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Abstract

Bifactor and other hierarchical models have become central to representing

and explaining observations in psychopathology, health, and other areas

of clinical science, as well as in the behavioral sciences more broadly. This

prominence comes after a relatively rapid period of rediscovery, however,

and certain features remain poorly understood. Here, hierarchical models

are compared and contrasted with other models of superordinate structure,

with a focus on implications for model comparisons and interpretation.

Issues pertaining to the specification and estimation of bifactor and other

hierarchical models are reviewed in exploratory as well as confirmatory

modeling scenarios, as are emerging findings about model fit and selection.

Bifactor and other hierarchical models provide a powerful mechanism for

parsing shared and unique components of variance, but care is required in

specifying and making inferences about them.
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INTRODUCTION

Bifactor models are now ubiquitous in the structural modeling of psychopathology. They have

been central to general factor models of psychopathology (e.g., Caspi et al. 2014, Laceulle et al.

2015,Lahey et al. 2012, Stochl et al. 2015) and have become a prominent focus inmodeling a range

of phenomena as diverse as internalizing psychopathology (Naragon-Gainey et al. 2016), exter-

nalizing psychopathology (Krueger et al. 2007), psychosis (Shevlin et al. 2017), somatic-related

psychopathology (Witthöft et al. 2016), cognitive functioning (Frisby & Beaujean 2015), and con-

structs central to prominent therapeutic paradigms (Aguado et al. 2015). They have also become

central to modeling method effects, such as informant (Bauer et al. 2013), keying (Gu et al. 2017,

Tomas & Oliver 1999), and other effects (DeMars 2006), and they have been used to explicate

fundamental elements of measurement theory (Eid et al. 2017).

Although bifactor and other hierarchical models are now commonplace, this was not always so.

Their current ubiquity follows a long period of relative neglect (Reise 2012), having been derived

in the early twentieth century (Holzinger & Harman 1938, Holzinger & Swineford 1937) before

being somewhat overlooked for a number of decades and then being rediscovered more recently.

Bifactor models were mistakenly dismissed as equivalent to and redundant with other superordi-

nate structural models (e.g., Adcock 1964,Humphreys 1981,Wherry 1959, Reise 2012, Yung et al.

1999); as differences between bifactor models and other types of superordinate structural models

became more recognized (Yung et al. 1999), interest in bifactor models reemerged.

HIERARCHICAL AND HIGHER-ORDER MODELS: DIFFERENTIATING
SUPERORDINATE STRUCTURAL ACCOUNTS

The origins of bifactor models are closely intertwined with the origins of factor analysis it-

self and theories of general cognitive ability. Spearman, for example, in an attempt to represent

Galton’s (1883) theories of general cognitive ability, developed amodel that distinguished between

superordinate general factors, orthogonal subordinate specific factors, and error factors (Beaujean

2015; Spearman 1904a,b) (Figure 1a). Although this model as formulated was not estimable, it

comprised basic features of bifactor models. As such, it laid the foundation for the idea that factors

could differ in their explanatory breadth, and it sparked the development of alternative models of

subordinate and superordinate factors and their relationships.
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Figure 1

Hierarchical and related models. (a) Spearman’s (1904a,b) two-factor model, a precursor to hierarchical and
bifactor models. The two-factor model includes a general factor (G) as well as systematic specific factors (S)
and random error factors (e). As originally formulated, Spearman’s two-factor model cannot be estimated,
but it established the idea of a superordinate general factor plus subordinate specific factors that account for
systematic residual influences not accounted for by the general factor. (b) The hierarchical or bifactor model,
which includes superordinate general factors (G) as well as subordinate specific factors (S); error factors are
not shown. Bifactor models are a subtype of hierarchical model with one superordinate factor and multiple
subordinate factors. The two-factor model and hierarchical model are examples of top-down models, in that
subordinate factors instantiate residual effects that are unexplained by the superordinate factor.

Correlational, Higher-Order, and Hierarchical Models

In particular, two approaches to conceptualizing subordinate–superordinate factor relationships

developed, especially in the context of understanding general cognitive ability (Beaujean 2015,

Carroll & Schweiker 1951). These two paradigms differ in how levels of abstraction are modeled:

In one, superordinate factors are at a greater level of abstraction because they influence subordi-

nate factors; in the other, superordinate factors are at a greater level of abstraction because they

influence a greater breadth of observed variables.

In one paradigm, exemplified by the work of Thurstone (1944), superordinate factors, such

as general cognitive ability, were seen as explaining subordinate factors in a bottom-up manner.

In this paradigm, subordinate factors were seen as theoretically salient, and superordinate factors,

such as general cognitive ability (g), were seen as representing the tendency for subordinate factors

to be correlated (Figure 2a). This bottom-up paradigm is represented by the higher-order model

(Figure 2b), in which general factors explain specific factors, and the latter are nested in the for-

mer. In this bottom-up paradigm, superordinate factors are superordinate because they influence

subordinate factors.

In contrast, in the top-down paradigm, subordinate factors explained residual phenomena

that were not explained by superordinate factors, such as g. In this paradigm, superordinate fac-

tors, such as g, were theoretically salient. This paradigm is represented by bifactor and other
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Figure 2

Correlated-factors and higher-order models. (a) A simple structure correlated-factors model in which
subordinate, lower-order factors correlate with one another. (b) A higher-order model, which includes
superordinate general factors (G) as well as subordinate specific factors (S); error factors are not shown. In
the higher-order model, superordinate factors account for correlations between subordinate factors. These
models are examples of bottom-up models, in that superordinate structural features instantiate relationships
between subordinate factors.

hierarchical models (Figure 1b) in which general and specific factors are orthogonal and uncor-

related with one another, explaining distinct nonnested components of shared variance among

indicators. In this top-down paradigm, superordinate factors are superordinate relative to subor-

dinate factors because they influence a greater breadth of observed variables.

