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Abstract—With the pervasive use of smartphones that sense, collect, and process valuable information about the environment,
ensuring location privacy has become one of the most important concerns in the modern age.

A few recent research studies discuss the feasibility of processing sensory data gathered by a smartphone to locate the phone’s owner,
even when the user does not intend to share his location information, e.g., when the user has turned off the Global Positioning System
(GPS) on the device. Previous research efforts rely on at least one of the two following fundamental requirements, which impose
significant limitations on the adversary: (i) the attacker must accurately know either the user’s initial location or the set of routes through
which the user travels and/or (ii) the attacker must measure a set of features, e.g., device acceleration, for different potential routes in

advance and construct a training dataset.

In this paper, we demonstrate that neither of the above-mentioned requirements is essential for compromising the user’s location
privacy. We describe PinMe, a novel user-location mechanism that exploits non-sensory/sensory data stored on the smartphone, e.g.,
the environment’s air pressure and device’s timezone, along with publicly-available auxiliary information, e.g., elevation maps, to
estimate the user’s location when all location services, e.g., GPS, are turned off. Unlike previously-proposed attacks, PinMe neither
requires any prior knowledge about the user nor a training dataset on specific routes. We demonstrate that PinMe can accurately
estimate the user’s location during four activities (walking, traveling on a train, driving, and traveling on a plane). We also suggest

several defenses against the proposed attack.

Index Terms—Air pressure, auxiliary information, elevation map, navigational map, privacy, sensor, smartphone, tracking.

1 INTRODUCTION

With widespread use of smartphones that can sense and
collect environment-related data and process them to ex-
tract valuable information about the environment, ensuring
privacy has become one of the most important challenges
in the modern era. Indeed, rapid technological advances in
electronics and mobile devices have led (and will continue
to lead) to serious concerns about privacy in general, and
location privacy in particular [1].

Modern smartphones are equipped with many compact
sensors, e.g., accelerometers and barometers, and powerful
communication capabilities in order to offer a variety of
services. Although the numerous smartphone applications
make the user’s life convenient, they can also intention-
ally/unintentionally reveal personal or corporate secrets
[2]-[9]. In particular, they can leak valuable data about
the user’s whereabouts, which can be processed to extract
contextual information about his habits, regular activities,
and even relationships [10], [11]. Moreover, disclosure of
the user’s location may expose him to location-based spams,
scams, and advertisements, or make him a victim of black-
mail or violence [1], [12].

With the emergence of enormous privacy concerns in
the last decade, several privacy policies have been put in
place to force organizations to take their users” privacy
into account. In particular, the U.S. Congress introduced
the Geolocation Privacy and Surveillance Act in 2011 to
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provide a legal framework for giving government agencies,
commercial entities, and private citizens clear guidelines
for when and how geolocation information can be accessed
and used [13]. As a result, in all modern smartphones, an
application must explicitly ask for the user’s permission if it
wants to access location services, e.g., GPS [14], [15].

A few recent research efforts have demonstrated the
feasibility of locating smartphone owners without accessing
GPS [9], [16]-[18]. For instance, Michalevsky et al. proposed
PowerSpy [17], a mechanism that locates the user by pro-
cessing the power consumption of the smartphone, when
the user travels through a known set of routes. PowerSpy
was able to detect 45% of driving trajectories in the best-
case scenario. Han et al. showed that accelerometer readings
can be used to estimate the trajectory and starting point of
an individual who is driving [19]. They were able to return
two clusters of possible starting points (each including five
points) such that the starting point was within one of the
clusters.

The successful demonstration of such attacks against
location privacy suggests that revealing the user’s loca-
tion by processing presumably non-critical data is feasible.
However, all previously-suggested attacks against location
privacy mainly rely on at least one of the three following
fundamental requirements.

¢ Req. 1: The attacker must either know the user’s
initial location (the exact GPS coordinates) or has
substantial prior knowledge of the area through which
the victim is traveling, e.g., the attacker assumes that
the victim is traveling through a small set of known
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routes.

¢ Regq. 2: The attacker must measure a set of features,
e.g., power consumption [17], for different potential
routes in advance and construct an attack-specific
training dataset.

e Req. 3: The sensory data must be continuously col-
lected at a high sampling rate, e.g., 30Hz [19], [20],
which is significantly higher than the sampling rate
needed for a majority of benign applications.

The first two requirements significantly limit the at-
tacker’s ability to locate the user in realistic scenarios, and
the third can raise suspicion, making it easier to detect the
attack [21]. Even with these requirements, previous attacks
offer a rough estimation of the user’s trajectory, as discussed
later in Section 6.

This paper aims to demonstrate that none of the above-
mentioned requirements is needed to accurately track the
user when all location services, e.g., GPS, are off. We propose
an attack on location privacy in which: (i) the attacker needs
neither the user’s initial location nor a small set of potential
travel routes, (ii) he is not burdened with the construction
of an attack-specific database, and (iii) he does not collect
data at a high sampling rate, e.g., as demonstrated later, a
sampling rate of 0.1H z is sufficient to track the user when
he is driving. The first two characteristics of the proposed
scheme enable an attacker to launch an attack on a large
scale, when he has no prior knowledge about users’ initial
locations or the set of routes through which he travels. The
third one makes the attack invisible to known defenses that
detect the maliciousness of an application based on its high
sampling frequency, e.g., the defense in [21].

Our main contributions can be summarized as follows:

1)  We develop PinMe, a location mechanism that en-
ables an attacker to accurately locate the user us-
ing sensory/non-sensory data along with publicly-
available auxiliary information.

2) We demonstrate how different types of seemingly-
benign non-sensory data, e.g., the smartphone’s
timezone and network status, and sensory data,
e.g., air pressure and heading, can offer sensitive
information to the attacker who aims to locate the
user.

3) We introduce five sources of publicly-available aux-
iliary information (public maps, transportation time
tables, airports’ specification databases, weather re-
ports, and trains” heading dataset) that can be used
in conjunction with smartphone’s data to develop
an attack against location privacy.

4) Unlike previously-proposed attacks [17], [19] that
are focused on a single activity, e.g., driving, we
demonstrate how a user can be located when he is:
(i) traveling on a plane, (ii) walking, (iii) traveling on
a train, and (iv) driving. As far as we know, PinMe
is the first smartphone-based user location mecha-
nism that aims to locate the user while undertaking
different activities.

5) In order to evaluate the accuracy of the proposed lo-
cation mechanism, we collect real-world data using
three devices (iPhone 6, iPhone 6S, and Galaxy S4
19500).
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Fig. 1. PinMe could find and return the user’s trajectory without access-
ing GPS data. The green and orange lines demonstrate the estimated
paths traversed by the user during driving and walking, respectively. The
black line is the actual user trajectory reported by GPS data.

6) We evaluate the accuracy of PinMe for estimating
the user’s location using two real-world datasets.
We demonstrate that, unlike previous attacks,
PinMe is able to accurately and uniquely return a
trajectory that is comparable to GPS-based trajectory
(Fig. 1).

7) Finally, we discuss defenses against the proposed
attack.

To sum up, PinMe aims to offer a comprehensive (i.e., covering
multiple activities) attack that minimizes the need to have prior
knowledge about the user, removes the need for building attack-
specific datasets, and uses the interdependence between seemingly-
independent activities to obtain an accurate user trajectory. Our
end-to-end evaluation demonstrates that PinMe works accurately
(comparable to GPS) in real-world scenarios. As discussed in
Section 5, protecting the user against this attack can be very
challenging due to its robustness against potential sources of noise
and the low sampling rate required for the attack.

The remainder of this paper is organized as follows.
Section 2 provides the problem definition and discusses how
the attacker can acquire the data needed for the proposed
attack. Section 3 discusses PinMe comprehensively and de-
scribes different sources of information and algorithms used
to implement the attack. Section 4 describes how we col-
lected real-world data for evaluating PinMe and examines
the accuracy of the proposed location mechanism. Section
5 suggests several countermeasures for mitigating the risks
of the proposed attack. Section 6 summarizes related work.
Section 7 discusses the limitations of PinMe and describes
how we used the interdependence between activities to
facilitate (and enhance the accuracy of) our proposed attack
and how PinMe can be used as an alternative to GPS in
autonomous cars to enhance their security. Finally, Section 8
concludes the paper.

