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Preface

This book presents a broad ranging view of subjective probability. Chapters
range from the discussions of the philosophy of axiom systems through to
studies in the psychological laboratory and then to the real world of business
decision-making.

Topics covered include subjective probability in statistical inference and
expert systems, the treatment of causality in laboratory studies and in scenario
planning, whether Man is a Bayesian thinker or a frequentist thinker,
descriptive and normative theories of subjective probability, confidence and
performance, and subjective probability in gambling and court-room
decisions—a wide range of topics. Nevertheless, underpinning all the topics
and approaches is a fundamental desire, on the part of the authors, to analyse
and document the human ability to deal with uncertainty—no easy task. The
multidisciplinary nature of this volume—which includes authorities who are
psychologists, philosophers, statisticians, management scientists, education-
alists, and corporate planners—illustrates the essentially human challenge of
this enormous project.

Fundamentally, we believe that a reconceptualization of the base issues will
be prompted by, and benefit from, the exchange of knowledge across disci-
plinary boundaries. The challenge of facilitating this flow of knowledge was
the driving force behind this book. We have commissioned chapters from
those individuals who possess both the subject expertise and the ability to write
in an accessible way. Our hope is that readers of this collection will be stimu-
lated to apply fresh insights to their own disciplinary endeavours and perhaps
also be inspired to contribute to the development of new material to add to
the evolving corpus of knowiedge and debate.

The book is organized into four major parts. The first, Background,
provides the philosophical and statistical foundations. The second, Studies in
the Psychological Laboratory, overviews theory and research in cognitive and
developmental psychology. The third, Accuracy of Probability Judgements,
focuses on theories and models that allow assessment of the quality of assessed
probabilities. The fourth, Real World Studies, reviews subjective probability
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judgement in situations that have material consequences for the decision-
makers. A detailed chapter-by-chapter overview follows next.

In the first chapter of the Background Part, Dennis Lindley introduces
the concept of probability and the probability laws and demonstrates that,
logically, probability is inevitable.

Subjective probability depends upon two things, the event whose uncer-
tainty is contemplated, and the knowledge that you have at the time. The
calculus of probability leads to results that may not agree with common sense
because, Lindley argues, common sense is often not capable of the calcu-
lations. There is no suggestion that the probability rules describe how people
behave in the face of uncertainty. The probability calculus is a norm which
intuitive ideas on uncertainty should follow. Lindley shows that subjective
probability leads directly to utility and thus to the procedure of maximization
of expected utility as the optimal decision criterion.

Patrick Suppes provides a systematic discussion of the major aspects of the
subjective theory of probability. As he notes, a central question for a set of
axioms of gualitative probability is what formal comparative relation the
expression “more probable than” must have in order to be represented by a
numerical probability measure over events. Suppes argues that the subjective
theory of probability provides necessary but not sufficient conditions for
success in probabilistically predicting future events, such as tomorrow’s
weather. Next, Suppes considers a thought experiment and argues that
individuals may ignore hypotheses that are ultimately true. It is unrealistic,
Suppes argues, to have a positive prior opinion for al/l plausible hypotheses.
Similarly, he debates the issue of whether there are situations in which it is not
sensible to make exact probability estimates about possible events about which
little is known. He argues that extension of the theory of subjective probability
to such situations is desirable.

Colin Howson and Peter Urbach review the background to the development
of a theory of inductive inference. As Howson and Urbach note, the apparent
impossibility of determining objective prior probabilities in any non-arbitrary
manner has been a powerful factor in convincing many people that a
probabilistic theory of inductive inference was impossible. However, as these
authors show, debates about methods for determining priors fall outside
Bayesian theory. Next, Howson and Urbach consider classical statistical
inference and argue that, relative to Bayesianism, it has no proper foundation
and that apparently objective inferential statements are, in fact, illusory. The
principles of significance testing and estimation are, they argue, simply wrong
and beyond repair.

Developing this theme, Glenn Shafer argues that subjective probability is
integral to all applications of supposedly objectivistic applications. Focusing
on statistical tests, Shafer argues that subjectivity enters into probability both
in the way in which belief and frequency are unified and in the way that this
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unification is applied to a practical problem. Shafer demonstrates that
statistical testing often uses instances of what he terms “the informal story”
(the unification) simply as standards against which to rate performance. The
divide between the “frequentists” and the “subjectivists”, he argues, has a
foundational rigidity that may have been useful in the past, when subjectivists
had few successful, practical Bayesian applications, but is unnecessary today.

By contrast, John Fox argues that, in addition to subjective probability,
there is a family of distinct theories of uncertainty that can be shown to have
sound mathematical foundations and that these theories capture different
intuitions about uncertainty and belief. He questions the general adequacy of
the “probability paradigm” and, by introducing issues from artificial intelli-
gence (Al), argues that subjective probability does not have universal applic-
ability. He contends that a number of alternative uncertainty formalisms,
deriving from research in AI which has attempted to formalize intuitive
concepts of “common sense”, provide an alternative framework. AI has
become the latest stage on which the probability debate is being conducted.

In the first chapter of the Part on Studies in the Psychological Laboratory,
Lee Roy Beach and Gary Braun identify 1967 as the year in which experiment-
ation began in earnest. They describe early work which focused on identifying
whether probability theory was a descriptive behavioural model of individuals’
judgements of subjective probability. Beach and Braun evaluate whether
probability theory is, in fact, the appropriate standard for evaluating the
quality of subjective probabilities. They argue that knowledge-based reasoning
as well as probability-law-based reasoning may give rise to subjective
probability. Whilst experimenters have generally assumed that the domain
covered by the problems they posed was properly addressed by probability
theory, the subjects of the experiments, they argue, have frequently thought
otherwise.

Gerd Gigerenzer extends this discussion and argues that, from a strong
frequency view of probability, observed “biases” in probabilistic reasoning are
not errors, since probability theory simply does not apply to single events. In
his chapter, Gigerenzer focuses on the usefulness of a distinction between
single-event probabilities and frequencies and draws on evidence from both
the history of probability and from experimental work in the psychological
laboratory. He argues that empirical demonstrations of errors are not stable
and cognitive “illusions” disappear when single-event probabilities are
changed to frequencies. He concludes that the untutored mind has more of a
frequentist design than a Bayesian one.

Peter Ayton and George Wright consider this latest view of probability, as
explicated by Gigerenzer in the preceding chapter. Ayton and Wright suggest
that the well-known gambler’s fallacy can also be made to “disappear”. But
there is some evidence that judgements of frequencies can also show the
characteristic bias found for confidence judgements.
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A number of questions are raised by Gigerenzer’s critique. How should we
view human judgement under uncertainty? For biases to be capable of being
made to disappear they have to be there in the first place: why do the con-
junction fallacy and base-rate neglect occur when they do? We note that the
evidence for, and generality of, the availability and anchor-and-adjust
heuristics proposed by Kahneman and Tversky appear untouched by the
critique. Aside from the theoretical debate as to the nature of human
probabilistic judgement there are also questions as to its general competence.
Should we now believe that human probabilistic judgement is satisfactory and
that the evidence for incompetence was illusory?

Shawn Curley and George Benson focus on the construction of subjective
probability estimates. They argue that the process is dominated by the
construction of reasoned arguments and develop a cognitive theory of
probability construction. Next, they utilize this theory to analyse the results of
earlier experimentation. They argue that influence diagrams and knowledge
maps, often used in the initial phases of decision analysis, are an indication
of a new focus on the process of belief assessment rather than the output of
the judgement, The latter topic, as Beach and Braun note in Chapter 6, has
been the primary concern of psychologists to date. However, Curley and
Benson argue that investigation of the reasoning underlying judgemental
assessments is critical and, as a first step, they develop a model of “belief
processing” that supports the construction of subjective probabilities. Next
they utilize this model to elucidate judgemental heuristics in probability
assessment.

Karl Teigen argues that subjective judgements of probability are arrived at
by a number of different processes which may, or may not, cause them to
differ from the experimenters’ rules. Teigen does not debate whether or not
there should be a correspondence between subjects’ assessments and experi-
menters’ evaluation of what constitutes a good (often relative to normative
standards) performance. This issue was already debated by Beach and Braun
in Chapter 6. Instead, Teigen evaluates the conditions under which judgements
and norms show agreement and when they do not. Teigen suggests some
simple probability rules which, he argues, people generally seem to accept as
valid. Understanding and application of other rules, for example the product
rule for arriving at the probability value of a conjunction, is less common-
place. Teigen argues that, when people start judging probabilities on an
intuitive basis, judgement is dependent upon a richer source of subjectively
available concepts and strategies. Teigen concludes that we are very sophisti-
cated probabilists in most respects except the quantitative one.

Valerie Reyna and Charles Brainerd document the developmental studies of
probability judgement that have been conducted and argue that these provide
an important perspective on adult conceptions of probability. Knowledge of
developmental stabilities and changes supply an independent body of evidence
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that can be used to select among competing theories of (non-)probabilistic
thinking in adulthood. Their developmental analysis deals successively with
Piagetian information processing and intuitive reasoning approaches. Reyna
and Brainerd debate the evidence for precocity on the one hand and late
emergence on the other. They conclude that young children can perform
advanced processing operations under certain conditions. Of necessity, the
question of adult rationality is central to developmental research—if cognitive
development is seen as progress toward rationality. Reyna and Brainerd argue
that reasoners understand probability at an early age but that they increasingly
rely on intuitive processes as they grow older.

Jonathan Baron and Deborah Frisch analyse what they term the “ambiguity
effect”, where individuals often prefer to bet on gambles with a stated and
known chance of winning, as opposed to gambles where the chance of winning
is unstated and unknown but is formally identical from the perspective of
expected utility theory. This phenomenon, which has demonstrated subjects’
aversion to ambiguity, has led to empirical and theoretical research on the
causes and effects of ambiguity. In their paper, Baron and Frisch discuss the
implications of ambiguity avoidance for expected utility theory. They develop
their own theory of ambiguity as missing information and address issues
concerning the practicality of dealing with situations in which information is
missing.

Wibecke Brun focuses on the perception of risk. Some conceptualizations
define risk as a product of the probability of a loss and its magnitude. Other
definitions are concerned with lay perceptions and aim to describe how lay
persons intuitively understand the term. Nevertheless, probability is one of the
main components in most definitions of risk. Does a discrepancy between
“actual” risk measures, like statistical fatality estimates, and subjectively
perceived risk constitute a problem? Brun identifies two major research issues
in risk perception studies. The first has to do with gaining knowledge of what
public concerns are. The second has to do with identifying and explaining
attitudes and reactions toward hazards. Brun differentiates experimental
studies in the psychological laboratory and psychometric or questionnaire
studies of risk attitudes in the lay population. Brun concludes that the
uncertainty component of a risk is multidimensional, involving intuitive
probability concepts such as those described by Teigen in Chapter 9.

Nigel Harvey discusses the relationship between how well people perform
skilled tasks and the confidence that they have in their performance. Most of
the work that Harvey evaluates has to do with motor skills and cognitive skills.
The major issues are whether confidence accurately reflects performance and
whether changes in performance produce changes in confidence. Here confi-
dence is treated as an effect of performance. These issues, and especially the
former one, are similar to those addressed by cognitively orientated studies of
probability judgement accuracy reviewed in a later section of this volume. In
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addition, however, theoretical concerns have led to an examination of how
confidence influences performance. Harvey argues that confidence and
performance are coupled together as a dynamical system where neither should
be seen as just a cause nor as just an effect. Here, motivational factors are of
major concern. Harvey concludes that there is a need for the theoretical
integration of cognitive and motivational accounts.

Ruma Falk, Abigail Lipson and Clifford Konold investigate how we cope
with the search for a target object in a finite field of locations, if one’s initial
uncertainty is met with a series of negative results. Falk, Lipson and Konold
examine the nature of probabilistic reasoning in such situations along with
the Bayesian solution. But, descriptively, how is conflict resolved between the
diminishing long-term hope and the increasing immediate hope implied by the
diminishing finite number of locations? Do we overestimate our chance of
success, thus wasting time in futile search, or underestimate our chances,
giving up too early in frustration and despair?

In the first chapter of the Part on Accuracy of Probability Judgements,
J. Frank Yates introduces the issues and analyses the variety of accuracy
measures that have been proposed. Such measures, often implemented as
scoring rules, can be used in the form of feedback to the judge as well as direct
assessment of aspects of the judge’s (in)accuracy. Yates gives several detailed
examples of accuracy measurement in such contexts as pneumonia diagnosis,
intensive-care prognoses, and studies of cross-national variations in propensity
to engage in probabilistic thinking.

William R. Ferrell discusses practical issues in subjective probability from
the standpoint of decision analysis, and he extends discussion of the elicitation
of subjective probabilities from individuals and subsequent accuracy measure-
ment. As Ferrell notes, the quality of a decision analysis is critically dependent
on the quality of assessed probabilities. He develops Yates’ discussion of prob-
ability accuracy, discusses the consequences of poor accuracy for decision
analysis and argues that a common form of inaccuracy is overconfidence.
Next, Ferrell describes his model of probability accuracy based on signal-
detection theory and he demonstrates that the model can explain a variety of
experimental data drawn from subjective probability judgement tasks.

Alastair McClelland and Fergus Bolger focus on the accuracy or calibration
of subjective probability judgements. They review theories and models of
calibration that have appeared since the time of the last review, in 1982. As
McClelland and Bolger note, there are two distinct views of the locus of
observed biases in calibration and other measures of probabilistic reasoning.
The “pessimists” believe that biases are in people whilst the “optimists”
believe that biases are in-built in the experimental tasks utilized by researchers.
Theories and models of calibration can also be located within these two
distinct views of the quality of probabilistic judgement. In their review of
seven models of subjective probability calibration, McClelland and Bolger
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conclude that the “optimists” provide the most satisfactory explanation of
calibration with general-knowledge items.

In the first chapter in the Part on Real World Studies, Gideon Keren
describes gamblers’ conceptions of uncertainty in light of a distinction between
two different and irreducible fundamental modes of thought. One mode is
based on the abstract rules of logic (e.g. the probability laws), the other is
phenomenological in nature and is based on action and associated conscious
experience. As he notes, the fact that people gamble at all in face of negative
expected values is one of the main paradoxes of gambling behaviour.
However, as Keren argues, this paradox exists only under the rules of the
logic of the probability calculus. Gamblers’ probabilistic assessments are
contaminated by their desires and associated emotions. Clearly, the formal
theory of probability is not descriptive of how gamblers deal with uncertainty.

Paul Krause and Dominic Clark discuss the ways in which uncertainty and
subjective probability have been represented in AI systems. As the authors
note, ad hoc uncertainty calculi have often been used in Al systems because
they are computationally efficient. Bayesian updating of a system’s knowledge
base, on the other hand, is complex and posed problems of combinational
explosion both for the elicitation of subjective probabilities from human
experts and for the numerical computation of updated probabilities. However,
new efficient algorithms have been recently developed for rapid belief updating
which match the computational capability of earlier ad hoc approaches.
However, most probabilistic expert systems are still dependent on the elicita-
tion from experts of the majority of the required conditional probabilities.
Nevertheless, such expert systems are in use, for example in the diagnosis of
congenital heart disease. Krause and Clark describe such a system and argue
that there are situations where aspects of imprecision and vagueness may
be more effectively addressed with alternative calculi to that of subjective
probability. This approach supplements and extends Chapter 5 by Fox.

Willem Wagenaar focuses on the courtroom criterion of “beyond reason-
able doubt”. As he notes, there is a paradox implicit in the criterion since if
a judge is not absolutely certain then this must mean that there is a logical
possibility that the accused is innocent. Why then is this possibility not a
reason for doubt? Wagenaar analyses the way in which judges approach the
task of probability assessment. One descriptive theory proposes that the
acceptance of good causal stories, given by defence or prosecution, is taken
as diagnostic of truth. Of course, presented evidence should underpin good
stories. Wagenaar argues that insight into how judges and juries deal with
probabilities may lead to better courtroom procedures and better laws.

Kees van der Heijden analyses the advantage of probabilistic planning com-
pared to scenario planning. He notes that probabilistic planning is based on
axiom-based theory, whilst scenario planning, a more intuitive approach to
dealing with uncertainty, derives from the world of decision-making practice.
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Scenario planning, van der Heijden argues, addresses more adequately the
needs of managerial decision-makers, downplays the decision-maker’s poor
ability to think probabilistically and promotes managerial ability to create
causal stories of plausible futures. In general, this approach complements that
described by Wagenaar in the previous chapter. Scenario-planning techniques
promote the generation of action options and aid the manager’s desire to close
the gap between expected and desired futures. The contrast with probabilistic
thinking is stark.



Part One

Background



Chapter 1

Foundations

Dennis Lindley
Minehead, Somerset

1.1 UNCERTAINTY

The object of our study is uncertainty, the situation that arises when we do
not know whether a given statement is true or false. Uncertainty is everywhere
about us; all the future is uncertain, and so is much of the present and the past.
We are all uncomfortable with uncertainty and try to avoid it as much as
possible. But it will not go away, so let us face up to the fact that not
everything is known and study the phenomenon of uncertainty.

It will be enough if consideration is confined in the first instance to state-
ments which it would be reasonable to describe as either true or false, if only
we knew which. Such statements will be termed events, though sometimes
other descriptions, such as hypotheses, might be appropriate. It is a purely
technical problem to extend our study from uncertain events to uncertain
quantities; a problem that will not be discussed here. Thus we might take the
event of “rain tomorrow”, rather than consider the amount of rain. Events
will be denoted by capital letters, thus 4, B, etc.

Some events are more uncertain than others. For example, we are fairly sure
that the sun will rise tomorrow, less sure that it will rain then, and very unsure
whether a tossed coin will fall heads uppermost. Let us suppose that any
degree of uncertainty can be described by a number. This is a major assump-
tion and we will return to consider it later. For the moment, let us just see
where this reduction of a complex notion to a single value leads us.

Subjective Probability. Edited by G. Wright and P. Ayton.
© 1994 John Wiley & Sons Ltd.
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In describing the uncertainty of A by a number, it must be recognized that
the number may depend on the person contemplating 4 and also on how much
that person knows. We will refer to the person in the state of uncertainty
concerning A as “you”. The knowledge that you have will be denoted K. If
K changes, so might your uncertainty. Indeed, one of our main tasks will be
to quantify the change. Our task is to measure your uncertainty about A when
your knowledge base is K.

1.2 PROBABILITY

Underlying all measurement is the concept of comparison with a standard. To
say the length of an object is 2.4 m is to compare the length with a standard
metre. So we need a standard for uncertainty. There are many possibilities but
an easy one to handle is that of an urn containing a number of balls, identical
except for the fact that some are white and the remainder black. Suppose that
your knowledge base, H, contains the information that there are w white and
b black balls in the urn, w + b = n. You now draw a ball from the urn in such
a way that you think any one ball is as likely to be withdrawn as any other.
(This concept can be made precise without circularity in the argument.) We
then say that the uncertainty concerning the event W, that the ball is white,
is w/n. It is called your probability of W, given H, and written p(W | H). The
notation does not incorporate reference to you, since we shall here always be
dealing with one person.

We now have a standard for uncertainty, called subjective probability,
though the adjective will be omitted. The subject is you. If you now contem-
plate another, general event, 4, when your knowledge base is K, it has
probability w/n if the uncertainty is the same as that for the ball being white.
Thus, for given n, the value of w can be selected to make the two events
equally uncertain. Remember, we are supposing that all uncertainties can be
described numerically, so that this comparison is feasible. Notice that you
might not be able to do the direct comparison of A, given K, with W, given
H, any more than you would actually use the standard metre to measure
length. All that is being said is that you would regard it as possible in principle,
just as, in principle, the standard metre might be employed. Although this
procedure only provides rational numbers, it is a purely technical matter to
extend it to real numbers. As a special case, if K includes the information that
A is true, then you would choose w = n to make W true, and hence assign a
probability of one.

We thus have the first rule of probability, usually called the

Convexity rule. For any uncertain event A and state of knowledge K, the
probability of A, given K, p(A4|K), lies between 0 and 1 and assumes the
value 1 if K includes the knowledge that A4 is true.
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There are two important features of any measurement process: how the
measurement is made, and how different measurements combine. The first
part is solved in principle by comparison with a standard, though this is rarely
practical. Let us take the second part, the rules of combination. For prob-
ability there are two of these. To describe them, some notation is required. If
A and B are two events, then the event which is only true when both 4 and
B are true, the conjunction, is written AB. Similarly, if your knowledge base
is enlarged from K to include the additional information that A is true, we
write AK for the new base. If it is impossible, on K, for both 4 and B to be
true, we say they are exclusive on K and write AB = @, the empty event, which
is known to be false. If AB =@, we write A + B for the event which is true
whenever one of 4 or B is true, the disjunction. The two rules can now be
stated.

Addition rule. If AB=@ on K, then p(A + B|K)=p(A|K)+p(B|K).
Multiplication rule. p(AB|K)=p(A|K)p(B|AK).

It is an easy matter to establish these rules by comparing all the probabilities
with the standard of balls in an urn. In addition to supposing some balls are
white, some black, to compare with A4, as above, it will be necessary to
suppose some of the balls spotted, some plain, to compare with B. For the
addition rule, there will be no balls that are both white and spotted, corre-
sponding to AB = @. The rules are then simply a reflection of the fact that the
proportions of balls in the urn obey these rules, which are thereby transferred
to probabilities generally. The rules of probability are just those of proportions.

1.3 THE INEVITABILITY OF PROBABILITY

Probability is therefore a measure of uncertainty obeying the three rules of
convexity, addition and multiplication. It is not the only way to measure
uncertainty. For example, gamblers use odds. But odds are merely a transform
of probability. If the probability of A, given K, is p; then the odds against
A, given K, are (1 —p)/p to 1. Elsewhere in this chapter, the odds on,
p/(1 — p), will be used and referred to simply as odds. In many statistical
calculations it is convenient to use the logarithm of odds. We usually prefer
probability because the rules are simpler in that form, though Bayes’ rule,
below, will demonstrate an advantage of odds.

However, although we can switch from probability to functions, like odds,
any measure of uncertainty must be a function of probability. Workers in
fuzzy logic argue for rules expressed, not in terms of addition and multi-
plication, but in terms of maxima and minima. This is not possible. Here is
an outline of a demonstration of this fact, due to de Finetti (1974). The
account also suggests a way of measuring uncertainty that is more practical
than the comparison with a standard, just used.
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Suppose, still accepting that uncertainty can be described by a number, that
you are asked to provide a numerical value for the uncertainty of some event
A, given K, and provide, using whatever method you like, the answer, p. Then
let you be scored an amount (1 — p)?, if A4 is later found to be true, and p?
if A is false. The score is to be regarded as a penalty and you wish to minimize
your total score. It is easy to see that, under these conditions, you would
provide a value of p between 0 and 1, and that you would give the value 1 if
you knew A to be true. This is the convexity rule. Using some beautiful,
geometric arguments of great simplicity, de Finetti showed that the numbers
that you would give must satisfy the other two rules as well. If they did not,
then you would necessarily incur a larger score: not simply expect to get a
bigger value than by using probability, but actually get one. It is not an
exaggeration to say that it would be foolish to provide numbers that did not
satisfy the three rules. It may be objected that this depends on the particular
method of scoring used by de Finetti. However, it can be shown that if other
scores are used, one of two things can happen. The first possibility is that you
will give a transform of probability, for example, odds. Which transform will
be a function of the scoring system. The second is that you will always give
one of only two numbers, say either 1 or 0, which is patently absurd. All
sensible rules lead back, via a possible transformation, to probability.
Probability is inevitable.

