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Abstract

Education research has experienced a methodological renaissance over the

past two decades, with a new focus on large-scale randomized experiments.

This wave of experiments has made education research an even more

exciting area for statisticians, unearthing many lessons and challenges in

experimental design, causal inference, and statistics more broadly. Impor-

tantly, educational research and practice almost always occur in a multilevel

setting, which makes the statistics relevant to other fields with this struc-

ture, including social policy, health services research, and clinical trials in

medicine. In this article we first briefly review the history that led to this new

era in education research and describe the design features that dominate the

modern large-scale educational experiments.We then highlight some of the

key statistical challenges in this area, including endogeneity of design, het-

erogeneity of treatment effects, noncompliance with treatment assignment,

mediation, generalizability, and spillover. Though a secondary focus, we

also touch on promising trial designs that answer more nuanced questions,

such as the SMART design for studying dynamic treatment regimes and

factorial designs for optimizing the components of an existing treatment.
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1. INTRODUCTION

Educational practice has two key features that shape research and experiments. First, formal

schooling typically occurs in a multilevel setting, reflecting the hierarchical social structure of

the schooling system. Second, heterogeneity abounds among both individuals and organizations.

Children obviously vary, and on top of this they are grouped into classes mostly by age rather

than by knowledge. Naturally, teachers and administrators also vary both in basic skill and in how

faithfully they implement hypothetically standardized interventions.

These features generate many statistical challenges and, at the same time, raise interesting

substantive questions that might otherwise be overlooked. In the following, we introduce the sta-

tistical challenges under review. These topics may also interest statisticians working in one of the

many fields that share a multilevel setting and/or substantial heterogeneity, such as criminology,

social welfare, job training, and medicine. Similarly, these issues also arise in observational studies,

which, of course, must additionally contend with selection bias.

1.1. Endogeneity of Study Design

In multisite field experiments, the design is often not entirely controlled by the investigator. Site

sizes and proportions treated may be correlated with the average treatment effect (ATE) in each

site (for instance, if smaller schools are better at implementing the treatment). Though typically

not considered, this can create a difficult bias-variance tradeoff for some important targets of

inference.

1.2. Heterogeneity of Treatment Effects

Researchers suspect that educational interventions will affect children differently for a host of

reasons, but many popular methods in this area assume constant treatment effects. Heterogeneity

of impacts has broad implications for defining estimands, properties of estimators, and optimal trial

design. By generating an ensemble of unbiased treatment effect estimates across sites, multisite

trials offer unique opportunities to study heterogeneity, with implications for generalizability.

1.3. Noncompliance with Treatment Assignment

Some schools assigned to a new programmay not implement the program, and even in schools that

do implement the program, some teachers may decline to participate. Noncompliance makes the

overall average effect of treatment participation challenging to identify, so many analysts instead

estimate the average effect of treatment participation in a latent subpopulation of compliers. In

multisite trials, compliance will vary from person to person and likely (on average) from site to

site, giving rise to extra heterogeneity in the effects of treatment assignment and complicating

interpretation.

1.4. Mediation

Mediators are proximal outcomes of an intervention that, in turn, shape longer-term outcomes.

Experimenters often study such mediators to reveal mechanisms through which a treatment pro-

duces effects. Multisite trials generate new opportunities to study such causal mechanisms: The

impact of treatment on mediators may vary across sites, and how this variation affects outcomes

carries some information about mediators. However, the causal process itself may vary from site

to site.
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1.5. Generalizability

The ultimate scientific goal underpinning most trials is to accurately generalize results in some

way, often to a broader population that the observed sample may not directly reflect. By linking

data from educational experiments to population survey or census data, statisticians have begun

to tackle this challenge. Researchers in this field have concluded that many trials could be better

designed in support useful generalizations.

1.6. Spillover

Experimenters typically assume no interference between units,meaning that the treatment assign-

ment of one unit does not affect the potential outcomes of any other unit. In education, where

interventions occur in social milieu such as classrooms and schools, this assumption may be unten-

able. Some new work considers how to design experiments to uncover spillover effects and how

to detect spillover even when it is not of primary substantive interest.

1.7. Novel Designs

A dynamic treatment regime is a multistage treatment that uses up-to-date information about

individuals to personalize treatment at each stage, and it can be studied by the SMART (sequen-

tial multiple assignment randomized trial) experimental design; in education, this design is highly

relevant to instruction in many forms. A second design of growing interest is the classical facto-

rial design, which offers opportunities to study how particular components of a new intervention

contribute to treatment effectiveness.

Before discussing each of these statistical challenges, we briefly review the history of how ed-

ucation research came to its modern era of large-scale randomized experiments and describe the

most common experimental designs. We also introduce and motivate a theoretical model for the

basic multisite trial and describe key estimands.

2. HISTORY AND MAJOR DESIGNS

A huge industry of publishers, nonprofit organizations, and universities sells text books, profes-

sional training programs, tests, and technological innovations to schools.Within this vast market,

reformers have advocated the adoption of new curricula, new modes of teacher training, increased

accountability, reductions in class size, school-based management, new assessments of student

skill, and the adoption of school-wide programs for teaching reading and mathematics. Cook

(2002) concluded that, prior to 2002, few of these reform efforts had been rigorously evaluated.He

described a culture among educational program evaluators that favored surveys and small-scale,

in-depth qualitative case studies as opposed to randomized experiments. In this culture, how a

reform operated and how practitioners and students perceived its influence were more important

than estimating the average impact on students or cost-effectiveness of the reform. Many evalu-

ators, including most faculty in education, regarded randomized trials as infeasible or unethical,

and some believed that random assignment would create artificial conditions unrepresentative of

the daily practice of schooling.

2.1. A Turn Toward Experimentation

In 1999 the American Academy of Arts and Sciences sponsored a conference on the state of re-

search in education. Chairing the meeting were Frederick Mosteller and Howard Hiatt, two men
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who had helped lead the movement in the 1950s to establish the randomized trial as a foundation

for causal inference in medicine, as well as Robert Boruch, a longtime advocate of social experi-

mentation. They asked why there were there so few randomized trials in education and whether

it was time to launch a new epoch of educational research that would parallel the history of med-

ical research. The conference led to an important volume advocating more randomized trials in

education (Mosteller & Boruch 2002).

One important stimulant for this initiative was the Tennessee class size experiment (Finn &

Achilles 1990), which was motivated by a stalemate in the Tennessee legislature. The lawmakers

could not agree on whether or not to outlaw large classes, but they did agree to study that ques-

tion. Helen Pate Bain, then an associate professor at Tennessee State University and well-known

advocate for education reform, argued for a randomized trial (Boyd-Zaharias 1999). Past stud-

ies of class size had mixed results, and some studies seemed to suggest that larger classes were

actually more effective than small classes, almost surely because more effective teachers tend to

attract more students. So Tennessee funded a study in which kindergarten students and teachers

were both randomly assigned to classes large and small. Finn & Achilles (1990, p. 557) reported

that “the results are definitive”: Reducing class size could significantly increase student learning

in reading and mathematics. The findings appeared uniformly positive across 79 diverse schools,

325 teachers, and 5,786 students. Mosteller (1995) celebrated this finding for a broad audience at

the 1999 conference and asserted that this was among the best studies in the history of education.

As an interesting by-product, Krueger & Whitmore (2001) found that low-income and minority

students benefitted most from class size reduction. They also found that those randomly assigned

to smaller kindergarten classes were, on average, more likely to attend college.

In 2001 Congress passed the No Child Left Behind (NCLB) law. It is well known that NCLB

unleashed a regime of school accountability based on high-stakes testing. Less well known is the

fact that the law also mandated the formation of the Institute of Education Sciences (IES) with

the purpose of creating a new scientific basis for educational research. In 2002 Russell Whitehurst

became the founding director of IES.WithWhitehurst’s commitment to experimental evaluation,

and supported by a large increase in the budget for educational research, the IES funded more

than 175 large-scale randomized controlled trials (RCTs) during the first decade of its existence

(Spybrook 2014, Spybrook et al. 2016).Other government agencies and foundations have also lent

support to movement toward randomized trials, and subsequent leaders of IES have continued to

emphasize the importance of random assignment in program evaluation.

2.2. Research Designs

Cook (2002) discusses how many education researchers, influenced by limited exposure to ex-

perimental design and a funding landscape that did not encourage them to prioritize RCTs, were

resistant to using randomized trials in part because formany types of interventions, students within

the same classroom cannot not naturally (or, arguably, ethically) be randomized to different treat-

ments. They could not see how randomized experiments could be appropriate in broad swaths

of education. The field has come far in the past two decades, relying mainly on the following

experimental designs to fit into the context of schooling.

2.2.1. Multisite randomized trials. Many important experiments in education involve ran-

domization within sites; in the classical experimental design literature, this is a randomized

block design, and we use the term multisite randomized trial to emphasize that the blocking

sites are often of substantive interest. The National Head Start Impact Study, funded by the
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Administration for Children, Youth and Families (Puma et al. 2010), is a prominent example.

From a list of all Head Start centers in the United States, experimenters randomly selected more

than 300. At each local center, low-income families applied for their children’s admission to Head

Start. Applications outnumbered available places, so offers of admission were based on a random

lottery. Here we regard the centers as sites, and randomization is within sites. In our usage, a site

is always a unit in which randomization occurs.

2.2.2. Cluster-randomized trials. As mentioned, for many educational interventions, a design

that randomizes individual students to treatments with no restrictions is clearly unacceptable. For

example, schoolwide instructional interventions apply to all children in a school (Borman et al.

2007, 2008). The sensible plan is to assign entire schools to treatments. However, the launch of

the IES program of widespread experimentation almost foundered on the shoals of inadequate

statistical power for such studies.

