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Abstract

■ When predicting where a target or reward will be, subjects
tend to choose each location commensurate with the true under-
lying probability (i.e., to probability match). The strategy of
probability matching includes sampling high and low probabil-
ity locations on some proportion of trials. In contrast, models
of probabilistic spatial attention hypothesize that on any given
trial attention will either be weighted toward the high probabil-
ity location or be distributed equally across all locations. Thus,
the strategies of probabilistic sampling by choice decisions and
spatial attention appear to differ with regard to low-probability
events. This distinction is somewhat surprising because similar
brain mechanisms (e.g., pFC-mediated cognitive control) are
thought to be important in both functions. Thus, the goal of
the current study was to examine the relationship between

choice decisions and attentional selection within single trials to
test for any strategic differences, then to determine whether that
relationship is malleable to manipulations of catecholamine-
modulated cognitive control with the drug modafinil. Our results
demonstrate that spatial attention and choice decisions followed
different strategies of probabilistic information selection on pla-
cebo, but that modafinil brought the pattern of spatial attention
into alignment with that of predictive choices. Modafinil also
enhanced learning of the probability distribution, evidenced by
earlier learning of the probability distribution. Together, these
results suggest that enhancing cognitive control mechanisms
(e.g., through prefrontal cortical function) leads spatial atten-
tion to follow choice decisions in selecting information according
to rule-based expectations. ■

INTRODUCTION

Probabilistic information is ubiquitous in our natural envi-
ronments and provides an important cue for selection of
both sensory inputs and behavioral outputs. For example,
mechanisms of spatial attention are known to bias sensory
selection toward locations that are more likely to contain
task-relevant information. These probabilities can be
implicitly present or symbolically cued, but the outcome
is similar: Targets in the more likely location are detected
or recognized faster and more accurately (e.g., Brascamp,
Blake, & Kristjánsson, 2011; Druker & Anderson, 2010;
Fecteau, Korjoukov, & Roelfsema, 2009; Geng&Behrmann,
2002, 2005, 2006; Behrmann & Tipper, 1999; Chun &
Jiang, 1998; Posner, Snyder, & Davidson, 1980; Biederman,
Glass, & Stacy, 1973). These probabilistic cues are used to
selectively facilitate information processing in regions of
the visual field that are likely to contain useful information
because doing so helps overcome natural limitations in
sensory processing (Reeves & Sperling, 1986; Neisser &
Becklen, 1975; Kahneman, 1973; Sperling, 1960).
Although many studies have now shown that probabil-

istic cueing is an effective way to selectively bias atten-
tion, the exact mechanisms of how attention is weighted
on a trial-by-trial basis are still unresolved. In contrast, the

probabilistic sampling strategy for choice behaviors (e.g., in
foraging tasks) that require discrete responses are quite
clear; subjects tend to follow a pattern of probability match-
ing in which each alternative is sampled on a proportion of
trials equal to the true probability of the reward being there
(e.g., Kable & Glimcher, 2009; Koehler & James, 2009;
Sugrue, Corrado, & Newsome, 2004; Wolford, Miller, &
Gazzaniga, 2000; Baum, 1979; Estes, 1976; Herrnstein,
1970, 1974; Gardner, 1958). Probability matching is some-
times thought to be a suboptimal strategy because fewer
rewards are collected than under a strategy of maximiza-
tion whereby the highest probability location is sampled
exclusively. However, it has been argued that probability
matching can be “optimal” during the exploration of an
environment because it builds rules about the topography
of rewards, ismore likely to find patterns whenpresent, and
is sensitive to dynamic changes in statistical structure (e.g.,
Behrens, Hunt, Woolrich, & Rushworth, 2008; Gaissmaier
& Schooler, 2008; Cohen, McClure, & Yu, 2007; Wolford
et al., 2000). There are conditions when the high probabil-
ity location may be sampled more frequently than the true
probability, but these situations are the exception rather
than the norm, particularly under experimental conditions
where the strategy to maximize is not emphasized with
large rewards, learning, or feedback (e.g., Kasanova, Waltz,
Strauss, Frank, & Gold, 2011; Koehler & James, 2009;
Gaissmaier & Schooler, 2008; Fantino & Esfandiari, 2002;University of California, Davis
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Shanks, Tunney, & McCarthy, 2002; Wolford et al., 2000;
Friedman &Massaro, 1998; Baum, 1979; Herrnstein, 1970).

There are two strategies by which probabilistic cues
can be used by the attentional system to bias perception;
these are distinguished by the distribution of attention
across alternative locations on a single trial. The first is
a weighted resource strategy in which attention, within
a single trial, is weighted according to the probability of
the target being in that location (e.g., Anderson & Folk,
2010; Druker & Anderson, 2010; Vul, Hanus, & Kanwisher,
2009; Eckstein, Shimozaki, & Abbey, 2002; Sperling, 1986;
Eriksen & Yeh, 1985; Shaw & Shaw, 1977). These weights
may reflect the true probabilities or be biased toward max-
imizing attention on the highest probability location; for
example, if the proportion of a target in two locations are
.7 and .3, respectively, spatial attention would split between
the two locations in a ratio of 7:3 up to 10:0. In the most
extreme case of maximal weighting of the highest probabil-
ity location, the other regions would only be attended if the
target was absent from that location. Data from neuro-
biological and psychophysical methods frequently appear
consistent with this strategy (e.g., Gould, Rushworth, &
Nobre, 2011; Sylvester, Shulman, Jack, & Corbetta, 2007;
Vossel, Thiel,&Fink, 2006;Ciaramitaro,Cameron,&Glimcher,
2001; Basso & Wurtz, 1997).