Different terminology has been used for different types of hierarchical models, but for

the sake of clarity, here I adopt the terminology of Yung and colleagues (1999), who were

following an even older literature. In this tradition, bifactor models are a particular type of

hierarchical model in which there is one superordinate factor and multiple subordinate factors.

Other, nonbifactor hierarchical models might have multiple superordinate factors or more than

two levels of hierarchy, such that the distinction between general (G) and specific (S) factors

(Figure 1) is vague. In all hierarchical models, though, factors directly influence observed

variables and not more subordinate factors.

Relationships between higher-order, hierarchical, and correlational models are central to un-

derstanding the statistical characteristics of hierarchical and bifactor models and their interpre-

tation. As bifactor and other hierarchical models have been increasingly adopted, questions have

emerged about their statistical characteristics and the characteristics of the inferential methods

used with them in terms of estimation andmodel selection accuracy.Questions about their formu-

lation and interpretation have also emerged, with relationships between superordinate structural

models having a key role.

Constraints and Nesting Relationships

It is important to recognize that the higher-order model is nested in the hierarchical model as a

constrained version of the latter. In a bifactor or other hierarchical model, superordinate factors
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can have direct associations with observed variables (Figure 1b); in contrast, in a higher-order

model associations between superordinate factors and observed variables are mediated through

subordinate factors (Figure 2b). These mediation paths can be thought of as model constraints

on the associations between superordinate factors and observed variables in that in a higher-order

model, the association between a superordinate factor and observed variable is proportional to

the product of the path between the superordinate factor and subordinate factor and the path

between the subordinate factor and observed variable. In contrast, in a hierarchical model a direct

association between a superordinate variable and observed variable can be freely estimated and is

not dependent on mediating subpaths.

In general, this nested relationship implies that higher-order and hierarchical models are not

equivalent to one another, although hierarchical models with appropriate constraints can be equiv-

alent to higher-order models. A variant of a higher-order model in which superordinate factors

have direct effects on observed variables is equivalent to a hierarchical model (Yung et al. 1999),

although this type of higher-order model is less common.

Reise (2012) articulated how different factor models of interest are related to bifactor and other

hierarchical models. For example, by fixing superordinate factor loadings to zero and freeing factor

correlations, one obtains a correlated-factors model. By imposing appropriate constraints on the

superordinate-to-observed variable loadings of a bifactor model to represent them in terms of

subordinate factors, one obtains a higher-order model. Finally, by fixing the subordinate factor

model loadings to zero, one obtains a unidimensional factor model.

These constraints are critical for interpreting phenomena involving bifactormodels, such as the

relative fit of bifactor models compared with other models. In contrast to many model comparison

scenarios, in which constraints are placed by fixing parameter estimates to particular values (such

as fixing a path to zero), with bifactor model comparisons, the constraints involved often are im-

plicit in the structural differences between the models. These constraints also have implications

for interpreting different methods for estimating bifactor models, as those different estimation

methods may imply different constraints.

MODEL SPECIFICATION AND INTERPRETATION

Unique challenges arise in the specification of bifactor and other hierarchical models due to

their scope and overlap with other model classes. In exploratory factor analysis (EFA), bifac-

tor models pose challenges for the specification and rotation of loading matrices because they

are quasiconfirmatory, necessitating a priori specified loading patterns in the superordinate load-

ings but not in the subordinate loadings. Similarly, with both EFA and confirmatory factor anal-

ysis (CFA), bifactor models raise special issues with regard to model specification and identi-

fication due to their equivalence with various classes of models. Finally, interpreting models

and parameter estimates can be challenging or unintuitive due to the relativistic meaning of

structural features and qualitative changes in model interpretation that occur with changes in

estimates.

Exploratory Factor Analysis: Transformations and Rotations

A number of loading matrix transformations and rotations have been proposed for use in ex-

ploratory delineations of hierarchical structures. Although these methods sometimes overlap, they

can generally be classified as one of three types: rank-deficient transformations, analytic rotations,

or targeted rotations.
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Rank-deficient transformations: Schmid–Leiman and related methods.The Schmid–

Leiman family of methods [referred to here as the rank-deficient transformation (RDT) family of

methods, followingWaller (2018) and Schmid & Leiman (1957); also independently discussed by

Thompson (1939), Thurstone (1944), and Wherry and Winer (Wherry 1959, Wherry & Winer

1953)] comprise an older exploratory approach to hierarchical modeling.These methods now take

different forms, but all reexpress an exploratory factor model, from one having fewer factors with

higher-order structure (that is, factor correlations or higher-order factors) to one having more

factors without higher-order structure (a bifactor model). RDT methods can be thought of as a

way to reexpress a correlational or higher-order model in a bifactor form, and they illustrate the

nested relationship between the two types of models.

An early form of RDT, the Schmid–Leiman transformation (SLT), works by reestimating a

correlated-factors model as a higher-order factor model, reexpressing the factor correlations of

that model in terms of higher-order factor loadings. The indirect effects of superordinate factors

on observed variables, via higher-order and lower-order path combinations, are then reexpressed

as direct superordinate-observed variable paths of a bifactor model. In the SLT, an EFA model

having p lower-order factors is rotated using an oblique, independent-clusters rotation, and a

higher-order factor model is estimated based on the factor correlations from this oblique rota-

tion. Once the higher-order paths have been estimated, they can be multiplied by appropriate

lower-order paths to obtain estimates of the implied direct associations between the superordi-

nate variable and observed variables, as might be obtained in a bifactor model. This results in a

matrix of loadings on the observed variables, including the loadings of superordinate factors on

the observed variables, and of subordinate factors on the observed variables.What is obtained is a

set of loadings that structurally resembles a bifactor model, but because it was obtained through a

higher-order framework, is a bifactor model with those constraints and actually a rerepresentation

of a higher-order model.

