
Learning To Learn Using Gradient DesentSepp Hohreiter1, A. Steven Younger1, and Peter R. Conwell21 Department of Computer SieneUniversity of Colorado, Boulder, CO 80309{04302 Physis DepartmentWestminster College, Salt Lake City, UtahAbstrat. This paper introdues the appliation of gradient desentmethods to meta-learning. The onept of \meta-learning", i.e. of a sys-tem that improves or disovers a learning algorithm, has been of in-terest in mahine learning for deades beause of its appealing applia-tions. Previous meta-learning approahes have been based on evolution-ary methods and, therefore, have been restrited to small models withfew free parameters. We make meta-learning in large systems feasible byusing reurrent neural networks with their attendant learning routinesas meta-learning systems. Our system derived omplex well performinglearning algorithms from srath. In this paper we also show that ourapproah performs non-stationary time series predition.1 IntrodutionPhrases like \I have experiene in ...", \This is similar to ...", or \This is atypial ase of ..." imply that the person making suh statements learns thetask at hand faster or more aurately than an unexperiened human. Thislearning enhanement results from solution regularities in a problem domain. Ina onventional mahine learning approah the learning algorithm mostly doesnot take into aount previous learning experienes despite the fat that methodssimilar to human reasoning are expeted to yield better performane. The useof previous learning experienes in indutive reasoning is known as \knowledgetransfer" [4, 1, 14℄ or \indutive bias shifts" [15, 6, 13℄.In the researh �eld of \knowledge transfer" we fous on one of the mostappealing topis: \meta-learning" or \learning to learn" [4, 14, 11, 12℄. A meta-learner searhes out and �nds appropriate learning algorithms tailored to spei�learning tasks. To �nd suh learning methods, a supervisory algorithm that re-views and modi�es the training algorithm must be added. In ontrast to thesubordinate learning sheme, the supervisory routine has a broader sope. Itmust ignore the details unique to spei� problems, and look for symmetriesover a long time sale, i.e. it must perform \knowledge transfer". For exampleonsider a human as the supervisor and a kernel density estimator as the subor-dinate method. The human has previous experienes with over�tting and triesto avoid it by adding a bandwidth adaptation and improving the estimator. Wewant to automatially obtain suh learning method improvements by replaing

the human part with an appropriate system. This automati system must in-lude an objetive funtion to judge the performane of the learning algorithmand rules for the adjustment of the algorithm. Meta-learning is known in the
input x(j)

y(j-1)

y(j)target

output= neural net

(BPTT - RTRL)

super-

subordinate

system
=

system

visory algorithm
fixed learning

recurrent
subordinate system

algorithm

model
adjustable

adjustable
learning

output

target y(j-1)

x(j)input

meta-learning system

Fig. 1. The meta-learning system onsists of the supervisory and the subordinate sys-tem (sequene element j is proessed). The subordinate system is a reurrent network.Its attendant learning algorithm represents the �xed supervisory system. Target fun-tion arguments x are mapped to results y, e.g. y(j) = f(x(j)). The previous funtionresult y(j � 1) is supplied to the subordinate system so that it an determinate theprevious error of the subordinate model. Subordinate and supervisory outputs areidenti�ed.reinforement learning framework [12, 13℄. This paper reports on our work onmeta-learning in a supervised learning framework where a model is supposed toapproximate a funtion after being trained on examples. Our meta-learning sys-tem onsists of the supervisory proedure, whih is �xed, and of the adjustablesubordinate system, whih must be run on a ertain medium (see left hand sideof Figure 1). To exemplify this, for this medium we might have used a Turingmahine (i.e. a omputer) where the subordinate model and the subordinatetraining routine is represented by a program (see right hand side of Figure 1).Any hanges to the program amount to hanges in the subordinate learning algo-rithm1. However, the output of the disrete Turing mahine is not di�erentiable.Thus, only dedutive or evolutionary strategies an be used to improve the Tur-ing mahine program. Instead of exeuting the subordinate learning algorithmwith a Turing mahine, our method exeutes the algorithm with a reurrentneural network in order to get a di�erentiable output. This is possible beause a(suÆiently large) reurrent neural network an emulate a Turing mahine. Thedi�erentiable output allows us to apply gradient desent methods to improvethe subordinate routine. A reurrent network with random initial weights anbe viewed as a learning mahine with a very poor subordinate learning algo-rithm. We hypothesize that gradient based optimization approahes an be usedto derive a learning algorithm from a random starting point.1 It should be mentioned that in general, the oded model and the oded learningalgorithm annot be separated. Aordingly, with the term \learning algorithm" wemean both.