The second strategy is a variant of probability matching
in which the distribution of attention is probabilistic be-
tween trials; for example, Jonides (1980) proposed a two-
stage model in which attention is selectively focused on the
high probability location, but only on a proportion of trials
equal to the true probability of the target occurring there
(e.g., .7 using the previous example). If the target is not in
the high probability location, then the system defaults to a
parallel processing mode in which attention is distributed
over all possible locations equally. Critically, on the remain-
ing proportion of trials (e.g., .3), the parallel processing
mode is engaged from the beginning and attention is dis-
tributed equally across all locations (van der Heijden, 1989;
Jonides, 1980, 1983).

The different attentional strategies are hard to distin-
guish because they make similar predictions for behavior
that is averaged over multiple trials (e.g., Ciaramitaro
et al., 2001). All would lead to shorter average RTs and
higher average accuracy in response to targets in an explic-
itly cued location (e.g., Posner, 1980; Posner, Nissen, &
Ogden, 1978) or a high probability location learning para-
digms (e.g., Geng & Behrmann, 2005; Chun & Jiang, 1998;
Miller, 1988). The critical difference between strategies is
whether the overall pattern of performance is because of
a weighted attentional bias on every trial or a focal atten-
tional bias on the high probability location on a subset of
trials. Interestingly, none of the models would hypothe-
size attention being weighted (partially or fully) in favor
of a low probability over a higher probability location.
Thus, the strategies for choice behaviors and spatial
attention differ such that spatial attention is not hypothe-
sized to ever be biased toward low probability locations,

but choice behaviors sample low probability locations.
In choice tasks, both high and low probability locations
are sampled directly, but the frequency depends on the
probability of reward.
In this study, we test whether differences in probabil-

istic strategies for spatial attention and choice decisions
can be measured within the same trial, and moreover,
whether the two processes can be brought into conver-
gence by manipulating the neurochemical circuits that
drive these processes. We used a novel task in which sub-
jects were asked to first choose the location of an upcom-
ing target and then subsequently detect the appearance
of a target on the same trial. The target location was
manipulated to favor one location over the other in the
first half of the experiment and then to be unbiased in
the second half. We used the drug modafinil (MOD) to
evaluate the role of central catecholamine systems in
the modulation of cognitive processes related to choice
decisions and spatial attention.
MOD is an FDA-approved medication that shows low-

potency inhibition of the plasma membrane transport-
ers for norepinephrine (NET) and dopamine (DAT); at
doses commonly used in clinical settings, it shows signif-
icant displacement of binding to the NET and DAT (e.g.,
Andersen et al., 2010; Volkow et al., 2009; Madras et al.,
2006). It elevates extracellular levels of norepinephrine
(NE) and dopamine (DA) in a widespread manner but
particularly strongly in the frontal cortex. We have pre-
viously found evidence to suggest that MOD may optimize
task-relevant pFC-based circuits by optimizing the modes
of signaling activity in the locus coeruleus (LC; Minzenberg,
Watrous, Yoon, Ursu, & Carter, 2008) and by strengthening
task-active neuronal ensembles in pFC (e.g., Minzenberg &
Carter, 2008; Cohen et al., 2007; Yu & Dayan, 2005). This
effect of LC modulation on pFC function could be medi-
ated via increased release in terminal fields in pFC of both
NE (e.g., Berridge & Abercrombie, 1999; Florin-Lechner,
Druhan, Aston-Jones, & Valentino, 1996) and also DA,
given that transport of extracellular DA in pFC primarily
occurs via the NET, and at high rates of NE release, in-
creased competition of NE with DA for NET binding leads
to increased extracellular DA (e.g., Carboni & Silvagni,
2004).
MOD improves numerous cognitive functions, especially

those that are highly dependent on control processes and
pFC function In healthy humans, these include improve-
ments in stop-signal RT, planning, rapid switching of
attention, working memory, and proactive cognitive and
inhibitory control (e.g., Marchant et al., 2009; Winder-
Rhodes et al., 2009; Minzenberg et al., 2008; Cohen et al.,
2007;Morgan, Crowley, Smith, LaRoche, &Dopheide, 2007;
Piérard et al., 2006; Waters, Burnham, Oʼconnor, Dawson,
& Dias, 2005; Yu & Dayan, 2005; Ward, Harsh, York,
Stewart, & McCoy, 2004; Turner et al., 2003; Béracochéa
et al., 2001). Probabilistic learning depends on the ability
to integrate target locations over time, which relies on
pFC functions (Huettel, Mack, & McCarthy, 2002), and

2 Journal of Cognitive Neuroscience Volume X, Number Y



Un
co
rre
cte
d
Pr
oo
f

therefore, we expected MOD to enhance pFC function and
facilitate representation of the underlying spatial probabil-
ity structure.
We hypothesized that spatial attention and choice deci-

sions would rely on separate strategies during “baseline”
conditions (i.e., naive subjects on placebo), as predicted by
existing models of spatial attention and decision-making.
However, we further hypothesized that spatial attention
might be brought into convergence with a strategy of
probability matching, specifically when the low proba-
bility location is chosen, when cognitive control mecha-
nisms were enhanced by MOD.
The critical trials to evaluate the strategy of spatial

attention occurred when the low probability location
was chosen to contain the target. On these trials, sub-
jects chose the less likely location, but they did so in
violation of the global probabilities. There are three dif-
ferent predictions for the RT data: First, if attention
adheres to a strategy of weighted resource distribution,
then attention would remain biased toward the high
probability location; thus, spatial attention would be
opposite to the chosen location. Second, if attentional
priority is set according to the two-stage model of
Jonides (1980), then attention should either be biased
toward the high probability location or be evenly dis-
tributed (i.e., unbiased) across the two locations. How-
ever, a third possibility is that attentional priority would
be set by the choice decision. If this occurs, then attention
would be biased toward the low probability location in
direct opposition to the global statistical likelihoods. Note
that the third alternative is not predicted by any current
models of attention (see above) but would be consistent
with neural models that hypothesize an important role of
pFC in setting attentional priority (e.g., DiQuattro & Geng,
2011; Kennerley &Wallis, 2009; Rossi, Pessoa, Desimone, &
Ungerleider, 2009; Gazzaley et al., 2007; Everling, Tinsley,
Gaffan, & Duncan, 2006; Wallis, Anderson, & Miller, 2001;
Shimamura, 2000; Duncan, 1986).

