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Most long-term memories are formed as a consequence of multiple experiences. The temporal spacing of
these experiences is of considerable importance: experiences distributed over time (spaced training) are
more easily encoded and remembered than either closely spaced experiences, or a single prolonged expe-
rience (massed training). In this article, we first review findings from studies in animal model systems
that examine the cellular and molecular properties of the neurons and circuits in the brain that underlie
training pattern sensitivity during long-term memory (LTM) formation. We next focus on recent findings
which have begun to elucidate the mechanisms that support inter-trial interactions during the induction
of LTM. Finally, we consider the implications of these findings for developing therapeutic strategies to

address questions of direct clinical relevance.
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1. Introduction

All animals must use their experience to create a statistical
model of their world. This model is driven by both pattern and pre-
dictability. The regularity (or pattern) of an experience is predictive
of the likelihood of an encounter with the same or related experi-
ences in the future, and therefore facilitates the acquisition and
maintenance of adaptive behavior. The maintenance of such a pre-
dictive model depends on the formation of long-term memory
(LTM). Yet not all repeated experiences are retained in LTM. The
timing of experiences is critical. In psychological terms, the benefit
to LTM induction of temporally distributed experiences (trials),
compared to more closely spaced trials, is often termed the spacing
effect and can be traced to the earliest formal studies of human
learning and memory by Hermann Ebbinghaus (1885/1913). Since
these seminal observations more than a century ago, it has become
increasingly evident that the spacing effect is a ubiquitous phe-
nomenon that governs LTM formation in a wide range of species
and across a wide variety of tasks. Yet even after decades of study,
we still understand relatively little about the properties of neural
circuits in the brain that determine the benefit of spaced training.
In this review we will briefly discuss major findings that elucidate
some of the cellular and molecular mechanisms that can, at least in
principle, contribute to the spacing effect. We will then focus on re-
cent studies that provide novel and fundamental insights into how
effective spacing intervals are determined and may benefit LTM
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formation. Finally, we conclude with a discussion of the implica-
tions of experimental studies for the development of effective
learning strategies in humans, as well as the potential for these
studies to inform questions of direct clinical relevance.

2. General principles of the spacing effect

The benefit of spaced training to LTM formation is widely ob-
served in both vertebrate and invertebrate model systems, and
provides striking parallels to the general principles observed in hu-
mans. The spacing effect in LTM is observed across a variety of
tasks, including spatial reference memory (Bolding & Rudy,
2006), working memory (Klapdor & Van Der Staay, 1998), appeti-
tive associative conditioning (Colomb, Kaiser, Chabaud, & Preat,
2009), aversive associative conditioning (Amano & Maruyama,
2011; Williams, Frame, & LoLordo, 1991; Yin et al., 1994) and both
sensitization and habituation (Carew, Pinsker, & Kandel, 1972;
Pinsker, Carew, Hening, & Kandel, 1973; Sutton, Ide, Masters, &
Carew, 2002). Effective training intervals appear to be task specific
and are controlled by a number of factors, including the retention
interval examined (e.g., Beck, Schroeder, & Davis, 2000; Gerber,
Woustenberg, Schutz, & Menzel, 1998) and the relationship be-
tween trial duration and trial spacing (Gibbon, Baldock, Locurto,
Gold, & Terrace, 1977). Finally, although a sufficient spacing of
training trials is necessary to benefit LTM induction (with effective
training intervals ranging from minutes to days; see Parsons & Da-
vis, 2012), trials can of course also be spaced too far apart to sup-
port LTM acquisition (Bolding & Rudy, 2006; Gibbon et al., 1977;
Parsons & Davis, 2012; Philips, Tzvetkova, & Carew, 2007). Thus,
the benefit of spaced training is non-monotonic, in agreement with
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studies in humans (Cepeda, Pashler, Vul, Wixted, & Rohrer, 2006;
Ebbinghaus, 1885/1913).

Interestingly, although there is a general trend in both the hu-
man and animal literature describing a benefit from repeated
spaced training trials, there is a large body of work studying LTM
which forms following a single training session, so-called “flash-
bulb” memories (Diamond, Campbell, Park, Halonen, & Zoladz,
2007; van Giezen, Arensman, Spinhoven, & Wolters, 2005). Is this
learning different from that which develops over repeated experi-
ences? One-trial memories typically develop from emotionally
salient events and may indeed rely on mechanisms that are differ-
ent from those recruited during multi-trial learning (Irvine, von
Hertzen, Plattner, & Giese, 2006; Radwanska et al., 2011). However,
memory deficits on one-trial cued fear and passive avoidance tasks
in mutant mice (that are alphaCAMKII autophosphorylation-defi-
cient) can be rescued by providing additional spaced training trials
(Irvine, Vernon, & Giese, 2005). Thus, the possibility exists that
even one-trial learning tasks can benefit from mechanisms that
subserve LTM formation across spaced training.

