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Evidence of correlations between human 
partners based on systematic reviews and 
meta-analyses of 22 traits and UK Biobank 
analysis of 133 traits

Tanya B. Horwitz    1,2,3 , Jared V. Balbona1,3, Katie N. Paulich1,2  

& Matthew C. Keller    1,2 

Positive correlations between mates can increase trait variation and 

prevalence, as well as bias estimates from genetically informed study 

designs. While past studies of similarity between human mating partners 

have largely found evidence of positive correlations, to our knowledge, 

no formal meta-analysis has examined human partner correlations across 

multiple categories of traits. Thus, we conducted systematic reviews and 

random-effects meta-analyses of human male–female partner correlations 

across 22 traits commonly studied by psychologists, economists, sociologists, 

anthropologists, epidemiologists and geneticists. Using ScienceDirect, 

PubMed and Google Scholar, we incorporated 480 partner correlations from 

199 peer-reviewed studies of co-parents, engaged pairs, married pairs and/or 

cohabitating pairs that were published on or before 16 August 2022. We also 

calculated 133 trait correlations using up to 79,074 male–female couples in 

the UK Biobank (UKB). Estimates of the 22 mean meta-analysed correlations 

ranged from rmeta = 0.08 (adjusted 95% CI = 0.03, 0.13) for extraversion to 

rmeta = 0.58 (adjusted 95% CI = 0.50, 0.64) for political values, with funnel 

plots showing little evidence of publication bias across traits. The 133 UKB 

correlations ranged from rUKB = −0.18 (adjusted 95% CI = −0.20, −0.16) for 

chronotype (being a ‘morning’ or ‘evening’ person) to rUKB = 0.87 (adjusted 

95% CI = 0.86, 0.87) for birth year. Across analyses, political and religious 

attitudes, educational attainment and some substance use traits showed the 

highest correlations, while psychological (that is, psychiatric/personality) and 

anthropometric traits generally yielded lower but positive correlations. We 

observed high levels of between-sample heterogeneity for most meta-analysed 

traits, probably because of both systematic differences between samples and 

true differences in partner correlations across populations.

Phenotypic resemblance between human mates, spouses and 

co-parents (hereafter, ‘partners’) is a widely studied area of research 

with applications to an array of disciplines. Quantitative and behav-

ioural geneticists are interested in the magnitudes and mechanisms 

underlying partner correlations because both can affect genetic and 

environmental parameters and estimates of interest, informing how 

model-derived estimates should be interpreted1–4. Sociologists, anthro-

pologists, economists and other social scientists have studied partner 
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and in the strength of estimated causal associations from Mendelian 

randomization studies48. Similarly, despite having no genetic conse-

quences, convergence and social homogamy may still increase the 

environmental and phenotypic variance of a trait and the covariance 

between relatives to the extent that the trait is shaped by non-genetic 

parental influences; as a result, these non-genetic mechanisms  

could still ostensibly affect the prevalence of dichotomous traits. 

Understanding the magnitude of partner correlations across a wide 

variety of traits is therefore important for setting expectations of 

what analyses are at risk of bias due to the influences of homogamy 

and for guiding efforts to uncover the mechanisms that underlie  

these correlations.

In addition to contributing to knowledge around the architecture 

and aetiology of traits, research on shared disease/disorder risk factors 

and health-related behaviours can also have public health implications 

for screening and intervention practices16,38,49,50. For example, research 

on the nature of partner correlations for behavioural similarities could 

potentially inform how partners can effectively make lifestyle changes 

together17,51, particularly if and when partner resemblance is due to 

mutual influences within the relationship. Furthermore, partner cor-

relations can lead to the concentration of certain traits (for example, 

education or income) within particular social groups, potentially 

exacerbating existing social inequalities8. Characterizing patterns 

of mate similarity, particularly with regard to how they differ across 

populations, is thus of great sociological relevance.

In this Article, we meta-analyse and compare estimates of  

480 male–female partner correlations (taken from 199 independent 

studies) on 22 traits frequently investigated in this research arena.  

In addition, we calculate correlations across 133 traits using up  

to 79,074 male–female partner dyads from the UKB sample. These 

results can help shed light on contemporary human mating and  

relationship trends, refine the interpretation of heritability estimates, 

motivate investigation into the various causes of partner correla-

tions across traits, and aid in the choice of design in genetic and non- 

genetic studies.

Results
Meta-analysis
Our random-effects meta-analytic results include a total of 480 partner  

correlations across 22 (out of an initial 26) traits for which we were 

able to find results from at least three samples that satisfied our  

criteria. The total number of partners for each trait ranged from 2,527 

(for generalized anxiety) to 2,727,151 (for diabetes). Supplementary 

Tables 1 and 2 show all studies that we included in our meta-analysis 

for continuous and dichotomous traits, respectively, as well as the 

effect sizes for each sample. For comparability across traits, we focus 

on Pearson’s, Spearman’s and tetrachoric correlations, some of which 

were transformed from the original reported statistic, for continuous, 

ordinal and dichotomous traits, respectively. Our meta-analyses are 

based on pooled Fisher Z-transformed estimates from the included 

studies because this transformation yields a sampling distribution that 

is approximately normal. We then back-transformed the meta-analysed 

estimates and report correlations along with their adjusted 95% confi-

dence intervals (CIs) (see Table 1).

Figure 1 displays the estimates of the mean meta-analysed cor-

relations for all meta-analysed traits and, where applicable, the cor-

relations for comparable traits in the UKB (see ‘Partner correlations 

in the UKB’), along with the adjusted CIs associated with each trait. 

The estimates of the mean correlations for the meta-analysed traits 

(rmeta) were greater than zero at the two-tailed, Bonferroni-corrected 

significance level for 18 traits, with the remaining 4 estimates being 

based on only 4 samples each. rmeta was greater than 0.35 for 9 attitudi-

nal, academic and substance-related traits, ranging from rmeta = 0.38 for 

smoking initiation to rmeta = 0.58 for political values. It is important to 

note that despite being associated with relatively large point estimates, 

correlations to gain insight into trends in societal values5, the labour 

market6,7, socioeconomic inequalities5–7, relationship satisfaction and 

divorce rates8–13. Understanding patterns of (dis)similarity between 

mates thus provides useful context for both sociocultural and bio-

logical phenomena as well as their intersection, and can shed light on 

the forces shaping human mating trends.

Contrary to the maxim ‘opposites attract’, non-zero phenotypic 

correlations between human8,14–32 and non-human33 mates and part-

ners—a phenomenon referred to as ‘assortative mating’ (AM) when 

the similarity is present at the beginning of the relationship—are over-

whelmingly in the positive direction, with only a handful of examples 

of significant negative partner correlations (‘disassortative mating’) 

reported in the literature9,15,19,31,33–40. Several potential mechanisms 

leading to partner resemblance in humans have been described. Pheno-

typic homogamy (also called ‘primary phenotypic assortative mating’) 

occurs when partners match directly on the trait of interest41. While 

phenotypic homogamy is often conceptualized as partners simply pre-

ferring similarity, it can also arise from indirect selection (for example, 

in parent-arranged marriages) or when partnerships form within strata 

that are associated with trait values (for example, partner correla-

tions for educational attainment arising as an indirect consequence of 

mate choice occurring within a profession). Social homogamy, on the 

other hand, results when partners assort on non-heritable aspects of 

a trait29,42. This can occur through several different processes, such as 

when romantic/marital partnerships form within strata that are heav-

ily determined by social factors (for example, social networks) that 

are not genetically correlated with the focal trait. Genetic homogamy 

describes the opposite phenomenon: when partners assort on herit-

able aspects of a trait. Genetic homogamy may occur when there is 

phenotypic homogamy on a trait that is genetically but not environ-

mentally correlated with the trait of interest41,43, resulting in a genetic 

correlation between partners that is higher than would be expected 

given the phenotypic correlation for the focal trait. For example, there 

is evidence of genetic homogamy for educational attainment43 in the 

UK Biobank (UKB), suggesting that partners in this sample are assorting 

heavily upon a different trait (such as intelligence quotient score) that 

is more genetically than environmentally correlated with education 

level. Finally, convergence occurs when partners become more similar 

over time14,19, either due to direct (reciprocal or one-way) phenotypic 

influences or to the mutual influence of environmental factors shared 

between partners. Unlike social/phenotypic/genetic homogamy, con-

vergence is not considered a type of AM because it is not a consequence 

of initial matching (or assortment). Importantly, the processes that 

lead to partner correlations need not be mutually exclusive, as mul-

tiple mechanisms may work in concert to produce an observed cor-

relation between partners for a given trait. For example, it is possible 

that a mixture of social homogamy and phenotypic homogamy for 

a given trait is more common than ‘pure’ social homogamy or ‘pure’ 

phenotypic homogamy. Similarly, it is possible that individuals with a 

high environmental load for a given trait may preferentially mate with 

individuals that have a high genetic load for the same trait, forming a 

gene–environment correlation between partners that would probably 

appear as phenotypic homogamy.

