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A B S T R A C T

We study the effects of enrichment activities such as reading, homework, and extracurricular lessons on
children’s cognitive and non-cognitive skills. We take into consideration the opportunity cost of spending
time on enrichment, as it may replace activities such as sleep and socializing. Our study controls for selection
on unobservables using a control function approach that leverages the fact that many children spend zero
hours per week on enrichment activities. At zero enrichment, confounders vary but enrichment does not,
giving us direct information about the effect of confounders on skills. Using time diary data available in the
Panel Study of Income Dynamics (PSID), we find that the net effect of the last hour of enrichment is close to
zero for cognitive skills and negative for non-cognitive skills. The negative effects for non-cognitive skills are
concentrated in high school, consistent with elevated academic pressure related to college admissions.

1. Introduction

Families spend substantial resources on activities intended to in-
crease their children’s skills. These ‘‘enrichment’’ activities include
homework, tutoring, reading, and extracurricular activities such as mu-
sic and art lessons. The money and time committed to these activities
are substantial, and the gap in these investments by socioeconomic
status has become more intense in the past decades, possibly associated
with the increasing competition for college admission (Bound, Hersh-
bein, & Long, 2009; Ramey & Ramey, 2010). Many of these enrichment
activities are directly aimed at increasing skills, leading to concerns that
they may contribute to cross-sectional and intergenerational inequal-
ity (Aguiar & Hurst, 2007; Bianchi, 2000; Doepke & Zilibotti, 2017,
2019; Duncan & Murnane, 2011; Guryan, Hurst, & Kearney, 2008;
Rønning, 2011).

However, enrichment activities have opportunity costs that go be-
yond the time and money spent by parents. The time and energy
of the child are also limited — an hour spent doing homework is
an hour not spent on other activities, such as socializing and sleep-
ing. Moreover, time spent on enrichment could have spillover effects
into the remainder of the day. For example, a teenager who is over-
stimulated by an after-school activity may go to bed later than usual.
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Yet sleep is an activity with direct, positive impact on skills (Eide &
Showalter, 2012; Groen & Pabilonia, 2019; Heissel & Norris, 2018;
Lenard, Morrill, & Westall, 2020; Wolfson et al., 2003). The opportunity
costs of enrichment activities might therefore be substantial depending
on the activities replaced.

Indeed, the potential perils of spending too much time on en-
richment activities is well documented in ethnographic studies in the
child development literature (e.g. Galloway, Conner, & Pope, 2013;
Ginsburg et al., 2007; Gray, 2011; Jarvis, Newman, & Swiniarski, 2014;
Luthar, 2003; Luthar & Becker, 2002; Veiga, Neto, & Rieffe, 2016;
Villaire, 2003), has been the subject of many books (e.g. Abeles, 2015;
Anderegg, 2003; Gray, 2013; Lareau, 2003; Lukianoff & Haidt, 2018;
Rosenfeld & Wise, 2000; Warner, 2005), and has been widely covered
in the popular press (e.g. Avent, 2017; Gray, 2010; Khazan, 2016;
Rosen, 2015; Rosin, 2015). In general, there is an acknowledgment in
these writings that an additional hour of enrichment must be replacing
some other activity, and that the net effect of enrichment may depend
on the specific displaced activity. However, there is no systematic dis-
cussion about how these substitution patterns may change depending
on the age of the child, among other dimensions. Moreover, each of
these works tends to focus on a specific aspect of the issue. For instance,
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while some studies have discussed the importance of play and socializa-
tion (e.g., Gray, 2011), other studies have focused on specific popula-
tions, such as high school students in some college preparatory schools,
where they show that many children have difficulty coping with the
pressure of performing well academically (e.g., Galloway et al., 2013).

A related literature studies the impact of homework, which is
typically the single largest component of enrichment in our data, on
cognitive skills. As surveyed in Cooper, Robinson, and Patall (2006),
early studies in this literature tend to find large positive effects but also
rely mostly on correlational evidence. More recent studies that attempt
to control for confounders find smaller effects that are indistinguishable
from zero in most cases (e.g., Eren & Henderson, 2011). Notably, these
studies do not estimate effects on non-cognitive skills, even though
this is where most of the opportunity costs of enrichment seem to be
concentrated according to the ethnographic studies discussed above.

To our knowledge, there are no prior studies estimating the effect
on both cognitive and non-cognitive skills of spending more time on
enrichment activities which account for the opportunity costs due to
substitutions across activities and which also control for confounders.
To be sure, there is an established literature studying the impact of
different uses of time on the skills of children, especially in eco-
nomics, and many of these papers systematically consider confounders
(e.g., Caetano, Kinsler, & Teng, 2019; Del Boca, Monfardini, & Nicoletti,
2017; Fiorini & Keane, 2014; Hsin & Felfe, 2014; Jürges & Khanam,
2021 and Todd & Wolpin, 2007). However, as we discuss in detail in
Section 2, these studies focus on the identification of parameters of
the skill production function, which are quantities that do not speak
directly to the debate over whether children are spending too much
time on enrichment activities because they do not incorporate the
consequences of substitution across activities.

This paper aims to contribute to this debate by using detailed time
diary data to estimate the net average effect of enrichment activities
on cognitive and non-cognitive skills, taking into account the effects of
the substituted activities on skills. We allow for heterogeneity in the
effects of enrichment depending on three developmental stages of the
child: pre-kindergarten to 5th grade, 6th to 8th grade, and 9th grade
to 12th grade.

In order to identify this net effect, we need to control for con-
founders — unobserved factors that influence both skills and the choice
of enrichment. The economics literature identifying skill production
functions has mostly handled confounders by controlling for a very
detailed list of observables, including lagged skill measures. However,
as we show in Section 2, this approach unfortunately cannot be used
in our context, since our need to identify a different quantity limits the
types of observables we can include as controls.

We thus adopt an alternative approach to control for confounders
that exploits the fact that children in our data bunch at zero hours
of enrichment activities per week (see Fig. 1). We argue that many
of these children are at a corner solution: time spent on an activity
cannot be negative, so children with low propensities to spend time
on enrichment all choose the lowest feasible amount of enrichment,
zero.1 This yields useful variation in confounders: at zero enrich-
ment, all children chose the same amount of the ‘‘treatment’’, namely
zero. However, these children have different propensities towards
enrichment: while some of them are nearly indifferent between their
choice of zero enrichment and some other activity, others are far
from indifferent; even a large shift in the costs/benefits of enrichment
time would not induce them to move away from zero hours. Thus,
at zero enrichment, confounders vary but treatment does not, so the
variation in the outcome among observations at zero enrichment gives
us direct information about the effect of confounders on skills. We use

1 For brevity and simplicity, we will write throughout the paper that
children ‘‘choose’’ enrichment. However, our analysis is agnostic about who
(the child, the parent, or some combination) is actually making this choice.

this idea to create a control function approach that corrects for the
effect of confounders on skills. This approach is developed formally
in Caetano, Caetano, and Nielsen (2023) and has been also used in
other contexts, such as the study of the effect of maternal labor supply
on the skills of the child (Caetano, Caetano, Nielsen, & Sanfelice, 2021).
A related approach has also been used to test a selection-on-observables
assumption in the time use literature discussed earlier, when other time
inputs are included as controls (e.g. Caetano et al., 2019 and Jürges &
Khanam, 2021).

Using time diary data from the Child Development Supplement
(CDS) of the Panel Study of Income Dynamics (PSID), we find that
the net effect of enrichment on cognitive skills is small and indistin-
guishable from zero and that the net effect of enrichment on non-
cognitive skills is quite negative and significant. This negative effect
on non-cognitive skills is concentrated in high school, which is when
enrichment activities become more oriented around homework and
less oriented around social activities. Our measure of non-cognitive
skills combines both externalizing behaviors related to outward aggres-
sion/antisocial behavior and internalizing behaviors related to anxi-
ety/depression/self esteem. Despite the apparent differences in these
behaviors, we nonetheless find similar negative effects considering
internalizing and externalizing behaviors separately. We likewise find
null effects for each of the three constituent achievement tests that
combine to form our cognitive skills measure.

Our results are robust along many dimensions. We find very similar
results using a broader definition of enrichment time, as well as using
alternative constructions of cognitive and non-cognitive skills. We also
conduct a systematic sensitivity analysis, where we show that our main
empirical conclusions do not change when we consider violations of the
main identifying assumptions of the paper.

Our findings highlight the pitfalls and trade-offs associated with
intensive investment in enrichment activities, especially around high
school, when enrichment activities become more oriented towards
academic activities. Many youth seem to be spending so much time
on enrichment that, on average, their last hour on these activities is
actively harming their non-cognitive skills with no offsetting gain to
their cognitive skills. In Section 8, we present a stylized model of
optimal time allocation that can rationalize these results. In the model,
enrichment time is chosen to maximize cognitive skills. The resulting
first-order condition yields zero net effects for cognitive skills. More-
over, because enrichment activities have higher returns for cognitive
relative to non-cognitive skills, the first-order condition simultaneously
yields negative effects for non-cognitive skills. Although this simple
model offers an explanation for the results, it is important to note that
further research is needed to understand whether this model is a good
approximation to the actual motivation of parents and children.