2 THREAT MODEL

In this section, we first describe several consequences of
launching an attack against location privacy, and provide
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a brief description of our proposed attack. Then, we discuss
how attackers can acquire the data that are required to
launch the proposed attack.

2.1 Problem definition

Today’s smartphones are equipped with several low-power
high-precision sensors and powerful processors that en-
able them to continuously collect and process environment-
related data. As a result, a modern smartphone carries
several types of valuable data. Such data can be processed
to reveal sensitive information about the phone’s user. For
example, the contextual information attached to movement
traces conveys much about the user’s interests, activities,
and even relationships [1].

Launching an attack against location privacy can ex-
pose the user to unwanted advertisement, spams, or scams.
Moreover, it can lead to several consequences, ranging from
the uncomfortable feeling of being monitored to unwanted
disclosure of personal activities or even actual physical
harm [22]. For example, it may be embarrassing for a user
if his/her relatives find out that he/she went to certain
places, e.g., an HIV clinic or an abortion clinic. While these
consequences are a direct result of manual inspection of
leaked location-related information, several recent research
efforts have investigated the feasibility of extracting other
valuable information from the user’s location-related infor-
mation. For example, early research work in this area [23]
explored the possibility of inferring information about the
user’s habits and detecting places important to him, e.g., his
home and office, from GPS traces.

Although the importance of preventing location services,
e.g., GPS, from leaking unwanted information has become
clear, the extent of location-related information that can
be inferred from presumably non-critical data, such as
movement-related data, e.g., acceleration and heading, and
environment-related data, e.g., air pressure, is neither well-
known nor well-understood. This paper aims to demon-
strate the possibility of accurately locating the smartphone’s
user using such presumably non-critical data stored on the
phone.

2.2 Acquiring data

The attacker can obtain the smartphone’s non-sensory and
sensory data, which are required for the proposed attack,
using one of the two following approaches:
Approach 1: Utilizing a malicious application
Smartphones are characterized by their ability to run
third-party applications. Both Android and iOS offer hun-
dreds of thousands of applications through their application
markets. Such markets benefit developers by simplifying
application sales and distribution. The existence of huge
application markets might also enable cyber criminals to
distribute a malicious application in an attempt to steal
personal information stored on the phone, e.g., credit card
numbers and personal photos. Fortunately, such critical
information is commonly protected by the smartphone’s
operating system, and users are also very careful about
sharing their personal information with third parties. How-
ever, several types of non-sensory/sensory data, which are
stored on the smartphone, are either loosely-protected or
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not protected at all, e.g., gyroscope, accelerometer, barom-
eter, and magnetometer measurements are accessible by an
application installed on the smartphone without requiring
user’s approval. As a result, a malicious application that is
installed on the smartphone and runs in the background can
continuously capture such data without arousing suspicion.
Approach 2: Accessing a presumably trusted application
server

Several trusted applications upload their data to the
cloud. For example, the majority of fitness monitoring ap-
plications continuously collect and upload the user’s data
to the cloud. The collection of the data in the cloud enables
the user to access and share his fitness statistics with his
family, friends, and peer groups. A recent report by the
mHealth development industry [24] estimates that there
are about 100,000 applications dedicated to health and fit-
ness. Such applications can, without arousing suspicion,
collect and upload a significant amount of valuable non-
sensory /sensory data, which can be post-processed to infer
critical information about the user. In particular, as we
demonstrate later, an attacker, who can access such applica-
tion databases, e.g., the application development company
or an individual who has access to the data shared by
the user, can post-process such data to estimate the past
locations of the user.

Our approach: In this paper, we assume that the
proposed location mechanism obtains the required non-
sensory/sensory data using the first approach. In fact, we
installed an application on the smartphone that continu-
ously collects the required data. We assume that the applica-
tion does not have access to GPS. Moreover, the application
has no permission to query the identity of visible cellular
base stations or the service set identifier (SSID) of visible
WiFi networks. To sum up, we assume that the attacker
only uses presumably non-critical data collected by a malicious
application along with publicly-available auxiliary information
to reveal the user’s location. The proposed attack does not
rely on careless behaviors of the user (e.g., a careless user
may just accept all permission requests, including a request
to access GPS data, without carefully reviewing them). In
fact, PinMe aims to demonstrate the feasibility of a privacy
attack against careful users (for example, a user who checks
what he shares with third-party applications, minimizes the
access level of untrusted applications, and even turns off all
location services when he travels through sensitive routes to
ensure his location privacy). The introduction of this attack
sheds light on the possibility that a third party, which has
an application on the user’s smartphone, can potentially
extract his sensitive location information without asking for
any permission (except Internet connectivity that is needed
for sending either raw data or inferred location to the third

party).

3 THE PROPOSED LOCATION MECHANISM

In this section, we describe PinMe, the proposed location
mechanism. First, we introduce the main sources of informa-
tion that are given to PinMe as inputs. Second, we describe
various algorithms that we have designed and implemented
to locate the user in scenarios involving different activities.
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TABLE 1
Smartphone’s Non-Sensory Data

Non-sensory data Description

Timezone (TZ)

Specifies the device’s current timezone (i.e., a region including the
cities/states that have the same time)

Device’s address (IP)

Provides the phone’s IP address when it is connected to the Internet

Network status (NS)

Specifies whether the smartphone is connected to a WiFi or a cellular network

TABLE 2
Smartphone’s Sensory Data

Sensor Sensory data

Accelerometer | Magnitudes of the acceleration in three-dimensional space
Magnetometer | Angle between device’s actual orientation relative to true north (heading)
Barometer The environment’s air pressure

3.1 Sources of information

PinMe exploits two main sources of information: (i) non-
sensory /sensory data collected by the smartphone, and (ii)
publicly-available auxiliary information. Next, we describe
each source in more detail.

3.1.1 Smartphone’s non-sensory/sensory data

An application installed on the smartphone can obtain
several types of non-sensory and sensory data without re-
questing user’s approval. Non-sensory data provide general
information about the device, e.g., the version of the device’s
operating system, current timezone, IP address, the amount
of available storage, and network status. Table 1 summarizes
different forms of non-sensory data that PinMe uses to
locate the user during different activities, along with a short
description of each.

In addition to the non-sensory data, sensory data col-
lected by the smartphone’s built-in sensors provide valuable
information about the user’s movements and the environ-
ment in which the smartphone is located. Table 2 includes
different sensors that are accessed by PinMe and sensory
data provided by each sensor.

3.1.2 Publicly-available auxiliary information

The proposed user location mechanism uses several types
of auxiliary information to narrow the area of interest.
In particular, it utilizes five main types of information: (i)
public maps, (ii) weather reports, (iii) airports’ specifications
database, (iv) trains” heading dataset, and (v) transportation
timetables. Next, we describe each information type.

Public maps: The proposed mechanism uses two widely-
known map types:

1. Navigational map: A navigational map mainly depicts
roads, highways, and transportation links. Such a map
can specify a large set of possible routes through which
the user can travel. PinMe uses OpenStreetMap (OSM)
[25] maps. OSM maps can be downloaded as Extensible
Markup Language (XML) files that can be easily processed
and modified.

2. Elevation map: An elevation map contains the elevation,
i.e., the height above or below the Earth’s sea level, of
all points on the Earth’s surface. Several commercial, e.g.,

Google Map API [26], and governmental services, e.g.,
U.S. Geological Survey Maps [27], provide comprehensive
elevation data of the world surface. For instance, the Google
Map API offers a free and publicly-available interface that
can be used by developers to fetch the elevation of a point
of interest, given its longitude and latitude.

Weather reports: Weather reports offer different types
of information collected by weather stations. We use
weather reports provided by The Weather Channel [28].
They include temperature, humidity, and air pressure
readings at weather stations, and the actual elevation of the
weather station. PinMe uses weather reports to estimate the
elevation of the smartphone using its air pressure reading.
The use of weather reports is essential for accurately
estimating the elevation of the smartphone since the air
pressure readings are highly dependent on both elevation
and weather conditions.

Airports’ specifications databases: PinMe uses OpenFlights
[29], the most comprehensive freely-available airports’
specifications ~ database, which includes elevation
information, GPS coordinates, and timezone of 9541
different airports around the world.

Trains” heading databases: Trains’ heading database is
a simple database that includes the trains’ directions at
each station. We have constructed this database based
on Google Map [30]. For each train station considered in
our experiments, we extract different potential movement
directions based on the illustration of the stations’ tracks on
Google Map. Note that each track in a station can have two
possible headings corresponding to a train entering and
leaving the station.