When occurring on heritable traits, phenotypic and genetic 

homogamy increase correlations between and within causal genetic 

variants, which in turn increase both the genetic covariance between 

relatives and the trait’s genetic and phenotypic variation. Such an 

increase in variation could manifest as increased prevalence rates of 

dichotomous traits such as psychiatric disorders29,44, although this 

effect would only be pronounced under certain conditions (for exam-

ple, for rare, highly heritable traits undergoing strong phenotypic 

AM29). Failing to account for phenotypic and genetic homogamy can 

also lead to biases in association statistics from genome-wide associa-

tion studies45, in heritability and genetic correlation estimates based 

on twin/family designs and single nucleotide polymorphisms46,47 
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3 of the 7 substance use traits we meta-analysed did not achieve 

Bonferroni-corrected significance. Estimates of mean meta-analysed 

correlations for anthropometric traits and (non-substance related) 

disorder traits were all low to moderate (0.15 ≤ rmeta ≤ 0.24), although 

the estimate for generalized anxiety (rmeta = 0.17, Padj > 0.999) was not 

significant. The three lowest estimates we found were for the Big Five 

personality traits extraversion (rmeta = 0.08), neuroticism (rmeta = 0.11) 

and agreeableness (rmeta = 0.11). Point estimates for conscientiousness 

(rmeta = 0.16) and openness to experience (rmeta = 0.21) were slightly 

higher (see Table 1 for Bonferroni-adjusted two-tailed P values, 

Bonferroni-adjusted 95% CIs and total sample sizes associated with 

each meta-analysed trait).

In addition, Table 1 summarizes heterogeneity estimates for  

each meta-analysis as well as prediction intervals of future studies’ 

effect sizes. For traits meta-analysed using random-effects models 

with two levels, we calculated a single Higgins and Thompson’s I2, 

which estimates the proportion of variation resulting from hetero-

geneity across a trait’s study-/sample-level effect sizes that is not  

attributable to sampling error. For traits meta-analysed using  

models with three levels (those for which at least one publication 

reported two or more effect sizes), Table 1 also shows two I2 values: one 

representing the proportion of variance resulting from heterogeneity  

within-study and one representing the proportion of variance  

resulting from between-study heterogeneity, which sum to the total I2 

(see ‘Meta-analytic method’)52. The median within-study I2 for three-level 

analyses was 0.18, while the median between-study I2 was 0.715. Parti-

tioning within- vs between-study I2 estimates can yield unstable  

results, especially for meta-analyses that only involve a small  

number of effect sizes within a common study, and thus should  

be interpreted with caution. Across our 22 meta-analyses, the  

median total Higgins and Thompson I2 statistic was 0.915, reflect-

ing very high rates of heterogeneity in partner correlations not due  

to sampling error.

In general, high I2 values may reflect not only high between-sample 

heterogeneity in estimated effect sizes but also low within-sample 

estimation error. Thus, the high I2 values we observed may in part be 

due to the high precision of estimates afforded by the large number  

of participants comprising many of the samples included in our  

analysis. To this end, we also report an alternative metric of hetero-

geneity, τ, that estimates the standard deviation of the true effect 

size and is unaffected by the precision of individual estimates. The 

median overall τ was 0.090 and ranged from 0.039 (depression) 

to 0.255 (drinking). τ tended to be positively associated with rmeta,  

with the average ratio of τ to rmeta (the coefficient of variation)  

being 0.373 (s.d. = 0.180) across traits.

Overall, our results show that partner correlations are  

characterized by substantial heterogeneity across samples. Given that 

traits measured objectively (for example, height, body mass index, 

Table 1 | Results for the random-effects meta-analyses of mating partner pairs across 22 traits

Trait r (CI) k (ks) N P value I
2 total (within-, 

between-)

τ (within-, 

between-)

Prediction 

interval

EA12,13,15,34,58,61,67,81–115 0.55 (0.50, 0.60) 86 (42) 1,911,720 <0.0001 0.99 (0.40, 0.59) 0.094, 0.114 (0.31, 0.72)

IQ score9,22,100,116–125 0.44 (0.23, 0.61) 17 (13) 5,672 <0.0001 0.94 (0,0.94) 0, 0.223 (−0.03, 0.74)

Political values9,13,35,86,126–132 0.58 (0.50, 0.64) 12 (11) 11,658 <0.0001 0.80 (0.11, 0.69) 0.028, 0.068 (0.45, 0.68)

Religiosity9,13,126,130,132–134 0.56 (0.25, 0.77) 8 (7) 6,269 0.0022 0.94 (0, 0.94) 0, 0.203 (0.12, 0.82)

PAU28,31,135,136 0.28 (−0.21, 0.66) 4 9,751 0.2480 0.62 0.079 (−0.01, 0.53)

Drinking12,19,49,103,137–141 0.42 (0.07, 0.68) 9 7,055 0.0187 0.98 0.255 (−0.17, 0.79)

Smk. cessation16,51,142,143 0.54 (−0.28, 0.91) 4 3,613 0.1530 0.84 0.161 (0.02, 0.83)

Smk. initiation12,16,19,38,49,51,137,140,142–146 0.38 (0.23, 0.53) 16 (13) 118,856 <0.0001 0.96 (0.14, 0.82) 0.054, 0.130 (0.09, 0.61)

Smk. quantity15,147–151 0.29 (0.07, 0.68) 9 (6) 12,072 0.0002 0.82 (0.58, 0.24) 0.056, 0.036 (0.13, 0.44)

Smk. status16,19,25,38,58,142,143,145,146,149,151–160 0.49 (0.38, 0.59) 27 (20) 244,597 <0.0001 0.98 (0.24, 0.74) 0.089, 0.157 (0.15, 0.72)

SUD72,161,162 0.43 (−0.73, 0.95) 4 (3) 1,534,416 >0.999 1.00 (0, 1.0) 0, 0.223 (−0.36, 0.86)

Agree.9,10,34,36,127,163–169 0.11 (0.03, 0.20) 17 (12) 19,471 0.0039 0.82 (0.22, 0.60) 0.036, 0.059 (−0.04, 0.26)

Consc.9,10,34,36,127,163–169 0.16 (0.06, 0.25) 18 (12) 19,930 <0.0001 0.85 (0, 0.85) 0, 0.078 (−0.02, 0.32)

Extrav.9,10,13,19,22,34–36,86,116,126,127,133,148,163–178 0.08 (0.03, 0.13) 40 (30) 32,729 <0.0001 0.79 (0.50, 0.29) 0.056, 0.043 (−0.07, 0.22)

Neurot.9,10,13,19,22,34–36,127,133,148,163–171,173–182 0.11 (0.08, 0.15) 39 (30) 35,706 <0.0001 0.58 (0.52, 0.06) 0.039, 0.013 (0.03, 0.19)

Open.9,10,34,36,127,163,165,167,169,181,183 0.21 (0.10, 0.31) 16 (11) 19,377 <0.0001 0.89 (0.06, 0.83) 0.022, 0.083 (0.02, 0.38)

BMI12,38,49,50,81,86,110,113,115,137,142,146,156,178,184–209 0.16 (0.11, 0.21) 57 (40) 123,881 <0.0001 0.94 (0.28, 0.66) 0.049, 0.075 (−0.02, 0.33)

Height19,84,86,110,115,120,141,178,186,187,197,198,204–244 0.24 (0.20, 0.28) 68 (53) 293,461 <0.0001 0.97 (0.61, 0.36) 0.080, 0.061 (0.04, 0.42)

WHR49,185,189,196,203,245 0.17 (0.03, 0.29) 6 6,055 0.0184 0.59 0.043 (0.04, 0.28)

Depression27,28,31,72,246 0.15 (0.03, 0.28) 7 (5) 1,483,486 0.0198 0.96 (0.01, 0.95) 0.005, 0.039 (0.04, 0.26)

Diabetes16,27,39,72,146,203,247–250 0.15 (0.04, 0.26) 12 (10) 2,727,151 0.0046 0.99 (0.09, 0.90) 0.023, 0.087 (−0.02, 0.31)

Gen. anx.28,30,31 0.17 (−0.45, 0.68) 4 (3) 2,527 >0.999 0.54 (0.54, 0) 0.098, 0 (−0.20, 0.50)

Citations after each trait refer to each study that was meta-analysed for that trait. k is the number of samples meta-analysed, where all samples for a specific trait were determined to be 

distinct; ks is the number of published studies from which the samples were taken; r(d.f. = k−1) is the estimate of the mean meta-analysed random-effects partner correlation (Pearson’s r for 

continuous traits; tetrachoric r for dichotomous traits); CI is Bonferroni adjusted for 22 tests; N is the number of total partner pairs meta-analysed; P value is based on two-sided tests, Bonferroni 

adjusted for 22 tests; I2 is the Higgins and Thompson’s I2 statistic, a measure of between-/within-study heterogeneity, where overall I2 is the proportion of variance in the meta-analysis that is 

not due to sampling error; τ is the estimated standard deviation of the true effect size (when applicable, heterogeneity values are given for both the within-study and between-study levels, 

respectively); Prediction interval is the interval in which the correlations for future meta-analyses of the trait in question are expected to fall. PAU, problematic alcohol use; Drinking, drinking 

quantity; Smk., smoking; SUD, substance use disorder; Agree., agreeableness; Consc., conscientiousness; Extrav., extraversion, Neurot., neuroticism; Open., openness to experience; WHR, 

waist-to-hip ratio; Gen. anx., generalized anxiety.
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waist-to-hip ratio) were also associated with considerable heterogene-

ity, our observed I2 and τ estimates suggest that there are substantial 

differences in true partner correlations for a given trait across popula-

tions differentiated by location, time and/or culture.