The problem was a widespread misunderstanding of the sample size requirements of the

cluster-randomized trial. This history paralleled the early history of city-wide health promotion

experiments (Donner et al. 1981, Fortmann et al. 1995, Murray 1995) in which entire cities were

assigned at random to treatment or control.These studies includedmany hundreds of thousands of

individuals at the cost of hundreds ofmillions of dollars, but the designers were apparently unaware

that even when the between-city variance component is very small, randomization by city requires

a fairly large number of cities in order to achieve adequate statistical power. Fortunately this ex-

perience led a small number of scientists to examine optimal sample sizes for cluster-randomized

trials and to produce books and software that could enable future researchers to avoid the error

(Klar &Donner 1997,Murray 1995,Raudenbush 1997).These ideas and tools took center stage at

a 2004 conference sponsored by theWilliam T.Grant Foundation on cluster-randomized trials in

education attended by 50 leading funders and government officials. At this conference, attendees

explored the design of hypothetical trials by applying user-friendly software. Many educational

evaluators were shocked to discover that the statistical power of a cluster-randomized trial de-

pends strongly on the number of clusters. But recruiting schools and teachers and sustaining their

involvement is expensive; if every field trial required a large number of schools, the entire project

was in danger.

To cope with this threat, educational experimenters generated two strategies (Bloom et al.

2007, Raudenbush et al. 2007). The first was to match or block clusters on demographic variables,

geographic location, prior educational outcomes, or other factors believed related to the outcome,

and then,within blocks, to randomize clusters to treatment.The secondwas to identify and control

for covariates measured at the level of the cluster that were, by hypothesis, strongly predictive

of the outcome. Both strategies showed promise for increasing power, but the second strategy

proved remarkably effective when the outcome of interest was a measure of academic achievement

such as a reading or math test, a common feature of educational evaluations. The reason is that

school mean test scores collected before and after intervention may be correlated as high as r =

0.90 (Bloom et al. 2007, Hedges & Hedberg 2013); in this case using the covariate boosts power

by roughly the same amount as doubling the number of clusters. Experience designing RCTs

in education thus led evaluators to increasingly rely on some combination of prerandomization

blocking and/or covariance adjustment to address the challenge of statistical power for the cluster-

randomized trial.

2.2.3. Multisite cluster-randomized trials. Spybrook (2014) reported that in the first 175 ran-

domized trials funded by IES, the single most common design was a multisite cluster-randomized

www.annualreviews.org • Randomized Experiments in Education 181

A
n
n
u
. 
R

ev
. 
S

ta
t.

 A
p

p
l.

 2
0
2
0
.7

:1
7
7
-2

0
8
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.a
n
n
u
al

re
v
ie

w
s.

o
rg

 A
cc

es
s 

p
ro

v
id

ed
 b

y
 C

o
lu

m
b
ia

 U
n
iv

er
si

ty
 o

n
 0

3
/1

0
/2

0
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

. 



trial. This is a three-level design in which sites (e.g., schools) are blocks within which clusters

(e.g., classrooms) are assigned at random; outcomes vary randomly among students who are nested

within clusters.

2.2.4. Three-level person randomized trials. An increasingly common design randomly as-

signs each student to treatments within a block that is itself nested within a site, another three-

level design. A prominent example is the school lottery study (Angrist et al. 2016, Clark et al.

2015, Hassrick et al. 2017). In such a study, parents apply for their children to be admitted to a

new school. Applications exceed the number of available places, so a randomized lottery decides

who will be offered admission. Evaluators follow lottery winners and losers to gauge the impact of

random assignment. A separate lottery is held each year for each grade within each school. Thus,

over several years, each school produces a collection of lotteries.We regard the lotteries as blocks

nested within the school conceived as a site. Hence, each school generates a collection of average

causal effects, one for each lottery, and an average over these lottery effects within each school con-

stitutes the average effect of random assignment to the school. How to summarize effects across

schools can be a tricky problem.

3. THEORETICAL MODEL

The generic goals of a randomized experiment in education (as in most fields) are to estimate

some kind of ATE and to somehow characterize the heterogeneity of treatment effects. But before

we can define these estimands with real clarity, we need to specify a theoretical model for the

phenomenon under study. Below, we introduce the core modeling decisions in the basic setting

of two-level multilevel educational experiments with a binary treatment and continuous outcome

and then describe basic estimands.We use the term theoretical model to emphasize that the model

thought to generate the datamay not be themodel used for estimation.Details and generalizations

follow in later sections.

3.1. Potential Outcomes and Causal Effects

To begin, we assume a two-level structure in each student i is nested within site j, where a

site can be a school, preschool center, or classroom. Three-level multisite trials can be re-

garded as specific cases of this design. We also assume intact sites (Hong & Raudenbush 2006),

meaning that students inhabit one and only one site, and we assume that sites are statistically

independent.

Define Ti j = 1 if student i ∈ {1, . . . , n j} in site j ∈ {1, . . . , J} is assigned to a new treatment and

Ti j = 0 if not. In principle, a student’s potential outcome may depend on the teacher who imple-

ments the treatment. Moreover, a student’s potential outcome may also depend on the treatment

assignment of other students in the same site. We discuss this possibility in Section 9. For now,

we adopt the stable unit treatment assignment assumption (SUTVA) (Rubin 1986), which holds

that there is only one version of the treatment and that each student’s potential outcomes are in-

dependent of the treatment assignment of other students. Thus, student i in site j possesses two

potential outcomes Yi j (t ) for t ∈ {0, 1} for some interval scale or binary outcome variable Y, and

one causal effect,

Bi j ≡ Yi j (1) −Yi j (0). 1.
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We never observe Bi j because if Ti j = 1, thenYi j (0) is missing, and if Ti j = 0, thenYi j (1) is missing.

The observed outcome for child i in cluster j is then

Yi j = Ti j (1) + (1 − Ti j )Yi j (0) = Yi j (0) + Ti jBi j
= µ0 j + β jTi j + εi j .

2.

Here β j = µ1 j − µ0 j is the ATE in site j; µt j = E[Yi j (t )|µt j] is the average potential outcome un-

der treatment t for students in site j; and εi j = Ti jε1i j + (1 − Ti j )ε0i j is a random zero-mean dis-

turbance where εti j = Yi j (t ) − µt j , with potentially heteroscedastic variance σ 2
i j . Heckman et al.

(2010) terms this the correlated random coefficient, emphasizing the potential correlation be-

tween the person-specific intercept, Yi j (0), and the treatment effect, Bi j . An early discussion of

this idea within education appears in Bryk & Weisberg (1976).

Now looking across sites, we writeµ0 j = µ0 + u0 j and β j = β + b j , where u0 j , b j are zero-mean

random effects having variances τ00 and τbb and covariance τ0b. This generates the familiar linear

mixed model equation,

Yi j = µ0 + βTi j + u0 j + b jTi j + εi j . 3.

The random terms in this model need not be normally, or parametrically, distributed. We focus

our discussion on two parameters, the mean β and variance τbb of the common distribution of

the site-specific treatment effects β j . This is far from the only interesting approach to describing

variability across sites; for others, see the sidebar titled A Note on Randomness.

3.2. Estimands

One common aim is to study the distribution of treatment effects over a population of sites. If

we regard each sampled site as equally representative of this population, we might define our key

estimands as

Esites(β j ) ≡ βsites, Varsites(b j ) = E(b2j ) ≡ τbb sites, 4.

the mean and variance of the site-specific ATE distribution defined over a population of sites.

A NOTE ON RANDOMNESS

One of the most fundamental issues we must confront is where randomness enters our model; in particular, should

site-specific causal effects be modeled as random or fixed? The random sampling route is natural if we want to gen-

eralize results beyond the observed sample to a large population. Most often, the sample for the trial is a volunteer

sample or a convenience sample, yet the experimenter regards the sample as generated from an infinitely large, if

not clearly defined, superpopulation.We reason that this is what interests most designers of education trials, which

is why our model above adopts this point of view. Alternatively, one might view site effects as random in a Bayesian

sense, regarding site-specific effects as exchangeable to reflect our subjective uncertainty. The notion that the site

effects are fixed is consistent with viewing the sample as a finite population. This is sensible if we confine our inter-

est to the observed sample. This approach is popular in some of the work done by contract research organizations

(Schochet 2015), but due to space limitations, we do not treat it thoroughly. For more discussion on these opposing

points of view, see Section 8, where we also discuss recent work linking convenience samples to larger, well-defined

populations.
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In contrast, suppose that the aim is to generalize to a population of students and that sites vary

in how many students they serve. Then we might define parameters differently. For example, the

person average treatment effect might be defined

Epersons(Bi j ) = βpersons = Esites(ω jβ j ), 5.

where Epersons denotes expectation over the distribution of person-specific random variables in a

population of people. Here ω j is a weight, scaled to have a mean of one, that is proportional to

the size of the student subpopulation served by site j. In the population of persons, the variance

components take on different meaning. The variance of person-specific causal effects is

Var(Bi j ) = Epersons(Bi j − β j )
2 + Esites[ω j (β j − βpersons )

2]. 6.

The within-site variance component Epersons(Bi j − β j )
2 cannot be identified without heroic as-

sumptions because it depends on the within-site covariance between potential outcomes Yi j (0)

and Yi j (1), which are never jointly observed. However, the between-site variance τbb sites is identi-

fied because the multisite trial contains information about all the site-specific control group and

experimental means.