In addition to these substantive empirical results, our paper high-
lights the potential for using bunching in the treatment to correct for
selection on unobservables. Bunching of a treatment variable at one
extreme due to a constraint is very common in many applied settings,
including settings of interest to education and child development re-
searchers. For example, many other activities measured in terms of time
use display bunching, and indeed we have examined in other work the
effects of maternal working hours and television time on childhood
skills (Caetano et al., 2023, 2021). The method could be applied to
study the effects on childhood development of many other types of ac-
tivities including social media usage, homework, active time with par-
ents, time with friends, playing sports, etc. (Caetano et al., 2019; Jürges
& Khanam, 2021). More broadly, consumption variables often display
bunching, so for instance the effect on fetal and childhood development
of maternal consumption of goods such as cigarettes (Almond, Chay,
& Lee, 2005; Caetano, 2015; Oken, Levitan, & Gillman, 2008) and
vitamins (Fawzi, Chalmers, Herrera, & Mosteller, 1993) could also be
studied with the method. Finally, it is possible to study the effect of a
school resource on student outcomes, as long as that school resource
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is bunched at the extreme of the distribution. For instance, the distri-
bution of specific school resources across schools might be bunched at
zero, such as the amount of dollars allocated to a given subcategory of
school spending (e.g. funding for school police as in Weisburst, 2019),
or the proportion of students attending the school who are eligible for
subsidized school meals (Millimet & Tchernis, 2013).

The rest of the paper is organized as follows. Section 2 discusses
the need to depart from the prior literature in economics in order to
inform the debate about whether children are spending too much time
on enrichment activities. Section 3 presents the data, and Section 4
presents our identification strategy. Our results are shown in Section 5,
and in Section 6 we test our identifying assumptions. Section 7 presents
a sensitivity analysis. We interpret our key empirical results through the
lens of a stylized model in Section 8 before we conclude in Section 9.

2. Motivating our departure from the prior literature

This section discusses our reasons for departing from the usual
identification approaches in the economics literature that estimates
the effects of time use. First, we discuss why the object of interest in
our context is different from the one in these prior studies. Next, we
argue that the methods to control for confounders that proved to be
effective in these studies unfortunately do not work in our context. This
motivates the need for our new approach, which we detail in Section 4.

2.1. Partial vs. Total effects of time inputs

Let 𝑆 denote the child’s skill, and suppose that it is determined by
inputs 𝐼 , 𝑂, and 𝑅 through the production function 𝑓 :

𝑆 = 𝑓 (𝐼, 𝑂,𝑅), (1)

where 𝐼 is enrichment time, 𝑂 is a vector of all other time uses,
which together with 𝐼 add up to 24 h per day, and 𝑅 is a vector
denoting any remaining inputs in the production function, such as
market-purchased goods, parental engagement, developmental age, en-
vironmental characteristics and ability. 𝑅 may also include the full
history of prior skills and investments, as well as initial endowments,
consistent with a dynamic process of skill formation, as in Cunha,
Heckman, and Schennach (2010). Some or all elements of 𝑂 and 𝑅 may
not be observed.

The partial effect of enrichment time on skills for a child with inputs
(𝐼, 𝑂,𝑅) = (𝑖, 𝑜, 𝑟) is 𝜕𝑓 (𝑖, 𝑜, 𝑟)∕𝜕𝐼 . This effect is often not empirically
relevant on its own, however, as it is impossible to change 𝐼 without
changing at least one element of 𝑂 — every child has 24 h per
day. Moreover, 𝑅 might also change with 𝐼 . For instance, parental
engagement might increase as the child replaces one hour of watching
TV for one hour of homework.2

The total effect of 𝐼 on 𝑆, which takes into account changes (𝑂,𝑅)
as 𝐼 changes, is therefore more empirically relevant. This effect is given

2 Although not necessary, an optimization framework can help build in-
tuition about the relationship between 𝐼 , 𝑂 and 𝑅. For instance, following
the choice framework from Becker (1965), assume households allocate time
and goods in order to create other goods (such as children’s skills), which
in turn enter the utility function they seek to maximize. This optimization is
constrained by both natural restrictions (e.g., each person in the household
has 24 h a day, and no one can spend less than 0 min on any activity) and
other restrictions which may relate to the household’s resources. In general,
the chosen elements of 𝑂 and 𝑅 in this optimization problem are, through the
first order conditions, functions of the chosen 𝐼 . Section 8 presents a stylized
model in which 𝐼 is chosen to maximize cognitive skills.

by3
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. (2)

For the 𝑗th element of 𝑂, 𝜕𝑂𝑗 (𝑖, 𝑜, 𝑟)∕𝜕𝐼 denotes the substitution/
complementarity between enrichment 𝐼 and the time input 𝑂𝑗 . This
term will be negative if 𝐼 substitutes for 𝑂𝑗 , and it is necessarily
negative on average across all time uses, but it can also be positive
for some particular 𝑗 if 𝐼 and 𝑂𝑗 are complements (e.g. commut-
ing to and attending a class). Analogously, 𝜕𝑅𝑙(𝑖, 𝑜, 𝑟)∕𝜕𝐼 denotes the
substitution/complementarity between enrichment and input 𝑅𝑙. In
general, every term in Eq. (2) might depend on the values of (𝑖, 𝑜, 𝑟),
so 𝑑𝑓 (𝑖, 𝑜, 𝑟)∕𝑑𝐼 will generally be heterogeneous across children.

A typical approach in the economics literature is to specify the
production function (1) linearly with one time use in 𝑂 excluded to
avoid multicollinearity.4 Under a suitable exogeneity assumption, one
can identify a weighted average of the difference between the direct
effect of enrichment and the direct effect of the excluded time input, 𝑂1,
i.e. 𝜕𝑓 (𝑖, 𝑜, 𝑟)∕𝜕𝐼−𝜕𝑓 (𝑖, 𝑜, 𝑟)∕𝜕𝑂1. This quantity is valuable, as it gives the
marginal skill effect of substituting between 𝐼 and the omitted category
𝑂1, holding fixed other time uses and non-time skill inputs. However, it
does not speak directly to the question of whether children are spending
too much time on enrichment activities. As shown by Eq. (2), the
answer to this question depends on many additional substitution terms
that are not identified by this approach.5

To make progress on this debate, we pursue the identification of
a weighted average of the total effect of a marginal increase in 𝐼
on 𝑆, 𝑑𝑓 (𝑖, 𝑜, 𝑟)∕𝑑𝐼 . Our approach is necessarily a compromise, as we
will not be able to separately identify each of the components inside
Eq. (2). We also allow for as much heterogeneity in our estimates
as feasible, although data restrictions limit our contribution in this
direction. Specifically, motivated by the child development studies
discussed in the introduction, we allow for unrestricted heterogene-
ity by type of skill (cognitive and non-cognitive).6 We also allow
for unrestricted heterogeneity across different grade ranges (PreK–
5th grade, 6th–8th grade, 9th–12th grade) in order to capture het-
erogeneity across different developmental stages in the production
function (𝜕𝑓 (𝑖, 𝑜, 𝑟)∕𝜕𝐼 , 𝜕𝑓 (𝑖, 𝑜, 𝑟)∕𝜕𝑂𝑗 and 𝜕𝑓 (𝑖, 𝑜, 𝑟)∕𝜕𝑅𝑙) as well as
resources, restrictions, and household objectives that lead to different
substitutions and complementarities (𝜕𝑂𝑗 (𝑖, 𝑜, 𝑟)∕𝜕𝐼 , 𝜕𝑅𝑙(𝑖, 𝑜, 𝑟)∕𝜕𝐼 and
𝜕𝑅𝑙(𝑖, 𝑜, 𝑟)∕𝜕𝑂𝑗).

3 For simplicity of exposition, this equation implicitly assumes that 𝑂𝑗 does
not affect any other element of 𝑂, and that 𝑅𝑙 does not affect any other element
of 𝑅. Moreover, 𝑅 is not allowed to cause 𝑂, but the converse (𝑂 causing 𝑅)
is allowed to happen. These assumptions do not change the take-away from
this discussion; Eq. (2) would simply have additional terms.

4 For examples, see Caetano et al. (2019), Del Boca et al. (2017), Fiorini
and Keane (2014) and Jürges and Khanam (2021). Some studies explicitly omit
a specific category, such as ‘‘sleep’’, while others implicitly omit a category
reflecting the remaining time not accounted for by the other included time
inputs.