Finally, we produced funnel plots for each meta-analysed trait to 

assess publication bias. Funnel plots demonstrating a large negative 

regression slope, particularly those with several studies clustering in 

the bottom right but not the bottom left, are indicative of publication 

bias. Overall, there were no obvious patterns of asymmetry across traits 

(Extended Data Fig. 1a–v). The clearest trend across most of the funnel 

plots was the large number of points outside the expected triangular 

region, again reflecting the high heterogeneity in correlations observed 

across samples.

Partner correlations in the UKB
We investigated correlations for an initial 140 traits using up to 

79,074 pairs of UKB participants inferred to be opposite-sex part-

ners (see ‘Analysis of partner correlations in the UKB’). Seven (5%) of 

these traits are not included in our primary analyses, in Fig. 2, or in 

Extended Data Fig. 2 because of low sample size or low endorsement 

rate. However, results for all 140 traits are presented in Supplementary 

Table 4, which includes Bonferroni-adjusted two-tailed P values and 

Bonferroni-adjusted 95% CIs, as well as summary statistics, cell frequen-

cies and prevalence rates (for dichotomous traits), corresponding 

UKB field IDs and trait descriptions. Of the 133 adequately powered 

UKB traits presented in Fig. 2 and Extended Data Fig. 2 (including 59 

continuous, 24 ordinal and 50 dichotomous traits estimated using 

Pearson’s, Spearman’s and tetrachoric correlations, respectively), 

118 partner correlations (88.72%) were significant after correction 

for multiple testing and 15 (11.28%) were not. Of the 118 partner cor-

relations that were significant at the Bonferroni-corrected level,  

3 (2.54%) were negative and 115 traits (97.46%) were positive. The mean 

partner correlation was 0.19 and correlations ranged from rUKB = −0.18 

(chronotype, or being an ‘evening person’ vs being a ‘morning person’) 

to 0.87 (year of birth).

Twelve of the traits that we analysed in the UKB were also 

meta-analysed (see Fig. 1). Pearson and tetrachoric correlations for  

all but one (cigarettes per day, not restricted to ever-smokers) of  

these 12 overlapping UKB traits fell within the prediction intervals 

(distinct from the CIs) of corresponding traits from our meta-analyses; 

in addition, the Spearman correlation for non-restricted cigarettes 

per day in the UKB, as well as both correlational effect sizes for ciga-

rettes per day when restricted to ever-smokers, fell in the predic-

tion interval for smoking quantity in the meta-analysis. Across both  

analyses, there were notable overall findings: for example, estimates 

of educational attainment and current smoking status ranked among 

the highest correlations, while estimates of partner correlations for 

neuroticism were uniformly low across the two analyses. In addition, 

correlational estimates for some traits were notably different across 

the meta-analysis and UKB, as evidenced by the non-overlapping CIs 

for a minority of trait pairings in Fig. 1. Because overlapping CIs for the 

remaining trait pairings do not necessarily indicate a lack of significant 

difference, we performed a paired test comparing the two groups of 

correlations across all 12 traits but found no significant difference: 

t(11) = −1.724, P = 0.113, mean difference = −0.053; 95% CI: −0.121, 0.015; 

V = 23, P = 0.233.

Next, we compared correlations for groups of traits within the 

UKB. We regressed the UKB partner correlation point estimates on  

the category of trait (a factor with six levels: anthropometric, 

health-related, psychological, behavioural, demographic/family and 

substance use) for the 133 adequately powered UKB traits, controlling 

for how the correlations were estimated (Pearson’s, Spearman’s or 

tetrachoric); we used weighted least squares (weights = 
1

s.e.(r

UKB

)

2

) for 

our estimation because the Levene homogeneity of variance test sug-

gested violation of the equal variances assumption across trait catego-

ries when controlling for correlation type (F(5,127) = 9.75, P = 6 × 10−8). 

There were significant differences between mean correlations depend-

ing on the category of trait (F(5,125) = 28.20, P < 2 × 10−16, ηP
2 = 0.530). In 

a follow-up analysis, we found that traits that were anthropometric 
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Fig. 1 | Point estimates of the mean meta-analysed random-effects partner 

correlations and UKB partner correlations for comparable traits. The dark 

blue points represent the random-effects estimates of the mean meta-analysed 

correlations for partners, while the red points on the same vertical axis represent 

the point estimates of the partner correlations for a comparable trait in the 

UKB, where applicable. To account for multiple testing, meta-analysed and UKB 

correlations are shown with Bonferroni-adjusted 95% CIs (adjusting for 22 and 

133 traits, respectively). Table 1 and Supplementary Table 4 include the precise 

sample size and point estimate/adjusted confidence interval/adjusted P value 

and so on for each of these traits in the meta-analysis and UKB, respectively.
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( ̄

r

UKB

= 0.15, s.e. = 0.031), health-related ( ̄

r

UKB

= 0.11, s.e. = 0.013) or 

psychological ( ̄

r

UKB

= 0.12 , s.e. = 0.018) yielded significantly lower 

partner correlations on average than traits related to behaviour 

( ̄

r

UKB

= 0.22 , s.e. = 0.059), demography/family ( ̄

r

UKB

= 0.29 , 

s.e. = 0.055) or substance use ( ̄

r

UKB

= 0.29, s.e. = 0.036) (t(131) = 6.94, 

P = 1.61 × 10−10, Cohen’s d = 0.88; 95% CI: 0.53, 1.20). Controlling for 

category of trait, magnitude of partner correlations did not differ based 

on correlation type (F(2,125) = 2.38, P = 0.096, ηP
2 = 0.037).

Several of the highest positive zero-order UKB partner correlations 

for demographic variables are unsurprising given that individuals tend 

to marry and enter into long-term relationships with others who are 

of similar ages and from nearby geographic locations (for example, 

rUKB for north coordinate of birthplace = 0.65) and because romantic 

partners often share children with one another (rUKB for number of chil-

dren = 0.71). More interestingly, partner correlations for several sub-

stance use traits were also very high. For adequately powered substance 

use traits, we calculated the highest correlation for former vs never 

drinking status (among only current non-drinkers, whether or not a 

person is a previous or never drinker: rUKB = 0.60), followed by drinking 

status (whether or not a person currently drinks alcohol: rUKB = 0.58). 

We evaluated smoking behaviour with multiple measures and, of these, 

found the highest correlations for smoking status (rUKB = 0.51) and the 

age that individuals stopped smoking (restricted to former regular 

smokers; rUKB = 0.46), and the lowest correlation for presence and 

duration of quitting attempts (measured ordinally) in current regular 

smokers (rUKB = 0.09, Padj = 0.569). While we were underpowered in the 

UKB to examine concordance for addictions to specific narcotic or pre-

scribed substances, addiction to ‘any substance or behaviour’ showed 

a significant correlation (rUKB = 0.18, Padj = 0.000199), suggesting a 

modest positive relationship between partners for general addiction.