Waller (2018) has provided an alternative approach to RDT, one that differs from the original

SLT in that it involves a single factor analysis.This approach, referred to as a direct SLT, is actually

a form of rotation; rather than transform the parameters of a higher-order factor model as in the

original SLT, in a direct SLT one performs a targeted rotation of an augmented loading matrix

from an oblique factor analysis model. Like the original SLT, however, direct SLT results in a

loading matrix that instantiates a more constrained higher-order or correlational model while

resembling a bifactor or other hierarchical model.

Waller’s (2018) work on RDT is important because it illustrates directly how nested relation-

ships between higher-order and hierarchical models can change expression. In the direct SLT,

one rotates an oblique loading matrix from a p-factor model in which a column of zeros has been

added—that is, one rotates a (p + 1)-column matrix, but one in which one column consists of

zeros. After rotation, the loading matrix takes a hierarchical structural form. In this way, one can

think of a higher-order structure as either a constrained version of a hierarchical structure or one

in which some parameters have been fixed to zero in a specific way. The form of the constraints

can change, even though the underlying structural nesting is the same.

Analytic bifactor rotations. Analytic bifactor rotations ( Jennrich & Bentler 2011, 2012) provide

an alternative exploratory approach to bifactor structure. In this approach, an EFA loading matrix

is explicitly rotated to a bifactor criterion. Unlike the SLT, which involves rerepresenting esti-

mates from an oblique rotation of a p-factor model, where p is the number of lower-order factors,

in an analytic bifactor rotation, the loading matrix of a (p + 1)-factor EFA model, comprising

subordinate factors and one superordinate factor, is rotated directly.
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Analytic bifactor rotations work by rotating the entire (p + 1)-column loading matrix such

that the p-column subordinate loading submatrix is rotated to an independent-clusters criterion.

Different orthogonal or oblique independent cluster rotations can be used, but commonly studied

formulations have focused on quartimin and geomin rotations (through the analytic bifactor bi-

quartimin and bi-geomin rotations; Jennrich & Bentler 2011, 2012).Mansolf & Reise (2016) have

noted that the rotation of the superordinate factor loadings is indirect and implicit, in contrast

to the rotation of the subordinate factor loadings, which is direct and explicit in that it forms the

basis for the rotation criterion.

Targeted bifactor rotations. Another approach to delineating hierarchical structure using EFA

is to use a bifactor model as a target in a procrustes (that is, targeted) rotation. In contrast to

analytic bifactor rotations, in which an observed loading matrix is rotated to directly optimize

a mathematical function of the observed loadings themselves, in procrustes rotation, a loading

matrix is rotated to be maximally similar to some second target loading matrix. By choosing a

target matrix having a bifactor structure, one can rotate the observed loading matrix to a bifactor

form.

With bifactor target rotations, a paradox arises in that a bifactor target is needed in order

to delineate a bifactor structure, diminishing the advantages of an exploratory approach. One

solution, suggested by Reise and colleagues (2010), is to use a partially specified target loading

matrix in which some of the loadings are used as a target but not others. Loadings that are more

theoretically central, or known with greater confidence, might be used as targets, such as the

superordinate factor loadings or a subset of the subordinate factor loadings.

Another solution, proposed by Abad and colleagues (2017), is to use an SLT loading matrix as

a target. Although the SLT loading matrix actually instantiates a higher-order model, by rotating

a matrix based on a (p + 1)-factor model, rather than the p-factor model of the SLT, one retains

the information in the (p + 1)-factor model, resulting in a hierarchical model that is as similar

as possible to that suggested by the SLT. Abad and colleagues (2017) further suggest using this

procrustes-rotatedmatrix as a target itself in a subsequent step and iterating this process repeatedly

until the rotated loading matrix stabilizes. Note that this differs subtly but critically from the

direct SLT proposed by Waller (2018): Whereas Abad and colleagues’ (2017) method rotates a

(p + 1)-factor loading matrix using a pseudo(p + 1)-factor target (that is, a target that appears to

have p + 1 factors but has only the statistical information of p factors), Waller’s method rotates a

pseudo(p + 1)-factor loading matrix using a pseudo(p + 1)-factor target.

Both analytic bifactor rotations and the SLT are susceptible to bias and other problems in

estimating higher-order factor loadings when there are cross-loadings at the lower-order level

(Abad and colleagues 2017, Reise 2012). When there are cross-loadings at the lower-order level,

some of the covariance implied by those cross-loadings is accounted for by higher-order factors,

leading to overestimated higher-order loadings and underestimated lower-level loadings (Reise

2012). This leads to potential problems with the use of exploratory methods in scenarios in which

independent-clusters structure is only approximate.Abad and colleagues (2017) provide some sim-

ulation evidence that using an SLT loading matrix as a rotation target may ameliorate some of

these problems, but further research is needed to confirm their findings under a broader range of

conditions.

Confirmatory Factor Analysis

The complexity of the relationships between different superordinate exploratory factor models

reflects the broader complexities involved in the specification and identification of hierarchical

www.annualreviews.org • Bifactor and Hierarchical Models 57



models, including those in a confirmatory context. A path parameter in a hierarchical model might

change in meaning or structural importance in unintuitive ways, leading to complexities in inter-

pretation, model identification, and the estimability of models.

