anchoring-and-adjustment (cf. Tversky &

Kahnemann,1974). Althoughall three heuristics are in principle applicable to

the courtroom situation, availability has been used most often. The specific

heuristic is called scenario availability; it assumes that the probability of an

event is derived from how easyit is to construct or imagine a scenario that
leads to the event. Applied to the probability of guilt, the heuristic means

that guilt is judged to be morelikely, the easier it is to think of a scenario that

describes why and how the accused committed the crime. This scenario is in

principle contained in the prosecution’s indictment. The prosecutiontells the

story of what happened, sometimes even in a most dramatic manner (cf.

Loftus & Ketcham, 1991, page 101), and the court decides whether that is a

true story or not. Bennett & Feldman (1981) devoted an entire book to story-

telling in the courtroom, andthe process of judging theplausibility of stories;

the extensions of the theory discussed in this chapter are slight compared to

their monumental contribution.

In principle, Bennett & Feldmansay that there is no real difference between

the narrative qualities of true and false stories. There is no way to distinguish

true stories from false stories, just on the basis of properties of the narrative.

But there is a major difference between good and badstories. This difference

is crucial, because people tend to accept goodstories as true, and to reject bad

stories as false. Good stories have two important properties:

® a readily identifiable central action

@ a context that provides an easy and natural explanation whythe actors

behaved in the way they did

In a goodstoryall elements are connected to the central action; nothing sticks

out on its own. The context provides a full and compelling account of why the
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central action happened.If the context does not achieve that effect, the story

is said to contain ambiguities. There are two types of ambiguities: missing

elements and contradictory elements. Here is an example of an ambiguous

story used as a defencein a case in which I acted as an expert witness: the case

of Haaknat.

There had been a bank robbery very early in the morning, and the robbers

escaped, closely followed by the police. The police lost sight of the robbers,

but a few minutes later they found Haaknat in the moat of a castle in

Nieuwegein. The robbers had worn jogging suits, while Haaknat wore shorts

and a thin T-shirt; but on the other side of the moat a jogging suit was found

that fitted the description. The prosecution’s story was that Haaknat was one

of the robbers, that he took off the jogging suit, and hid it on the other side

of the moat. Haaknat had a completely different story. He had cometo

Nieuwegein in order to meet his friend Benny, who owed him 300 guilders.

Benny had shown up without the money, which is why Haaknatstarted a fight.

Then he heardthesirens of the police cars chasing the robbers, which created

the suggestion that the police were after the fighters. Hence Haaknat had run

off and jumpedinto the moat. This is an ambiguousstory for various reasons.

There is no central theme: the fight between Haaknat and Benny happened

completely independently of the robbery. There are also many missing

elements: Why did Haaknat meet Benny so early in the morning? Why did

Benny show upatall, if he did not have the money? Why did Haaknat not

know Benny’s last nameor his address? How did the two makethe appoint-

ment? Why in Nieuwegein, which was rather remote from where Haaknat

lived? Why did he lend moneyto a person he hardly knew? Therearealso

some contradictions: the jogging suit must have been taken to the other side

of the moat, at the exact moment in which Haaknat took his jump,but he did

not see anybody. Haaknat claimed to have travelled to Nieuwegein by public

transport, in shorts and a T-shirt only; but it was cold. Because Haaknat’s

story is ambiguous, it is judged to be unlikely. The prosecutor’s story is

accepted as highly probable, because it explainsall facts within the context of

one leading theme: Haaknat took part in the robbery.

The acceptance of good stories as true representations rests on the tacit

assumption that goodnessis diagnostic for truth. In fact we do not know much

about the diagnostic value of story goodness. There are even good reasons to

believe that true stories contain many ambiguities, and the technique of

statement validity analysis (Yuille, 1989) even uses ambiguities as a sign of

truthfulness. This analysis employs 19 criteria that supposedlydistinguish true

stories from false ones. Criterion 2 is unstructured production of the story;

Criterion 8 and 9: presence of unusual and irrelevant details; Criterion 10:

wrongly understood details. Haaknat’s story might score high on these

criteria!

The theory of narrative plausibility was largely extended by Pennington &

Hastie (1986, 1988, 1991); But their most relevant contribution is empirical.
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One of their studies (Pennington & Hastie, 1986) deals with the order in which

evidence is presented, a factor that should be irrelevant according to Bayesian

theory. Prospective jury members werepresented with two narratives, one by

the prosecution and one by the defence. Both sides presented the elements of

the narratives either in story order, or in random order. Then the subjects were

asked whether the defendant should be convicted for first-degree murder. The

results are presented in Table 21.3.

The table clearly indicates that presentation of the elements in story order

is better believed, even though the evidence is the same. The effect can be as

large as changing a 31% probability into a 78% probability. Clever present-

ation is half of the job; what is the other half?

Fortunately a court is not supposed to judgestory plausibility to theexclu-

sion of other indications. The law even specifies where these other indications

should come from: evidence provided by the prosecution. A weak indictment

story will not convince a judge, but a good story should not convince a judge

if it is not supported by evidence for mostor at least the most crucial details.
The way in which evidence “proves” that a good story is true is treated in the

recent work of Crombag, Van Koppen, and Wagenaar (1992), and Wagenaar,

Van Koppen, and Crombag (1993). Their theory of anchored narratives

specifies how evidence anchors goodstories onto a firm ground of generally

accepted beliefs.

The main idea of the theory of anchored narratives is that evidenceitself is

nothing morethanstill another narrative. The evidence provided by the two

witnesses in the case against Danny Rijkbloem is a narrative that needs to be

judged with respect to goodness. If it has a central action and a compelling

context it may be a good story which is accepted as true; otherwise it is

probably false. Thus the evidence anchors the indictment to the generally

accepted belief that good stories, told by two witnesses under oath,are true.

If the account of the two witnesses is doubted, it may be further supported by

more evidence: for instance that Danny owned a gun, while Mrs Lammerts did

not. But this evidence again consists of a narrative, told by witnesses; the truth

of this narrative can be accepted only on the basis of a general belief, such as

Table 21.3 Effect on presentation of evidence in random

order or story order, on percentage of convictions. (From

Pennington & Hastie, 1986. Copyright 1986 American
Psychological Association. Reprinted by permission)
 

Defence:

Prosecution: Random order Story order
 

Random order 63% 31%
Story order 78% 59%
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that third parties, who have no special interest in the case, will not lie. The

forensic expertise in the same case is, again, nothing but a narrative. The

expert may explain that he examined the body,that no traces of powder were

found near the wound,andthat therefore the gun was fired from adistance

of 2 m or more. That is a narrative, which we maybelieve because the expert

is a trusted specialist from an established laboratory. But that consideration

provides an anchoronly if it is generally believed that trusted experts do not

lie and do not make mistakes. Recent events in Great Britain have demon-
strated that this belief is not always warranted. Hence we may ask further

support, for instance through a close scrutiny of the expert’s credentials, his

research methods, and the outcomesof the actual tests. But again, the court

will receive nothing but more narratives, which do not prove anything atall

unless they are linked to an accepted belief.

Thus, according to the theory of anchored narratives, legal proof consists

of a narrative, connected through morespecific narratives, in a hierarchical

ordering, to generally accepted beliefs. The judged probability of guilt is then

determined by four factors.

@ the plausibility of the indictment’s narrative

@ the number of elements in the narrative that are anchored by means of

evidence

@ the logical relationship between the evidence andthestory detail thatit is

supposed to anchor

@ the validity of the general beliefs to which the regressions of narratives are

finally anchored.