3. Cellular and molecular correlates of the spacing effect

Both vertebrates and invertebrates express memory across mul-
tiple temporal domains. Each domain has unique cellular and
molecular mechanisms that support its induction. Short-term
memory (STM) typically develops following a single experience
(training trial), lasts on the order of minutes, and relies on the tran-
sient modification of pre-existing proteins to establish short-last-
ing plasticity within underlying neural circuits (Alkon & Naito,
1986; Barondes, 1970; Castellucci, Blumenfeld, Goelet, & Kandel,
1989; Scheibenstock, Krygier, Haque, Syed, & Lukowiak, 2002;
Wittstock, Kaatz, & Menzel, 1993; Xia, Feng, & Guo, 1998). Follow-
ing multiple training trials, both intermediate-term memory (ITM,
lasting several hours) and LTM (lasting >24 h) are established. ITM
induction requires ongoing protein synthesis, but does not require
new gene transcription (Lukowiak, Adatia, Krygier, & Syed, 2000;
Lyons, Green, & Eskin, 2008; Sangha, Scheibenstock, McComb, &
Lukowiak, 2003; Stough, Shobe, & Carew, 2006; Sutton, Masters,
Bagnall, & Carew, 2001). In contrast, LTM requires not only protein
synthesis, but also gene expression to stabilize the new growth and
enhanced cellular and synaptic plasticity required for LTM expres-
sion (Bailey, 1999; Bailey, Bartsch, & Kandel, 1996; Castellucci
et al., 1989; Mozzachiodi, Lorenzetti, Baxter, & Byrne, 2008; Sangha
et al., 2003; Sutton et al., 2001; Tully, Preat, Boynton, & Del Vec-
chio, 1994; Wustenberg, Gerber, & Menzel, 1998).

The spacing effect does not appear to regulate the acquisition or
development of STM, but strongly regulates the induction of LTM
in a variety of learning tasks in a wide range of species, including
pigeon (Gibbon et al., 1977), rodent (Bolding & Rudy, 2006; Klap-
dor & Van Der Staay, 1998; Williams et al., 1991), honeybee (Ger-
ber et al, 1998), Drosophila (Tully et al., 1994), Hermissenda
(Rogers, Talk, & Matzel, 1994), Lymnaea (Lukowiak, Cotter, Westly,
Ringseis, & Spencer, 1998), and Aplysia (Carew et al., 1972). The ef-
fect of training pattern on the formation of ITM is less well studied,
but has shown to be of benefit in some cases (Sutton et al., 2002).
Not surprisingly, spaced training is better than massed training at
recruiting the cellular, molecular and structural signatures of LTM
(for recent comprehensive reviews see Barco, Bailey, & Kandel,
2006; Lynch, Kramar, Babayan, Rumbaugh, & Gall, 2013; Nagqib,
Sossin, & Farah, 2012).

3.1. Cellular correlates

In vertebrate studies, the long-term potentiation (LTP) of synap-
tic signaling is the most often studied cellular correlate of LTM

(although there are several instances described in which LTP
induction and LTM induction are not correlated: Barnes, 1995; Pin-
eda et al., 2004, and Shors & Matzel, 1997). LTP is observed at syn-
apses in multiple brain regions, but LTP of the CA3 Schaffer
collateral synapses onto area CA1 pyramidal neurons in the hippo-
campus has been most frequently studied (Bliss & Collingridge,
1993; Malenka & Bear, 2004). LTP induction at CA3/CA1 synapses
and LTM share many mechanistic similarities, including the ability
to be strengthened across spaced training and a sensitivity to the
patterning of spaced training trials (Abraham, Logan, Greenwood,
& Dragunow, 2002; Huang & Kandel, 1994; Kramar et al., 2012;
Malenka, 1994; Winder, Mansuy, Osman, Moallem, & Kandel,
1998). At the molecular level, the requirements for a form of
long-lasting LTP (L-LTP) are similar to those for LTM: both require
cAMP, cAMP-dependent protein kinase A (PKA), the extracellular
signal-regulated protein kinase (ERK) of the mitogen-activated
protein kinase superfamily (hereafter referred to as MAPK) and
CREB signaling (for review see Barco et al., 2006). Moreover,
manipulations that remove inhibitory constraints on PKA, MAPK
and CREB activation, support the induction of LTP and LTM with
a reduced number of trials (Barad, Bourtchouladze, Winder, Golan,
& Kandel, 1998; Genoux et al., 2002; Malleret et al., 2001). In stud-
ies in invertebrate model systems, where clear links between
behavior and cellular signaling can be established, similar conclu-
sions have been drawn between the training pattern sensitivity for
the induction of structural plasticity (Wainwright, Zhang, Byrne, &
Cleary, 2002), neuronal excitability (Mozzachiodi et al., 2008; Rog-
ers et al., 1994) and synaptic plasticity (Mauelshagen, Sherff, & Car-
ew, 1998) and LTM. There are several excellent recent reviews in
this general area (Barco et al., 2006; Mayford, Siegelbaum, & Kan-
del, 2012; Mozzachiodi & Byrne, 2010; Nagib et al., 2012).