Transport timetables: Transport timetables contain
information about service times to assist passengers in
planning their trip. A timetable lists the times when a
service is scheduled to arrive (depart) at (from) specified
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locations'. The two most common types of transport

timetables are flight and train timetables. These timetables
are often available in a variety of electronic formats, e.g.,
PDF files, and are commonly posted on airports’/stations’
websites. They are also accessible through various APIs.

3.2 Main Algorithms

Next, we describe the main algorithms that we have
designed and implemented for estimating the user’s
location. PinMe is implemented using Python and Matlab,
and our prototype implementation includes about 2000
lines of code. It has three main steps: (i) pre-processing, (ii)
activity classification, and (iii) location estimation. Algorithm
I: PinMe provides a simplified pseudo-code of the proposed
location mechanism. Next, we describe each step in more
detail.

Algorithm I: PinMe

Given: The smartphone’s sensory data (D), non-sensory
data (IP, NS, and TZ), and all sources of publicly-available
auxiliary information (allAux: public maps, weather reports,
airports’ specifications databases, trains” heading databases,
transport timetables)

/ /Step 1: Pre-processing
lastWiFiIP < findLastWiFiIP(NS,IP)
city <— IPGeolocation(lastWiFiIP)
aux <+ getAuz(all Auz, city)
chunks|] « streamPartitioning(D)
/ /Step 2: Activity classification
acts|] < activityClassi fier (chunks|])
/ /Step 3: Location estimation
for each activity in acts]]
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WiFi or a cellular network. In order to find the last city in
which the user was connected to a WiFi network, PinMe
processes the previous readings of smartphone’s Network
Status (NS) and IP address to find the last IP address of the
smartphone when it was connected to a WiFi network, and
feeds that IP address to I PGeolocation(...). Then, PinMe
obtains different types of auxiliary information about the
city, e.g., its maps. PinMe does not assume that the user remains
in the same city. However, it starts tracking the user from
that city. In fact, the user’s current city becomes regularly
updated based on his past movements.

2. Data stream partitioning: In the pre-processing step,
PinMe also breaks the long data stream collected over a long
time period, e.g., a day, into data chunks so that each chunk
only includes the data associated with one activity. Based on
our empirical analyses, a simple pattern in the acceleration
data can indicate that a new activity has commenced: in the
transition from one activity to another, the accelerometer
measures a series of large absolute acceleration readings
(larger than 25 m/s?) in a short time frame due to the
fact that there is always a transition from standing (sitting)
position to sitting (standing) position between two activities.
This is the pattern PinMe uses to break the data stream into
small data chunks. Unfortunately, a similar pattern might
be present in the acceleration data collected during a single
activity, e.g., when the user suddenly moves or falls. There-
fore, it is possible that PinMe falsely detects the start of a
new activity even when the user’s activity has not changed.
However, this does not negatively impact the accuracy of
the location mechanism because as described later, for all
activities, the activity classifier accurately detects the user’s
activity and PinMe can merge consecutive data chunks into
one data chunk when the user’s activity has not changed.

3.2.2 Activity classification

[city, loc[i]] < Estimator(chunks[i], acts[i], aux, city) In this step, the activity classifier aims to specify the user’s

end
return loc[]

3.2.1 Pre-processing

In this step, PinMe first recognizes the last city in which
the user was connected to a WiFi network and gets the
required sources of auxiliary information for the potential
city of interest. Second, it breaks the sensory data into
several chunks so that each chunk is associated with a single
activity.
1. Inferring the city: When the smartphone is connected
to a WiFi network, IP geolocation techniques can process
the device’s current IP address and return the city in which
the smartphone is located. Although such techniques can
accurately locate the smartphone when it is connected to a
WiFi network, they usually fail to locate it when connected
to a cellular Internet network [31], [32].

Both iOS and Android allow an installed application
to determine whether the smartphone is connected to a

1. The actual destination/departure time may vary from the sched-
uled destination/departure time due to transportation delays. How-
ever, accurate information about the service is added to transport
timetables after departure.

activities. Throughout the paper, we assumed that the user
takes part in one of the four activities mentioned earlier:
driving, traveling on a plane, traveling on a train, and walk-
ing. To classify these activities, we have implemented two
classification methods: (i) a traditional machine learning-
based method that relies on building models to label the
user’s activities, and (ii) a tailored algorithm designed to
deduce the user’s activities based on the physical character-
istics of each activity.

To the best of our knowledge, the activity classifiers
utilized in PinMe are the first activity classification mech-
anisms that use air pressure data as a primary source of
data for activity classification, and the first to use macro-
level features, e.g., the number of turns and the rate of
change during a turn, of heading data. Our examination
of real-world data shows that air pressure and heading
can offer valuable discriminatory information for activity
classification.

Fig. 2 illustrates how the smartphone’s heading changes
in four data chunks collected during different activities.
Among all activities, traveling on a train is the only one
in which the smartphone observes no significant change in
heading data. Note that heading data are measured clockwise
from true north and vary from 0° to 359°.
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Fig. 3 shows how air pressure changes during different
activities. Traveling on a plane is the only activity in which
a fast significant drop in the environment’s air pressure was
noticed.
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Fig. 2. Heading data collected during four different activities. Heading
data are measured clockwise from true north and varies from 0° to
359°. The smartphone’s heading only slightly changes when the user
is traveling on the train (within a 30-degree range).
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Fig. 3. Air pressure data collected during four different activities.

Next, we describe each of the above-mentioned methods.
Method 1: Machine learning-based classification

A classical approach to implementing an activity clas-
sification mechanism is to devise a scheme based on a su-
pervised machine learning algorithm, which builds a model
using labeled training data. The training dataset used for ac-
tivity classification is not attack-specific (attacker can collect
the required data using his own smartphone while traveling
through unknown paths). This mechanism consists of three
steps: feature extraction, binary classification, and decision
making. Upon receiving a data chunk, the feature extraction
step generates a feature vector. This vector is then sent to
four binary classifiers, each trained to only detect a single
activity. Finally, the decision making step returns the user’s
activity based on the outputs of the binary classifiers. Next,
we discuss how each of these steps is implemented in our
proposed scheme.
1. Feature extraction: Previous research efforts [33]-[37]
have suggested a variety of features that can be extracted
from acceleration data and be used to classify various user
activities. In our mechanism, we use several features ex-
tracted from heading and air pressure data along with a
few previously-proposed acceleration-related features. Each
feature vector includes: time-domain features (mean, me-
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dian, and standard deviation) and frequency-domain fea-
tures (principal frequency and spectral energy) extracted
from each dimension of acceleration readings, time-domain
features (mean, median, and standard deviation, and range)
from air pressure, and macro-level features (number of turns
and maximum rate of change in heading over 1-second
windows) from magnetometer readings.

2. Binary classifiers: In order to implement binary classi-
fiers, we use Linear Support Vector Machine (LSVM) [38].
LSVM is one of the simplest, yet powerful, binary classifica-
tion methods. The basic concept behind an LSVM is to find
a hyperplane that separates the n-dimensional data into two
classes. When no prior knowledge about the dataset is avail-
able, LSVMs usually demonstrate promising results and
generalize well. They construct a decision boundary with
the largest possible distance to data points. As described
later in Section 4.2.1, our LSVM-based activity classification
algorithm accurately distinguishes different activities, that
are discussed in this paper, from each other. Therefore, we
did not consider more advanced classification algorithms
(for example, neural networks [39]). The binary classifiers
used in the proposed scheme are trained so that each classi-
fier can only recognize a single activity.

3. Final decision making: The final decision making step
receives the classifiers” outputs, and returns an output as
follows: if only one classifier detects the activity, it returns
the activity associated with that classifier, otherwise, it re-
turns a message stating that the activity is not recognized.
Method 2: Tailored algorithm

In addition to the machine-learning based method, we have
developed a simple, yet accurate, classification algorithm.
The simple tailored algorithm classifies the user’s activities
based on each activity’s physical characteristics. We examine
several data streams collected by the smartphone during
different user activities. For each activity, we extract a set
of characteristics that only pertains to that activity. Table 3
summarizes these characteristics.