3.3. Choice of Estimands

The choice of estimands can significantly affect the optimal design of an experiment. For exam-

ple, if the population of interest is composed of sites, a simple random sample of sites combined

with a simple random sample of students within sites may be optimal, depending on costs. If the

population of interest is students, it will make sense to sample sites with probability proportional

to size, again depending on costs. However, based on our reading of recent RCTs in education,

we argue that both populations will often be of great interest. Policy makers will typically want to

know the average impact of an intervention over the target population of students. However, in-

formation about the distribution of treatment effects across sites will often be of great interest for

identifying especially effective or ineffective sites (Rubin 1981) and for learning about variation

in the effectiveness of educational organizations. Moreover, we show below that the analyst can

learn a great deal about noncompliance and mediation by studying variation in treatment effects

across a population of sites. Therefore, designs that allow us to explore different populations may

be of great interest, if feasible. For example, in a three-level design, we might be interested in a

population of students, and a population of teachers, and a population of schools.

4. ESTIMATION AND ENDOGENEITY OF DESIGN

4.1. Data

We define n j as the sample size for site j, and the proportion of the sample assigned to treat-

ment in site j is T̄j . Under SUTVA, intact schools, and random assignment within each site, the

sample mean difference β̂ j = Ȳ1 j − Ȳ0 j is unbiased for the site-specific ATE β j = E(Bi j|Site = j),

and its sampling variance is Var(β̂ j|β j ) = Vj . We assume Vj = c/[n jT̄j (1 − T̄j )]. Many analysts

have assumed a constant within-site variance, σ 2
i j = σ 2 for all i and j, in which case c = σ 2. Be-

cause treatment effects plausibly vary across students, Bloom et al. (2017) recommend specifi-

cation of separate variances σ 2
1 and σ 2

0 for treatment and control students, respectively. In this

case c = σ 2 + (σ 2
1 − σ 2

0 )(1 − 2T̄ ), where σ 2 = T̄σ 2
1 + (1 − T̄ )σ 2

0 with T̄ =
∑

J

j=1

∑n j
i=1 Ti j/N . Un-

der either choice, the sampling precision of β̂ j as an estimator of β j is

Pj = V −1
j ∝ n jT̄j (1 − T̄j ). 7.
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To focus on key ideas, we assume Vj to be known, as c is estimated with great accuracy in edu-

cational RCTs. Thus, the basic data for our purpose here consist of β̂ j ,Vj for j ∈ {1, . . . , n j}, j ∈

{1, . . . , J}. Given the endogeneity of design, we assume Vj to be random.

4.2. Endogeneity of Design

Asmentioned,when a new school or educational program opens, it is often the case that more peo-

ple apply for admission than can be accommodated. If the number of applicants exceeds the num-

ber of available places, it is common practice, and in some cases legally required, to hold a random

lottery to decide who should be offered admission. These lotteries have generated many opportu-

nities for researchers to experimentally test novel approaches to school organization and practice

(Angrist et al. 2016, Clark et al. 2015, Dobbie & Fryer 2013), in large part because they support

both fairness to applicants and the priorities of statistical inference. Moreover, entire school dis-

tricts have recently adopted new admissions rules that enable parents to list preferred schools for

their children (Bloom & Unterman 2014), holding open the possibility of experimentally testing

the impact of many regular public schools.

A concern, however, is that the number of persons who apply, equivalent to the sample size, n j ,

may reflect the popularity—and thus, indirectly, the effectiveness—of the new program.Weight-

ing site-specific data by site-specific precision Pj may then bias estimates of the site ATE βsites

by up-weighting the most effective schools. The number who apply may alternatively reflect the

availability of good local alternatives, in which case, a large applicant pool might indicate a com-

paratively disadvantaged local population. In either case, the combination of the number who

apply and the number of available seats determines the fraction, T̄j , that are offered admission.

Therefore, T̄j may also be endogenous. Hence, the sampling precision Pj ∝ n jT̄j (1 − T̄j ) may, in

many cases, be regarded as an endogenous variable, that is, as a nonignorable random variable

rather than a fixed aspect of the design, as is conventional in experimental research.

Even in studies that do not use lotteries, it may be the case that sites with varied size, more or

fewer resources, or varied preferences may vary with respect to sampling precision Pj , opening up

the possibility that precisions covary with site effectiveness. This is a common reality in education

research and other fields (e.g., multihospital clinical trials), so we keep the effects of endogenous

designs in mind as we discuss basic estimators for the estimands of a multisite trial.

4.3. Estimating the Site Average Treatment Effect

Under endogeneity of design, the familiar ATE estimators have different properties than usual,

leading to a nontrivial bias-variance tradeoff (Raudenbush & Schwartz 2019). We highlight the

basic results for the site ATE below.

4.3.1. Unweighted estimator. If each site equally represents the population of sites, Schochet

(2015) recommends an unweighted estimator

β̂uw = J
−1

J
∑

j=1

β̂ j . 8.

This is clearly consistent for βsites, though it treats all sites as equally informative, so it will typically

have larger sampling variance than weighted estimators when precision, Pj , varies significantly
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from site to site. Under our theoretical model,

Varsites(β̂uw ) = τbb sites + Esites(Vj ). 9.

4.3.2. Ordinary least squares with site fixed effects. Probably the single most commonly

used estimator regresses the outcome Y on treatment T with site fixed effects, yielding

β̂FE =

∑

J

j=1 (Ti j − T̄j )Yi j
∑

J

j=1 (Ti j − T̄j )
2

= J
−1

J
∑

j=1

Pj

P̄
β̂ j , 10.

where P̄ =
∑

Pj/J. We see that β̂FE weights each site’s estimate β̂ j proportional to its sampling

precision, Pj . The fixed effects model is our general model (Equation 3) with µ0 + u0 j set to a

fixed constant from site to site and b j set to zero so that τbb sites = 0. If this model is correct and the

within-site variances are homogeneous, the familiar Gauss-Markov theory guarantees that β̂FE is

best linear unbiased with variance

Varsites(β̂uw ) = E
(

J
∑

j=1

Pj
)−1

. 11.

Under these assumptions, β̂FE can be much more precise than β̂uw, since then

Varsites(β̂uw )

Varsites(β̂FE)
=
E[V̄Arithmetic]

E[V̄Harmonic]
, 12.

where V̄Arithmetic =
∑

Vj/J is the arithmetic mean of the sampling variances and V̄Harmonic =

J/
∑

Pj is the harmonic mean of the sampling variances (recall that the harmonic mean of positive

numbers is always smaller than the arithmetic mean). However, if the treatment effects vary and

are correlated with precision β̂FE is inconsistent, with finite-sample bias

Esites(β̂FE ) − βsites = Covsites
(Pj

P̄
,β j

)

. 13.

4.3.3. Fixed intercepts, random coefficients. The fixed intercepts, random coefficients

(FIRC) approach proposed by Bloom et al. (2017) is similar to fixed effects in setting µ0 + u0 j
to a fixed constant from site to site in order to minimize covariance assumptions. However, unlike

with fixed effects, b j is allowed to vary with τbb sites ≥ 0, yielding

β̂FIRC = J
−1

J
∑

j=1

w j FIRC

w̄FIRC

β̂ j , 14.

where wFIRC j = (Vj + τ̂bb sites )−1 = Pj/(1 + Pj τ̂bb sites ) and w̄FIRC =
∑

wFIRC j/J. Note that the de-

gree of precision-weighting depends on the (estimated) cross-site treatment effect variance: As

τ̂bb sites → 0, β̂FIRC → β̂FE, and as τ̂bb sites → ∞, β̂FIRC → β̂uw (Raudenbush & Bloom 2015). Thus,

β̂FIRC lies on an interval between β̂FE and β̂uw, tending toward β̂FE when treatment effects are

compressed and toward β̂uw when they are dispersed. For known τbb sites, β̂FIRC is best linear unbi-

ased when b j ⊥Pj and nearly efficient when the within-site and between-site random effects are

normally distributed withVj correctly specified. Under these assumptions, β̂FIRC is potentially far

more efficient than is β̂uw. For large J,

Varsites(β̂uw )

Varsites(β̂FIRC)
=

E[D̄Arithmetic]

E[D̄Harmonic]
, 15.
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where D̄Arithmetic is the arithmetic mean of D j = Vj + τbb sites and D̄Harmonic is the harmonic

mean.

However, if the assumption b j ⊥Pj fails, β̂FIRC is inconsistent with bias

Esites(β̂FIRC) − βsites = Covsites
(

wFIRC j

w̄FIRC

,β j

)

. 16.

Raudenbush & Schwartz (2019) prove that the bias of β̂FIRC is never larger that of β̂FE. Neverthe-

less, the inconsistency of β̂FIRC under these conditions is troubling.

4.3.4. Open questions. Endogeneity of precision combined with treatment effect heterogene-

ity generates a bias-variance tradeoff that is worthy of more study. It stands to reason that a hybrid

estimator will work better than those under consideration here, but such a hybrid has not appeared

in the literature on educational field trials.

4.4. Estimating the Person Average Treatment Effects:
Unweighted Persons Estimator

Recall that when the target is a population of students, the estimand is

βpersons = Epersons(Bi j ) = Esites(ω jβ j ), 17.

where ω j is proportional to the size of site j. If sites are sampled with probability proportional to

size, the desired weight (scaled to have a mean of 1.0) is ω j =
n j
n̄
, where n̄ =

∑

n j/J, yielding

β̂persons = J
−1

J
∑

j=1

n j

n̄
β̂ j . 18.

For small τbb persons, β̂persons is likely to be quite precise, though its variance will exceed that of β̂FE.

If treatments effects vary and are correlated with precision, β̂FE is inconsistent with bias

Covpersons
(

w1 j

w̄1

,Bi j
)

= Esites

[

ω j

(

w1 j

w̄1

− 1,β j

)]

, 19.

where w1 j = T̄j (1 − T̄j ) and w̄1 =
∑

w1 j/J. Under the same scenario, the bias of FIRC is a bit

more complex and has not been studied.