3.2. CREB

A conserved molecular target of the spacing effect appears to be
the differential recruitment of the cAMP response element binding
protein (CREB) signaling and CREB-mediated transcription by
spaced, but not massed training patterns (reviewed in Naqib
et al.,, 2012; Silva, Kogan, Frankland, & Kida, 1998; Yin & Tully,
1996). CREB-mediated transcription is a critical requirement for
the development of long-lasting plasticity and LTM in many sys-
tems (Dash, Hochner, & Kandel, 1990; Pittenger et al., 2002; Tau-
benfeld, Milekic, Monti, & Alberini, 2001) and is upstream of the
synthesis of cytoplasmic effectors such as synapsin I (Hart et al.,
2011) as well as subsequent nuclear signaling mediated by the
recruitment of genes which encode for additional transcription fac-
tors important for memory consolidation, including C/EBP (Albe-
rini, Ghirardi, Metz, & Kandel, 1994; Taubenfeld et al., 2001) and
CREB itself (Liu, Cleary, & Byrne, 2011). Removing the inhibitory
constraints on CREB activation or overexpressing CREB during
learning can support the formation of long-lasting forms of synap-
tic plasticity and LTM with reduced training trials (Bartsch, Casa-
dio, Karl, Serodio, & Kandel, 1998; Bartsch et al., 1995; Genoux
et al., 2002; Malleret et al., 2001; Yin, Del Vecchio, Zhou, & Tully,
1995). Thus, CREB recruitment is an important and highly con-
served mechanism that contributes to establishing the training
pattern requirements for memory formation.

Importantly, CREB phosphorylation on ser133 (Gonzalez &
Montminy, 1989) is not always sufficient to induce its transcrip-
tional activity. The recruitment of transcriptional coactivators such
as the CREB-binding protein (CBP) and the CREB-regulated tran-
scriptional coactivator 1 (CRTC1) help to regulate CREB-dependent
LTP and LTM formation (Ch’'ng et al., 2012; Hirano et al., 2013; Kov-
acs et al.,, 2007; Wood et al., 2005; Zhou et al., 2006). Evidence from
LTP studies in rat has implicated CRTC1 in pattern detection (Zhou
et al., 2006). Overexpression of CRCT1 is sufficient to lower the
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threshold for late-LTP induction to a single high frequency train of
stimulation. Additionally, the elevation of CRTC1 levels by fasting
flies prior to exposing them to an aversive olfactory task is suffi-
cient to lower the threshold for LTM induction from ten training
trials to a single trial (Hirano et al., 2013). Since transcriptional
coactivators are important signaling requirements for CREB-medi-
ated transcription, the pattern-sensitive recruitment of these sig-
naling partners during learning must also be considered as
potential sites for pattern detection.

3.3. CaMKil, PKA and MAPK

Pattern sensitivity is also observed upstream of CREB in the
recruitment of signaling cascades such as calcium/calmodulin-
dependent protein kinase II (CaMKII), PKA and MAPK that can di-
rectly or indirectly phosphorylate CREB on ser133 and promote
its transcriptional activity. All three kinase signaling pathways
have been highlighted in LTP studies as candidate molecules in-
volved in the integration of synaptic events over time. For example,
both CaMKII (Coomber, 1998) and PKA (Roberson & Sweatt, 1996)
are rapidly activated following single LTP-inducing stimuli and
preferentially support LTP induction across either closely spaced
or more distributed training stimuli, respectively (Kim, Huang,
Abel, & Blackwell, 2010; Woo, Duffy, Abel, & Nguyen, 2003). MAPK
is also activated transiently following a single LTP-inducing stimu-
lus, reaching peak levels at approximately the same timing as the
optimal inter-tetanus interval (5-10 min) between 3 tetani that re-
sult in maximal LTP induction (Ajay & Bhalla, 2004). Intriguingly, in
Aplysia, the dynamics of inter-trial PKA and MAPK activation were
recently used to design enhanced (and surprisingly non-intuitive)
spaced training patterns based on predictions for the maximal
accumulation and overlap of the two signals (Zhang et al., 2012).
The recruitment and sustained signaling of CaMKII (Chen et al.,
2012), PKA (Muller & Carew, 1998) and MAPK (Atkins, Selcher,
Petraitis, Trzaskos, & Sweatt, 1998; Cammarota et al., 2000;
Sharma, Sherff, Shobe, Bagnall, Sutton, & Carew, 2003b) are also
observed following spaced, but not massed training and are known
to be necessary for LTM formation.