3.2.3 Location estimation

In order to estimate the user’s location, we have imple-
mented four algorithms, referred to as location estimators.
Upon detection of the user’s activities (acts[]) using the ac-
tivity classifier, for each activity, PinMe calls E'stimator(...)
that executes one of the four location estimators to find
the user’s locations. For each location estimator, Table 4
summarizes the required non-sensory/sensory data and
auxiliary information given to it and the outputs provided
by each algorithm. Next, we describe the four proposed
location estimators in more detail.

Algorithm 1: carTracker: Unlike the method in [20] that uses
barometer measurements sampled at a very high frequency
(30H z) to provide a rough estimation of the user’s trajectory,
this algorithm can process heading and air pressure read-
ings collected at a very low sampling rate (0.1H z, as shown
in Section 5.1) to provide an accurate tracking mechanism.
It has three main steps:

Step 1: Map construction: Prior to tracking the user, PinMe
constructs a labeled directed graph G using both elevation
and navigational maps of the city so that its vertices and
edges represent the intersections and roads between inter-
sections, respectively. Labels of vertices are the elevation of
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TABLE 3
Discriminatory characteristics of each activity

Activity Characteristics

Driving Irregular positive (negative) accelerations as the driver accelerates (brakes)

Specific changes (around 90 degrees) in the smartphone’s heading as the car turns

Traveling on a plane | Rapid changes in the timezone

Significant increase/decrease of air pressure in a short time frame

Traveling on a train | Regular positive (negative) accelerations in one direction as the train leaves (reaches) a station

No significant changes in the smartphone’s heading

Walking Very frequent periodic acceleration changes in one direction, no matter how the device is held

TABLE 4
The required non-sensory/sensory data and auxiliary information given to each location estimator and the outputs provided by each algorithm

Location estimator Inputs Outputs

The initial and last locations and cities,
and the car’s estimated trajectory
The destination and departure airports

Algorithm 1: carTracker Air pressure, heading, public maps,

and weather reports

Air pressure, acceleration, TZ, weather reports,
airports’ specifications databases,

and flight timetables

Acceleration, heading, train timetables,

and trains” heading databases

Air pressure, acceleration, heading, weather reports, and public maps

Algorithm 2: planeTracker

Algorithm 3: trainTracker The destination and departure stations

Algorithm 4: walkingUserTracker The user’s last location and trajectory

the intersections extracted from the navigational map and
the angle between roads connecting to that intersection.

Step 2: Pruning set of probable candidates: At each moment
of time, the algorithm has an array of trees (the set of
probable paths with different starting points, referred to as
P) where each tree represents a sequence of intersections on
the navigational map. Prior to the attack, this array contains
all vertices of G, indicating that the first turn can be at any
intersection. Upon the detection of a turn (e.g., an almost 90-
degree change in the heading data), the algorithm prunes
and updates the set of trees as follows. For each probable
path (each tree in set P), it drops the path if all neighbors
of its last vertex do not meet the following conditions: the
elevation or relative changes in the heading direction of all
neighbors (represented as labels of vertices in graph G) do
not match their values extracted from sensory data.

Step 3: Updating the remaining candidates: At each turn,
if a tree is not dropped from the set, the algorithm adds
all neighbors (intersections) that meet the above-mentioned
conditions to the tree. Eventually, it sorts paths in P
based on their error, defined as the weighted sum of ab-
solute differences between the extracted features from the
sensory data and their actual values reported in naviga-
tional/elevation data, and returns the most probable path
from the set (the path with the lowest error).

Although the number of intersections of a city is large,
we observe based on experimental results that the number of
intersections that can be a part of a candidate path drops extremely
fast from thousands to only a few after the first few turns. As a
result, the size of set P is reduced quickly as the algorithm
removes many impossible candidates when they become
inconsistent with new data. This is demonstrated later in
Section 4.

Note: Although there is a well-known physics equation [40]
for estimating elevation (relative to sea level) based on air

pressure measurements alone, it does not provide an accu-
rate estimation of the elevation in practice since barometer
measurements significantly depend on weather conditions.
To accurately estimate the elevation (Hy,,+,) of a turn point,
given the air pressure measured at the point (Py,-,), PinMe
first extracts the air pressure (Pstqtion), elevation (Hgtation),
temperature information (7'), and humidity (indicated by
a constant C) at city’s weather station, provided by its
weather report, and then uses the following physics equa-
tion [41]:

T P
station T *ln(ﬂ

- ) M)

Algorithm 2: planeTracker: planeTracker first extracts three
features from the raw data provided by the smartphone:
(i) flight time data (takeoff and landing times and flight
duration), (ii) TZ and elevation of the departure airport, and
(iii) TZ and elevation of the destination airport. In order to
extract these features from the raw data, the algorithm first
recognizes different aviation phases of the flight (pre-flight,
takeoff, cruising, descending, landing, and taxiing to the
gate) by processing acceleration and elevation data collected
by the smartphone during the flight. Then, it calculates the
flight duration as the time difference between the pre-flight
phase (i.e., when the plane leaves the gate at the departure
airport) and taxiing phase (i.e., when the plane reaches
the gate at the destination airport). Moreover, it stores the
device’s air pressure and TZ in both the pre-flight and
taxiing phases. Afterwards, it calculates the elevations of
both departure and destination airports, given the weather
report (including the air pressure reading at city’s weather
station and its elevation data). Then, it searches through
the airports’ specifications database to find the flight routes,
which have the following characteristics: (i) the TZ of both
destination and departure airports reported by the smart-
phone matches the ones reported in the database, (ii) the

Hturn =

Pstation
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difference between elevation measured from air pressure
data and elevation extracted from the database is less than a
small threshold, e.g., Teicvation = 5, and (iii) the difference
between flight duration measured from acceleration data
and flight duration extracted from the database is less than
a certain threshold, e.g., Tguration = 1h.

Given timetables of probable departure/destination air-

ports, planeTracker returns the routes for which both takeoff
time and landing time almost match their corresponding
times provided by timetables, e.g., ATjanding, ATtakeots <
Lh, where AT} qnding/takeos s is the difference between land-
ing/takeoff times extracted from sensory data and their
expected values in timetables.
Algorithm 3: trainTracker: Acceleration data can reveal
different transportation phases, e.g., when the train leaves
or approaches a station, and the combination of acceleration
and heading data provides an approximation of the train’s
heading. This algorithm has two main steps:

Step 1: Extracting features: It first extracts three features
from the raw acceleration and heading data: (i) travel inter-
vals (an array T), defined as the difference between the time
the train leaves a station and the time it reaches the next
station, (ii) departure time Tyeparture that represents when
the train left the first station, and (iii) train’s heading, i.e.,
an approximation of the direction of the train’s movement
at the first station.

Step 2: Searching through the timetable: After extracting the

above-mentioned features from the raw data, this algorithm
searches the timetables of city’s stations to find the most
probable route. It first constructs 73,4y, for all trains that al-
ready left or will leave the current city around the departure
time (within Tyeparture — 1A t0 Tgeparture + 1h) as follows:
each Tirqin is itself an array including travel intervals for
a single train. Then, for each Ti4iy in the list, it computes
the difference between travel intervals extracted from the
sensory data (T) and Tyrqin, i€, D = Zifﬁfth(ﬂ |T[i] —
Tirainli]|. If the difference between T and Ty,qin is below a
certain threshold (i.e., D < 2mins X length(T)), the route
corresponding to Ti.qin is added to the set of probable
routes (P). Then, the algorithm prunes P by removing
routes for which the difference between the trains’ heading
extracted from the sensory data and the actual value of
heading reported in trains’ heading database is above a
certain threshold (30 degrees). Finally, from the remaining
routes, it returns a single route corresponding to the lowest
D in the set.
Algorithm 4: walkingUserTracker: This algorithm assumes
that the user walks through the walking areas (roads or
sidewalks) of the navigational map. We have implemented
two different versions of the algorithm. The first version
searches through the whole map to find the user’s trajectory.
However, to find the initial location of this activity, the
second version only considers a small area (300m x 300m)
on the map around a given location (in real-world scenarios,
this location is determined by a previous activity). Next, we
describe the first version that has three steps (the second
version is similar, however, it only considers a smaller set of
nodes to find the initial point).

Step 1: Map construction: Prior to the attack, walkingUser-
Tracker constructs a graph G similar to the one generated
for Algorithm 1: carTracker, with a slight difference: the graph
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also has a label on each edge that represents the length of the
corresponding road extracted from the navigational map.
Similar to carTracker, the algorithm maintains an array of
trees (the set of probable paths with different starting points,
referred to as P) where each tree represents a sequence of
intersections on the navigational map.