An important element of anchored narratives is that the court is attempting

to estimate only one quantity:the probability of guilt. The probability that the

accused is innocent is not in discussion. The likelihood that the defendant’s

story is true is not considered. Almost no country in the whole world imposes

the obligation to explain why the defendant’s story is not true. Even in The

Netherlands, where judges are obliged to give reasons for the rejection of an
alternative story, it is sufficient to state that the story is not credible. The

leading hypothesis is the prosecutor’s narrative, the anchoring construction to

be evaluated is the one proposed by the prosecution. Courts may simply

neglect evidence that contradicts the narrative, if there is enough evidencein

support of it. To give just one example: there is a universal habit to believe

recognitions by a few witnesses in a lineup, even if the suspect was not

recognized by a large majority of other witnesses who had an equally good

Opportunity to observe the perpetrator during the crime (cf. Wagenaar, 1988).

In this way, anchoringis a processof verification, not falsification. Preference

of verification to falsification is another much-studied heuristic (cf. Wason &

Johnson-Laird, 1972), which has practical relevance because it keeps the

reasoning process manageable.
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21.4 TESTING BY GENERATION OF ANOMALIES

In the heuristics-and-biases tradition it is customary to test theories through

the generation of anomalies. The application of a heuristic will in exceptional

cases lead to an anomalousresult. Even though such anomalies mayberare,

if no other theory predicts them, their very existence favours the theory. An

example is the prediction of the outcome of: 1x2x*x3xX---xX8 versus

8x7xX6x---x1 (Tversky & Kahneman, 1974). The predicted outcomeis

much higher in the second task, which follows from the application of

anchoring-and-adjustment; the three first digits provide an initial anchor,

which is then adjusted for “five more”. The anchoris higher in the second
task, which explains why the outcomeis higher. If no other theory predicts this

anomaly, it does not matter whether the anomaly is rare or whether thetask

is unnatural.

The theory of anchored narratives has been tested in the same manner:

through the prediction of anomalies (see Wagenaar, 1994). To that end a

corpus of possibly anomalous cases was collected with the aid of various

defence lawyers. One example of an anomalyis the possibility that a defendant

is accused on the basis of a good story only, without any supporting evidence.

An example is the case of Henkemans, accused of smuggling 16 kg heroin. He

was observed at Amsterdam Airport, while he collected his suitcase with

unknowncontents. He checked in at a nearby hotel and madecontact with two

Chinese, who little later left the hotel with what seemedto be the same

suitcase. The contents of the suitcase werestill unknown. The Chinese were

followed to their home. Later on that same day the house wasraided; 16 kg

heroin was found in a hiding place. Henkemans was convicted for smuggling

these 16 kg, although there is not the slightest indication about what wasin

his suitcase. Even if he had smuggled heroin,it is still unclear how much. This

is important because in The Netherlands one is sentenced by the kilo! In
Henkemans’case there is no proof that he committed a crime, no proof of

criminal intent, and no proof of the identity of the person who smuggled the

16 kg into the country. The only real evidence was the prior suspicion against

Henkemans, and his contact with two drug dealers. But added to that there

was the prosecutor’s story about how drugs are usually brought into the

country, and Henkemans’ incredible story about taking presents to friends of

a friend in exchange for a free return ticket Bangkok—Amsterdam.

Another anomaly is a conviction based on an indictment, of which essential

parts are not anchored through evidence. An example is the case of Helder,

accused of murdering his wife and employer, old Mrs Kempers. He had

married her six weeks before. On the night of her death he had administered

her usual medicine and the equally usual glass of rum. The pathologist

concluded that this mixture had killed her, but later this opinion was proved

to be wrong by a much moredetailed examination of the body. Nevertheless
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the courts concluded that Helder had killed Mrs Kempers, “because he

strongly desired her death”. The proof is rather complete with respect to who

administered the medicine and the alcohol, but very incomplete with respect

to the essential questions of whether Mrs Kempers died from an unnatural

death, and whether Helder had anyintention to kill her. These details of the

story were only anchored through the obviousinterest that Helder had in Mrs

Kempers’ death. Apparently this piece of evidence was anchored onto the

belief that people don’t die from natural causes when someone profits from

their death.

A further anomaly, predicted by the theory of anchored narratives, is that

statements by a minority of witnesses may be accepted as proof, even when

the majority of subjects declare otherwise. An example is the case of Pico

Rodriguez, accused of killing Gerrit Hoekmanin a bar fight. Hoekman had

been engaged in giving Pico’s brother Vance a severe beating, earlier that
night. Hence the indictment was that Pico had killed Hoekman in revenge.

That would makethe killing a first degree murder. But none of the 92(!)

witnesses had actually seen who had stabbed Hoekman.Pico did not know

Hoekman;hencethe revenge theory applied only if Vance had pointed him out

to Pico. Therefore the prosecution claimed that Vance and Pico entered the

bar together. Nine witnesses confirmed that two black men hadentered the bar

simultaneously. One witness saw three black men. One witness saw two black

men, but insisted that Vance was not one of the two. Ten witnesses said that

they saw only one black man enter the bar. One witness, who had been

outside, declared that Pico went in first, and that Vance had arrivedlater.

Hence the prosecution narrative is supported by a minority of the witnesses;

but the court believed their testimony and rejected the other statements. Why?

Our explanation is that the revenge theory makes a goodstory. Pico’ s story

was weak and full of ambiguities. “He had entered alone, and made some

random stabs in the air, just to frighten people. He did notrecall stabbing

anyone. Probably in the dense crowd Hoekmanhadfallen into the knife, or

was pushed; it was a mere coincidence that his brother’s attacker became the

victim”. Although nobody had seen how Hoekmandied, so that there is no

proof of first-degree murder, the battle of narratives was easily won by the

prosecution.

A further anomaly is related to the belief in confessions. Even in The

Netherlands, where it is decreed by law that confessions do not constitute

complete legal proof, there is a tendency to rely on confessions that contain

a goodstory. If the confessionis in conflict with other evidence, the confession

will be believed and the evidence rejected. An example is the case of

Gremeling, who confessed to 27 cases of arson, spread over a period of five

years. Gremeling suffered from a severe memoryloss, due to a car accident.

Still he detailed the 27 fires with exact dates, addresses, method used, etc.

Some of his descriptions were demonstrably wrong; for some of the dates he
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had an alibi; and there was another convicted arsonist in the samevillage.

Nevertheless the court used Gremeling’s confession as a reason for his

conviction, and did not comment on the contradictory evidence.

Of the large number of anomalies predicted by the theory of anchored

narratives, I only mention one more: the trust in experts, even though the

validity of their methods is unknown or proven to be very low. Bayesian

updating presupposesa careful consideration of the diagnostic value of expert

opinion. In the case of psychiatric expertise about repeated violence after

release from prison, Bayesian updating leads to rejection of the testimony,

because expert opinion on this issue was shownto be notatall diagnostic (cf.

Monahan, 1989). The heuristic of anchored narratives, on the other hand,

allows a judge to anchorthe expertise to the assumed authority of the expert.

The judge may ask questions about the experts’ qualifications, and abstain

from scrutinizing the validity of his statements. This will be done when the

expert supports the leading narrative. An opinion that contradicts the

narrative can simply be neglected, without any reason given. This happened

in the case of Helder, cited above. The same may even be donewhenonepart

of the testimony fits the narrative, while another part is at odds with it. The

prediction is that the expert will be believed and disbelieved simultaneously.

An example is found in the case of Carroll, accused of being one of the IRA

terrorists who murdered two Australian tourists in Roermond.