METHODS

Subjects

Twenty-six healthy adults (16 women; age = 39.7 ±
4.5 years, range = 23–42 years) participated. All were
right-handed, had normal or corrected-to-normal vision,
were free of medical (including neurological) illness by
report, and lacked psychiatric disorders as determined
by the Structured Clinical Interview for DSM-IV Disorders,
Nonpatient version. The experimental procedures were
approved by the internal review board at the University
of California, Davis. The experiment was conducted with
the informed written consent of each subject. All subjects
were instructed to maintain their usual quantities and
patterns of nicotine and caffeine intake, without changes
on or between test days, to avoid neural/cognitive effects
because of changes in intake from their baseline. All in-

cluded subjects tested negative for drugs of abuse in their
urine on each testing day. The test-to-test interval was
12.7 ± 12.0 days (range = 2–43 days).

Task

Each trial began with bilateral question marks appearing
in two blue squares (Figure 1). The question marks
prompted subjects to indicate their choice location (left
or right) for an upcoming target. These choices were an
explicit measure of the subjectsʼ expectation for where
the next target would appear. For data analyses, “left”
and “right” responses were recoded according to the
whether the location had a “high” or “low” probability
to contain the target. These prompts were on for an un-
limited duration until the subject responded. The “j” key
indicated a left choice and the “k” key, a right choice.
After a jittered ISI ranging between 1000 and 1800 msec
(at 200-msec intervals), a target circle appeared in one of
the two locations for 100 msec. The unpredictable ISI
was critical for reducing the number of anticipatory but-
ton presses, given the predictability of the presence of the
target. We did not include “catch” trials because that would
reduce the reinforcement validity of the “choice” portion of
the task. We conducted additional analyses to test for
any anticipatory responses (i.e., RTs less than 100 msec)

Figure 1. Illustration of trial procedure and experimental design.
(A) On each trial, subjects were prompted to indicate a two-alternative-
forced-choice response predicting the location of the target. After a
varying interval, subjects indicated the appearance of a target with
a single button response. The target was biased to appear in one or
the other location on 70% of trials in the first half of the experiment
(200 trials) and appeared in the two locations randomly in the
second half. (B) Illustration of the probability structure throughout
each experimental session. The first half was the biased probability
block (shaded gray). The location of the target was counterbalanced
between subjects and across experimental sessions.
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and eliminated those from further analysis. Subjects were
instructed to press the “space” bar as rapidly as possible to
indicate detection of the target.

During the first half of the experiment, the target was
implicitly biased to appear in one location such that 70%
of targets appeared in one location and 30% in the other.
No mention of this spatial probability was made to the
subjects at any point of the experiment. The “high prob-
ability” location was counterbalanced across subjects in
the first session (i.e., either modafinil or placebo) and
reversed in the second. The reversal minimized cross-
session learning effects regarding the specific mapping
of location and target probabilities. Any carryover effects
would therefore be because of an abstract learning of
spatial probabilities being present rather than the direct
knowledge of the target being in a single location. In the
second half of the experiment, the target appeared ran-
domly in each location (i.e., 50% of targets in each loca-
tion). The random block was included to allow us to
measure the “decay” of probabilistic expectations. In anal-
yses, the locations were still referred to as being “high” or
“low” probability in reference to the likelihood of the target
being in that same location in the previous block. Subjects
were not informed of the probability distributions during
the first and second halves of the experiment. A self-paced
rest period occurred every 100 trials, resulting in a total of
four experimental blocks. At the end of the experiment, we
assessed their knowledge of the probability structure in-
formally but found no reliable ability to report the spatial
probability structure from any particular time period. We
were only able to assess knowledge of the probability dis-
tribution after the entire experiment to avoid (to the best
of our ability) any changes in strategic search for structure
in subsequent sessions; in any case, explicit knowledge
of spatial probabilities has little impact on behavior (e.g.,
Fecteau et al., 2009; Geng & Behrmann, 2005; Chun &
Jiang, 1998, 2003). In these prior studies, which used simi-
lar spatial probabilistic manipulations, behavior preceded
knowledge such that subjects showed a bias in responses
based on probabilities regardless of whether or not they
expressed conscious awareness of it.

Procedure

A crossover design was employed such that each subject
received PLC before one experimental session and 200 mg
oral MOD before the other session. Drug administration
was double-blind, with treatment order randomized and
counterbalanced by a research pharmacist using a com-
puter algorithm; the pharmacist also packaged the MOD
and PLC in identical appearing capsules for administration
and was otherwise uninvolved in the study. Testing was
conducted approximately 2–3 hr after MOD administra-
tion, during peak plasma levels of the drug (Robertson &
Hellriegel, 2003). Subjects first completed a training block
(approximately 20 trials) to familiarize them with the task.
They then completed a total of 400 trials in four blocks. A

self-paced rest occurred after each block. Eye move-
ments were not monitored, although subjects were in-
structed to fixate the central fixation cross. All investigators
remained blind to treatment order for individual subjects
until all data was acquired for that subject, and treatment
order information was then necessary to sort data for
inferential testing. The primary analyses were conduc-
ted within each session alone to draw inferences from
data uncontaminated by carryover interactions; thus,
the manipulation of drug (PLC, MOD) was a between-
subject factor in these analyses. Separate within-subject
analyses were conducted to directly examine the rela-
tionship between performance between sessions in rela-
tion to drug dosage.