There are other approaches, all of which lead to probability. There is
none that provides alternative rules like those of fuzzy logic. Jeffreys (1961)
does an analysis that might appeal to a scientist. Another method, due
to Ramsey (1926), is based on decision-making, a topic we will discuss
below. From modest assumptions, Ramsey was able to describe the class
of reasonable decision procedures. They are all based on probability. A
more modern, and detailed, development along similar lines is due to Savage
(1954).

Subjective probability for you depends on two things, the event whose
uncertainty is contemplated, and the knowledge that you have at the time. We
say it is a function of two arguments. It is common to refer to the probability
of A. This is strictly wrong and can lead to misunderstandings by omission of
the conditions, K. Also two people considering the same event, with the same
knowledge base, can have different probabilities. De Finetti expressed this
vividly by saying that “Probability does not exist”. Does not exist, that is,
outside of an individual. The correct form is your probability of A4, given X.
Practical experience suggests that there are bases where most people agree. For
example, on being presented with a coin similar to others that you have seen
over the years, most people would say that, if they were to toss it, the prob-
ability of heads for them is ;. Other probabilities, like those concerning the
winner of a political election, are much more subjective.
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1.4 EXTENSION OF THE CONVERSATION

Let us now look at the rules in more detail. The whole of probability theory
evolves from the three rules. Other rules are mathematical consequences of
them. The rules are sometimes modified, but only in small ways. For example,
the addition rule has been stated for two events and can easily be extended to
any finite number. But it is usual to suppose that it also holds for an enumer-
able infinity of events. Similarly, in the convexity rule, it is sometimes
supposed that a probability is only 1 if the knowledge base implies the truth
of the event. Notice that, although the rules are simply those of proportions,
probabilities combine in two different ways, by addition and by multiplication.
Lengths, for example, only combine by addition; multiplication yields a new
concept, area. This means that the calculus of probability is extremely rich. It
also means that the results do not always agree with common sense, for
common sense is often not capable of the calculation.

For any event A, the event which is true (false) whenever A is false (true)
is called the complement of A and will be written A°€. Since A4° =@ and the
event A+ A° is surely true, it follows that p(A°|K)=1-p(A|K). The
addition rule shows that, since A=AB+ AB, p(A|K)=p(AB|K)+
p(AB°®| K). Use of the multiplication rule enables this to be written

p(A|K)=p(A|BK)p(B|K)+p(A|B°K)p(B°|K).

This most useful formula is known as the extension of the conversation (from
A to include B). It is also known as the generalized addition rule. Its merit
lies in the fact that the probabilities of A on the right-hand side are often easier
to evaluate than that on the left, because you knowledge base is larger there.

1.5 BAYES’ RULE

If, in the multiplication rule, the roles of the two events, A and B, are
interchanged, we easily get that

p(A|K)p(B|AK)=p(B|K)p(A | BK),
so that if p(B|K) #0,

)=p(BIAK)p(A|K)_

A | BK
pA| p(B|K)

This is known as Bayes’ rule. It is more easily appreciated in its odds form.
Write O(A | K)=p(A|K)[p(A°|K), the odds on A, given K, as in Section
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1.3. With Bayes’ rule, both as written above and with A° replacing A, we
have

0(A| BK) = LBLAK) 4 41k,
(41800 = ZELA. (45

In this form it clearly displays the effect on the odds for A of learning the truth
of B. The original odds are multiplied by

p(B|AK)
P(B|A°K)

to obtain the new odds. The multiplier is known as the likelihood ratio. Here
is an application that might clarify the rule.

Consider a trial in a criminal court and let G be the event that the defendant
is truly guilty of the charge. Write G as I, innocence. At some point in the
course of the trial, let K denote the knowledge that the court has. Finally, let
E denote a new piece of evidence before the court, additional to K. Then with
G for A and E for B, Bayes’ rule says

P(E|GK)
P(E|IK)

(Since K occurs in every probability, the reader may temporarily like to omit
it as an aid in appreciating the formula.) On the left-hand side, there is the
odds for guilt given the new evidence (and K); on the other side is the odds
without that evidence. The latter is multiplied by the likelihood ratio to obtain
the former. This, according to probability theory, is the procedure that should
be adopted in the court. As the trial proceeds, the odds are continually
updated by multiplication by the relevant likelihood ratio.

Let us consider this ratio in more detail. The probabilities involved are not
those of guilt, but of the new evidence. Furthermore, these have to be taken
both on the assumption of innocence, and on that of guilt, though only their
ratio matters. The court therefore has to ask itself how probable is the
evidence were the defendant guilty, and how probable is it were he innocent.
Generally, whenever there are two competing hypotheses, here guilt and
innocence, one needs to assess the uncertainties of the evidence on the bases
of both, and compare them.

O(G | EK) = O(G|K).

1.6 INVERSION, SUPPOSITION AND DESCRIPTION

There is another important feature of Bayes’ rule. On the left-hand side we
have p(G| EK), expressed in odds: on the right there is p(E | GK). Here the
roles of E and G, are reversed. People often experience difficulty in distin-
guishing between these two probabilities, yet they are essentially different.



Foundations 9

Statisticians find it useful to distinguish the two ideas by using different words.
Omitting K for the moment, p(A|B) is the probability of A4, given B;
whereas, as a function of B, it is termed the likelihood of B, given A. Thus
in the legal application of Bayes’ rule, the odds refer to the probability of guilt;
the ratio refers to the likelihood of guilt.

Bayes’ rule also brings out another important feature of probability. The
probability p(E | GK) uses the knowledge base GK. But the court never knows
G to be true. What is being studied here is the uncertainty of the evidence on
the supposition that the defendant is guilty. Supposition replaces fact. Strictly,
one should write p(A | B: K), the probability of A, supposing B to be true and
knowing K. This complication is not needed if the assumption is made that

p(A|BC:K)=p(A|B:CK).

This says that, replacing the supposition that C is true by the knowledge that
it is true, makes no difference to the uncertainty of A. In acquiring the
knowledge that an event is true, you often acquire other knowledge as well.
If you do not, then the assumption seems reasonable. If made, there is no
need to distinguish between supposition and fact, and the previous, simpler
notation may be used. This is almost universal practice.

There is no suggestion, in the development given, that probability describes
how people currently behave in the face of uncertainty. All that is being said
is that you would wish to behave in accordance with probability, if you could.
The calculus of probability is there to help you to do this. The method is said
to be normative: it provides a norm by which your ideas might be expressed.
A description of how people actually behave might look very different. There
is no suggestion that courts of law nowadays use Bayes’ rule in reaction to new
evidence; only that they should.

1.7 NUMERICAL ASSIGNMENT AND COHERENCE

If you are going to use the probability calculus, you have got to input numbers
for some probabilities. How are these to be obtained? First, there are some
probabilities that are easy to calculate. The probability of § for a coin falling
heads, or 1/6 for a die showing an ace, are natural. Your probability that Jean
celebrates her birthday on 15 March is 1/365, with refinements for leap years.
Generally, from easily obtained probabilities, it is possible to evaluate others
using the calculus. For example, if, to the one about Jean’s birthday, you
include similar statements about other people, and assume all the judgements
independent, then it is possible to show that the probability, in a room of 23
people, that there are two who share the same celebration, is about ; a value
that is often found to be surprising. Generally, from some values you can
calculate others by use of the rules.
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Another way to influence your probability evaluations is through scoring
rules. Faced with a sequence of events and the knowledge that you are to be
scored by some sensible system, you will usually make a better job of the task
than you would without the check provided by the score. Certainly it
encourages coherence as explained in the next paragraph. More experience is
needed with this method to determine which scoring rule is best.

Perhaps the most important way of calculating probabilities, and certainly
one that is always available, is through coherence. You are said to be coherent
in your approach to uncertainty if all the values you give obey the rules of
probability. For a single event, there is only one rule, convexity. Coherence
only comes into play with several events, and the more there are, the more
powerful it is. For example, suppose that you contemplate the event A that
your party will win the next election, knowing K, p(A4 | K). The state of the
economy is surely relevant to the party’s fortunes, so you might consider
extending the conversation to include B, the event that the economy is favour-
able. This will involve p(A|BK) and p(A|B°K), contemplating election,
knowing the state of the economy. Other events, like those concerning foreign
policy, can be added. The procedure can be inverted and you may contemplate
p(B| AK), the probability of a sound economy were your party elected. From
evaluations already made, you can calculate others and see whether you like
them. Computer programs exist which do the calculations and provide ranges
between which unstated probabilities might lie, given what has been input.

1.8 FREQUENCY IDEAS

There is class of situations in which it is often easy to determine your belief
numerically. This is where K includes frequency information relevant to the
uncertain event being considered. For example, if you learn that, in a recent
survey, 15% of people carried a certain gene, you might assert that the prob-
ability that Tom carries the gene is 0.15. It is important to notice that
subjective probability, as developed here, has nothing to do with frequency.
It is merely a numerical expression of your belief. In this example, the
frequency belongs to K and is transferred to the uncertain event by a judge-
ment of a connection between the frequency and the event. If you learned that
Tom’s mother carried the gene, then the frequency of 15% would have much
less relevance. The connection between the knowledge base and the event has
been destroyed by the additional information about the mother. Frequencies
have a useful role to play in the evaluation of beliefs but it is wrong to interpret
probability as frequency.

Frequency ideas surface in another context. Suppose that, over many days,
you forecast tomorrow’s weather by each day giving your probability of rain
tomorrow. After a long period, you look at all the occasions on which you
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have given a specific value for the probability, say 0.25. Then one might expect
that on 25% of these occasions, it will have been found to have rained. If this
match between belief and actuality obtains for all probabilities, you are said
to be calibrated and there is agreement between belief and frequency.
Calibration is often said to be a desirable feature. It is easy to see that it is not
necessary, by thinking of the meteorologist who always provides probabilities
of 0 or 1 for rain tomorrow. Every time 0 is stated, it rains; every 1 is followed
by a dry day. This is an excellent forecaster even though quite uncalibrated;
it is only necessary to do the opposite of what his forecast suggests.

1.9 DECISION ANALYSIS

The discussion so far has been entirely in terms of beliefs. But why do we have
beliefs? Why do we want to calculate with probabilities? The usual answer is,
in order to take action in the face of uncertainty; to decide in a situation where
not all is known. A belief does not have to be associated with a decision, but
it must have the potentiality for action if needed. You need not bet on the fall
of the coin, but the 1 would be useful if you did. If the gene could have
dangerous consequences for his children, Tom might find the 0.15 very
relevant to a decision whether to have children. It is easy to extend subjective
probability to encompass decision-making. This is done by the introduction of
utility.

Decisions and the resulting actions lead to consequences, which are uncer-
tain if the events are. Suppose that, amongst all the consequences that might
arise there is one that is more desirable than the others, or at least is very good.
Write this C; and give it a utility of 1. Similarly take a consequence that is very
bad, Cy, and give it utility 0. Now take any consequence C whose merit lies
between these two extremes. The utility of C can be constructed as follows.
Consider a choice between an action that will lead to C for sure, and another
action that will yield C; with probability ¥ and Cp with probability 1 — u. Since
C is intermediate between the two extremes, there will be a value of u that
will make the uncertain action equivalent, in your mind, to the certain C.
This is called the utility of C and will be written u(C). The choice of 0 and
1 above is arbitrary and work with utility is unaffected by changes of origin
or scale.

Take any decision and suppose that it can lead to one of a number of
consequences ¢;, i =1,2,...n, with utilities u(c;), their probabilities being
p(c;), omitting reference to K. By the way in which utility was derived, ¢; can
be replaced by Ci, the highly desirable outcome, with probability u(c;), and
otherwise Cp. Hence the decision can be thought of as always leading to one
of the extreme consequences. Let us evaluate the probability of getting the
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better C; rather than the worse. By the extension of the conversation (see
above) this is

p(C1)=E:p(Ci|ci)p(ci) = Ziu(ci)p(ci).

Since you would wish to maximize your probability of getting the best of all
possible worlds, Cy, you can achieve this by maximizing the right-hand side
of the last result. The sum is called the expected utility of the decision,
obtained in the usual way with an expectation by multiplying the respective
utilities by their probabilities and adding. Hence subjective probability,
expressing your beliefs about uncertain events, leads directly to utility and thus
to the procedure of maximization of expected utility (MEU) as the proper
criterion for action. We do not use the term, risk, referring to undesirable
outcomes. Utility embraces the good and the bad equally and no distinction
need be made beyond the numerical value. Risk is sometimes used when
probabilities are unknown. Since our usage of probability refers to your
knowledge, or lack of it, it is always known in principle, though sometimes
hard to determine.

It is important to notice that utility is not an arbitrary measure of the worth
of a consequence. It is a measure on the scale of probability. A glance at the
way that it was derived above shows that the concept of a gamble, and hence
of probability, is basic to the concept. Furthermore, since it was derived from
probability, the extension of the conversation can be used to demonstrate that
expected utility is the correct quantity to maximize in order to optimize your
decision-making. Just as a single number describes uncertainty, so one value,
expected utility, is enough to decide. Actually, all utilities are really expected,
since the worth you attach to a consequence is what you expect to obtain
from it.

It is necessary to insert a caveat here. The whole edifice concerns a single
individual, called you. It does not describe how a group of people should
act. Nor does it say how two people in conflict should behave, either in the
play of a game or in a situation that may lead to war. But for one decision-
maker, contemplating an uncertain world, MEU is the only sensible way to
proceed.

The concept of utility is a subtle one and requires care in its use. It applies
to any consequence and, in contemplating the consequence, you can take
account of anything that you consider relevant. For example, suppose that you
are in a gambling situation where the outcomes are monetary. Then you may
wish to think solely in terms of money, when all you need do is to take your
utility function for money. But you may perceive a consequence in terms of
more than just cash. Many people feel that £100 received as by right, or almost
certainly, is different from £100 had unexpectedly, or with small probability.
In that case, utility of money is inadequate for your contemplation of gambles,
and you will need to add an extra dimension to your consideration of the
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consequences. This type of analysis lies behind the resolution of several
paradoxes, like those of Allais, that have appeared in the literature.

1.10 UNCERTAINTY AS NUMBER

Let us return to the strong assumption made at the beginning of the chapter
to the effect that you would wish to measure your uncertainty by a single
number. People have often felt unhappy with this bold assertion, feeling that
such a complicated idea cannot be reduced to something as simple as number.
Here is an example of where it may be inadequate. If you are asked for the
probability that a coin will fall heads when tossed, then, under normal circum-
stances, you will confidently announce 1. If asked whether the political party
you support will win the next election, you may also provide a probability of
1, but will feel less confident of its value. Here are two values of }, but you
feel more assured about one than the other. You might think that another
number would be needed to express this confidence. Some writers have
suggested the use of upper and lower probabilities, reflecting the range of
reasonable values. In our examples, these might be (0.49, 0.51) for the coin
but more separated values, such as (0.35, 0.65) for the election. An argument
is now presented to suggest that this complication is not necessary.
Consider an urn that you know contains two balls, identical except for
colour. There are two scenarios: :

(1) You know one ball is white, the other black,
(2) You know that there are three possibilities, two black, two white or one
of each colour, and you think that all three are equally likely.

A ball is removed in such a way that you think it is as likely to be one as the
other. In both scenarios, the probability that the withdrawn ball is white is 3.
Yet presented with the two scenarios, most people prefer the first over the
second because it contains less uncertainty. This preference is not reflected in
the probabilities, which are ; in both cases. A decision, based on a single
expected utility, would be the same in the two cases. The single value of ; may
be inadequate.

Now consider a second drawing from the urn, the first ball not having been
replaced, and contemplate the uncertain event that the two withdrawn balls
match. This has probability 0 in the first scenario, but  in the second. In other
words, belief based on a single number is capable of distinguishing the two
scenarios when it is necessary. It was not probability that was inadequate when
only one ball was taken, it was the fact that decision analysis did not require
any distinction. When two were taken, the distinction was essential and was
met by belief based on a single number. There have been several attempts
to produce paradoxes based on the use of a single number to describe
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uncertainty, but all, in my opinion, can be answered in a similar fashion to
that just used in the urn illustration. An excellent defence of the idea of using
upper and lower probabilities is given by Walley (1991).

1.11 PROBABILITY AND LOGIC

Probability theory is an extension of logic. The latter deals with truth and
falsehood. Probability deals with uncertainty where the two extremes are truth
and falsehood, with probabilities 1 and O respectively. Two situations can look
the same logically, yet be different when the uncertain element is introduced.
The following example has arisen in the literature. There are a number of
cards. Each card has a letter on one side and a number on the other: thus
(D,3). On a table, this card will appear as either (D,-) or (-,3), depending on
which face is showing. Suppose that it is a question of whether the rule “D
implies 3” applies. Logic says that, presented with four cards

D, (F,) (-,3) (D),

only the first, with D showing, and the last, with 7 showing, need be inves-
tigated to test the rule.

If there is a set of cards, of which these are just four, then the probability
of whether the rule obtains would be changed, through Bayes’ rule, by turn-
ing up any of the cards, especially that with the 3 showing. Equally there are
cases, where your knowledge base is different, where the card with a 7 showing
would not be worth consideration. This case is often known as the paradox
of the swans. Let D correspond to “swan” and 3 to “white”, so that the rule
under investigation is that all swans are white. But no one looking at a black
object, 7, and finding it was a jug, F, would think that this supported the
rule.

1.12 SUMMARY

If every uncertainty is to be measured by a number, then it must be in terms
of numbers that obey the rules of probability. The beliefs so generated are in
an appropriate form for decision analysis and, with the concept of utility, yield
the principle of maximization of expected utility. For a single decision-maker,
in a state of uncertainty, the theory seems adequate. There do not appear to
be difficulties caused by the restriction to a single number. The calculus
provides a generalization of logic. The problem of measurement is substantial
and coherence is possibly the most important tool, though frequency consider-
ation are often useful.
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Chapter 2

Qualitative Theory of Subjective
Probability

Patrick Suppes
Stanford University

Because we want to use probability concepts to talk about everything from the
chance of drawing four aces in a hand of bridge to the probability of rain
tomorrow or the probability distribution of position in a quantum-mechanical
experiment, it is hardly surprising that no simple categorical theory of prob-
ability can be found. The subjective theory of probability accepts this diversity
of applications, and, in fact, utilizes it to argue that the many ways in which
information must be processed to obtain a probability distribution do not
admit of categorical codification. Consequently, two reasonable men in
approximately the same circumstances can hold differing beliefs about the
probability of an event as yet unobserved. For example, according to the
subjective theory of probability, two meterorologists can be presented with the
same weather map and the same history of observations of basic meterological
variables such as surface temperature, air pressure, humidity, upper air
pressures, wind, etc., and yet still differ in the numerical probability they
assign to the forecast of rain tomorrow morning. I hasten to add, however,
that the term “subjective” can be misleading. It is not part of the subjective
theory of probability to countenance every possible diversity in the assignment
of subjective probabilities. It is a proper and important part of subjective
theory to analyze, e.g., how classical relative-frequency data are to be incorpo-
rated into proper estimates of subjective probability. Such data are obviously

Subjective Probability. Edited by G. Wright and P. Ayton.
© 1994 John Wiley & Sons Ltd.
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important in any systematic estimate of probabilities, as we can see from
examination of the scientific literature in which probabilities play a serious
part. It is also obvious that the principles of symmetry naturally applied in the
classical definition of probability play an important role in the estimation of
subjective probabilities whenever they are applicable.

Bayes’ theorem provides an example of the sort of strong constraints to be
placed on any subjective theory. The prior probability distributions selected by
different investigators can differ widely without violating the subjective theory;
but if these investigators agree on the method of obtaining further evidence,
and if common observations are available to them, then these commonly
accepted observations will often force their beliefs to converge.

2.1 DE FINETTI’'S QUALITATIVE AXIOMS

Let us turn now to a more systematic discussion of the major aspects of the
subjective theory. For a more detailed treatment of many questions the reader
is referred to the historically important article of de Finetti (1937), which has
been translated in Kyburg and Smokler (1964), and also to de Finetti’s treatise
(1974; 1975). The 1937 article of de Finetti’s is one of the important pieces of
work in the foundations of probability in this century. Probably the most
influential work on these matters since 1950 is the book by Savage (1954).
Savage extends de Finetti’s ideas by paying greater attention to the behavioral
aspects of decisions, but this extension cannot be examined in any detail in this
chapter.

Perhaps the best way to begin a systematic analysis of the subjective theory
is by a consideration of de Finetti’s axioms for qualitative probability. The
spirit of these axioms is to place restraints on qualitative judgments of prob-
ability which will be sufficient to prove a standard representation theorem, i.e.
to guarantee the existence of a numerical probability measure in the standard
sense. From this standpoint the axioms may be regarded as a contribution to
the theory of measurement with particular reference to comparative judgments
of probability. The central question for such a set of axioms is how compli-
cated must be the condition on the qualitative relation more probable than in
order to obtain a numerical probability measure over events.

The intuitive idea of using a comparative qualitative relation is that
individuals can realistically be expected to make such judgments in a direct
way, as they cannot when the comparison is required to be quantitative. On
most occasions I can say unequivocally whether I think it is more likely to rain
or not in the next four hours at Stanford, but I cannot in the same direct way
make a judgment of how much more likely it is not to rain than rain. General-
izing this example, it is a natural move on the subjectivist’s part to next ask
what formal properties a qualitative comparative relation must have in order
to be represented by a standard probability measure. (Later we shall review
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some of the experimental literature on whether people’s qualitative judgments
do have the requisite properties.)

We begin with the concept of a qualitative probability structure, the axioms
for which are very similar formally to those for a finitely additive probability
space. The set-theoretical realizations of the theory are triples (Q, ¥, > ) where
(1 is a nonempty set, & is a family of subsets of 2, and the relation > is a binary
relation on &. We follow here the discussion given in Luce & Suppes (1965).

Definition 1 A structure Q =(Q, &, >) is a qualitative probability structure
if the following axioms are satisfied for all 4, B, and C in F:

S1. F is an algebra of sets on £;

S2.If A > Band B > C, then A > C;

S3. A > Bor B > A;

S4. If ANC=G@ and BNC=@, then A > Bif and only if AUC > BUC;
S5. 4 > ©;

S6. Not @ > Q.

The first axiom on & is the same as the first axiom of finitely additive prob-
ability spaces. Axioms S2 and S3 just assert that > is a weak ordering of the
events in §. Axiom S4 formulates in qualitative terms the important and
essential principle of additivity of mutually exclusive events. Axiom S5 says
that any event is (weakly) more probable than the impossible event, and
Axiom S6 that the certain event is strictly more probable than the impossible
event. Defining the strict relation > in the customary fashion:

A > B if and only if not B » A,

we may state the last axiom as: Q > @.