The evidence against Carroll consisted mainly of. recognitions by two

witnesses, who had seen oneof the terrorists when they escaped in a car. The

witnesses were on the second floor of their homein a narrowstreet and looked

downinto the car which passed at high speed. It was dark, they saw part of

the man’s face from the side for about 1.5 s, the car had tinted glasses. Later

the witnesses saw a picture of Carroll on TV and in the newspaper. They did

not call the police, although they claimed to have recognized the assassin, and

were Said to have given manyuseful tips in other criminal cases. Some weeks

later the police tested them with a set of pictures that contained the same

photograph of Carroll. One witness identified Carroll, the other did not, but

claimedlater to have recognized himanyway.I testified about the risk involved

in photo-biased identifications; I explained to the court that the very poor

conditions during the first exposition, and the repeated exposure to Carroll’s

picture with the positive messagethat this was an IRA terrorist, constituted an

ideal opportunity for effects of misleading post-event information. At the end

of my four-hour testimony one of the (professional) judges asked whether,

presuming that the first recognitions were proven to be correct, additional

identification tests were still needed. The answer is comprised in the

presumption. When Carroll was convicted, it appeared that the proof rested

solely on the recognitions and my testimony. The verdict said “The expert

confirmed that additional identification tests were not needed”. Thus four
hours of testimony wasrejected, while one statement of the same expert was

promoted to legal proof.
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21.5 CONCLUSION

Two models discussed in this chapter, the /ega/l and the Bayesian model,

cannot account for the anomalies that we encountered in our research (cf.

Wagenaar, Van Koppen, and Crombag, 1993), some of which are described

above. But such anomalies are in agreement with the notion that judges deter-

minethe probability of guilt by means of the heuristics that were proposed by

Tversky, Kahneman,and their coworkers. Our theory of anchored narratives
makes use of the availability heuristic, and of confirmation bias. As in many
other demonstrations of heuristic thinking, it is not fair to call this kind of

reasoning “suboptimal”. There is probably no better way for judges to solve

the ill-structured decision problems, so typical for the courtroom. But that

does not mean that the result is always perfect. On the contrary, in rare

occasions the anchored narratives heuristic will produce unacceptable

anomalies. Legal procedure and thelawitself should protect us against such
anomalies. In most countries it does not. The reason is that legal procedure
and the law are based upon the wrong psychological theory of probabilistic

thinking. Correct insight into how judges and juries deal with probabilities

may therefore, in the end, lead to better procedures and better laws.

NOTE

(1) “Judges” and “courts” will be used to denote any authority, consisting of one

or more people, lay persons or professionals, who decide about the question of guilt
in criminal cases.
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Chapter 22
 

Probabilistic Planning and
Scenario Planning

Kees van der Heijden
Strathclyde Graduate Business School

22.1 A CASE

On 28 January 1991 Newsweek magazine published an article describing the

deliberations within the US governmentprior to the 1990 invasion of Kuwait

by Iraq.It is difficult to judge the accuracy ofthis report, but for the purpose
of this paper the process described seems a goodillustration of a typical

decision-making process we can observe in organizations everywhere.

Following is a short abstract from the article:

It began with a severe case of American myopia. .. What the administration lost

was the opportunity to stop Saddam before his tanks and troops were dug in

around Kuwait City... shortly before the invasion, an American KH-11 spy

satellite picked up 100 000 Iraqi troops along Kuwait’s border. Saddam had
tripled his forces. Satellite photos also showed a new “logistics train” that gave

him everything heneeded to invade. Noting that he had done nothing to disguise

his moves, the USintelligence community assumedit wasa bluff to bully Kuwait
into a more compliantoil policy. It was a classic case of making theintelligence
fit the policy, instead of making the policy fit the intelligence. The CIA, the
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defence Intelligence Agency and the State Department Bureau of Intelligence and
Research all concluded there waslittle serious danger.

Inthe days leading upto the invasion,the intelligence agencies sent president
Busha list of predictions. The list was arranged in order of probability. “None
had astheir first choice the prediction that Saddam Hussein would attack”, said
one intelligence operative who saw the reports. Prediction No. 1 was that
Saddam wasbluffing. Prediction No. 2 was that he might seize part of the
Rumaila oil field that straddles Iraq and Kuwait and possibly Warba and
Bubiyanislands, two mudflats blocking Iraq’s access to the Persian Gulf. It was
assumed that he would pull back from Kuwait once the islands were secured.
“The line we kept hearing around here was that he was just massed there along
the Kuwait border to drive up the price of oil”, recalls one senior Pentagon
Officer. “If people were saying he is for real and is going to invade, it was not
briefed to us as definite.”

Several sounder voices did predict an invasion, but they went unheard. One
midlevel Middle East analyst at the CIA gotit right, but his warning “got lost”,
in the momentum of the opposing consensus. Marine Corpsofficers, scanning
satellite photos that showed Iraqi air-defence units, tanks andartillery deployed
forward at the Kuwaiti border, surmised that this could only mean aninvasion,
but they kept their silence because of bureaucratic pressures. The DefenceIntelli-
gence Agency’s top analyst for the Middle East was convinced that Saddam
would invade and warned the Senate Intelligence Committee that the dictator
might not be bluffing. His own shop did not buy it. The DIA went along with
the pack. |

While the Iraqis and the Kuwaitis gathered in Jeda for a final haggle overoil
and borders, the House Foreign Affairs Committee summoned John Kelly, the
assistant secretary of state covering the Middle East, to explain what was going
on. “If Iraq for example charged into Kuwait for whatever reason, what would
Our position be with regard to the use of US forces?” chairman Lee Hamilton
inquired. “That, Mr. Chairman,is a hypothetical or a contingency question, the
kind which I can not get into”, Kelly replied... . Given the intelligence about
Saddam’s intentions that Kelly was receiving, his performance was not sur-
prising. Arab leaders insisted that Saddam would not invade; even Kuwait had
relaxed its military alert.

Twodayslater Kelly sat in his sixth-floor office at the State Departmentglaring
at Ambassador Al-Mashat, demandingthat the Iraqis pull out. Al-Mashat looked
at him and said nothing. The invasion took less than one day. The closest American
forces were on the island of Diego Garcia in the Indian Ocean.
“You tell me which scenario to believe”, said one frustrated senior

administration official.

Reviewing this decision-making process the following observations can be
made:

(1) The decisions in retrospect had more significant long-term implications
than the decision-makers were aware of at the time. The issue was
considered short-term, of low relative importance and only a moderate
amountof time wasinvested in considering it, until very late in the game.
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(2) The interpretation of events and the consequent problem definition

changed continuously. What seemed a conflict about oil productionlevels

became an argument aboutaccess to reserves, then a territorial argument,

related to access to the Arabian Gulf, then a threat of invasion of a couple

of islands, and then a fully fledged invasion of a neighbouring country.

(3) Most people weretrying to predict what was going to happen.Intelligence

people are under pressure to come up with the “right” briefing (inter-

pretation of events, i.e. prediction). Because of specialization of the roles

of information gathering and decision making the decision-making group

found it difficult to make a transition from considering “what will

happen?” to considering “what will we do if something happens?” As a

result it was felt legitimate to declare that contingency planning could not

be entered into”.
(4) There were a numberof people who saw what might happen. They had no

opportunity to make themselves heard against the consensus view. Not

only that, they also were influenced by the consensus view, leading to a

reduced confidence in the credence of their own interpretation. In the end

nobody felt strong enough to stand up and defend the “maverick”

interpretation of events.

(5) Because the group hadessentially made up its mindit hadlost the ability

to become aware of events which could have led them to interpretations

different from the official, shared view. The strong consensus had reduced
(significantly, as was proven subsequently) the field of vision of the group

(“making the intelligence fit the policy ...”).

(6) When finally an attempt was made to look at a number of possible

scenarios a probability was attached to each of these. No consideration

was given to the validity of these subjective judgements. As a consequence

all possible interpretations below the top were ignored and the discussion

focused entirely on the one or two “most probable” scenarios. It wasfelt

legitimate to state that if a scenario was not top of the list it could be

ignored. Attaching probabilities to scenarios had the effect of diminishing

the impact of the scenarios lower down the ranking.