Empirical underidentification.One challenge in confirmatory bifactor modeling is empirical

underidentification, in which models might or might not be underidentified and unestimable de-

pending on the sample. Green & Yang (2018) highlighted the complexity of such issues with

confirmatory bifactor models, demonstrating that bifactor models can be underidentified in sam-

ples with what they term a homogeneous-within and homogeneous-between (HWHB) covariance

structure. In this type of structure, covariances are approximately equal between observed variables

measuring the same subordinate factor, and they are also approximately equal between observed

variables measuring different subordinate factors—that is, the block of covariances correspond-

ing to one subordinate factor (σ ii) are approximately equal to one another (but not necessarily

to those in another block); the block of covariances corresponding to another factor are approxi-

mately equal (σ jj) to one another; and the block of cross-covariances are approximately equal (σ ij)

to one another. In this case, one has

σii = λ
2
Gi + λ

2
Si,

σ j j = λ
2
Gj + λ

2
S j , 1.

σi j = λGiλGj ,

where λGi is the loading of a measure in block i from the general factor, λGj is the loading of

a measure in block j from the general factor, λSi is the loading of a measure in block i from its

specific factor, and λSj is the loading of a measure in block j from its specific factor.

As Green & Yang (2018) discuss, in this HWHB scenario, there are fewer observed covariances

than parameters, leading to the underspecification of models and difficulties with estimation. It is

unclear whether such scenarios are typical of psychopathology data, although it should be noted

that such scenarios would be predicted under certain measurement circumstances that are some-

times deemed ideal (for example, with Rasch-conforming measures, in which loadings are equal)

or when covariances are uniformly low or high. In these cases, additional constraints may be neces-

sary to identify the model, such as enforcing additional assumptions about the equality of loadings.

Factor correlations in hierarchical models.One specific recurring question about model iden-

tification is whether bifactor and hierarchical models can or should include correlations among the

factors. The standard hierarchical model constrains factor correlations to zero, consistent with the

factors being interpreted as residual influences on observed variables, when controlling for other

influences. Nevertheless, various papers in the psychopathology literature have reported the re-

sults of correlations among the factors, especially among subordinate factors, raising questions

about what is identified by and how to interpret bifactor models with factor intercorrelations.

Caspi et al. (2014), for example, examined three models of psychopathology, including one

bifactor model with correlated subordinate internalizing, externalizing, and thought disorder fac-

tors in addition to a superordinate general psychopathology factor. This bifactor model produced

inadmissible estimates, suggesting it was not specified correctly, so the authors modified it to elim-

inate the subordinate thought disorder factor, leaving correlated internalizing and externalizing

factors and a general psychopathology factor. Although estimates converged in the overall data

set, producing an estimated negative correlation between internalizing and externalizing, they did
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not converge in all of the age subsamples (for example, within the data from 38-year-olds, negative

observed variable residual variances are produced).

The difficulties with convergence encountered by Caspi et al. (2014) are common when fac-

tors are allowed to correlate in hierarchical models (Eid et al. 2017), pointing to problems with

identification in doing so. Variation in convergence across subsamples also suggests the possibility

of empirical underidentification problems, in which model identification depends on the sam-

ple. Extending the rationale of Green & Yang (2018) from Equation 1, with subordinate factor

correlations, one would have

σii = λ
2
Gi + λ

2
Si,

σ j j = λ
2
Gj + λ

2
S j ,

σi j = λGiλGj + rSλSiλS j ,

2.

where rS is the correlation between the subordinate factors.This again leads to a scenario in which

there are potentially more parameters than degrees of freedom to estimate them. When factors

are allowed to correlate, even if the within-factor covariances are heterogeneous to some extent,

difficulties with model identification might arise if the between-factor covariances are relatively

homogeneous (or vice versa).Thismight occur, for example, if the covariances are uniformly small.

Even if a hierarchical model with factor correlations is identified in a particular sample,

questions of interpretation can be raised. For example, what does it mean for internalizing and

externalizing to be negatively correlated, controlling for a general tendency of disorders to be

positively correlated, including internalizing and externalizing disorders? Is this ultimately sub-

stantively different from saying that internalizing and externalizing disorders are less correlated

with one another than with other forms of psychopathology? Parameters in hierarchical models

generally pertain to residualized effects, which complicate the interpretation of correlations

relative to intuitive conclusions.

Eid and colleagues (2017) explored factor correlations in hierarchical models, including cor-

relations between general and specific factors as well as correlations between different specific

factors. They concluded that correlations between general and specific factors were theoretically

inadmissible, as these would violate interpretations of specific factors as residual effects on vari-

ables net the effects of general factors. In contrast, they also concluded that all other things being

equal, correlations between specific factors could be admissible as a form of partial correlation be-

tween subordinate variables, controlling for the effect of a dominant superordinate factor. How-

ever, the bifactor models they considered included loadings from superordinate factors that did

not also have loadings from subordinate markers, thus allowing for the estimation of general-

factor covariance independent of specific-factor covariance. It is unclear how subordinate factor

correlations could be estimated in the absence of loadings unique to superordinate factors.

Returning to the example of Caspi et al. (2014), it is important to note that by eliminating

a subordinate thought disorder factor, the authors essentially created factor loadings unique to

the superordinate general psychopathology factor. That is, in the model with subordinate inter-

nalizing, externalizing, and thought disorder factors, all diagnoses had loadings from subordi-

nate as well as superordinate factors, rendering correlations between subordinate factors unes-

timable.With the thought disorder factor removed from the model, the corresponding diagnoses

(obsessive–compulsive disorder,mania, and schizophrenia) became indicators of the superordinate

general factor alone. In that case, the correlation between internalizing and externalizing repre-

sents residual relationships between the common mental disorders, independent of internalizing

and externalizing and the less common mental disorders.
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Considered overall, the literature suggests that the estimation of factor correlations in hier-

archical and bifactor models depends on the nature of the model being estimated as well as the

particular sample of data at hand. General–specific factor correlations are likely inadmissible re-

gardless of the scenario. Specific–specific factor correlations may be estimable if the model in-

cludes superordinate-limited indicators and if the data permit estimation of the correlations. If

indicators all cross-load between superordinate and subordinate factors—because they either are

specified that way or are estimated that way—or if covariances among variables are too homo-

geneous with reference to the factor structure being hypothesized, correlations between specific

factors may be inadmissible.