Logistic Model for Choice Data

The choice data were fit to a logistic function, which pro-
vided a model of capacity-limited learning. Data from
each participant was fit to a four parameter logistic func-
tion described by [Y = A/(1 + exp(−B*(x − C))) + D],
where A is a scaling factor that represents the upper limit,
B is the growth rate, C indicates the time of maximum
change in learning, and D is the lower asymptote. The
best fit function was determined by the Levenberg–
Marquardt with line search algorithm using MATLAB
(2009a, Mathworks, MA). The starting points for the indi-
vidual subject PLC and MOD fits were derived without
constraint from the best fit parameters for the group
means. Data from one subject could not be fit by a logis-
tic function (only a single exponential) and was therefore
excluded from this analysis. The root-mean-square error
from the fitted logistic functions to the individual data was
entered into a Drug × Session ANOVA; there were no sig-
nificant main effects nor an interaction [all F(1, 23) < .18,
p > .67; mean and SEM: PLC (Session 1) = .037 ± .004,
PLC (Session 2) = .034 ± .004, MOD (Session 1) = .036 ±
.005, MOD (Session 2) = .035 ± .005]. This indicated that
the derived parameters from the models fit the data from
all conditions equally well.

RESULTS

The primary goals of this study were to examine strategic
differences in how choices and spatial attention sample
probabilistic information and to determine whether the
two strategies could be brought into convergence by
manipulating cognitive function through neuromodula-
tion with the drug modafinil (MOD). To do so, we first
characterized the profile of choice decisions as a func-
tion of block probability and drug manipulation. We then
describe the pattern of RTs in response to the target as a
function of block probability, drug manipulation, and
also the preceding choice. RTs to targets in alternative
locations have long been used as a measure of the distri-
bution of spatial attention; here, we use it to assess the
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relative weighting of internal choices and external global
probabilities on sensory selection.

Choice Decisions: Session 1

Data from Session 1 were analyzed alone to avoid any po-
tential carryover effects in the data from session to ses-
sion; these data represented the most straightforward
comparison of the effects of modafinil on performance.
Each trial began with a choice screen in which subjects
indicated where they thought the target would appear
on that trial (see Figure 1). We expected choices to fol-
low a “foraging” strategy where selection of each location
was matched to the true underlying probability of the
target being in that location. Such a strategy would result
in the high and low probability locations being chosen
on a proportion of .7 and .3 trials, respectively. We
further expected that learning of the probability struc-
ture (as indicated by probability matching) would be
enhanced on MOD, consistent with previous evidence
that MOD improves cognitive control and memory func-
tions associated with the pFC.
To quantify learning of the spatial probability, we first

calculated the proportion of “high probability” choices
over a 50 trial moving window (i.e., the first data point

corresponds to the proportion of “high probability” choices
over Trials 1–50, and the second data point, the proportion
of high probability choices over Trials 2–51; Figure 2A).
Note that because the probability of choice was calculated
over bins of 50 trials, there was an apparent decline in
matching at the end of the biased block in Figure 2A, but
this is because of the inclusion of trials from the random
block in those bins. Only the first 150 bins included trials
exclusively from the biased probability block.

We next characterized the shape of the learning curve,
by fitting the first 150 bins of data for each subject using
a four-parameter logistic function. The logistic function
was described by [Y = A/(1 + exp(−B*(x − C ))) +
D], where A is a scaling factor that represents the upper
limit, B is the growth rate, C indicates the time of maxi-
mum change in learning, and D is the lower asymptote
(see Methods for description of model fits to individual
data). The logistic function models capacity-limited expo-
nential growth. This is an appropriate model of our data
because it characterizes the time to learn the implicit spa-
tial probability bounded by a plateau in behavior (e.g.,
when probability matching is reached). The parameter
for the maximum change in learning (C) characterizes
the time bin when the proportion of high probability
choices plateaus; this was used to test the hypothesis that

Figure 2. (A) Choice
decisions over time as a
function of dose-ordering
and drug. Each data bin
calculates the proportion
of high probability choices
within a 50 trial window.
Left, contains data from
Session 1; right, contains
data from Session 2. Placebo
(PLC) data are in blue and
modafinil (MOD), in red.
Error bars are SEM. Shaded
gray area contains trials
from the biased probability
block. The apparent decline
in probability matching
at the end of the biased
probability block is because
of the inclusion of trials
from the random probability
(involving a moving window
of 50 trials; see text). (B)
Boxplot of median and
95% confidence intervals for
the C parameter from the
fitted logistic model. The
C parameter represented
the time bin of maximal
learning when the proportion
of high probability choices
reached plateau (i.e., matched
probabilities).
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participants on MOD would learn to probability match
earlier than those on PLC. The C parameter was the most
accurate measure of when matching was achieved and
was more sensitive to the structure of learning than any
direct comparison of time bins between conditions (e.g.,
because such t tests would be insensitive to patterns of
change over time and require correction for many multi-
ple comparisons).

Model fits for the learning parameter C were entered
into a two-sided nonpaired t test with the factor of drug
(MOD, PLC); equal variance between groups was not
assumed. This between-group analysis of just the first
session data revealed a highly significant difference in
the point of maximal learning in the drug and placebo
groups [t(22.2) = 5.9, p < .0001; Figure 2B]. These data
suggested that learning of the target spatial probability
occurred earlier on MOD than PLC.

Learning occurred more rapidly on MOD, but this is
only meaningful if there were no group differences in
initial performance. Although the model parameter D is
the lower asymptote (i.e., the theoretical intercept), the
actual model values were outside the bounds of the data.
Therefore, to test for differences in the start point of
performance, we compared data from the first 50 trials
of the experiment (Bin 1) directly as a function of drug
(MOD, PLC) using a two-sided nonpaired t test. There
was no statistical difference in the start point of learning
[t(19.6) = 0.10, p= .92; mean values: PLC = 0.62, MOD=
0.61], demonstrating that there were no spurious differ-
ences between groups in initial performance. This sug-
gests that the MOD group began to probability match
earlier because they learned the probability structure more
rapidly. Additional comparisons of the other model param-
eters A, B, and D, for completeness produced no signifi-
cant differences between groups (all t values less than 1.4,
p values greater than 1.6); thus, the only meaningful differ-
ence between model fits was in the learning parameter C.