The apability of reurrent networks to exeute the subordinate system wasproved and demonstrated in [3, 19℄. Several researhers have suggested meta-learning systems based on neural networks and used geneti algorithms to adjustthe subordinate learning algorithm [2, 10, 19℄. Our goal is to obtain omplex sub-ordinate learning algorithms whih need a large reurrent network with manyparameters. Geneti algorithms are infeasible due to the large number of om-putations required. This paper introdues gradient desent for meta-learning tohandle suh large systems, and, thus, to provide an optimization tehnique inthe spae of learning algorithms.Every reurrent neural network arhiteture with its attendant learning pro-edure is a possible meta-learning system. One may hoose for example bakprop-agation through time (BPTT [18, 16℄) or real-time reurrent learning (RTRL [9,17℄) as attendant learning algorithms. The meta-learning harateristi of thesenetworks is only determined by the speial kind of input-target sequenes asdesribed in setion 2.1. Both BPTT and RTRL applied to standard reurrentnets do not yield good meta-learning performane as will be seen in setion 3.The reason for this poor performane is given in setion 2.2. In the same setion,the use of the Long Short-Term Memory (LSTM [8℄) arhiteture is suggestedto ahieve better results. Setion 2.3 gives an intuition how the \indutive biasshift" (\knowledge transfer") takes plae during meta-learning. The experimen-tal setion 3 demonstrates how di�erent learning proedures for di�erent problemdomains are automatially derived by our meta-learning systems.2 Theoretial Considerations2.1 The Data-Setup for Meta-Learning with Reurrent NetsThis setion desribes the kind of input-target sequenes that allowmeta-learningin reurrent nets. The training data for the meta-learning system is a set of se-quenes fskg, where sequene sk is obtained from a target funtion fk. At eahtime step j during proessing the kth sequene, the meta-learning system needsthe funtion result yk(j) = fk(xk(j)) as a target. The input to the meta-learningsystem onsists of the urrent funtion argument vetor xk(j) and a supplemen-tal input whih is the previous funtion result yk(j�1). The subordinate learningalgorithm needs the previous funtion result yk(j�1) so that it an learn the pre-sented mapping, e.g. to ompute the subordinate model error for input xk(j�1).We annot provide the urrent target yk(j) as an input to the reurrent networksine we annot prevent the model from heating by hard-wiring the urrenttarget to its output. Figure 1 illustrates the inputs and targets for the di�erentlearning systems.The meta-learning system is penalized at eah time point when it does notgenerate the orret target value, i.e. when the subordinate proedure was yetnot able to learn the urrent funtion. This fores the meta-learning system toimprove the subordinate algorithm so that it beomes faster and more exat.Figure 2 shows test sequenes after suessful meta-learning. New sequenesstart at 513, 770, and 1027 when the subordinate learning method produes