To give a somewhat deeper sense of the structure imposed by the axioms,
we state some of the intuitively desirable and expected consequences of the
axioms. It is convenient in the statement of some of the theorems to use the
(weakly) less probable relation, defined in the usual manner.

A < Bif and only if B > A4.

The first theorem says that < is an extension of the subset relation.

Theorem 1 If A S B, then A < B.

Proof. Suppose on the contrary, that not A < B, i.e. that 4 > B. By
hypothesis A € B, so there is a set C, disjoint from A such that A UC = B.
Then, because 4 U @# A, we have at once

AU@=A>B=AUC,

whence by contraposition of Axiom S4, @ > C, which contradicts Axiom S5.
Q.E.D.
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Some other elementary properties follow.

Theorem 2

() If3<Aand ANB=@, then B< AUB;

(ii) if A > B, then —B > —A;

(ii) if A >Band C>Dand ANC=0, then AUC > BUD;
(iv) if AUB>CUDand CND=@, then A > C or B > D;
(v) if B> —Band -C > C, then B > C.

Because it is relatively easy to prove that a qualitative probability structure
has many of the expected properties, as reflected in the preceding theorems,
it is natural to ask the deeper question whether or not it has all of the
properties necessary to guarantee the existence of a numerical probability
measure P such that for any events A and B in &

P(A) > P(B) if and only if A > B. 49)

If Q is an infinite set, it is moderately easy to show that the axioms of
Definition 1 are not strong enough to guarantee the existence of such a prob-
ability measure. General arguments from the logical theory of models in terms
of infinite models of arbitrary cardinality suffice; a counterexample is given in
Savage (1954, p. 41). De Finetti stressed the desirability of obtaining an answer
in the finite case. Kraft, Pratt & Seidenberg (1959) showed that the answer is
also negative when ( is finite; in fact, they found a counterexample for a set
Q having five elements, and, thus, 32 subsets. The gist of their counterexample
is the following construction. Let = {a,b,c,d, e}, and let ¢ be a measure (not
a probability measure) such that

o(a)=4—-¢

p(b)=1-¢

¢(c)=2

¢d)=3-¢

¢(e) =6,
and

0<e<i.

Now order the 32 subsets of @ according to this measure—the ordering being,
of course, one that satisfies Definition 1. We then have the following strict ine-
qualities in the ordering:

{a} > {b,d)} because ¢(a)=4—¢€ > 4—-2e=¢(b)+ ¢(d)
{c,d} > {a,b) because ¢(c)+od(d)=5—-¢€>5-2e=¢(a)+ o(b)
(b, e} > {a,d} because ¢p(b)+¢d(e)=T—¢ > 7 —2e=¢(a)+¢(d)
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We see immediately also that any probability measure P that preserves these
three inequalities implies that

{c,e} > {a,b,d},
as may be seen just by adding the three inequalities. In the case of ¢

o(c) +d(e)=8>8—3e=0¢(a)+o(b) + ¢(d).
However, no set 4 different from {c, e} and {a, b, d} has the property that
o(lc, e)) 2 ¢(A) > ¢(la, b,d)).
Thus we can modify the ordering induced by ¢ to the extent of setting
{a,b,d) > {c, e} amn

without changing any of the other inequalities. But no probability measure can
preserve (II) as well as the three earlier inequalities, and so the modified
ordering satisfies Definition 1 but cannot be represented by a probability
measure.

Of course, it is apparent that by adding special structural assumptions to the
axioms of Definition 1 it is possible to guarantee the existence of a probability
measure satisfying (I). In the finite case, for example, we can demand that all
the atomic events be equiprobable, although this is admittedly a very strong
requirement to impose.

Fortunately, a simple general solution of the finite case has been found by
Scott (1964). (Necessary and sufficient conditions for the existence of a
proability measure in the finite case were formulated by Kraft, Pratt and
Seidenberg, but their mutliplicative conditions are difficult to understand.
Scott’s treatment represents a real gain in clarity and simplicity.) The central
idea of Scott’s formulation is to impose an algebraic condition on the indicator
(or characteristic) functions of the events. Recall that the indicator function
of a set is just the function that assigns the value 1 to elements of the set and
the value 0 to all elements outside the set. For simplicity of notation, if A is
a set we shall denote by A’ its indicator function. Thus if A is an event

if xeA,
0 otherwise.

Al(x) = {

Scott’s conditions are embodied in the following theorem, whose proof we do
not give,

Theorem 3 (Scott’s representation theorem). Let Q be a finite set and 2 a
binary relation on the subsets of (. Necessary and sufficient conditions that
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there exists a probability measure P on { satisfying (I) are the following: for
all subsets A4 and B of Q,

(1) A>Bor B> A;

2 A20;

3 Q>0

(4) for all subsets Ao, ..., An, Bo,...,Bn of Q, if A; > Bifor0 < i< n, and
for all x in @

Ab(x) +- -+ Ak(x) = Bb(x) + - - - + Bu(x),
then A, £ B.

To illustrate the force of Scott’s condition (4), we may see how it implies
transitivity. First, necessarily for any three indicator functions

A'+B'+C'=B'+C'+ 4/,
i.e. for all elements x
Ai(x) + Bi(x)+ Cl(x) = B'(x) + C'(x) + A'(x).
By hypothesis A > B and B > C, whence by virtue of condition (4),
C<A,

and thus by definition, 4 > C, as desired. The algebraic equation of condition
(4), just requires that any element of Q, i.e. any atomic event, belong to exactly
the same number of A; and B;, for 0 < i < n. Obviously, this algebraic condi-
tion cannot be formulated in the simple set language of Definition 1 and thus
represents quite a strong condition.

2.2 GENERAL QUALITATIVE AXIOMS

In the case that Q is infinite, a number of strong structural conditions have
been shown to be sufficient but not necessary. For example, de Finetti (1937)
and independently Koopman (1940a, 1940b, 1941) use an axiom to the effect
that there exist partitions of Q into arbitrarily many events equivalent in
probability. This axiom, together with those of Definition 1, is sufficient to
prove the existence of a numerical probability measure. Related existential
conditions are discussed in Savage (1954). A detailed review of these various
conditions is to be found in Chapters 5 and 9 of Krantz et al. (1971). However,
as is shown in Suppes & Zanotti (1976), by going slightly beyond the indicator
functions, simple necessary and sufficient conditions can be given for both the
finite and infinite case.

In the present case the move is from an algebra of events to the algebra §*
of extended indicator functions relative to F. The algebra F* is just the
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smallest semigroup (under function addition) containing the indicator func-
tions of all events in &. In other words, F* is the intersection of all sets with
the property that if A4 is in & then A'is in §* and if A* and B* are in F*,
then A*+ B* is in §*; It is easy to show that any function 4* in $* is an
integer-valued function defined on Q. It is the extension from indicator func-
tions to integer-valued functions that justifies calling the elements of §*
extended indicator functions.

The qualitative probability ordering must be extended from ¥ to F * and the
intuitive justification of this extension must be considered. Let 4* and B* be
two extended indicator functions in §*. Then, to have A* > B*is to have the
expected value of 4™ equal to or greater than the expected value of B*. As
should be clear, extended indicator functions are just random variables of a
restricted sort. The qualitative comparison is now not one about the probable
occurrences of events, but about the expected value of certain restricted
random variables. The indicator functions themselves form, of course, a still
more restricted class of random variables, but qualitative comparison of their
expected values is conceptually identical to qualitative comparison of the
probable occurrences of events.

There is more than one way to think about the qualitative comparisons of
the expected value of extended indicator functions, and so it is useful to
consider several examples.

(1) Suppose Smith is considering two locations to fly to for a weekend vaca-
tion. Let A; be the event of sunny weather at location J and B; be the event
of warm weather at location j. The qualitative comparison Smith is
interested in is the expected value of A% + B! versus the expected value of
A+ Bj. It is natural to insist that the utility of the outcomes has been 100
simplified by the sums Aj + B}. The proper response is that the expected
values of the two functions are being compared as a matter of belief, not
value or utility. Thus it would seem quite natural to bet that the expected
value of A} + B} will be greater than that of A} + B, no matter how one
feels about the relative desirability of sunny versus warm weather, Put
another way, within the context of decision theory, extended indicator
functions are being used to construct the subjective probability measure,
not the measure of utility.

Note that if Smith prefers the country (j = 1) to the city (j=2) when it
is warm and sunny, then even if

Ai+Bi=~AL+ B}
in belief, his choice of country or city could vary depending on the degree

of belief or expectation: with high expectation go to the country; with low
expectation go to the city.
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(2) Consider a particular population of n individuals, numbered 1, ..., n. Let
Aj be the event of individual j going to Hawaii for a vacation this year,
and let B; be the event of individual j going to Acapulco. Then define

n

. n s
=Y, Ai and B*= ), B.
i= i=1

Obviously A* and B* are extended indicator functions—we have left
implicit the underlying set Q. It is meanmgful and quite natural to
qualitatively compare the expected values of A*and B*. Presumably such

comparisons are in fact of definite significance to travel agents, airlines,
and the like.

We believe that such qualitative comparisons of expected value are natural
in many other contexts as well. What the representation theorem below shows
is that very simple necessary and sufficient conditions on the qualitative com-
parison of extended indicator functions guarantee existence of a strictly
agreeing, finitely additive measure in the sense of (I), whether the set 9 of
possible outcomes is finite or infinite.

The axioms are embodied in the definition of a qualitative algebra of
extended indicator functions. Several points of notation need to be noted.
First, Q° and @° are the indicator or characteristic functions of the set ¢ of pos-
sible outcomes and the empty set @, respectively. Second, the notation nA*
for a function in F* is just the standard notation for the (functional) sum of
A* with itself n times. Third, the same notation is used for the ordering rela-
tion on § and §*, because the one on § * is an extension of the one on : for
A and Bin &,

A > Biff A" > B'.

Finally, the strict ordering relation > is defined in the usual way: A* > B*iff
A* > B* and not B* > A™.

Definition 2 Let Q be a nonempty set, let F be an algebra of sets on {1, and
let > be a binary relation on §* the algebra of extended indicator functions
relative to ¥. Then the qualitative algebra (2, F, 2> ) is quahtatzvely satis-
factory if and only if the following axioms are satisfied for every A* B* and
C*in §*

Axiom 1 The relation > is a weak ordering of & *.
Axiom 2 Q' > @'

Axiom 3 A* > @

Axiom 4 A*> B*iff A*+C*>B*+C%
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Axiom 5 If A* > B* then for every C* and D* in §* there is a positive
integer n such that
nA*+C* > nB* + D*.

These axioms should seem familiar from the literature on qualitative prob-
ability. Note that Axiom 4 is the additivity axiom that closely resembles de
Finetti’s additivity axiom for events: If ANC=BNC=0, then A > B iff
AUC > BUC. As we move from events to extended indicator functions,
functional addition replaces union of sets. What is formally of importance
about this move is seen already in the exact formulation of Axiom 4. The
additivity of the extended indicator functions is unconditional—there is no
restriction corresponding to AN C=BNC=@. The absence of this restric-
tion has far-reaching formal consequences in permitting us to apply without
any real modification the general theory of extensive measurement. Axiom 5
has, in fact, the exact form of the Archimedean axiom used in Krantz et al.
(1971, p.73) in giving necessary and sufficient conditions for extensive
measurement.

Theorem 4 Let Q be a nonempty set, let & be an algebra of sets on Q and let
2 be a binary relation on F. Then a necessary and sufficient condition that
there exists a strictly agreeing probability measure on F is that there be an
extension of > from & to §* such that the qualitative algebra of extended
indicator functions (@, §* »>) is qualitatively satisfactory. Moreover, if
Q,F* >)is qualitatively satisfactory, then there is a unique strictly agreeing
expectation function on §* and this expectation function generates a unique
strictly agreeing probability measure on F.

Proof. The main tool used in the proof is from the theory of extensive meas-
urement: necessary and sufficient conditions for existence of a numerical repre-
sentation, as given in Krantz et al. (1971, pp. 73—74). In particular, let A be
a nonempty set, > a binary relation on A, and © a binary operation closed
on A. Then there exists a numerical function ¢ on A unique up to a positive
similarity transformation (i.e. multiplication by a positive real number) such
that for ¢ and b in A4

() a 2 biff p(a) 2 ¢(b),

(i) ¢(aob) =¢(a)+ ¢(b)
if and only if the following four axioms are satisfied for all a, b, ¢, and din A:
El. The relation > is a weak ordering of A4;
E2. ao(boc)= (a0 b)oc, where = is the equivalence relation defined in

terms of >;
E3. a2biffacc>bociffcoa>cobd;
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E4. If a > b then for any c and d in A there is a positive integer n such that
na © ¢ > nb © d, where na is defined inductively.

It is easy to check that qualitatively satisfactory algebras of extended
indicator functions as defined above satisfy these four axioms for extensive
measurement structures. First, we note that functional addition is closed on
§* Second, Axiom 1 is identical to E1. Extensive Axiom E2 follows imme-
diately from the associative property of numerical functional addition: for any
A*, B* and C*in §*

A*+(B*+CH=(A*+BH+C*
and so we have not just equivalence but identity. Axiom E3 follows from
Axiom 4 and the fact that numerical functional addition is commutative.
Finally, E4 follows from the essentially identical Axiom 3.

Thus, for any qualitatively satisfactory algebra (Q, F * ») we can infer
there is a numerical function ¢ on Q such that for A* and B* in §*.

() A* > B*iff ¢ (4%) > ¢(B"),
(ii) $(A*+B%)=d(4™) +¢(BY),
and ¢ is unique up to a positive similarity transformation.
Second, since for every A* in F*
A*+ @' =A%
we have at once that from (ii)
6(@)=0.
Since Q' > @' by Axiom 2, we can choose
6@ =1.

And thus have a standard (unique) expectation function E for extended
indicator functions:

(i) E@")=0
(i) E@)=1
(iiiy E(A*+B*)=E(A*)+ E(B").
But such an expectation function for §* defines a unique probability measure

P on § when it is restricted to the indicator functions in §*, i.e. for 4 in &,
we define

P(A)=E(AY).

Thus the axioms are sufficient, but it is also obvious that the only axioms,
Axioms 2 and 3, that go beyond those for extensive structures are also
necessary for a probabilistic representation. From the character of extended
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indicator functions, it is also clear that for each probability measure there is
a unique extension of the qualitative ordering from F to F*.
: Q.E.D.

The proof just given, even more than the statement of the theorem itself,
shows what subset of random variables defined on a probability space suffices
to determine the probability measure in a natural way. Our procedure has been
to axiomatize in qualitative fashion the expectation of the extended indicator
functions. There was no need to consider all random variables, and, on the
other hand, the more restricted set of indicator functions raises the same
axiomatic difficulties confronting the algebra of events.

2.3 QUALITATIVE CONDITIONAL PROBABILITY

One of the more troublesome aspects of the qualitative theory of conditional
probability is that 4 | B is not an object—in particular it is not a new event
composed somehow from events A and B. Thus the qualitative theory rests on
a quaternary relation 4 | B > C| D, which is read: event A given event B is at
least as probable as event C given event D. There have been a number of
attempts to axiomatize this quaternary relation (Koopman, 1940a, 1940b;
Aczél, 1961, 1966, p. 319; Luce, 1968; Domotor, 1969; Krantz et al., 1971;
and Suppes, 1973). The only one of these axiomatizations to address the
problem of giving necessary and sufficient conditions is the work of Domotor,
which approaches the subject in the finite case in a style similar to that of Scott
(1964).

By using indicator functions or, more generally, extended indicator func-
tions, the difficulty of 4 | B not being an object is eliminated, for 4’| B is just
the indicator function of the set A restricted to the set B, i.e. A° | B is a partial
function whose domain is B. In similar fashion if X is an extended indicator
function, X'| A is that function restricted to the set A. The use of such partial
functions requires care in formulating the algebra of functions in which we are
interested, for functional addition X'| 4 + Y| B will not be well defined when
A#B but ANB# . Thus, to be completely explicit we begin with a
nonempty set {1, the probability space, and an algebra & of events, i.e. subsets
of Q, with it understood that F is closed under union and complementation.
Next we extend this algebra to the algebra §* of extended indicator functions,
i.e. the smallest semigroup (under function addition) containing the indicator
functions of all events in &. This latter algebra is now extended to include as
well all partial functions on Q that are extended indicator functions restricted
to an event in F. We call this algebra of partial extended indicator functions
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®RF*, or, if complete explicitness is needed, ®F *(Q). From this definition it
is clear that if X|A and Y|B are in ®F*, then

(i) A=B, X|A+Y|Bisin ®RF".
(i) f ANB=¢, X|AUY|Bisin RF*

In the more general setting of decision theory or expected utility theory there
has been considerable discussion of the intuitive ability of a person to directly
compare his preferences or expectations of two decision functions with
different domains of restriction. Without reviewing this literature, we do want
to state that we find no intuitive general difficulty in making such comparisons.
Individual cases may present problems, but not necessarily because of different
domains of definition. In fact, we believe comparisons of expectations under
different conditions is a familiar aspect of ordinary experience. In the present
setting the qualitative comparison of restricted expectations may be thought
of as dealing only with beliefs and not utilities. The fundamental ordering
relation is a weak ordering > of ®RF* with strict order > and equivalence =
defined in the standard way.

Following Suppes & Zanotti (1982), we give axioms that are strong enough
to prove that the probability measure constructed is unique when it is required
to cover expectation of random variables. It is worth saying something more
about this problem of uniqueness. The earlier papers mentioned have all
concentrated on the existence of a probability distribution, but from the stand-
point of a satisfactory theory it seems obvious for many different reasons that
one wants a unique distribution. For example, if we go beyond properties of
order and have uniqueness only up to a convex polyhedron of distributions,
as is the case with Scott’s axioms for finite probability spaces, we are not able
to deal with a composite hypothesis in a natural way, because the addition of
the probabilities is not meaningful.

Definition 3 Let © be a nonempty set, let ®F *(2) be an algebra of partial
extended indicator functions, and let > be a binary relation on RF * Then the
structure (2, ®RF*, >) is a partial qualitative expectation structure if and only
if the following axioms are satisfied for every X and Yin & * and every 4, B
and Cin § with 4, B > @:

Axiom 1 The relation > is a weak ordering of ®F*;
Axiom 2 Q' > 0% .
Axiom 3 Q'|4 > C'|B > @'| A4;
Axiom 4 If X;|A4 > Y1|B and X2|A > Y2|B then
X |A+X2|A > Y |B+ Y2|B;
Axiom5 If X,|A< Yi|Band Xi|A+X;|4 > Y1|B+ Y|B then

X2|A > Y, |B;
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Axiom 6 If A € B then
X|A>Y|Aiff X-A'|B>Y-A'|B;

Axiom 7 (Archimedean). If X|A > Y| B then for every Z in F* there is a
positive integer n such that

nX|A >nY|B+Z|B.

The axioms are simple in character and their relation to the axioms of
Definition 2 is apparent. The first three axioms are very similar. Axiom 4, the
axiom of addition, must be relativized to the restricted set. Notice that we have
a different restriction on the two sides of the inequality. The really new axiom
is Axiom 6. In terms of events and numerical probability, this axiom
corresponds to the following: If A € B, then

P(C|A) > P(D|A) iff P(CNA|B)>P({DN A|B).

Note that in the axiom itself, function multiplication replaces intersection of
events. (Closure of §* under function multiplication is easily proved.) This
axiom does not seem to have previously been used in the literature. Axiom 7
is the familiar and necessary Archimedian axiom.

We now state the main theorem. In the theorem we refer to a strictly
agreeing expectation function on ®F * (Q). From standard probability theory
and conditional expected utility theory, it is evident that the properties of this
expectation should be the following for A, B > O:

(1) E(X|A) >E(Y|B)iff X|A > Y|B,

(Q E(X|A+Y|A)=E(X|A)+E(Y|A),

(3) E(X-A'|B)=E(X|A)E(A'|B) if Ac B,
(4 E@'|A)=0and EQ'|A)=1.

Using primarily (3), it is then easy to prove the following property, which
occurs in the earlier axiomatic literature mentioned above:

E(X|AUY|B)=E(X|A)E(A'|AUB)+E(Y|B)E(B'| AUB),
for ANB=0.

Theorem 5 Let Q be a nonempty set, let F be an algebra of sets on Q, and
let > be a binary relation on § X §. Then a necessary and sufficient condition
that there is a strictly agreeing conditional probability measure on § X & is that
there is an extension >* of > from § X & to ®F * () such that the structure
Q, RF*(Q), > ™) is a partial qualitative expectation structure. Moreover, if
@, ®RF*(@Q), >%), is a partial qualitative expectation structure, then there is
a unique strictly agreeing expectation function on ®F *(Q) and this expectation
generates a unique strictly agreeing conditional probability measure on ¥ X &.

The proof is given in Suppes & Zanotti (1982).
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2.4 GENERAL ISSUES

I now want to turn to a number of general issues that arise in evaluating the
correctness or usefulness of the subjective view of probability.

Use of symmetries

A natural first question is to ask how subjective theory utilizes the symmetries
that are such a natural part of the classical, Laplacian definition of prob-
ability. If we think in terms of Bayes’ theorem the answer seems apparent. The
symmetries that we all accept naturally in discussing games of chance are
incorporated immediately in the subjective theory as prior probabilities. Thus,
for example, if I wish to determine the probability of getting an ace in the next
round of cards dealt face up in a hand of stud poker, given the information
that one ace is already showing on the board, I use as prior probabilities the
natural principles of symmetry for games of chance, which are a part of the
classical definition. Of course, if I wish to introduce refined corrections I could
do so, particularly corrections arising from the fact that in ordinary shuffling,
the permutation groups introduced are groups of relatively small finite order,
and, therefore, there is information carry-over from one hand to another.
These second-order refinements with respect to shuffling are simply an indi-
cation of the kind of natural corrections that arise in the subjective theory and
that would be hard to deal with in principle within the framework of the
classical definition of probability. On the other hand, I emphasize that the
principles of symmetry used in the classical definition are a natural part of
the prior probabilities of an experienced card player. The extent to which these
symmetries are compelling is a point I shall return to later.

Use of relative frequencies

It should also be clear that the proper place for the use of relative-frequency
data in the subjective theory is in the computation of posterior probabilities.
It is clear what is required in order to get convergence of opinion between
observers whose initial opinions differ. The observers must agree on the
method of sampling, and, of course, they must also agree on the observations
that result from this sampling. Under very weak restrictions, no matter how
much their initial opinions differ, they can be brought arbitrarily close to
convergence on the basis of a sufficient number of sampled observations. The
obvious requirement is that the individual observations be approximately
independent. If, for example, the observations are strongly dependent, then
many observations will count for no more than a single observation.
Reflection upon the conditions under which convergence of beliefs will take
place also throws light on the many situations in which no such convergence
occurs. The radically differing opinions of men about religion, economics, and
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politics are excellent examples of areas in which there is a lack of convergence;
no doubt a main source of this divergence is the lack of agreement on what
is to count as evidence.

