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Although simple structure has 1)roved to be a valuable principle for 
rotation of axes in factor analysis, an oblique factor solution often tends to 
confound the resulting interpretation. A model is presented here which 
transforms the oblique factor solution so as to preserve simple structure and, 
in addition, to provide orthogonal reference axes. Furthermore, this model 
makes explicit the hierarchical ordering of factors above the first-order 
domain. 

The purpose of this paper is to present a procedure for transforming an 
oblique factor analysis solution containing a hierarchy of higher-order 
factors into an orthogonal solution which not only preserves the desired 
interpretation characteristics of the oblique solution, but also discloses the 
hierarchical structuring of the variables. 

Oblique simple structure was proposed by Thurstone as a factor model 
useful for psychological research because of the simplicity with which inter- 
pretation could be made from a set of linear components underlying a set of 
scores. His argument is convincing when consideration is given to his "box 
problem" [9, pp. 140-146] for the factor loadings readily identify the dimen- 
sions of the boxes. In many studies, correlations among the reference axes 
make interpretation of simple structure difficult or questionable. In  such 
cases usual methods of transformation from oblique to orthogonal axes fail 
to clarify the nature of the underlying parameters because many of the 
vanishing factor loadings become non-vanishing, thereby destroying simple 
structure. If  one is willing to disavow the principle of parsimony of common 
factors, one may employ the type of factor solution outlined in this paper. 
This solution not only furnishes simple structure on orthogonal reference 
axes, but also provides a more complete rationale of the structuring of psycho- 
logical traits than that  given by (i) a conventional oblique solution or, for 
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llutt matt, 'r, (ii) a solution in which the number of common f:,'tor~ i~ equal 
t~ the rank of the reduced correlation matrix. 

It  seems reasonable to assume that  psychological beh~\'ior may be 
com'eived as functioning at different levels of complexity. That  is, a complex 
beh~vior activity might be thought of as an assembly of progressively less 
complex levels of act ivi ty--each level may have semantic, psychological, or 
practical meaning. For example, Vernon [11, pp. 22-24] reports that the 
mental structure of a group of British Army and Navy  recruits was examined 
with a battery of cognitive tests. As determined from the sign pattern of 
cemroid factor loadings, one general factor was found to be present in all 
wsts. This factor was designated as g. With the elimination of g, the bat tery 
(.ould be fractionated into two nmin groups of tests: academic and practical. 
In turn, the academic factor could be broken into verbal, numerical, and 
educational factors; the practical factor could be broken into lneehanical, 
spatial, and physical factors. This structuring of the tests into a hierarchy 
of f.wtors has many recommendable features-- i t  provides information about  
the classification of tests and the behaviors measured by them in varying 
-rders of concurrence and dependence. Had this particular eentroid solution 
been r~tated to an oblique solution, the hierarchical ordering would have 
been tost or rendered uncertain. 

glructuring of tests into a hierarchical pattern is not a new consideration. 
l lolzinger's hi-factor solution is a special ease in which one second-order 
t'actor overlays the first-order group factors. Burt  [1, 2, 3] has strongly 
advocaled the hierarchical model for many years. His group factor method, 
which yields this hierarchy, proceeds by successive grouping of variables 
according to their sign pattern in a eentroid solution. The procedure set 
forth ill this paper, however, is an elaboration of the procedure demonstrated 
by Thompson [8, pp. 297-302] and Thurstone [9, pp. JA1-439]. I t  differs 
from Burt 's  not in the product but  in the process. The hierarehieal solution 
is shown to be a consequence of successively obtained higher-order factor 
solutions. A necessary condition is the existence of simple strueture at each 
level. If oblique simple structure exists, it can be recast into a hierarchical 
pattern similar in kind to that which Vernon in%rred from the eentroid 
solution. I t  will be seen that  the characteristics of simple structure are 
retained not only at  the level of the first-order factors but also at all levels. 

Mal/wmalical Ralionale 

The mathematical rationale for the model outlined ill the paper is 
derived from Tucker's [10] generalization of the fundamental factor theorem 
stated by Thurstone [9, p. 78]. This theorem states that  a correlation matrix, 
R, may be decomposed into correlated common factors and unique factors. 

(1) R = PoP' + U 2, 
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where P represents the coordinates of the vector representation of the vari- 
ames on oblique Cartesian reference axes or factors, ~b represents the inter- 
correlations anmng tile oblique reference axes, and U represents the tnli(lue 
factor coefficients. I t  is readily seen that  if ~ is the identity matrix, the 
fundamental factor theorem of Thurstone results. 

A second theorem used in this development also stems fi'om Tucker's 
article. He shows that  if tile intercorreIations among the factors, 4~, can be 
decomposed as 

(2) ~ = H H ' ,  

then the oblique factors, P, may be transformed into orthogonal faetor.~, F, 
according to the operation 

(3) P H  = F. 

