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Although simple structure has proved to be a valuable principle for
rotation of axes in factor analysis, an oblique factor solution often tends to
confound the resulting interpretation. A model is presented here which
transforms the oblique factor solution so as to preserve simple structure and,
in addition, to provide orthogonal reference axes. Furthermore, this model
dmake§ explicit the hierarchical ordering of factors above the first-order

omain.

The purpose of this paper is to present a procedure for transforming an
oblique factor analysis solution containing a hierarchy of higher-order
factors into an orthogonal solution which not only preserves the desired
interpretation characteristics of the oblique solution, but also discloses the
hierarchical structuring of the variables.

Oblique simple structure was proposed by Thurstone as a factor model
useful for psychological research because of the simplicity with which inter-
pretation could be made from a set of linear components underlying a set of
scores. His argument is convincing when consideration is given to his “box
problem’ [9, pp. 140-146] for the factor loadings readily identify the dimen-
sions of the boxes. In many studies, correlations among the reference axes
make interpretation of simple structure difficult or questionable. In such
cases usual methods of transformation from oblique to orthogonal axes fail
to clarify the nature of the underlying parameters because many of the
vanishing factor loadings become non-vanishing, thereby destroying simple
structure. If one is willing to disavow the principle of parsimony of common
factors, one may employ the type of factor solution outlined in this paper.
This solution not only furnishes simple structure on orthogonal reference
axes, but also provides a more complete rationale of the structuring of psycho-
logical traits than that given by (i) a conventional oblique solution or, for
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that matter, (ii) a solution in which the number of common fuctors is equal
to the rank of the reduced correlation matrix.

It seems reasonable {o assume that psychological behavior may be
eonceived as functioning at different levels of complexity. That is, a complex
behavior activity might be thought of as an assembly of progressively less
complex levels of activity—each level may have semantie, psychological, or
practical meaning. For cxample, Vernon [11, pp. 22-24] reports that the
niental structure of a group of British Army and Navy recruits was examined
with a battery of cognitive tests. As determined from the sign pattern of
centroid factor loadings, one general factor was found to be present in all
tests. This factor was designated as g. With the elimination of g, the battery
conld be fractionated into two main groups of tests: academic and practical.
In turn, the academic factor could be broken into verbal, numerical, and
educational factors; the practical factor could be broken into mechanical,
spatial, and physical factors. This structuring of the tests into a hierarchy
of faetors has many recommendable features—it provides information about
the elassification of tests and the behaviors measured by them in varying
orders of concurrence and dependence. Had this particular centroid solution
been rotated to an oblique solution, the hierarchical ordering would have
been lost or rendered uncertain.

Structuring of tests into a hierarchieal pattern is not a new consideration.
Holzinger's bi-factor solution is a special case in which one second-order
factor overlays the first-order group factors. Burt {1, 2, 3] has strongly
advocated the hierarchical model for many years. His group factor method,
which vields this hierarchy, proceeds by successive grouping of variables
according to their sign pattern in a centroid solution. The procedure set
forth in this paper, however, is an elaboration of the procedure demonstrated
by Thompson [8, pp. 297-302] and Thurstone [9, pp. +11-439]. It differs
from Burt’s not in the product but in the process. The hierarchical solution
is shown to be a consequence of successively obtained higher-order factor
solutions. A necessary condition is the existence of simple structure at each
level. If oblique simple structure exists, it can be recast into a hierarchical
pattern similar in kind to that which Vernon inferred from the centroid
solution. It will be scen that the characteristies of simple structure are
retained not only at the level of the first-order factors but also at all levels.

Mathematical Rationale

The mathematical rationale for the model outlined in the paper is
derived from Tucker’s [10] generalization of the fundamental factor theorem
stated by Thurstone [9, p. 78]. This theovem states that a correlation matrix,
R, may be decomposed into correlated common factors and unique factors.

(n R = PgP’' + U?,
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where P represents the coordinates of the vector representation of the vari-
ables on oblique Cartesian reference axes or factors, ¢ represents the inter-
correlations among the oblique reference axes, and U represents the unique
factor coefficients. It is readily seen that if ¢ is the identity matrix, the
fundamental factor theorem of Thurstone results.

A second theorem used in this development also stems from Tucker's
article. He shows that if the intercorrelations among the factors, ¢, can be
decomposed as

® ¢ = HH',

then the oblique factors, P, may be transformed into orthogonal factors, F,
according to the operation

(3) PH = F.