Step 2: Pruning the set of probable candidates: The algorithm
extracts the steps and their directions from the raw acceler-
ation and heading data and elevation of intersections from
air pressure readings. Upon the detection of a turn (e.g.,
an almost 90-degree change in the heading), the algorithm
updates the set of trees as follows. For each probable path,
it drops the path if all neighbors of its last vertex do not
meet at least one of the following conditions: (i) all labels of
edges that connect the last vertex to it neighbors (D[i]s) do
not match the estimation of the travelled distance calculated
based on the number of steps (for example, all D]i]s are not
within the range of 0.4m x #steps to 1.2m x #steps), or
(ii) the elevation or relative changes in heading direction of
neighbors do not match their values extracted from sensory
data.

Step 3: Updating the remaining candidates: At each turn, if
a tree is not eliminated, the algorithm extends it by adding
all neighbors (intersections) that meet the above conditions.
This algorithm sorts paths P based on their error, defined
as the weighted sum of absolute differences between the
extracted features from the sensory data and their actual
values given by maps, and returns the path with the lowest
error.

Note: Although this algorithm uses an estimation of the
distance walked by the user to find the trajectory, it can also
accurately estimate the user’s step size upon the detection
of a unique path. It uses the information gathered in the
last sidewalk/road (e.g., total number of steps) along with
information offered by the navigational map (e.g., the total
length of the last sidewalk/road) to adaptively estimate the
user’s step size. Upon the detection of a unique trajectory,
the estimation of the step size enables the algorithm to
accurately estimate the user’s location on the road.

4 [EVALUATION OF THE PROPOSED MECHANISM

In this section, we first describe our data collection proce-
dure. Then, we examine the accuracy of PinMe using real-
world data.

4.1 Data collection procedure

We start with the description of the data collection proce-
dure.

4.1.1
tions

Device characteristics and experimental configura-

The proposed location mechanism is evaluated on three
smartphones (Galaxy 54 19500, iPhone 6, and iPhone 6S).
Each device is equipped with an internal GPS device and
several high-precision sensors including, but not limited to,
a 3/6-axis accelerometer, magnetometer, and barometer.

As mentioned earlier in Section 3, PinMe processes
various types of sensory data (air pressure, heading, and
acceleration) and non-sensory data (the device’s TZ, IP, and
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NS). In order to collect the required data using Galaxy
54 19500, we developed an Android application that con-
tinuously records the non-sensory/sensory readings of the
device. Moreover, we installed a sensor data logger ap-
plication on both iPhone 6 and iPhone 6s, called Sensor-
Log [42], which continuously records the required non-
sensory/sensory data. In our data collection procedure,
sensory data are collected at the sampling frequency of 5H z.
In addition to the above-mentioned data, the applications
installed on the smartphones also collect GPS readings. GPS
data are only used to evaluate the accuracy of PinMe in
estimating the user’s location (PinMe does not access GPS
data).

4.1.2 Datasets

We constructed two datasets using real-world data. The first
dataset consists of several data chunks, i.e., sequences of
consecutive readings of non-sensory/sensory data collected
during one activity. The second dataset includes three
non-sensory/sensory data streams collected by the three
under-experiment smartphones for a whole day. Next, we
briefly describe each dataset. During the collection of each
data chunk, the smartphone’s orientation was almost fixed,
however, the actual orientation of the smartphone was
unknown in all cases.

Dataset #1: This dataset consists of 405 data chunks
collected during different user activities where each data
chunk contains consecutive readings of air pressure,
heading, acceleration, and the device’s TZ, IP, and NS
during each activity. Table 5 shows the number of collected
chunks for each activity. Next, for each activity, we briefly
describe how we collected real-world data.

TABLE 5
Number of data chunks in Dataset #1 for each activity

Activity Number of data chunks
Driving 271

Traveling on a plane 4

Traveling on a train 30

Walking 100

1. Driving: A user, carrying an iPhone 6, drove in three
different cities. 271 data chunks were collected, where each
chunk contains the smartphone’s data during one driving
period. Table 6 shows the cities in which the user drove,
their populations, the state in which each city is located,
and the number of collected data chunks, total travelled
distance, and the average travelled distance for each city.
To provide a fair evaluation, we tried to collect data chunks
from different areas of these cities (both dense and sparse
areas).

2. Traveling on a plane: We collected four data chunks
when the user traveled on four different airplanes on four
different flight routes: (i) from Philadelphia to Dallas, (ii)
from Dallas to New York, (iii) from College Station to
Dallas, and (iv) from Dallas to College Station. All four data
chunks were collected using iPhone 6S.

3. Traveling on a train: We collected 30 data chunks using
an iPhone 6s when the user traveled on a train (10 chunks

TABLE 6
Cities, their populations and state, and the number of driving chunks,
total travelled distance, and the average travelled distance for each city

City Population  State  Chunks Total Average
name distance  distance
Princeton 12307 NJ 105 327km  3.11km
Trenton 84308 NJ 111 293km  2.63km
Philadelphia 1.5M PA 55 157km 2.85km

for Princeton Junction Station to New York, 10 chunks for
Baltimore Penn Station to New York, and 10 chunks for
Washington D.C. Union Station to New York).

4. Walking: We collected 100 data chunks when the user
walked carrying an iPhone 6. These data chunks were
gathered in Princeton.

Dataset #2: This dataset includes three data streams
collected by three users while going through their regular
daily activities. Two users were located in Princeton, NJ and
one user was located in Baltimore, MD. In order to construct
this dataset, we asked the users to choose and carry one of
the three under-experiment smartphones (Galaxy S4 19500,
iPhone 6, and iPhone 6S).

4.2 Accuracy evaluation

In the following, we first evaluate the accuracy of the two
main steps of PinMe (activity classification and location
estimation) using Dataset #1. Then, we use Dataset #2 to
provide an end-to-end evaluation.

4.2.1 Step-by-step evaluation

Next, we evaluate the accuracy of the activity classifier and
location estimators using Dataset #1.

Evaluating the activity classifier

We evaluated the two activity classification methods dis-
cussed in Section 3 using Dataset #1. In the machine-
learning based approach, we used 50% of the collected
data chunks for training the binary classifiers, and tested
the accuracy of the scheme using data not used in the
training phase. In the other approach, we used all data
chunks to test the accuracy of the tailored algorithm. Both
methods provided a classification accuracy of 100%, where
classification accuracy is defined as the ratio of correctly rec-
ognized activities to the total number of activities processed
by the activity classifier. A high classification accuracy was
expected since each of the supported activities (driving,
traveling on a plane, traveling on train, and walking) has
unique physical characteristics that differentiate it from
other activities.

Evaluating the location estimators

Next, we examine how accurately the four location estima-
tor algorithms discussed in Section 3 can estimate the user’s
location.

Algorithm 1: carTracker: In order to evaluate the accuracy of
carTracker, we used 271 data chunks from Dataset #1, which
were collected in three different cities (Table 6). Next, we
examine how accurately this algorithm can locate the user
when it returns the most probable driving path from the
set of probable driving paths and how the size of the set
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changes with respect to the number of turns in the driving
path.

Fig. 4 shows the average approximation error with re-
spect to the number of turns. The approximation error
is defined as the distance between the actual location (as
provided by GPS sensor) and the estimated location (as
estimated by PinMe) of the user, divided by the total trav-
eled distance (computed by processing GPS readings). In
our experiments, the number of turns varies between 4 and
17. As can be seen from this figure, as the number of turns
increases, the approximation error of the estimator typically
decreases.

1.6 *—= Princeton
e——= Trenton

e—= Philadelphia

0.6
0.4
0.2

1 3 5 7 9 11 13 15 17 19
Number of turns

Average approximation error (%)

Fig. 4. Average approximation error with respect to the number of turns.
The average approximation error is less than 1.5% in all cases.

We examined how the number of possible driving paths
decreases when the number of turns in the driving path
increases. Fig. 5 illustrates the number of possible driving
paths with respect to the number of turns. As can be seen,
the number of possible driving paths drops rapidly as the
number of turns increases.

To sum up, as the number of turns increases, PinMe
collects more information about the user’s environment, and
as a result, it is more likely to find a unique driving path on
the map.