Faced with problems of this kind institutional decision-makers have

recourse to two broad categories of approach towards improving their own

experienced-based heuristics for dealing with uncertainty:

@ probabilistic planning, based on decision-making theory

@ scenario planning.

While probabilistic planning is based on a tight body of axiom-based theory,

scenario planning is a moreintuitive approach which originated in the world
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of decision-making practice and therefore has less solid theoretical under-

pinning. As I will argue in this chapter, practitioners intuitively revert to

causal reasoning, on which scenario planning is based, if they feel the need

to improve on their heuristics, in preference to decision-making theory which

is experienced as a “black box”, intuitively less relevant to the practical
decision-making situation (Godet, 1987; Schwartz 1991). As Schoemaker

argues, people seem to relate best to concrete, causally coherent narratives

to provide a basis for further inquiry and integration of new evidence

(Schoemaker, 1993).

Because of their different origins and structural nature a comparison

between probabilistic planning andscenario planning can only be made by

reference to their relevance to the decision-making process. For this reason this

paper starts with discussing the practical decision-making situation, first from

an individual, and then (more importantly, as illustrated in the Newsweek

report) from an institutional perspective. Following a description of the two

approachesin relation to real-world decision-making, an assessmentis made
of the problems experienced with probabilistic planning in real-world

Situations. Finally we discuss possible reasons why the scenario planning

approach tends to be more popular.

22.2 INDIVIDUAL DECISION-MAKING

Decisions vary in the degree to which they affect developments in the future.

If repercussions are long-term andsignificant the decision is said to have high

futurity. Decisions with high futurity require our attention: they may be

costly, particularly in the face of significant uncertainty, when chances have

to be taken.

Before a decision can be madeit needs to be defined by the decision-maker.

A decision definition is determined by the “appreciative system” of the

decision-maker. Vickers describes this as “the set of mental readinesses to

distinguish someaspects of the situation rather than others, based on obser-

vation, communication and previous experience” (Vickers, 1965). An alter-

native way of describing this is through the concept of a schema, defined as

the knowledge structure or set of expectations that an individual draws upon

to guide interpretation, inference and action in any particular situation

(Boland et al. 1990).

Problemsare not objective entities which exist outside the people involved,
presented to them for resolution. People define a situation as problematic,

through perceiving within themselves a mismatch between the expected and the

desirable.

Decision-makers who have been disturbed by the perception of such a gap

will want to make a “diagnosis”. That is, they will mobilize their knowledge
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and theories about “how things work” in order to establish a causal chain
linking the problematic situation to events and actions, until they reach a point
where somepersonal action becomespart of the “picture”, through which the

gap can beaffected. Initially, before the diagnosis, the gap maypresentitself

in terms of performance such as “lack of profitability”. Following the

diagnosis the decision-maker may cometo a point where hefeels capable of

identifying the root causes of the expected poor performance, expressed in a
sentence like “the problem is that our costs are too high, due to poor pro-
ductivity.” A problem statement of this type indicates that it has become

apparent to the decision-makerin which direction he needs to look for possible

action to close the gap. When thetension is sufficiently strong he intervenes,

i.e. he defines the problem and makesa decision.

As this “appreciative system” varies over time the problem definition 1s
subject to continuous change. For example, research by Boland et al. (1990)

has led to the following conclusions:

e Problem formulations are not stable, even during the decision-making

episode.

@ The presence of more data leads to higher levels of problem formulation.

@ Experienced managers display problem redefinition as frequently as

novices.

@ Coming to a final choice is more akin to a process of weaving schemasthan

makinglists of options or cycling through previous ideas.

@ Schemasare continuously re-invented uptill the moment of final choice.

It has been suggested that people “finish” with problems, instead of solving

them (Eden, 1987). There are no “right” or “wrong” answers to real-world

problems, but people deal with them until they are no longer a cause of

concern. Thetension has beenresolved if it has becomepossible to describe

what must be done to get away from the problem situation.
Summarizing this, a decision happens within the following parameters:

@ value systems (determining the desired future);

theories about the world (resulting in expectations);

@ perception of a gap between

— The expectations that theories create

— The desirable that values indicate;

@ definition of the issue, description of the problem and whya response is

necessary;

@ definition and assessmentof a set of possible action options;

@ selection of a course of action.

It seems that decisionsare intrinsically linked with the way problems emerge.

At one level decisions can be seen as resulting from option generation and

choice. But at a higher level decisions are determined by the abovesix factors
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which create (or “finish”) the problem situation in thefirst place. This puts the

following cognitive demands on the decision-maker:

perception of the environment

sense-making through theory building

information gathering

extrapolation of the theory through causal reasoning

problemdefinition

creation/invention of action options
making commitments.

Figure 22.1 summarizes the decision-makingactivity at this meta-level

Interpreting decision-makingas a process of diagnosis of the nature of a gap

between the desired future and the expected future, based on causal extra-
polation of the current state of affairs, provides the basis for understanding

the utility of the scenario-planning approach to individual decision-makers.
However, the differences between probabilistic and scenario planning are even

more pronounced in the organizational decision-making situation, where

coming to a conclusion requires a degree of consensus among a group of

people. This issue is addressed in the next section.
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22.3 THE INSTITUTIONAL DECISION-MAKING
PROCESS

Institutional decision-making is not fundamentally different, considering that

mental activity of individuals is always part of a social process, except that if

action is to result the diagnosis and problem definition need to be negotiated

amongthe stakeholders. In most organizational decision situations a number

of individuals around the problem have the powerto stop a decision from

being implemented. Therefore action is created througha process of building

enough consensus to ensure that no key stakeholders exercise their effective

power of veto. This can only be achieved through a degree of consensus or

compromise on values, expectations and options. Organizations need to

engage in a process of dialogue to try to align strongly held personal views.

Different people have different value systems. So how can they ever agree

on any problem definition? I would argue that logically three conditions need

to be fulfilled:

e A common understanding of purpose, if not at the level of the problem

situation then at a deeperlevel, ultimately addressing the question of “why
are we here, why are we doing this?” (the world view), as an ultimate

principle of arbitrage.

e A shared acceptance of a process of reasoning which operationalizes the

world view into “utility” at the level at which problem situations are

encountered (i.e. rational argument).

e Availability of an appropriate common language in which the essential

concepts can be expressed (alignment of visions through rational argu-

mentation is achieved through a conversational process in which people

continuously influence each other’s views).

If any of these factors is absent it becomesdifficult if not impossible to come

to a consensus view and action. This is demonstrated in many seemingly

unresolvable powerconflicts (lack of commonality in world view) or emotional

conflicts (lack of commonality in reasoning).

Most surviving organizations manage to create a commonality of world view

among their members. At a deep level common ground can be found in most

organizations, whatever the diversity in opinion at a more superficial level.
Douglas (1986) has argued that institutions could not persist unless established

by a shared cognitive device. Mutual convenience in multiple transactions does

not seem enoughto cause thedegree of commitmentthatinstitutions typically

require from their members. Convenience alone does not create enough

certainty about the other person’s strategies to justify the degree of trust

required. This trust needs to be established on the basis of a deeper assumption

on how theinstitutional world works.
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Morgan (1986) has suggested that people understand their institutions
metaphorically, through comparison with readily available analogies taken
from the physical world. Very common organizational analogies are
“machines” and “living organism”. For example, an organizational culture
based on the “living organisms” metaphorwill accept as legitimate an insti-
tutional concept associated with living systems, such as “survival in times of
adversity and self-development in times of environmental harmony” (Stern,
1906). Vickers associates this with the purpose of “the maintenanceofsatis-
factory institutional relationships (internal and external) over time” (Vickers,
1965). In the “machine”culture people will prefer to discuss this in such terms
as “architecture”.
Based on this common ground,theinstitution needs to build dialogue

processes which align individual theories and perceptions andthereby enable
institutional action to emerge. If the organization is not successful in doing
this it will appear to be “paralysed” and eventually dwindle in a competitive
world, being overwhelmed by others who are more successful in acting to
maintain convergence with societal needs. De Geus (1989) has argued that a
company’s superior ability to learn may be its ultimate and only source of
competitive advantage.