That is, the coordinates of the variables represented as vectors may he
transformed from oblique to orthogonal reference axes. Fach row of H
represents the direction cosines of the oblique axes with respect to the ortho-
gonal axes developed by the decomposition.

Guttman [4] demonstrates that if a matrix of intercorrclations, ¢, is
factored as in (2) no matter how H is built up, the reference axes are ortho-
gonal. The factoring or decomposition may involve any of a variety of
procedures, such as the diagonal or square root method of factoring, the
centroid procedure, or the method of principal axes.

The development of the hierarchical model utilizes these propositions.
In the following discussion, P, will refer to the primary factor pattern of
the 7th order variables or factors; that is, the coordinates of the vector repre-
sentation of the variables on the ¢th order oblique reference axes. &, will be
used to designate-the intercorrelations among the ¢th primary factor reference
axes. U; will represent the unique 7th order variables or factors.

At the outset, the initial correlation matrix, K, is decomposed according
to (1) as follows:

€] R = P.RP{ + U:.
In like manner, R, is decomposed

5) R, = P,R,P, + U; .
In turn, R, is decomposed

(6) R, = P,RP, + U; .

Each higher-level matrix of intercorrelations among primary factors is
decomposed in this fashion until B, becomes the identity matrix, which
implies that the ith order primary factors are orthogonal. That is,

(7) Ri~1szP$+ U?-
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In many cases, R, becomes a unit scalar and P, , therefore, is merely a column
matrix. Elementary matrix manipulation permits (7) to be rewritten as a
product of a supermatrix and its transpose:

8) R,y =[P, :U}P;:UJ.
Designating the supermatrix, [P; : U], by B, according to (3), the ({ — 1)th
order primary factors, P,_, , can be made orthogonal by the operation
P._\B;.

However

(9) R<—2 = P-‘_xR;—zp"‘-l + U?—1 .

Therefore, it follows that R,_, may be rewritten as a product of a new super-
matrix and its transpose:

(10) R, = [Pi~1Bi : Ui—l]'[Pi—lBi . Ui—l]’-

This new supermatrix may be designated as B,., . By virtue of (2) and
Guttman’s demonstration [4], orthogonal reference axes are obtained. Fur-
thermore, B;_, serves to rotate the primary pattern, P,_, , to this orthogonal
veference framework. Continuing this process to the lowest-order level, the
initial primary or first-order factors, P, , are orthogonalized by the operation
P,B, . Designate P,B. as B instead of B, since one is usually not concerned
with explicitly appending the diagonal matrix of unique factors to the common
factor solution. B, then, is the hierarchical solution. Since

(1D R (with communalities) = BB/,

B represents coordinates of the test variables on orthogonal axes.

In the development of a hierarchical solution, careful attention should
be paid to the distinction between simple structure and primary pattern.
This distinction has been clearly drawn and illustrated by Harris and Knoell
(5]. The hierarchical solution is contingent upon the development of a primary
pattern at each level. This primary pattern, however, may be obtained from
the simple structure, which is computed either graphically or analytically.
Once simple structure is identified, it may easily be converted to primary
pattern [5] by the operation

12) P. = V{RMY,

where P, is primary pattern, V, is simple structure, and (R} is the matrix
of the reciprocals of the direction cosines between each primary axis and 1its
own simple structure reference axis. (R7Y} is obtained by taking the square
yoots of the diagonal elements only of R;*.

Procedure

To demonstrate the procedure for rotating an oblique simple structure
into a hierarchical factor solution, a correlation model was constructed from
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TABLE 1

Correlation Matrix, R*

1 2 3 4 5 ) 7 8

g 10 12

6400 7200 3136 2688 1290 0369
8100 3528 302% 52 05
4900 4200 0988 0282

3600 0645 0847 022

6400 1344 0384

0672 0192
4900 1400
0400

ﬁﬁgomemv«»www

2903
3266

1613 0753
0847
0576
OLSh
0282
OLA2.
0370
0106
1701,
0945
4200
4900

1235
1058
0605
0302
o79%
0227
4500
2500

1905
1089
0544,

8100

*Cmunalities appear in the principal diagonal. Decimal points have been

ozitted,

TABLE 2
Primary Pattern, P1

TABLE 3

Intercorrelations of Primary PFactors, Rl

57

I IT 111 IV v_ VI I I I11 v v Vi
1 .8 I 1.0000 «5600 1536 #2304, 4032 #1344
2 9 11 «5600  1,0000 o1344 »2016 »3528 1176
3 <7 111 «1536 1344 11,0000 « 2400 #1512 0504,
A 6 v +2304 <2016 #2400  1.,0000 2268 #0756
5 8 v <4032 »3528 1512 2268 1.0000 «2700
é ol VI 1304 #1176 +0504 L0756 #2700 1.0000
7 7 —
8 2
9 2
10 5
11 5
12 «7
TABLE 4 TABLE 5
Second-Order Primary Factors, P2 Correlations Among Second-Order Primary Factors, R
m2
I I IIX I II 11X
1 .8 I 1,0000 4800 «5600
2 7 II 4800 1,0000 4200
3 oh puss 5600 4200 11,0000
4 b
5 .9
6