*—= Princeton

e—= Trenton

e—=  Philadelphia

N W A L AN o O

Number of possible driving paths

1 3 5 7 9 11 13 15 17 19
Number of turns

Fig. 5. Number of possible driving paths with respect to the number of
turns.

Algorithm 2: planeTracker: We examined the accuracy of
planeTracker in finding departure and destination airports
using Dataset #1. As shown in Table 5, we collected four data
chunks while traveling on a plane. Despite the existence of
potential differences between the approximated values of
takeoff time, landing time, and elevation, and their expected
values reported in airports” specification database and flight
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timetables, planeTracker was able to accurately and uniquely
return both departure and destination airports for all four
flight routes.

For each of the four data chunks, we examined how
much the approximated takeoff time, landing time, and
elevation readings extracted by processing the smartphone’s
sensory data differ from their expected values calculated
by processing publicly-available auxiliary data (airports’
specification database and flight timetables), and noticed
that: (i) the average difference between estimated elevation
reported by the smartphone and the elevation extracted
from airports’ specification database was 2.3 m, (ii) the
average difference between the estimated flight duration
and the actual flight duration was 4% of the actual duration,
(iii) the difference between approximated takeoff time and
the takeoff time reported in the flight timetable (flight delay)
was 17 minutes.

In addition to the above-mentioned analyses, we also
examined the discriminatory power of the features extracted
by planeTracker (flight duration, TZs, and elevations of both
destination and departure airports) using Monte Carlo sim-
ulation methodology [43]. We considered two scenarios: (i)
similar to above-mentioned real-world cases, both depar-
ture and destination airports are unknown and planeTracker
returns the flight route (departure and destination airports),
and (ii) attacker knows the departure airport from a previ-
ous activity, e.g., driving to the airport, and he only wants
to identify the destination airport. For each scenario, we
generated 500 random flight routes assuming that (i) for
each route, the difference between the estimated flight dura-
tion and actual flight duration varies between 0% and 10%
of the actual duration, and (ii) the difference between the
estimated elevation reported by the smartphone and the ele-
vation extracted from airports’” specification database varies
between 0 m and 5 m. We slightly modified planeTracker
so that it returns the three most probable flight routes using
the extracted features (without even using flight timeta-
bles). After finding a set of probable flight routes, it sorts
the routes based on their error, defined as the weighted
sum of absolute differences between the features (eleva-
tion and flight duration) calculated from sensory data and
their expected values extracted from airports’ specifications
database.

Fig. 6 demonstrates how accurately planel'racker is able
to find the actual flight route without knowing the departure
airport, where accuracy is defined as the number of cases in
which the actual flight route was among the three returned
flight candidates divided by the total number of trials (500).
Similarly, Fig. 7 shows how accurately planelracker can
find the destination airport, given the departure airport.
Despite the presence of potential differences between the
approximated duration and elevation and their expected
values, in the majority of cases, planeTracker was able to find
a set of three routes/destination airports that includes the
actual flight route/destination airport, as illustrated in Fig. 6
and Fig. 7, respectively.

Algorithm 3: trainTracker: As mentioned earlier, train-
Tracker returns both departure and destination stations. We
examined the accuracy of the tracking mechanism in finding
actual traveling routes using the 30 data chunks collected by
the smartphone (10 chunks for Princeton Junction Station to
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Fig. 6. Accuracy of planeT'racker in providing a set of three potential
candidates so that the actual flight route is in the set.
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Fig. 7. Accuracy of planeTracker in providing a set of three potential
destination airports (given the departure airport) so that the actual
destination airport is in the set.

New York, 10 chunks for Baltimore Penn Station to New
York, and 10 chunks for Washington D.C. Union Station
to New York). Our experimental results demonstrated that
trainTracker was able to accurately identify the user’s travel
route in all trials.
Algorithm 4: walkingUserTracker: As mentioned earlier,
two different versions of Algorithm 4: walkingUserTracker
have been implemented: one that searches the whole map,
and the other one that assumes the initial location is within
a small area (300m x 300m) around the final location of
the last activity. Fig. 8 shows how the number of possible
walking paths will change with respect to the number of
walking steps for the first version of the algorithm. Based
on our empirical results, although the possible number of
candidates is reduced quickly, the possibility of each of them
at each moment of time is similar to the others (i.e., when
the number of steps is small, uniquely distinguishing the
actual path is not feasible). As shown in Fig. 8, in order
to return a unique accurate path, the first version of the
algorithm requires a long stream of sensory data (i.e., the
user should walk over 2500 steps). We observed that, in
real-world scenarios, users usually walk shorter distances
(including only a few different roads) preceded by other
activities (commonly driving). Thus, to accurately track the
user in real-world scenarios during multiple activities, we
suggest using the second version of the algorithm that
utilizes the data provided by the previous activity.

We examined how accurately the second version of
walkingUserTracker estimates the user’s location. Fig. 9
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Fig. 8. Number of potential candidates with respect to the number of
walking steps

shows the approximation error for all walking trials with
respect to the number of steps, where approximation error
is defined as the distance between the user’s actual location
(as provided by GPS sensor) and the user’s estimated loca-
tion (as estimated by PinMe), divided by the total walking
distance. As shown in the figure, the approximation error
was less than 2.5% for all data chunks.
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Fig. 9. Approximation error with respect to the number of walking steps.

4.2.2 End-to-end evaluation

In order to provide an end-to-end evaluation, we evaluated
the accuracy of PinMe using Dataset #2. As discussed in
Section 3.2.3, we have implemented two different versions
of walkingUserTracker. For this evaluation, we used the sec-
ond version, which assumes that the user is within a small
area around his vehicle after he leaves the vehicle. Fig. 10
demonstrates the actual trajectories of the users” movements
(as provided by GPS sensor) along with the estimated trajec-
tories (as provided by PinMe). As illustrated in this figure,
for all three data streams, which were collected by three
different users while carrying three different smartphones,
the actual trajectories of the users” movements were very
similar to the estimated ones provided by PinMe. However,
we observed four mismatch areas (bounded by red/blue
boxes in Fig. 10). In the first and last areas (M1 and M4),
the starting point of the actual driving path was slightly
different from the point discovered by PinMe due to the
similarities between two nearby intersections marked on the
map. In two other mismatch areas, PinMe more accurately
located the user than GPS. The GPS trajectory shows that
the user’s vehicle was off the road (M2). Furthermore, it
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Fig. 10. Trajectories of three different users. Starting from the left and moving to right: (a) the first user was located in Princeton and carried a
Galaxy S4i9500, (b) the second user was located in Princeton and carried an iPhone 6, and (c) the third user was located in Baltimore and carried
an iPhone 6S. The green and orange lines demonstrate the estimated user’s paths during driving and walking, respectively. The black line is the

actual user’s trajectory reported by GPS data.

indicates that the user was off the sidewalk when he was
walking (M 3). In these two cases, we checked the validity of
PinMe’s trajectories with the users, and they confirmed that
the results provided by PinMe show the actual trajectory in
M2 and M3.

Based on our experimental results, we can say that the
location estimation accuracy of carTracker was independent
of the user’s smartphone and vehicle. This was expected
for two reasons. First, PinMe utilizes sensory data, which
do not correlate with the smartphone model (air pressure,
heading, and acceleration), as opposed to PowerSpy [17]
that uses power consumption, which highly correlates with
the smartphone model. Second, as described in Section 3,
carTracker mainly relies on air pressure and heading to
track the vehicle when the user is driving — these data
are not correlated with the vehicle model, as opposed to
acceleration data that are correlated with the vehicle model
due to the existence of vibrations caused by the engine of
the running vehicle [19].

5 COUNTERMEASURES

In this section, we briefly describe several countermeasures
(along with their shortcomings) for mitigating the risks of
attacks against location privacy.

5.1 Adaptive sampling rate

Limiting the sampling rate of sensors can potentially limit
the amount of information leaked by the smartphone. In
order to briefly discuss how the accuracy of PinMe might
be negatively impacted if the sampling rate decreases, we
examined carTracker using sensory data collected at different
sampling rates. Fig. 11 shows how the average approxima-
tion error of carTracker changes with respect to the sampling
rate. As we decrease the sampling rate, the approximation
error only slightly increases for this algorithm (even when
the sampling rate is around 0.1Hz). However, based on
our empirical results, the accuracy of carTracker suddenly
drops when the sampling rate becomes very low (i.e., below
0.02H z) since the algorithm cannot detect the intersection
(when the car turns) anymore. Many benign applications
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Fig. 11. Average approximation error of carTracker with respect to the
sampling frequency.