Problem of the forcing character of information

As already indicated, it is an important aspect of the subjective theory to
emphasize that equally reasonable men may hold rather different views about
the probability of the same event. But the ordinary use of the word “rational”
seems to go beyond what is envisaged in the subjective theory of probability.
Let us consider one or two examples of how this difference in usage may be
expressed.

The first kind of example deals with the nonverbal processing of infor-
mation by different individuals. One man is consistently more successful than
another in predicting tomorrow’s weather. At least before the advent of
powerful mathematical methods of predicting weather, which are now just
beginning to be a serious forecasting instrument, it was the common obser-
vation of experienced meteorologists that there was a great difference in the
ability of meteorologists with similar training and background and with the
same set of observations in front of them to predict successfully tomorrow’s
weather in a given part of the world. As far as I can see, in terms of the
standard subjective theory as expressed, for example, by de Finetti, there is no
very clear way of stating that on a single occasion the better predictor is in
some sense more rational in his processing of information than the other man;
yet in common usage we would be very inclined to say this. It is a stock episode
in novels, and a common experience in real life for many people, to denigrate
the intelligence or rationality of individuals who continue to hold naive beliefs
about other people’s behavior in the face of much contrary, even though
perhaps subtle, evidence.

But successive predictions can be studied like any other empirical
phenomena, and there is a large literature on evaluating the performance of
forecasters, an important practical topic in many arenas of experience.
Examination of quantitative methods of evaluation of subjective, as well as
objective, forecasts lies outside the scope of this chapter. The Journal of
Forecasting is entirely devoted to the subject. See also, for example,
Makridakis et al. (1984) and Dawid (1986).

Contrary to the tenor of many of de Finetti’s remarks, it seems fair to say
that the subjective theory of probability provides necessary but not sufficient
conditions of rationality.

Bayesian probabilities and the problem of concept formation

An important point revolving around the notion of mistaken belief is involved
in the analysis of how information is processed. In common usage, a belief is
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often said to be mistaken or irrational when later information shows the belief
to be false. According to the subjective theory of probability, and much
sensible common usage in addition, this view of mistaken beliefs is itself a
mistake. A belief is not shown to be mistaken on the basis of subsequent
evidence not available at the time the belief was held. Proper changes in belief
are reflected in the change from a prior to a posterior probability on the basis
of new information. The important point for subjective theory is that the
overall probability measure does not itself change, but rather we pass from a
prior to a posterior conditional probability. Applications of Bayes’ theorem
illustrate this well enough. The following quotation from de Finetti
(1937/1964, page 146) illustrates this point beautifully.

Whatever be the influence of observation on predictions of the future, it never
implies and never signifies that we correct the primitive evaluation of the
probability P(E,.1) after it has been disproved by experience and substitute for
it another P*(En+1) which conforms to that experience and is therefore probably
closer to the real probability; on the contrary, it manifests itself solely in the
sense that when experience teaches us the result A on the first n trials, our
judgment will be expressed by the probability P(E..1) no longer, but by the
probability P(En+1|A), i.e., that which our initial opinion would already
attribute to the event E,. considered as conditioned on the outcome A. Nothing
of this initial opinion is repudiated or corrected; it is not the function P which
has been modified (replaced by another P*), but rather the argument E,.1 which
has been replaced by En+1|A, and this is just to remain faithful to our original
opinion (as manifested in the choice of the function P) and coherent in our
judgment that our predictions vary when a change takes place in the known
circumstances.

In spite of the appeal of what de Finetti says, there seems to be a wide class
of cases in which the principles he affirms have dubious application. I have in
mind all those cases in which a genuinely new concept is brought to bear on
a subject. I do not mean necessarily the creation of a new scientific concept,
but rather any situation in which an individual suddenly becomes aware of a
concept that he was not previously using in his analysis of the data in front
of him.

Suppose an organism has the sensory capability to recognize at least 100
features, but does not know how to combine the features to form the concepts
being forced upon it by experience. Assuming the features have only two
values (presence or absence), even with this drastic simplification it does not
make sense from a computational standpoint to suppose the organism has a
prior distribution that is positive for each of the 2'® possible patterns that
might be nature’s choice.

I am not entirely certain what subjectivists like de Finetti would say about
this kind of example. I cannot recall reading anywhere a systematic discussion
of concept formation, or even identification, by one of the main proponents
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of subjective probability. It is my own view that no adequate account of
concept formation can be given within the framework of subjective prob-
ability, and that additional more complicated and detailed learning processes
in organisms must be assumed in order to provide an adequate account. This
is not to denigrate the theory of subjective probability, but to be realistic about
its limitations.

Problem of unknown probabilities

Another feature of the subjective theory of probability that is in conflict with
common usage of probability notions is the view that there are no unknown
probabilities. If someone asks me what is the probability of rain in the Fiji
Islands tomorrow, my natural inclination is to say, “I don’t know,” rather
than to try to give a probability estimate. If another person asks me what [
think the probability is that Stanford University will have an enrollment of at
least 50 000 students 500 years from now, I am naturally inclined simply to
say, “I haven’t the faintest idea what the probability or likelihood of this event
is.” De Finetti insists on the point that a person always has an opinion, and,
therefore, a probability estimate about such matters, but it seems to me that
there is no inherent necessity of such a view. It is easy to see one source of it.
The requirement that one always have a probability estimate of any event, no
matter how poor one’s information about the circumstances in which that
event might occur may be, arises from a direct extension of two-valued logic.
Any statement is either true or false, and, correspondingly, any statement or
event must always have a definite probability for each person interrogated.
From a formal standpoint it would seem awkward to have a logic consisting
of any real number between 0 and 1, together with the quite disparate value,
“I don’t know.”

A little later we shall examine the view that one can always elicit a subjective
probability for events about which the individual has very little background
information by asking what sort of bet he will make concerning the event.
Without anticipating that discussion, I still would like to insist that it does not
really seem to be a proper part of the subjective theory to require an assign-
ment of a probability to every imaginable event. In the same spirit with which
we reply to a question about the truth of a statement by saying that we simply
don’t know, we may also reply in the same fashion to a request for an estimate
of a probability. This remark naturally leads to the next problem I want to
consider.

Inexact probability estimates

There are many reasons, some of which were just mentioned, for being skep-
tical of one’s own or other people’s ability to make sensible exact probability
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estimates of possible events about which little is known. A retreat, but within
the general subjective framework, is to give upper and lower probability esti-
mates. So, in what we might think of as a state of nearly total ignorance about
the possible occurrence of an event E, we assign upper probability P*(E) =1,
and lower probability P,(E)=0. Note that the positions of the stars
distinguishes in a natural way upper from lower probabilities.

Development of this idea is pursued in some detail in Chapter 4 by Glenn
Shafer. There is, however, one important concept I want to mention here. The
use of upper and lower probabilities developed by Dempster and Shafer,
for example, assumes a supporting probability, i.e. the upper and lower
probabilities assigned to an algebra of events are consistent with the exist-
ence of at least one probability measure P such that for every event E in the
algebra

P.(E) < P(E) < P¥(E).

But it is easy to envisage realistic incoherent inexact probabilities,
incoherent in the sense that they are not compatible with the existence of a
probability measure. As a simple hypothetical example, consider the person
whose partial beliefs about the economy of his country ten years from now are
expressed in part by the following correlations. Let ¥ = high unemployment,
p = at least moderate prosperity, and d = at least fairly high deficit. Let these
three events be represented by random variables U, P and D respectively, with
value +1 for occurrence and —1 otherwise, let the subjective expectations of
all three be 0, and let the subjective correlations satisfy the three inequalities
e(U,P) < -0.5, p(D,P) < -0.5 and p(U,D) < 0.0. I think subjective
correlations of this sort are not unlikely for many triples of events. But then
there can be no upper and lower probability of the kind envisaged by Dempster
and Shafer to express these beliefs, for there is no possible joint probability
distribution of the three random variables satisfying the expectations and the
correlation inequalities—here I am assuming, for simplicity, exact subjective
probabilities for the marginal distribution of each of the three pairs of random
variables.

On the other hand, there can be a nonmonotonic upper probability com-
patible with any pairwise distribution satisfying the correlation inequalities.
Such an upper probability P* satisfies for any two events A and B such that
ANB#0O

P*(AUB) < P*(A) + P*(B),
with, of course,

P*@Q@)=1 and P*@)=0.
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But the necessary nonmonotonicity means there are events A and B such that
A € B, but

P*(B) < P*(A).

which is not possible for any probability measure.

It seems desirable to extend the theory of subjective probability to situations
in which it is natural to start with an incoherent or inexact prior because of
lack of knowledge—or the opposite problem of too much—with accompanying
computational problems. (For a natural application of such nonmonotonic
upper probabilities to physics, see Suppes and Zanotti, 1991.)

Decisions and the measurement of subjective probability

It is commonplace to remark that a man’s actions or decisions, and not his
words, are the true mark of his beliefs. As a reflection of this commonly
accepted principle, there has been considerable discussion of how one may
measure subjective probabilities on the basis of decisions actually made. This is
a complex subject, and I shall not attempt to give it a fully detailed treatment.

The classical response in terms of subjective probability is that we may find
out the subjective probabilities a man truly holds by asking him to place
wagers. For example, if he thinks the probability of rain tomorrow is really
1, then he will be willing to place an even-money bet on this occurrence. If he
thinks that the probability of snow tomorrow has a subjective probability of
0.1, then he will bet against snow at odds of 1:9. It is also clear how this same
procedure may be used to test precise statements. For example, if a man says
the probability of rain tomorrow is at least 1, then presumably he will accept
any bet that provides odds at least this favorable to him.

Unfortunately, there is a central difficulty with this method of measuring
subjective probability. Almost all people will change the odds at which they
will accept a bet if the amount of money varies. For example, the man who
will accept an even-money bet on the probability of rain tomorrow with the
understanding that he wins the bet if in fact it does rain, will not accept an
even-money bet if the amount of money involved moves from a dollar on each
side to a hundred dollars on each side. Many people who will casually bet a
dollar will not in the same circumstances and at the same odds be willing to
bet a hundred dollars, and certainly not a thousand dollars. The man who will
accept an even-money bet on its raining tomorrow will perhaps be willing to
accept odds of two to one in his favor only if the wager is of the order of a
hundred dollars, while he will accept still more favorable odds for a bet
involving a larger sum of money. What then are we to say is his true estimate
of the probability of rain tomorrow if we use this method of wagers to make
the bet?
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In spite of this criticism, there have been a number of interesting empirical
studies of the measurement of subjective probability using the simple scheme
we have just described. A review of the older literature is to be found in Luce
& Suppes (1965). An excellent review of recent literature on risk-sensitive
models, together with new results, are to be found in Luce & Fishburn (1991).
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Chapter 3

Probability, Uncertainty and the
Practice of Statistics

Colin Howson and Peter Urbach
London School of Economics

3.1 INTRODUCTION

If we have observed that all the swans in a sample of swans are white, it is
generally accepted that from this we cannot infer with certainty that all swans
are white, or even that the next swan to be observed will be white. Depending
on the sample, we may be more or less certain, but never entirely certain. But
if we could somehow know a priori that whiteness is an essential property of
swans, then we would know that necessarily all swans were white, and so we
would not have to worry about whether the sample of swans we have actually
observed is representative of the class of all swans in terms of colour
properties. We need not in principle observe anything, to know everything.

This is a beguiling idea, and it beguiled Plato, and later Descartes, Leibniz
and Spinoza. The idea that factual knowledge can simply be excogitated in an
armchair, or even a philosopher’s cell, seems fantastic to us now, but we
should remember that these writers had concrete evidence, or so they thought,
to the contrary. For the mathematics they were acquainted with, that is to say
Euclidean, and later Cartesian, geometry, did appear to generate exact and
certain factual knowledge a priori, more exact and certain than any knowledge
derived from observation. Indeed, deviations from its predictions in the world
of space and time were plausibly put down to spatio-temporal lines, planes,

Subjective Probability. Edited by G. Wright and P. Ayton.
© 1994 John Wiley & Sons Ltd.
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solids and angles being imperfect exemplars of the Ideal Euclidean lines, planes,
solids and angles. Only quite recently was it realized that Euclid’s geometry is
not a body of synthetic a priori knowledge at all but an axiomatic theory, and
that real lines approximate to ideal ones only insofar as they approximately
satisfy its axioms. We now know, or think we know, that an ideal line is an
imperfect representation of a real one, rather than conversely, and alternative
geometries were developed precisely because the ideal lines, planes etc. in
Euclid’s geometry were foo imperfect representations of real ones.

Long before this realization dawned, however, the Platonic doctrine, later
known as rationalism, that all true knowledge is quasi-mathematical, a priori,
had succumbed to the charge of sterility and emptiness, a verdict reinforced
by the spectacular development in the seventeenth and eighteenth centuries of
the new empirical science of physics, which rapidly assumed—and still does to
many—the status of role model for scientific knowledge. This status was
ratified by the new epistemological doctrine of empiricism, according to which
all knowledge is derived, in a sense that was never made very precise, from
observation. ‘

Empiricism seemed to be a fruitful epistemology, but it was one with a price.
That price, as we saw, is uncertainty. Certain deductive inferences are replaced
by uncertain inductive ones. But the lack of information implicit in saying that
something is uncertain is mitigated if we can say exactly how certain it is. And
more importantly, can an inductive inference ever approach deductive certainty?

Hume is celebrated for answering these questions firmly in the negative. But
even while he was proclaiming total inductive scepticism, an inductive logic
was being developed which gave entirely different, positive answers, and
claimed to do so, moreover, with finality and exactitude. It was because of this
that Hume’s sceptical arguments evoked little contemporary interest; they
had, it was thought, and incorrectly as we shall see, already been answered.

The new inductive logic was the theory of probability, based on the then
recently developed mathematics of combinatorial algebra and analysis, and
first identified as a distinct discipline in the late seventeenth century. The equa-
tion of mathematical probability with degree of certainty was made almost
immediately. It is already explicit in James Bernoulli’'s Ars Conjectandi
(1715). Actual computations of inductive probability proceeded by means of
three auxiliary principles. The first of these is an easily proved consequence of
the mathematical theory, known as Bayes’ theorem, which states that the
conditional probability of a hypothesis H on data E (the so-called posterior
probability of H) is proportional, as H varies through some partition {H;},
to the unconditional probability of H (the prior probability of H) multiplied
by the conditional probability of E given H:

PH|E)x P(E|H)P(H)
where the constant of proportionality is P(E)=ZP(E|Hi)P(H.).
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The importance of this theorem lies in the fact that if H is deterministic and
the data arise from a well-designed experiment, then in the ideal state of affairs
(very ideal, but never mind) E will either be the outcome predicted by H or
one inconsistent with H; in the former case P(E|H)=1 and in the latter
P(E|H)=0. If H is a statistical hypothesis and E an event in the corre-
sponding outcome space, then the second principle, which used to be called
the principle of direct probability, authorizes equating P(E|H) with the
probability which H assigns E.

The third principle tells one how to compute the prior probabilities P(H).
Known as the principle of insufficient reason, and later the principle of
indifference, it is a symmetry principle stating that if nothing is known about
a quantity X save that it takes one of n possible values, then the a priori
probability that it will take any one is constant, and hence by the finite
additivity property of probability functions is equal to n~!. Hence the prob-
ability that its value will be in any r-membered subset is r{n (this is of course
Laplace’s celebrated “favourable cases to possible cases” ratio (1820)).

There is a natural extension of this principle to a bounded real-valued
random variable X: if nothing is known about X except that its range of values
is an open or closed interval of length k, then the a priori probability density
Sf(x) is equal to k~'. In the middle of the eighteenth century Thomas Bayes,
in a celebrated Memoir to the Royal Society of London, used such a uniform
density over the values of a variable Q representing the objective chance of a
specified event, to derive a posterior probability distribution for Q, conditional
on the data that the event in question occurred r times out of 7.

Despite apparent successes like this, the new logic based on these three
principles proved far from satisfactory and by the end of the nineteenth
century was widely regarded as discredited. The problem lay with the third
principle, the principle of indifference, which is difficult if not impossible to
implement consistently. Suppose, for example, that you know nothing about
a variable X except that it is confined within the closed unit interval, say. In
that case all you know about Y = X? is that it has the same range of values.
So the principle of indifference appears to demand that X and Y have exactly
the same a priori probability density, namely f(x)=f(y)=1, which is
impossible.

It might seem that this is a problem only for continuously distributed vari-
ables, but that is not true. Consider the hypothesis Hx: X = x, for a particular
value x of the variable X above. Hy itself can be regarded as a quantity taking
two possible values, 1 (i.e. true) and 0 (false). This is all you know about Hy,
moreover. So the principle of indifference would seem to require that
P(Hx=1) =3 But the principle of indifference also “said” that the prob-
ability P(X = x) was equal to 0 (since it “said” that X has a constant prob-
ability density at each point equal to 1). Yet of course X = x is equxvalent to
Hx=1.
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Though people wrestled with the problem of the correct interpretation of the
principle of indifference, it gradually dawned on them that there was no
uniquely “correct” one. There are many, usually infinitely many, partitions of
logical space containing some specified cell in that space. There is no reason
why, on the basis of a presumptively null knowledge state, any one of these
should be any more privileged than any other. To put the matter another way,
while it is possible to define a function representing neutrality between the cells
in any given partition of logical space, it is not possible to define one that has
this property for all partitions. A uniform neutrality is not possible, in other
words: neutrality over one partition will mean bias over another.

The principle of indifference had to go. But to abandon the idea of a neutral
prior distribution brought into question the enterprise of an objective induc-
tive logic securely based on probability theory. Alternative rules for deter-
mining or partially determining prior probabilities have from time to time been
appealed to, but none has been uncontroversial. Jeffreys (1961) and others
have argued that simpler hypotheses have higher prior probabilities, while
E.T. Jaynes, following earlier suggestions by Jeffreys, recommended using the
requirement of invariance under a suitable group to determine prior prob-
abilities (1973), or alternatively choosing the prior distribution which
maximizes entropy, if there is one, subject to whatever constraints are deemed
appropriate (1957, 1967). These suggestions all share with the principle of
indifference problems of consistent application, as well as possessing their own
peculiar difficulties. The choice of the appropriate group with respect to which
which the prior is to be invariant is usually a fairly arbitrary matter, as is the
choice of which of the many non-equivalent explications of simplicity to
adopt, and entropy-maximizing distributions may not exist or may not be
unique.

The apparent impossibility of determining prior probabilities in any non-
arbitrary manner has been a powerful factor in convincing many people that
a probabilistic theory of inductive inference was impossible. This was true in
the case of R.A. Fisher, who repudiated Bayesian probabilism in favour of a
theory of inference allegedly based on the logic of refutation. In this he was
followed by Popper, who is today better known, at any rate outside statistics,
as the principal proponent of falsificationism. Their attempt, though it con-
tinues to be influential, cannot nevertheless be regarded as successful, as we
shall see in due course.

3.2 THE MODERN SUBJECTIVE THEORY

While Fisher and Popper were dismissing inductive probability, important
discoveries were being made about the probability axioms which suggested an
entirely different way in which a probabilistic inductive logic could be
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constructed, in which objectivity is achieved without recourse to debatably
“objective” priors. We shall look briefly at just one of these, because it is both
simple to explain and convincing in its claim to show that the probability
axioms can be interpreted as a complete logic of consistent partial belief.
Different ways of arriving at substantially the same conclusion are to be found
in Ramsey (1931), Savage (1954), Jeffrey (1965), and Lindley (1982).

Suppose you agree to indicate your degree of confidence in the truth of a
proposition A in the traditional manner of stating the odds you currently think
would be the fair ones in any bet on A, were the truth of 4 to be decided after
the bet by a competent authority. It is actually more convenient to measure
that confidence not in terms of the odds on A directly but in terms of the
derivative betting quotient, which we shall suggestively symbolize by P(A).
The betting quotient P is obtained from the odds by the bijective mapping
(allowing odds to be infinite): P = odds/(1 + odds), with its familiar inverse:
odds = P/(1 — P). The scale of betting quotients has the advantage that it is
bounded and that the point of indifference between 4 and — A (not-A), corre-
sponding to odds of 1, is its midpoint. Your fair odds we shall take to be odds
which you believe give no advantage to either side of the bet. Ramsey and de
Finetti independently showed that if a set of betting quotients does not satisfy
the finitely additive probability axioms, then the odds determined by them
could be combined into a certainly winning or certainly losing betting strategy,
where a betting strategy is a set of n decisions of the form “bet on/against A;
with stake S;”, i=1, ..., n. The finitely additive probability axioms are (1)
P(A) 20, (2) P(T)=1 where T is the certain proposition, and 3)
P(AV B)=P(A)+ P(B), where AV B is the disjunction 4 or B and A and
B are mutually exclusive. If we define a conditional bet on A given B to be
one that proceeds in the normal way if B is true and is called off if not, then
it is also true that if P(A | B) is the betting quotient on A in a conditional bet,
and P(A | B) is not equal to P(A&B)/P(B), where P(A&B), P(B) are betting
quotients on A&B and B respectively and P(B) > 0, then a betting strategy
can be devised which will deliver a sure loss or gain.

The proof that if (1)—(3) are not satisfied then a betting strategy exists which
if implemented leads to inevitable gain or loss is not difficult (an elementary
proof is given in Howson & Urbach, 1993). A set of betting quotients with this
pathological property is colloquially said to be vulnerable to a Dutch book,
and the theorem above has consequently become known as the Dutch book
theorem. That theorem shows that a necessary condition for a set of degrees
of belief, measured as the agent’s fair betting quotients, to be internally
consistent is that they satisfy the finitely additive probability axioms, and a
straightforward extension of the argument for (3) shows that they must in
addition be countably additive. Henceforward when we mention the prob-
ability axioms we shall include among them the principle of countable
additivity, or continuity as it is sometimes called. The converse to the Dutch
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book theorem, that if a set of betting quotients does satisfy the axioms then
there is no betting strategy that can be guaranteed in advance to generate a loss
(or gain) independently of the truth values of the propositions bet on, is also
easily demonstrated.

Since they are necessary and sufficient for avoidance of vulnerability to
certain loss or gain, the probability axioms are in effect a complete set of
consistency constraints, and in our opinion that fact precisely restricts the
domain of objectively valid reasoning about uncertainty to the deductive
closure of the axioms. This has important consequences. In particular, it
means that even were it capable of a consistent formulation, the principle of
indifference, or indeed any other method of determining priors, has no claim
to legitimacy, for it is not a consequence of the axioms. But accepting that the
probability axioms are a complete theory of valid probabilistic inference
means accepting that the priors in any Bayes’s theorem calculation of posterior
probabilities are essentially indeterminate within the theory. This has seemed
to some, and not a few of them Bayesians, an abdication of responsibility, and
an admission of incompleteness insofar as allegedly more liberal criteria of
rationality are concerned.