That  is, the coordinates of the variables represented as ve,~tors may be 
transformed from oblique to orthogonal reference axes. Each row of H 
represents the direction cosines of the oblique axes with respect to the ortho- 
gonat axes developed by the decomposition. 

Gut tman [4] demonstrates that  if a matrix of intercorrelations, ¢, is 
factored as in (2) no mat ter  how H is built up, the reference axes are ortho- 
gonal. The factoring or decomposition may involve any of a variety of 
procedures, such as the diagonal or square root method of factoring, the 
centroid procedure, or the method of principal axes. 

The development of the hierarchical model utilizes these propositions. 
In the following discussion, P~ will refer to the primary factor pattern of 
the ith order variables or factors; that  is, the coordinates of the vector repre- 
sentation of the variables on the ith order oblique reference axes. R~ will be 
used to designate.the intercorrelations among the ith primary factor reference 
axes. U~ will represent the unique ith order variables or factors. 

At the outset, the initial correlation matrix, R, is decomposed according 
to (1) as follows: 

(4) R = P~R~P' + U~. 

In like manner, R, is decomposed 

(5) R~ = P2R.~P~ + U~. 

In turn, R~ is decomposed 

(6) R~ = P~R~P~ + g~. 

Each higher-level matrix of intereorrelations among primary factors is 
decomposed in this fashion until R~ becomes the identity matrix, which 
implies that  the ith order primary factors are orthogonal. That  is, 

(7) R~_, = P~P' + U~. 
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In many cases, R, becomes a unit scalar and P, , therefore, is merely a column 
matrix. Elementary matrix manipulation permits (7) to be rewritten as a 
product of a supermatrix and its transpose: 

(8) R,_, = [P, : U , I ' [ P ,  :U,] ' .  

Designating the supermatrix, [P,- : U,], by B i ,  according to (3), the (i - 1)th 
order primary factors, P~_~ , earl be made orthogonal by the operation 
P~_,Bi . 

However 

(9) R~-2 = P~_~R,_zP~_I + U~_~ . 

Therefore, it follows that  R~-2 may be rewritten as a product of a new super- 
matrix and its transpose: 

(10) R,-2 = [P,_,B, :U,_,] .[P,-1B,  : U,- ,I ' .  

This new supermatrix may be designated as B~_~ . By virtue of (2) and 
Guttman's  demonstration [4], orthogonal reference axes are obtained. Fur- 
thermore, B~_, serves to rotate the primary pattern, P~-2, to this orthogonal 
reference framework. Continuing this process to the lowest-order level, the 
initial primary or first-order factors, P,  , are orthogonalized by the operation 
P~B~ . Designate PIB~_ as B instead of B1 since one is usually not concerned 
with explicitly appending the diagonal matrix of unique factors to the common 
factor solution. B, then, is the hierarchical solution. Since 

(11) R (with eommunalities) = BB',  

B represents coordinates of the test variables on orthogonal axes. 
In the development, of a hierarchical solution, careful attention should 

be paid to the distinction between simple structure and primary pattern. 
This distinction has been eh;arly drawn and illustrated by Harris and Knoell 
[5]. The hierarchical solution is contingent upon the development of a primary 
pattern at  each level. This primary pattern, however, may be obtained from 
the simple structure, which is computed either graphieMly or analytically. 
Once simple structure is identified, it may easily be converted to primary 
pattern [5] by the operation 

(12) P,  = V,(R~.')~, 

where P~ is primary pattern, V~ is simple structure, and (RT~)~ is the matrix 
of the reciprocals of the direction cosines between each primary axis and its 
own simple structure reference axis. (R,--~)~ is obtained by taking the square 
roots of the diagonal elements only of R7 ~. 

Procedure 

To demonstrate the procedure for rotating an oblique simple structure 
into a hierarchical factor solution, a correlation model was constructed from 
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TABLE 1 

1 2 3 ~ 5 6 7 8 9 I0 II 12 
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I 6&O0 7200 3136 2688 0983 Ohgl 1290 O369 2903 1613 O6&5 0753 
2 
3 
& 
5 
6 
7 
8 
9 

10 
11 

8100 3528 302£ 1106 0553 i~52 O~15 3266 181& 0726 08&7 
&900 A200 0753 0377 0988 0282 2222 1235 O&9& 0576 

3600 06&5 0323 08h7 0242 1905 1058 Oi2A oAgh 
6~00 3200 13&& 038~ 1089 O605 02A2 0282 

1600 0672 0192 05&/~ 0302 0121 014Q, 
&900 1400 1429 O79& 0318 0370 

O&OO 014.08 0227 0091 0106 
8100 h500 1458 1701 

25OO 0810 o9h5 
3600 K200 

&gOO 

*C~ties appear in the principal d i a g o n a l .  Dec~1 points have been  
omitted. 