5 Generalizations of this ‘‘omitted time use’’ approach are still not sufficient.
If 𝑂 is observed, under further exogeneity assumptions, one can also identify a
weighted average of 𝜕𝑓 (𝑖, 𝑜, 𝑟)∕𝜕𝑂𝑗 − 𝜕𝑓 (𝑖, 𝑜, 𝑟)∕𝜕𝑂1 for all 𝑗 > 1, which allows
one to uncover a weighted average of 𝜕𝑓 (𝑖, 𝑜, 𝑟)∕𝜕𝐼 − 𝜕𝑓 (𝑖, 𝑜, 𝑟)∕𝜕𝑂𝑗 for any
time use 𝑂𝑗 . However, even with all of these average differences identified,
we would still not identify the average of 𝜕𝑓 (𝑖, 𝑜, 𝑟)∕𝜕𝑅𝑙, nor would we know
the patterns of substitution between all the time inputs and all other inputs in
the production function, i.e. 𝜕𝑂𝑗∕𝜕𝐼 , 𝜕𝑅𝑙∕𝜕𝐼 and 𝜕𝑅𝑙∕𝜕𝑂𝑗 , for all 𝑗 and 𝑙.

6 We also consider heterogeneity within each type of skill (e.g., math vs.
verbal cognitive skills, and internal vs. external non-cognitive skills).
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To see how these two dimensions of heterogeneity – child age/grade
and the type of skill – help us understand some of the relevant trade-
offs involved, consider a hypothetical example comparing the total skill
effects of an additional hour of enrichment for two otherwise-similar
youth, a 6-year-old and a 16-year-old. Even in the (perhaps unrealistic)
case that the partial effects 𝜕𝑓 (𝑖, 𝑜, 𝑟)∕𝜕𝐼 are equal for both children,
the total effects (𝑑𝑓 (𝑖, 𝑜, 𝑟)∕𝑑𝐼) might nonetheless be quite different.
This could arise if the additional hour of enrichment replaces different
activities for the two children, that is, if 𝜕𝑂𝑗 (𝑖, 𝑜, 𝑟)∕𝜕𝐼 differs, and if
these alternative time uses have different partial effects 𝜕𝑓 (𝑖, 𝑜, 𝑟)∕𝜕𝑂𝑗 .
For example, enrichment might replace TV for the younger child and
socializing for the older child. Additionally, the extra hour of enrich-
ment might occur with a larger increase in parental engagement for the
6-year-old than for the 16-year-old (which refers to 𝜕𝑅𝑙(𝑖, 𝑜, 𝑟)∕𝜕𝐼 and
𝜕𝑅𝑙(𝑖, 𝑜, 𝑟)∕𝜕𝑂𝑗). Furthermore, parental engagement may be productive
for both cognitive and non-cognitive skills for the 6-year-old, but it
may only be productive for non-cognitive skills for the 16-year-old
(which refers to 𝜕𝑓 (𝑖, 𝑜, 𝑟)∕𝜕𝑅𝑙). As this example illustrates, the scope
for heterogeneity of 𝑑𝑓 (𝑖, 𝑜, 𝑟)∕𝑑𝐼 across different age ranges and across
different types of skills might be large, thus motivating our specification
of heterogeneity along these two dimensions.

Turning to our empirical specification, we start with a simple equa-
tion relating skills to enrichment:

𝑆 = 𝛽𝐼 + 𝑈, (3)

where 𝛽 represents a weighted average of the total effect on skill across
all children.7 The error 𝑈 is simply defined as 𝑓 (⋅) − 𝛽𝐼 (where 𝑓 is
defined in Eq. (1)), so no assumption has been made up to this point.
Section 4.2 will impose restrictions on 𝑈 that are necessary for the
identification of 𝛽.

Note that, differently from Eq. (1), Eq. (3) does not specify a
production function. Rather, 𝛽 represents the average of individual
heterogeneous causal effects of 𝐼 on 𝑆 that are mediated by the
true unknown production function 𝑓 (⋅) and the associated substitu-
tion/complementarity patterns, as described in Eq. (2).8 It can therefore
be interpreted as the average quantity we would identify if we were to
experimentally assign different people to different levels of enrichment
𝐼 , since in that case, all other time uses, as well as other inputs of the
production function, would be endogenous to 𝐼 .9

2.2. Controlling for confounders

A key obstacle to the identification of 𝛽 is that 𝐼 and 𝑈 are
correlated. Prior research estimating time use parameters of the skill
production function has made progress at solving similar endogeneity

7 As discussed above, in practice we allow 𝛽 to vary by grade range and
type of skill. In an earlier version of this paper, we allowed for heterogeneous
results for each skill by both grade range and family income terciles, but the
estimates were not sufficiently precise to infer a clear pattern. These estimates
are available upon request.

8 Eq. (3) does not assume that 𝑓 is linear in 𝐼 ; rather, it identifies the best
linear approximation of the (potentially nonlinear) function 𝑓 (see Theorem
3.1.6 in Angrist & Pischke, 2008). Therefore, 𝛽 is the best approximation
of the total effect of an increase of 𝐼 of one unit incorporating both direct
and indirect effects. A useful alternative interpretation can be obtained from
Proposition 2 in Yitzhaki (1996): 𝛽 identifies a weighted average of the 𝑑𝑓∕𝑑𝐼
with positive weights averaging one. Precisely, Proposition 2 in that paper
implies that 𝛽 = ∫ 𝜔(𝑖) 𝑑

𝑑𝑖
E[𝑓 (𝐼, 𝑂,𝑅)|𝐼 = 𝑖]𝑑𝑖, where 𝜔(𝑖) > 0, and ∫ 𝜔(𝑖)𝑑𝑖 = 1.

If 𝑑𝑓∕𝑑𝐼 is bounded, the Dominated Convergence Theorem then allows us to
write 𝛽 = ∫ 𝜔(𝑖)E

[

𝑑𝑓 (𝑖, 𝑜, 𝑟)∕𝑑𝐼||
|

𝐼 = 𝑖
]

𝑑𝑖.
9 This ‘‘experiment’’ may lead one to consider the possibility of the exis-

tence of an instrumental variable (IV) for 𝐼 that would identify this average
effect. However, an IV is very difficult to find in this setting, as it needs to
affect 𝑆 only directly through enrichment (𝐼), and not directly through other
activities (𝑂𝑗) and other inputs (𝑅𝑙), such as family resources.

problems by assuming that 𝐼 and 𝑈 are uncorrelated conditional on an
extensive list of controls.10 This literature has found that two types of
control variables are particularly important: other time inputs and lagged
skills.

Unlike these papers, we cannot use these control variables in our
setting, reducing our ability to account for endogeneity through ob-
servables. As explained in the previous section, using other time inputs
would shut off parts of the effect of interest, as it would hold constant
𝑂𝑗 for some 𝑗. Analogously, some elements of 𝑅 are likely to be jointly-
or post-determined relative to 𝐼 (e.g., parental engagement) and thus
should not be included as controls. Moreover, because the gap between
successive survey waves in our data is 5 years, controlling for lagged
skills would restrict the age range of our sample substantially, making
it infeasible to study whether children in early grades are spending too
much time on enrichment activities.11 Moreover, controlling for lagged
skills might not handle all of the confounders we are concerned about.
In particular, some confounders that are not predictable from lagged
skills might emerge in the 5 years after lagged skills are observed. There
is a clear trade-off: as we control for lagged skills, which are helpful
to deal with the endogeneity problem, we lose our ability to study
our question for an important developmental stage. Other popular ap-
proaches exploiting the longitudinal aspect of the data (e.g., controlling
for lagged inputs, controlling for within-child fixed effects) would lead
to similar trade-offs (e.g., Fiorini & Keane, 2014; Todd & Wolpin, 2003).
Losing the ability to study young children aged 5–9 is a steep price to
pay in our context, particularly since we have an approach to deal with
the confounders that lagged skills are most likely to help control for (see
Section 4, in particular Remark 4.1).

3. Data

We use data from the Panel Study of Income Dynamics (PSID),
making particular use of the 1997, 2002 and 2007 waves of the
Child Development Supplement (CDS). The CDS data contain detailed
time diary data as well as extensive measures of cognitive and non-
cognitive skills. We link the CDS with the main PSID panel which
allows us to build controls related to child, family and environmental
characteristics.

Activities: The time diaries in each CDS wave collect data on the full
24-h breakdown of one random weekday and one random weekend
day for each child. The child’s activities during the selected days are
coded into one of over 300 different categories reported by the child,
or by the parent if the child is young, with subsequent editing and help
from the PSID interviewer. We exclude cases where the day is described
as non-typical, either the weekday or weekend day data is missing,
or where the diary does not cover the full 24 h. However, when the
time slots between 10 p.m. and 6 a.m. are missing we do not exclude
the observation and instead record that time as ‘‘sleeping’’, consistent
with prior literature (Caetano et al., 2019; Fiorini & Keane, 2014).
Finally, we aggregate the 300-plus primitive time-use categories into
eight categories: enrichment activities, other enrichment activities, play
and social activities, passive leisure, duties/chores, class time, sleep,
and other.