In addition, the MOD group appeared to perseverate
their choice strategy into the random probability block
(Figure 2). To examine this effect, we tested if the prob-
ability of choosing the high probability location was
greater than .5 (chance) at the three central time bins.
We conducted three one-sample t tests on data bins from
the central portion of the block (when transitional effects
would have had time to subside) that also contained data
from completely independent trials: bin 225 (i.e., trials
225–274), bin 275 (i.e., trials 275–324), and bin 325 (trials
325–375). For the MOD group, the first bin was sig-
nificantly different from .5 [t(11) = 2.9, p < .05 with
Bonferroni correction] and the other two were not [both
t(11) < 1.6, p > .13, without correction]. All three bins
were not significantly different from .5 in the PLC group
[t(13) < 1.7, p > .1, without correction]. The direct com-
parison of the MOD and PLC groups at time bin 225 was
marginally significant [t(24) = 2.0, p= .06]. This suggests
that subjects on MOD tended to continue to choose the
high probability location at a rate greater than chance,

although the statistics of the target location were now
truly random. This pattern of perseveration was some-
what surprising and suggests that MOD did not optimize
behavior, but rather caused subjects to have a stronger
bias toward finding statistical structure in the data, even
when it did not exist.

Choice Decisions: Session 2

In Session 1, MOD had a local effect that increased seek-
ing of probabilistic structure, which resulted in earlier
learning when the spatial probabilities were present, but
a bias in choosing the previous high probability location
when probabilities were random. We next examined data
from Session 2 to see if (a) the effect of MOD was similar
when it was experienced subsequent to PLC and (b)
whether there were any carryover effects of MOD into
Session 2, although it occurred an average of 12.7 ±
12.0 days (range = 2–43 days) after Session 1. Notably,
the high probability location changed from session to
session, precluding the ability of subjects to reinstate
the exact same expectations.
To answer the first question, the data from the first

50 trial time bin and the model C parameters between
sessions were entered into paired t tests for the PLC-first
subjects only; drug was now a within-subject factor. There
was no difference in the initial probability of choosing
the high probability location in the first 50 trials [t(12) =
1.6, p = .14; PLC = 0.62, MOD = 0.67], but learning of
the target probability occurred earlier on MOD compared
with PLC [F(1, 12) = 17.7, p < .005; PLC = 62.6, MOD =
34.7]. These results were similar to those from the
between-subject analysis of data from Session 1 only (see
above); interestingly, the point of maximal learning in the
two MOD groups was remarkably similar (MOD Session 1
subjects=27.4; MOD Session 2 subjects = 34.7; compare
red lines in left and right panels of Figure 2A). The effects
of MOD on learning were similar when MOD was experi-
enced first and following PLC. Additional comparisons
of the other model parameters A, B, and D resulted in
no significant differences between groups (all t values
less than 1.4, p values greater than .9). As with the data
from Session 1, the only meaningful difference between
model fits was in the learning parameter C.
With regard to the second question, there were clear

carryover effects on performance in the PLC condition
when MOD was experienced in Session 1. First, there
was a significant difference in the initial probability of
choosing the high probability location [t(11) = 2.3, p <
.05; PLC = 0.61, MOD = 0.71]. Subjects that experienced
MOD in Session 1 began the Session 2 with greater sen-
sitivity to the probabilistic structure, despite the high
probability location switching to the opposite location.
In fact, the rate of choice for the high probability loca-
tion, even in the first 50 trials reached the level of prob-
ability matching, suggesting that learning occurred almost
immediately. Although there appears to be an additional
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increase in the proportion of high probability over the
course of the block, the increase in high probability
choices was not significantly different from .7 (i.e., sub-
jects as a group did not overmatch). Although statistically
nonsignificant, there were individual differences in the
trend toward overmatching (i.e., five subjects chose the
high probability location on more than 80% of trials). In-
dividual differences in probability matching (and maximi-
zation) are known to exist (e.g., Kasanova et al., 2011;
Wozny, Beierholm, & Shams, 2010; Frank, Doll, Oas-
Terpstra, & Moreno, 2009; Miller, Valsangkar-Smyth,
Newman, Dumont, & Wolford, 2005; Shanks et al., 2002;
Friedman & Massaro, 1998), but our sample size was too
small to tease out any such subgroup differences.
As before, we also tested for evidence of a continued

tendency to choose the high probability location in the
random block by conducting one-sample t tests at time
bins 225, 275, and 325 (see above). Contrary to the
Session 1, there were no significant differences for the
PLC group [all t(13) < 1.2, p > .23] nor for the MOD
group [all t(13) < 1.4, p > .17]. There was no evidence
for any perseveration of high probability choices into the
random block, perhaps suggesting that subjects accumu-
lated information about the changing probabilities over
the two sessions and adjusted their sensitivity to changes
in the probability structure (e.g., Behrens, Woolrich,
Walton, & Rushworth, 2007).

Target Detection: Session 1

The previous results demonstrated that MOD facilitated
learning that led to probability matching. We next exam-
ined RTs to the targets that followed choice. Fewer than
.04 ± .01% of the data in the PLC condition and .03 ±
.01% of the data in the MOD condition were excluded
based on the criteria of being less than 100 msec or 2 stan-
dard deviations above or below the individual subject
mean. We excluded these trials as anticipations and errors,
respectively.
First, to confirm that that there was an effect of the

spatial probability on target detection, RTs were entered
into a mixed-effects ANOVA with factors spatial probabil-
ity (high, low), block (biased, random), and drug (PLC,
MOD). The main effect of spatial probability was signifi-
cant, F(1, 24) = 23.5, p < .0001; there was also an inter-
action between spatial probability and block, F(1, 24) =
9.7, p < .005, which was because of a bigger difference
between high and low probability target RTs in the biased
compared with the random probability blocks (low
minus high probability RT means: 61 msec [biased],
42.8 msec [random]). This pattern was expected and
confirmed that attention was biased toward the high
probability location overall, and more so during the
biased probability block. However, the critical question
was whether this general pattern of attentional priority
at the high probability location was modulated by the
trial-by-trial choice decision.