Loadings in hierarchical models: misspecification and the nature of factors. Possible inter-

pretive ambiguities extend further when loadings are considered. The interpretation of hierarchi-

cal models depends on a pattern of zero and nonzero loadings in which factors differ substantively

in their breadth of associations with observed variables. Although the choice of model specifica-

tion or rotation may imply this pattern, it does not guarantee that loading estimates will conform

to it: A model may be specified as a bifactor model but not estimated as one. This complicates the

interpretation of hierarchical models in that a model specified as hierarchical or bifactor might be

most appropriately interpreted in a different way, for example, as a simple structure model.

Eid and colleagues (2017) provide a discussion of the types of anomalous estimates that are

commonly encountered with hierarchical and bifactor models. Many of these types of anomalous

estimates involve loadings that are more circumscribed than intended by the model specification.

For example, factors intended to be superordinate in nature might have a number of small, even

zero, loadings, so that factors specified to be general in nature may be estimated as relatively

specific (for example, a putative general cognitive ability factor might have estimated loadings near

zero except for those associated with measures of verbal working and short-term memory, raising

questions about whether the factor is actually general if it does not also encompass other types of

measures). Similarly, factors intended to be subordinate can be even more specific in the nature

of their estimated loadings than intended (for example, in a study of psychosis, a factor intended

to reflect positive symptoms might have prominent loadings only on measures of delusions of

reference, but not on other types of delusions or hallucinations). Closely related scenarios also

occur when a subordinate factor is specified as part of a best-fitting model, but the estimates imply

that the subordinate factor accounts for essentially no variance in measures (Eid et al. 2017): a

scenario analogous to a best-fitting model with a factor not having any substantial loadings.

Combinations of anomalous estimates can raise questions about how to interpret models that

are intended to be hierarchical or bifactor in nature. For example, when factors intended to be

superordinate in nature have a number of small loadings in combination with subordinate fac-

tors that are more specific than intended, this can suggest a misspecified bifactor model, rais-

ing questions about whether a bifactor-specified model is better interpreted as a simple structure

model. For example, Patalay and colleagues (2015) presented an estimated bifactor model of psy-

chopathology in adolescence, specified in terms of putative general psychopathology, internalizing,

and externalizing factors. Although the putative general factor did load onto all of the variables ex-

amined, the loadings onto the externalizing variables were relatively small, and the larger loadings

were on measures reflecting negative emotionality, especially markers of dysregulated negative

emotion (for example, anger, sleep difficulty, tearfulness). The putative internalizing specific fac-

tor, moreover, comprised prominent loadings almost exclusively reflecting anxiety and worry. In

this way, even though the model was specified as bifactor in structure, questions might be raised

about whether the pattern of estimates is best interpreted as such—that is, whether factors of the

model should be interpreted as general psychopathology and internalizing factors or as emotional
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dysregulation and anxiety factors.These types of scenarios create challenges of interpretation even

when a confirmatory model is being specified.

Another example of the difficulties encountered in interpreting the breadth of factors occurs

when loadings from a putative general factor are extremely large, to the point of being almost

perfect, for example, if they are close to 1 on a standardized scale. Even if other loadings from a

general factor are not small, if one of the loadings is close to 1 (for example, 0.95 or greater; see,

for example, Caspi et al. 2014, Laceulle et al. 2015, Stochl et al. 2015), it suggests that the measure

is interchangeable with the factor or nearly so. Although it is possible to interpret this in terms

of a very strong measure of the factor, it is also plausible that the variable being reflected by the

high-loading measure in question has high direct associations with other measured variables and

that the whole system has been misspecified in some way.

Explanations for anomalous estimates and alternative hierarchical model specifications.

Various explanations can be offered for anomalous factor-loading estimates with hierarchical and

bifactor models. When models are misspecified, estimates will tend to converge toward those

that bring the predicted data likelihood closest to the data likelihood under the unknown true

model (assuming maximum likelihood estimation has been used; Lv & Liu 2014,White 1982). If

the specified model is relatively flexible relative to the true model but incorrect—such as when

the true model is nested in a misspecified model—the misspecified estimates will come to resem-

ble the true model as much as is possible given the model’s constraints. This could explain why

estimates sometimes deviate from an intended hierarchical or bifactor structure: If a simple struc-

ture true model were misspecified, for example, as a bifactor model, the estimated loadings might

come to resemble those of a simple structure model. The general, superordinate factor loadings

might then resemble those of a subordinate factor, and the estimated subordinate factor loadings

might be even more specific than expected.

Eid and colleagues (2017) provide another explication of bifactor model misspecification based

on how subordinate factors are theoretically related to superordinate factors. Arguing from the

perspective of stochastic measurement theory, a framework related to classical test theory and

generalizability theory, Eid and colleagues (2017) assert that traditional bifactor models can be

appropriately applied only when subordinate factors are conceptually nested within superordinate

factors. This would occur, for example, if subordinate factors represented samples from subordi-

nate factor domains (such as when clinician ratings are sampled randomly from the domain of

possible clinicians). Because bifactor models are often applied when subordinate and superordi-

nate factors do not have this relationship, Eid and colleagues (2017) assert that in the literature

bifactor models are often misspecified or misapplied.