So far we have argued that

@ Individuals approach problematic situations (divergence expected/desired)
by engaging inactivity affecting theories (by collecting information) as well
as outcomes (by makingdecisions), until the gap has closed sufficiently to
be removed from attention as “problematic”.

@ Organizations have the additional task of aligning individual theories,
based on the shared world view of its members.

Wenowturn to reviewing briefly the nature of probabilistic planning, after
whichthe scenario-planning process will be dealt with in somedetail. This will
enable us to assess both approaches against the real-world decision making
situations described.

22.4 THE PROBABILISTIC PLANNING MODEL

Traditional decision theory, based on the rational optimum choice modelis
reductionist, i.e. it splits the decision task into subtasks, which can be indepen-
dently performed, and subsequently brought together to result in the final
answer. Specifically it contains the following components:

@ definition of choice situation in terms of full description of all options to
be considered;
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@ definition of value yardstick to be used to expressrelativeutility of each

option;

@ identification of environmental events that could impact on the relative

utility of the options;

@ full specification of a model specifying how the value yardstick varies for

each option and environmental event;

@ assessment of probabilities of these events.

Once these subtasks have been carried out, the expected value of each option
can be derived, and the option with the best value outcomeselected.

Although in principle this seems straightforward, in a practical decision

situation the task is highly ambitious as the problem covers the total area of

possible futures, and requires comprehensive probability assessment to decide

on utility of various options. This task quickly suffers from combinatorial

explosion. The future is specified in terms of a combination of:

@ events, which requirea specification of possible states and their respective

probabilities;

@ variables, which require specification of a probability distribution function;

@ trends, where successive probability distributions are conditional on earlier

outcomes of the same trend variable (auto-correlation);
@ inter-relations, where successive probability distributions are conditional on

earlier outcomes of other events and trend variables (cross-correlation).

The combinatorial explosion problem is caused by the needto specify all auto-

and cross-correlations. In most practical cases the human “computing

capacity” falls far short of what would be required. Although someshort-cuts
are possible (Amara & Lipinski, 1983; Godet 1987) probabilistic planning

normally requires considerable computing capacity and modelling investments.

The focus in this chapter is on institutional decision-making. In group

decision-making situations decision-theoretical approaches are inadequate for

other reasonsas well. The assessment of probabilities is necessarily subjective.
Within classical decision theory there is no way of getting groupsto arrive at
a rational consensus on both subjective probabilities and objectives. The

concepts of subjective probability and utility cannot be meaningfully defined

for a group.

22.5 THE SCENARIO PLANNING PROCESS

In the literature the expression “scenario planning” is used to indicate various

somewhatdifferent ideas. For the purpose of this discussion we defineit as an

approach to decision-making which involves the analysis of multiple futures
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for problem structuring, in which assessment of probability is limited to a

“yes/no” decision on the plausibility of self-contained story lines about the

future. One of the earlier developers of this approach was Hermann Kahn,

whodefined scenarios as “hypothetical sequences of events constructed for the

purpose of focusing attention on causal processes and decision points” (Kahn

& Wiener, 1967). From its beginnings the methodology was seen as much a

vehicle for learning as a decision-making tool. Contrary to decision theory,

which hasits origins in academic discipline, scenario planning has developed

in the decision-making practice, particularly in the institutional world of

companies and public sector organizations.

All scenario planning is based on the idea that there are some elements in

the environment which are to some extent predictable (knownas the “predeter-

mineds”) while other aspects are fundamentally unpredictable (called the

“uncertainties”). “Predetermineds” arise for cause—effect reasons, including:

@ time delays, developments which are already “in the pipeline” and are

bound to emerge, e.g. demographics;

. system constraints, e.g. limits to growth;

feedback loops in the system, e.g. the arms race;

actor logic and motivation, e.g. Labour or Tory politics;

the inertia of the system (including societal inertia), e.g. economic develop-

ment, culture;

@ laws ofnature.

In addition to these predetermineds there are uncertainties which can not be

predicted, and scenario planning expresses these in terms of their multiple

possible outcomes. There is therefore in scenario planning not one mostlikely

future but multiple plausible scenarios, each of which reflects the same

predetermineds, but incorporates different outcomes for the uncertainties.

Ingvar produces evidence that the human mindstores theories about the

environment as scenarios, temporally organized scripts of events which have

been invented and exercised in the past through mentalactivity, and sub-

sequently stored as whathecalls “memories of the future”. “Weall are natural

scenario planners” (Ingvar, 1985). Going throughlife people spin stories about

the future. For instanceif a difficult interview is anticipated, thoughts continue

to spring up in the mind: “If he says this I could react in this way”, and so

on. This mental preparation builds up a set of temporally organized concepts

and schema’s through whichevents are subsequently interpreted. This allows

perception of developments which would otherwise pass by unnoticed. Even

if the specific rehearsed scenario never plays out in reality, the mind has

nevertheless built up a readily available set of concepts that allows perception

and judgement of what is going on, causing moreskilful observation and

interaction in real time.
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An event for which the decision-maker is mentally unprepared will baffle

him or even go unnoticed. The richer the arsenal of scenarios available to the

decision-maker the moreskilfully the decision task can be tackled. Individuals

can generally become moreskilful in interaction with the world by mentally

rehearsing a wider set of scenarios. It widens the area of perception, it

generates more action options, and it may in itself close the gap between

expected anddesired futures through increased mentalflexibility. These are the

aims of scenario planning. Instead of “making decisions” the decision-maker

wishes to

explore the environment

improve anticipation by widening perception

improve diagnosis by seeing more possibilities

increase scope for action by better understanding
modify plans for the future for greater robustness,

all of which contribute to a reduction of anxiety about gaps opening up

between expected and desired futures.

Scenario planningis based on the recognition that not only does uncertainty

exist “out there” but also that a major source of uncertainty is the multitude

of interpretations of what is going on, induced by the range of theories

available to the mind.

Having discussed the principles of scenario planning it is at this stage useful

to go througha step-by-step description of a typical scenario-planning exercise

to illustrate the fundamentals involved.

22.6 THE APPROACH TO SCENARIO PLANNING

Jungermann and Thuring (1987) describe a four-stage scenario generation

process, which can be used as the basis for the discussion of scenario

generation in an institutional context. The four stages consist of

® activation of problem knowledge

® constitution of the mental model

@ simulation of the mental model for inferences

@ selection from inferences for scenario construction.

Specifically we will assume that members of a management teamwish to

increase their combined perceptional powers by engaging in a scenario-

planning exercise. Later on we will consider the problem of creating a larger

body of consensus arounda set of scenarios. )
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(1) Activation of Problem Knowledge in the Group

Group members normally assume that they have some knowledge bearing on

their joint decision-making process. However, westart from the premisethat,

more often than not, there is no clear-cut problem definition, instead there are

gaps between wants and expectations, and these will be different for the

members of the groupand,in addition, change over time. If the group wishes

to engage in a dialogue about the future it needs to define an area ofinterest

wherethe four-step process, starting with mobilizing knowledge in the team,

can be activated.