4.5. Estimating the Variance Components

Raudenbush & Bloom (2015) show that an unbiased estimator of the treatment effect variance has

the form

τ̂bb pop = J
−1

∑ wpop j

w̄pop
[(β̂ j − β̂pop )

2
−Vj], 20.

where, for the designs mentioned above,wpop j = 1 if pop= sites, andwpop j =
n j
n̄
if pop= persons,

and β̂pop is the unbiased ATE estimate for the population given by Equation 4 or Equation 5. If

negative estimates are set to zero, the estimates are no longer unbiased but are J-consistent so

long as τbb pop > 0. Similar to the site ATE story, the consistent estimator for τbb sites may be quite

inefficient if precisions vary substantially from site to site. The maximum likelihood estimator

under the FIRC model substitutes
w
2
FIRC j

∑

w
2
FIRC j

/J
as the weight in Equation 18, and this estimate will
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tend be more efficient than those given by Equation 20 if precisions are independent of treatment

effects. The logic of estimation of the remaining variance components is similar. Relatively little

research has examined variance components estimation when precisions are nonignorable. Given

the widespread interest in linear mixed models, this is a topic of considerable interest.

4.6. An Empirical Example

Using the methods just described, Raudenbush & Schwartz (2019) reanalyze data from the Na-

tional Head Start Impact Study, including 3,392 children randomly assigned by lottery within each

of 316 sites. Site-specific sample sizes vary widely, with many small sites. Across five outcomes

(reading, math, oral language, receptive vocabulary, and aggressive behavior), point estimates of

the ATE and decisions based on a nominal significance level of α = 0.05 were quite similar, with

two exceptions: For math and aggressive behavior, standard errors using the unweighted estimator

were more than half the size of the point estimates. The unweighted estimator βsites, while consis-

tent, appears woefully inefficient when site sizes are highly variable and often small. The perfor-

mance of the unweighted estimator of τbb sites is particularly variable in this case. Raudenbush &

Schwartz (2019) emphasize the need for more research on estimation of βsites and τbb sites when site

sizes are highly variable,which often arises in large-scale field trials that use lotteries to accomplish

random assignment.

5. STUDYING HETEROGENEITY OF TREATMENT EFFECTS

Statisticians have primarily pursued two main questions describing and estimating heterogeneity

of treatment effects: “How much?” and “Where?” In this section, we discuss both in turn. A third,

“Why?”, is treated in Section 7.

5.1. Quantifying Between-Site Variation in Treatment Effects

We saw in Section 4 that multisite trials enable the analyst to estimate the between-site component

of the variance of the treatment effects. A recent survey of multisite trials in education and job

training programs suggests that the between-site variance may tend to be small in studies where

the intervention itself has a small ATE (Weiss et al. 2017). This type of heterogeneity is discussed

at length by Raudenbush & Bloom (2015), who also present basic random effects estimators.

5.2. Visualizing Between-Site Variation in Treatment Effects

Suppose we display a histogram of sample mean differences, that is, β̂ j = Ȳ1 j − Ȳ0 j , j = 1, . . . , J.

Unless all site sizes are large, this histogram will be too wide because of the noise of β̂ j as an

estimate of β j . Bayes or empirical Bayes estimates, which shrink unreliable estimates toward the

mean, will be too narrow, but Louis (1984) shows how to recalculate these estimates to ensure

that the dispersion in the histogram is consistent with the estimate of τbb sites. Bloom et al. (2017)

provide an example in education. We note that the shape of such a histogram will be influenced

by parametric assumptions regarding the distribution of the unobservable values of β j . Shrinkage

estimators of site-specific effects can be used to rank sites by effectiveness and to identify especially

effective (or harmful) sites for further study (Shen & Louis 1998, Paddock et al. 2006).

5.3. Quantifying Within-Site Variation in Treatment Effects

We noted earlier that the variance of treatment effects within sites is not identified because the

data contain no information about the covariance between the two potential outcomes of any unit.
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However, Ding et al. (2016) show in a single-site setting that at least there always exists a valid test

of zero treatment effect variance in the finite sample, and thus in any population containing that

sample. Their approach relies on a Fisher randomization test, using a clever trick (Berger & Boos

1994) to handle the unknown ATE, which in this setting is a nuisance parameter. Under a similar

framework the same authors give sharp bounds for the treatment effect variance using a mathe-

matical property of the empirical quantile function (Ding et al. 2019). Both of these methods can

also be used to study the idiosyncratic variance that remains in treatment effects after conditioning

on covariates that moderate the effects, as discussed in the next section.

5.4. Identifying Moderators of a Treatment Effect

Moderation occurs when the conditional average treatment effect (CATE) differs from the ATE.

Moderation answers the question “for whom does the treatment work differently?” Generally,

moderation refers to CATEs that condition on some observed pretreatment covariate like race or

gender, though we might also expand our conception to include conditioning on latent character-

istics as in principal stratification (Feller et al. 2016).We also see in Section 7 that statisticians have

expanded the concept of mediation to apply to interaction effects between treatment assignment

and a mediator. Potential moderators may be chosen by substantive theory (Angrist et al. 2013,

Shadish et al. 2002) or by statistical methods for variable selection and high-dimensional data

(Green & Kern 2012, Guo et al. 2017, Imai & Ratkovic 2013, Wager & Athey 2018). In either

case, researchers should be wary of multiple testing since searches for moderation may devolve

into fishing expeditions (Wang & Ware 2013).

5.5. Principal Stratification

Frangakis & Rubin (2002) propose a novel approach to studying the moderating effect of mem-

bership in a principal stratum, a latent class of persons. To illustrate, Feller et al. (2016) provide

an application of this approach using the National Head Start Impact Study. They define three

principal strata according to how students would respond to treatment assignment. Stratum 1

are those who would attend Head Start if assigned to Head Start but who would attend an al-

ternative day care center if assigned to control. Stratum 2 includes those who would go to Head

Start if so assigned, but who would otherwise stay home (with a parent, neighbor, or relative).

Stratum 3 consists of those who would go to an alternative center regardless of treatment assign-

ment, and Stratum 4 are those who would stay home regardless of treatment assignment. Other

logically possible strata are assumed empty. For example, those who would not attend Head Start

if assigned to Head Start but who would attend Head Start if not assigned to Head Start are called

defiers and are assumed not to exist. Similarly, random treatment assignment is assumed not to

affect the choice between attending an alternative center or staying home. A crucial feature of this

methodology is that stratum membership is treated as a pretreatment covariate, though one we

cannot observe for all units. We discuss a special case of this methodology in detail in Section 6.

5.6. Nonuniqueness of Moderator Models

Using principal stratification, Feller et al. (2016) find that the children who benefitted most are

those who would attend Head Start if assigned but who would otherwise stay home. In contrast,

those who would attend Head Start if assigned but who would otherwise attend an alternative

preschool center benefitted little. Using the same data but a different methodology, Bitler et al.

(2014) found that children with low skills as measured by pretreatment cognitive assessments
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benefitted most from assignment to Head Start. By analyzing impacts across demographic

subgroups, Bloom & Weiland (2015) find that low-income Hispanic children benefitted most.

In fact, it is possible that all three findings are correct, if the low-skill children were low-income

Hispanic children who would have stayed home if not assigned to Head Start. More generally,

moderation models do not give unique explanations. See Section 7 for a review of strategies for

testing explanatory theories.

6. NONCOMPLIANCE

So far,we have studied the impact of random assignment to treatmentT. If all units actually receive

their assigned treatment, the effect of assignment is simply the effect of the treatment. This is a

benign state of affairs that statisticians have labeled full compliance with treatment assignment.

Full compliance is not typically at play in large-scale educational field trials, and under partial

compliance the effect of random assignment is called the intention to treat (ITT) effect. In the

Tennessee study of class size reduction, some students assigned to large classes ended up in small

classes (Krueger & Whitmore 2001). In the National Head Start Impact Study, about 25% of

the children randomly offered a place in Head Start did not attend, and about 15% of those not

offered a place actually did attend (Bloom & Weiland 2015). In lottery studies of new schools, a

typical finding is that about 75% of lottery winners and 25% of lottery losers attend the school

(Hassrick et al. 2017). This occurs because the lottery losers are placed on a waiting list and may

be offered a place if lottery winners decline.

6.1. Noncompliance in a Single-Site Study

The method of instrumental variables (IV) has been widely used to study the impact of pro-

gram participation in randomized experiments when compliance with randomization is imperfect:

Treatment assignment is an instrument used to identify the impact of actually experiencing the

program (Angrist et al. 1996, Heckman & Robb 1985).We first review how the IV method is now

conventionally used in single-site studies. Next, we consider a much smaller literature that gen-

eralizes these results to the case of multisite trials.We see that new complications arise, requiring

careful consideration of assumptions that underlie alternative analytic strategies.

6.1.1. Homogeneous treatment effects. Figure 1a displays a model of the association treat-

ment assignment, T ∈ {0, 1}, program participation M ∈ {0, 1}, and Y. The effect of assignment

on participation is regarded here as a constant, γ . The effect of participation on the outcome is

regarded as the constant δ. Note that there is no direct path between T and Y (the direct effect

θ is then set to 0). This is known as an exclusion restriction, reflecting the key assumption that a

student’s assignment to treatment can affect the outcome only if that student participates in the

program.

We regressM on T to obtain an estimate of γ , and we regress Y on T to obtain an estimate of β.