*3
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a postulated simple structure factor matrix. It should be emphasized, how-
ever, that any set of empirical variables which can be rotated to simple
structure can also be put in this more interpretable and meaningful hierarchical
form. That is, if simple structure exists by any definition for a set of variables,
the procedure is applicable. The given correlation matrix is presented in
Table 1. An oblique solution was developed by the multiple-group method [6].
This oblique solution consists of a primary pattern, P, , and intercorrelations
among the primary factors, B, . These two matrices are presented in Tables
2 and 3. An oblique solution could have been produced by rotation from a
centroid solution or by some analytic method instead of the multiple-group
procedure. However, the method of arriving at the oblique solution is of
little consequence for our purposes, and the grouping procedure was thought
to be the most expeditious here. If oblique simple structure, V, , had been
produced, P, could be obtained quite readily by the operation indicated in
(12). Regardless of methodology, the final rotated oblique solution should
be transformed into a primary pattern, P, , as defined by Holzinger and
Harman {7, chap. XI]J.

The intercorrelations of the primary factors, B, , (with communalities
determined and placed in the diagonal elements) are then factored by any
method. Usually it is most expeditious to carry out a common-factor analysis
at each stage ta separate the common-factor space from the unique-factor
space. Rotation of these second-order factors is then performed to obtain
the primary pattern of the second-order factors, P, , (Table 4) and the
intercorrelations of the second-order primary factors, B, , (Table 5). A check
may be made at this point since B, (with communalities) = P,R,P; . Again
this 2, may be developed by the construction of an oblique simple structure,
V, , which is then transformed into P, by the operation indicated in (12).

Since the second-order factors, P, , are correlated, it is obvious that a
third-order factor exists. Consequently, R, is factored. Factoring shows that
there is one third-order factor and three unique factors, B; (see Table 6).
The progressive factoring of higher orders is now complete. This information
is used for developing the preferred hierarchical factor solution. To do this,
the operation P,B, is performed (Table 7) and the matrix of unique factors
of R, , U, , is appended as shown in Table 8 That is, B, = [P,B;: U,]. It
should be noted that B,B; = E, (with unities in the diagonal of R,). This
matrix, B, , is used as the transformation matrix for rotating the first-order
oblique solution, P, , into the final hierarchical solution, B (Table 9), according
to the operation

(13) B =PB,.

This procedure may be extended to higher orders if correlations are found
among fourth-order or higher-order factors.
It will be observed that this hierarchical solution contains 10 common
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TABLE 6 TABLE 7
Third-Order Common and Unique Factors, B3 Orthogonalized Second-Order Common Factors, st_’z
13 u 11 111 v
3 3 1
L uw m  w } o
3 #2500 3200
RS 8000 Lo 3600 1800
‘ 000 . . 5 #6300 6U27
30 : <7141 6 200 o2L2
TABLE 8

Orthogonalized Second-Order Common and Unique Factors, B,

P_B
23 UZ

I 11 111 v v VI VIiI VIII X X

#6400 4800
#5600 4200
+3200

#3600 <4800
6300 6427
«2100 o242

24359

[V E-JWFRE o
.

" gt ve e ee se
oo
]
o
W

«9539

TABLE 9
JHierarchical Factor Solution, B

1 1 m wo v v wvit vih om0 ox

L5120 L3840 4800
5760 4320 5400

23920 .2940 4999

3360 2520 4285

<1920 «2560 <7332

0960 1280 <3666

2520 3360 +5600

.m6o 'lm

«5670 «5784 #3923

#3150 3214 <2180

1260 1285 5723
J1L70 21499 6677

-
S
8

factors, where all tests define factor I. Factors II, III, and IV are the next
most complex factors. Each of these in turn can be broken down into the
finer composites illustrated by factors V through X. These last six factors
identify the six factors of the original oblique solution, P, . It will be observed
that this solution reproduces the communalities and the off-diagonal cor-
relations of the original correlation matrix exactly. Iurthermore, it furnishes
the same factorial interpretation as is found in the oblique soluticn, P, ,
which is the usual type of solution obtained by researchers. Ease of psycho-
logical interpretation has not been sacrificed by the use of the hierarchical
solution, and what was concealed in the intercorrelations of the oblique
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axes now takes on added meaning in terms of the progressive groupings of
the variables at higher levels.