Eid and colleagues (2017) propose alternative model specifications for situations in which sub-

ordinate and superordinate factors are not nested. These alternative specifications, the bifactor-

(S− 1) model and bifactor-(SI− 1) model, establish one factor as a reference factor against which

the subordinate factors are compared. The (S − 1) and (SI − 1) models differ in how reference

factors or domains are defined vis-à-vis gold standard measures, as well as differing in the num-

ber of specific factors, but both define one factor as a reference domain that is fixed relative to

the other factors. The authors argue that these specifications are more appropriate than tradi-

tional bifactor specifications for the structural modeling problems that are typically encountered

in psychopathology research.

MODEL EVALUATION AND COMPARISON

As interest in hierarchical and bifactor models of psychopathology has increased, they have be-

come standard comparators in structural modeling, especially for questions involving complex,
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multidimensional clinical constructs. This has reinforced the need for accurate inferences about

the fit of different hierarchical models—relative to one another, relative to other types of mod-

els, and relative to the data—as well as leading to increased interest in methods of evaluating and

selecting these types of models.

Repeated observations of anomalous estimates, such as unexpected loading patterns, in hierar-

chical models that otherwise appear to fit relatively well have led to questions about their selection

and evaluation. For example, if a model specified as hierarchical or bifactor produces estimates

that are similar to a simple structure model, why does the simple structure model not fit as well or

even better if parsimony is accounted for, especially given that it would be more constrained and

therefore have the advantage of using fewer degrees of freedom to attain similar estimates?

Recent work by various groups has illustrated how hierarchical models are prone to positive

bias in model selection, in that typical values of model fit statistics in observed data sets overstate

themodels’ fit at the population level (Bonifay &Cai 2017,Murray& Johnson 2013).Hierarchical

and bifactor models tend to overfit to data because they are relatively flexible, such that they are

generally able to fit to data sets relatively well (in the sense of producing higher likelihoods or

lower residuals) regardless of population structure or theoretical plausibility (Bonifay & Cai 2017,

Reise et al. 2016). This flexibility is partly accounted for by their greater number of parameters

(comparedwith simple structuremodels or higher-ordermodels), but not completely, so thatmany

traditional model selection criteria fail to adjust for the bias, depending on the sample size and the

models being compared.

Bonifay&Cai (2017) have shown that hierarchical and bifactor confirmatorymodels are similar

to exploratory factor models in their level of flexibility, and they are more flexible than nonhier-

archical confirmatory factor models, even when the number of parameters is held constant. On

average, a given bifactor confirmatory model will tend to fit to any given random data set better

than a nonhierarchical confirmatory model, and it will fit almost, but not quite, as well as an ex-

ploratory factor model. This is independent of the population model, and it reflects the ability of

hierarchical models to capture chance features of any given sample that might not replicate. In the

sense of fit, confirmatory hierarchical and bifactor models are similar to exploratory factor models

in their expansiveness.

Figure 3 illustrates the tendency of bifactor models to fit better than other models of super-

ordinate structure. In this example, 1,000 simulated data samples were randomly generated under

one of three conditions: a correlated simple-structure population model, a bifactor population

model, or an unstructured condition with essentially no model. The two structured population

models were taken from estimates reported by Caspi and colleagues (2014); in the unstructured

condition, data were uniformly sampled from ranges matching those of the data used in that pa-

per, so as to randomly sample from all possible data sets. Figure 3 provides the densities of the

difference in log-likelihoods under a correlated simple-structure model and a bifactor model fit

to each sample.

As is illustrated by Figure 3, the bifactor model fits better in terms of log-likelihood under

all three conditions. On average, the bifactor model fits best when the population has a bifactor

structure, but it also fits better when the population is a simple structure model. Most impor-

tantly, perhaps, it also fits better than a correlated-factors model when data are sampled without

regard to any structure. This tendency of the bifactor model to flexibly fit any data set better than

other models is related to the complexity of the model structure. Although in this case the num-

ber of parameters can be used to correct for the overfitting of bifactor models [using traditional

information theoretic criteria, such as the Akaike information criterion (AIC) or Bayesian infor-

mation criterion (BIC)], other research has shown this is not always the case (Bonifay & Cai 2017,

Murray & Johnson 2013). For smaller samples and models with a similar number of parameters,
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Figure 3

Density plots of the difference in log-likelihood (lnL) between bifactor and correlated simple-structure
models as fit to simulated data. In this example, 1,000 simulated data samples (N = 250 each) were randomly
generated under a correlated simple-structure population model (simple structure), a bifactor population
model (bifactor), or an unstructured condition (random). Correlated factor and bifactor models were fit to
each simulated data set, and the difference in lnL was computed. The two structured population models
comprised estimates reported by Caspi and colleagues (2014; models A and B′ in table 1). In the
unstructured (random) condition, data were uniformly sampled from the ranges of the data used in that
paper. Bifactor models tended to fit better by lnL in all conditions, even when the data had no structure. The
estimated mean difference in lnL was 3.09 under a correlated-factors population, 23.86 under a bifactor
population, and 4.32 across random data sets. Using the Akaike information criterion, or AIC, the expected
mean difference in the two structured population conditions would be 3; using the Bayesian information
criterion, or BIC, it would be 16.56.

the structural complexity of the model must also be accounted for (Bonifay & Cai 2017, Markon

& Krueger 2004, Murray & Johnson 2013).

Numerous authors have noted that the greater flexibility of bifactor and other hierarchical

models can be explained by means of their relationship with higher-order models. As was noted

earlier, higher-order models can be reexpressed as a constrained form of hierarchical model in

which direct loadings of superordinate factors onto observed variables in the hierarchical model

are constrained to be proportional to a product of subordinate and superordinate factor loadings

under the higher-order model. These proportionality constraints (Gignac 2016) illustrate how a

parameter in onemodel can have a different fit value from a parameter in anothermodel: A loading

in the hierarchical model is less constrained and more flexible than a loading in the higher-order

model. In this regard, parameters are not all equal; the number of parameters per se, which forms

the basis of most commonly used model-selection statistics, can provide an incomplete summary

of model flexibility.