3.4. G-proteins

The induction of small G proteins further upstream from the
signaling cascades described above has also been shown to be sen-
sitive to training pattern. For example, in Aplysia, MAPK can be
activated by both spaced and massed exposures of the central ner-
vous system to the neuromodulator serotonin (5HT; 5 pulses
spaced by 15 min, or a single 25 min exposure). However, only
the spaced training pattern is associated with the reliable induc-
tion of a MAPK-dependent long-term facilitation (LTF; Martin
et al, 1997; Mauelshagen et al., 1998). Ye and colleagues (2008)
showed that the selective recruitment of LTF-supporting mecha-
nisms by spaced 5HT could be accomplished by a differential ratio
of activity of the Aplysia homologues of the small G proteins Ras
and Rap 1 (ApRas and ApRap), recruited by each training pattern.
Increased ApRas (relative to ApRap) activity supported MAPK acti-
vation following spaced training. However, no such increase was
recruited by massed training. Moreover, overexpressing ApRap
during spaced training antagonized MAPK activation. A related
finding is observed in a Drosophila homologue of the SHP2 phos-
phatase, corkscrew, which lies upstream of Ras/MAPK activation.
Corkscrew phosphatase activity was recently shown to determine
the pattern sensitive recruitment of MAPK and LTM induction in
flies (Pagani, Oishi, Gelb, & Zhong, 2009). Collectively, these find-
ings implicate the recruitment of the small G proteins, CaMKII,
PKA and MAPK signaling cascades during learning as determinants

of long-term synaptic strengthening and LTM over multiple spaced
training experiences.

4. Why is massed training ineffective in recruiting the
mechanisms of LTM consolidation?

Although spaced training clearly supports the recruitment of
many signaling mechanisms that support LTM induction, an in-
verse question can be raised: Why is massed training ineffective?
One answer is that it is simply unable to recruit the same signaling
that supports LTM induction across spaced training. However, in
many cases massed training actually recruits signaling which ac-
tively opposes LTM induction (Abel, Martin, Bartsch, & Kandel,
1998; Yin & Tully, 1996). In a recent study in Drosophila, the devel-
opment of LTM during spaced training on an aversive olfactory
conditioning task was shown to require the recruitment of slow
synchronous calcium oscillations in two pairs of neuromodulatory
dopaminergic neurons, specifically in the interval between spaced
trials (Placais et al., 2012). Massed training, on the other hand, was
shown to actively weaken these oscillations to support the induc-
tion of a second and opposing form of memory, anesthesia-resis-
tant memory (ARM). Thus, in this case, massed training fails to
allow the critical synchrony necessary to develop the neuromodu-
latory signaling required for LTM. In studies of LTP induced by the-
ta burst stimulation (TBS) of Schaffer collateral CA3/CA1 synapses
in acute hippocampal slices, Lynch and colleagues (Kramar et al.,
2012; Lynch et al., 2013) recently identified a refractory period of
40-50 min that occurs following a single TBS stimulation that pre-
vents a subsequent TBS (TBS2) from recruiting additional enhance-
ments in synaptic strength. However, beyond the refractory period
the spaced administration of additional rounds of TBS could recruit
additional potentiation (up to 150% that typically observed follow-
ing 3 TBS trains spaced 60 min apart). The increased potentiation
was correlated with an increased number of spines on CA1 pyrami-
dal neuron dendrites with evidence of synaptic remodeling. No
such increase was observed if TBS2 was given during the refractory
period. These authors further suggest that spines recruited for LTP
by TBS1 may produce a diffusible factor (such as Ras-GTP or RhoA)
that acts to “prime” nearby spines to express LTP in response to
TBS2. Thus, sufficiently spaced training trials may benefit LTM by
allowing the recruitment of additional synaptic plasticity and syn-
apses not recruited during the initial experience, and massed train-
ing may fail to support LTM because subsequent training trials are
administered too soon after earlier trials to support the recruit-
ment of additional plasticity and synapses.