As expected, educational attainment between partners in the UKB 

(measured as level of academic qualification/degree achieved) yielded 
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Fig. 2 | The UKB partner correlation point estimates for 133 traits grouped 

by category. The point estimates on the y axis represent the estimated 

partner correlation, along with Bonferroni-adjusted 95% CIs (adjusting for 133 

traits), for the corresponding trait on the x axis. Estimates are based on up to 

79,074 pairs; Supplementary Table 4 includes the precise sample size/point 

estimate for each trait along with the Bonferroni-adjusted P values associated 

with the adjusted 95% CIs depicted in this figure. Traits are grouped into six 

categories: health-related, psychological, demographic/family, substance use, 

anthropometric and behavioural. Points representing partner correlations for 

continuous traits (Pearson correlations) are blue; points representing partner 

correlations for ordinally coded traits (Spearman correlations) are red; points 

representing partner correlations for dichotomously coded traits (tetrachoric 

correlations) are light green. Num Dep Episodes, number of depressive episodes; 

Heel BMD, heel bone mineral density (in the form of a t-score); LDL, direct 

low-density lipoprotein cholesterol; CRP, C-reactive protein; RBC, red blood 

cell (erythrocyte) count; DBP, diastolic blood pressure; CPD (all participants), 

cigarettes per day (includes current, former and never smokers); FEV1 pred %, 

forced expiratory volume in 1 second (FEV1), predicted percentage; PEF, peak 

expiratory flow; WBC, white blood cell (leucocyte) count; SBP, systolic blood 

pressure; HDL, high-density lipoprotein cholesterol; CPD (smokers only), 

cigarettes per day (restricted to current or former smokers); WHR, waist-to-hip 

ratio; BMR, basal metabolic rate; FIQ, fluid intelligence quotient; FVC, forced vital 

capacity; Time to First Cig, time to first cigarette.
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a fairly large correlation (rUKB = 0.48). Fluid intelligence quotient (IQ) 

score, evaluated using a brief 13-item test, showed a somewhat modest 

correlation, at rUKB = 0.23.

Consistent with the results from our meta-analyses, anthropomet-

ric, health-related and psychological (that is, personality and psychi-

atric) traits generally showed low to moderate correlations, with some 

of these traits showing no significant correlation between partners. 

Correlations for height, waist-to-hip ratio and body mass index were 

rUKB = 0.27, rUKB = 0.19 and rUKB = 0.25, respectively. Partner correla-

tion for overall neuroticism score was low but significant (rUKB = 0.04, 

Padj < 2.66 × 10−14) and partner correlations for the 12 dichotomous (yes/

no) items comprising the neuroticism scale ranged from −0.09 to 0.16 

(see Supplementary Table 4). Furthermore, 3 dichotomous depression 

traits that we analysed in the UKB all yielded modest correlations that 

were similar to one another: rUKB = 0.15−0.18.

We additionally explored multiple traits that did not overlap 

with those we examined in our meta-analysis. The largest significant 

negative correlation across all UKB traits was for chronotype, which 

was dichotomized to indicate whether an individual is a ‘morning 

person’ or an ‘evening person’ (rUKB = −0.18). Furthermore, we found 

moderate correlations for traits related to sexuality (age of first inter-

course: rUKB = 0.43; number of lifetime sexual partners: rUKB = 0.32; 

ever had same-sex intercourse: rUKB = 0.31). Finally, general happiness 

(rUKB = 0.25) and measures of satisfaction with various life aspects 

(financial situation: rUKB = 0.45, family relationships: rUKB = 0.28, friend-

ships: rUKB = 0.19, job rUKB = 0.12 and health rUKB = 0.09) showed small to 

moderate positive partner correlations.

Discussion
In this study, we collated and synthesized results from a large number 

of studies on same-trait correlations in opposite-sex/gender couples, 

spousal pairs and co-parents (collectively, ‘partners’) to provide a better 

understanding of the degree to which partners correlate across traits 

and the degree of between-sample heterogeneity in those correlations. 

We also analysed partner correlation for 133 traits in putative partners 

from the UKB.

We found widespread evidence of positive correlations across 

traits, with significant variation across traits with respect to degree of 

partner similarity. Across both the meta-analyses and UKB raw data 

analyses, correlations for educational attainment, substance use meas-

ures, attitudinal traits and behavioural traits were often moderate 

and relatively higher, whereas correlations for anthropometric, psy-

chological (that is, psychiatric/personality) and health-related traits 

were typically low to moderate. In our meta-analysis, we calculated 

the highest mean meta-analysed partner correlations for political and 

religious values, educational attainment, IQ score and some substance 

use traits, although a few meta-analyses in the latter category produced 

non-significant estimates. Although estimates for other traits were 

smaller, 18 of 22 traits reached Bonferroni-level significance. Likewise, 

partner correlations for the large majority (88.72%) of traits we exam-

ined in the UKB reached Bonferroni-corrected significance. Overall, 

educational attainment and certain substance use traits also yielded 

among the highest correlations in the UKB. While point estimates for 

comparable traits across our two analyses were not significantly differ-

ent overall, not every UKB estimate was identical to what we observed 

in the corresponding meta-analysis. This is not surprising given that 

our meta-analysis revealed strong evidence for between-sample het-

erogeneity (see below) and given that the UKB probably differed in 

multiple ways from the typical sample included in our meta-analysis; 

for example, individuals in the UKB are of a relatively narrow age range, 

reside in the United Kingdom and differ as a whole from the general 

population with respect to several demographic and lifestyle variables 

(as discussed below in the limitations).

In addition to finding widespread positive associations in mating 

pairs across traits, our meta-analysis found evidence of substantial 

within-trait heterogeneity across different samples. Because of this 

large degree of heterogeneity and because we performed random 

(rather than fixed) effects meta-analyses, the results presented here 

should not be interpreted as estimates of a single true partner cor-

relation for a given trait, but rather as estimates of the typical level of 

partner similarity across many possible levels that might be observed 

in different populations. Our results suggest that much of the observed 

between-study and between-sample heterogeneity is due to true dif-

ferences that exist across populations (cultures, time periods and so 

on) from which our samples were drawn. This is sensible given that 

resemblance between partners can result from personal preferences, 

social stratification and/or couple dynamics that are unlikely to be 

consistent across different cultural contexts for a given trait. However, 

owing to insufficient diversity in nationality (see limitations) within 

the samples we included in most of our meta-analyses and to the small 

number of samples in some of our meta-analyses, we were unable to 

meaningfully evaluate whether there were significant differences in 

partner correlations across even broad geographical subdivisions. We 

were also unable to formally assess changes in partner resemblance 

over time or control for age in the meta-analyses because publication 

year served as an inaccurate measure of the year/age at which partners 

entered into the relationship. Furthermore, although we excluded sam-

ples with known biologically related pairs from our meta-analysis, it is 

possible that varying degrees of unknown or unreported relatedness 

in couples (consanguinity) across samples could have contributed to 

heterogeneity.

In addition to the possible causes described above, the heteroge-

neity in effect size estimates may be partially due to differences in how 

constructs were assessed across studies and samples (for example, dif-

ferences in the measurement batteries used or differences in measure 

interpretation). Potentially consistent with this, we observed that the 

reported prevalence rates of dichotomous traits were highly hetero-

geneous across supposedly non-ascertained samples, which may have 

contributed to the heterogeneity we observed in our correlation coef-

ficients (two identical odds ratios translate into different tetrachoric 

correlations if the prevalence rates in the samples differ). Nevertheless, 

we observed high levels of heterogeneity in correlations for traits such 

as height and body mass index that are not dichotomous and that 

are measured in standardized ways, suggesting that measurement 

invariance and ascertainment are unlikely to be complete explana-

tions. More thoroughly examining sources of heterogeneity in partner 

correlations across samples remains an important direction for future  

studies.

There are several implications for the ubiquitous evidence of 

partner similarity we documented across traits in our meta-analysis. 

First, partner similarity due to phenotypic or genetic homogamy 

within a population can bias estimates of genetic correlations53, latent 

variances from twin/family studies21,47,54, Mendelian randomization48 

and SNP heritability46. To the degree that observed levels of partner 

similarity are due to these mating mechanisms, our results suggest 

that for many traits, some degree of bias due to AM may exist in the 

aforementioned estimates and designs. Second, genetically informed 

designs that attempt to model AM often must assume that the degree 

of partner resemblance has been stable across time and place; our 

observations of high between-sample heterogeneity call this assump-

tion into question. Such heterogeneity has complex implications with 

respect to various heritability estimates and dating and marriage 

trends, as well as long-term implications for genetic parameters such 

as stabilization of genotypic frequencies (genetic (dis)equilibrium). 

Circumventing the caveats resulting from such trends is increasingly 

possible in genetic designs; for example, the method structural equa-

tion modelling-polygenic score (SEM-PGS) can account for various 

modes of AM even if equilibrium has not been reached for the trait of 

interest55. Third, partner similarity has the capacity to increase preva-

lence of disorders and other dichotomous traits through increasing 
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phenotypic variance via increase in environmental/genetic variance, 

although the precise consequences of partner similarity will depend 

on which mechanism(s) is/are at play, the magnitude of resemblance 

and the heritability of the focal trait. There is evidence demonstrating 

that although the resulting increase in prevalence for common traits 

may be weak, phenotypic AM for a rare, highly heritable trait could 

substantially increase the trait’s prevalence (with estimates for some 

trait increases reaching 1.5-fold over one generation and 2.7-fold over 

ten generations)29. Finally, partner correlations have social and inter-

personal implications that are relevant to outcomes of mating partners 

regardless of whether they procreate. For example, there is longitudinal 

evidence that smokers with a smoking partner are less likely to quit 

smoking51, while other findings suggest that being married is associ-

ated with reduction in drinking quantity among men but increased 

drinking quantity among women, with divorce showing the opposite 

trend56. Thus, knowledge of patterns in partner correlations offers an 

important understanding of the context shaping complex human traits 

and refines our interpretations of existing results.