To determine the effect of the choice on subsequent
attentional selection, we calculated an RT “validity effect”
score. Validity was defined by the subtraction of RTs to
targets in the chosen location (i.e., “valid” targets) from
RTs to targets in the unchosen location (i.e., “invalid” tar-
gets). Positive values indicated that attention was biased
toward the same location that was chosen to contain the
target; negative values indicated that attention was biased
opposite to the chosen location; and zero values indi-
cated that attention was distributed equally to both loca-
tions. Note that validity is defined relative to the choice
and not the external probabilities.

The validity scores from Session 1 were entered into a
mixed-design ANOVA with within-subject factors of
choice location (high, low) and block (biased, random)
and the between-subject factor of drug (PLC, MOD).
There was a main effect of choice location, F(1, 24) =
13.2, p < .005, and an interaction between choice loca-
tion and drug, F(1, 24) = 4.9, p < .05. The interaction
was because of a significant difference between validity
scores on PLC [t(13) = 3.5, p < .01, with Bonferroni cor-
rection], but no difference on MOD [t(11) = 1.6, p= .14;
Figure 3A]. Thus, the strategies for spatial attention dif-
fered for trials with high and low probability choices on
PLC, but were the same for subjects on MOD. There was
also an expected significant two-way interaction between
choice location and block, F(1, 24) = 6.2, p < .05, which
reflected reduced differences in validity scores in the
random probability block. There was no three-way inter-
action between choice location, block, and drug, F(1, 24)=
1.8, p = .19 (see Figure 3A).

The validity scores from the biased probability block
were of primary interest and therefore additional planned
comparisons were conducted on data from this block
alone (i.e., excluding data from the random block). The
results were consistent with those reported above: The
validity score for low probability choices on PLC was sig-
nificantly smaller than any of the other three conditions
[paired t test: t(13) = 2.9, p < .05; independent samples
t test against the two MOD conditions: both t(17.8) >
1.8, p < .05]; none of the other comparisons were signif-
icant. The fact that the validity score following low prob-
ability choices on PLC was significantly less than in any
other condition (see Figure 3A) was critical because it in-
dicated that the strategy for spatial attention on low prob-
ability choices was different than the strategy following
high probability choices, and moreover, that this strategy
changed on MOD such that spatial attention now fol-
lowed choice.

The fact that spatial attention did not follow low prob-
ability location choices on PLC was consistent with both
the weighted resource and the two-stage models of
spatial attention reviewed in the Introduction. Therefore,
to more specifically test between these models we
conducted a post hoc one-sample t test of just the low
probability choices on PLC. Recall that the weighted
resource model predicted a negative validity effect and
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the two-stage model, a null effect on trials with low prob-
ability choices. The t test was not significantly different
from zero [t(13) = 1.1, p = .14]. This supported the
two-stage model and suggested that, on average, atten-
tion was evenly distributed between the two locations
when the low probability location was chosen. However,
to once again look at individual differences in the use of
probabilistic strategies (see choice data above) we further
examined the individual data and found a mixture of
scores (seven subjects with scores less than −25 msec;
five with scores between−25 and 25 msec; and two above
25 msec); this suggested that subjects may have used dif-
ferent strategies.

To be sure that the average validity scores, particularly
on low probability choice trials, were not simply because
of slower learning of the probability structure (as seen in
the choice results), we calculated the validity effect over
time. We again used a moving window of 50 trials and
calculated a validity score within each window of time
(Figure 3B). The validity scores did not appear to change
even after subjects had demonstrated knowledge of the
global probabilities by choosing the high probability loca-
tion at a rate commensurate with the true probability
(cf. Figures 2A and 3B). Specifically, the low probability
choice scores were consistently negative and below the

others (on average, only six scores were positive and
five of those occurred in first 15/150 time bins; in con-
trast, 147/150 data bins were positive for the low choice
trials on MOD and 150/150 on high choice trials in both
drug conditions). This evidence suggests that the atten-
tional strategy for low probability choices on PLC was not
an artifact of slower learning (as indicated by choice
performance), but a real difference in the strategic use
of probabilistic information (on PLC). Thus, spatial atten-
tion was not biased toward the chosen low probability
location on PLC but was on MOD. This suggests that
the increased sensitivity to the spatial structure on MOD
caused attention to shift strategies and weight the cho-
sen low probability location against the more probable
location.

Target Detection: Session 2

The analyses of RT data from Session 2 was identical
to that of Session 1. Fewer than .02 ± .01% of the data
in the PLC condition and .04 ± .02% of the data in the
MOD condition were excluded based on the criteria of
being less than 100 msec or 2 standard deviations above
or below the individual subject mean. As before, we ex-
cluded these trials as anticipations and errors, respectively.