At the molecular level, the intracellular accumulation of cal-
cium during massed training trials has been shown to recruit the
phosphatases PP1 and PP2B (calcineurin), which can serve as
“brakes” on LTM induction by antagonizing, for example, CREB
phosphorylation at ser133 (Bito, Deisseroth, & Tsien, 1996). In ro-
dent and invertebrate models, the removal of this phosphatase
activity can serve to increase the recruitment of CREB during learn-
ing and can facilitate the induction of long-term plasticity and LTM
from fewer training trials (Genoux et al., 2002; Koshibu et al.,
2009; Malleret et al, 2001; Rosenegger, Parvez, & Lukowiak,
2008; Sharma, Bagnall, Sutton, and Carew, 2003a). Similar gain-
of-function is observed in flies when CREB is overexpressed (Yin
et al,, 1995) and when the Ras/MAPK activation during learning
is facilitated (Pagani et al., 2009). Finally, in Aplysia, an analog of
massed training has been shown to preferentially support the sus-
tained translocation of PKC to the plasma membrane which antag-
onizes the activation of PKA necessary to support LTF and LTM
(Farah, Weatherill, Dunn, & Sossin, 2009). Intriguingly, Naqib
et al. (2012) have proposed that the rates of rapid protein synthesis
and degradation may determine both the failure of massed training
and the success of spaced training to induce LTM in Aplysia.
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5. Molecular windows in LTM formation

The studies reviewed thus far have principally focused on
understanding how mechanisms known to be important for the
induction of LTM are selectively recruited over repeated spaced
experiences. However, an important question remains: How do
temporally spaced experiences interact and build upon one an-
other to support LTM formation? We will now focus our discussion
on two recent studies [i.e., Philips, Ye, Kopec, and Carew (2013) and
Parsons and Davis (2012)] that have begun to address this
question.

The study of the integration of multiple repeated experiences in
support of LTM induction has an inherent problem: It is difficult to
determine the unique contribution of each individual experience to
the final memory. For instance, in a spaced training pattern of ten
trials, what is the unique contribution of trial 8 (compared e.g. to
trial 7 or trial 9) to LTM induction? Philips et al. (2007) recently ex-
plored this general question in Aplysia. Specifically, they examined
the individual contribution of distributed experiences to LTM
induction through the development of a novel training paradigm
which consisted of just two spaced training trials. Although four
regularly spaced trials (ITI=15 min) can support LTM induction
(repeated-trial training; Sutton et al., 2002), Philips et al. reported
that qualitatively similar LTM develops across just two trials
spaced by 45 min, a temporal interval that brackets the total dura-
tion of the training episode that occurs across the repeated-trial
training pattern (Philips, Sherff, Menges, & Carew, 2011; Philips
et al.,, 2007). Two-trial training with intervals of 15 min or 1h
failed to induce LTM, providing a temporal boundary (with a clear
onset and offset) for the successful LTM training “window”. Thus,
during two-trial training, the contribution of each trial to the final
LTM can be easily identified: an initial experience (Trial 1) sets in
motion a series of signaling events that must be inherited by a sec-
ond experience (Trial 2) within a narrow temporal window. Using
this paradigm, Philips et al. (2007) explored the molecular signal-
ing established by the initial training trial that might be important
for supporting the interaction with Trial 2 for LTM induction. They
found that MAPK recruitment by Trial 1 was a molecular correlate
occurring in the narrow temporal window within which Trial 2
could support the induction of LTM. MAPK was activated at
45 min following Trial 1, but was not observed at earlier (15 min)
or later (1 h) time points. This finding is consistent with two previ-
ous observations. Ajay and Bhalla (2004) found a correlation of the
peak activation of MAPK following individual training stimuli with
effective spacing intervals for maximal LTP induction, and Pagani
et al. (2009) observed a correlation between peak inter-trial activa-
tion of MAPK and effective LTM spaced training intervals in wild
type flies. In Aplysia, since a single training trial was not, in itself,
sufficient to support LTM induction, Philips et al. (2007) hypothe-
sized that the MAPK signaling recruited by Trial 1 was necessary to
establish the interactive window for trial 2 to support LTM induc-
tion. Indeed, this hypothesis was recently confirmed. Philips et al.
(2013) demonstrated that the MAPK recruited by Trial 1 is required
for LTM induction. The net effect of Trial 1 was to establish a
“molecular context” at 45 min which included the nuclear translo-
cation of MAPK and the recruitment of CREB signaling (activation
of the CREB kinase p90rsk and the immediate early gene, C/EBP).
Importantly, although in place at 45 min, this context was tran-
sient, terminating by 1 h. Thus, the opening and closing of the
MAPK-dependent molecular context captures the time course for
the opening and closing of the permissive interaction window for
two-trial LTM induction.