Our definition of enrichment intends to capture the kinds of activi-
ties that are typically considered to be investments in children’s skills.
Therefore, our baseline measure includes only those activities that are
unambiguously related to skill development over and above class time
in school. In a typical week, children on average spend about 45 min
per day on this type of enrichment. This is a nontrivial amount of
time, especially considering that, after accounting for the time spent

10 See, e.g., Caetano et al. (2019), Fiorini and Keane (2014) and Todd and
Wolpin (2007).

11 The sample of observations where lagged skills are observed is also
selected beyond the age/grade of the child. See Footnote 21.
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Table 1
Summary statistics.

Activities (hours per week) All Grades K-5 Grades 6-8 Grades 9-12

Enrichment 5.22 (6.00) 5.43 (5.35) 5.37 (5.76) 4.93 (6.68)
Other enrichment 4.03 (6.21) 3.01 (4.69) 4.34 (6.10) 4.62 (7.23)
Active leisure 12.30 (10.19) 12.54 (9.23) 10.80 (8.70) 13.42 (11.88)
Passive leisure 17.48 (11.94) 15.53 (9.89) 18.30 (11.57) 18.40 (13.55)
Duties/Chores 24.68 (11.29) 22.83 (8.45) 22.55 (9.19) 28.14 (13.94)
Class 30.96 (10.78) 31.17 (9.57) 32.08 (9.49) 29.77 (12.56)
Sleep 67.20 (9.19) 70.53 (7.09) 67.32 (8.06) 64.30 (10.62)
Other 6.12 (9.87) 6.96 (10.03) 7.24 (10.00) 4.42 (9.38)

Control variables

Enrichment = 0 0.29 (0.45) 0.19 (0.39) 0.26 (0.44) 0.39 (0.49)
Broad enrichment = 0 0.15 (0.36) 0.10 (0.30) 0.11 (0.32) 0.23 (0.42)
Child is male 0.50 (0.50) 0.51 (0.50) 0.48 (0.50) 0.50 (0.50)
Child is white 0.48 (0.50) 0.50 (0.50) 0.47 (0.50) 0.46 (0.50)
Child is black 0.40 (0.49) 0.37 (0.48) 0.41 (0.49) 0.41 (0.49)
Child is hispanic 0.07 (0.26) 0.08 (0.26) 0.07 (0.26) 0.08 (0.26)
Child has siblings 0.88 (0.33) 0.85 (0.36) 0.90 (0.30) 0.89 (0.31)
Child is in grade PreK–5 0.31 (0.46) 1.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Child is in grade 6–8 0.33 (0.47) 0.00 (0.00) 1.00 (0.00) 0.00 (0.00)
Child is in grade 9–12 0.37 (0.48) 0.00 (0.00) 0.00 (0.00) 1.00 (0.00)
1997 wave 0.26 (0.44) 0.45 (0.50) 0.34 (0.48) 0.03 (0.16)
2002 wave 0.46 (0.50) 0.55 (0.50) 0.34 (0.47) 0.49 (0.50)
2007 wave 0.28 (0.45) 0.00 (0.00) 0.32 (0.47) 0.48 (0.50)
Child’s father is alive 0.97 (0.16) 0.98 (0.14) 0.97 (0.16) 0.97 (0.18)
Child’s mother is alive 0.99 (0.08) 1.00 (0.06) 0.99 (0.08) 0.99 (0.11)
Child is in Gifted Prog. 0.26 (0.44) 0.14 (0.35) 0.27 (0.44) 0.35 (0.48)
Child is in Spec. Educ. Prog. 0.08 (0.27) 0.07 (0.26) 0.11 (0.31) 0.06 (0.25)
Child is home schooled 0.01 (0.11) 0.01 (0.10) 0.01 (0.12) 0.01 (0.11)
Child is in private school 0.08 (0.27) 0.09 (0.29) 0.08 (0.26) 0.07 (0.25)
Household income (in $1000s) 73.27 (84.05) 67.97 (70.34) 70.52 (77.73) 80.14 (98.37)
Age (years) 11.86 (3.32) 7.92 (1.23) 11.54 (0.86) 15.46 (1.46)

Observations 4330 1331 1414 1585

Note: Activity categories are exhaustive. All control variables are indicators, with the exception of the last two, where the units are mentioned
in parentheses. The 1997, 2002 and 2007 CDS waves are pooled. Standard deviations shown in parentheses.

on sleep, school, and duties/chores, children have on average less than
7 h remaining per day (see Table 1).

The primary component of enrichment is homework, at two-thirds
of the total.12 The next most important component of enrichment is
reading a book, at 14% of the total. While 7% of enrichment time is
spent on before- or after-school programs, relatively little is spent on
each of the remaining categories: other reading (e.g., magazines and
newspapers), being read to (e.g., by parents), other academic lessons
(e.g., tutoring, academic courses and lectures), non-academic lessons
(e.g., piano and soccer lessons), and other education (e.g., driving
lessons, military training). Table 5 in Section 8 shows the average
breakdown of enrichment activities into these sub-categories.

As a robustness check, we also extend the notion of enrichment
by including activities that are sometimes considered enrichment but
which do not have such a clear connection to academic skills or hu-
man capital as traditionally conceived. This extended measure, which
we label ‘‘broad enrichment’’, includes our baseline notion of enrich-
ment plus ‘‘other enrichment:’’ making art/music, visiting museums,
organized (structured) sports, volunteer work, the educational use of
computers, and so forth. Table B.6 in Appendix B presents the break-
down of ‘‘other enrichment’’ into its constituent pieces, demonstrating
that on average about two-thirds of the category is organized sports.

For completeness, we also categorize time aggregates encompassing
other activities. Their average breakdown can be seen in Table B.6 in

12 Although homework is assigned by teachers, the amount of time children
spend on homework (and even whether they do their homework at all) is
a choice. Moreover, parents (for children at younger ages) and the children
themselves (at older ages) choose which schools/classes to enroll in, thereby
choosing indirectly the amount of homework they are assigned. Thus, as with
other forms of enrichment, there is potential endogeneity in the choice of
homework time.

Appendix B. First, we define ‘‘passive leisure’’ as activities that do not
involve active, face-to-face social participation (e.g., any screen time,
computer games, etc.) Two-thirds of passive leisure consists of watching
TV. ‘‘Play and social activities’’, by contrast, consists of sports (not
through school or in an organized league), social interactive games
(e.g., board games, hide and seek), hobbies, socializing, social and
church groups, etc. A little less than half of the time spent on this
category is spent on social interactive games. We define ‘‘duties and
chores’’ as all necessary, non-leisure and non-school activities such as
household chores, paid work, travel (e.g., commuting, errands), shop-
ping, personal care (hygiene, medical care, etc.), and meals. Traveling,
meals and personal care take the most time within this category. ‘‘Class
time’’ is defined as time at school for enrolled children and daycare or
nursery care for children not in school. ‘‘Sleep’’ is defined as sleep at
night, naps, and, as explained above, missing time slots between 10 pm
and 6 am. Finally, we define as ‘‘other’’ any remaining time which was
too idiosyncratic to classify into one of the above categories. Altogether,
these time use categories are mutually exclusive and exhaustive.

Skills: Following the literature (e.g., Caetano et al., 2019), we create
our primary cognitive skill measure by applying iterated principle fac-
tor analysis to the standardized letter-word (lw), applied problems (ap),
and passage comprehension (pc) subtests of the Woodcock Johnson
Revised Tests of Achievement, Form B, which are available in each CDS
wave. These three measures are strongly positively correlated — in our
pooled sample, 𝑐𝑜𝑟𝑟(lw, ap) = 0.83, 𝑐𝑜𝑟𝑟(lw,pc) = 0.90, and 𝑐𝑜𝑟𝑟(ap,pc) =
0.84. We likewise construct our non-cognitive skill measure through
iterated principle factor analysis applied to parental assessments cap-
tured in all 36 questions on the child’s behavior available in the PSID
CDS. The loading factors for these scales are shown in Table B.7 in
Appendix B. Our cognitive and non-cognitive measures are all con-
structed so that a higher score of each component is better and are
all normalized to have a mean of zero and a standard deviation of one.
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For robustness, we also use as alternative measures of non-cognitive
skills the internalizing and externalizing subscales of the behavior
problems index (BPI), a standardized scale included in each CDS wave.
The internalizing scale captures the prevalence of withdrawn behaviors,
while the externalizing scale captures outwardly aggressive behav-
iors (Peterson & Zill, 1986). We also use each component of our
cognitive skill measure (applied problems, letter word, and passage
comprehension) as separate measures of cognitive skill.