Figure 3. (A) RT validity effects
in target detection as a function
of the same-trial choice. Panels
divided by session and drug
similar to Figure 2. Positive
values indicate cases in which
spatial attention was biased
toward the chosen location.
Error bars are SEM. Notably
the validity effect for low
probability choices in the
Session 1 placebo data are
significantly different than
all other conditions in the
same session. (B) RT validity
effect plotted over time.
Each data point is a validity
score over a 50-trial
moving window.
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Similar to Session 1, the main effect of spatial probabil-
ity on RTs was significant in a mixed-effects ANOVA with
factors spatial probability (high, low), block (biased, ran-
dom), and drug [MOD, PLC; Session 2: F(1, 24) = 5.4, p<
.05]. There was also an interaction between spatial prob-
ability and block [Session 2: F(1, 24) = 18.7, p < .0005]
because of the expected reduction of the probability in
the random blocks (lowminus high probability RT means:
33.2 msec [biased], −2.4 msec [random]).
In contrast to the results from Session 1, there were no

effects of drug (MOD, PLC) in the analysis of RT validity
scores. The same three-way mixed-design ANOVA used
for Session 1 data only revealed a main effect of block,
F(1, 23) = 5.0, p< .05, and an interaction between block
and choice location, F(1, 23) = 9.0, p < .01; note that
data from one subject was excluded because of missing
values in the low choice location condition). The inter-
action was because of greater differences in validity scores
for low versus high probability choices in the biased com-
pared with the random blocks (see Figure 3A). Interest-
ingly, there was no effect of drug, all effects F(1, 23) <
0.5, p > .5, indicating that the directionality of the validity
scores were the same in the PLC and MOD groups (i.e., all
positive). Consistent with these results, the validity scores
for all conditions were positive over the course of the ex-
periment (Figure 3B). The contrast between PLC per-
formance in Sessions 1 and 2 suggest that MOD had a
long-lasting carryover effects on performance even after
any direct effects of MOD had dissipated. As with the prior
analyses on choice decisions, this result suggests that
experiencing MOD lead to long-term changes in subject
sensitivity to the presence of global probabilities, which
impacted behavioral measurements of attentional alloca-
tion and choice behaviors.

DISCUSSION

The goals of the current study were to examine the rela-
tionship between strategies of choice decisions and spa-
tial attention within the same trial and then to determine
whether that relationship was malleable to manipulations
of catecholamine-modulated cognitive control with the
drug modafinil. We developed a novel paradigm in which
we measured choice decisions and spatial attention on
every trial during a double-blind administration of PLC
and MOD across sessions.
The first result of interest was that MOD enhanced

learning of the spatial probability structure as indicated
by choice decisions. The inflection point in learning
(representing the point at which probability matching
was stably achieved) occurred earlier on MOD than
PLC. This result was present both in the between group
comparison within Session 1 when all subjects were naive
to the experimental design, as well as between sessions
for the PLC-first subjects. Unlike the PLC-first group,
however, subjects that experienced MOD first began

Session 2 with a significantly greater proportion of high
probability choices that was already near matching. The
asymptote in their learning curve was therefore less inter-
pretable with regard to data from other sessions but sug-
gests the enhanced learning on MOD in Session 1 was
metacognitive and translated into performance enhance-
ments during Session 2. This is particularly interesting
because the exact high probability location switched be-
tween sessions.

The short-term effect of MOD on choice decisions
within a single session, observed while the drug was pres-
ent in the brain, likely occurred as a result of increased
extracellular neurotransmitters (from NET and DAT inhi-
bition) leading to increased activation of catecholamine
receptors and on-line signaling in postsynaptic neurons.
This could accelerate the attainment of matching by
strengthening the representation of the probabilistic
strategy in pFC through a plasticity-based mechanism
(e.g., Soltani & Wang, 2010; Loewenstein & Seung,
2006) effected by moderate tonic and high-phasic LC
activity (Eckhoff, Wong-Lin, & Holmes, 2009). This is
consistent with our prior evidence for augmentation of
task-related pFC activity and LC–pFC coupling during
cognitive control processes in subjects given this same
single-dose of MOD (Minzenberg et al., 2008). One caveat
is that because the effect of MOD impacts both NET and
DAT, it is unclear at this time whether the behavioral
effects we found were due primarily to NE or DA-mediated
processes in pFC or both.

The second result of interest involved the pattern of
RT performance in the target detection task on PLC
and associated changes in behavior on MOD. To quantify
the location of spatial attention, we calculated an RT
validity effect based on the difference between RT follow-
ing targets in the chosen versus unchosen locations. A
positive validity score meant that attention was allocated
to the chosen location, a negative score that attention
was in the opposite location, and a zero validity score
indicated that attention was evenly distributed between
the two locations. In the PLC condition, we expected a
positive validity score on high probability choice trials
and either a negative or null validity score on low prob-
ability choice trials; such results would be consistent with
the weighted resource models and the two-stage prob-
ability matching model, respectively (see Introduction).
Our predictions for the effect of MOD on spatial atten-
tion were less clear from the outset.

The data from naive subjects on PLC on high probabil-
ity choice trials were as expected: There was a significant
positive validity effect such that targets in the chosen
location were detected faster than targets in the unchosen
location. Interestingly, the validity effect was negative
overall when the low probability location was chosen,
but this pattern did not differ statistically from zero. These
results suggest that on average, attention was equally dis-
tributed to the two alternative locations when a low prob-
ability choice was made, consistent with the Jonides
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(1980) model. However, individual variability in the direc-
tion of validity effects leave open the possibility that some
subjects may have used a strategy of weighted resource
distribution that favored the high probability location.
Individual differences in probabilistic strategy use have
been reported in a perceptual and decision tasks and
subsequent experiments investigating such differences
in attention are needed (e.g., Kasanova et al., 2011; Wozny
et al., 2010; Frank et al., 2009; Miller et al., 2005; Shanks
et al., 2002; Friedman & Massaro, 1998).

In contrast, to the PLC results, the validity effect for
low probability choices on MOD was positive. This result
was not predicted by any of the existing models of atten-
tion and indicated that attention was systematically
biased toward the low probability location. Although
MOD improves vigilance (e.g., Finke et al., 2010; Lanni
et al., 2008), and there is evidence that MOD moderately
enhances attention from a meta-analysis of varied neuro-
psychological tasks (e.g., Repantis, Schlattmann, Laisney,
& Heuser, 2010), it was not clear what effect MOD would
have on selective spatial attention. One possibility was
that MOD would augment the strategy of weighted re-
source distribution and maximize the attentional bias
toward the high probability location. Another alternative
was that it would not change the strategy of probabilistic
selection but only affect the speed of detection. How-
ever, our results support a third possibility where cogni-
tive control processes caused spatial attention to follow
the choice strategy of probability matching to exploit finer-
grained expectancies of both high and low probability tar-
get locations.