While the current paper included many samples with varying 

characteristics, there are several further research topics related to 

human mating relationships that we did not directly assess. For exam-

ple, past research has found that partner similarity for variables such 

as academic performance/aspirations, relationship involvement57, 

political/religious beliefs34, mental distress, exercise, drinking and 

smoking58 may be predictive of relationship longevity. In the same 

vein, several papers have suggested that similarity on personality 

traits (for example, happiness) predicts satisfaction and/or relation-

ship longevity59–62, while others have found that partners’ individual 

characteristics (as opposed to their degree of similarity) are stronger 

predictors8,9,63,64. Finally, some research comparing partner similarity 

in male–female, female–female and male–male couples has pointed to 

differences across groups for certain demographic, anthropometric 

and health-related traits65–67. In light of these potential differences, 

researchers should further explore how sex/gender make-up interacts 

with partner resemblance in co-parents to affect rearing environments, 

as well as how sexual and romantic orientation may be associated with 

different patterns of similarity within partnerships. These avenues 

of inquiry have applications that extend beyond the downstream 

genetic and environmental consequences of AM among procreating 

pairs and may further help illuminate how social forces shape human 

relationships.

The current study had limitations that we were not able to address. 

First, the vast majority of samples in our meta-analyses were drawn 

from Europe and the United States, with a smaller number coming 

from East Asia; samples residing in Sub-Saharan Africa, South Asia, 

Latin America and the Caribbean, Southwest Asia and Northern Africa, 

and Oceania (the last of which is notably less populous than the other 

regions) were each present in only a handful of studies. Additionally, 

participants in the UKB were all between the ages of 40 and 69 when 

originally recruited, are disproportionately healthy, are less likely to 

live in socioeconomically deprived areas and are less likely to smoke 

and drink on a daily basis. Typically, such restriction of range should 

diminish the magnitude of correlations towards zero and the fact that 

both members of each putative UKB couple (rather than only one) 

came from this sample may have further exacerbated any effects of 

such ascertainment on partner similarity. Furthermore, a large major-

ity of those in the UKB are of European ancestry, which is not reflec-

tive of the overall human population68; relatedly, we were not able to 

include cross-ancestry pairs in the UKB because of how relatedness 

was assessed in this sample (see ‘Analysis of partner correlations in the 

UKB’), which may have had an effect on partner correlations for some 

traits. In addition, despite comprising a non-negligible share of couples 

and parents throughout time, partners and co-parents who did not 

mutually select each other, either because of cultural norms around 

marriage or because of coercion, are unlikely to be proportionally 

reflected in recent volunteer samples. For the above reasons, findings 

from both our meta-analysis and partners in the UKB are unlikely to be 

generalizable to all human populations and time periods. Next, there 

was a broad range of total sample sizes used to calculate partner cor-

relations across traits, suggesting some degree of imbalance in power 

across trait analyses. Finally, the results of the present study must be 

interpreted as cross-sectional estimates of resemblance within dyadic 

partnerships, and hence are not directly informative with respect 

to selection mechanisms, longitudinal trends across generations or 

trends relating to partner similarity across multiple (concurrent or 

sequential) partnerships within a single individual. Future studies 

will be necessary to understand the specific processes underlying 

partner similarity (that is, phenotypic/social/genetic homogamy and 

convergence), including how these processes have changed over time.

In summary, we have conducted a raw data analysis and a set of 

meta-analyses of human partner correlations, with the former drawing 

from over 79,000 putative partner pairs and the latter being based on 

estimates from millions of partner pairs and over a century of research. 

Across both our meta-analyses and our study of partners in the UKB, 

we found the highest estimates of similarity for traits related to sub-

stance use, educational attainment and attitudes/behaviours, with 

smaller correlations for personality, psychological, anthropometric 

and disorder traits. We also observed high levels of heterogeneity in 

point estimates across studies for most traits investigated, suggesting 

that partner resemblance may differ across populations. Research into 

the resemblance between partners and co-parents provides valuable 

information about the nature of relationships and cultural norms 

around human mating, as well as information pertinent to the aetio-

logical roots of disorders and to the interpretation of results from 

genetically informed designs.

Methods
Literature search for the meta-analysis
For the meta-analytic portion of this paper, we conducted a systematic 

review of English-language studies that examined concordance rates in 

partners for the same or very similar complex traits. All included studies 

were published in peer-reviewed journals on or before 16 August 2022, 

with no lower limit on when the study could be published and with stud-

ies from books being excluded. The analysis was not preregistered and 

no protocol was prepared as this was not a hypothesis-driven study.

We selected an initial 26 traits on which to conduct our 

meta-analysis. While partner concordance has been analysed for many 

traits, we focused on those most studied in the literature as well as 

some less commonly studied dichotomous traits. First, we searched for 

words pertaining to the traits of interest (except for height; see below 

and ‘Inclusion and exclusion criteria’) in conjunction with 13 terms 

pertaining to partner correlations and AM (see Supplementary Table 

6 for exact search terms used) in the search engines PubMed (using the 

RISmed package69 in Rstudio v.1.4.17.17) and ScienceDirect. In addition, 

Google Scholar was used for the original submission of this manuscript. 

Although the latter search engine was not used for the most recent 

literature review, studies that we recorded in the first iteration of our 

study were preserved even if they did not appear in the corresponding 

PubMed or ScienceDirect search. We excluded educational attainment 

(EA) and body mass index (BMI) from our PubMed search because 

we had already obtained large sample sizes using only ScienceDirect 

(1,911,720 partner pairs from 86 samples for EA and 123,881 partner 

pairs from 57 samples for BMI).

Three authors then worked independently to evaluate whether 

each paper met the relevant criteria for meta-analysis and then man-

ually collected data from relevant publications. One author then 

double-checked that each report determined to be applicable was 

indeed eligible for inclusion; next, all relevant findings from eligible 

reports were recorded in Supplementary Table 1 or 2 and included for 

meta-analysis. Supplementary Fig. 1a–v display forest plots for every 

http://www.nature.com/nathumbehav


Nature Human Behaviour

Article https://doi.org/10.1038/s41562-023-01672-z

trait; each includes every correlation, as presented in Supplementary 

Table 1 or 2, associated with each included sample, with publications 

ordered by year and colour coded by geographic region(s) of the sam-

ple. Citations that were collated for assessment but that did not meet 

inclusion criteria are shown in Supplementary Table 3 (except for a 

small number of studies corresponding to excluded traits, which were 

included in Supplementary Table 2; see ‘Dichotomous traits’), along 

with the reasons for each exclusion.

For each of the traits that we meta-analysed, Supplementary  

Fig. 2 presents the number of results for each set of search terms and 

the number of studies included and excluded for each trait, grouped 

by reason(s) for exclusion, in accordance with PRISMA guidelines70,71.

Inclusion and exclusion criteria
Our analysis was restricted to studies of co-parents, engaged pairs, 

married pairs and/or cohabitating pairs, with some studies contain-

ing a small number of divorced couples. We refer to the couples or 

co-parenting dyads as ‘partners’ and refer to the female/woman vs male/

man designations of individuals as ‘sex/gender’ unless referring to a sam-

ple that specifically uses one of these terms. Samples of only or predomi-

nantly same-sex/gender partners were also excluded (although a small 

fraction of some samples were probably composed of such couples by 

chance); we believe these samples warrant separate analysis because 

same- and opposite-sex/gender partners have shown different patterns 

of similarity for some traits66,67 (see Discussion) and because there is 

less data on the former. For traits such as personality, we required that 

measures be self-reported, but we permitted case statuses of psychiatric 

traits reported by family members or partners due to the low numbers 

of applicable studies for such traits. Except for studies that ascertained 

partners for the trait of interest, we excluded studies in which partners 

were ascertained in a way that might have affected the magnitude of 

concordance for the trait of interest (for example, concordance for 

depression in parents of depressed children). We limited our analysis 

to studies with sample sizes equal to or greater than 100 partner pairs. 

When sample sizes were reported along with percentages for each cell 

of a contingency table, we inferred the sample size of each cell by mul-

tiplying the percentages by n. When studies reported partner concord-

ance at different waves over time in the same sample, we reported the 

results from the first wave. For studies conducted in or after 2000, if the 

n for a sample was neither provided nor inferable, or if we discovered 

an inconsistency/point of confusion, we contacted the corresponding 

author(s) for clarification. In total, we contacted authors from nine 

different studies and five responded. Although we initially gathered 

data on rare psychiatric disorders, we did not formally meta-analyse the 

tetrachoric correlations for these traits because too few studies met our 

inclusion criteria (see Supplementary Tables 2 and 3).