This view, common though it is, is mistaken. If we look at the paradigm of
reasonable cognitive activity, namely science, we find a great diversity of
opinion about new theories, sometimes, as with Einstein’s doggedly negative
attitude to quantum mechanics, persisting over long periods. In fact, of
course, a diversity of opinion is an efficient way of managing uncertainty at
the group level, for it allows the exploration of alternatives to the dominant
view, alternatives which may well show that that view is actually only of
temporary and conditional validity. It is widely appreciated that the suppression
of deviant opinions in the long run does much more harm than good, if it ever
does good, and would certainly have retarded the growth of scientific
knowledge had it been more successfully practised.

Tolerance of alternative opinions is all very well, however, but the fact
remains that as empiricists we must allow the accumulation of observational
evidence to exert an increasingly strong pressure against diversity. But this is
exactly what the probability calculus, in the form of various convergence
theorems, “predicts” will occur. The convergence is generally with probability
one, so even in the appropriate conditions the posterior distributions do not
necessarily converge for all data sequences. But, granted that they agree on
which hypotheses are to be assigned a positive probability, there are cases
where the posterior probability functions actually converge to certainty on the
true hypothesis (for example, Halmos, 1950, p. 213. Theorem B; Earman,
1992 contains a clear and up-to-date discussion of these Bayesian convergence
theorems).

So the fact that the Bayesian theory does not fix “rational” priors neither
condemns it as undesirably incomplete nor as explanatorily empty. Nevertheless
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it is still felt in many quarters that it is too liberal in what it fails to prohibit.
But criticism of this sort simply begs the question as to what is and is not
rational cognitive behaviour. Nobody has yet shown where the boundaries of
the rational and the irrational lie, and all the evidence points against there
being any uniquely rational cognitive policy for each possible state of
background information.

We have tried to show that the Bayesian theory is not vulnerable to the
commonly made charge of an excessive reliance on subjective opinion. It is
now time to switch from defence to attack, and look more closely at those
alternative theories which purport to rest on an unimpeachably objective and
secure foundation. We shall see that this is very far from being the case.

3.3 THE OBJECTIVIST IDEAL

How convenient it would be if one could arrive at firm theoretical conclusions
by simple logical deduction from observations. For if that were possible, since
direct observational evidence is presumably true (setting aside a philosopher’s
extreme sceptical doubts), the theoretical conclusions drawn would, of logical
necessity, also be true. Hume’s demonstration that such inferences are not in
general legitimate left philosophers of science pondering the problem (the
“problem of induction”) of what, then, may legitimately be said regarding the
truth of theories, on the basis of facts of observation.

We regard the Bayesian answer to this question as extremely satisfactory,
but the fact that inductive probabilities are subjective or personal has
galvanized opposition to the Bayesian idea. Scientific judgement, critics say,
should have nothing subjective about it, but should be perfectly objective.
Lakatos (1978, Vol. 1, p. 1) put this objection with admirable clarity: “The
cognitive value of a theory has nothing to do with its psychological influence
on people’s minds . .. [but] depends only on what objective support it has in
facts.”

The objectivist ideal implicit in such objections to subjective Bayesianism is
greatly appealing; it would be nice if disagreements in science could be
resolved by impartially measuring the “objective cognitive values” of con-
tending hypotheses. But what does the suggestive phrase “objective cognitive
value” really mean? Lakatos never said. And since the goal which he postulated
for the scientific enterprise is shrouded in such a haze of imprecision, it is
scarcely surprising that Lakatos never succeeded in showing how to reach that
goal. We find this weakness in all of the well-known attempts to formulate a
non-Bayesian methodology of science, where rules for processing experimental
evidence are offered, and conclusions purporting to contain objective infor-
mation about the cognitive status of certain theories are drawn; on closer
examination, those conclusions turn out to have no cognitive meaning at all,
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and to create the misleading impression that they do only by the pregnant
language in which they are couched. Methodologies of this (as we shall argue)
ineffectual kind have been developed both by philosophers of science and by
statisticians.

3.4 POPPER’S METHODOLOGY FOR
DETERMINISTIC THEORIES

Karl Popper is a prominent representative of the first. He started from the fact
that general, non-statistical hypotheses (simple example: “all swans are
white”) can often be decisively falsified by observational evidence (e.g. “this
is a black swan”). And his famous thesis (or definition?) is that only
hypotheses that are falsifiable by “possible or conceivable observations” are
“scientific”. A hypothesis may also have empirical implications whose truth
can be checked in appropriate experiments; and if any such implication is
verified, Popper describes the hypothesis as thereby “corroborated”. Now
according to the Oxford English Dictionary, “to corroborate” means to
strengthen or make strong; to support or confirm. So Popper appears to be
saying that you can strengthen a hypothesis simply by verifying one of its
implications, a process involving no subjective probabilities but logic and
observation alone, But what could this strengthening possibly signify? It is
easy to think of a bridge being strengthened, or the Tower of Pisa being
supported; but how can that thought be stretched to include an abstract thing
like a hypothesis? To this question, crucial to his thesis, Popper gives no
adequate answer. He acknowledges that the hypothesis is not conclusively
proved in the corroboration process; nor is it in any sense “partially” proved;
nor is its objective probability augmented (there seems to be no such thing as
a theory’s objective probability). Popper sometimes says that it is “rational to
prefer” a corroborated hypothesis over one that is not, on the grounds that
the hypothesis is “better tested”; but this turns out, disappointingly, to be a
circumlocution for “better corroborated”. The dismal fact is, as Popper more
or less concedes, that saying that a hypothesis is corroborated in the sense he
defines, implies nothing as to the cognitive or epistemic standing of the
hypothesis, and certainly does not clarify those hazy notions.

3.5 CLASSICAL METHODOLOGIES FOR
STATISTICAL THEORIES

Statistical theories crop up frequently in science, in quantum mechanics,
genetics, psychology, economics, and the rest, and they play a more humble
but ubiquitous role with regard to experimental error. A statistical hypothesis
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attributes statistical probabilities, or chances, to events; these are not the
subjective degree-of-belief probabilities already discussed, but objective
properties of repeatable experiments. The fair-coin hypothesis mentioned
earlier is a simple example of a statistical hypothesis; it states of a particular
coin that it is “fair”, i.e. that it has equal statistical probabilities of a half of
landing heads and tails. And what this is standardly taken to mean is that if
the coin were tossed repeatedly, the relative frequency of heads in the resulting
sequence of outcomes would tend to } as the number of throws increased to
infinity.

Popper’s approach does not even begin to deal with statistical theories,
which can neither be falsified. nor corroborated (in Popper’s sense of the
term), since they make no categorical predictions. Thus, the fair-coin
hypothesis would not be falsified, however many times the coin in question
was tossed and landed heads. For the hypothesis does not say you can’t get
a million heads in a row, nor that you must get about 50 heads in a 100 throws;
like all statistical theories, it merely assigns larger or smaller probabilities to
such outcomes.

Classical statistical inference has two main branches: the testing of
hypotheses using “significance tests” and the estimation of parameters; both
have acquired highly technical refinements but their essential principles (and
failings) can be appreciated, and are best appreciated, through the simplest
examples.

The theory of significance tests purports to show how statistical hypotheses
can be tested. Here is a simple example: the hypothesis to be tested (the “null”
hypothesis) asserts that the coin before us is fair. An experiment is performed
in which the coin is tossed a predetermined number of times, say 20, and the
resulting number of heads recorded. The outcome space of the experiment
comprises the 21 possibilities, ranging from no heads and 20 tails to 20 heads
and no tails, and the significance test requires the statistical probability of
each, relative to the null hypothesis, to be calculated. One must then choose
a region of the outcome space—usually in one or both tails of the probability
distribution, which is such that the probability that any actual experimental
outcome would fall within in it, if the null hypothesis were true, is fairly
small—0.05 has established itself as an acceptably small value. Finally, if the
outcome obtained in the experiment does lie in the critical region, it is said to
be “significant at the 5% significance level”.

All this merely defines significance and significance level, but does not yet
tell us anything about the truth, or “cognitive value” of the null hypothesis.
This last, crucial step is effected, according to advocates of this approach, by
saying that a result significant at the 5% level requires the null hypothesis to
be “rejected at the 5% level”.

What exactly does this mean? You can, of course, reject a hypothesis in
the sense of denying its truth, but how can your rejection be pitched at a
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percentage level? Some statisticians carelessly suggest that such rejections
amount to logical refutations, for they speak of statistical hypotheses being
“disproved”, or “contradicted” in significance tests. Fisher (1956, p. 39), on
the other hand, held that the “force of a test of significance” resides in the
following dichotomy: either an extremely improbable result has occurred, or
the null hypothesis is false. But in fact the dichotomy has no force: all it says
is that the null hypothesis is either true or false.

Another way to interpret “rejection” in the significance test sense is due
to Neyman and Pearson, who invented the currently standard form of a
significance test, which is slightly more complicated than that given above, in
that rivals to the null hypothesis are brought into the picture. Neyman and
Pearson (1933, p. 142) suggested that although we may not conclude that the
null hypothesis is false when it has been “rejected at the such-and-such level”,
we should act in our practical life as if we believed just that. This oft-repeated
advice is always justified by saying that if you performed significance tests
repeatedly on the same or different hypotheses, and if you decided to act as
if you believed the null hypothesis was false each time the result was
“significant at the 5% level”, only “around” 5% of your decisions would be
wrong.

The argument has a specious plausibility. It is fallacious, though. It is based
on the fact that a test carried out using a 5% significance level would lead to
the “rejection” of a true null hypothesis with probability 0.05. But as we have
stressed, from the probability of an event you cannot deduce the frequency,
or even the approximate frequency, with which that event will appear in any
actual run of trials, however long.

We must conclude that “significant at such-and-such level”’ is a phrase
which says nothing about the truth or the cognitive status of any hypothesis.
Like Popper’s “corroboration” notion, it is precisely defined, suggestively
named, yet cognitively empty.

The second great branch of classical statistical inference is known as
estimation; we shall consider that part of the theory of estimation known as
confidence interval estimation, where the aim is not to test hypotheses but is
the purportedly different one of estimating parameter values. We again
consider the simplest case: the task is to estimate the mean height, u, of some
population, whose standard deviation, o, is known. Evidence is obtained by
measuring the mean height M of a random sample drawn from the population.
If the experiment was designed to select n elements, so that each possible
sample is necessarily of that size, the probability distribution over the outcome
space is normal with standard deviation s = of Jn; it follows from this that with
probability 0.95, —1.96s < M —u < + 1.96s. Rearranging these inequalities
gives the result that with probability 0.95: M — 1.96s < u < M + 1.96s.

Let M’ be the value of m that is actually observed in the experimental
sample. Then, since s may be computed, so may the terms M’ —1.96s and
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M’ +1.96s; the range covered by the resulting values is called a 95%
confidence interval for m, 0.95 being the confidence coefficient.

All this merely defines confidence interval and confidence coefficient, but
does not yet tell us anything about the value of the parameter. This last, crucial
step is effected, according to advocates of this approach, by saying that you
should be “95% confident” that the 95% confidence interval measured in any
experiment includes the parameter in question.

Textbooks regularly remind readers not to interpret this degree of
“confidence” as a probability, whether objective or subjective; but they never
say what in fact it is, nor why they believe we are entitled to any given level
of confidence on the basis of a confidence interval. The standard interpretation
of confidence intervals is nevertheless not without some plausibility; but this
plausibility seems to derive from a line of reasoning, implicit in many
expositions, which while tempting, is, we argue, invalid.

The reasoning seems to rest on the rule of inference we referred to earlier,
namely the principle of direct probability, often also called the principal
principle, which is used extensively in Bayesian statistics. It states that if the
objective, physical probability of a random event (in the sense of its limiting
relative frequency) were known to be r, and if no other relevant information
were available, then the appropriate subjective degree of belief that the event
will occur on any particular trial would also be r. If, for example, the event
in question is a, the principal principle says that P*(a; | P(a)=r)=r, where
a; describes the occurrence of the event on a particular trial; P(a) is its
objective probability; and P* is a subjective probability function.

Thus since the physical probability of getting more than 5 heads in 20 throws
of a fair coin is 0.86, the principal principle states that your confidence that
any particular sequence of 20 throws with the coin will produce more than 5
heads is also 0.86: that is, P*([K > 5]:| P(K > 5) = 0.86) = 0.86.

Now suppose the coin is tossed 20 times and produces 2 heads. To apply
this to the principal principle and conclude that we should now be 86 percent
confident that 2 is greater than 5 would of course be absurd, and fallacious.
For the principal principle does not assert a general rule for each number X
from zero to 20; the K-term is not in fact a number, but a function which
takes different values depending on the outcome of the underlying experi-
ment. So it is impermissible to substitute numbers for K in the principal
principle.

But this is precisely the substitution required in the standard interpretation
of confidence intervals. It is true that the objective probability of m being
enclosed by experimentally determined 95% confidence intervals is 0.95. By
the principal principle P*([/ < pu <!'](| P( < p < I')=0.95) = 0.95; and this
tells us to be 95% confident that any particular performance of the experiment
will produce an interval that contains m. Suppose £ and {' are the values of
! and ' obtained from a particular experiment; the standard interpretation
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says that we should now be 95 percent confident that £ < u < £'. But as the
simple counterexample above shows, this is a fallacious inference.

3.6 CONCLUSION

The Bayesian theory, we have argued, has a solid logical foundation; it affords
a unified approach to deterministic and statistical theories, and to testing and
estimation; it is objective and rigorous where objectivity and rigour are
appropriate; and where they are not, it accommodates the personal judge-
ments of scientists in an explicit and controlled way.

Other methodologies which have been developed in conscious reaction to
subjective Bayesianism have, by contrast, no proper foundation and are quite
inadequate to the task of accounting for scientific reasoning. The leading
examples of such methodologies are Popper’s corroboration idea, and the
theories of significance tests and confidence intervals; they all issue in
apparently objective statements, couched in a deceptive terminology which
creates the impression that some important, objective theoretical evaluation is
being achieved. But these appearances are quite illusory. “Corroborating” a
hypothesis does not strengthen it, a “significant” result has no significance for
the truth of the hypothesis it is supposedly testing, and a “95% confidence
interval” has no legitimate power to impart confidence, let alone 95%’s worth,
to any estimate. The principles of significance testing and estimation
are simply wrong, and clearly beyond repair. They are the phlogiston and
alchemy of twentieth century statistics; and statisticians in the next century will
look back at them in sheer wonderment.
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Chapter 4

The Subjective Aspect of
Probability

Glenn Shafer

Is subjective probability a kind of probability, corresponding to a particular
interpretation of the mathematical calculus of probability? Or is subjectivity
always an integral aspect of probability, even in applications such as statistical
testing, where the objective aspects of probability are usually emphasized? In
this chapter, I argue that subjectivity is an aspect of all applications of
probability. When we enunciate clearly the subjective aspects of supposedly
objectivistic applications, the subjectivist critique of these applications loses its
force. It is not necessary that these applications be rejected or be replaced with
more complicated Bayesian procedures. It is only necessary that they be
properly understood.

When we learn the mathematics of probability, we learn an informal story
in which belief and frequency are unified. This story has many variations,
but it usually involves a sequence of experiments in which known odds
simultaneously define fair prices, warranted degrees of belief, and long-run
frequencies. Different ways of using probability are understood most clearly
when seen as different ways of using this informal story. Thus subjectivity
enters into probability in two ways. First, subjectivity is part of the informal
story itself. The probabilities in the story are, inter alia, the beliefs of some
person, real or imaginary. Second, it is up to us to bring the informal story
to bear on a practical problem. In doing so, we construct an argument, which
must itself be criticized and subjectively evaluated.

Subjective Probability. Edited by G. Wright and P. Ayton.
© 1994 John Wiley & Sons Ltd.
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In previous essays, I have described the unified informal story of probability
and argued for its primacy over any particular axiomatization of probability.
I have also made the general point that different applications of probability
use the informal story in different ways. Here I review and refine these
arguments with emphasis on a particular class of applications: statistical tests.
In many cases, as we shall see, statistical tests use instances of the informal
story simply as standards against which to rate the performance of a forecaster
or method of prediction. This is very different from using the informal story
as a representation (model or map) of a problem. By saying this clearly, we
can dispel much of the confusion and controversy that now besets statistical
testing.

The larger point of this chapter is that proponents of subjective probability
can afford to recognize the diversity of ways in which the informal story of
probability can be used. Most frequentists, deeply influenced by the
empiricism of the late nineteenth and early twentieth centuries, consider an
application of mathematical probability legitimate only if each probability
number is mapped to an empirical frequency. Despite the anti-realism of de
Finetti, subjectivists have tended to adopt an equally rigid understanding of
the relation between theory and application: an application is legitimate only
if each probability number is mapped to a belief or betting rate (actual or
perhaps only proposed) about a practical question. This foundational rigidity
may have been helpful when subjectivists had few practical Bayesian appli-
cations to their credit, but it is not necessary today. The self-confidence of
today’s subjectivists should allow them to lay claim to the subjective nature
and legitimacy of all uses of probability.

This chapter is divided into two sections. The first section reviews the
argument for the unified understanding of the informal story of probability.
The second section relates this story to some simple examples of statistical
testing.

4.1 THE UNIFIED INFORMAL STORY

Subjectivists and frequentists each have their own informal stories about prob-
ability, stories that they take to underly and justify the formal theory. The
subjectivist story is about the betting rates of ideal rational agents, while the
frequentist story is about the properties of exceptionally complex and
unpredictable (i.e. random) sequences. The informal story I have in mind
combines the subjectivist and frequentist stories. It involves both a sequence
and a person who has a certain limited kind of knowledge about the sequence.
This unified story is familiar in its basics; we learn it inadvertently when our
teachers slide back and forth between subjectivist and frequentist ideas in
order to persuade us to accept the various rules of probability. But it has not
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received much philosophical attention. Those who could give it such attention
have usually chosen instead to defend one of the narrower stories.

In order to understand the unified informal story fully, we must first
describe it in its own terms and then relate it to its various axiomatizations,
each of which captures or emphasizes only certain of its aspects. I have made
a beginning on these tasks in earlier essays.! There is not enough space here
to discuss axiomatizations, but I will briefly recount the story and explain why
I prefer it to the narrower stories.

4.1.1 A Brief Recounting of the Story

Since it must capture the frequency aspects of probability, an adequate
recounting of the unified informal story must have some representation for a
sequence of events. The simplest and perhaps oldest such representation is the
event tree.? Figure 4.1 is an example. As we see in this figure, the events in
an event tree result from a sequence of experiments, and the experiment
performed in a given situation may depend on what has happened so far. The
figure uses circles for situations in which an experiment is performed and
octagons (stop signs) for situations in which experimentation has stopped.
The unified informal story also involves a spectator, who observes the
outcome of each experiment as it is performed. This spectator begins with

Figure 4.1 An event tree
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some limited knowledge about how the experiments will turn out; she can
make certain predictions about what will happen on average, but she cannot
go beyond this to predict reliably the outcomes of individual experiments.

Each experiment has several possible outcomes, and a probability is
specified for each outcome. These probabilities have several roles. They define
fair odds, warranted degrees of belief, and long-run frequencies. The odds
corresponding to the probabilities are fair because the spectator knows that if
she makes many small bets at these odds—say a small bet on the outcome of
each experiment as she moves down the tree—she will approximately break
even. She also knows that she has no way of finding a strategy for betting at
these odds that can give her any reasonable expectation of substantially
multiplying her initial stake. Since she is willing to bet at these odds, the
probabilities may be considered her degrees of belief, and since the odds are
fair, her degrees of belief may be considered warranted. Finally, in a limited
way, she interprets the probabilities as frequencies: she knows that if she bets
on the outcome of each successive experiment, the frequency with which she
wins will approximately equal, in the long run, the average of the probabilities
for the outcomes on which she bets. (Notice that this “frequency inter-
pretation” does not involve repeatedly going down the tree. It refers to the
spectator’s single trip down the tree. It is only an interpretation of certain
average probabilities, however; it is not an interpretation of each and every
probability in the tree.)

In order for our assertion about the spectator breaking even to be reason-
ably accurate, every path down the tree must go through many (a few hundred
at least) situations before coming to a stop sign, and the spectator must specify
a complete strategy for laying bets. For each situation, she must specify how
she will, if she arrives in that situation, bet on the experiment performed there,
subject to the constraint that she will have the money to pay off the bet. (How
much she has in the situation is determined by her initial stake together with
her strategy, for the strategy determines what she will win and lose on the way
down to the situation.) When we say the spectator will approximately break
even, we mean that she will approximately break even no matter what path she
takes down the tree and what strategy she chooses. After she has gone down
the tree, she will see ways she could have laid her bets so as to win heavily,
but she has no way of choosing such a strategy in advance, and she is
practically certain that any strategy she does choose will be of no avail.

In addition to the outcomes of individual experiments, the spectator can
also bet on events involving more than one trial. In Figure 4.1, for example,
she can bet on the event that the path down the tree will end up in the set
{a,d,e}, and this event may depend on three different experiments, those
performed in the situations labelled U, V and W in Figure 4.2. (If the spin?
in U yields tails, the event fails. If it yields heads, then we move on to the spin
in V. If the spin in V¥ yields tails, the event happens; if it yields heads, we move
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Figure 4.2 The event {a,d, e} depends on experiments in U, V and W

on to the spin in W. If the spin in W yields heads, the event happens; if it yields
tails, the event fails.) In general, any set of stop signs is an event, and a bet
on any such event can be compounded from bets on individual experiments,
so that its fair price is determined by the fair prices for bets on the individual
experiments. In other words, the probabilities for the individual experiments
determine probabilities for all events in the tree—probabilities for all sets of
stop signs.

The spectator’s probabilities change as events move down the tree. Her
knowledge unfolds with events; she sees the outcome of each experiment as it
is performed. So as she moves on to the next situation, she changes her prob-
abilities for the experiment she just saw performed, giving probability one
to the outcome she actually observed. Since more complicated events are
compounded from events involving the individual experiments, she also
changes her probabilities for them as she moves down the tree. So when we
speak about the spectator’s probabilities, we must, in general, specify the
situation to which we are referring—the situation in which she has those
probabilities. When we talk about the probabilities for the outcomes of an
experiment performed in a given situation, we usually mean the probabilities
in that situation. But in general, we can talk about the probability for any
event in any situation.
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Among the events in the tree are events that correspond to the assertion that
a given strategy will approximately break even. Thus this assertion itself has
a probability. In the initial situation, before any experiments are performed,
this probability is close to one, expressing what we have described as the
spectator’s knowledge or practical certainty that she will approximately break
even. We can similarly express her practical certainty that she cannot sub-
stantially multiply her initial stake: her probability in the initial situation that
a given strategy will multiply her stake by k or more is never more than 1 k.

It is part of the story that these practical certainties match realities in the
spectator’s situation. The story is about more than the spectator’s inner life.
According to the story, she really does move down a tree of experiments, and
her ability to predict the outcomes really is limited. She really is unable to pick
out a winning strategy. Any strategy that she does choose for placing small
bets on successive experiments really will approximately break even. The story
is a story about knowledge—a story about the relation between fact and belief.

4.1.2 Why This Story?

Why should we be interested in this unified story? Why not instead base our
understanding of probability and its applications on the separate but narrower
stories of the subjectivists and the objectivists?