TABLE2 TABLE3 

Fri~aryPatte~n, PI Intercorrelations o f  P~imaryFactors, Rl, 
I II III IV V VI I II III IV V VI 

I .8 
2 .9 
3 
h 
5 
6 
7 
8 
9 

10 
11 
12 

.7 

.6 
.8 

.7 

.2 
-9 
.5 

.6 

.7 

I 1.0000 .5600 .1536 ,230h .$032 .13LA 
lI .5600 1.0000 • 13444 .2016 .3528 .1176 

III .1536 .13~ 1.0000 .2ADO .1512 .050~ 
IV .230& .2016 .2Aoo 1.0000 .2268 .0756 
V ,&032 .3528 .1512 .2268 1.0000 .2700 

Vl .13&/~ .I176 .O50& .O756 .2700 1.0000 
.......... 

TABLE 

Second,Order FrlmaryFactors, P? 

I II III 

i .8 
2 .7 
3 -~ 
& .6 
5 -9 
6 ,3 

TABLE 5 

Correlations Among Second-Order Primary Factors, R 

I II III 

I I,OOOO .~800 .5600 
II ,&800 I .OO00 .K2OO 

Ill °56O0 .i~OO 1.0000 
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a postulated simple structure factor matrix. I t  should be emphasized, how- 
ever, that  any set of empirical variables which can be rotated to simple 
structure can also be put in this more interpretable and meaningful hierarchical 
form. That  is, if simple structure exists by any definition for a set of variables, 
the procedure is applicable. The given correlation matrix is presented in 
Table 1. An oblique solution was developed by the multiple-group method [6]. 
This oblique solution consists of a primary pattern, P,  , and intereorrelations 
among the primary factors, R, . These two matrices are presented in Tables 
2 and 3. An oblique solution could have been produced by rotation from a 
eentroid solution or by some analytic method instead of the nmltiple-group 
proc.edure. However, the method of arriving at. the oblique solution is of 
little consequence for our purposes, and the grouping procedure was thought 
to be the most expeditious here. If  oblique simple structure, V, , had been 
produced, P, could be obtained quite readily by the operation indicated in 
(12). Regardless of methodology, the final rotated oblique solution should 
be transformed into a primary pattern, P, , as defined by Holzinger and 
t larman [7, chap. XI]. 

The intercorrelations of the primary factors, R~ , (with eommunalities 
determined and placed in the diagonal elements) are then factored by any 
method. Usually it is most expeditious to carry out a common-factor analysis 
at each stage to separate the common-factor space from the unique-factor 
space. Rotation of these second-order factors is then performed to obtain 
the primal3~ pattern of the second-order factors, P~ , (Table 4) and the 
intercorrelations of the second-order primary factors, R2 , (Table 5). A cheek 
may be made at this point since R~ (with communalities) = P~R~P~ . Again 
this I'~ may be developed by the construction of an oblique simple structure, 
V2 , which is then transformed into P~ by the operation indicated in (12). 

Since the second-order factors, P~ , are correlated, it is obvious that  a 
third-order factor exists. Consequently, R2 is factored. Factoring shows that  
there is one third-order factor and three unique factors, B~ (see Table 6). 
The progressive fact.oring of higher orders is now complete. This information 
is used for developing the preferred hierarchical factor solution. To do this, 
the operation P.~B.~ is performed (Table 7) and the matrix of unique factors 
of R, , I r  , is appended as shown in Table 8. Tha t  is, B~ = [P2B.~: U~]. I t  
should be noted that  B2BJ = R,  (with unities in the diagonal of R,). This 
matrix, B~ , is used as the transformation matrix for rotating the first-order 
oblique solution, P~, into the final hierarchical solution, B (Table 9), according 
to the operation 

(13) B = P , B ~ .  

This procedure may be extended to higher orders if correlations are found 
among fourth-order or higher-order factors. 

I t  will be observed that  this hierarchical solution contains 10 common 
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TABLE 6 TABLE 7 

Third-Order ~ n  and Unique Factors, B~, O~hogor~lized Second-Order C¢~¢aon Factors, P2~ 

P u I II Ill IV 
--2- 

i .6&O0 .hSO0 
I II III IV 2 .5600 .h200 

.~ooo : .6oCo 3 . 2 t ~  .32c0 

.5ooo : .8000 h .3600 .t~oo 
9 .6300 .6/~7 

.7000 : .Tihl 6 .ZIO0 .21h2 

TABLE 8 

Orthogonalize4 Second-Order Common and Unique Factors, 

P2B3 U 2 

I II Ill IV Y VI VII VIII IX 

I .ShOo .~800 : .6ooo 
2 ,5500 ,h200 
3 ,2boo .32o0 : 
h .36C0 .~800 : 
5 °6300 .6~27 : 
6 .ZIO0 .21h2 : 

.7141 
• 9165 

.8O00 
.~359 

.9539 

TAN~9 

Hierarchical Fat%or Solution, B 
I?" ! Z I Z I  IIIIIII .... 