Both estimates, protected by randomization, are unbiased, so the ratio δ̂ = β̂/γ̂ , called the Wald

estimator after Wald (1940), is consistent for δ so long as γ 	= 0. In practice, the null hypothesis

H0 : γ = 0 must be rejected with sufficient confidence to avoid what is called finite-sample bias

(Bound et al. 1995). Analysts often use F(1, df ) > 10, where df is the denominator degrees of

freedom for the central F distribution, as a criterion that renders finite-sample bias small.

190 Raudenbush • Schwartz

A
n
n
u
. 
R

ev
. 
S

ta
t.

 A
p

p
l.

 2
0
2
0
.7

:1
7
7
-2

0
8
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.a
n
n
u
al

re
v
ie

w
s.

o
rg

 A
cc

es
s 

p
ro

v
id

ed
 b

y
 C

o
lu

m
b
ia

 U
n
iv

er
si

ty
 o

n
 0

3
/1

0
/2

0
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

. 



T
γ

δ

θ
β = γδ + θ

If θ = 0, E(β) = γδ

M

Y

T
Γi

Δi

Θi

Bi = ΓiΔ i + Θi

If Θi = 0, E(Bi) = γδ = Cov(Γi,Δ i)

M

Y

a Site-speci�c causal model b Person-speci�c causal model

Homogeneous treatment effects Heterogeneous treatment effects

Figure 1

A path model with (a) homogeneous treatment effects and (b) heterogeneous treatment effects.

6.1.2. Heterogeneous treatment effects. While Figure 1a represents a causal model for a

population under the assumption of homogeneous treatment effects,Figure 1b displays a person-

specific causal model using potential outcomes (Raudenbush et al. 2012). Define the person-

specific causal effect of assignment on participation as Ŵi ≡ Mi(1) −Mi(0) and the person-specific

effect of participation �i ≡ Yi(m = 1) −Yi(m = 0). In principle, the potential outcome of assign-

ment depends not only on assignment itself but also on whether assignment generates participa-

tion. Thus, we can write the potential outcomesYi(t ) = Yi(t,Mi(t )) (Angrist et al. 1996).However,

under the exclusion restriction, once we know whether student i participates, knowing that stu-

dent’s treatment assignment has no bearing on that student’s outcome. Thus, under the exclusion

restriction,Yi(t ) = Yi(t,Mi(t )) = Yi(Mi(t )) and the ITT effect is

Bi ≡ Yi(Mi(1)) −Yi(Mi(0))

= Yi(0) +Mi(1)�i − [Yi(0) +Mi(0)�i]

= [Mi(1) −Mi(0)]�i

= Ŵi�i.

21.

The second step in Equation 21 follows from linearity, which is trivially met here because the

predictor Mi(t) is binary but can be contentious when Mi(t) is continuous. We can define the

average ITT effect through the equation

E(Bi ) ≡ β = E(Ŵi�i ) = E(Ŵi ) ∗ E(�i ) + Cov(Ŵi,�i )

≡ γ δ + σŴ
.
22.

We see from Equation 22 that average effect of treatment assignment will be large when any of

three terms is sufficiently large: the average compliance γ , the average benefit of treatment δ, or

the covariance σŴ
. This covariance will be large when program staff are able to induce students

who stand to benefit most from the program to comply with treatment assignment, or when these

students are otherwise more likely to comply. But recall that the conventional IV estimand is (for

γ 	= 0)

β/γ = δ + σŴ
/γ . 23.

So, the conventional instrumental variable estimator will only be consistent if σŴ
 = 0, the strong

assumption of no covariance between compliance and effect, which in most education applications

we would like to avoid.

www.annualreviews.org • Randomized Experiments in Education 191

A
n
n
u
. 
R

ev
. 
S

ta
t.

 A
p

p
l.

 2
0
2
0
.7

:1
7
7
-2

0
8
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.a
n
n
u
al

re
v
ie

w
s.

o
rg

 A
cc

es
s 

p
ro

v
id

ed
 b

y
 C

o
lu

m
b
ia

 U
n
iv

er
si

ty
 o

n
 0

3
/1

0
/2

0
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

. 



6.1.3. Monotonicity. Angrist et al. (1996) propose replacing the assumption σŴ
 = 0 with a

weaker assumption known as monotonicity, namely, that Ŵi ≥ 0 for all units i. This assumption

requires that treatment assignment discourages no one from participating in the treatment. The

price we pay for this weaker assumption is that our interpretation of δ is more constrained.

Tomotivate this concept, and following Frangakis & Rubin (2002), we define principal strata as

subsets of students defined by their potential participation under random assignment. The com-

pliers are those who would participate [Mi(1) = 1] if offered the program and not participate

[Mi(0) = 0] if assigned to control. For compliers, therefore, the impact of being assigned to the

program is Ŵi = 1. Noncompliers include never takers, those who would not participate under

either treatment assignment [Mi(1) = Mi(0) = 0], and always takers, those who would partici-

pate regardless of treatment assignment [Mi(1) = Mi(0) = 1]. Thus, for noncompliers, Ŵi = 0. A

fourth, logically possible stratumwould include defiers,whowould take up the program if assigned

to control but not if assigned to the program. For defiers, Ŵi = −1. The monotonicity assump-

tion rules out the existence of this stratum.Decomposition of the ITT effect by stratum generates

E(�i|Ŵi = 1) ≡ δCACE, or simply CACE, the complier average causal effect:

β = E(Bi ) = E(Ŵi�i ) = 1 ∗ E(�i|Ŵi = 1) Pr(Ŵi = 1) + 0 ∗ E(�i|Ŵi = 0) Pr(Ŵi = 0)

= E(�i|Ŵi = 1)γ ≡ δCACEγ.
24.

Hence,we can identify δCACE = β/γ , γ > 0, the average causal effect for the subpopulation whose

participation is influenced by random assignment.

A problem for interpretation is that the magnitude of δCACE may depend on how effective

the program is at inducing participation (Heckman & Vytlacil 2001). A program director who is

very skilled at encouraging participation in one study may generate a different δCACE than will a

program director in another study who is less skilled at doing so, even if the population average

impact of participation, δATE, is the same in the two studies. This ambiguity pervades applications

of IV in multisite trials, where staff and participants vary across sites. A beautiful feature of the

multisite trial is its capacity to evaluate heterogeneity in compliance and therefore to explore the

seriousness of this potential ambiguity for interpretation.

6.1.4. Heckman correction. Heckman (1979) introduced an unbiased estimator of the average

effect of program participation (not just among compliers) under alternative assumptions, which is

now known as the Heckman correction. This approach uses a simultaneous equation model: One

equation is a probit regression of program participation on assignment, and the other equation

is a linear regression of the outcome on participation. The two equations have correlated errors.

The key assumption is that the outcome errors and the latent propensity to participate (from the

probit) are bivariate normal in distribution. This can be a strong and brittle assumption, leading

to poor properties for apparently small violations. Zhelonkin et al. (2016) propose modifications

to increase robustness (see also Kline & Walters 2019).

6.2. Extension to Multisite Trials

In a multisite trial, the process described above is replicated within each site. We have person-

specific effects of treatment assignment, Bi j = Ŵi j�i j , and site average effects of treatment as-

signment, β j = γ jδ j (under a within-site no covariance assumption), where γ j is the fraction of

persons who comply with treatment assignment in site j and δ j is the CACE in site j. As before,

we might identify CACE within each site through Wald estimators, but this requires a relatively

large sample and high compliance in each site of the trial, and these conditions have not held in
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educational RCTs to date. Raudenbush et al. (2012) consider methods for studying the mean and

variance of δ j using a site-level no-compliance-effect covariance assumption. In highly original

work, Walters (2015) responds to this problem by extending the traditional Heckman correction

with site-specific pairs of simultaneous equations, which have coefficients with random effects that

induce shrinkage across sites. This method relies on potentially strong parametric assumptions.

6.2.1. Comment on interpretation. If we have full compliance in all sites, treatment effects

will vary if one or both of two conditions hold: (a) sites vary in subpopulations and subpopulations

respond variably to the same treatment, and (b) the treatment is implemented with variable effec-

tiveness across sites. Under noncompliance, CACE can differ not only because of a and b but also

because (c) some sites achieve higher compliance than others or (d) different sites encourage dif-

ferent subsets of the population to comply. Thus, the complier population is really an endogenous

outcome of the interplay between site practices and heterogeneous subpopulations. If a site can

achieve a large CACE by encouraging only the most promising persons to comply, that site will

look better than average on CACE. Stated more generally, if high compliance predicts low CACE,

the low-compliance sites will look better than average, particularly compared with δpersons. If high

compliance predicts high CACE, high-compliance sites will look better than average, particularly

when compared with δsites.

6.3. Open Problems

From the standpoint of the multisite trial, it seems that in replacing the no-covariance assumption

with themonotonicity assumption and thereby changing the definition of the impact of attendance

from ATE to CACE, we have not really solved the problem of selection bias that noncompliance

generates (Heckman & Vytlacil 2001). In essence, the multisite trial can reveal the challenges

of summarizing evidence from a replicated experiment characterized by noncompliance. Unless

compliance rates are uniformly high, some modeling based on additional assumptions appears

essential to achieve clear scientific interpretation.More research is needed on alternativemodeling

strategies and required assumptions.

7. MEDIATING MECHANISMS

In 2002, the IES created the What Works Clearinghouse, an agency that sorts through claims

of educational effectiveness and certifies particular interventions as effective (Confrey 2006). In

recent years, however, IES has increasingly pressed for answers to harder questions, not about

whether an intervention works, but rather about why. For example, suppose that a training pro-

gram helps students learn only if it improves a teacher’s measurable instructional practice (see

Allen et al. 2011). Knowing this is crucial for those who are adopting an experimentally tested in-

tervention at a new site. If measured teacher practice is not changing at the new site, the training is

not working as expected there, and one needs to modify or discontinue the training. This sounds

simple, but nailing down mediational mechanisms is hard.