The shortcomings of the objectivistic story have been exhaustively discussed
during the past several decades. Here let me simply point out that these short-
comings lie not in the coherence of the story itself, but in the difficulty of
applying it to a broad range of practical problems. Indeed, proponents of the
objectivistic story are usually outspoken about the need to restrict application.
Some argue that probability should only be used in cases where data is
generated by random mechanisms (Freedman er al., 1991). Others find
objectivity in the mathematical theory of infinite sequences and leave us to
puzzle over how application to finite problems can ever be justified.

Criticisms of the subjectivistic story also center on the difficulty of using it.
It is argued that we often have inadequate information on which to base the
betting rates that would make us like the ideal rational agents in the story. My
own interest the theory of belief functions, which uses non-additive numerical
degrees of belief (Shafer 1990b) has encouraged me to push the criticism one
step further: it is only in the unified story that we have grounds for calling our
betting rates fair and hence using them both for buying and selling.

The standard expositions of the subjectivistic story do not place event trees
in the foundation of the theory. Sequences of events are seen merely as one
thing about which we can have beliefs. But it turns out that sequences of events
are needed in order to justify the idea of belief change by conditional
probability; without the “protocol” for new information represented by an
event tree, we are led into paradox (Shafer, 1985). Thus even the internal logic



The Subjective Aspect of Probability 59

of the subjectivistic story pushes it in the direction of the unified story for
which I am arguing (Dawid, 1982).

My purpose in this chapter is to show that there are practical reasons for
favouring the unified story that go beyond these general arguments. There are
some applications of probability that can be understood in terms of the unified
story but not in terms of the narrower stories.

4.2 EVALUATING CATEGORICAL PREDICTIONS

Statistical testing, presented with little theory, is often very persuasive. There
is no reason to hire a forecaster who does no better than chance. When one
treatment does better than another no more often than might be expected by
chance, its performance provides no evidence that it is better. When an
additional variable improves the performance of a prediction equation no
more than might be expected by chance, the improvement is a poor argument
for adding it to the equation.

When we turn to theoretical accounts of testing, on the other hand, we find
confusion and controversy. Every teacher of elementary statistics knows how
confused students are by the objectivistic accounts we teach, and every
theoretical statistician is familiar with the mockery these accounts evoke from
subjectivists and other skeptics.* Bayesian elaborations of the objectivistic
accounts are also controversial; they add to the complexity of the objectivistic
accounts and correct only some of their shortcomings.

Why is it so difficult to make theoretical sense of statistical testing? The
difficulty, I believe, lies in an unspoken but powerful assumption about how
probability theory should be related to practice. We assume, without
reflection, that any probability model we formulate to study a phenomenon
must be a model for—a representation of —that phenomenon. So when we
undertake to explain a statistical test (or rather, to improve the apparently
shallow explanation we first found persuasive), we begin by trying to construe
the probability model involved in the test as a representation of the
phenomenon being tested. We try to make the informal story corresponding
to the model a story about that phenomenon—a story about the behavior of
the forecaster or what is forecasted, a story about the effect of the treatment,
or a story about the effect of the additional variable. We forget that the
model and the story originally stood apart from the forecaster, treatment,
or variable, as an independent standard to which to compare their
performance.

The unified informal story of probability can help us keep our hands on the
knowledge that testing involves comparison rather than representation. This
unified story can serve as a clear standard for comparison in a way that its
objectivistic and subjectivistic cousins cannot, for within the unified story
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there is a spectator with clearly delimited powers of prediction, and it is to this
spectator that we compare our forecaster or our prediction equation.

Any particular statistical test involves, of course, a particular story; we
compare our forecaster not with the unified informal story in general but with
a particular instance of it, an instance with a particular event tree and
particular probabilities. For brevity, let us call an instance of the unified
informal story a “stochastic story”. For clarity, let us reserve the name
“forecaster” for the real forecaster we wish to evaluate (as opposed to the
“spectator” in the stochastic story), whether it be a person, a prediction
equation, or an expert system. (We may speak of forecasting or prediction
even when we are dealing with assertions about the past or present.’ We
require only that after the forecaster makes a prediction we are able to classify
it as right or wrong.)

We deliberately construct the stochastic story that serves as our standard for
comparison. We often construct several. We may begin by comparing the
forecaster’s performance to what can be achieved by a nearly clueless spectator
in a very austere stochastic story. If the forecaster can do better than this
spectator, then we may move on to a stochastic story whose spectator is
more (or perhaps merely differently) advantaged. Continuing in this way if
necessary, we may (or may not) find a stochastic story in which the
performance of the spectator roughly matches the performance of our
forecaster. But none of this requires us to go beyond the idea of rating the
forecaster’s performance. At no point are we required to think of the fore-
caster herself or of the phenomenon being forecasted as part of a stochastic
story.

There are some general principles that can guide our search for an
appropriate stochastic story. We must make the story and the situation of the
forecaster comparable without contriving to force any particular conclusion.
No general principle can guarantee, however, that the comparison with the
stochastic story will be persuasive. In the end, this comparison is only an
argument, and like any other nondemonstrative argument, it is open to
criticism and counterargument. A particular stochastic story will not be
persuasive unless equally natural stochastic stories give similar or consistent
results.

I will discuss two simple examples of categorical prediction. In both
examples, as we will see, the success of the prediction can be evaluated by
comparison with a stochastic story. The two evaluations can be extended to
deal with problems that are usually treated as statistical testing problems. The
first corresponds to testing whether a binomial parameter is equal to 1, and the
second corresponds to testing independence in a 2 X 2 table.

The analysis of these simple examples falls short of a general theory of
statistical testing. But there are some obvious ways to extend the analysis. In
order to extend it to the kinds of problems that are usually treated by
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goodness-of-fit tests and and tests of independence in larger tables, we will
need to use the ideas on the evaluation of probability forecasting developed
by Dawid (1984, 1985, 1986, 1990) and Vovk (1993). In order to deal with the
conventional normal-theory tests, will need to adapt the ideas of Freedman &
Lane (1983a,b) and Beaton (1981).

4.2.1 Evaluating Melinda’s Performance

A crude way of scoring the performance of a person who makes categorical
predictions is simply to count how often she is right. But even this crude score
will be meaningful only in relation to some baseline. The following example
shows how a stochastic story can provide that baseline.

Melinda claims some insight into the behavior of the local train. She claims that
at 7:30 she can predict whether the 8:05 train will be on time. As a demon-
stration, she makes predictions on 100 successive days, and we find that 55 of
her predictions are correct. What does this meager success tell us? Does it provide
any evidence that Melinda knows what she is talking about?

It appears that Melinda does not know what she is talking about, because
she is right barely half the time. Why is being right only half the time so
unimpressive? Because we could do as well spinning a coin. Suppose Mary,
who knows nothing about the train’s behavior, predicts whether it will be on
time by spinning a fair coin. In spite of her ignorance, Mary can expect to be
right about half the time, too. In fact, Mary has a probability of about one-
sixth of being right 55 or more times out of 100.

The simplicity of this example allows us to see clearly that the stochastic
story is serving only as a standard for comparison. We compare Melinda’s
performance to the story, but the story is not about Melinda. I could tell a
stochastic story about Melinda if I wanted. I might tell one of these stories:

(1) I might claim that Melinda’s own knowledge about the train is such that
she can be described as a spectator in a stochastic story. For example, she
might know that the train is on time about half the time, without being
able at all to predict which half.

(2) I might claim that my knowledge about Melinda’s behavior is such that I
can be described as a spectator in a stochastic story. For example, I might
know that Melinda will predict correctly about half the time, without being
able at all to predict which half.

But there is no basis for these stories in what I have told you about Melinda
and the train. There is no basis for the first story, because I told you nothing
about how often the train is on time. (I only said that Melinda predicted
correctly 55 times out of 100. This is consistent with the train always, never,
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or sometimes being on time.) There is no basis for the second story, because
I told you nothing about my knowledge. (Perhaps by 7:29 I always know what
Melinda is going to predict and whether she is going to be right.)

The stochastic story is only a thought experiment. The force of the com-
parison depends, however, on the fact that we could implement the thought
experiment if we wished. We are unimpressed by Melinda because we really
could predict equally well by spinning a coin (or by using computer-generated
random numbers).

A statistical test always involves some score or “test statistic”. Melinda’s
score is the number of times she predicts correctly. This is an obvious way to
score her performance, quite independently of our invention of a stochastic
story. The purpose of the stochastic story is to calibrate the score. How large
does Melinda’s score, say ¢, have to be in order to provide evidence that
Melinda has some insight? We answer this question by calculating, for various
values of ¢, the probability that Mary’s score, say 7, will be at least as large
as . Table 4.1 gives P(T > t) for a few values of f. As this table indicates,
Mary has a reasonable chance of scoring as well as 55, but she is quite unlikely
to score as well as 65. Had Melinda predicted correctly 65 times or more, we
would have said that she did better than Mary could reasonably expect to do,
and that her performance therefore provides some evidence that she knows
more than Mary. (This would say nothing, of course, about the nature of
Melinda’s knowledge. She may have a way of identifying days on which the
train will have difficulties, or she may know that the train is late about 65%
of the time and take advantage of this knowledge by always predicting that it
will be late.)

Of course, our imaginary Mary is only one example of a person who knows
nothing about the train. Perhaps someone else who knows nothing about the
train could find a more effective way of predicting its performance than
flipping a coin. So even if Melinda does better than we could hope for Mary
to do, the comparison with Mary is only an argument for Melinda having some
insight or knowledge. The argument is a strong one, however. We have had
much experience with stochastic stories as standards for comparison, and we
do not expect to find a person who is totally ignorant about the train and yet
knows how to predict better than Mary.

The probability P(T >t), where ¢ is the value of the score actually
recorded, is called the “ P-value” in the usual accounts of statistical testing.
When the P-value is small (less than the conventional values 5% or 1%, say),

Table 4.1 P-values from spinning a fair coin 100 times®

t 55 60 65 70
P(T2y) 0.16 0.03 0.002 0.00005
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the observed score ¢ is called significant—i.e. significantly better than could
be expected by chance. I have used P-values in this example in a familiar-
looking way, but I have not explained them in the usual way. The usual
explanation, which is due to R.A. Fisher, talks about “rejecting a null
hypothesis”. The null hypothesis asserts that the data (and hence the score )
was produced by chance, in accordance with a particular objectivistic prob-
ability model. We are supposed to reject the null hypothesis when ¢ is large
and P(T > t) is therefore small, on the grounds that it is easier to disbelieve
the hypothesis than to believe that the event T > ¢, which actually happened,
is so unlikely.

Subjectivists often criticize Fisher’s logic on the grounds that it does not
justify attention to the event 7 > ¢.” What actually happened in Fisher’s story
was T =t. If we want to claim that the null hypothesis makes what actually
happened too surprising, the critics say, we should look at the probability of
T = t, without amalgamating it with T > ¢, which did not happen. This is not
a criticism of my logic. In my story, T = 55 does not happen (7 is Mary’s score;
55 is Melinda’s score), and attention to the event T > 55 is justified even before
the stochastic story is invented. I observe Melinda’s score of 55. I ask myself
whether someone who knows nothing about the train can hope to do as well—
i.e., can hope for a score T such that 7 > 55. I invent the stochastic story
precisely in order to study the chances of 7 > 55 for one person (Mary) who
knows nothing about the train.

In order to put Melinda into Fisher’s objectivistic framework, we would
have to tell an objectivistic stochastic story about her predictions: they are
independent and each is correct with constant probability p. We then test the
null hypothesis p =1, which seems to correspond to Melinda having no real
ability to predict. (This null hypothesis is an objectivistic version of the second
of the two stochastic stories about Melinda that I listed earlier.) If Melinda
gets 65 predictions out of 100 right, we can reject this story; if she gets only
55, we cannot. The difficulty with this talk, of course, is that the objectivistic
story is so ungrounded. Who told us that Melinda’s ability to predict is
constant from day to day? Why should we accept inferences that seem to
depend on such an assumption?

Though the simplicity of this example is atypical of the practice of statistical
testing, the lack of grounding for the objectivistic story is quite typical.
Statisticians often excuse this lack of grounding by drawing an analogy to the
shortcomings of scientific theories, which can be useful even if they simplify
reality and remain unconfirmed in many respects. Perhaps our stochastic story
about Melinda is a simplification of a more adequate stochastic story, and
perhaps analysis of this more adequate story would give the same results. But
subjectivists, who tend to doubt the meaningfulness of even the simplest of
these objectivistic stories, are not comforted by the thought of making them
more complex.
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I believe that statisticians take simple statistical tests seriously not because
they take the corresponding objectivistic stories seriously as representations of
reality, but because they see these stories as standards for comparison. The
account of testing I am giving here makes this explicit. This account has not
been articulated clearly in the past primarily because the unified informal story
of probability, which it uses in an essential way (the spectator must be in the
story so that we can compare Melinda with her), has lacked respectability.

Notice that I am arguing for a subjectivist interpretation of the standard
test, not for a Bayesian replacement. Bayesian analyses of testing, while
vaunting their emphasis on subjectivity, usually take the Fisherian objectivistic
story as their starting point. Like the Fisherian analysis, they assume that an
objectivistic model generates the data by chance, without reference to any
observer. We enter as observers only after this objectivistic model has done
its job, and we remain outside the model; our job is to decide whether to
believe it.

Before leaving the example, we should note the comparison of Melinda with
Mary does not touch on the question of whether the future will be like the past.
If Melinda’s performance gives evidence that she knew something that helped
her predict during the past 100 days, then we may wish to infer that she will
continue to know something and continue to make effective predictions during
the next 100 days. But this inference goes beyond what we have learned by
comparing Melinda with a stochastic story. Neither the story about Melinda
nor the stochastic story made any assumption about the 100 days we observed
being like other days in the future or the past. In particular, we did not assume
that these 100 days were drawn at random from a larger population of days.

4.2.2 Evaluating a Treatment

It is a short step from Melinda to examples that appear in statistics textbooks.

Amanda, who wants to add a new razor blade to her line of toiletries, is trying
to decide which of two types of razor blade will be most popular among users,
type A or type B. She gives 100 users one blade of each type, and asks them to
report back which they prefer. When they do so, 65 report that they prefer type
A. Is this strong evidence in favour of type A?

We can deal with this example just as we dealt with Melinda. Melinda made
100 binary predictions. Here, too, we have 100 binary predictions. We can
think of the labels on each pair of blades as Amanda’s prediction that the
blade labelled “type A” will be preferred. Then we can ask whether the success
(albeit limited) of these predictions indicates some genuine insight about the
superiority of A. In order to rate Amanda’s performance, we compare her
with Anna, who cannot tell the two types of blades apart and predicts which
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blade in each pair will be preferred by spinning a fair coin. Anna, we know,
can scarcely hope to do as well as Amanda has done. According to Table 4.1,
the probability she will do as well is 0.002. So Amanda’s knowledge must be
helping her predict. In other words, something about type A blades makes
them more widely preferred.

We may be giving Amanda an unfair advantage in this comparison. We are
talking as if Amanda thought type A was better and organized the study to
prove the point. If this is so, then the comparison with Anna is fair. But
another possibility is that Amanda was uncertain which, if either, of the blades
was better, and that she was simply trying to find out. In this case, Amanda
has an unfair advantage over Anna. For a fair comparison, we should
compare Amanda with Amy, who spins a fair coin in order to label the blades
in each pair “A” and “B” and then waits to see how the 100 people’s
preferences turn out before deciding whether her prediction was that As would
be preferred or that Bs would be preferred. Amy’s chance of doing as well as
Amanda is twice Anna’s, or 0.004. (The comparison with Anna is a “one-sided
test”, while the comparison with Amy is a “two-sided test”.)

The objectivistic treatment of this example follows the same path as the
objectivistic treatment of Melinda. We posit that each of the 100 people has
the same probability p of preferring A over B, and that the preference of each
person is independent of the preference of the others. Then we test the null
hypothesis that p = 1. Is this probability model any better grounded, any more
plausible, or any more meaningful here than in the story about Melinda? 1
think not.

The comparison of the razor blades with Anna is more complicated than the
comparison of Melinda with Mary, because it involves an additional step. First
we relate the merit of the razor blades to Amanda’s ability to predict, and then
we compare Amanda’s ability with Anna’s or Amy’s. But otherwise the issues
are the same. The comparison of Amanda with Anna again makes explicit the
real role of the stochastic story; it is really only serving as a standard for
comparison.

Here, as in the case of Melinda, we have not touched on whether the future
will be like the past. We want, of course, to take the next step and conclude
that the majority of future customers will prefer blade A. But our argument
based on the comparison with Anna or Amy has no bearing on this next step.
Had the 100 people testing the blades been chosen at random from the popu-
lation of potential future customers, probability arguments might help us
make the step into the future, but that is another story.

4.2.3 Evaluating Lucinda’s Ability to Discriminate

Our rating of Melinda, though instructive, was rather crude. We compared
Melinda to Mary, who knew absolutely nothing about the train. Mary is easy



66 G. Shafer

to beat; if Melinda knows the train is usually late, then she can beat Mary
simply by always predicting it will be late. Let us turn, therefore, to a more
subtle question about Melinda’s performance. For clarity, we will discuss this
question for a different forecaster, named Lucinda.

Lucinda claims that by 7:30 she can tell (though she sometimes makes mistakes)
whether the 8:05 will be late or not. As a demonstration, she makes predictions
on 100 successive days. As it turns out, she predicts 60 times that the train will
be late, and she predicts 40 times that it will be on time. We find that 70 of her
100 predictions are right. She was right 55 of the 60 times she said the train would
be late, and she was right 15 of the 40 times she said it would be on time. Does
this performance provide evidence that Lucinda can tell days the train will be late
from days it will be on time?

Table 4.2 displays the joint performance of Lucinda and the train. The train
was late 80 times. Lucinda was right only 70 times, so she could have scored
better overall by always predicting the train would be late. But her performance
does seem to provide evidence that she can tell a difference between days. The
train was late 91.7% of the times she said it would be late (55 out of 60) and
only 62.5% of the times (25 out of 40) she said it would be on time.

How might we score Lucinda’s performance in distinguishing between days?
I just suggested one reasonable score: how much more often the train is late
when Lucinda says it will be. This is

55 25

= -==0.29 4.1

60 40 “.1)
Alternatively, we might measure how much more often Lucinda says the train
will be late when it is; this is

55 5

— - —=0.44 4.2

80 20 4.2)
There are many other possibilities as well; any “measure of association” for
the 2 X 2 table would do. But to interpret any such score we need some kind
of baseline or calibration. We need a stochastic story.

Table 4.2 Lucinda and the train

Lucinda says train Lucinda says train

will be late will be on time Total
Train is late 55 25 80
Train is on time 5 15 20

Total 60 40 100
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Here is a stochastic story that will do. Suppose Lois, who knows nothing
about the train, is told that it was late 80 of the last 100 days (this information
is not going to help her, but it helps set the stage). And suppose she is asked
to guess 60 of these days. Lacking any other information, Lois uses random
numbers produced by her personal computer to choose 60 out of the 100 days,
with all the possible choices being equally likely. What are the chances, under
these circumstances, for Lois to do as well or better than Lucinda did? In other
words, what are the chances that the 60 days she chooses will include 55 or
more days on which the train is late? The answer, as it turns out, 1s about
0.0002. Lucinda has done much better in identifying days on which the train
will be late than we could expect from someone who has no knowledge that
would help her discriminate.

Notice that the stochastic story has simplified the scoring. Instead of using
(4.1) or (4.2), we score Lois simply by the number, say 7, of her 60 guesses
that turn out right. Thus our P-value is P(7T > 55). We would get the same
P-value using (4.1) or (4.2), since 7 = 55 is equivalent to

I 60—-1 T 35 S

80 20 80 20

Almost any other measure of association in the 2 x 2 table will also give the
same P-value:; since the row and column totals of Lois’s table are the same as
Lucinda’s, Lois can do better only by making 7T greater than 355.

This example illustrates how comparison with a stochastic story can be
effective even though we make arbitrary choices in setting the story up. In
order to make Lois’s performance comparable to Lucinda’s, we asked Lois to
guess exactly 60 days. This did not weaken the force of the comparison,
because it did nothing to put Lois at a disadvantage relative to Lucinda.
How is the P-value of 0.0002 computed? Readers familiar with combi-
natorial probability will see that the probabilities for 7T are hypergeometric:

(80) ( 20 )
P(T=x)= __”.C____6_O__".“__).c__ (4.3)

(100)
60 |

We can find P(T > 55) by adding these probabilities as x goes from to 3535 to
60. An approximation using the chi-squared distribution is also available.®

Let us now consider the textbook approach to testing Lucinda’s per-
formance. There are a number of ways we might proceed, all involving
different objectivistic stochastic stories. We might model the behavior of the
train, so that we can test whether it behaves differently on days Lucinda thinks
are different. We might model the behavior of Lucinda, so that we can test
whether she predicts differently on days that are different for the train. Or we
might model both together.
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Here 1s a way to model the train. Let X; be the number of times the train
1s late out of the 60 times Lucinda says it will be late, and let X, be the number
of times it is late out of the 40 times she says it will be on time. Assume that
the train is late with probability p; on the days Lucinda says it will be late,
that 1t is late with probability p> on the days she says it will not be, and that
whether it 1s late on a given day is independent of its performance on preceding
days. Under these assumptions, X; and X, are independent binomial random
variables; X has parameters 60 and p;, and X, has parameters 40 and p,. The
question whether the days are different has become the question whether
p1 # p2. We test the null hypothesis of no difference: p; = p,. Under this
hypothesis, X; and X, are independent binomials with a common parameter
P = p1=p>. As our test statistic, we take the difference

L (4.4)
X1 40
This is the score (4.1) we considered earlier. It turns out that the probability
that it will equal or exceed the value we observed for Lucinda, 0.29, is approxi-
mately 0.0002, the same as the P-value we obtained by comparing Lucinda
with Lois.”

Instead of computing the probability of (4.4) exceeding its observed value
unconditionally, it may be better, according to Fisher, '° to compute its prob-
ability of doing so conditionally, given the observed marginal totals in Table
4.2. The resulting test is called Fisher’s exact test. It is a better test, according
to Fisher, because it brings the population of potential repetitions with which
we are comparing the actual result closer to that result, and also because it
simplifies the analysis. In the unconditional model, the choice of the statistic
(4.4) is somewhat arbitrary, but, as we noted earlier, once the margins of the
table are fixed, all measures of association are essentially equivalent.
Moreover, the computation of the P-value is simplified. In fact, the condi-
tional probabilities are precisely the hypergeometric probabilities given in
(4.3); Fisher’s exact test comes out exactly the same as our comparison of
Lucinda with Lois.

It would delay us too long to explore here the other objectivistic models that
I have mentioned; suffice it to say that they give similar results and also reduce
to Fisher’s exact test conditionally. We should also note that there is yet
another justification for Fisher’s exact test for the 2 x 2 table in situations
where an experimenter is able distribute units over one of the classifications
(over the rows or over the columns) of the table randomly. Fisher preferred
this justification, but it is obviously inapplicable to Lucinda.