In the absence of a clear problem definition the team will need to come,first

of all, to an agreement on focusareas for the scenario exercise. We use the

term“issues” as a short-cut for areas where value/expectation gapsarefelt to

exist. A process to reach consensus on a rankingin importanceofall issues,

felt to exist by one or more members of the team, requires the activation of

relevant knowledge in the team. It is a crucial first step in each scenario

exercise. It is here that group psychology effects such as the “group-think”

phenomenon (Harvey, 1988) discussed in the Newsweek case example above

could lead the team astray. It is good practice to enable all team members to

roam through their “knowledge base” freely on an individual basis, bringing

to the surface anxieties and concerns, leading to issue definition. Knowledge

elicitation at this stage starts on an individual basis, with a facilitator helping
in triggering thoughts through open-endedtrigger questions, and recording

thoughts and ideas, which may subsequently be formulated as issues.

Once individual views have surfaced, further activation of knowledge and

sharing of ideas can be triggered by feeding backtheresults of the individual

interviews to the group. For this purpose the team normally gets together in

a workshop, facilitated by an experienced outsider, who conducts the
proceedings without getting involved in the content of what is being said.

It is at this stage that the limitations imposed by group dynamics become

evident. In our practice we have observed that teams are almost invariably

surprised (positively) by the richness of views existing in the team. It seemsthat

teams develop informal rules of engagement between their members, which

seriously limit members’ ability to stray on to each other’sterritory. In terms

of one of the most fundamental management dilemmas they tend to err

towards the “decision efficiency” side, at the cost of breadth of view and

perception. An interview/feedback exercise as described has the potential to

break throughtheserules, and in this way constitutes a powerful knowledge

elicitation trigger. |

(2) Constitution of a Shared Mental Modelin the Group

On the basis of the activated knowledge generated in the interview/feedback
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process, the group can engage in model building. Thefirst task is to identify

the set of issues which will underpin the scenario process. This part of the

modelling work involves identifying as many links as possible between the

concepts surfaced, such that a limited numberof clusters emerge which are

relatively independent from each other. Hodgson (1992) describes a manual

technique which makesuse of magnetic hexagons which can be moved across

a white-board,like pieces of a jigsaw puzzle, until the group feels that concepts

are clustered in an intuitively comfortable way. Eden (1989) describes a

computer-facilitated mapping techniquetriggering a groupto identify linkage

and concepts, resulting in an overall cognitive map which contains the views

of all group members.

After namingthe resulting clusters the group can now formulate the general

territory of the scenario exercise, expressed as a numberof agreed high-level

issues, needing addressing. For an example I refer to Kahane (1992a) who

showsscenarios which deal withgeo-politics, global economics, trade barriers

and ecological concerns.

The cognitive maps contain elements of the mental models through which

the scenarios will be constructed. Many of the connections identified during

the clustering process are perceived as causal, based on “cues for causality”

between variables (Einhorn and Hogarth, 1982):

@ co-variance (two variables always changing together)

@ temporal order (causes preceding effects)

@ spatial/temporal closeness (regular close conjunction of events)

@ similarity (explanation by analogy and metaphor)

e lack of alternative explanations

and are therefore to be taken into accountin the scenarios. If cues for causality

are overlooked at this stage the scenarios resulting will be perceived as

“internally inconsistent”, which will destroy their effectiveness.

The mental model producedreflects important learning in the team, through

the process of sharing of individual knowledge bases which were notavailable

to the team previously. Often major conceptual progress has been made atthis

stage and the team can now moveinto scenario building. Alternatively the

team may decide that it wishes to enrich the mental model with new insights

gained from the outside world, in order to further develop understanding. This

additionalstep is particularly importantif the team is strongly cohesive, as this

reduces the scope for internal team learning. At this stage it may commission

a “knowledge development” stage, where events are created in which team

members contrast iheir current understanding with that of outside experts.
The exercise can be enriching, provided that an open mind can be maintained

on whatis being broughtin. For this stage to be effective the team must disci-

pline itself to discuss and record, but not to structure. Premature modelling
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of oneset of insights will lead to a degree of “blindness” to other contrasting
views.

If this discipline can be maintained the team collects a large body of expert
opinion, without muchinterconnectionin the early stages, and often internally
contradictory. At the end of this stage the team needs to decide what it wants
to keep and whatto reject. The process is normally an intuitive one, in which
various combinations and permutations are tried out until a simple model
emerges that nevertheless contains the most important concepts and linkages

as perceived by the team members. There is an element of compromise

involved, but, provided that enough time has been spent on the thinking
process and that logic prevails, the final result tends to have general team
backing. An important criterion of acceptability is internal consistency. The
final result tends to be reached if no member of the team can any longer

identify a relationship which violates rules of causality, as discussed in the
team.

Based onthe cues for causality Jungermann & Thuring (1987) argue that the

sense of causal connections will be enhanced by

@ simplicity, avoidance of long causal chains, and

@ relatively strong explanatory power associated with uncommonvariables.

This is born out by our practical experience, which indicates that the most
convincing scenarios tend to be simple and somewhat dramatic. For an

example see Kahane (1992a).

The expression of the mental model can be formal, e.g. in an if—then rules

model or a computerized cognitive model. However, in our experiencethis is
the exception rather than the rule. The basic model interconnections being of

a simple nature, in most cases the teamsaresatisfied with identifying a few
major driving forces, (answering the “what would really makea difference?”
question) and a general verbal description of how these affect the system,all

of which can be achieved in a two-day or three-day workshop.

By the end of such a workshop an experienced observer—modeller would
probably be able to piece together a good version of a shared model as most
elements will have come up a numberof times. However, managers andtheir

scenario planners do not welcome such formal modelling facilitation. They

prefer to retain an element of flexibility. Provided the team has invested

enough timethis, in our experience, does not hold back the next steps in the

process. The secondaryrelationships may not be explicitly stated, but they
are now reasonably well established and tacitly understood, and areeasily
available when the scenarios need to be fleshed out.

In most cases it is difficult to delineate the mental model development

stage from the next stage in which the model is used to generate scenarios.

Scenario developmentstarts well before model development hasfinished, and

this carries on during the scenario phase until the scenarios have been finally
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pinned down. Ingvar (1985) suggests that most people retain large parts of

their mental models in memoryin the form ofscenarios, which would explain

whyit is almost impossible to identify a clear-cut end to the modelling activity

and a start of the scenario development.

(3) Simulation of the Mental Model in the Group for Inferences

Scenarios are the result of the application of the mental modelto a set of input

variables. As the number of scenarios to be generated needsto be limited in

numberthe team needsto be veryselective in the number ofvariables selected

as input variables. This starts with the selection of a small numberofreally

crucial “scenario drivers”. The team engages in a discussion during which

variables and events are evaluated against two criteria:

@ the degree of importance (however defined, see below)

@ the degree of predictability (or uncertainty).

This job is easier if the team has been able to identify variables which are

not strongly dependent on each other.If that is not the case the search for the

“driving forces” needs to continue by splitting and combining variables,

creating new ones which are less interdependent than the previousset.

“Importance” can be measured in many different ways, and teams often

have long discussions on whatis a suitable criterion. This can become rather

counter-productive. In our experience these debates seldom lead to different

or better choice. It is often better to leave this question to be resolved by

intuition, by posing the question as: “What would really make a difference for

us?”

Again clustering and ranking of variables is a rather judgemental affair. In

most cases teams manage to cometo a conclusion which is reasonably satis-

factory to all concerned.

In exceptional cases simulation and selection of scenarios can be separated

from each other. In mostscenario projects this is not possible, and simulation

alternates with attempts to makea selection, until a satisfactory end product

can be achieved.