Research on information theoretic inference has led to the development of ways of quantifying

model flexibility above and beyond the number of parameters. In particular, work on minimum

description length and normalized maximum likelihood (NML) has shown that a model’s com-

plexity can be theoretically quantified in terms of how well a model fits data in general, considered
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over all possible data sets (Grunwald 2007,Rissanen 2007).TheNML statistic, for example, quan-

tifies a model’s flexibility as the sum of the model’s optimized likelihoods taken over all possible

data sets; the NML itself is the maximum likelihood in the observed sample divided by this sum.

Intuitively, this is sensible: A model that is more flexible will tend to fit any data set well, regardless

of truth or plausibility, and it will produce greater likelihoods on average, leading to a larger likeli-

hood sum. Therefore, NML corrects an observed sample likelihood through its general tendency

to produce large likelihoods in any data set. NML is closely related to the BIC and other Bayesian

fit indices (Grunwald 2007, Rissanen 2007), and can be approximated in various ways (Grunwald

2007, Nalisnick & Smyth 2017). Although not as well researched, variants of NML designed for

use with other types of estimators (for example, least squares estimators) have also been explored,

and similar principles have emerged (Rissanen 2003).

HIERARCHICAL MODELS, COVARIATES, AND PREDICTION

As hierarchical and bifactor models have becomemore ubiquitous in the literature, they have been

incorporatedmore frequently into various longitudinal and predictive analyses as well as intomod-

els incorporating significant covariates (e.g., Greene & Eaton 2017, Kim & Eaton 2015, Martel

et al. 2017, McLarnon et al. 2016). These analyses arise from the need to validate the constructs

suggested by bifactor models (e.g., Kim&Eaton 2015,Martel et al. 2017), as well as from their use

in variance decomposition, such as in multi-informant measurement scenarios (Bauer et al. 2013).

Hierarchical and bifactor structures pose unique challenges in longitudinal and covariate mod-

eling due to factors in these types of models having overlapping indicators and forced orthogo-

nality. For example, exchangeability between factor correlations and cross-loadings can mask im-

plied correlations between predictors, which might have implications for collinearity-like effects

in prediction in which uncertainty about specific effects, independent of general effects, is in-

creased. Similarly, adding covariates can implicitly induce correlations between factors that might

deidentify hierarchical and bifactor models (Koch et al. 2018).

Koch and colleagues (Koch et al. 2018) have shown that treating the factors of a bifactor model

as an explanandum—that is, as being predicted by covariates—can have significant implications

for identification and bias. For example, in the case in which specific and general factors are both

being explained by a set of common covariates, models need to be constructed in such a way as

to ensure identification because the covariates can imply correlations between the general and

specific factors, which may lead to misidentification problems. As already noted, the subordinate

factors of a bifactor model are best interpreted as residual factors relative to the superordinate

variables; if they share covariates, this interpretationmay become problematic.Even if in a bifactor

measurement model different factors are treated as orthogonal, once covariates are introduced,

those covariates might imply correlations between the factors that, in turn, might cause problems

for model identification.

Other constraints are required even when specific factors alone are being modeled with co-

variates. Koch and colleagues (2018) also note that various parameter estimates, such as those of

intercepts, loadings, and regression paths, can be biased when exogenous covariates are present,

depending on the nature of the bifactor model. Solutions are available depending on the scenario

(Koch et al. 2018), but the issues involved are not necessarily intuitive and require care to address.

One relatively understudied question is the impact of using the factors of a bifactor model

as explanans, such as in predicting outcomes from bifactor variables. The complicating effects

of multicollinearity on regression inferences are well known in that it increases the uncertainty

of coefficient estimates, as reflected in increased standard errors and an associated loss of power.

Bifactor structures raise similar issues with regard to prediction: In both cases there is the challenge
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of making inferences about specific residual effects net some dominant shared variance among the

predictors. In the case of multicollinearity, the task is to isolate the unique residual effects of each

predictor; with hierarchical models, the task is to isolate the residual effects that are nonetheless

still shared among some subset of the predictors.

In some sense, the orthogonality of shared and residual factors in hierarchical models obscures

potential effects on inferences about predictive and covariate effects. Although the factors are

orthogonal, this orthogonality is forced and depends on a specific set of bifactor loadings,which are

fallibly estimated and possibly even variant across time or subpopulations. To the extent that the

loading assumptions are incorrect, unmodeled correlations between predictors might be induced,

affecting conclusions about covariates and prediction, depending on the analytic scenario.

Gonzalez & MacKinnon (2018) examined power, type I errors, and bias in the case of models

with mediating subordinate bifactor variables, in which specific factors have indirect predictive

effects. In their simulations, the power to detect mediation increased and bias in path estimates

decreased as specific and general factor loadings increased.Type I errors were generally low across

conditions.However, the authors did not examine cases in which general factors might have medi-

ating effects in addition to, or instead of, the specific factors, so it is unclear how the simultaneous

presence of the two types of effects affects inferences about each. Presumably, when superordi-

nate and subordinate factors each have independent mediating effects, disentangling them would

be more challenging. Research on these types of questions is needed as interest in the criterion

validity of bifactor variables increases, especially if unique associations of subordinate factors with

covariates are not always evident (Martel et al. 2017).

CONCLUSIONS AND RECOMMENDATIONS

Although hierarchical and related models have been in development for more than a century

(Beaujean 2015, Reise 2012) and have become ubiquitous in contemporary modeling, in many

ways their properties are only beginning to be understood. Long dismissed as equivalent to other

superordinatemodels, hierarchical and bifactormodels are now recognized as distinct and having a

broad range of applications and utility. These models provide decomposition of observed variance

into relatively independent components at various levels of abstraction, from the general to the

specific, which is fundamental to statistical modeling across many domains.