The recruitment of CREB signaling and C/EBP induction follow-
ing a single training trial (Philips et al., 2013) is unexpected, since
these events are typically considered to be final stages involved in

LTM formation. However, the recruitment of CREB-mediated tran-
scription (Silva et al., 1998) and immediate early genes (Guzowski,
2002) have already been suggested as possible mediators of the
successful integration of repeated experiences. For example, Silva
et al. (1998) suggested that a sufficient inter-trial spacing might
be determined by the timing for the recruitment of CREB and com-
pletion of an initial round of transcription, before subsequent
training (and CREB activation) could recruit additional rounds of
transcription to support LTM. Moreover, the ability of overexpres-
sed CREB to modify the intrinsic excitability of neurons has
prompted others to label it a “learning gene” (Benito & Barco,
2010). Intriguingly, CREB mutant mice lacking two of the three
CREB activator isoforms (o and §) demonstrate learning deficits
on a spatial memory version of the Morris water maze task when
trained across 5 spaced trials (ITI=1 min), but normal memory
when an alternate training strategy (only two training trials sepa-
rated by 1 h) was employed (Kogan et al., 1997). Thus, the absence
of two CREB isoforms, or possibly the elevated levels of the remain-
ing CREB isoforms, appeared to alter the effective training pattern
in these mice, but it did not eliminate the ability of these animals
to acquire LTM. Collectively, these findings suggest that CREB/C/
EBP signaling can be recruited much earlier during learning than
is commonly appreciated and support the idea that they may func-
tion in the integration of inter-trial signaling during LTM
formation.

Thus far we have discussed molecular windows in the range of
minutes to perhaps hours. However, much longer permissive win-
dows are possible. For example, in an intriguing recent study, Par-
sons and Davis (2012) reported that rats could be trained with two
spaced training trials (each trial consisting of a single pairing of
light and electrical shock that alone was not sufficient for the
induction of STM or LTM) over a surprisingly broad permissive
window, beginning at 1 h and extending for several days. They also
observed that several targets of PKA were transiently activated in
the amygdala after a single training trial, but were not persistently
activated across the broad two-trial interaction window. However,
when PKA activation in the amygdala was selectively disrupted
during trial 1, this manipulation was sufficient to disrupt LTM
induction following a second spaced trial at 24 h. Thus, Parsons
and Davis (2012) proposed that PKA-dependent signaling follow-
ing the initial training trial was necessary to “prime” the interac-
tion with the second training trial to support LTM.

Collectively, the novel strategy of focusing on inter-trial interac-
tions over just two training trials, Philips (2007, 2013) and Parsons
and Davis (2012) has provided important new insights into how
individual experiences can successfully interact over a broad range
of temporal intervals to support the induction of LTM. These stud-
ies have also implicated a molecular framework of PKA/MAPK/
CREB signaling as important determinants of the temporal win-
dows that are permissive for LTM formation. As will be discussed
below, these results may have direct translational implications
that could enable the understanding and perhaps correction of
learning deficits associated with aging and disease.

6. Effective versus optimal learning strategies

In reviewing the mechanistic insights gained from studies of the
spacing effect in model systems, a final fascinating study by Zhang
et al. (2012) warrants mention: These authors combined computer
simulations with cellular and behavioral studies to ask whether a
standard, regularly spaced training pattern of five sensitizing trials
in Aplysia was the optimal training pattern for LTM induction. The
investigators began with the assumption that the maximal
recruitment of CREB during learning would support maximal
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LTM induction, and that this would be downstream of coincident
and maximal PKA and MAPK activity in single neurons. Using the
kinetics for the recruitment of PKA and MAPK in neurons following
a single training trial, they found that regularly spaced training
intervals were not as effective as an expanded interval training
pattern (i.e., the first few trials closely spaced, with final trials
occurring at longer intervals, to maximize PKA/MAPK coincident
signaling and CREB activation). Indeed, this new optimal training
pattern produced better synaptic facilitation and LTM than the
standard protocol using equally spaced trials. Collectively, this
study and those that describe qualitatively similar LTP and LTM
induction from training patterns that use as few as two training tri-
als (Kramar et al., 2012; Parsons & Davis, 2012; Philips et al., 2007)
suggest that although they are effective, many current training pat-
terns employed in mechanistic studies of the spacing effect may
not be optimal. Thus, an important question relevant to future pro-
gress is whether similar or unique mechanisms support LTM
induction across effective versus optimal spaced training patterns.