I II llI IV ¥ VI VII 

I .5120 
2 .5760 
3 .3920 
h .3360 
5 .1920 
6 .o~ 
7 ,252O 
8 .0720 
9 .5670 

i o  .315o 
11 .126o 
12 . I£70 ,, 

.3840 .hSoo 
• ~32o .SHOO 
.29h0 .~999 
.2520 .h285 

.250a .7332 

.Z280 .3666 
• 3360 .560o 
.o96o .1600 

• 576& .3923 
.321~ .2180 
.12~5 .5723 
. 1 ~  .66W 

factors, where all tests define factor I. Factors II, I l I ,  and IV are the next 
most complex factors. Each of these in turn can be broken down into the 
finer composites illustrated by factors V through X. These last six factors 
identify the six factors of the original oblique solution, P, . I t  will be observed 
that  this solution reproduces the communalities and the off-diagonal cor- 
relations of the original correlation matrix exactly. Furthermore, it furnishes 
the same factorial interpretation as is found in the oblique soluticn, P~ , 
which is the usual type of solution obtained by researchers. Ease of psycho- 
logical interpretation has not been sacrificed by the use of the hierarchical 
solution, and what was co.cealed in the intercorrelations of the oblique 
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axes lmw takes on added meaning in terms of the progressive groupings of 
the wu'iables at higher levels. 

It should be emphasized that  even though the oblique solution, P1 , 
contaihs variables of ('omplexity one only, this is not a restriction. Variables 
of any complexity may be used. 

Di.scussion 

A question arises about the stability of the hierarchical solution upon 
modification of the bat tery of tests. Bur t  concludes [3, p. 70] that  the hie> 
ardfi(.al s , lut ion--designated by him as the group-faetor solution--remains 
"stable, if not absolutely invariant, even when the bat tery of tests or traits 
is modified, e.g., when a comparatively small ba t tery  is enlarged by the 
addition of more tests or more groups of tests, or when a large bat tery  is 
curtailed by the omission of tests." The introduction of a new group of tests 
which are urn'elated to any group already in the bat tery  would, of course, 
add a new group factor. 

In all probability, selection, univariate and multivariate, and sampling 
variation would affect this model in the same manner as the simple structure 
model. These points concerning bat tery modification, selection, and sampling 
stability need further research for clarification. 

Practical applications of this model will be greatly aided as more objective 
and analytical criteria and techniques for transformation to simple structure 
arc achieved. Nevertheless, even with present methods of attaining simple 
stru('lure, lhc hierar('hical solution is useful. 

ST~mmarg of Sleps as Applied to Ilh~slralion 

1. R, wilh ('onmnmalities, was factored into P, and R, (Tables 1, 2, 
and 3), that is 

R (with conmmnalities) = P~R,P[ . 

2. R, , with eommunalities, was factored into P2 and R~ (Tables 4 and 5), 
thttt is 

h'~ (with conmmnalities) = P..,R.2P; , 

R~ (with unities) = I'2R,~P" 47 U~, 

where l'2 represents the diagonal matrix of unique factors of RL . 
3. Ra, with commtmalities, was factored into Pa - (Table 6). One common 

factor was found, i.e.R.~ was a unit scalar. 

h'._, (with eommunalities) = 1)aP~ , 

R., (with unities) = P I "  + U~ _ 3 3 * 

4. When only one common factor remains, as in this illustration, factoring 
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of the higher-order matrices is completed. Otherwise, the procedure would be 
continued until  R~ becomes an ident i ty  matr ix  or a single highest-order 
factor  is found. At  this stage, these intermediate  matr ices are used for con- 
s t ruct ing a rotat ion matr ix  for t ransforming the  p r imary  pat tern,  P,  , into 
a hierarehieM solution, B. 

5. F o r m  matr ix Ba by appending  the unique-fimtor loadings (ff R, to 
P~ , tha t  is 

B:~ = [P3 : U3]. (Table 6). 

I t  follows tha t  
R2 (with eommunalit ies)  = 1)~P; , 

R2 (with unities) = B~B; . 

6. Carry  ou t  the matr ix  operat ion P2B3 • (Table 7). 
7. F o r m  matrix B2 by appending the unique-factor  loadings of R~ to 

P.~Ba , t h a t  is 
B)_ = [P~B:~ : U~]. (Table 8). 

I t  follows tha t  
R1 (with communali t ies)  = P2B~B:~P~ , 

R, (with unities) = B2B~ .  

8. The  hierarchical solution, B, then is constructed by the operation 

B -- PIB~ . (Table 9). 
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