Controls: We use only controls that are pre-determined from the
perspective of 𝐼 , in order to preserve the meaning of our estimates as
total effects of 𝐼 , rather than direct (partial) effects, as discussed in
Section 2.2. Our list of controls includes the child’s age and squared
age (in months), and indicators for: CDS wave (1997, 2002 and 2007),
grade (thirteen variables, from kindergarten through grade 12), gender,
ethnicity (black, Hispanic and other non-white ethnicity), whether
the child has siblings, family income tercile, whether the mother is
alive, and whether the father is alive.13 As a robustness check, we
drop the grade indicator variables from the control set, since they
might be influenced by enrichment, particularly conditional on age
and CDS wave. Dropping these controls barely changes our estimates.
Importantly, we do not include lagged skills and time spent on other
activities as controls, as we discuss in Section 2.

Summary Statistics: Table 1 presents summary statistics for our sam-
ple. We have a pooled sample of 4330 children ranging from 5 to
18 years of age, with an average age of just under 12.

While children in our data spend on average about 45 min per day
on enrichment activities, about 30% do not spend any time at all on
enrichment. About 40% of the children in our sample are black and
about 7% are Hispanic. Further, 26% of the children in our sample
attend a gifted program, 8% attend a special education program, 1%
are home schooled, and 8% attend a private school. The grade ranges
pre-kindergarten–5, 6–8 and 9–12 are roughly equally represented
in the sample, with about one-third of the observations each. The
other columns of the table show the analogous summary statistics
separately for each of these grade ranges. It is worth mentioning
two striking patterns by grade. First, the time spent on duties/chores
increases substantially on average in high school, which may reflect
the additional responsibilities given to teenagers. Second, the standard
deviation of the time spent on various activities is greater for older
children. This makes sense: older children have a longer time to form
different habits and interests, and thus some specialization in certain
activities might be expected as they grow. Because different teenagers
specialize in different lifestyles, the variance is higher for them. This
increased variance leads to a disproportional amount of bunching of
enrichment at zero in high school relative to earlier grades. Intuitively,
more students in this age range might want to ‘‘borrow’’ more time from
enrichment by making it negative (if they could) in order to intensify
their investment in other endeavors, such as work, sports, or leisure.
We further elaborate on this intuition in the next section.

4. Identification strategy

Recall that the model we wish to estimate is given by Eq. (3),
restated below

𝑆 = 𝛽𝐼 + 𝑈.

13 For some of these control variables, some observations have a missing
value (less than 1% of the sample). In these cases, we include the missing
observations in our sample by assigning them a unique value for the relevant
control variable and creating an indicator variable for whether that observa-
tion had a missing value for that control. We then include these indicators as
additional controls. The resulting estimates are very similar to the case where
we simply drop all observations with any missing control variables.

Fig. 1. Unconditional distribution of 𝐼 . Note: This figure shows the cumulative
distribution function of 𝐼 .

The challenge in estimating 𝛽 is that 𝐼 and 𝑈 are likely to be correlated.
In this section, we show how our empirical approach tackles this
endogeneity concern using bunching. First, we argue that 𝐼 is the result
of a constrained choice. Based on this observation, we build a control
function that aims to solve the endogeneity problem.

4.1. Evidence that enrichment is a constrained choice

We start by showing direct evidence that the distribution of en-
richment has bunching at zero. Fig. 1 shows that the cumulative
distribution function (CDF) of enrichment is fairly smooth for all pos-
itive values of enrichment, but about 30% of the observations are
bunched at zero.

Why would this bunching occur? We argue that bunching happens
because some children are at a corner solution: they would like to
choose a quantity of enrichment that is below zero, but they are
constrained to choose only non-negative amounts. In this scenario, the
group at zero enrichment is particularly heterogeneous, since they all
choose the same amount of enrichment (zero), but the non-negativity
constraint may be binding to different degrees for different children
in the sense that their unconstrained choices would differ. Intuitively,
different children at 𝐼 = 0 want to ‘‘borrow against enrichment time’’
in different amounts in order to increase their time spent on other
activities, but they cannot.

It is helpful conceptually to separate the actual, realized number
of enrichment hours 𝐼 from the number of enrichment hours the child
would have chosen without the non-negativity constraint, which we de-
note 𝐼∗. The variable 𝐼∗ represents a combination of factors, observed
and unobserved, pertaining to the characteristics of the child and her
environment (including the characteristics of the family), which lead
the child to want to choose a given number of enrichment hours. Thus,
while the treatment 𝐼 is fully observed, 𝐼∗, which can be viewed as an
index of the confounders that affect the choice of 𝐼 , is only partially
observed (when 𝐼 > 0).

The separation between 𝐼 and 𝐼∗ helps us understand the bunching
in Fig. 1. Children of ‘‘type’’ 𝐼∗ ≥ 0, choose exactly what their type
leads them to choose: 𝐼 = 𝐼∗. However, children of type 𝐼∗ < 0 choose
𝐼 = 0 because they cannot choose what their type would lead them
to choose. Thus, there are two groups of children at 𝐼 = 0: those of
type 𝐼∗ = 0 who are exactly indifferent between a marginally positive
amount of 𝐼 and 𝐼 = 0 and those of types 𝐼∗ < 0 who are away from
exact indifference. While children of type 𝐼∗ = 0 choose 𝐼 = 0 as an
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Fig. 2. Evidence of corner solution. Note: Each panel shows a plot of the local linear estimator (bandwidth = 10) of the expected value of a variable conditional on enrichment
time, along with its 90% confidence interval. The expected value of the variable among the children who spent no time on enrichment is also shown, along with its 90% confidence
interval. Finally, the 𝑝-value of a test for whether there is discontinuity at zero is shown in the header of each panel.

‘‘interior solution’’, children of types 𝐼∗ < 0 choose 𝐼 = 0 as a ‘‘corner
solution’’– the restriction that 𝐼 cannot be negative is binding for them.
This implies that the average child who chooses a marginally positive
amount of enrichment, 𝐼 > 0, is likely very different from the average
child at 𝐼 = 0, since this latter group includes a discretely different
group of children, namely those of type 𝐼∗ < 0.

Fig. 2 substantiates this explanation. It shows that the average child
who spends no time on enrichment is discontinuously different from the
average child who spends any positive time at all on enrichment. The
upper left panel of the figure shows a local linear fit of an indicator
of whether the child is black conditional on the amount of time the
child spends on enrichment, as well as the proportion of children who
are black among the children who spend zero time on enrichment. The
children at zero are discontinuously more likely to be black than the
children who spend marginally positive amounts of time on enrich-
ment. In the header of the panel, we show the 𝑝-value of a test of

whether the share of black children is continuous at zero enrichment
time, and it is clear that we can confidently reject this hypothesis
(𝑝 = 0.017). The other panels of Fig. 2 show similar patterns. Children
who spend no time on enrichment are discontinuously more likely to
be male (𝑝 = 0.003), to have a mother who works full-time (𝑝 = 0.006),
to have an unmarried mother at birth (𝑝 = 0.036), to not be enrolled in
a private school (𝑝 = 0.022) and to spend more time on passive leisure
activities (𝑝 = 0.000). That is, in each case, we find that the children
at zero seem to be negatively selected on observables associated with
higher expected achievement.14

The last panel in Fig. 2 reflects the stark differences in the lives of
the children spending no time versus those spending a little time on

14 Fig. 3 in Section 6 provides evidence that this is also true with respect to
unobservables.
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enrichment. Children at zero enrichment spend on average four more
hours per week on passive leisure (mostly TV) than the children at one
hour of enrichment. Since the total number of hours in a week is the
same for everyone, this means that these two groups of children are on
average spending at least three additional hours per week on different
activities, beyond the one hour difference in enrichment and passive
leisure.

In the next section, we show how we use the fact that confounders
are discontinuous at 𝐼 = 0 in order to control for them. But first, we
provide some additional intuition for why a key unobserved confounder
is likely to be discontinuous at 𝐼 = 0.

Remark 4.1 (‘‘Ability’’ as a Confounder). A key potential confounder
in this literature is the ability of the child to perform enrichment
activities. For instance, children with higher reading ability might want
to spend more time reading (because they might get more rewards
from it), which would generate a positive correlation between skills
and enrichment due to reverse causality.15 Fortunately, ability is likely
to be discontinuous at 𝐼 = 0, so we should be able to control for it
with our approach. To see this, note that there are likely two types of
children choosing 𝐼 = 0: (a) those with abilities that are very similar,
on average, to those at small values of 𝐼 > 0, and those who might have
abilities that are very different from those at small values of 𝐼 > 0. At
𝐼 = 0, these two groups are lumped together, so the average ability at
𝐼 = 0 should be very different from the average ability for any small
value of 𝐼 > 0.16

4.2. Control function approach

Our approach is motivated by our findings in Section 4.1: some
children are at a corner solution when choosing the time they spend
on enrichment activities. Let 𝐼∗ denote the latent desired choice of
enrichment hours per week. The treatment variable 𝐼 is equal to this
latent desired variable 𝐼∗ only when it is non-negative:

𝐼 = max{0, 𝐼∗}, with 0 < P(𝐼∗ < 0) < 1. (4)

The bunching condition 0 < P(𝐼∗ < 0) < 1 in Eq. (4) implies that a
portion of the observations are at a corner solution, so that their desired
choice in the unconstrained optimization would have been different
from their actual choice in the constrained optimization. This condition
is clearly met in our case based on the evidence of bunching presented
in Fig. 1 and the discontinuities shown in Fig. 2.