7. Implications of spaced training in health and disease

In humans, the benefits of spaced training for memory forma-
tion in young healthy adults are well documented (for a recent
meta-analysis see Cepeda et al., 2006), and also appear to benefit
learning throughout the lifespan. Children, including infants as
young as 3 months old, and both young and old cognitively intact
adults, retain more information when it is presented in a spaced
training pattern than when it is presented in a massed pattern
(Galluccio & Rovee-Collier, 2006; Grassi, 1971; Jackson, Maruff, &
Snyder, 2013; Karpicke & Bauernschmidt, 2011; Rovee-collier,
Evancio, & Earley, 1995; Simone, Bell, & Cepeda, 2012). The spacing
effect is observed across a wide variety of learning tasks including
declarative (explicit) memory tasks (e.g., Simone et al., 2012), non-
declarative (implicit) memory tasks (e.g., Greene, 1990; Shea, Lai,
Black, & Park, 2000), and also the ability to generalize knowledge
(Kornell & Bjork, 2008; Kornell, 2010; Vlach & Sandhofer, 2012).
Spaced training is even a beneficial strategy in muscle strengthen-
ing (de Salles et al., 2009; Rahimi, Qaderi, Faraji, & Boroujerdi,
2010). Thus, the spacing effect transcends species, age and task.

Given the simplicity of implementing spaced training in pa-
tients’ daily routines (e.g., Camp, Foss, O’Hanlon, & Stevens,
1996) and the widely accepted benefits it provides, it is not sur-
prising that spaced training has become a therapeutic focus for a
number of human disorders and disabilities. A variation of the
spaced training procedures described thus far, spaced retrieval
(Landauer & Bjork, 1978), is popular in treating persons with mem-
ory disorders (Balota, Duchek, Sergent-Marshall, & Roediger, 2006;
Brush & Camp, 1998; Camp, Foss, O’'Hanlon, & Stevens, 1996; Ha-
slam, Hodder, & Yates, 2011; Small, 2012). Rather than exposing
the subject to spaced presentations of a target stimulus during
training, the subject studies the target stimulus, and then is asked
to retrieve the target from memory soon after the stimulus is pre-
sented. If the subject correctly states the target response, the time
to the next retrieval is increased and retrievals become increas-
ingly spaced over time. If the subject has an incorrect retrieval,
the time to the next retrieval is reduced to the most recent correct
retrieval interval. While having some support in the literature,
there is conflicting evidence as to whether expanding retrieval
intervals results in superior memory compared to fixed retrieval
intervals (Balota et al., 2006; Hopper et al., 2005).

Surprisingly, although spaced training is of clear benefit, a consis-
tent operational definition of the boundary conditions that consti-
tute effective spaced training is lacking in the literature.
Experimental inter-trial intervals range from seconds to days, and
even weeks (Cepeda et al., 2006; Raman et al., 2010). This discrep-

ancy between studies may make it difficult to attain the most ther-
apeutic benefit from spaced training, as different tasks and disorders
could benefit from different inter-trial intervals. Thus, although
spaced training has been shown to be beneficial using a range of
training intervals, more systematic studies are necessary to deter-
mine whether more effective inter-trial intervals can be identified.

Despite vastly different inter-trial intervals, experimental de-
signs, and spaced training paradigms (e.g., conventional spaced
training versus spaced retrieval), one trend is completely clear:
spacing is especially beneficial for young and old individuals with
neurological disorders. Spaced training has been successfully imple-
mented as a cognitive therapy in children with learning disabilities
(Gettinger, Bryant, & Fayne, 1982; Riches, Tomasello, & Conti-Rams-
den, 2005), cerebral palsy (Grassi, 1971), and autism (Dunlap & Koe-
gel, 1980), and in adults with dementia (Brush & Camp, 1998; Camp,
Foss, O’Hanlon, & Stevens, 1996; Haslam et al., 2011; Hopper, Drefs,
Bayles, Tomoeda, & Dinu, 2010), Alzheimer’s disease (Balota et al.,
2006; Small, 2012), anomia (Abrahams & Camp, 1993; Morrow &
Fridriksson, 2006), brain injury (Goverover, Arango-Lasprilla, Hil-
lary, Chiaravalloti, & DeLuca, 2009a; Haslam et al., 2011), multiple
sclerosis (Goverover, Hillary, Chiaravalloti, Arango-Lasprilla & Delu-
ca, 2009b), amnesia (Cermak, Verfaellie, Lanzoni, Mather, & Chase,
1996), and public speech anxiety (Tsao & Craske, 2000).

Two important trends emerge from spaced training research in
the context of therapy. First, spaced training can benefit poor-per-
forming subjects more than healthy subjects. In children with
Selective Language Impairment (SLI), spaced training benefited
their verb production over massed training (Riches et al., 2005),
while no significant benefit was observed in children without SLI.
Additionally, Shoephoerster (1962) reported that children who
were below average spellers, but not classified as learning disabled,
benefited from spaced spelling instruction over massed spelling
instruction. However, above average spellers did well no matter
what instruction paradigm they experienced.