(4) Selection from Inferences for Scenario Construction

In order to decide how to distinguish the scenarios the team is now particularly

interested in the variables and/or events in the most important/least

predictable area from which the scenario drivers need to beselected.

If one variable or event sticks out as obviously more important and more

unpredictable than any other the team can develop two scenarios, spreading

the range of outcomesfor this variable. This sets the structure of the scenarios

and settles the most difficult structuring decision.
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If a large numberof variables seem to comeout at roughly equal importance
and/or predictability, the team needs to investigate whether they are still
subject to significant interdependence. More work is required looking behind
these to identify commondriving forces, i.e. a smaller number of deeper more
orthogonalexplanatory factors to which the larger number of variables can be
related.

Whatthe team is doing here is applying their mental model to the variables
and events identified, and to add new relationships to the mental model, with
the power of reducing the numberof fundamental drivers for the future to a
manageable number. Once againthe delineation between the steps is blurred,
and selection and simulation proceed hand in hand until a satisfactory result
is obtained. This activity needs to continue until no further progress can be
made. The further the field can be reduced the easier is the next step.
Once again, at the end of this process one variable or event may dominate,

whichsettles the choice of scenariosfor the team. Alternatively the team may
now belookingat a limited numberof crucial scenario drivers. If the situation
is still unresolved, the next step is individual activity for the team members.
Using only the limited numberof scenario drivers arrived at they now develop
for themselves a set of scenario end-states, which they wouldfindinteresting
and informative in the light of their own assessment of uncertainty and
importance. A scenario end-state is the description of the worldin terms of
the scenario drivers in the horizon year. Having done that they prepare
themselves to defend these in terms of internal consistency, plausibility and
level of interest to the management team.

In the next stage the team membersexplain and defend their scenario end-
States to each other. All through this process the team members, individually
andas a team, have been exercising their mental model and been applying the
if—then rules implicit in it. There is one morestep to carry out in this mode.
Thelast simulation job for the team is to try to reduce the numberofscenario
end-states on the table, by combination, by restructuring, and by ranking and
selection.

After this not much morecan be gained from further simulation exercises
and the team now hasto make a decision on a set of scenario end-states that
seems a reasonable compromise, creating an exploration space that is large
enough, expressed in a numberof scenarios that is low enough to remain
practical.

Having decided on a limited numberof scenarios, expressed at this stagein
terms of their end-states, the next stage is to develop the full story line,
connecting the end-states to the present. This stage starts with a clear state-
ment for each scenario of the interpretation of the present, and the history
leading upto it, which underpins andleads to the end-state specified. A useful
rule-of-thumbhereis that one should look back as manyyearsas the scenarios
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look forward. By this time the team has been exercising with their joint mental

model enough to makethis relatively straightforward. Developing the story

lines is a matter of piecing together the historical interpretation and extra-

polate this to lead to the specified end-state. The question of the importance

of structure of the story line is a moot point. Schwartz (1992) suggests a
numberofgeneric plots that are intuitive and therefore particularly effective.
The three most commonstory lines are based on

@ The zero-sum game, “the battle producing winners and losers”, e.g.

conspiracy stories;

@ Challenge and response, “entering a better future after overcoming the

test”, e.g. society accepting the need to make environmental investments in

order to enter a better sustainable world;

e Evolution and co-evolution, e.g. political and social systems co-evolving

with the evolution of technology.

In an institutional context scenarios need to becomepart of the language. An

intuitive story line will be easier to remember. Also suitable names can be

helpful in establishing the scenarios in the organization. Effective names have

the following properties:

@ new, not already in the organization’s vocabulary;

e@ short, two or three words maximum;

@® expressing the key scenario dimensions;

@® memorable.

For example the “Mont-Fleur” scenarios about the future of South Africa

(Kahane, 1992b) are knownbybird- or flight-related names whichcall up an

immediate image of the future of the country portrayed in the various

scenarios:

@ ostrich

@ lame duck

@ icarus

e@ flight of the flamingos.

Many authors make what seems a rather fundamental distinction between

qualitative and quantitative scenarios.However, once a process as described

has been gone through the question of quantification has become secondary.

Depending on the form of institutionalization adopted quantification may or

may not be required. We would suggest that for the scenario builder quanti-
fication (to a degree that is practical) is always useful to test internal

consistency of the scenario story line. In many years of scenario building we

have observed that quantification, even if only partial, often leads the scenario

developer to changehis story line in order to make it more consistent.
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Most of the technical scenario construction work can be done by the

planning staff, who have facilitated the management team workshops. When

finished furtheriterations will take place with the management team,to ensure

that the workshop conclusions are properly reflected, and that there is general

agreement that the results are in harmony with the evolving understanding of

the management team.

From Scenarios to Decision-Making

If the scenario process has been conducted properly discipline will have been

maintained to keep organizational strategy out of the deliberations. Mixing up

strategy with scenario design almost invariably leads to failure. There are a

number of reasons forthis:

@ Scenarios will be used to judge the value of strategies. Therefore they need

to be unbiased vis-a-vis strategic choice under the control of the strategist.

This is achieved by limiting the subject matter of the scenarios to the

contextual environment over which the strategy maker has little or no

control.

@ Strategy affects the individuals involved. It can not be discussed without

consideration of power and politics. This makes comingto a rational joint
conclusion moredifficult.

e@ Introduction of one’s ownstrategy in a scenario makesit unstable. Institu-

tional users will see the value as limited to the consideration of only one

Strategic option out of many that are available.

@ While scenarios are crucial input in strategy studies, there are other

decision-making tools which need to be brought to bear on strategy

development, mostly of a “game”nature,to reflect relationships among the

stakeholders involved.

For these reasons a staged process is preferable in which scenario design is

limited to the contextual environment, and strategic choice introduced

separately. This meansthat following the scenario design a further discussion

needs to be conducted on how the scenarios will impact on the strategic

decision-making situation. The principle is that strategy considerations are

impacted by the scenarios through the different light thrown on the possible

range of outcomes possible for each decision considered. This can best be

portrayed in a simple diagram, as shown in Figure 22.2 (Beck 1983).

The diagram showsa situation in which the management team has decided

that two scenarios are adequate to deal with the major uncertainty in the

contextual environment (more scenarios are dealt with in the same manner).

Strategic options are continuously on the managementagenda. In this process

of consideration each option is studied against each of thescenarios, the result

of which is shown in the diagram as “outcome 1” and “outcome 2”.
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Scenario 1 Scenario 2

Redesigned
option

Outcome 1 Outcome 2

—> Option_

review

Figure 22.2 Scenarios and outcomes (reproduced from Beck, 1983, by permission)

In order to judge the robustness of the option it needs to be considered

against the full set of scenarios, in the diagram the option review takes into

account both of the outcomes generated. As we saw in the Newsweekcase

example discussed at the beginning of this chapter, the value of the scenario
project is lost if any prior choice is made between the scenarios in the context

of studying a particular strategic option. The uncertainty and risk in the

Situation canonly be assessed by means of the overview over all outcomes of

the strategic option underall scenarios.

The consideration process described will not immediately result in a decision
to go for one option over another. Most options have positive and negative

outcomesoverthe full range of scenarios. The new element introducedbythis

thinking process is related to the notion of robustness, managerswill start

thinking about their strategic options in terms of how robustthey will perform

across a range of possible futures. It is at this point that the difference with

traditional decision theory is driven home. Rather than assessing an overall

rating for each option the decision-makerswill be triggered to reconsider the

strategic option, with an eye to redesigning it for improved robustness. We

have to consider the contribution of the scenario exercise in the context of the

ongoing ever-changing strategic thinking process, rather than one specific

decision situation.