large errors beause the new funtion is not yet learned. After a few examplesthe subordinate system learned the new funtion.The harateristis of the derived subordinate algorithms an be inuenedby the sequene length (more examples per funtion give more preise but sloweralgorithms), the error funtion, and the arhiteture.2.2 Seleting a Reurrent Arhiteture for Meta-LearningFor simpliity we onsider one funtion f giving the sequene (x1; y1) ; : : : ; (xJ ; yJ),where yj = f(xj). All training examples (xj ; yj) ontain equal information aboutf . The indies orrespond to the time steps of the reurrent net. We want tobias our meta-learning system towards this prior knowledge. The information inthe last output OJ (indiated by J) is determined by the entropy H (OJ j XJ).Here probability variables are denoted by apital letters, e.g. X for the input,Y for the target, and O for the output. H(A) is the entropy of A and theonditional entropies are denoted by H (A j B) The last output is obtained byoJ = g (yj ;xJ ; xj) + �, where g is a bijetive funtion with variable yj and pa-rameters xJ ; xj . � expresses disturbanes during input sequene proessing. Weassume noisy mappings to avoid in�nite entropies. Negleting �, we getH (OJ j XJ ; Xj) = H (Yj j Xj) + EYj ;Xj ;XJ �log������g (Yj ;Xj ; XJ)�Yj ������ ;where p (Yj j xj ; xJ) = p (Yj j xj), ����g(Yj ;Xj ;XJ)�Xj ��� is the absolute value of the g'sJaobian determinant, and EA;B;::: is the expetation over variables A;B; : : :.The hidden state at time j is sj = u (sj�1; xj ; yj�1) and the output is oj =v (sj). With i < j < J we get�oJ�yj = �oJ�sj+1 �sj+1�yj ; �oJ�yi = �oJ�sj+1 �sj+1�si+1 �si+1�yi ; �sj+1�si+1 = jYl=i+1 �sl+1�sl :Our prior knowledge says that exhanging example i and j should not a�etthe output information. That is H (OJ j XJ ; Xj) = H (OJ j XJ ; Xi), and also �should not hange. In this ase Yj = Yi, Xj = Xi, p (Yj j xj) = p (Yi j xi) forxj = xi, and H (Yj j Xj) = H (Yi j Xi). At learn begin with arbitrary weightinitialization EYj ;Xj ��Sj+1�Yj � = EYi;Xi ��Si+1�Yi �. Thus, we obtainEYj ;Xj ;XJ �log�����g(Yj ;Xj ;XJ)�Yj ������EYi;Xi;XJ �log�����g(Yi;Xi;XJ)�Yi ����� = 0, orjXl=i+1EYi;Xi �log������Sl+1�Sl ������ = 0 ; e.g. with �����sl+1�sl ���� = 1 :u restrited to a mapping from sl to sl+1 should be volume onserving. An arhi-teture whih inorporates suh a volume onserving substruture should out-perform other arhitetures. An arhiteture ful�lling this requirement is LongShort-Term Memory (LSTM [8℄).

2.3 Bayes View on Meta-LearningMeta-learning an be viewed as onstantly adapting and shifting the hyper-parameters and the prior (\indutive bias shift") beause the subordinate learn-ing algorithm is adapted to the problem domain during meta-learning. As theexperiments on�rm, also the prior of subordinate learning algorithms is data de-pendent. This was suggested in [7℄, too. Therefore di�erent previously observedexamples might lead to di�erent urrent learning.3 ExperimentsWe hoose a squared error funtion for the supervisory learning routine. All net-works possess 3 input and 1 non-reurrent output units. All non-input units arebiased and have sigmoid ativation funtions in [0; 1℄. Weights are randomly ini-tialized from [�0:1; 0:1℄. All networks are reset after eah sequene presentation.3.1 Boolean FuntionsHere we onsider the set B16 of all Boolean funtions with two argu-ments and one result. The linearly separable Boolean funtions set B14 =B16 n fXOR;:XORg is used to eval-uate meta-learning arhitetures.B14 ExperimentsWe ompared following methods: (A)Elman network [5℄. (B) Reurrentnetwork with fully reurrent hiddenlayer trained with Bak PropagationThrough Time (BPTT [18, 16℄) trun-ated after 2 time steps and with RealTime Reurrent Learning (RTRL [9,17℄). (C) Long Short-Term Memory(LSTM [8℄) with its orresponding 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