It is unlikely that the change in the distribution of
spatial attention was due only to earlier learning of the
spatial probability because the pattern of spatial attention
did not change over the course of the experiment (see
Figure 3B). Instead, it appears that MOD modulated
the strategy of spatial attention on a trial-by-trial basis
to be consistent with the current choice. We could not
rule out the possibility that the change in spatial atten-
tion and pattern of choices seen in the MOD condition
were controlled by independent mechanisms, but it is
clear that MOD changed the strategy of spatial attention
to be more in line with the trial-by-trial choice decision of
where the target would appear.

We hypothesized that this effect of MOD occurred be-
cause of greater engagement of cognitive control mecha-
nisms implemented in pFC that that represent predictive
and rule-based knowledge (e.g., Bubic, von Cramon, &
Schubotz, 2010; Miller, 2000). These pFC changes would
be expected to bias cortical functioning in areas subserving
attentional priority through mechanisms of gain modula-
tion in individual or ensembles of neurons (e.g., Rossi
et al., 2009; Desimone & Duncan, 1995). Catecholamine
influences can mediate such biases via afferents to pFC
from the LC–NE system (e.g., Aston-Jones & Cohen,
2005) and the mesocortical DA system (Seamans & Yang,
2004). Alternatively, attentional biases could arise from

direct ascending input to other attentional control regions
(e.g., the parietal cortex), which receives dense input from
the LC (Morrison & Foote, 1986); in this case, pFC could
still provide a control signal through descending input to
brainstem nuclei where these neurotransmitter systems
originate to putatively provide the “knowledge” of which
stimuli are proper targets to amplify processing via in-
creased gain.
Although we can only speculate on the exact mecha-

nisms by which MOD affected behavior in this task, the
results clearly show that the setting of attentional priority
based on internal (choice) versus external (statistical) in-
formation depends on processes that mediate the learn-
ing of probabilistic information and rule representations.
pFC is a clear candidate region for mediating these effects
(see above), but there are other possible systems such as
DA-dependent striatal-based learning or striatal–frontal
interactions (e.g., Frank et al., 2009; Shulman et al.,
2009; Volkow et al., 2009; Lanni et al., 2008; Miller &
Cohen, 2001). pFC-based control functions to guide ex-
ploratory behavior and resolve uncertainty are proposed
to compete with a striatal control system; which system
prevails may depend on the degree of uncertainty present
(e.g., Doll, Jacobs, Sanfey, & Frank, 2009; Daw, Niv, &
Dayan, 2005). Moreover, the balance between strategies
of selection based on uncertainty has been attributed to
the LC–NE system (e.g., Doya, 2002; Ishii, Yoshida, &
Yoshimoto, 2002), and we therefore cannot differentiate
between pFC and striatal effects on performance in our
task at this time.
Interestingly, in addition to a local effect on choice and

attention, MOD in Session 1 produced carryover effects
on performance in Session 2. The carryover effects in
choice and spatial attention are intriguing and suggest a
second drug effect on a distinct, more sustained neuro-
biological process. MOD has a half-life of 15 hr and was
undoubtedly washed out of subjects well before the
second test session several days later (mean = 12.7 days
later). This strongly suggests the induction of a more
sustained phase of neural plasticity in target neurons,
which could include later consolidation processes, such
as that mediated by “late-phase LTP” that requires new
protein synthesis (e.g., Frey, 2001) and possibly gene
transcription (e.g., Kandel, 2001). These processes are
sensitive to catecholamine modulation, as studies that
deliver catecholamine receptor-binding agents in either
neocortical or limbic cortical areas within several hours
after a learning session indicate a profound influence of
these drugs on subsequent memory performance (e.g.,
Izquierdo et al., 2006).
Another (compatible) account for this sustained MOD

effect is dependent on hippocampal–neocortical inter-
actions involved in establishing a stable long-term memory
trace (Buzsáki, 1996). It has been argued that cognitive
control processes supported by pFC are critical to both
the flexible reconfiguration and stabilization of distrib-
uted memory traces to integrate sensory experience with
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overarching goals of the organism (e.g., Mercado, 2008;
Miller, Freedman, & Wallis, 2002). This account suggests
that the long-lasting effect of MOD was mediated by
strengthening pFC-dependent control processes via en-
hanced signaling at catecholamine receptors in pFC (e.g.,
Verguts & Notebaert, 2009).
One interesting avenue of further study will be to

determine whether individual differences in cognitive
control correlate with changes in behavior following
MOD. Our population of subjects was more hetero-
geneous than the typical study of college students, and
they may been more affected by MOD (Finke et al.,
2010). Follow-up studies are needed to determine the
effect of individual differences in cognitive control on
patterns of spatial attention, including sensitivity to agents
such as MOD.
In summary, the first result of interest from this study

was that MOD enhanced learning of the spatial probabil-
ity structure that governed the target location. Subjects
on MOD began to probability match earlier; moreover,
the enhanced learning carried-over to Session 2 when
subjects were on PLC. The second primary finding was
that the strategy for spatial attention changed on MOD.
The pattern of RT validity effects for naive subjects on
PLC were consistent with existing models: spatial atten-
tion was evenly distributed on low probability choice
trials (possibly with some individuals being biased toward
the high probability location). However, on MOD, the
pattern switched such that spatial attention was now
biased toward the low probability choice. This was not
predicted by existing models of spatial attention and sug-
gest that catecholaminergic-dependent cognitive control
processes can override the default probabilistic pattern of
spatial attention.
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