7.1. Conventional Mediation in Single-Level Studies

Many thousands of studies have explored mediating mechanisms using path analysis, an approach

originated by Wright (1921), extended by Duncan (1966), and codified for application by Baron

& Kenny (1986) in one of the most widely cited articles in the history of psychology. Hong (2015,
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chapter 10) provides a detailed review of this approach as well as modern criticism and alternative

approaches.

A stylized representation of this approach is displayed in Figure 1a. The impact of T onM is

represented by the regression coefficient γ ; the effect of M on Y is the regression coefficient δ.

The total effect of T on Y is then the regression coefficient β = γ δ + θ , where γ δ is the indirect

effect of T that operates through the mediatorM, and θ is the direct effect that operates through

unspecifiedmediators. If γ δ is large and θ is small,M is said to largelymediate the impact ofT onY.

7.2. Assumptions Underlying the Conventional Model

Holland (1988) was the first to apply the counterfactual account of causality (Haavelmo 1943,

Holland 1986, Neyman 1935, Rubin 1978) to derive the assumptions required for this conven-

tional method of mediation analysis. A useful extension is provided by Bullock et al. (2010). Hong

(2015, chapter 10) reviews these critiques and evaluates a series of methodological innovations in-

tended to relax the strong assumptions underlying this model. Assuming T is randomly assigned,

the following assumptions must be met if the conventional model is to identify the causal pathway:

(a) linearity of the association betweenM and Y within levels of T; (b) additivity of the impact of

T andM on Y, meaning that the impact of the mediator cannot depend on treatment assignment;

(c) ignorable assignment of M; (d) unobserved mediators lurking within θ are uncorrelated with

M given T; and (e) no covariance between the person-specific impact of T on M and the impact

of M on Y. To understand this last assumption, we find it useful to represent the mediation pro-

cess through a person-specific model with heterogeneous effects (see Figure 1b).We see that the

person-specific indirect effect Ŵi�i has expectation

E(Ŵi�i ) = γ δ + Cov(Ŵi,�i ). 25.

The conventional model requires setting this covariance to 0. To see why this is a strong assump-

tion, let us consider the following example (Nomi & Allensworth 2009): Assignment to intensive

high-school math instruction (T ) increases advanced mathematics course-taking later in high-

school (M), which in turn increases college enrollment (Y ). To assume Cov(Ŵi,�i ) = 0 is to as-

sume that students who respond to treatment assignment by taking more advanced courses (that

is, who have large values of Ŵi) are not especially likely to benefit in terms of college enrollment

from taking advanced math courses (that is, to have large values of �i). This seems implausible

and motivates further modeling.

7.3. Attempts to Relax the Assumptions of the Conventional Model

Suppose now that we conceive of T (receiving intensive math instruction early) and M (taking

advanced math courses later on) as two treatments, both binary. Rather than regarding a student’s

potential mediator values as a pretreatment covariate as in principal stratification, we view

advanced course taking as a second treatment to which a student is effectively randomly assigned.

By hypothesis, random assignment to T increases the probability of random assignment to M,

which increases the outcome Y. Random assignment to M, however, does not occur in practice.

Instead, the analyst regards subsets of students who have the same distribution of pretreatment

covariates, X, as being, in effect, randomly assigned toM. The information in X, which may have

high dimension, is summarized by the propensity score (Rosenbaum & Rubin 1983).

Recall that in principal stratification with binary T and binary M, potential mediator values

were fixed a priori, so that each participant possessed two potential outcomes. In contrast, under
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sequential random assignment, each participant possesses four potential outcomes. Define M(1)

and M(0) as two random variables, each of which can take on two values (1 or 0). We now have

the decomposition (Pearl 2001)

E[Y (1,M(1))] − E[Y (0,M(0))] =
{

E[Y (1,M(1))] − E[Y (1,M(0))]
}

+
{

E[Y (1,M(0))] − E[Y (0,M(0))]
}

.
26.

Here E[Y (1,M(1))] − E[Y (1,M(0))] is the indirect effect of the mediator, holding T constant

at 1, and E[Y (1,M(0))] − E[Y (0,M(0))] is the direct effect of treatment T conditional on M(0).

Note that the decomposition is not unique, since we could have instead added and subtracted

E[Y (0,M(1))]. The curious feature of the decomposition in Equation 26 is the counterfactual

quantity E[Y (1,M(0))]. We can think of this as the mean outcome if the entire population were

treated (T= 1) but the fraction of persons assigned to mediator (M = 1) was Pr(M(0) = 1) rather

than Pr(M(1) = 1). Three statistical approaches have emerged to model and estimate this decom-

position. All rely on sequentially ignorable mediator assignment given covariates, and each allows

statistical interaction between the treatment T and the mediatorM.

7.3.1. Elaborated regression approaches. Petersen et al. (2006) andVanderWeele (2015) elab-

orate the conventional model to allow for interactions betweenM and Y and for nonlinear associ-

ations betweenM and Y. They also emphasize eliminating observable confounding by including

pretreatment covariates, call them X, in their models. A series of regressions and a strategy for

combining results across regressions are required to identify the causal effects of interest. We do

not describe thesemethods in detail because our space is limited and these references are admirably

clear. We can, however, conclude that this line of work essentially relaxes the assumptions of the

conventional model by making the model more complex. Nonadditive and nonlinear structural

forms can replace the linear and additive forms but must be explicitly specified. The assumption

that the covariance in Equation 25 is null is weakened by virtue of conditioning on covariates X.

The price to be paid using this approach is a series of functional form assumptions required to

efficiently estimate an increased number of parameters.

7.3.2. Weighting-based approaches. Using Equation 26, Hong (2015) proposed a ratio of

inverse probability of treatment weighting, a strategy that reweights the experimental group to

have the same distribution as the control group on the mediator. This weighting effectively occurs

within levels of the propensity score conditional on X. Like the elaborated regression approaches,

weighting approaches assume sequential randomization given X. However, the elaborated regres-

sion approach is more ambitious because it seeks to estimate paths between T andM andM and

Y while the weighting approach just estimates two quantities: the average indirect and average

direct effects. The more ambitious elaborated regression approach requires more functional form

assumptions. It is also presumably more efficient under those assumptions. In contrast, the weight-

ing approach uses an essentially nonparametric model for the outcome.

7.3.3. Simulation-based methods. Imai (2010) proposes Monte Carlo methods for estimating

the counter-factual quantity E[Y (1,M(0))]. First, sampleM given the covariates X and treatment

assignment T = 0. Next, simulate E[Y (1,M(0))] from the model for Y given covariates X and

T= 1 andM(0).These simulations can be obtained under a variety of models, linear and nonlinear,

for a variety of discrete and continuous predictors.
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7.4. Multilevel Mediation Models

The multilevel setting can increase the complexity of the mediation model. For example, one or

more of the coefficients in the extended regression coefficient approach can vary over sites, and

direct and indirect effects may vary and covary across sites. However, the multilevel setting offers

new opportunities to learn about mediation processes, and we consider three briefly.

7.4.1. Multilevel intervention as a process of sequential randomization. The 4Rs interven-

tion is a school-wide program that aims to encourage instruction that is rigorous, is relevant to stu-

dent interests, and reduces aggressive behavior (VanderWeele et al. 2013). Schools were matched

on demographics and then, within pairs, randomly assigned to treatment or control conditions.

Within the experimental condition teachers received training needed to implement the program.

The fidelity of implementation depended on the teacher’s interest and skill. Sequential randomiza-

tion seems an appropriate model here. Define Tk = 1 if school k is assigned to treatment, Tk = 0

if not; next, M jk = 1 if teacher j within school k implements the treatment and M jk = 0 if not.

We assume that children are nested within schools, but assignment to teachers is uncertain. This

generates four potential outcomes for each child i: Yi jk(Tk,M jk(Tk )) where Tk and M jk are each

binary.

Hong & Raudenbush (2013) regard this as an iconic model of how many policies operate.

A policy is framed for each of many organizational units, for example, schools, clinics, or police

precincts, the success of which depends on heterogeneous agents (teachers, physicians, police of-

ficers), with consequences for the intended recipients (students, patients, community residents).

VanderWeele et al. (2013) also model spillovers across classrooms. They reasoned that even if the

4Rs intervention was poorly implemented within a particular classroom, students might benefit

from effective implementation in other classrooms. For example, if a teacher in a neighboring

classroom was effective at promoting well-regulated behavior among her students, those students

would be less likely to engage in altercations with other students during lunch and after school.

Hence, the conventional SUTVAmust be relaxed for two reasons: because the treatment depends

for its implementation on heterogeneous teachers, and because of spillovers within schools.

7.4.2. Exploiting site-to-site variation. Moving to Opportunity is a program that aimed to

encourage educational, economic, and health outcomes among low-income residents of inner-

city housing projects. Local housing authorities in each of five cities randomly assigned the offer

of a housing voucher to residents under the condition that the voucher be used to relocate to low-

poverty neighborhood. To study the impact of using mediators (e.g., the posttreatment poverty

level of the residence), Kling et al. (2007) proposed what is now called the multisite,multimediator

model. Reardon & Raudenbush (2013) derived the assumptions needed to identify causal effects

within this model, which has been implemented by Duncan et al. (2011) andNomi & Raudenbush

(2016).