400 500 600 700 800 900 1000 1100Fig. 2: Error vs. time after meta-learning.learning proedure. The ell input is squashed to [�2; 2℄ by a sigmoid and theell output is a sigmoid in [�1; 1℄. For input gates the bias is set to �1:0. Table 1gives the results. Only LSTM was suessful.B16 ExperimentsThe results are shown in Table 2. The mean squared errors per time step(MSEts) are lower than at B14 beause the large error at the beginning of anew funtion sales down with more examples. See Figure 2 for absolute errormeta-learning. The peaks at 513, 770, and 1027 indiate large error when thefuntion hanges.3.2 Semi-linear FuntionsWe obtain funtions 0:5 (1:0 + tanh (w1x1 + w2x2 + w3)) with input vetor x =(x1; x2) by hoosing eah parameter wl randomly from [�1; 1℄. Table 2 presents

arh. hid. learning up- � train train test su-units method date time MSEt MSEt essElman 15 Elman b 0.001-0.1 5000 NORe. 20 BPTT(2) b & o 0.001-0.01 40000 NORe. 10 RTRL b & o 0.001-0.1 20000 0.22 0.21 NOLSTM 6/6(1) LSTM o 0.001 1000 0.033 0.038 YESTable 1. The B14 experiments for Elman nets (\Elman"), reurrent networks withfully reurrent hidden layer (\Re."), and LSTM. The olumns show: (1) arhiteture(\arh."), (2) number of hidden units { for LSTM \6/6(1)" means 6 hidden units and6 memory ells of size 1 {, (3) learning method { for Elman nets and LSTM theirlearning methods are used, and BPTT is trunated after 2 time steps {, (4) bath (\b")or online (\o") update, (5) learning rate � { 0.001-0.1 means di�erent learning ratesin this range {, (6) training epohs, (7) training and (8) test mean squared error pertime step (\MSEt"), and (9) suessful training (\suess").the results. With more examples per funtion the pressure on error redution forthe �rst examples is redued whih leads to slower but more exat learning.3.3 Quadrati FuntionsThe problem domain are the quadrati funtions a x21 + b x22 + x1 x2 +d x1 + e x2 + f saled to the interval [0:2; 0:8℄. The parameters a; : : : ; f arerandomly hosen from [�1; 1℄. We introdued another hidden layer in the LSTMarhiteture whih reeives inoming onnetions from the �rst standard LSTMhidden layer, and has outgoing onnetions to the output and the �rst hiddenlayer. The �rst hidden layer has no output onnetions. The seond hidden layermight serve as a model whih is seen by the �rst hidden layer. The standardLSTM learning algorithm is used after the error is propagated bak into the �rsthidden layer.LSTM has a 6/12(1) arhiteture in the �rst hidden layer (notation as inTable 1) and 40 units in the seond hidden layer (5373 weights). To speed uplearning, we �rst trained on 100 examples per funtion and then inreased thisnumber to 1000. This orresponds to a bias towards fast learning algorithms. Theresults are listed in Table 2. The authors are not aware of any iterative learningalgorithm with to the derived subordinate method omparable performane.3.4 Summary of ExperimentsThe experiments demonstrate that our system automatially generates learningmethods from srath and that the derived online learning algorithms are ex-tremely fast. The test and the training sequene for the meta-learning systemontains rapidly hanging dynamis, i.e. the hanging funtions, what an beviewed as a very non-stationary time series. Our system was able to predit well