The above illustrative example of a typical scenario-planning process

demonstrates the type of activity management are concerned with when they

engage in a process of this type:

@ development of awareness of the issue(s) among the management team

members;

extension of the knowledge base aroundtheissue(s) at hand;

sharing of individual knowledge among the members of the team;

negotiation of value systems among members;

development of a shared definition of the ongoing choice situation;
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@ creating a “critical mass of commitment” in the team as a preparation for

action;

@ maintaining flexibility in what is perceived as a fluid situation until some

stability has been reached in the problem definition.

Having discussed the two planning approaches weare nowin a position to put

them side by side and make a comparison.

22.7 COMPARISON OF PROBABILISTIC AND
SCENARIO PLANNING

In this section we will argue the followingpoints:

@ Probabilistic and scenario planning are to some extent complementary,

addressing different parts of the decision-making process.

@ Scenario planning is intuitively more attractive to managers and manage-

ment teams, both from anindividual and a groupperspective, becauseitis

based on causality.
@ Contrary to probabilistic planning, scenario planning addresses areas of

significantly higher potential cognitive dissonance in the management team

and is therefore more appealing.

e@ Scenario planning is more helpful in aninstitutional negotiation context as
it allows appeal to rational reasons for planning assumptions about the
future.

(1) Complementary

Probabilistic and scenario planning address different domainsof the decision-
making process. Probabilistic planning helps in making choices between

well-defined alternative options in well-structured choice situations. Scenario

planning helps in defining these situations in the first place, it does not have

a one-to-one mappingwith a particular decision-makingsituation. It infiltrates

the overall strategy discussion and affects the shape of the strategic options

considered. In doing so it prepares the “organizational mind” for possible

developments in the future, making it a more perceptive observer of the

business environment. Both approaches have a place in the corporate

decision-making process, scenario planning in perception and defining the

decision-making problem, and probabilistic planning in coming to a final

conclusion.



Probabilistic Planning and Scenario Planning 569

(2) Probability Assessment Versus Causal Reasoning

The rational optimum choice model is a theoretical abstraction, and therefore

does not fully describe reality. As many writers have pointed out, the infor-

mation required is considerable and mostly not readily available. That

argumentin itself is not enoughto reject the theory, the value of which will

be judged by decision-makers onits predictive ability. Even if the processis

not fully and exhaustively implemented it may highlight an underlying

thinking process, which improves a decision-making process that would other-

wise be more intuitive and approximate, towards a higher degree of

“vigilance”, and therefore a better (Janis, 1990) conclusion.

A moreserious problem relates to the counter-intuitiveness of the rational

model due to the need for judgemental probability assessment. The model

depends fundamentally on the availability of quantitative probability

estimates of relevant future environmental events. In relation to strategic

problems decision-makers often find themselves in unique situations and

probability can only be assessed subjectively. In the light of overwhelming

evidence (Hogarth, 1981) that untrained probability assessment tends to be

significantly off the mark,thereis little confidence that quantitative assessment

of unique situations would be at all meaningful. It is unclear what the

assessments are based on, and they are experienced as highly unstable over

time.

Beach (1992) observes that thinking about the future is mostly not based on

probabilistic reasoning. Instead the future is projected by causal extrapolation

of theories. He contends that expert knowledge far more frequently involves

causal thinking than probabilistic thinking, suggesting that efforts to under-
stand and improve expert judgement must begin with this fact. As Beach
notes, both classes of reasoning strategies can generate judgements that can be

stated as probabilities, although the judgements are derived in different ways

and the stated probabilities are not necessarily the same.

For example, when assessing the probability of measurable precipitation, a

weather forecaster could reason entirely upon probability data, regarding

present weather conditions as a member of a set of previously observed,

similar conditions that have resulted in precipitation on a specific proportion

of occasions. In contrast, a forecaster using causal reasoning might look at

satellite photographs and mentally project the progress of various weather

fronts and their subsequent influences on the local weather; the mental

projection would rely upon the forecaster’s cognitive model of how fronts
progress through the particular locale for which the forecast is being made,

and upon knowledge about what causes precipitation.

This view of decision-making transforms the notion of uncertainty from a

probabilistic concept to a cognitive one. This is in line with the notion of

making a diagnosis to establish potential for action. Uncertainty does not only
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exist “out there” but a major source of uncertainty is the multitude of inter-

pretations of what is going on that can be induced from perceptions. Therefore

to ensure the quality of his judgement the decision-makerwill feel the need to

consider the validity of a number of aspects of his cognitive apparatus:

theories about the environment;

current definition and interpretation of the “state of the world”;

ability to causally extrapolate theory into the future;

ability to discern discrepancies between projected and observed trends;
the schemas, or scenarios, resulting from this process, providing a logic for

linking past developments with extrapolations.

Therefore the natural analysis process leads almost automatically to a scenario

approach, rather than a probabilistic one.

(3) Dealing with Cognitive Dissonance

Earlier we discussed the source of cognitive dissonance in terms of a gap

between the desired and the expected. In the managementsituation the desired

often has aspects which are to some extent mutually exclusive, creating a

“management dilemma”. Such a problem situation can not be resolved, the

expected will always violate to some extent one of the horns of the dilemma.

For example the strategic decision-maker faces the problem of reconciling

opposite objectives relating to an uncertain changing future:

@ change requires commitment, big change requires big commitments;

@ uncertainty requires flexibility and open-endedness.

Both objectives can not be fully achieved at the same time. Some balance needs

to be found, which needs to be reviewed and managed over time.

In addition to the ever-changing input from the external world perceived

against ever-present managementdilemmas, another contributing factor to the

changing nature of the situation is the shifting balance of opinion resulting

from the negotiating process within the management team.

Probabilistic planning requires a rigorous static definition of the problem

situation. Practical decision-makers feel uncomfortable with it because they

experience a fluid continuously changing rather than a fixed problem, andfeel

uncomfortable with any further loss of flexibility introduced by the decision-

making process itself, adding to the fundamental dilemma between commit-

ment and flexibility they face anyway.

Scenarios can be developed without pinning downthesituation in the same

way. Theyilluminate the decision situation without forcing any static position

definition.
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(4) Rational Appeal

Assessments have to be made in teams. Whilst approaches are availableto

come to convergence in a quantitative probability assessment, the success of

these is often due more to lack of knowledge and conviction in the first place

than one person convincing another.

On the other hand scenarios only need to be assessed on thecriterion of

“plausibility”. Good internally consistent scenarios are causally based, and

therefore are suitable to be used in rational reasoning processes to negotiate

mental models and expectations in teams. Because there is always more than

one scenario they are experienced as less threatening than if only one future

were considered. This gives rational argument a better chance in the

negotiating process.

22.8 CONCLUSION

While probabilistic planning addresses the logical requirements at the moment

of makingthe decision, scenario planning addresses the more general needs of

the managerial decision-makers in structuring the decision-makingsituation

and defining the decision in the first place, at the individual and the

institutional level.

As we have seen, managers are knownto be poorestimators of probability,

and their subjective probabilities lack stability over time. Decision-makers do

not have a high expectation of their ability to estimate subjective probabilities

which will create “good” decisions (i.e. reflecting a degree of predictive

power). Scenario planning, on the other hand, being based on causal

reasoning, has a higher degree of intuitive appeal.

It seems plausible that scenario planning will meet the needs of decision-

making practitioners more effectively than probabilistic planning, although

there will be occasions, particularly in relatively stable decision-making

situations, when the latter can be applied with advantage in parts of the

organizational decision-making process.

This will not be in competition but rather in addition to the scenario-

planning methodology which is appropriate in most decision situations. It

widens the area of institutional perception of the environment, it generates

more action options, and it may in itself close the gap between expectedand

desired futures through increased mental flexibility in the management team,

thereby “finishing” problems and removing these from the decision-making

agenda.
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