We now consider the outcome equation, where we impose structure
by specifying the relationship between 𝐼∗ and 𝑈 (from Eq. (3)). In
particular, we assume that 𝑈 is linear in 𝐼∗:

Assumption 1 (Linearity in 𝐼∗). 𝑈 = ℎ(𝑋) + 𝛿(𝑋)𝐼∗ + 𝜖 where ℎ(𝑋) and
𝛿(𝑋) are nonparametric functions of controls 𝑋, and E[𝜖|𝑋, 𝐼∗] = 0.

Note that 𝐼∗ is by construction a sufficient index for all confounders
in 𝐼 because it tracks any variation in 𝐼 . Thus, if we were to have
written 𝑈 as a general function of 𝐼∗, we would have made no assump-
tion at all. The restriction we place on 𝑈 then is that it varies with
𝐼∗ linearly conditional on controls 𝑋. Because 𝑋 is allowed to enter
nonparametrically (on both ℎ(𝑋) and 𝛿(𝑋)), controls may play a useful
role in relaxing Assumption 1, as only the component of 𝐼∗ that varies
across observations with the same value of 𝑋 needs to be restricted to

15 Conversely, children with lower reading ability might spend more time
on tutoring lessons to compensate for it, which would generate a spurious
negative correlation between skills and enrichment.

16 This argument assumes that there are enough children in group (b),
i.e., that there is excess heterogeneity in those children at 𝐼 = 0 relative to
those at small values of 𝐼 > 0. Figs. 2, 3 and B.9 suggest that this must be
the case, otherwise the discontinuities documented there would be difficult to
explain.

enter the outcome equation linearly. In Sections 6 and 7.1, we provide
more context and supporting evidence for Assumption 1.

Eq. (3) and Assumption 1 together imply

𝑆 = 𝛽𝐼 + ℎ(𝑋) + 𝛿(𝑋)𝐼∗ + 𝜖
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑈

. (5)

This equation makes clear that if we could observe 𝐼∗, we would be able
to identify 𝛽 through Assumption 1 alone. Because 𝐼∗ is not observed
when 𝐼∗ < 0, we instead seek a proxy of it. Noting that 𝐼∗ = 𝐼+𝐼∗𝟏(𝐼 =
0) and taking expectations,17

E[𝑆|𝐼,𝑋] = 𝛽𝐼 + ℎ(𝑋) + 𝛿(𝑋)
(

𝐼 + E[𝐼∗|𝐼 = 0, 𝑋]𝟏(𝐼 = 0)
)

. (6)

Eq. (6) shows that 𝐼 + E[𝐼∗|𝐼 = 0, 𝑋]𝟏(𝐼 = 0) is a proxy for 𝐼∗.
Thus, if we could somehow identify E[𝐼∗|𝐼 = 0, 𝑋], then we could add
𝐼+E[𝐼∗|𝐼 = 0, 𝑋]𝟏(𝐼 = 0) to the regression as another control, allowing
us to identify 𝛽, ℎ(𝑋) and 𝛿(𝑋).18

Intuitively, E[𝐼∗|𝐼 = 0, 𝑋] is the average distance from indifference
between spending and not spending time on enrichment among those
children who bunch at zero. By Eq. (4), we know that E[𝐼∗|𝐼 =
0, 𝑋] < 0. However, we do not know its exact value because 𝐼∗ is not
observed when it is negative. In order to achieve point identification of
𝛽, we proceed by making distributional assumptions on 𝐼∗ that allow
us to point-identify E[𝐼∗|𝐼 = 0, 𝑋]. In particular, we consider three
alternative distributional assumptions, which are nested and ordered
from strongest to weakest:

Assumption 2 (Distributional Assumption). The distribution 𝐼∗|𝑋 fol-
lows one of three distributions:

1. (Homoskedastic Tobit): 𝐼∗|𝑋 ∼  (𝑋′𝜃, 𝜎2).
2. (Semiparametric Tobit): 𝐼∗|𝑋 ∼  (𝜇(𝑋), 𝜎2(𝑋))
3. (Nonparametric Tail Symmetry): Let 𝑞(𝑋) denote the (1 − P(𝐼 =

0|𝑋))th quantile of 𝐼∗|𝑋. Then, for all 𝑦 ≤ 0,

P(𝐼∗ ≤ 𝑦|𝑋) = 1 − P(𝐼∗ ≥ 𝑞(𝑋) − 𝑦|𝑋).

The homoskedastic Tobit assumption states that 𝐼∗|𝑋 is normally
distributed with a mean that depends linearly on 𝑋 and a variance that
is constant. The semiparametric assumption relaxes both the linearity of
the conditional mean in𝑋 and the homoskedasticity assumptions, keep-
ing only the normality assumption. The nonparametric tail symmetry
assumption relaxes the normality assumption, stating that the unob-
served lower tail of 𝐼∗|𝑋 is the mirror image of the corresponding upper
tail. Thus, for example, if 30% of the observations are bunched at zero,
which is the average bunching in our data, the nonparametric tail sym-
metry assumption states that the distribution of the bottom 30% of the
data is the mirror image of the distribution of the top 30% of the data.

Two points are worth emphasizing regarding Assumption 2. First,
because 𝐼∗|𝑋 is fully observed above the bunching point, it is possible
to assess the plausibility of any particular distributional assumption
using the non-bunched portion of the data. Indeed, we carry out
such an analysis in Section 6.2. Second, we adopt the nonparametric
tail symmetry assumption as our preferred assumption because it is
both fairly general and matches the data well. However, we view tail
symmetry simply as an assumption consistent with our data that allows
us to achieve point identification. In Section 7.2, we consider a wide
variety of other distributional assumptions (symmetric or otherwise),
showing that our main empirical conclusions are not an artifact of this
particular distributional assumption.

Summing up, beyond the existence of bunching (Eq. (4)), our ap-
proach makes two identifying assumptions: (1) conditional on controls

17 Note that E[𝜖|𝐼,𝑋] = 0 by Assumption 1 and the Law of Iterated
Expectations (E[𝜖|𝐼,𝑋] = E[E[𝜖|𝐼∗, 𝑋]|𝐼,𝑋] = 0).

18 Although equivalent, the model presented here uses a simpler notation
from the one presented in Caetano et al. (2023). See Bertanha, Caetano, Jales,
and Seegert (2022).
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𝑋, the component of skills that is not attributable to treatment effects
is linear in 𝐼∗ (Assumption 1) and (2) one of the three distributional
assumption on 𝐼∗|𝑋 (Assumption 2). Using any of the three distribu-
tional assumptions, we can estimate E[𝐼∗|𝐼 = 0, 𝑋] using the formulas
presented in Appendix A. The estimates of E[𝐼∗|𝐼 = 0, 𝑋] can then be
used to generate the new regressor 𝐼 + Ê[𝐼∗|𝐼 = 0, 𝑋]𝟏(𝐼 = 0) that can
be added to the model specified in Eq. (6).

Remark 4.2 (What is Inside 𝐼∗?). Because it tracks all variation in
𝐼 , the variable 𝐼∗ is a composite index of every unobserved factor
affecting our measure of enrichment. It therefore likely includes factors
associated with preferences (e.g., the child’s personality, family values
regarding education), constraints (e.g., whether the grandparents live
nearby, commuting distance to available enrichment activities) and any
potential measurement error in our measure of enrichment (e.g., the in-
terviewed week was not representative of their typical week19). Because
this list is diverse, it is possible that (a) 𝐼∗ represents a different mix
of these factors for different children, and (b) 𝐼∗ has a different effect
on skills depending on the child. It is even possible that 𝐼∗ might have
a positive effect on skills for some children while having a negative
effect on skills for other children. To allow for possibility (a), we allow
the distribution of 𝐼∗ to be different across different values of 𝑋 (see
Fig. 6). To allow for possibility (b), we further allow the effect of 𝐼∗ on
skills in Eq. (5), 𝛿(𝑋), to vary across different values of 𝑋 (see Fig. 7).
We also test for, and rule out, the possibility that the effect of 𝐼∗ on
skills varies with 𝐼 (i.e. 𝛿(𝐼,𝑋)), which might happen, for instance, if
some confounders exist only for some values of 𝐼 > 0 but not for 𝐼 = 0
(see Figs. 4 and 5).