For consistency, when reported concordance rates were stratified 

by a variable (for example, zygosity of a twin sample), we included results 

for each stratum as a separate entry. We calculated effect sizes from the 

data reported in primary studies rather than from other meta-analyses 

or reviews. However, because partner correlations for height have 

already been meta-analysed extensively20, we analysed only samples 

included in ref. 20 for height in place of conducting a literature review for 

this trait, pooling results the same way that we did for other continuous 

traits after eliminating studies that met our exclusion criteria.

When we determined that samples for a given trait in multiple 

studies overlapped or were likely to overlap on the basis of information 

provided in the publication, we only used the study that had the largest 

sample size or that we otherwise determined to be more appropriate. 

We also excluded samples taken from the UKB because we calculated 

partner correlations in this sample ourselves as a separate analysis. 

Finally, we restricted our meta-analysis to traits for which there were 

at least three samples that met our criteria.

For continuous and ordinal traits, we only included Pearson/

interclass correlations and Spearman rank correlations. When a study 

presented cross-partner contingency tables for each level of an ordinal 

trait but did not report a concordance statistic, we directly calcu-

lated the Spearman rank correlation and its corresponding standard 

error. Because most studies reported them, we analysed raw correla-

tions when studies reported both the raw correlation and the partial 

correlation(s) controlling for covariates. However, we included some 

correlations that controlled for age when the raw correlation was not 

available because age was a common covariate; in addition, we made 

occasional exceptions for types of adjustments (for example, whether 

the participant was a twin) that attempted to correct for heterogeneity 

induced by the sampling or measurement scheme used in the study 

(see Supplementary Tables 1 and 2 for covariates associated with each 

sample). In every other case, we excluded studies that did not report 

raw partner correlations.

Dichotomous traits. Within the context of ascertained studies that 

used probands and controls rather than randomly sampling from a 

population, we excluded those involving probands taken from a clinical 

setting (a hospital or other treatment facility) when the case status of 

their partners was determined by a different set of criteria (for example, 

achieving a certain score on a diagnostic measure but not necessarily 

having a history of treatment). Furthermore, results from simulation 

showed that mixing male and female probands with highly discrepant 

prevalence rates would lead to unacceptable levels of bias. As a result, 

ascertained studies that did not label discordant partners on the basis 

of sex/gender and for which such information was not otherwise infer-

able were eliminated if there was a greater than ~2-fold difference in 

male and female prevalence rates. Because of possible differences in 

the strength of calculated concordance based on an all-male proband 

sample versus that based on an all-female proband sample, we excluded 

studies that only included single-sex/gender probands. However, when 

data were available for both a female proband and a male proband (only 

a single study72), estimates based on both probands (female and male) 

were included as separate results.

We also restricted our meta-analysis to studies with expected 

contingency table cell frequencies of five or greater for all cells and 

observed cell frequencies of greater than zero. Four of the traits in our 

supplementary tables posed a problem because they are rare (bipolar 

disorder and schizophrenia) or have not been studied in sufficiently 

large samples (panic disorder and phobia), resulting in underpow-

ered contingency tables in many instances. As a result, there were 

not enough studies meeting our inclusion criteria to justify formally 

meta-analysing these four traits, although we show results from studies 

on these traits that mostly met our criteria in Supplementary Table 2.

We required that either odds ratios (OR), risk ratios (RR), phi 

coefficients (Φ), contingency tables (from which an OR/RR and tetra-

choric correlation can be calculated) or tetrachoric correlations (if the 

study was not ascertained; see ‘Effect size conversion’) be reported for 

dichotomous traits because these effect sizes can be pooled together. 

No studies that met our inclusion criteria only reported RR and so we 

do not discuss them further. All effect sizes for dichotomous traits 

that were not already in the form of a tetrachoric correlation were then 

converted to a tetrachoric correlation (see ‘Effect size conversion’).

Effect size conversion
To make estimates across continuous and dichotomous traits more 

comparable, we converted all effect sizes for studies examining dichot-

omous traits to tetrachoric correlations if the study was not ascertained 

and did not report one. For non-ascertained studies that reported con-

tingency tables, we simply calculated the corresponding tetrachoric 

correlation using the polychor() function from the ‘polycor’ package73 

in Rstudio v.1.4.17.17.

If the contingency table was unknown but the OR was reported, we 

first inferred the contingency table using an R function described in the  

supplementary methods of ref. 29 (which the authors provided to us)  
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and then used the polychor() function to convert it to a tetrachoric 

correlation. If the values of the contingency table cells were unknown 

but the Φ was available, we used the phi2tetra() function from the 

‘psych’ package74 in Rstudio to convert it to a tetrachoric correlation. 

Both conversions required inputting male and female prevalence rates, 

which we based on published male and female prevalence rates for the 

trait or, if provided or inferable in the study and the sample was not 

ascertained, the prevalence rates indicated in the study. When gather-

ing prevalence rates from outside sources, we selected those reporting 

on samples that matched the partner correlation sample as closely as 

possible with respect to nationality, year and so on. Sample/population 

prevalence rates for dichotomous traits are reported in Supplementary 

Table 2 for each applicable meta-analysed sample.

For ascertained studies, it was necessary to use the aforementioned 

R function from ref. 29, regardless of whether the contingency table 

was reported, to produce an expected population (non-ascertained) 

contingency table on the basis of the OR and the population prevalence 

before converting to a tetrachoric correlation (as described above). 

This correction was necessary because the case-to-control ratio in an 

ascertained sample was usually higher than in the general population, 

and hence simply deriving the correlation on the basis of the uncor-

rected contingency table would lead to a biased estimate.

Meta-analytic method
We conducted two- or three-level (see below) random-effects 

meta-analyses on the basis of Fisher Z-transformed correlations and 

their respective variances; we reversed this transformation when 

reporting final results for ease of interpretation. Note that evaluating 

within-sample/study normality was not of primary concern in our 

meta-analysis because of the large minimum sample size we required 

(N = 100 pairs; see ‘Inclusion and exclusion criteria’); in addition, any 

between-sample/study non-normality was unlikely to drastically affect 

point estimates75.

We used two-level meta-analysis when none of the publications 

for a given trait reported multiple effect sizes and used three-level 

meta-analysis when at least one publication for a given trait reported 

multiple effect sizes. Two-level random-effects meta-analyses allow for 

the estimation of heterogeneity due to sampling variance versus that 

due to true effect size differences between populations from which the 

samples were drawn. Three-level meta-analyses further break down the 

true effect size differences to capture heterogeneity resulting from vari-

ation between studies versus heterogeneity resulting from variation 

within studies52. Partner correlations estimated in the same study could 

be more similar due to, for example, measures being taken at the same 

time or in the same culture, or due to the use of common instruments, 

even if the samples in a study were collected independently.

We utilized restricted maximum likelihood for both two-level and 

three-level meta-analyses. For the two-level meta-analyses, we used the 

rma.uni() function in the ‘metafor’ package76 in Rstudio v.1.4.17.17 to 

specify two levels (standard random-effects modelling). For three-level 

analyses, we used the rma.mv() function, within which we set individual 

effect sizes (the Z-transformed partner correlations in different sam-

ples) to be nested within individual studies for the ‘random’ argument. 

For both two-level and three-level meta-analyses, we set the test of the 

coefficient to follow a t-distribution and report two-tailed P values that 

were Bonferroni adjusted for multiple testing, as well as 95% CIs that 

were Bonferroni adjusted for multiple testing.

For continuous traits, we specified the effect sizes as Fisher 

Z-transformed Pearson or Spearman correlations and specified vari-

ances as 
1

(n−3)

 and 
1+

r

2

2

n−3

, respectively77. For dichotomous traits, we con-

verted the ascertained contingency table to a tetrachoric correlation 
corrected for ascertainment, as described above, and used the Fisher 
Z-transformed tetrachoric correlations for pooling in the meta- 
analyses. We used polychor() to calculate the untransformed standard 

error (s.e.ut) for non-ascertained studies examining dichotomous traits. 

For ascertained studies examining dichotomous traits, we estimated 

s.e.ut by creating 1,000 bootstrapped contingency tables, each of size 

n (the number of partner pairs) and sampling from the study’s (raw, 

ascertained) contingency table with replacement and then estimating 

the standard deviation of the 1,000 bootstrapped tetrachoric correla-

tions arising from the contingency tables. We then transformed all s.e.ut 

for tetrachoric correlations using the delta method78, wherein the 

standard error of the Z-transformed tetrachoric correlation is equiva-

lent to 
√

s.e.

ut

2

(1-r

2

)

2

 and used the square of these transformed standard 

errors for the variance argument in the rma.uni/rma.mv function. For 

reporting purposes, all meta-analysed point estimates were 

back-transformed to their original format (Pearson’s correlation or 

tetrachoric correlation), which were recorded alongside their respec-

tive Bonferroni-adjusted 95% CIs.