What should we say about the objectivistic approach? Does it make sense?
Here, as in the case of Melinda, the objections are obvious. Who told us that
the behavior of the train is stochastic? That the probability is the same on
every day that Lucinda says the train will be on time? That its behavior on one
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day is independent of its behavior on another? There are no grounds for these
assumptions. Surely a stochastic story can only be justified here as a standard
for comparison.

Taking the stochastic story as a standard for comparison allows us make
sense of Fisher’s intuitions about conditionality, intuitions that many of his
objectivistic successors have found puzzling. Once we acknowledge that Lois
is only a standard for comparison, it becomes entirely reasonable that we
should design Lois’s task so as to maximize its comparability with Lucinda’s
accomplishment. The vagueness of this desideratum is not a problem, for the
desideratum merely serves to help us construct an argument. It does not
pretend to exclude any other argument or counterargument.

4.2.4 The Berkeley Graduate Admissions Data

Table 4.3 shows the number of men and women who applied for admission
to graduate study at the University of California at Berkeley for the fall of
1973, together with the number of each sex who were and were not admitted.
These data were first published by Peter J. Bickel and colleagues in 1975."!
These authors were concerned not only with discrimination against women but
also with the shortcomings of the objectivistic models used to analyze such
questions. _

As Table 4.3 indicates, the rate of admission was substantially lower—
almost 10 percentage points—for women than for men. Fisher’s exact test
produces a vanishingly small P-value.!®* The lower rate of admission for
women 1s significant both substantively (10 percentage points is a lot) and
statistically (the P-value is practically zero). ,

Here, as in the case of Lucinda, we can explain the statistical significance
in terms of a comparison with Lois. Suppose we tell Lois that 8442 of the
12 763 applicants are men. We then give her ID numbers for the 12 763
applicants, and we ask her to try to pick out from them 5232 numbers that
identify men. Since she has no way of knowing which of the numbers identify
men, she uses her personal computer to choose 5232 of the 12 763 numbers at
random. What is the chance that she will choose as many men as the
admissions committees did? This question 1s answered by Fisher’s exact test:

Table 4.3 Graduate admissions at Berkeley in 1973 (reproduced
~ from Bickel et al. (1975) by permission of Science. © 1975 American
Association for the Advancement of Science)

Admitted Not admitted Total % admitted

‘Men 3738 4704 8 442 44.3%
Women 1 494 2 827 4321 = 34.6%
Total 5232 7531 12763  41.0%
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the chance i1s vanishingly small. So the Berkeley admissions process did much
better at picking out men than we could possibly expect Lois to do. It picked
out more men than could possibly happen by chance.

Though having Lois try to pick out men makes the comparison between Lois
and the admissions process simple and rhetorically effective, other ways of
setting up the comparison are equally valid and lead to the same conclusion.
Suppose, for example, that we ask Lois to pick out 8442 numbers, trying to
include as many admittees as possible. Since she knows nothing about which
of the 12 763 numbers represent admittees, she will again choose the 8442
numbers at random. Suppose Amanda knows which numbers identify men
and chooses them. Amanda will have 3738 admittees among her 8442 choices,
and Lois has practically no chance of doing as well. In fact, her chance of
doing as well is given once again by the P-value from Fisher’s exact test. So
we can conclude that being male predicts admission better than could possibly
happen by chance.

An objectivistic treatment of Table 4.3 would follow the same lines as the
objectivistic treatment I sketched for Lucinda and the train. We assume that
there is a constant probability of admission for men and a constant probability
of admission for women, and we test for equality of the two probabilities.
Alternatively, we assume that there is a constant probability of an admittee
being a woman and a constant probability of a non-admittee being a woman,
and we test for the equality of these two probabilities. As Bickel and his
co-authors and many other commentators have pointed out, none these
objectivistic assumptions are plausible. As Freedman & Lane (1983b, p. 192)
put it, they are known from the first “to be inadequate to describe any aspect
of the physical process that generated the data.”

Though the objectivistic models are useless for this example, the comparison
with Lois 1s meaningful. It tells us that something is going on that favors men.
This something may or may not be stochastic.!® But since it has a stronger
effect than could happen by chance, we can reasonably hope that further
investigation will yield some insights. Bicker and his colleagues, upon under-
taking such an investigation, found that the bias in favor of men was related
to how the numbers of places and numbers of men and women applicants were
distributed over departments. The rate of admission (number of places avail-
able per applicant) was smaller in departments where the proportion of women
among applicants was higher. So we can ask why proportionally fewer places
were provided in departments to which women more often applied. As it turns
out, departments where proportionally more places were provided required,
on the average, more mathematical preparation of their applicants. Perhaps
society needed a greater fraction of those who were prepared, willing, and
asking to study in these demanding fields. This can be contested, but if it is
accepted, then the question of why women were being discriminated against
in graduate admissions comes down to the question of why they were
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underrepresented among those prepared, willing, and asking to study in
departments requiring more mathematical preparation.

NOTES

(1) See especially Shafer (1990a), which describes the informal picture, and Shafer
(1992), which sketches one axiomatization. In both these essays, I used the phrase
“ideal picture of probability” for what I am here calling the “informal story of
probability”. Unfortunately, the adjective “ideal” seems to have been a source of
misunderstanding. One misunderstanding is that the informal story is a representation,
less the rough edges, of some reality. This is not my meaning; my theme is that the
informal story has many uses; its use to represent a reality we want to understand is
only one of these uses. A related misunderstanding is that the merit of the informal
story lies entirely in its lack of rough edges—the more ideal the better. This provides
an excuse for pushing on to one of the narrower stories, where either the subjective or
the objective aspects of probability are idealized away.

(2) Huygens drew an event tree in a manuscript dated 1676 (Edwards, 1987, page
146).

(3) Figures 4.1 calls for the coins to be spun rather than flipped, so that a biased
coin—one that is heavier on one side than the other—can exhibit its bias by falling more
often on its heavier side. Such a coin is equally likely to fall on either side when it is
fairly flipped (Engel, 1992).

(4) For the subjectivist critique, see Berger & Delampady (1987) and the references
therein. For a survey of other critiques, see Morrison & Henkel (1970).

(5) As Stephen Brush (1988) has noted, scientists often use the word “prediction”
without regard to whether what is being predicted is already known. In many cases, at
least, the credit that a scientific theory earns by predicting an effect does not seem to
depend on whether the effect was known before the prediction was made.

(6) These numbers can be obtained from the normal approximation to the binomial
in the usual way: P(T > t) is the probability that a normal deviate with mean 50 and
standard deviation 5 exceeds ¢t — 1.

(7) This criticism seems to go back to Harold Jeffreys. See Berger & Delampady
(1987), pages 329 and 348.

(8) See Miller 1986, pages 47—48.

(9) The P-value for (4.3) is usually computed using a normal approximation. Under
the null hypothesis, (4.3) is approximately normally distributed with mean zero and
variance p(l — p) (g + 75)- Since we can estimate p by (X1 + X2)/100, this implies that

X,/60 — X2/40 @5

X1+ X, 1_X1+X2 L+l

100 100 60 40
should be approximately standard normal. Substituting 55 for X, and 25 for X3, we
find that (4.5) is approximately equal to 3.6. The probability of a standard normal
deviate exceeding 3.6 is approximately 0.0002. As it turns out the square of (4.5) is
equal to the chi-squared statistic used to approximate the sum of hypergeometric
probabilities in our comparison of Lucinda with Lois. So the agreement between the
two P-values does not depend on the particular numbers we have used in the example.

(10) See Fisher (1973), pages 89-92.
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(11) Their article was originally published in Science (Bickel, Hammel & O’Connell
1975). It was reprinted, together with comments by William H. Kruskal and Petter J.
Bickel, in Fairley & Mosteller (1977). The issues raised by the data were also discussed
by Freedman & Lane (1983b) and Freedman, Pisani, & Purves (1978, pp. 12—-15).
Inspired by this example, Freedman and Lane (1983b) propose a general way of under-
standing tests of independence in two-way contingency tables. My discussion here is
influenced by their proposal but does not follow it. The comparison I suggest with a
unified stochastic story is, I think, better motivated and more persuasive than
Freedman and Lane’s purely “descriptive” and “nonstochastic” treatment, and it
applies only to 2 x 2 tables.

(13) The chi-squared statistic, which has one degree of freedom, is 110.8.

(14) On our unified understanding of stochasticity, it surely was not stochastic at the
beginning of the investigation by Bickel and his colleagues, for stochasticity requires
an observer, and no one had been closely observing what was going on.
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Chapter 5

On the Necessity of Probability:
Reasons to Believe and Grounds
for Doubt

John Fox
Imperial Cancer Research Fund Laboratories

5.1 INTRODUCTION

The objective of this volume is to study “subjective probability”, a concept
which has been developed for use in the human decision sciences but which
inherits its conceptual framework and most of its technicalities from mathe-
matical probability theory. (“Decision scientists” are taken to include psycho-
logists, statisticians, economists, management scientists and others.) The
theory is commonly held to provide the normative standard against which the
“rationality” of any judgement under uncertainty must be assessed. In this
context human judgement under uncertainty is thought to be, at best, a
degenerate form of that prescribed by the theory.

It is an irony that the history of probability theory, a subject whose heart
is the study of uncertainty, has been surrounded by a great deal of dogma.
When the modern idea of probability appeared (generally reckoned to be
about 1660) Europe was torn by sectarianism and political and religious
rivalry. Indeed its emergence has been linked to the rejection of the detested
doctrine that uncertainty and dispute must be resolved by approved opinion
(notably that of the church or some other proper authority) rather than by
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rational debate and the marshalling of evidence. Nowadays systematic
concepts of evidence and its quantitative assessment have overthrown mere
opinion in many fields and mathematical probability is a well-developed and
deeply understood subject. One might therefore have expected the major
philosophical questions to have been settled. However, notwithstanding its
many practical benefits, the use of probability mathematics continues to
produce controversy about its true meaning and proper application (e.g.
Cheeseman, 1987; Saffiotti, 1987). External signs of this controversy are not
merely frequent (and sometimes noisy) disputes, but also, and much more
interestingly, the continuing appearance of new mathematical systems.

For many, such electicism is neither desirable nor necessary, for the reason
that all rival systems to probability are demonstrably mistaken. This claim is
justified by the argument that if a system is not based on certain fundamental
assumptions, the probability axioms, then it will be demonstrably irrational
or, more technically, “incoherent” (Lindley, 1985).

The usual approach to adjudicating on competing mathematical theories is
to review the different systems, examine their axioms and theorems, and rule
on their correctness, completeness, universality or whatever. However, too
many talented mathematicians have followed this path and ended up with
firmly held but opposing positions. After deep study some conclude that prob-
ability is both necessary and sufficient as a mathematical theory of uncertainty
and belief; others that probability is neither universally appropriate nor
adequate for the tasks we must ask of it. The large and disputatious literature
surrounding the uncertainty debate suggests that this issue is unlikely to be
resolved by such adjudication.

The problem is to be resolved, I believe, with a more open position, in which
we accept that (a) there is a family of distinct theories of uncertainty which
can be shown to have sound mathematical foundations, (b) these theories
capture different intuitions about uncertainty and belief, and (c) that a more
liberal attitude will permit the development of a deeper understanding of
human judgement under uncertainty and more sophisticated technologies for
aiding such judgement. ,

The argument for my position starts in Section 5.2 with a brief presentation
of some ideas taken from the history of probability concepts by the philo-
sopher Ian Hacking (1975), together with some other issues that have been
raised about the general adequacy of the probability paradigm. Hacking is
especially interesting because he was the first, to my knowledge, to propose
that there is a “space” of alternative probability theories, though he does not
tell us how this space may be characterized. In Section 5.3 I introduce some
questions from artificial intelligence (AI), and argue that they represent a
fundamental challenge to the probabilists’ claim to universality. In Section
5.4'1 review a number of alternative uncertainty formalisms, many of which
have emerged from work in Al. Finally, in Section 5.5 I attempt to address
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Hacking’s conjecture by offering a proposal for a general framework within
which uncertainty formalisms may be understood.

5.2 THE PROBABILITY PARADIGM AND ITS
DETRACTORS

5.2.1 Historical Questions

Faced with the problem of accounting for the adoption of modern probability
theory against its historical rivals, Hacking arrived at the remarkable
conclusion that the emergence of the modern theory was historically somewhat
arbitrary. In his elegant and informative book The emergence of probability
he identifies a puzzle: that “. . .theories of frequency, betting, randomness and
probability appear only recently. No one knows why” (page 2). This may be
contrasted with other mathematical and scientific paradigms, such as those of
geometry, chronology, astronomy and navigation which, like probability, had
great practical implications but appeared much earlier.

Hacking observes that “around 1660 a lot of people independently hit on the
basic probability ideas” (page 11), and adds “...The time, it appears, was ripe
for probability. What made it ripe?” (page 12). One answer to this 1s that
probability could have been discovered earlier, except that a variety of cultural
obstacles prevented its emergence. Among the reasons Hacking considers for
this are that probability’s appearance could have been blocked in cultures
which (a) took a deterministic, necessitarian view of the world, (b) believed
that gods settle things—fate dominates chance, (c) failed to notice or under-
stand the idea of “equally probable alternatives” which is necessary before one
can move on to more useful ideas, (d) did not face (economic) problems for
which probability is the solution, or (e) lacked a sufficiently rich set of mathe-
matical ideas to permit the development of a probability calculus. From this
one might predict that if one found a culture that was somewhat impious,
which took a physical rather than a fatalistic approach to causality, and had
a developed trading culture and arithmetic skills, then this should be conducive
to the development of probability mathematics. Hacking notes that this may
have been true in India about 2000 years ago, and that there are indeed hints
in the historical record of a theory of probability (page 8). Appealing as this
is Hacking finds the evidence for this cultural explanation to be weak. He and
others continue to raise questions about the inevitability, or necessity, of

probability 1deas.

5.2.2 Technical Issues

I take the paradigm of probabilistic reasoning to be: the process of assessing
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the relative credibility of a number of alternative hypotheses by assigning
degrees of belief to the various alternatives, based on evidence, in such a way
that certain axioms, the probability axioms, are satisfied. Consider the
following scenario:

A doctor is aiming to maximize the likelihood of making a correct diagnosis for
a patient who is complaining of abdominal pain. She identifies all the possible
causes of abdominal pain and the symptoms that are associated with each
disease. An estimate is now made of the conditional probability of each symptom
being caused by each disease, and the prior probability of each possible disease.
After establishing the presence or absence of each symptom she is now in a
position to calculate the posterior probability of each disease using Bayes’ rule.

Probabilistic approaches to tasks like diagnosis have been extensively

studied. The scenario describes a simple method for probabilistic diagnosis.
More sophisticated methods may now be preferred (e.g. Heckerman, 1991) but
the complexities would distract us unnecessarily. While probabilistic methods
have yielded some striking successes, they are open to a number of technical
Criticismes.
Firstly, a classical probability analysis places strong requirements on the
completeness of our knowledge. It requires, for example, that a doctor has
exhaustively identified the possible hypotheses (e.g. the patient is suffering
from gastric cancer or gastric ulcer or duodenal ulcer, only) and that a
complete set of conditional probabilities representing the dependencies
between hypotheses and evidence has somehow been obtained. Frequently
(indeed one might argue invariably), assumptions of exhaustiveness are
unrealistic. Practical diagnosis has often to be carried out in the face of high
levels of 1gnorance; it is as much about understanding what the problem is and
the accommodation of uncertainty about relevant data or hypotheses, as it is
about a precise weighing of evidence for a known set of possibilities (Fox
et al., 1990).

In his admirable presentation of mathematical decision theory Dennis
Lindley (1971; 1985) acknowledges this: “The first task in any decision
problem is to draw up a list of the possible actions that are available. ... It
1s almost certainly true that some successful decision-makers derive their
success from their ability to think of new ideas, rather than from any ability
to select among a list, so providing an example of the human element . .. Such
initiative and enterprise is to be encouraged [but] we can offer no scientific
advice as to how it 1s to be developed.”

Secondly, a narrowly probabilistic position does not recognize knowledge
other than that expressed in probabilistic form. This is surely restrictive. In
predicting the structure of a complex molecule for example, such as a protein,
knowledge of the function of the molecule, its evolution, topological and
geometrical features, charges on its components, and many other kinds of
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knowledge can place substantial constraints on the possible structures a
molecule may have. A strong case can be made, which we shall develop, that
many kinds of knowledge other than probabilistic knowledge have consider-
able predictive value in reasoning under uncertainty, particularly in the
absence of precise quantitative data.

These two points, the frequent absence of precise quantitative data and the
importance of knowledge of general principles, are powerfully illustrated
in the context of risk assessment. In the conclusion of a report of the UK
Department of Health’s Committee on Carcinogenicity of Chemicals in Food
(1990) the committee concludes that it

... does not support the routine use of [probabilistic] risk assessment for
chemical carcinogens. This is because the present models are not validated, are
often based on incomplete or inappropriate data, are derived more from mathe-
matical assumptions than from a knowledge of biological mechanisms and, at
least at present, demonstrate a disturbingly wide variation in risk estimates
depending on the model adopted.

5.2.3 Doubts about “Subjective” Probability

Related questions can be raised about the adequacy of the probability
paradigm, even some vaguer “subjective” version, in accounting for patterns
of human reasoning under uncertainty. People are remarkably good at solving
poorly structured problems, involving high degrees of uncertainty, which are
well beyond the capabilities of current formal reasoning systems. A compelling
example of this is the process of formulating scientific theories where,
individually and collectively, scientists achieve explanatory order in the face of
ignorance, contradictions and the appearance of challenges to the theoretical
framework as well as uncertainty about what the theories imply. Most
scientists will be unsurprised by Glymour’s observation that “probability is a
distinctly minor note in the history of science” (Glymour 1980).

The structure of the world is prodigiously complex, and this is mirrored In
the heterogeneity and complexity of our knowledge of it. This is evidenced by
the public language we use in talking about the way the world “works” (recall
the discussion of protein structure), our private experience of it, and scholarly
analysis of the complex ontology of concepts which underpins our under-
standing. Indeed, the subjective features of “belief” itself appear to be quite
complex; the natural language vocabulary that we routinely employ appears
to have an underlying semantics which is, at least, two-dimensional (Clark
1988). Insistence that the laws of objective and subjective belief must be
axiomatized in the same way (via the laws of probability) blurs a distinction
between what i1s a useful technical device and common experience.
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Doctors, lawyers, scientists, and other professions who commonly have to
place their opinions on the record appear to arrive at their judgements by
means of processes which do not seem to resemble probability assessment.
Spoken and written records suggest that debates and disputes are pursued
through patterns of argument and counter-argument, in which the assump-
tions, structure and other properties of arguments are challenged, and not just
the degree of belief warranted by an argument for a claim. Individual decision-
making and judgement also seem to show reflective or “metacognitive” styles
of reasoning about the validity of arguments. The probability paradigm
provides few tools by which to understand such processes.

5.2.4 What May We Conclude?

These and many other doubts have been around for a long time, but they are
not universally shared, and many probability theorists are clearly unimpressed
by them. From their point of view Hacking’s observation that probability had
a difficult birth does not bring into question the manifest health of the child;
1f anything it merely underlines the intellectual subtlety of the achievement.
Probabilists may also argue, with justice, that the theory is not static but
constantly advancing, and current technical limitations merely stimulate
technical advances. Finally, any inadequacies of the theory to explain human
judgement are largely irrelevant; the claim for probability is that it tells us how
we ought to make judgements under uncertainty, not how we actually make
them.

In short, while such doubts may make us pause they are unlikely to lead to
a radical reassessment of such a successful tradition. If there are compelling
arguments against the universal appropriateness of probability we are going to
have to look outside these familiar areas of debate.

I believe there are such compelling arguments. The case I shall make is
grounded in the observation that mathematical probability has been developed
as a tool for people to use; a body of concepts and techniques which helps
them to analyse uncertainty and make predictions in the face of it. While the
theory i1s highly successful in this respect, the presupposition that it i1s for use
by, say, a human decision scientist, who brings an understanding of the world
to bear in applying the theory, has profound implications for its interpretation
and its limitations.

5.3 UNDERSTANDING INTELLIGENCE:
A DIFFERENT CHALLENGE

Whether a decision-maker is a scientist formulating a hypothesis or a theory,
a doctor diagnosing a new and complex case, a company manager developing



On the Necessity of Probability R .

a marketing strategy, or a lawyer designing a client’s defence, the framework
of probability theory gives little help in formulating the decision problem,
understanding what is a relevant solution or information source—or recog-
nizing that there is a problem in the first place. Intuitively we identify such
abilities with intelligence (Lindsey’s “human element”, perhaps); any view of
uncertainty which ignores the fact that it lies in a larger context of intelligent
problem solving seems to me to be rather unsatisfactory.

Of course we face a serious problem; it has proved notoriously difficult to
achieve an unambiguous and generally accepted definition of the concept of
intelligence. Attempts to relate it to intuitive notions of ability, or objective
tests of educational or other achievement, have had limited success. We
struggle with such weak definitions of intelligence as “that which intelligence
tests measure”. Concepts like knowledge, understanding, rationality and so
forth seem to be at the core of what we mean, yet seem to have a curiously
marginal place in modern psychological theories. I presume that this is because
psychology aspires to be an objective, empirical discipline and it is difficult to
bring such abstract ideas into the realm of empirical observation. Mentalistic
ideas like uncertainty, belief and rationality are implicitly present in theories of
human decision-making and judgement, of course, but in rather impoverished
forms. Uncertainty and belief are equated, a priori, with subjective assessment
of probability, and the interpretation of rationality is limited to demon-
strations of compliance with weak mathematical constraints on “coherent”
manipulation of such probabilities (Lindley, this volume, Chapter 1).

The scientific study of artificial intelligence (AI) shares many of the concerns
of psychology in that it is attempting to understand and emulate human (or
at least human-like) capabilities. As with psychology AI’s attempts to achieve
a general definition of (artificial) intelligence have had limited success,
however: “artificial intelligence is the study of how to do things which, at the
moment, people do better” (Rich & Knight, 1991) or Al systems are “sophisti-
cated electronic agents in the form of computer systems that people could
regard as ‘intelligent’” (Besnard, 1989). Unlike psychology, however, Al i1s
free to sidestep difficulties like this because it is not required to justify
mentalistic theories in terms of empirically observable and measurable
phenomena.

In order to argue that a theory illuminates a notion of intelligence many Al
researchers simply attempt to demonstrate that a computer program 1s
sufficient to manifest some interesting kind of competence (Newell, 1973),
where such competence may include the ability to interpret sentences in a
natural language or images seen through a camera, or solve a complex medical
problem and plan a suitable therapy. Lately, the criterion of sufficiency has
become seen as too weak to demonstrate that a theory is principled, and it is
now widely expected that a computational theory should also be formally
stated. It should be formulated in a precise language or notation and
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developed in such a way that it is possible to unequivocally establish its
properties and verify the claims made for it.