4.3. Estimation details

Section 3 details our list of controls 𝑋, some elements of which are
continuous. We therefore ‘‘discretize’’ 𝑋 before estimating the expecta-
tion E[𝐼∗|𝐼 = 0, 𝑋] under the semiparametric Tobit and nonparametric
tail symmetry assumptions. Let {̂1,… , ̂𝐾} be a finite partition of the
support of 𝑋 into sets, which we call clusters, and let �̂�𝐾 = (𝟏(𝑋 ∈
̂1),… , 𝟏(𝑋 ∈ ̂𝐾 ))′ be the cluster indicators. In the estimation of
the expectation, we substitute 𝑋 with �̂�𝐾 , which has finite support.
The estimator Ê[𝐼∗|𝐼 = 0, 𝑋] = Ê[𝐼∗|𝐼 = 0, �̂�𝐾 ] is thus constructed
using a two-step procedure in which first 𝑋 is discretized and then
either semiparametric Tobit or nonparametric tail symmetry is applied
separately for each cluster.

We select the clusters so that observations in the same cluster have
similar 𝑋s. The clustering method we adopt means that as 𝐾 (the
number of clusters) grows, the observations within the same cluster
become more similar in terms of how close are the values of 𝑋.20 In
general, if E[𝐼∗|𝐼 = 0, 𝑋] is continuous, then Ê[𝐼∗|𝐼 = 0, �̂�𝐾 ] will
approximate E[𝐼∗|𝐼 = 0, 𝑋] as 𝐾 grows.

We also use the same clusters to relax the specification of controls.
We specify controls as ℎ(𝑋) = 𝑋′𝜏 +

∑𝐾
𝑘=1 𝛼𝑘𝟏(𝑋 ∈ 𝑘) in Eq. (6), so

19 Following the prior literature on time use, we try to avoid measurement
error of this sort by restricting the sample to observations where the inter-
viewed week was said to be representative of a typical week. Our approach still
allows for measurement error, provided it is discontinuous at 𝐼 = 0. Caetano
et al. (2019) shows this to be the case in the PSID-CDS data for observed
variables related to measurement error (e.g., whether interview respondent
was the primary caregiver instead of the child, whether the interview was
completed with the help of an interviewer, and whether the interview was
concluded face-to-face or by phone).

20 We show results using hierarchical clustering, which is known for its
stability and simplicity and for its ease of interpretation as we vary the number
of clusters. Nevertheless, we obtained similar results with other clustering
methods. Hierarchical clustering requires the choice of a dissimilarity measure
and a linkage method. The reported results use the Gower measure and Ward’s
linkage, but we obtained similar results with other choices.

the cluster indicators control nonparametrically for differences across
clusters, while differences within cluster due to 𝑋 are controlled lin-
early. As the number of clusters 𝐾 increases, the nonparametric match
improves, leaving less unexplained variation within cluster, which in
part can be controlled for 𝑋 linearly. Putting this all together, our
homogeneous estimates are based on linear regressions of the form

𝑆 = 𝛽𝐼 +𝑋′𝜏 +
𝐾
∑

𝑘=1
𝛼𝑘𝟏(𝑋 ∈ 𝑘) + 𝛿(𝐼 + Ê[𝐼∗|𝐼 = 0, �̂�𝐾 ]𝟏(𝐼 = 0)) + 𝜀.

Our baseline estimates use 𝐾 = 50 total clusters and assume further
(as in the above equation) that 𝛿 does not vary with 𝑋. Section 7.1
contains robustness analyses which relax both of these choices. First,
we change the value of 𝐾. Second, we allow for 𝛿(𝑋) to change with
clusters of 𝑋 by specifying 𝛿(𝑋) =

∑𝐾𝛿
𝑘=1 𝛾𝑘𝟏(𝑋 ∈ 𝑘) for various values

of 𝐾𝛿 . We show that the estimates of 𝛽 barely change when either 𝐾
or 𝐾𝛿 increases.

We report everywhere bootstrapped standard errors in which we
re-estimate the cluster-level expectations with each bootstrap iteration.
Thus, our reported standard errors account for the first-stage estimation
error associated with the generated regressor approach. See Caetano
et al. (2023) for a formal justification of the bootstrap in this setting.

5. Empirical results

5.1. Full-sample estimates

Table 2 presents our main results estimated on our full sample not
broken down by grade range. Column (i), which reports the results
of simple regressions of skills on enrichment time without controls,
shows that both cognitive and non-cognitive skills are strongly posi-
tively correlated with enrichment time. Column (ii), which adds our
full set of controls (including cluster indicators) into the specification
from column (i), shows that while observables seem to explain part
of the correlation between enrichment time and skills, the residual
relationships remain positive, particularly for cognitive skills.

The remaining columns in Table 2 show our corrected estimates of
𝛽 (Eq. (6)) under the different assumptions on the distribution of 𝐼∗|𝑋
discussed in Section 4 ranging from the strongest (homoskedastic Tobit)
to the weakest (nonparametric tail symmetry).

For cognitive skills, all of the corrected estimates are quite similar —
the 𝛽 estimates fall from 0.011 standard deviations (s.d.) with controls
but no correction to around −0.004 s.d. The large differences between
column (ii), where the estimate is positive and highly significant, and
columns (iii)-(v), where the estimates are negative and insignificant,
show that our correction method is able to handle endogeneity which
was not absorbed by the pre-determined controls. Our most general cor-
rection method (tail symmetry) yields a 90% bootstrapped confidence
interval of [−0.012, 0.008].

Correcting for selection has even more dramatic consequences for
the non-cognitive estimates — the corrected non-cognitive 𝛽’s are all
negative, with point estimates ranging between −0.024 and −0.015
s.d. The point estimate using the tail symmetry method (column (v))
is −0.019, significantly different from zero at 10%. This point estimate
implies that an additional hour of enrichment time per week causally
lowers non-cognitive skills by 0.019 sd.

For both cognitive and non-cognitive skills, the 𝛿 estimates are
positive and highly significant, confirming the evidence from Fig. 2 that
confounders tend to be positively correlated with 𝑆 (see also Fig. 3).
The fact that the 𝛽 estimates in the ‘‘No Controls’’ column (i) are larger
than in the ‘‘Uncorrected’’ column (ii) provides yet further evidence of
positive bias.

Finally, note that the standard errors in column (ii) of Table 2 are
much smaller than the standard errors from the corrected models in
columns (iii)-(v). This is a feature of our approach, not a bug. The
only difference between the corrected and uncorrected models is the
presence of the term 𝐼 + Ê[𝐼∗|𝐼 = 0, 𝑋]𝟏(𝐼 = 0). Adding one covariate
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Table 2
Full-sample results: The effect of enrichment time on skills.

(i) (ii) (iii) (iv) (v)
Uncorrected
No Controls

Uncorrected
w/ Controls

Homosk.
Tobit

Semip.
Tobit

Nonp. Tail
symmetry

Cognitive 𝛽 0.018** 0.011** −0.004 −0.007 −0.002
(0.003) (0.002) (0.006) (0.006) (0.006)

𝛿 0.013** 0.015** 0.010**
(0.005) (0.004) (0.005)

Non-cognitive 𝛽 0.006** 0.003 −0.015 −0.024** −0.019*
(0.003) (0.003) (0.010) (0.009) (0.010)

𝛿 0.015* 0.022** 0.018**
(0.008) (0.007) (0.008)

Note: N = 4330. Bootstrapped standard errors in parentheses (500 iterations). Columns (ii)–(v) use all control variables discussed at the end
of Section 4. Columns (iii)–(v) makes two identifying assumptions: Eq. (5) and a distributional assumption on 𝐼∗|𝑋. Column (iii) assumes
homoskedastic Tobit, column (iv) assumes semiparametric Tobit, and column (v) assumes nonparametric tail symmetry. Section 6 tests these
two assumptions. Specifications (ii)–(v) use 𝐾 = 50 and specifications (iii)–(v) use 𝐾𝛿 = 1, where 𝐾 and 𝐾𝛿 refer to the total number of clusters
defined in Section 4.3. See Figs. 6 and 7 in Section 7.1 for estimates of 𝛽 for different values of 𝐾 and 𝐾𝛿 . ** 𝑝 < 0.05, * 𝑝 < 0.1.

should not necessarily cause the standard errors in a regression to in-
crease, particularly so dramatically. The fact that we see large increases
in the standard errors in our application suggests greater underlying
uncertainty surrounding the true causal effects of enrichment time on
skills once endogeneity is accounted for. Not considering this correction
term would lead to two inferential problems: estimates that are both
biased and overly precise. This could lead to excessively optimistic
and confident expectations of policymakers or families regarding the
benefits of enrichment activities.

Robustness to Different Skill and Enrichment Definitions: Table B.8
in Appendix B shows that our baseline results are robust to plausible
alternative measures of skills. First, we consider each of the components
of our cognitive measure separately. For each component (applied prob-
lems, letter-word comprehension, and passage comprehension), we find
sizeable, positive uncorrected estimates and statistically insignificant
corrected estimates. Next, we consider alternative measures of non-
cognitive skills based on the internalizing and externalizing subscales
of the behavior problems index (BPI) included in the CDS. Here, the
uncorrected estimates suggest significant, positive effects for external-
izing problems only, while the corrected estimates for both scales are
negative and similar in magnitude to the main non-cognitive estimates
reported in Table 2.