We estimated two sets of heterogeneity parameters, τ and I2, at 

the between-study level and, when applicable, within-study level. τ 

estimates the standard deviation of the true effect size at a given level. 

The total Higgins and Thompson’s I2 represents the percentage/pro-

portion of variance not due to sampling error and is the sum of I2 at the 

between-study level and I2 at the within-study level. The heterogeneity 

statistics are detailed in Table 1. We created funnel plots (Extended 

Data Fig. 1a–v), which plot Fisher Z-transformed correlations on the 

x axis against their standard errors on the y axis, to visually inspect 

whether there was evidence for asymmetry—a potential indicator of 

publication bias.

Analysis of partner correlations in the UKB
In addition to our meta-analyses, we analysed correlations between 

inferred male–female partners in the UKB (Application Number 16651) 

for an initial 140 ordinal, dichotomous and continuous traits using R 

v.4.2.2 and the University of Colorado Boulder computing cluster 

resources. We detected putative partners using an approach similar 

to that of past studies on partner correlations/AM in the UKB44,53. Begin-

ning with 502,414 individuals, we first restricted our sample to individu-

als who reported living with a ‘Husband, wife, or partner’ and who did 

not report living with an unrelated roommate (based on data-field 

6141), leaving 359,189 individuals. Using a co-location variable that was 

previously provided by the UKB, we subsequently limited our sample 

to pairs of individuals who were living at the same address at the time 

of recruitment, which narrowed the pool down to 200,707 participants. 

Although the co-location variable is no longer available from the UKB, 

the code used for detecting putative mate pairs and conducting the 

UKB analyses is available at https://github.com/JaredBalbona/

UKB-AM-MetaAnalysis. Afterwards, using a series of genomic relation-

ship matrices, we removed all pairs of related individuals ( ̂

π  ≥ 0.05), 

leaving 175,250 individuals; importantly, because genomic relationship 

matrices were calculated within ancestry groups, all cross-ancestry 

pairs were also removed at this stage. We then kept only pairs who were 

concordant for the number of people in their household, whether they 

own or rent their property and their Townsend Deprivation Index 

(based on data-fields 709, 680 and 189, respectively), leaving 160,738 

participants. Same-sex partners (data-field 31) were then removed, 

leaving 159,998 participants. Because most discrepancies in 

self-reported household income (data-field 738) were due either to the 

pairs choosing two adjacent options (for example, one individual 

choosing ‘18,000 to 30,999’ and the other ‘31,000 to 51,999’) or to 

non-responses, we removed only pairs whose reported household 

incomes differed by more than one category, leaving 158,350 individu-

als. Finally, pairs with age differences of greater than 20 years were 

removed to minimize the possibility of including stepchild/stepparent 

pairs, leaving a final sample of 158,148 individuals comprising 79,074 

putative mating pairs.

In some cases, we slightly altered the nature of traits by combin-

ing information from multiple traits or changing trait coding schemes 
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(see Supplementary Table 4 for traits that were altered and the UKB 

descriptions of each trait we included). In line with our meta-analytic 

methods, we used responses from the initial wave when responses 

were collected at multiple times for the same trait. For each continu-

ous trait, we eliminated partners containing at least one member with 

an absolute z-score greater than 4 to reduce the number of invalid 

responses and then calculated both a Pearson correlation and a Spear-

man rank correlation to provide two different estimates in the event 

that unusually distributed data biased correlations. For zero-inflated 

data, both Pearson and Spearman rank correlations provide a slight 

underestimate of the true underlying correlation of two continuous 

measures where values below some threshold provide an observa-

tion of zero, but Spearman correlations tend to be less biased79. For 

dichotomous traits, we calculated tetrachoric correlations and odds 

ratios, and for ordinal traits, we calculated only Spearman rank correla-

tions. In addition to the zero-order correlations for UKB partners, we 

also present partial correlations in Supplementary Table 4 that control 

for year of birth, whether an individual was born in the British Isles and 

each individual’s first 10 ancestral principal components. To avoid the 

re-introduction of covariate effects80, we ranked our ordinal data before 

residualizing. Of the initial 140 traits, 6 dichotomous traits did not have 

expected cell frequencies of 5 or greater, and 1 continuous trait was 

underpowered because of low sample size. These traits were therefore 

included in Supplementary Table 4 but not in Fig. 2 or Extended Data 

Fig. 2, where we visualize the point estimates and adjusted CIs for the 

remaining 133 traits.

Notably, our subsample contains substantially more partners than 

certain previous research that used inferred partners in the UKB; for 

example, despite using similar procedures and criteria to detect part-

ners, ref. 44 detected only 18,984 pairs within the UKB. The discrepancy 

between these two sample sizes can be attributed to several causes, 

including our sample containing partners of non-European descent, 

our approach not requiring perfect matches on household income and 

our use of the co-location variable. In addition, ref. 44 required that 

partners be concordant for the number of smokers in their household—

a question only asked of non-smokers in the UKB, thus eliminating all 

pairs that contain one or more current smokers. To evaluate the con-

sequences of our criteria discrepancies, we compared our estimates 

to those reported in ref. 44 using an independent samples t-test for all 

continuous traits that we examined. For each of these traits, we first 

calculated r1’, the Fisher-transformed partner correlation for n1 avail-

able pairs from the UKB dataset of ref. 44 and r2’, the Fisher-transformed 

partner correlation for the same trait in the n2 available pairs unique 

to our dataset; we then divided the difference between r1’ and r2’ by 

√

1

n

1

−3

+

1

n

2

−3

, which is the square-root of the sum of their estimated 

variances. As shown in Supplementary Table 5, the subsamples do not 

differ substantially for the majority of continuous traits analysed in 

both studies, despite more conservative partner detection criteria in 

ref. 44.

Reporting summary
Further information on research design is available in the Nature Port-

folio Reporting Summary linked to this article.

Data availability
Studies included in the meta-analysis are listed in Supplementary 

Tables 1 and 2 and cited in Table 1, as well as in the supplementary note; 

studies excluded from the meta-analysis are listed in Supplementary 

Table 3. Raw data from the UK Biobank are not publicly available, but 

summary statistics for most traits are available on the UK Biobank 

website at https://biobank.ndph.ox.ac.uk/showcase/search.cgi. Note 

that there is no longer a Field ID corresponding to the co-location 

variable in the UKB and that the putative partner dataset we created 

cannot be publicly shared. As such, our UKB partner dataset cannot be 

directly used/recreated at this time. However, combinations of other 

variables (for example, inverse distance to the nearest major road) can 

potentially be used as proxies for co-location53, in conjunction with the 

code we have made available, to estimate partner pairs.

Code availability
The code for the UKB analyses can be found at https://github.com/

JaredBalbona/UKB-AM-MetaAnalysis.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Funnel plots for each meta-analysed trait. The funnel 

plots in Extended Data Fig. 1a Smoking Status, Extended Data Fig. 1b Height, 

Extended Data Fig. 1c Smoking Quantity, Extended Data Fig. 1d Extraversion, 

Extended Data Fig. 1e Neuroticism, Extended Data Fig. 1f Openness, Extended 

Data Fig. 1g Conscientiousness, Extended Data Fig. 1h Drinking Quantity, 

Extended Data Fig. 1i Agreeableness, Extended Data Fig. 1j Intelligence Quotient, 

Extended Data Fig. 1k Waist-to-Hip Ratio, Extended Data Fig. 1l Educational 

Attainment, Extended Data Fig. 1m Depression, Extended Data Fig. 1n Diabetes, 

Extended Data Fig. 1o Generalized Anxiety, Extended Data Fig. 1p Political Values, 

Extended Data Fig. 1q Religiosity, Extended Data Fig. 1r Smoking Initiation, 

Extended Data Fig. 1s Smoking Cessation, Extended Data Fig. 1t Problematic 

Alcohol Use, Extended Data Fig. 1u Substance Use Disorder, and Extended Data 

Fig. 1v Body Mass Index are designed to assess possible publication bias for each 

meta-analysis. Here, the Fisher Z-transformed correlations are plotted against 

their respective standard errors. For dichotomous traits, standard error was 

estimated using the delta method (see main text).
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Extended Data Fig. 2 | See next page for caption.