To understand how this model works, we can regard the model for noncompliance as a special

case where we have adopted the exclusion restriction. Recall that, within a multisite trial with

binary treatment and binary compliance measure, we can define β j = γ jδ j as the average effect of

treatment assignment within site j, where γ j is the average effect of assignment on participation

and δ j is the average impact of participation on the outcome in that site. We can therefore write

a simple random effects regression model for the estimate impact of random assignment on the

outcome in site j:

β̂ j = γ jδ j + β̂ j − β j

= γ jδ + γ j (δ j − δ) + β̂ j − β j.
27.
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Note that the model has no intercept, which reflects the exclusion restriction in the compliance

model: Random assignment can affect the potential outcome only if it affects participation in the

program.Themodel can be identified by substituting the estimate γ̂ j for γ j under (a) the exclusion

restriction, (b) Var(γ j ) > 0 and/or E(γ j ) > 0, and (c) E[(δ j − δ)|γ j] = E[(δ j − δ)] = 0. Assumption

a is standard in noncompliance studies while c is strong and uncheckable. For that reason, we do

not include this approach in our review of noncompliance above. However, the nice feature of

Equation 27 is that it can be expanded to include multiple mediators. Ignorability assumptions

such as c remain strong, but a major advantage here is that we need not make an assumption

that the mediator is randomly assigned. We are, in fact, exploiting the association between the

quantities β̂ j and γ̂ j , each of which is protected by randomization. Reardon et al. (2014) propose

a bias correction when assumption c is violated. If the exclusion restriction comes under doubt,

we can add an intercept to the model under the assumption that unobserved mediators are not

associated with the observed mediators.

7.4.3. Modeling variation in the mediation process. Qin et al. (2019) extend the weighting

approach under sequential randomization to study such variation across sites in the mediation

process. Recall that the outcome model associated with this method is remarkably simple. This

makes the process of extended the model to include random coefficients quite straightforward

without adding undue complexity.

8. GENERALIZABILITY

Although the turn toward large-scale randomized experiments has improved the internal validity

of causal claims in education, it is well known that many RCTs use convenience samples (Stuart

et al. 2017). Two notable exceptions are Head Start and Job Corps, which took probability samples

of program centers from full national frames.Of course, the predominance of convenience samples

is also a major concern in other fields that rely on randomized experiments, such as medicine

(Huebschmann et al. 2019, Kennedy-Martin et al. 2015). The result is that observed samples in

RCTs cannot be regarded as representative of actual populations of interest, so estimated ATEs

may not closely reflect the actual ATEs of interest. Some authors have begun to argue that in

many settings this external validity bias is likely intolerably large by the standards of internal

validity (Bell & Stuart 2016). As a result, the past few decades have also seen renewed attention

to methods to measure and improve the generalizability of study designs and actually make causal

generalizations under explicit assumptions when the RCT constitutes a convenience sample.

8.1. Defining Generalizability

Some social scientists make a provocative argument that the most interesting generalizations

draw upon the underlying science behind why a treatment works the way it does (Deaton &

Cartwright 2018, Rothman et al. 2013); this poses causal generalization as a scientific problem

about the underlying nature of treatments. Shadish et al. (2002) describe an approach in which

the investigator’s knowledge of program theory leads to hypotheses about characteristics of

settings and persons that ought to amplify or muffle the impact of the intervention. A broadly

generalizable program has similar positive effects across those characteristics. If the impact of the

program depends on favorable moderators, generalizations are hedged accordingly.

From an alternative point of view, the statistics literature frames causal generalization as a

problem of sampling—extending inferences from the observed (convenience) sample to some
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well-defined target population about which one has considerable information. In this section we

focus on this perspective.

In some cases, the sample is a subset of the target population. In others, the sample is not a

subset. For example, the RCT may contain schools in one state while the target population in

schools is located in another state. In this case the problem of generalization may be recast as a

problem of transportability (Pearl & Bareinboim 2014, Westreich et al. 2017), though this usage

has not been adopted universally (Hernán&VanderWeele 2011).Mathematically, the assumptions

required to solve these problems are nearly identical (Tipton 2013). The informal language we

use to discuss target populations seems to lend itself to the classical finite population theory of

survey sampling (Cochran 1977), since often the target population is some specific population

with a known frame. Classically, only sample inclusion and treatment assignment are random,

though some recent work also treats covariates and outcomes as random (Tipton 2014). Instead,

we might use a superpopulation model, which may include an embedded finite population of

interest (Deming & Stephan 1941,Graubard & Korn 2002,Hartley & Sielken 1975) or not (Ding

et al. 2017; Imbens & Rubin 2015, p. 39). Beyond statistics, our reading of the literature is that

education research has not widely confronted these alternatives or reached consensus about which

point of view best fits most educational applications.

8.2. Identification and Estimation Strategies for Population Average
Treatment Effects

Recently, statisticians have proposed a new type ofmethod for generalization when the experimen-

tal sample is a convenience sample (Stuart et al. 2011,Tipton 2013).The strategy is to augment the

experimental data with data from a large, representative sample survey or even a census from an

interesting population. For example, Tipton (2013) considers a cluster-randomized trial of math-

ematics software in 92 middle schools in Texas and merges these data with publicly available data

on 1,713 middle schools in Texas.Crucially, the experimental data and the auxiliary data must have

measured the same covariates. Typically the auxiliary data do not contain the outcome of interest,

or it is at least assumed that these units have not received the treatment, so all potential outcomes

may be missing in the population. The analyst merges the auxiliary data with the data from the

experimental trial and attempts to model the connection between the experimental and auxiliary

data.

Some have modeled the sample selection process (sampling propensity score methods); others

study the outcome as a function of covariates (response surfacemodeling) in the experimental sam-

ple and predict outcomes in the auxiliary portion. A third approach combines selection modeling

and outcome modeling (doubly robust methods). We discuss the crucial assumptions underlying

these methods in the next subsection.

8.2.1. Sampling propensity score methods. Using the merged data, the analyst fits the

conditional probability of being in the experiment given covariates. One way to use the propen-

sity score for causal generalization is weighting (Kern et al. 2016, Stuart et al. 2011). Units in

the experimental sample with high propensity scores are weighted down, while units with low

propensity scores are weighted up. The reweighted experimental sample then has approximately

the same distribution on covariates as does the larger, representative survey or census. This

approach closely resembles methods that use weighting to correct for nonresponse in surveys.

An alternative strategy classifies members of the experimental sample into strata with closely

matching propensity scores and then weights observations by stratum size (O’Muircheartaigh &
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Hedges 2014, Tipton 2013). This method may produce more stable weights, yielding a smaller

sampling variance but slightly more bias than simply using propensity scores as weights.

8.2.2. Response surface modeling. In this case the analyst regresses the outcomes on treat-

ment, covariates, and treatment-by-covariate interactions using only the RCT data. Using this

fitted model, the analyst predicts both potential outcomes for every member of the auxiliary data

set to estimate an ATE in the target population. This approach is less popular in other areas of

causal inference, perhaps because researchers feel more confident estimating propensity scores

than specifying functional forms for the outcome regression; it is not clear a priori that either

strategy is more challenging. One notable exception is Kern et al. (2016), who use a semipara-

metric Bayesian tree-based regression method that allows flexible functional forms but penalizes

complexity through clever default priors (Chipman et al. 2010); it has been used successfully for

sample ATEs in observational data (Dorie et al. 2019, Hill 2011).

8.2.3. Doubly robust methods. These approaches model both the sampling process and the

outcome regression and, somewhat comfortingly, give consistent population average treatment

effect estimates when either model is specified correctly; they have met some success in general-

izability but are not guaranteed to strike the optimal bias-variance tradeoff (Dahabreh et al. 2019,

Kern et al. 2016).

8.3. Assumptions for Generalizability

The key challenge in causal generalization using the methods just described is that wemust explic-

itly model how the experimental sample provides information about the ATE in the target popula-

tion. Typically researchers have made two main assumptions to this end: unconfounded sampling

and common support between the sample and population (Tipton 2014). Together, these assump-

tions may be called strongly ignorable sampling, borrowing from the language of Rosenbaum &

Rubin (1983).

Define the potential outcomes as Yi(1) if unit i were treated and Yi(0) if not, and define Si = 1

if unit i is in the experiment and Si = 0 if that unit is in the auxiliary data. The unconfoundedness

assumption states that every unit’s person-specific treatment effect is independent of membership

in the RCT,

Yi(1) −Yi(0)⊥Si|Xi, 28.

and is analogous to the missing at random assumption (Little & Rubin 2002) in the context of

missing data. The common support assumption, also referred to as positivity, requires that

0<Pr(Si = 1|Xi ) < 1. 29.

The first consequence of Equation 29 is that the sampling process cannot systematically

exclude subsets of the target population—this is analogous to a coverage error in survey sampling

and is discussed at length by Tipton (2013). A second consequence is that the sample used for

making generalizations cannot include units not reflected in the target population. In many stud-

ies, common support is not met in at least some populations of interest, so researchers must instead

target subpopulations for which common support holds in order to avoid heroic extrapolation.

Often the strongly ignorable sampling assumption is stated in terms of all available covariates,

but there are two important nuances to covariate selection that must be addressed statistically

and scientifically. First, for the purpose of estimating the population average treatment effect,
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generalization methods only need to use covariates that affect both the probability of sampling

and the treatment effects (i.e., moderators) (Hill & Su 2013, Stuart et al. 2011). Second, as some

have pointed out (D’Amour et al. 2017), unconfoundedness and common support assumptions

are antagonistic goals—including more covariates makes unconfoundedness more plausible but

also makes common support harder to satisfy as the dimension of the covariate space grows.

8.4. Measuring Generalizability

Methods to assess the generalizability of RCT results are important for a variety of reasons even

before an RCT is conducted or generalized estimates are produced. First, they may be useful dur-

ing study design in considering eligibility criteria and sample selection or recruitment. Second,

in analysis, some potential populations of interest may be much more amenable to generaliza-

tions from a particular study, so investigators may discover that while one target population is

intractable, another one is not. For specific diagnostics, Stuart et al. (2011) consider the standard-

ized mean difference of propensity scores in the sample and population data, while Tipton (2014)

propose an index between 0 and 1 that depends directly on more nuanced features of these two

propensity score distributions.