experi- # fun- # exam- train train test train time train MSEment tions ples time MSEt MSEt subordinate subordinateB14 128 64 1000 0.033 0.038 6 0.003B16 256 256 800 0.0055 0.0058 6 0.002semil. 128 64 10000 0.0007 0.0008 10 0.07semil. 128 1000 5000 0.0020 0.0025 50 0.05quad. 128 1000 25000 0.00061 0.00068 35 0.02Table 2. LSTM results for the B14, B16, semilinear (\semil.") and quadrati funtions(\quad."). The olumns show: (1) experiment name, (2) number of training sequenes(\# funtions"), (3) length of training sequenes (examples per funtion { \# exam-ples"), (4) training epohs, (5) training MSEt, (6) test MSEt, (7) training time for thederived algorithm (\train time subordinate"), and (8) maximal training mean squarederror per example of the subordinate system after training (\train MSE subordinate").The B14 arhiteture was used exept for \quad." (see text for details).on never seen hanging dynamis in the test sequene. The non-stationary timeseries predition is based on rapid learning if the dynami hanges.4 ConlusionPrevious approahes to meta-learning are infeasible for a large number of systemparameters. To handle many free parameters this paper presented the appliationof gradient desent to meta-learning by using reurrent nets. Our theoretialanalysis indiated that LSTM is a good meta-learner what was on�rmed in theexperiments. With an LSTM net our system derived a learning algorithm ableto approximate any quadrati funtion after only 35 examples.Our approah requires a single training sequene, therefore, it may be relevantfor lifelong learning and autonomous robots. The meta-learner proposed in thispaper performed non-stationary time series predition. We demonstrated how amahine an derive novel, very fast algorithms from srath.AknowledgmentsThe Deutshe Forshungsgemeinshaft supported this work (Ho 1749/1-1).Referenes1. R. Caruana. Learning many related tasks at the same time with bakpropagation.In G. Tesauro, D. Touretzky, and T. Leen, editors, Advanes in Neural InformationProessing Systems 7, pages 657{664. The MIT Press, 1995.2. D. Chalmers. The evolution of learning: An experiment in geneti onnetionism.In D. S. Touretzky, J. L. Elman, T. J. Sejnowski, and G. E. Hinton, editors, Pro.of the 1990 Con. Models Summer Shool, pages 81{90. Morgan Kaufmann, 1990.3. N. E. Cotter and P. R. Conwell. Fixed-weight networks an learn. In Int. JointConferene on Neural Networks, volume II, pages 553{559. IEEE, NY, 1990.

4. H. Ellis. Transfer of Learning. MaMillan, New York, NY, 1965.5. J. L. Elman. Finding struture in time. Tehnial Report CRL 8801, Center forResearh in Language, University of California, San Diego, 1988.6. D. Haussler. Quantifying indutive bias: AI learning algorithms and Valiant'slearning framework. Arti�ial Intelligene, 36:177{221, 1988.7. S. Hohreiter and J. Shmidhuber. Flat minima. Neural Comp., 9(1):1{42, 1997.8. S. Hohreiter and J. Shmidhuber. Long short-term memory. Neural Computation,9(8):1735{1780, 1997.9. A. J. Robinson and F. Fallside. The utility driven dynami error propagationnetwork. Tehnial Report CUED/F-INFENG/TR.1, Camb. Uni. Eng. Dep., 1987.10. T. P. Runarsson and M. T. Jonsson. Evolution and design of distributed learningrules. In 2000 IEEE Symposium of Combinations of Evolutionary Computing andNeural Networks, San Antonio, Texas, USA, page 59. 2000.11. J. Shmidhuber. Evolutionary priniples in self-referential learning, or on learninghow to learn: The meta-meta-... hook. Inst. f�ur Inf., Teh. Univ. M�unhen, 1987.12. J. Shmidhuber, J. Zhao, and M. Wiering. Simple priniples of metalearning.Tehnial Report IDSIA-69-96, IDSIA, 1996.13. J. Shmidhuber, J. Zhao, and M. Wiering. Shifting indutive bias with suess-story algorithm, adaptive levin searh, and inremental self-improvement. MahineLearning, 28:105{130, 1997.14. S. Thrun and L. Pratt, editors. Learning To Learn. Kluwer Aademi Pub., 1997.15. P. Utgo�. Shift of bias for indutive onept learning. In R. Mihalski, J. Carbonell,and T. Mithell, editors, Mahine Learning, volume 2. Morgan Kaufmann, 1986.16. P. J. Werbos. Generalization of bakpropagation with appliation to a reurrentgas market model. Neural Networks, 1, 1988.17. R. J. Williams and D. Zipser. A learning algorithm for ontinually running fullyreurrent networks. Tehnial Report ICS 8805, Univ. of Cal., La Jolla, 1988.18. R. J. Williams and D. Zipser. Gradient-based learning algorithms for reurrentnetworks and their omputational omplexity. In Y. Chauvin and D. E. Rumelhart,editors, Bak-propagation: Theory, Arhitetures and Appliations. Hillsdale, 1992.19. A. S. Younger, P. R. Conwell, and N. E. Cotter. Fixed-weight on-line learning.IEEE-Transations on Neural Networks, 10(2):272{283, 1999.