http://www.nature.com/nathumbehav


Nature Human Behaviour

Article https://doi.org/10.1038/s41562-023-01672-z

Extended Data Fig. 2 | Partner correlations and Bonferroni-Adjusted 95% 

confidence intervals for 133 traits in the UK Biobank. The visualized traits 

represent partner correlations for all of the adequately-powered UK Biobank 

traits (out of an original 140). Each estimate is color-coded by the correlation 

type—Pearson (in blue), Spearman (in red), and Tetrachoric (in green), used for 

continuous, ordinal, and binary traits, respectively—with the lines depicting 

the Bonferroni-adjusted 95% confidence interval for each trait. Estimates are 

based on up to 79,074 pairs; Supplementary Table 4 includes the precise sample 

size for each trait along with the Bonferroni-adjusted p-values associated with 

the adjusted 95% confidence intervals depicted in this figure. See main text for 

description of specific analyses. Num Dep Episodes = Number of Depressive 

Episodes; Heel BMD = Heel Bone Mineral Density (in the form of a t-score); LDL 

= Direct Low-density Lipoprotein Cholesterol, CRP = C-reactive Protein; RBC 

= Red Blood Cell (Erythrocyte) Count; DBP = Diastolic Blood Pressure; CPD 

(All Participants) = Cigarettes per Day (Includes Current, Former, and Never 

Smokers); FEV1 Pred % = Forced Expiratory Volume in 1-Second (FEV1), Predicted 

Percentage; PEF= Peak Expiratory Flow; WBC = White Blood Cell (Leukocyte) 

Count; SBP = Systolic Blood Pressure; HDL = High-density Lipoprotein 

Cholesterol; CPD (Smokers Only) = Cigarettes per Day (Restricted to Current or 

Former Smokers); WHR = Waist-to-hip Ratio; BMR = Basal Metabolic Rate; FIQ = 

Fluid Intelligence Quotient; BMI = Body Mass Index; FVC = Forced Vital Capacity; 

Time to First Cig = Time to First Cigarette; EA = Educational Attainment.
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Data collection The package "RISMed" (version 2.3.0) (Kovalchik, S. RISmed: Download Content from NCBI Databases. (2021). https://cran.r-project.org/web/

packages/RISmed/index.html) was used for data collection within the PubMed search engine for our meta-analyses. No software was used for 

collecting data from ScienceDirect. Three authors worked independently to evaluate whether each paper met the relevant criteria for meta-

analysis and then manually collected data from relevant publications. The raw data for the UKB analysis was obtained via Application Number 

16651. 

Data analysis R Studio (version 1.4.1717) and/or R (version 4.2.2) were used for all analyses. We used the packages "psych" (version 2.2.9), 

"polycor" (version 0.8-0), "dplyr" (version 1.0.10), "metafor" (version 3.8-1), and "RISmed" (version 2.3.0) in R and RStudio. The code for the 

UKB analyses can be found at: https://github.com/JaredBalbona/UKB-AM-MetaAnalysis. Note that there is no longer a Field ID corresponding 

to the co-location variable in the UKB, so our UKB partner dataset cannot be directly recreated. This work also used resources from the 

University of Colorado Boulder Research Computing Group.
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Studies included in the meta-analysis are listed in Supplementary Tables 1 and 2 and cited in Table 1, as well as in the supplementary note; studies excluded from 

the meta-analysis are listed in Supplementary Table 3. Raw data from the UK Biobank is not publicly available, but summary statistics for most traits are available on 

the UK Biobank website: https://biobank.ndph.ox.ac.uk/showcase/search.cgi. Note that there is no longer a Field ID corresponding to the co-location variable in the 

UKB and that the putative partner dataset we created cannot be publicly shared. As such, our UKB partner dataset cannot be directly used/recreated at this time. 

However, combinations of other variables (e.g., inverse distance to the nearest major road) can potentially be used as proxies for co-location (e.g., see Border et al., 

2022, as cited in the text)—in conjunction with the code we have made available—to estimate partner pairs. 
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Study description Our study was a systematic review and quantitative meta-analysis of studies measuring magnitudes of partner concordance for 22 

complex traits and a quantitative raw data analysis of putative partner pairs for 133 complex traits in the UK Biobank

Research sample For the raw data analysis portion of our study, we used the UK Biobank (UKB). The UKB dataset is one of the largest and most 

detailed datasets in the world, containing extensive health-related information on over 500,000 individuals who were recruited from 

across the United Kingdom when between the ages of 40 and 69. While the sample is somewhat representative of the UK 

population, it does skew toward white-identifying individuals of European ancestry (94% in the UKB vs. 87% in the UK as a whole) and 

toward individuals with higher levels of health, education, and socioeconomic status (which we address in our manuscript). The 

meta-analysis portion of our study was collected from English language studies from around the world and gathered using PubMed 

and ScienceDirect search results (more details below). Additionally, Google Scholar was used for the original submission of this 

manuscript. Though the latter search engine was not used for the most recent literature review, studies that we recorded in the first 

iteration of our study were preserved even if they did not appear in the corresponding PubMed or ScienceDirect search. 

Sampling strategy For the meta-analysis, all samples included at least 100 pairs of predominately opposite-sex/gender co-habitating, engaged, and 

married partners, as well as co-parents. The pairs came from a range of backgrounds and could be of any age, race, ethnicity, or 

nationality, though samples most frequently came from the United States and Europe. Three authors worked independently to 

determine whether each paper met the relevant criteria for inclusion (described in the manuscript). Information on all included 

samples is described in Supplementary Tables 1 and 2 and all excluded studies are listed in Supplementary Table 3. Across all traits, 

samples from the UK Biobank included up to 79,074 putative opposite-sex partner pairs, as this was the total number available in the 

UKB who met our inclusion criteria (see below). The code for the UKB analyses can be found at: https://github.com/JaredBalbona/

UKB-AM-MetaAnalysis.

Data collection As all of our data were archival/secondary, we did not directly collect any data for this study.

Timing All included studies were published in peer-reviewed journals on or before August 16, 2022, with no lower limit on when the study 

could be published. Initial data collection for the meta-analyses in Google Scholar began in October 2019. Then there was a gap in 

data collection between January 2022 and July 2022, at which point data collection for PubMed and ScienceDirect began. Final data 

collection for meta-analyses ended on October 2022. For our UK Biobank analyses, data were based on each individuals' 

characteristics at baseline; UKB data was retrieved for analysis on September 2022.   

Data exclusions For the meta-analysis, samples comprised entirely of same-sex/gender partners were excluded, as we believe these samples warrant 

separate analysis (for reasons described in our manuscript). For traits such as personality, we required that measures be self-

reported, but we permitted case statuses of psychiatric traits reported by family members or partners due to the low numbers of 

applicable studies for such traits. Except for studies that ascertained partners for the trait of interest, we excluded studies in which 

partners were ascertained in a way that might have affected the magnitude of concordance for the trait of interest (e.g., 

concordance for depression in parents of depressed children). We limited our analysis to studies with sample sizes equal to or 

greater than 100 partner pairs. When samples for a given trait in multiple studies overlapped or were likely to overlap based on 

information provided in the publication, we only used the study that had the largest sample size or that we otherwise determined to 

be more appropriate. We also excluded samples taken from the UK Biobank (UKB) because we calculated partner correlations in this 

sample ourselves as a separate analysis. Additionally, we restricted our meta-analyses to traits for which there were at least three 

samples that met our criteria. Within the context of ascertained studies (i.e., those that used probands and controls rather than 

randomly sampling from a population), we excluded those involving probands taken from a clinical setting (i.e., a hospital or other 
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treatment facility) when the case status of their partners was determined by a different set of criteria (i.e., achieving a certain score 

on a diagnostic measure but not necessarily having a history of treatment). Relatedly, ascertained studies that did not label 

discordant partners based on sex/gender and for which such information was not otherwise inferable were eliminated if there was a 

greater than ~two-fold difference in male and female prevalence rates. Because of possible differences in the strength of calculated 

concordance based on an all-male proband sample versus that based on an all-female proband sample, we excluded studies that only 

included single-sex/gender probands. We also restricted our meta-analyses of dichotomous traits to studies with expected 

contingency table cell frequencies of five or greater for all cells and observed cell frequencies greater than zero. For the UK Biobank 

analyses, we excluded individuals who did not report living with a "husband, wife, or partner" and who did not report living with an 

unrelated roommate. Beginning with this subset of pairs, we subsequently excluded those that reported living at different addresses, 

had a genetic relatedness coefficient of greater than .05, or that were discordant for the number of people in their household, 

whether they own or rent their property, and their Townsend Deprivation Index. Because genomic relationship matrices were 

calculated within ancestry groups, cross-ancestry pairs could not be included. We then removed pairs who were severely discordant 

for their household income. Finally, we removed same-sex pairs and pairs with age differences of greater than 20 years. Ultimately, 

this reduced our initial sample of 502,414 individuals to 158,194. 

Non-participation No participants were involved in this study.

Randomization Participants were not allocated into experimental groups. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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