(for example, fitness tracker [44] and fall detection [45])
require a sampling frequency larger than 0.1Hz, and thus
decreasing the sampling rate of sensors below 0.1Hz, to
prevent a PinMe attack, would reduce the efficiency, efficacy,
and utility of trusted applications as well.

Utilizing context-aware sampling mechanisms, which
can adaptively control sensor sampling rates, may be an
alternative approach to maximizing utility and minimizing
information leakage. For example, consider a mechanism
that changes the maximum allowable sampling rate of the
sensors based on user’s current activity. Such a mechanism
can allow a fitness tracking application to obtain very
frequent samples from the accelerometer when the user is
running and only allow infrequent sampling when the user
is driving,.

5.2 Risk-evaluation mechanism

Generally, a risk-evaluation mechanism aims to share the
smartphone’s data in such a way that certain kinds of infer-
ences cannot be drawn. It examines if a set of sensory/non-
sensory data collected by an application can leak sensi-
tive information about the user, and blocks an application
upon the detection of a potential information leakage. A
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few recent research efforts have been geared towards risk-
evaluation mechanisms that can be implemented on the
smartphone to ensure user privacy [21], [46], [47]. For in-
stance, Chakraborty et al. [47] have proposed ipShield, a
framework to control the sensory data that are accessible by
various applications installed on a smartphone. Their risk-
evaluation mechanism continuously examines what infer-
ences can be made from the shared sensory/non-sensory
information.

Zhang et al. [21] proposed a defense against runtime-
information-gathering attacks in which a malicious app runs
side-by-side with a target application (a victim) and per-
forms runtime information gathering (RIG). They suggested
temporarily stopping the applications that are potentially
able to collect data from a sensitive application or killing ap-
plications that may be collecting side-channel information in
the background while the foreground application performs
sensitive tasks. They discuss two suspicious activities that
can reveal maliciousness of an application: (1) a high sam-
pling rate needed for continuous monitoring, (2) the pres-
ence of a correlation between an application’s activity and
the activity of a sensitive application. The location estima-
tion algorithms described in our paper need a much lower
sampling frequency (for example, as shown earlier, 0.1Hz
led to accurate results for carTracker) than the frequency
used in many previous attacks (for example, ACComplice
[19] uses a sampling rate of 30Hz). Therefore, sampling
rate cannot be solely used to reveal the malicious activity of
PinMe. Furthermore, PinMe does not require any data from
other applications since it directly collects permission-free
data, therefore, there is no correlation between its activity
and other applications’ activities. Finally, their defense relies
on monitoring application-specific files, which are no longer
accessible in Android M [48]. Thus, the approach discussed
in [21] does not address PinMe.

5.3 Sensor data manipulation

Sensor data manipulation enables the user to manipulate or
add noise to the content of collected sensory data when he
is apprehensive about sensor data abuse in certain sensing
applications. Typical data manipulation approaches include
rounding the values in the sensory data to approximate
values, replacing particular sensor readings by previously-
recorded readings, and adding random noise to the sensory
data. However, as mentioned earlier, unlike many previ-
ous attacks, PinMe relies on several macro-level features
extracted from sensory data. As a result, it is robust against
several potential sources of noise. For example, for plane-
Tracker described in Section 3.2.3, it only extracts the aviation
phases of the plane from noisy acceleration readings (as
apposed to the actual displacement) from which it estimates
the flight duration. As shown in Fig. 6 (Fig. 7), planeTracker
was able to find a set of three routes (airports) that includes
the actual flight route (destination airport), with a high
level of accuracy, even when the approximated duration and
elevation are assumed to be inaccurate due to the presence
of noise (up to 10% for flight duration and 5m for elevation).

Adding significant noise to sensory readings or replac-
ing data with previously-recorded data may significantly
reduce the utility of trusted applications relying on such
sensory data.
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5.4 Turn-off switch

A hardware turn-off switch that lets the user quickly and
easily turn off all sensors or a sensor-free mode imple-
mented in the operating system in which no application can
obtain sensory information enables the user to easily stop
information leakage when he suspects that there might be
privacy risks. For example, the user can turn off all sensors
when he is driving to ensure that no application can track
him.

6 RELATED WORK

Several prior research studies have demonstrated the use
of smartphone sensors in diverse application domains. The
use of accelerometer for activity monitoring has been widely
discussed in the literature [49]-[52]. Furthermore, recent
research articles have discussed the feasibility of using air
pressure measurements for indoor positioning [53], [54], in
particular, floor detection.

Moreover, as briefly mentioned in Section 1, a few recent
research efforts have demonstrated the feasibility of obtain-
ing valuable information about the smartphone’s location
without accessing the GPS. In the following, we discuss
them in more detail.

PowerSpy [17] demonstrated that an adversary can esti-
mate the user’s location by processing the power consump-
tion information of the device when he is driving through a
known set of routes. As mentioned in [17], this user location
mechanism has the following limitations: (i) it requires a
massive training dataset of power profiles associated with
GPS coordinates, (ii) since the power profiles of different
smartphones vary significantly from each other, in order to
construct the training dataset, the attacker needs to measure
the power consumption of many devices while driving, (iii)
it assumes that there is enough variability in the device’s
power consumption along a route such that it exhibits
unique features, (iv) it is only applicable to Android devices,
and (v) it is able to detect the complete driving path in only
45% of the trials in the in the best-case scenario using HTC
Desire for data collection and a small set of possible routes
(the estimation accuracy significantly worsened when other
smartphones were used in the experiment).

ACComplice [19] showed that continuous measure-
ments of acceleration in smartphones can reveal user lo-
cation while driving. It has four main limitations: (i) it
requires a training dataset that contains data on multiple
car trips through each potential traveling route, with the
smartphone constantly collecting motion sensor data, (ii)
since it mainly relies on smartphone’s acceleration data,
the noise in sensor readings, e.g, due to different road
conditions, can significantly affect its accuracy, (iii) it returns
several (usually more than 10) potential driving paths, and
(iv) device acceleration needs to be measured at a relatively
high frequency (30Hz2). In [19], ACComplice is evaluated
using only two driving paths. When the initial point was
not given to the algorithm, for each test, it was able to return
two clusters of possible starting points (each including five
points) such that the starting point was within one of the
clusters. Knowing the initial location, it could only partially
find the driving paths (it correctly found 18 out of 23 routes
for one test case and 9 out of 12 routes for the other).
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TABLE 7
Comparison of different user-tracking mechanisms

Tracking mechanism | #Activity | Prior info. | Training oS Sampling freq. Device/Vehicle dependence
PowerSpy [17] 1 Y Y Andorid N/A Y
ACComplice [19] 1 Y Y Android and i0S 30Hz Y

Tracking Metro [18] 1 Y Y Android and i0S 10Hz N/A

From Pressure [20] 1 Y N N/A 30H z N

RIG [9] 1 Y N Android 50H z N

PinMe 4 N N Android and i0OS | 5Hz (0.1H z for driving) N

Zhou et al. [9] discussed an attack based on acoustic
information leakage from another application. Their ap-
proach processes the sequence of acoustic data generated
by the smartphone’s speaker when the user is driving
and using a navigational application. This attack does not
depend on the vehicle and device, and constructing real-
world attack-specific dataset (it constructs a dataset based
on simulations). However, they assume that attacker knows
the user’s start location or a place on his route and the rough
area he goes (e.g., city) to find some points of interest and
implicitly ignore the possible loops/rerouting. Furthermore,
if the user goes to unlabeled places that is not likely to be
included in the constructed dataset of points of interest (for
example, if he parks his vehicle far from a point of interest),
the approach discussed in [9] is unable to return the user’s
trajectory. In addition, since this attack requires a very
high sampling rate (50H z), their applications can be easily
marked as “malicious” using the approach described in [21].
Finally, if the user simply turns off the speech guidance
mechanism of the navigation application, this attack is not
applicable anymore.