Second, effective spaced training patterns may differ between
healthy subjects and age-matched individuals with neurological
disorders. Jackson et al. (2013) administered 3 weeks of massed
or spaced training on a visuo-spatial task to cognitively normal
young and old adults, and a recall test was administered 24 h
post-training. The cognitively normal (MMSE score of 28-30) older
adult subjects were enrolled in a longitudinal study which in-
cluded positron emission tomography brain imaging using Pitts-
burgh compound B (PiB), which binds to amyloid plaques in the
brain (Klunk et al., 2004). Subjects were separated according to
PiB status: PiB+ (those with amyloid build-up) and PiB— (those
with no amyloid build-up). Unsurprisingly, young adults and older,
PiB— adults showed better recall with spaced training than with
massed training. Older, PiB+ adults, however, did not benefit from
the spaced training even though they appeared cognitively similar
to PiB— adults. The authors concluded that the spacing effect can
be overshadowed by disease burden, in this case the accumulation
of amyloid. Intriguingly, the spacing effect has been successfully
utilized to treat patients with dementia and Alzheimer’s (see
above), who are likely to show similar amyloid pathology (Forsberg
et al.,, 2008; Villemagne et al., 2008). Additionally, the younger
adult subjects in this study exhibited a greater spacing effect than
older, PiB— adults. Thus, although spaced training is beneficial for
memory acquisition and retention in healthy individuals of all
ages, and in persons with neurological disorders, several important
questions remain unanswered: Do older individuals simply benefit
less than their younger counterparts, or are learning strategies af-
fected in normal aging such that the optimal intervals for young
adults are not the same for old adults? Also, can disease alter effec-
tive learning strategies? These important questions remain to be
answered to better understand and mitigate the learning dysfunc-
tion seen in aging and disease.
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8. Could time be the best medicine?

As mentioned in the molecular component of this review, stud-
ies of animal models have begun to utilize knowledge of the molec-
ular mechanisms of inter-trial interactions to predict the optimal
training paradigms for LTM (Zhang et al., 2012). Given the newly
emerging molecular framework of roles for the widely conserved
PKA/MAPK/CREB signaling pathways in defining effective training
windows over temporally distributed experiences, an important
next step will be to incorporate these findings into our knowledge
of the disrupted molecular signaling that occurs in aging and in
neurological disorders, and to generate testable hypotheses (using
the powerful animal model systems detailed in this review) focus-
ing on effective learning strategies that may ultimately be em-
ployed in human disorders.

As a step in that direction, several animal studies have already
provided evidence that disease states can change effective learning
strategies, without impairing the ability to form LTM. For example,
Deutsch and Rocklin (1972) hypothesized that anticholinesterase-
induced amnesia measured on an active avoidance task could be
rescued by increasing the intervals between training trials to allow
acetylcholine concentrations to decrease. Indeed, increasing the in-
ter-trial interval allowed the animals to exhibit normal memory.
Additionally, Pagani et al. (2009) recently demonstrated that a fly
model of the human genetic disorder, Noonan Syndrome (Tidyman
& Rauen, 2009), which is associated with mutations in SHP2 that
result in a dysregulation of Ras/MAPK signaling, exhibited pro-
found learning deficits when trained on an aversive olfactory dis-
crimination task at training intervals effective for wild type flies.
Importantly, after considering how the recruitment of inter-trial
MAPK signaling was affected by the disease state, the authors
hypothesized that training with longer inter-trial intervals could
restore the natural inter-trial behavior of MAPK activation ob-
served in wild type flies. This proved to be an effective strategy.
In the absence of any drug treatment to correct the genetic muta-
tion in SHP2, simply increasing the inter-trial interval was suffi-
cient to rescue the LTM deficit. The consideration of alternative
spaced training strategies has additionally benefitted LTM forma-
tion in mice with genetic mutations of CREB (Kogan et al., 1997)
and of the retinoic acid receptor (Nomoto et al., 2012). Finally, a
loss of function of the CREB transcriptional co-activator, CBP, as oc-
curs in many instances of Rubinstein-Taybi syndrome in humans
(Roelfsema & Peters, 2007), is associated with learning deficits.
Using a computational modeling approach, Liu et al. (2013) re-
cently reported the identification of a novel training pattern that
was sufficient to rescue the deficit in long-term synaptic facilita-
tion of cultured Aplysia neurons that was observed following an
siRNA-mediated knockdown of CBP levels. The authors suggest
that similar considerations might be used to identify effective
learning strategies in patients suffering from Rubinstein-Taybi
and related syndromes (Liu et al., 2013).

Although still highly speculative at this point, the studies above
strongly support the notion that there is potential therapeutic ben-
efit in considering the notion that alternative learning strategies
may be sufficient to correct, or at least mitigate, the overt learning
deficits in a broad spectrum of learning disorders in which knowl-
edge of the molecular signaling revealed in animal studies could be
extended into the human arena. In these cases time might just be
the best medicine.
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