8.5. Open Problems

Two factors conspire to make population average treatment effects more difficult to estimate ac-

curately than their sample counterparts—basic sampling variability (Tipton et al. 2017) and the

strong ignorability of sampling assumption.These factors suggest that the field needs more meth-

ods for thorough but approachable sensitivity analysis (Nguyen et al. 2017) since all causal gen-

eralizations from RCTs generally rest on assumptions that data cannot definitively test. Relatedly,

we need a better understanding of optimal design for RCTs that are more generalizable (Tipton

et al. 2014, Tipton & Peck 2017).

9. SPILLOVERS AND HETEROGENEOUS AGENTS

Recall that SUTVA requires that there be only one version of the treatment and that one per-

son’s potential outcome is not influenced by the treatment assignment of other people. However,

education is a social process. Any educational policy must be implemented by teachers who are

heterogeneous in skill. Hence, students may experience different versions of the treatment in dif-

ferent classrooms or schools. Moreover, students typically learn not only from the teacher but

from each other. Thus, one student’s treatment assignment may spill over to another student.

Recognizing this, educational researchers and other social scientists have devised strategies for

relaxing SUTVA.

Again, define Ti j = 1 if student i in cluster j is assigned to a new treatment and Ti j = 0 if not.

DefineT j = (T1 j ,T2 j , . . . ,TN j ) as the vector of randomly varying treatment assignments of all N j

students in site j, and define the outcome that student i will display under the realization T j = t j
as Yi j (t j ). The causal effect on the outcome of student i of t j relative to an alternative assignment

vector t∗j is therefore Yi j (t j ) −Yi j (t∗j ), the difference between these two potential outcomes. The

possibility that perturbing the treatment assignment of any subset of students in a site would

modify the potential outcome of all students in that site makes causal inference intractable because

the number of potential outcomes for any student is 2N j . SUTVA requires that Yi j (t j ) = Yi j (ti j ).

SUTVA makes causal inference tractable, but educational researchers have questioned its ap-

plicability in some cases. Hong & Raudenbush (2006) studied the effect of requiring children
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who show little progress during kindergarten to repeat kindergarten rather than being pro-

moted to first grade, a practice known as grade retention. The authors reasoned that the impact

of grade retention on a given student would depend upon how many of their classroom peers

were retained. It also seemed plausible that the retention of slowly progressing peers might af-

fect the potential outcomes of children who would always be promoted. They proposed a relax-

ation of SUTVA (Hudgens & Halloran 2008, Sobel 2006) such that Yi j (t j ) = Yi j (ti j , f (t j )) where

f (t j ) is a scalar function of the entire vector of treatment assignments in site j. For example,

f (t j ) = tTj t j/n j , the fraction of students in school j who are retained, might be regarded as cap-

turing the mechanism by which peer treatment assignments affect a student’s potential outcome.

Hence, Yi j (0, f (t j )) −Yi j (0, f (t∗j )) would represent the effect on a student who would be pro-

moted of having f (t j ) rather than f (t∗j ) of her peers retained. Notice that f (t j ) is a site-level

causal variable, suggesting a useful experiment in which clusters are randomly assigned to values

of f (t j ) and eligible students within clusters are assigned at random to be retained (Hudgens &

Halloran 2008). Basse et al. (2019) studied an intervention to reduce truancy and used this frame-

work to study the effect of a sibling’s treatment assignment on untreated siblings.Key assumptions

in this framework are (a) intact sites, that is, students do not migrate from one site to the other

during the course of the study, and (b) no interference between sites. Randomization by cluster

may be regarded as a strategy for relaxing SUTVA. Suppose that cluster j is assigned at random

to treatments. We can then write the child-specific causal effect as

Bi j ≡ Yi j (1, 1, . . . , 1) −Yi j (0, 0, . . . , 0). 30.

Thus, assignment of the entire cluster affects the treatment assignment of every student in that

cluster and we have identification without SUTVA.

10. PROMISING EXPERIMENTAL DESIGNS

In this section we review two promising experimental designs that are leading to success in other

fields and are beginning to arouse interest in education.We hope that education research will see

another methodological renaissance, this time focused on experimental designs that answer even

richer questions about real-world interventions.

10.1. Sequential Multiple Assignment Randomized Trial Designs
for Adaptive Interventions

Adaptive interventions, also called dynamic treatment regimes, are multistage interventions that

include a sequence of decision rules that use current information about each person to determine

individualized treatment at each stage (Chakraborty & Murphy 2014). The SMART is the basic

experimental design used to study adaptive interventions, and it sequentially randomizes subjects

to the treatments available at each stage according to their previous outcomes (Murphy 2005).

Estimating and describing uncertainty about the optimal dynamic treatment regime (i.e., the set

of adaptive decision rules that lead to the best average outcome at the end of the intervention) are

challenging because the parameters of interest are nonsmooth functions of themodel, somost clas-

sical statistical theory relying on asymptotic expansions is not relevant (Laber et al. 2014, Luedtke

& van der Laan 2016).

These methods have been primarily used in behavioral science and clinical trials (Lei et al.

2012, Wahed & Tsiatis 2004), though adaptive interventions are clearly of great interest in ed-

ucation (Almirall et al. 2018, Raudenbush 2008). For example, Kilbourne et al. (2018) describe
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an ongoing SMART on training school staff to provide cognitive behavioral therapy (CBT) to

students seeking mental health services. More than 100 high schools in Michigan with over 200

school staff members were cluster-randomized to receive two types of CBT training, and then

after three months, within both initial randomization groups, schools were again randomized

to different follow-up training. In another recent example, Kim et al. (2019) used a SMART

to refine a literacy intervention for kindergarten to grade 2 students by considering a second

stage targeted at improving outcomes for children who were not helped by the first-stage treat-

ment. Of course, all teaching can also be considered an adaptive intervention in which teachers

continually assess their students’ understanding and then tailor instruction accordingly. In one

study, children aged 3–5 were assessed every 10 weeks on early math skills, and teachers used

these assessments to make updated instructional plans (Raudenbush et al. 2020). One might also

imagine studying adaptive instruction at a much more fine-grained scale in educational software

that provides near-constant assessment of student knowledge, perhaps borrowing from meth-

ods for so-called microrandomized trials in mobile health (Boruvka et al. 2018, Klasnja et al.

2015).

Observational data have also been used to estimate optimal dynamic treatment regimes in edu-

cational examples including intensive elementary mathematics instruction (Hong & Raudenbush

2008) and tracking in high schools (Zajonc 2012), though the additional required ignorability

assumptions may be very strong.There is great room to apply SMARTs more widely in education.

Some methods exist to study adaptive interventions in multilevel settings (Kilbourne et al. 2013,

NeCamp et al. 2017) but this is an understudied area, especially in the context of multisite trials

where much might be learned about how these complex interventions differ in effectiveness

across sites.

10.2. Factorial Designs for Multicomponent Interventions

Long after their storied past in classical experimental design, factorial designs are receiving re-

newed attention as part of the MOST (multiphase optimization strategy) framework for develop-

ing and improving complex interventions (Collins 2018,Collins &Kugler 2018,Dziak et al. 2012).

TheMOST approach, which has been used predominantly in behavioral medicine (McClure et al.

2012, Pellegrini et al. 2014), is analogous to the multiple phases of clinical trials for drug approval

but is focused on interventions that have multiple components that may be manipulated. Factorial

experiments here are used as an exploratory tool to identify the form of an intervention with the

optimal combination of features. Formal evaluation of this optimized intervention is based on a

traditional confirmatory two-arm randomized trial (Wyrick et al. 2014). This research strategy

is highly promising in education, where interventions are often complex by necessity and even

seemingly straightforward interventions may be implemented in many ways (McLaughlin 1987).
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Marta Casanellas, Sonja Petrović, and Caroline Uhler ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ 227

Bayesian Additive Regression Trees: A Review and Look Forward

Jennifer Hill, Antonio Linero, and Jared Murray ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ 251

Q-Learning: Theory and Applications

Jesse Clifton and Eric Laber ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ 279

A
n
n
u
. 
R

ev
. 
S

ta
t.

 A
p

p
l.

 2
0
2
0
.7

:1
7
7
-2

0
8
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.a
n
n
u
al

re
v
ie

w
s.

o
rg

 A
cc

es
s 

p
ro

v
id

ed
 b

y
 C

o
lu

m
b
ia

 U
n
iv

er
si

ty
 o

n
 0

3
/1

0
/2

0
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

. 



Representation Learning: A Statistical Perspective

Jianwen Xie, Ruiqi Gao, Erik Nijkamp, Song-Chun Zhu, and Ying Nian Wu ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ 303

Robust Small Area Estimation: An Overview

Jiming Jiang and J. Sunil Rao ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ 337

Nonparametric Spectral Analysis of Multivariate Time Series

Rainer von Sachs ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ 361

Convergence Diagnostics for Markov Chain Monte Carlo

Vivekananda Roy ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ 387

Errata

An online log of corrections to Annual Review of Statistics and Its Application articles may

be found at http://www.annualreviews.org/errata/statistics

A
n
n
u
. 
R

ev
. 
S

ta
t.

 A
p

p
l.

 2
0
2
0
.7

:1
7
7
-2

0
8
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.a
n
n
u
al

re
v
ie

w
s.

o
rg

 A
cc

es
s 

p
ro

v
id

ed
 b

y
 C

o
lu

m
b
ia

 U
n
iv

er
si

ty
 o

n
 0

3
/1

0
/2

0
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

. 