Ho et al. [20] presented an approach that uses dynamic
time warping (DTW) algorithms (i.e., a time-series align-
ment algorithm in which two signals are compared against
each other by means of a cost matrix) to track a vehicle
using air pressure readings sampled at 30H z. DTW is used
to compare the sequence of air pressure data samples with
that of different candidate paths. However, in real-world
scenarios, unfortunately, the search space of all candidate
paths can be very large. If path loops are included, the
search space may be infinite. They assumed that the path
does not contain any loop and examined two DTW-based
methods. For the first one, the median error is reported to
be around 800m (when median error for a random walk was
only 1600m). Considering prior knowledge about the user
to limit the area of interest and reduce search complexity, the
second algorithm offers a median error of 60m. However, as
mentioned in [20], the second approach does not scale well
for large maps.

Hua et al. [18] demonstrated that acceleration data can
provide valuable location-related information when the user
is traveling on a train. As mentioned in [18], the tracking
method has two main limitations: (i) similar to the above-
mentioned methods, it requires a large training dataset
collected by the attacker while traveling through different
potential paths, and (ii) it is difficult to provide a high level
of location estimation accuracy due to various types of noise
in the training data.

Table 7 compares different location mechanisms and

highlights the advantages of PinMe. Our experimental re-
sults indicate that, without knowing the initial location,
PinMe was able to return a single accurate driving path that
is very similar to the trajectory provided by GPS readings.
We believe that PinMe is able to return very accurate results
since it mainly relies on noise-robust features extracted
from barometer and magnetometer measurements. More-
over, unlike previously-proposed mechanisms, PinMe does
not require measurements on a set of possible routes in ad-
vance. Therefore, our proposed attack is also more scalable.
Unlike PinMe, the above-mentioned attacks only estimate
the user’s location during a single activity. Moreover, they
commonly assume that the adversary has substantial prior
information about the user’s initial location. This knowl-
edge is required because the attacker needs to collect a set
of sensory data for different potential routes in advance and
construct an attack-specific training database (e.g., in [17])
or the location estimation algorithm does not scale well for
a large area of interest (e.g., in [20]).

7 DiscussIiON

In this section, we discuss three items not yet explained in
detail. First, we discuss limitations of the proposed mech-
anism. Second, we describe how we took advantage of the
interdependence between activities in our algorithms. We
then discuss how PinMe can also be used as a stand-alone
location mechanism, and how it can be used to enhance the
security of autonomous vehicles.

7.1 Limitations

Next, we briefly discuss four potential limitations of PinMe.

PinMe uses the history of smartphone IP addresses to
infer the last city in which the user was connected to a
WiFi network. In fact, it assumes that the user is directly
connected to the Internet. Thus, if the user utilizes an
anonymous communication service, e.g., Tor [55], PinMe
may fail to locate the user. However, as mentioned later, the
interdependence between activities can be used to resolve
this limitation.

In addition, PinMe (in the end-to-end implementation)
assumes that the initial location of the user when he starts
walking is within a small area (300m x 300m) around the
latest location of the user estimated by the previous activity.
Thus, if PinMe cannot roughly (i.e., within the 300m x 300m
area around the actual location) estimate the location of user
from the previous activity, it also fails to track him when he
is walking.
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Moreover, PinMe relies significantly on the variability of
elevations and route directions. Therefore, PinMe might be
unable to estimate the user’s location if the user only moves
in grid routes, e.g., some parts of Manhattan, NY, in which
the roads are almost flat and parallel to each other.

Furthermore, since PinMe relies on publicly-available
datasets, the existence of erroneous data in auxiliary
datasets given to PinMe may reduce the location estimation
accuracy. For example, OSM navigational maps do not typ-
ically include very recent constructions/detours. Therefore,
if the user travels through a new road that has not been
added to the map, PinMe may fail to track the user.

Despite the above-mentioned limitations, PinMe
presents a significant advance in state-of-the-art
smartphone-based user location, since it enables an
attacker to scale up the attack against location privacy by
minimizing attack requirements and offers a high location
estimation accuracy.

7.2

As described earlier in Section 3.2.3, we designed four
different independent algorithms for tracking the user dur-
ing four different activities. Although the user’s activities
may seem independent of each other at first glance, there
exists an interdependence between them due to physical
constraints imposed by the world and the user’s movement.

In particular, we make two observations. First, the users
always walk between other activities (driving, traveling on
a train, and traveling on a plane), and therefore, certain
sequences of activities are not feasible. For example, the user
cannot get on a plane as soon as he stops driving. This helps
our tailored classifier algorithm to remove impossible cases.

Second, the final location of the user after performing
each activity roughly determines the initial location of the
next activity. However, since the precision of the estimated
location determined by different algorithms might differ
from each other, combining the results from different algo-
rithms to get an accurate trajectory is not usually straightfor-
ward. For example, consider the following scenario: a user
takes a flight that lands at airport A, then walks for a few
hundred meters to reach his car, and eventually drives to
his home from the airport. In order to track the user, PinMe
utilizes flightTracker, walkingUserTracker, and carTracker, re-
spectively. flightTracker returns departure and destination
airports, whereas carTracker and walkingUserTracker return
a trajectory with an accuracy comparable to GPS. If PinMe
relies on the assumption that the initial location for each
activity is accurately determined by the previous activity,
then it fails to provide an accurate estimation of the user’s
trajectory in the above-mentioned scenario since the location
returned by the first activity provides an inaccurate initial
point for carTracker (the whole airport area is marked as
a single point with fixed GPS coordinates on navigational
maps). However, the interdependence between activities
still provides valuable pieces of information in this scenario.
First, flightTracker returns the destination airport from which
the current city can be identified even if the user has not
connected to any WiFi network yet or is using an anony-
mous communication service, e.g., Tor [55]. Second, the
final location of the user after performing each activity can

Interdependence of activities
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significantly bound our area of interest. This has been used
in our end-to-end evaluation, where the walkingUserTracker
algorithm assumes that the user’s initial location, when
he starts walking, is within a small area around the final
location of the user estimated by carTracker.

7.3 PinMe as an alternative to GPS

Next, we first describe drawbacks of traditional GPS sys-
tems. We then describe why PinMe can offer a more secure
navigation mechanism for autonomous vehicles.

With the widespread use of GPS receivers in modern
vehicles, ranging from yachts to autonomous cars, the secu-
rity of GPS has garnered ever-increasing attention in recent
years. GPS receivers compare timestamped signals from a
constellation of satellites, inferring their position through
computations on the lightspeed lag from each signal. Several
research studies [56]-[58] have demonstrated the feasibility
of faking the satellite signals needed for positioning and
mentioned that security attacks against the GPS signals
used in autonomous vehicles may lead to disastrous con-
sequences.

Unfortunately, protecting GPS signals against spoofing is
difficult for three reasons. First, the computational load as-
sociated with cryptographic signatures on the signal is high.
Second, it is impossible to use a challenge-response protocol
since the communication channel between the satellites
and GPS receiver is unidirectional, i.e., the receiver cannot
transmit data to the satellites. Third, the implementation of
new algorithms/mechanisms, which need modifications to
the GPS infrastructure, is difficult and costly.

As demonstrated in Section 4, PinMe was able to accu-
rately (comparable to GPS) locate the user during different
activities. A slightly modified version of PinMe can be im-
plemented on autonomous vehicles, e.g., driverless cars, as a
stand-alone in-vehicle positioning system. For example, air
pressure and heading sensors can be added to driverless ve-
hicles, enabling sensory data to be processed by on-vehicle
processing units. Odometer readings are easily accessible
to in-vehicle processing units and can be used to further
improve the accuracy of PinMe. Since PinMe does not collect
sensory data from any remote sources, it is resilient against
remote attacks, assuming that navigational/elevation maps
provided by Google [26] and weather reports given by The
Weather Channel [28] are accurate.

8 CONCLUSION

This paper highlighted the unintended consequences of let-
ting third-party applications access smartphone’s presum-
ably non-critical data. We proposed an attack on location
privacy in which the attacker (i) needs no prior knowledge
of the area of interest, (ii) does not need to construct an
attack-specific training dataset, and (iii) does not collect data
at a high sampling rate.

We demonstrated that there is no need to construct an
attack-specific dataset to compromise location privacy. Eval-
uation of the proposed user-location mechanism demon-
strated that it is feasible to gain sensitive information about
the user’s location without accessing location services, e.g.,
GPS. It suggests that the threat of unintended informa-
tion leakage on the location of smartphone owners is far
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beyond what is currently thought possible. Indeed, even
seemingly benign sensory/non-sensory data gathered by
a smartphone can leak critical information about the user.
Therefore, they should be proactively protected from third-
party applications.
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