Not all decision scientists will be sympathetic to a computational style
of theorizing. Nevertheless the freedom to investigate intuitive features of
Intelligence in this mathematical way has stimulated the development of
entirely new theories of knowledge and reasoning, belief and intention, and
what is called “common sense” understanding of the world. Although the
motivation for developing such theories is not primarily psychological it is
informed by intuition, and consequently the results may provide an Interesting
body of ideas which may in turn inform psychology. In the case of uncertainty
and belief formal theories are now available which go substantially beyond
that of the probability tradition.

5.3.1 The Al Paradigm

Perhaps the most significant influence on AI that distinguishes it from other
mathematical and formal traditions is its goal of understanding, and eventually
building, agents that can operate autonomously in some world. Consider, for
Instance, NASA’s interest in constructing an autonomous vehicle which is
capable of operating on the dark side of the moon or some even more exotic
environment. NASA mission planners cannot be confident of anticipating all
the circumstances that the vehicle might confront (they have, after all, never
been there). Unanticipated threats could arise at any time. The planners may
believe that they can predict familiar types of threat but not their likelihood of
occurring nor their detailed manifestations, and they must assume situations
will arise that they cannot predict. Since such a vehicle cannot “phone home”
for instructions or reprogramming, it would benefit from capabilities
reminiscent of those of a human astronaut, i.e. abilities to perceive and
Interpret its environment, understand when it is facing a problem, formulate
possible solutions, and identify relevant sources of information which will
allow 1t to judge its best course of action.

The challenge of an alien world is colourful but we do not in fact need to
go so far afield to find problems of similar character. Much medical software,
for instance, is “safety-critical”, meaning that errors in operation or use can
lead to death, injury and other consequences. Safety engineers have developed
various methods for predicting the problems that can occur but clinical
environments are so complex that all possible hazards cannot be anticipated,
even tor simple systems. Recent cases of software for controlling radiotherapy
equipment giving incorrect dosages to patients in circumstances which were
not predicted by the designers are a pointer to the increasing dangers of using
even semi-autonomous equipment.

The language in which the theorems and equations of probability is
expressed is ill-suited to the design of procedures which are flexible in the face




On the Necessity of Probabilaty _ 0000000000000 83

of such poorly defined environments. Arithmetic operators and ordinary
algebraic formalisms were not designed to speak of generalized threats or their
causes, nor for formulating hypotheses about the state of the world ab initio.
At the very least the language needs to be augmented with other formalisms
in which these concepts can be expressed and manipulated. From its inception
Al has been preoccupied with finding languages for coping with ill-defined
problems; the resulting languages are very different from, and in many
respects much more powerful than, the languages of numerical mathematics.
One such family of languages is based on formal logic.

5.3.2 Computational logic

In traditional work on probabilistic reasoning the interest has centred on the
properties of mathematical functions whose ranges and domains consist of
numbers. When used in computer programs functions are implemented as
algorithmic procedures which accept sets of numbers as input (e.g. prior and
conditional probabilities) and return sets of numbers as output (posterior-
probabilities). Al languages are designed to represent and manipulate more
general data structures. These can include numbers but also more complex
terms such as symbolic descriptions of objects; properties and interrelation-
ships of objects, goals and actions of agents, and so forth.

For instance “factual” knowledge about a topic can be captured in a
database consisting of a collection of expressions such as the following:

has property(cancer, Life_threatening) (5.1)
is more _dangerous_than(cancer,peptic_ulcer (5.2)

(We could use a more familiar English-like presentation, as in cancer is more
dangerous than peptic ulcer, but the notation avoids amblgulty about the
structure, particularly in complex expressions.)

Logic programs can be thought of as procedures for proving that statements
are true given some database. For example a database may contain a set of
rules for processing sentences in natural language, such as:

is grammatica L(NLsentence) 1f
<some set of conditions>
(5.3)

A “theorem prover” can establish whether the predicate is__grammatical 1s
true or not for some sentence NLsentence by establishing whether the
associated set of conditions is true. (NLsentence is a variable representing any
input sentence; variables are indicated by capitalizing the first letter.)
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Functional computations can also be captured by logic programs, as in:

has_interpretation(NLsentence,Meaning) if
<conditions> (5.4)

Here the function has_interpretation returns a meaning representation for
the sentence if it can be proved to be consistent with some set of linguistic
rules, or “meaning postulates”, in the database.

The conditions of rules can be arbitrarily complex, made up of conjunc-
tions, disjunctions and negations of simpler conditions. Simple conditions
include facts, like (5.1) and (5.2), or conclusions of other rules. A logic
program may invoke any number of rules to any depth. Example (5.5) shows
(5.4) fleshed out to a single level:

has_interpretation(NLsentence, Meaning) if
‘iS_QPammatical(NLsentence,Parse_tree) and
has_meaning(Parse tree,Meaning) (5.5)

This rule should be interpreted to mean that if the theorem prover can find a
valid grammatical structure, Parse__tree, for the sentence and assign a mean-
Ing to the structure, then it will succeed with result Meaning.

Variables are normally universally quantified. This means that logic
programs 1mplicitly define all possible solutions to a problem. In the case of
(5.5) the program will find all the interpretations of an input sentence which
are justified by the linguistic knowledge encoded in the database.

Much of the power of Al languages arises because variables can take any
kind of term as a value. Consequently logic programs and other symbolic
languages can not only reason with numbers and all the other datatypes of
classical programming and mathematics, but also complex symbolic structures
like proofs, parse trees and meaning representations. Logical formalisms can
explicitly capture properties of rules, functions and programs (called
“metalevel” representation) and logic programs can reason about programs as
well as simply execute them. Logic programming languages, such as PROLOG
(PROgramming in LOGic), provide many more computational techniques
than we need to discuss here (see any text, such as Clocksin & Mellish, 1972),
for details) but PROLOG provides a fairly standard notation for logic pro-
grams and we shall use it to present many of the examples that follow.

5.4 SYMBOLIC REASONING AND UNCERTAINTY

Logic languages provide a formal machinery for representing and reasoning
with knowledge of the world. They can accommodate concrete concepts, as in
the medical examples, but also abstract concepts like causality, hypotheses and
beliefs. We shall also see that metalevel reasoning about what an agent knows
or believes can play an important role in its reasoning under uncertainty. To
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keep the presentation short, and as widely accessible as possible, I shall discuss
these ideas in a relatively non-technical style. However, most of the concepts
have received considerable technical development. An up-to-date and
comprehensive but accessible technical survey is Krause & Clark (1993).

5.4.1 Uncertainty and Rule-based Reasoning

The earliest experiments with rule-based reasoning systems used quite simple
inference methods. For example, the following rule defines a simple piece of
“diagnosis” knowledge:

evidence for(Patient,cancer) 1 f
known(Patient,weight Lloss) and
known(Patient,elderly) (5.6)

Which is to say: if a patient 1s known to be elderly and has lost weight then
we are entitled to conclude that there is evidence for the patient having cancer.
The rule is analogous to a conditional probability expression, p(H | E1 & E2)
but is only qualitative; it says there is evidence for cancer but not how much.
The absence of any probabilities may appear to be a weakness but it imme-
diately confers an important freedom; since we do not have to distribute a
fixed quantity of belief over a set of hypotheses we do not have to fix the set
of hypotheses at the outset. In fact a simple extension to rule (5.6) allows us
to introduce hypotheses progressively, as evidence is obtained:

hypothesis(Patient,Disease) if
evidence for(Patient,Disease) and
not(excluded(Patient,Disease)) (35.7)

Which is to say, if we acquire any information that is evidence for a disease,
and we have no reason to exclude the disease, then we are entitled to include
it as a hypothesis.

The practical importance of such “open-mindedness” was once encountered
by a group working on computer-based interviewing of patients. An interview
program fed data directly into a diagnosis system which made the prior
assumption that all patients were suffering from one of a number of gastro-
intestinal diseases. Down the hall was an alcoholism clinic. Patients would
occasionally stray from this clinic, be interviewed by the system, and promptly
be diagnosed as suffering from an ulcer, gall-bladder disease etc.

Medical knowledge 1s frequently just empirical, recording that this con-
dition and that symptoms are statistically associated, but much medical
knowledge is deeper than this. For example causal knowledge (how diseases
cause symptoms), taxonomic knowledge (such as the features of cancer as a
class of diseases as distinct from the features of specific cancers) and
knowledge of anatomical structures, physiological processes and functions etc.
can all come into play in medical decision-making and judgement. Symbolic
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languages are well adapted to expressing such ideas. Rule (5.6) above captures
a specific association between patients with cancer and those who are elderly
and have lost weight. We may modify the rule to cover (an indefinite variety
of) causal relationships:

evidence for(Patient,Condition) if
known(Patient,Symptom) and
could cause(Condition,Symptom) (5.8)

Proving the predicate could cause(Condition,Symptom) may
require quite a complex process. For example if we have detailed knowledge
of the actions of two drugs it may be necessary to demonstrate from a detailed
physiological theory that they could interact to cause the observed condition.
Reasoning from first principles in this way can be an important diagnostic
strategy, particularly in unusual or difficult medical cases. Barahona (1993)
provides a detailed analysis of causal reasoning in medicine, in terms of
general knowledge of structures, functions and processes.

Medical knowledge does not consist merely of a “flat” set of diseases and
their associated symptoms, but a complex network of concepts (such as ulcers
of the stomach and duodenum), their classes (peptic-ulcers), classes of classes
(gastrointestinal diseases) and so forth. Likewise for symptoms, treatments,
tests and other medical concepts. As remarked earlier the conceptual structure,
or ontology, of many domains is complicated and this has implications for
how evidence is to be interpreted. Suppose we know that

is_a _kind of(duodenal ulcer, peptic _ulcer)

and we have evidence that a patient has a duodenal ulcer (such as pain immedi-
ately after meals in an older patient); then using the following rule:

evidence for(Patient,Disease Class) if
evidence for(Patient,Disease) and
is a kind of(Disease,Disease Class) (5.9

we can directly make the inference that there is evidence for the patient having
a peptic ulcer. Reasoning from the specific to the general (or vice versa) may
be simple but it is important. Many peptic ulcers are treated the same way
using a class of drugs called H2-antagonists. If we can obtain convincing evi-
dence that other competing types of gastrointestinal disease are implausible
(such as gall-bladder disease or cancer) then it is unnecessary to carry out a
detailed differential diagnosis of the particular type of ulcer the patient is
suffering from, since the treatment is the same in all cases.

We have emphasized logical aspects of rule-based reasoning but extension
to include quantitative information is quite straightforward. Various systems
for attaching numerical coefficients to facts and rules have been proposed.
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The metalevel expressiveness of logic languages allows the expression of a
quantified belief in an assertion:

holds( Assertion, Coeff) (5.10)

where Coe f f represents a numerical coefficient, meaning “Assertion is
certain to degree Coeff”, e.g.

holds(known('Fred Smith',elderly) , 0.99)
holds(known('Fred Smith',weight loss),0.9)

a conditional rule can be treated similarly:
holds ((Conclusion if Premisses), Coeff) (5.11)

meaning “Conclusion can be conditionally inferred from Premisses
with certainty Coe f f”. For example embedding rule (5.6) in (5.11) we may
have

holds((evidence for(Patient,cancer)if
(known(Patient,weight loss) and
known(Patient,elderly)), 0.5) (5.12)

Finally a suitable program, or “meta-interpreter” can be designed which
manipulates these expressions to carry out both logical deduction and numer-
ical calculations. If the set of hypotheses is closed and a complete set of prior
probabilities and probabilistic evidence rules is available, then the meta-
interpreter can derive probability-quantified conclusions by combining an
appropriate probability revision procedure with the normal deductive one (we
omit the details, an example program is available from the author).

Early AI methods for combining numerical uncertainty representation and
revision were criticized because, among other reasons, they used ad hoc rather
than probabilistic methods (e.g. Cheeseman, 1985), and they have been largely
replaced by more established techniques. Probabilistic methods have been
extended to permit propagation of probabilities over complex networks of
evidence and hypotheses (Pearl, 1988; Lauritzen & Spiegelhalter, 1988). Belief
functions can be used where evidence is to be distributed over class-structured
hypotheses (Gordon & Shortliffe, 1984). Fuzzy logic has been used to permit
vagueness in the definition of logical categories (Zadeh, 1978) and has since
developed into possibilistic logic, a well developed alternative to the prob-
ability calculus (Dubois & Prade, 1988).

To summarize, a non-numerical calculus such as symbolic logic can provide
a formally sound and well-understood inference system for capturing intuitive
ideas about knowledge and for introducing and reasoning about hypotheses in
the absence of quantitative uncertainty data.

The emergence of such methods raised a challenge to probability. As so
often before, however, the probability community responded vigorously by
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extending existing techniques to address the wider range of applications that
Al was addressing. One might be tempted to conclude from this that logic is
a useful tool for the deductive elements of reasoning, but when uncertainty is
encountered a numerical calculus is still necessary. Even this weaker position
can be questioned, however, and we turn now to developments that support
the opposing view.

5.4.2 Non-monotonic Reasoning

Classical logic makes the fundamental assumption that if we can validly
deduce some assertion, A, then whatever other conclusions we may sub-
sequently deduce A must remain true. If this is not the case we will be faced
with a contradiction. (In ordinary logic contradictions cannot be tolerated
because it is a formal property of classical logic that anything can be deduced
In the presence of an inconsistency.) Consider the familiar example from
elementary logic that if X is a man then X is mortal. More generally:

mortal (X) if
is biological (X) 513

Plants, animals, man, and collections of cells in culture, are generally
consistent with this rule, so whenever a biological entity is encountered we may
reasonably infer that it will not live for ever. Unfortunately, there is an
important complication. In culture, normal cells divide for a few generations
and then the “cell-line” tends to die out. However, when a cell is transformed
into a tumour cell the line does not die out; it acquires a property which may
be called “immortality” (although this is a slight abuse of this term, for
purposes of illustration). Rule (5.12) is consequently a little too strong. We
have seen two approaches to solving this problem; both involve weakening the
conclusion, either by concluding that there is merely “evidence for” mortality,
or by attenuating the conclusion with a probability or other numerical
coefficient.

An alternative approach is to say that if I know something is biological in
origin then I can reasonably assume that it is mortal unless and until I find out
I am wrong, 1n which case I change my mind. Classical logic does not permit
us to change our minds, but non-monotonic logic is designed to overcome this
restriction. Example (5.13) can be rewritten in a non-monotonic form, such as:

mortal (X)) 1 f
is biological(X) and
consistent( not(immortal (X)) ) (5.14)

This is to be read as “if X is known to be a biological entity and it is consistent,
given all that is currently known, to assume that X is not immortal, then X
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is mortal”. If we now find that the biological entity is immortal by the
following ordinary rule, say,

immortal(X) if
tumour cell_ Line(X) 5.15)

then it is no longer consistent to conclude mortal (X) and the conclusion
must be withdrawn. (Speaking a little loosely, classical logic 1s monotonic
because deduction can only result in increases in the collection of beliefs, while
non-monotonic inference can result in either increases or decreases 1n our
beliefs.)

Default logics are an important formalization of this idea (Besnard, 1989)
which sanctions the ability to “jump to conclusions” without having to
consider all the circumstances in which the conclusion could conceivably be
wrong. Suppose we are planning a business trip from Paris to Greece; we
choose Air France flight AF97 from Paris to Athens, and then make a hotel
reservation according to the scheduled arrival time in Athens. Default logic
provides a sound framework for the following kind of reasoning:

AF97 is scheduled to arrive at 10.00 and there 1s no reason to believe that it will
not arrive at that time so I will infer that it will arrive in Athens at 10.00.

The classical inference rule

will arrive(Flight,Time) if
scheduled(Flight,Time) (5.16)

is too strong so we introduce a “default condition” into it:

will arrive(Flight,Time) 11
scheduled(Flight,Time) and
consistent( not(delayed(Flight)) ) (5.17)

so long as the assertion not (delayed (AF97,10.00)) 1s consistent
with the other things we believe then we are entitled to assume that AF97 will
arrive on time. There is any number of reasons why our flight might be
delayed—strikes, fog, cancellation, bomb scares, equipment faults, loss of the
aircraft in the Bermuda triangle, etc.

Of course, it would be theoretically possible to estimate the probability of
one or more of these events, but would it be useful? If we hear of a strike by
air traffic controllers in the Paris area then we simply retract the default
assumption and rearrange our accommodation. If we do not find out in time,
and arrive late, then hotels are not usually full, there are always other hotels
or, at worst, an uncomfortable night at Athens airport.

A number of non-monotonic logics have been formalized. In modal logic
a proposition is possible if we cannot prove that it is necessarily talse (Mott,
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1988). For example the autonomous vehicle referred to earlier may assume
that 1t 1s possible to get from A to B if it cannot establish any reason that it
cannot, such as an equipment failure or an obstacle. “Autoepistemic logic” is
concerned with the formalization of agents’ reasoning about what they know
or believe (Moore, 1988). As scientists if we come up with an interesting idea
then we may carry out a considerable amount of work on the autoepistemic
argument that “I am expert in my field; if anyone else had followed up this
idea I would have heard about it, so I can assume they haven’t”. This often
works well, thought sadly not always.

Non-monotonic logics are an advance on classical logic because they have
a well-grounded theory for avoiding assumptions of omniscience (knowing
everything about a situation so one will never have to change one’s mind).
They are a practical alternative to probabilistic and other numerical uncer-
tainty frameworks because they do not require quantification of uncertainty
for reasoning to proceed. Krause & Clark (1993) provide a good review of
developments in the area.

5.4.3 Argumentation

Detault reasoning is a recent development but criticisms of classical mathe-
matical logic are not new. Toulmin (1958) raises a number of questions about
the role of logic in practical reasoning. In classical logic an argument is a
sequence of inferences leading to a conclusion, which may be either true or
false. The interest of the logician has traditionally been in procedures by which
such arguments may be judged valid or invalid. Toulmin was more interested
In the kinds of reasoning which go on in everyday debate, and in the conditions
that determine whether arguments are persuasive. For example, a doctor may
argue “it is possible that the patient has gastric cancer because he is elderly and
has recently lost weight and I know this is a classical presentation of an
advanced malignancy.” Toulmin characterizes such arguments by means of
the following schema:

Date —— Claim Qualifier

| !

Warrant Rebuttal

|
Backing (5.18)

Data here corresponds to all the things the doctor knows about the patient (the
patient i1s elderly and has lost weight); the Claim is the base sentence “the
patient has cancer” but this is Qualified because it is said to be “possible” but
not asserted to be true. The Warrant is the doctor’s knowledge about typical
presentations and relationships between pathologies, which gets its Backing
from reference texts, research findings and so forth. Toulmin anticipated
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non-monotonic reasoning with his notion of Rebuttal; the doctor’s colleague
may point out “but the results of all the tests we have done seem inconsistent
with cancer”,

Toulmin’s analysis is not formal but it is intuitively appealing. A number
of workers are now investigating ways in which such ideas might be formalized
(Loui, 1987; Pollock, 1992; Fox, Krause & Ambler 1992). One motivation for
developmg a formal theory of argumentation arises from the requirement for
a theory of decision-making which is appropriate to the design of autonomous
agents (Fox, 1991), but the results are quite general. In this section we intro-
duce our formalization of argumentation, showing how it may add to the
available techniques for reasoning under uncertainty. In the next section we
take the ideas further by considering how the approach could provide a general
framework for understanding a number of methods for reasoning under
uncertainty.

A logic of argument

In propositional logic (PL) if we hold some fact to be true, say p, and also
hold that p implies g (p — g) then by the rule of modus ponens we are entitled
to conclude g. Taken together, modus ponens and the other rules of proposi-
tional logic define a relationship between the set of sentences in a database (the
antecedents), and a database extended with the set of sentences which may be
validly derived by the rules of the logic (the consequences). This is summarized
by:

Antecedents + pr. Consequents (5.19

in which the “turnstile” symbol — represents the consequence relation of the
logic. The subscript PL reminds us that particular consequences are only valid
if we accept the inference rules of PL but may not be valid if we adopt some
other logic in which modus ponens is not a rule of inference. (Note that
“object-level” rules in the database of antecedents, such as p — g, should not
be confused with the inference rules or “meta-rules” of the logic, such as
modus ponens.)

Countless logics with specialized consequence relations have been developed
for particular kinds of reasoning (e.g. Haack, 1978). Some logics drop inference
rules from classical logic, others add rules. For example, propositional logic
includes the rule of the excluded middle, “A or not (A) but not both”, while
intuitionistic logic omits this rule. A logic can have an entirely different
consequence relation from that of classical logic.

Al has been particularly concerned with developing specialized logics for
“common sense” reasoning about space, time, belief and so forth. Default
logic is an example of the latter; it copes with changing belief with a non-
monotonic consequence relation. Argumentation provides another approach
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to reasoning under uncertainty. The logic of argument (LA) is a variant of
intuitionistic logic in which two modifications have been made (Fox, Krause
& Ambler 1992). First, it is assumed that an argument may not only prove a
claim but may also, more weakly, support it. Second, we view arguments as
contingent on the acceptance of some “view of the world”. We call such a view
a “theory”, since it can be modelled as a collection of object-level rules and
facts. The consequence relation of LA is summarized by the following meta-
level schema:

Context U Theory +1a (Claim, Grounds, Qualifier) (5.20)

The schema simply says that given some set of beliefs about a particular situa-
tion (Context) together with a set of general beliefs (Theory), we are entitled
by the axioms and inference rules of LA to make certain Claims. Claims are
justified by some set of rules and facts drawn from the union of the Context
and Theory, and are qualified in ways that we discuss in a moment.

Axioms and inference rules for LA are given in Figure 5.1. In this version
of LA the qualifier is one of “supports” or “confirms” (abbreviated as + and
+ +). If an argument supports a claim then it increases belief in it (but we
don’t say by how much). If it confirms the claim it means that, from the point
of view embodied in the theory, the claim is certain. Note that different agents
may hold different theories, and in principle a single agent can adopt different
and possibly inconsistent theories at different times. Consequently con-
firmation is not quite the same as saying the claim is logically true (or that its
probability is 1.0) because there is always the possibility that even a certain
claim will, in Toulmin’s terms, be “rebutted” by an equally certain argument
based on different theoretical assumptions.

LA has been embodied in a Prolog program called an argumentation
theorem prover (ATP). The consequence relation of LA is embodied in the
ATP which, when supplied with a proposition and a set of rules and facts (the
theory) constructs all and only those arguments which support or confirm the
proposition which are justified on the theory. (LA and the ATP were deve-
loped in collaboration with Paul Krause, Simon Ambler and Michael Clarke.)
The theorem prover returns argument terms which we can represent in the
familiar Prolog style:

argument(Claim,Grounds,Sign) (5.21)
For example:

argument(''the patient has cancer'',
grounds(wt_Lloss,elderly),
supported) (5.22)

which can be glossed as “since the patient is elderly and has lost weight this
supports the claim that he has cancer.” The ATP is neutral about the content
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Figure 5.1 Summary of LA inference rules. The labelling of propositions follows the
syntax formula : grounds : qualifier, where qualifier€ {+,++}, and min(+,++) = +

of the theory; the details of this may warrant quite different kinds of
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