Ensuring that a model is specified as intended and interpreting a model as specified are fun-

damental to any modeling endeavor. However, the history of hierarchical and bifactor modeling

is clouded by misunderstandings about model equivalences and the types of parameter estimates

that are permissible in such models. These issues are further complicated by a surfeit of differ-

ent EFA and CFA approaches to hierarchical model specification and estimation—some of which

have only relatively recently been developed—as well as by issues such as empirical underidenti-

fication, in which model estimability may be sample dependent. As such, it is especially important

for modelers to clarify whether a given bifactor structure is identified and specified as intended. A

number of excellent resources on hierarchical model specification and identification are available

(Eid et al. 2017, Green & Yang 2018, Koch et al. 2018), although further research in this area is

needed, especially with hierarchical models including covariates and prediction.

The overfitting of hierarchical and bifactor models is a critical issue that has broad implications

for modeling in general, well beyond hierarchical models per se. Emerging research in this area

(Bonifay & Cai 2017), together with existing literature (Grunwald 2007, Rissanen 2007), indicates

that the number of parameters alone cannot always be relied on as an index of model flexibility in

model fit and selection statistics because model structure impacts flexibility as well. Bifactor and

other hierarchical models are nearly as flexible as exploratory factor models, which are saturated
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in their parameters (Bonifay & Cai 2017). As a result, bifactor models tend to overfit. Therefore,

researchers should exercise care in interpreting the better fit of a confirmatory bifactor model

relative to another model, as generally, bifactor models will tend to fit any data set better than

other confirmatory models, regardless of the population’s true model.

Developments in model fit and selection are needed to adjust for bifactor model overfitting, as

traditional methods based on the number of parameters alone are unlikely to entirely correct for

the magnitude of overfitting. Promising alternative model selection statistics have been developed

(Grunwald 2007, Rissanen 2007); although some of these are relatively challenging to compute

and involve novel methods, others are more easily computable with quantities that are already

routinely provided by current software (Bollen et al. 2014, Markon & Krueger 2004). Research is

needed to further develop such statistics and to explicate their performance characteristics with

different types of models.

One practical approach to the overfitting problem is to review the estimates obtained from bi-

factor model analysis in order to consider whether they are consistent with the structure intended

or might be more consistent with another type of structure. The relative flexibility of bifactor

models not only increases their fit in terms of likelihood but also enables bifactor specifications to

capture other types of structural scenarios in terms of the estimates themselves. A presumed bi-

factor model might be this in name only, and it might be better characterized as a simple structure

correlated-factors model or other type of structure. It is important for researchers and consumers

of research to consider the possibility that even if a model is specified as bifactor in nature and fits

better when adjusted for parametric complexity, a different model might be more veridical, and

the parameter estimates obtained might reflect that model. In an important sense, confirmatory

bifactor models are quasiexploratory in nature and should be approached as such.

SUMMARY POINTS

1. Bifactor and other hierarchical models represent superordinate structure in terms of or-

thogonal general and specific factors representing distinct, nonnested components of

shared variance among indicators. This contrasts with higher-order models, which rep-

resent superordinate structure in terms of specific factors that are nested in general fac-

tors, and correlated-factors models, which represent superordinate structure in terms of

correlations among subordinate factors.

2. Higher-order models can be approached as a constrained form of hierarchical models, in

which direct relationships between superordinate factors and observed variables in the

hierarchical model are constrained to equal the products of superordinate–subordinate

paths and subordinate-observed variable paths.

3. Multiple exploratory factor analytic approaches to the delineation of hierarchical struc-

ture are available, including rank-deficient transformations, analytic rotations, and tar-

geted rotations. Among other things, these transformations and rotations differ in the

number of factors being rotated, the nature of those factors, and how superordinate fac-

tor structures are approximated.

4. Misspecification or underspecification of confirmatory bifactor and hierarchical models

can occur for multiple reasons. Problems with model identification may occur (a) with

specific patterns of homogeneity in estimated or observed covariances, (b) if factors are

allowed to correlate in inadmissible ways, or (c) if covariate paths imply inadmissible

correlations. Signs of model misspecification may be evident in anomalous estimates,
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such as loading estimates near boundaries, or estimates that are suggestive of other types

of models.

5. Common model fit statistics can overstate the fit of bifactor models due to the tendency

of bifactor and other hierarchical models to overfit to data in general, regardless of plau-

sibility or population structure. Hierarchical models are similar to exploratory factor

models in their expansiveness of fit, and, in general, they are more expansive in fit than

other confirmatory models.

FUTURE ISSUES

1. Research is needed to determine how to best account for the flexibility of hierarchical

models when comparing models and evaluating model fit, given that the relative flexi-

bility of hierarchical models can only partly be accounted for by the number of param-

eters. Approaches based on minimum description length and related paradigms, such as

Bayesian inference with reference priors, are promising in this regard.

2. More research is needed to clarify the properties of hierarchical structures when they

are embedded in longitudinal models and models with covariates. As with challenges of

multicollinearity in regression, parsing unique general and specific factor components

of explanatory paths may be inferentially challenging in the presence of strongly related

predictors, covariates, and outcomes.

3. More can be learned about the specification and identification of hierarchical models

and the relationships between hierarchical models and other types of models, such as

exploratory factor models. Similarities in overfitting patterns between exploratory and

hierarchical models, approaches to hierarchical structure through bifactor rotations, and

patterns of anomalous estimates that are sometimes obtained with hierarchical models,

point to significant relationships between exploratory and hierarchical models. Further

explication of model specification principles with hierarchical models would also help

clarify the appropriate structures to consider when evaluating models.
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