It should be emphasized that even though the oblique solution, P, ,
contains variables of complexity one only, this is not a restriction. Variables
of any eomplexity may be used.

Discussion

A question arises about the stability of the hierarchical solution upon
maodification of the battery of tests. Burt concludes [3, p. 70] that the hier-
archical solution—designated by him as the group-factor solution—remains
“stable, if not absolutely invariant, even when the battery of tests or traits
is modified, c.g., when a comparatively small battery is enlarged by the
addition of more tests or more groups of tests, or when a large battery is
curtailed by the omission of tests.”” The introduection of a new group of tests
which are unrelated to any group already in the battery would, of course,
add a new group factor.

In all probability, selection, univariate and multivariate, and sampling
variation would affect this model in the same manner as the simple structure
model. These points concerning battery modification, selection, and sampling
stability need further research for clarification.

Practical applications of this model will be greatly aided as more objective
and analytical eriteria and techniques for transformation to simple structure
are achicved. Nevertheless, even with present methods of attaining simple
structure, the hierarchical solution is useful.

Summary of Steps as Applied to Hlustration

1. B, with communalitics, was factored into P, and R, (Tables 1, 2,
and 3), that is

R (with communalities) = P,R,P] .

2. R, , with communalities, was factored into P, and R, (Tables 4 and 3),
that is

i

R, {(with communalities) = P,R,P; ,

R, (with unities) = P,R,P} + U;,

!

where {7, represents the diagonal matrix of unique factors of B, .
3. R,, with communalities, was factored into P, . (Table 6). One common
factor was found, i.e. I75 was a unit scalar.
R, (with communalities) = PP},
R, (with unities) = P,P} + U; .

4. When only one common factor remains, as in this illustration, factoring
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of the higher-order matrices is completed. Otherwise, the procedure would be
continued until R, becomes an identity matrix or a single highest-order
factor is found. At this stage, these intermediate matrices are used for con-

structing a rotation matrix for transforming the primary pattern, 7, , into
a hierarchical solution, B.

5. Form matrix B; by appending the unique-factor loadings of R, to
P, , that is

B, = [P, : U,]. (Table 6).
It follows that
R, (with communalities) = P,P;
R, (with unities) = B,Bf .

6. Carry out the matrix operation P,B; . (Table 7).

7. Form matrix B, by appending the unique-factor loadings of B, to
P,B; , that is

B, = [P,B, : U,]. (Table 8).
It follows that

i

R, (with communalities) = P,B,B}P; ,

R, (with unities) = B,B; .
8. The hierarchical solution, B, then is constructed by the operation

B = P,B, . (Table 9).

REFERENCES
[1] Burt, C. Alternative methods of factor analysis. Brit. J. Psychol. (Statist. Sec.},
1949, 2, 98-121.
[2] Burt, C. Subdivided factors. Brit. J. Psychol. (Stalist. Sec.), 1949, 2, 41-63.

[3} Burt, C. Group factor analysis. Brit. J. Psychol. (Siatisi. Sec.), 1950, 3, 40-75.

[4] Guttman, L. General theory and methods for matric factoring. Psychometrika, 1944,
9, 1-16.

[5] Harris, C. W. and Knoell, D. M. The oblique solution in factor analysis. J. educ.
Psychol., 1048, 385-403.

[6] Holzinger, K. J. A simple method of factor analysis. Psychomeirika, 1944, 9, 257-261.

{7} Holzinger, K. J. and Harman, H. H. Factor analysis. Chicago: Univ. Chicago Press,
1951.

{8] Thomson, G. H. The factorial analysis of human ability. New York: Houghton
Mifflin, 1948.

[9] Thurstone, L. L. Multiple-factor analysis. Chicago: Univ. Chicago Press, 1947.

[10] Tucker, L. R. The role of correlated factors in factor analysis. Psychometrika, 1940,
5, 141-152.

[11] Vernon, P. The structure of human abilities, New York: Wiley, 1950.

Manuscript received 1/26/56
Revised manuscript received 6/9/56