Our results are also robust to alternative definitions of enrichment
time. First, we consider broad enrichment, which expands the notion
of enrichment to include additional activities less directly oriented
towards the development of cognitive skills such as organized sports,
arts, and volunteering, as detailed in Section 3. Table B.9 in Appendix B
shows that using this broader measure yields remarkably similar es-
timates to the baseline results presented in Table 2. The uncorrected
estimates again show significant, positive associations between (broad)
enrichment and skills, while the corrected estimates again indicate
a null effect for cognitive skills and a significant negative effect for
non-cognitive skills. Indeed, the corrected non-cognitive point estimate
assuming symmetry is very similar to the baseline estimate and is
significant at the 95% level. Conversely, when we restrict the definition
of enrichment to consist only of homework, we find the same pattern of
cognitive estimates near zero and non-cognitive estimates that are even
more negative and even more significant (Table B.10 in Appendix B).
The following remark discusses our results for homework and relate
them to the literature on the topic.

Robustness to Using Lagged Skill Measures as Controls: As dis-
cussed in Section 2.2, lagged test scores have been used successfully
in prior literature to handle endogeneity. We do not use lagged scores
in our primary analysis because doing so reduces our sample size sub-
stantially, rendering an analysis of by-grade heterogeneity impossible.
Nonetheless, as a robustness exercise, in Table B.12 (Appendix B) we
report the estimates analogous to those presented in Table 2, but with
the inclusion of lagged scores. The subsample used in Table B.12 is

naturally much smaller, with about a third of the size of the full sample,
and is notably selected.21 The results with lagged skill measures are
generally closer to zero and less precise, but the qualitative conclusions
are unchanged. For cognitive skills, the uncorrected estimates are
positive and significant while the corrected estimates are close to zero
and insignificant. For noncognitive skills, the corrected estimates are
negative, although they are not statistically significant. In particular,
we cannot reject at standard levels equality between the estimates with
and without lagged skills.

Remark 5.1 (Homework). Homework is the single largest component
of our measure of enrichment activities, so we provide here a more
detailed discussion of our findings in relation to the literature on the
effects of homework on childhood skills, beyond our broad discussion
in the introduction. To our knowledge, no paper in this literature
estimates the impact of homework on non-cognitive skills. Moreover,
only recently have there been studies estimating the effect of homework
on cognitive skills which systematically consider confounders. Specif-
ically, Aksoy and Link (2000) uses child-fixed effects to estimate the
effect of homework on math scores for 10th graders, and Eren and
Henderson (2011) uses the within-child, between-subject identification
strategy pioneered by Dee (2007) to absorb both child- and teacher-
specific unobservables to estimate the effect of homework for 8th
graders on math, science, English and history achievement. The main
finding in this literature is that math homework is effective for increas-
ing math skills, but the effect seems to be smaller and insignificant for
lower socioeconomic status children. Eren and Henderson (2011) also
finds that homework in other subjects (English, science and history)
does not seem to be effective on average and, moreover, that there does
not seem to be any cross-subject spillover (i.e., effect of homework of a
given subject on the skill of another subject), even for math homework.

For comparison, we estimate the effect of homework time alone
on different measures of skills and find results broadly consistent with
this prior literature. The point estimates are twice as large for applied
problems relative to letter-word, and even larger relative to passage
comprehension. These results can be found in Table B.11 in Appendix B.
Note that, although all of the point estimates are positive, they are
mostly insignificant at standard levels. This is consistent with the
findings in the homework literature: our measure of homework is a
composite of all types of homework, while Eren and Henderson (2011)
uses specific measures of homework for each subject, so naturally our
estimates should be smaller, especially given that paper’s evidence of
the ineffectiveness of non-math homework and its null findings for
cross-subject spillovers.

21 This subsample contains no children in grade range K-5, 487 children in
grade range 6–8 and 1085 children in grade range 9–12. The subsample is also
selected conditional on the grade range: among other differences, the children
from this subsample tend to have a higher household income and are more
likely to be White than the children in the same grade range in the full sample.
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Table 3
Cognitive estimates by grade levels.

(i) (ii) (iii) (iv) (v)
Uncorrected No
Controls

Uncorrected w/
Controls

Homosk.
Tobit

Semip.
Tobit

Nonp. Tail
symmetry

PreK–5 𝛽 0.008* 0.000 0.003 0.002 −0.002
(0.005) (0.003) (0.013) (0.012) (0.011)

N = 1331 𝛿 −0.003 −0.002 0.002
(0.012) (0.011) (0.009)

6–8 𝛽 0.020** 0.009** 0.003 −0.001 0.001
(0.003) (0.002) (0.011) (0.011) (0.011)

N = 1414 𝛿 0.005 0.008 0.007
(0.009) (0.009) (0.009)

9–12 𝛽 0.027** 0.013** −0.008 −0.009 −0.008
(0.003) (0.002) (0.008) (0.008) (0.009)

N = 1585 𝛿 0.016** 0.017** 0.017**
(0.006) (0.006) (0.007)

Note: Number of observations (𝑁) for each grade range is shown. Bootstrapped standard errors in parentheses (500 iterations). Specifications
(ii)–(v) use 𝐾 = 50 and specifications (iii)–(v) use 𝐾𝛿 = 1, where 𝐾 and 𝐾𝛿 refer to the total number of clusters defined in Section 4.3. **
𝑝 < 0.05, * 𝑝 < 0.1.

Table 4
Non-cognitive estimates by grade levels.

(i) (ii) (iii) (iv) (v)
Uncorrected No
Controls

Uncorrected w/
Controls

Homosk.
Tobit

Semip.
Tobit

Nonp. Tail
symmetry

PreK–5 𝛽 0.001 −0.001 0.030 0.026 0.023
(0.005) (0.005) (0.024) (0.024) (0.021)

N = 1331 𝛿 −0.027 −0.023 −0.020
(0.021) (0.022) (0.018)

6–8 𝛽 0.003 −0.003 0.005 0.000 −0.003
(0.005) (0.005) (0.020) (0.019) (0.018)

N = 1414 𝛿 −0.007 −0.003 0.000
(0.016) (0.016) (0.015)

9–12 𝛽 0.012** 0.010** −0.035** −0.040** −0.039**
(0.003) (0.004) (0.012) (0.011) (0.014)

N = 1585 𝛿 0.035** 0.039** 0.039**
(0.008) (0.008) (0.010)

Note: Number of observations (𝑁) for each grade range is shown. Bootstrapped standard errors in parentheses (500 iterations). Specifications
(ii)–(v) use 𝐾 = 50 and specifications (iii)–(v) use 𝐾𝛿 = 1, where 𝐾 and 𝐾𝛿 refer to the total number of clusters defined in Section 4.3. **
𝑝 < 0.05, * 𝑝 < 0.1.

5.2. Estimates by grade

The full-sample estimates imply that enrichment time, when cor-
rected for selection on unobservables, has no significant effect on
cognitive skills and a significant, negative effect on non-cognitive skills.
Here, we break down these results by grade level by applying our
method separately for children in different grade ranges.

The estimates by grade range are presented in Table 3. The un-
corrected estimates show that each additional hour of enrichment is
associated with a statistically significant increase in cognitive skills for
children in middle and high school. Yet, the corrected estimates are
all around zero. The headline result for cognitive skills from the full-
sample estimates in Table 2 carries over to each grade range separately:
the corrected effect of enrichment on cognitive skills is insignificant for
all grade ranges.

Table 4 repeats the analysis for non-cognitive skills. The uncorrected
estimates suggest a significant, positive association between enrichment
and non-cognitive skills for high school only. Interestingly, this grade
range happens to be exactly the one in which we find the most evidence
of endogeneity, as seen by the estimates of 𝛿 in columns (iii)–(v).22 This
accounts for why, when the endogeneity is corrected, the treatment

22 To see stronger evidence in favor of the claim that endogeneity is more
pronounced in high school than in other grades, compare the larger disconti-
nuities in the unobservables for high school in Fig. B.9 in Appendix B with the
discontinuities for the full sample in Fig. 3. This evidence is stronger because
it makes neither distributional nor linearity assumptions, see Section 6.1.

effect estimates are negative and significant. As discussed in Section 3,
this makes sense: this is the age when enrichment decisions diverge
across families, with some teenagers preparing for selective college
admission and others focusing on other endeavors.

The corrected non-cognitive estimates for youth in high school
are economically large. Our preferred point estimate assuming tail
symmetry implies that an additional hour of enrichment per week
lowers non-cognitive skills by −0.039 sd. To put the effect size of our
estimate in context, Jackson (2018) estimates that a 1 sd increase in
teacher non-cognitive value-added corresponds to an increase of about
0.08 sd in non-cognitive skills, roughly twice the size of our estimate. A
large literature in economics finds that non-cognitive skills are strongly
correlated with various later-life outcomes; we can thus provide yet
more context for our estimates by translating our non-cognitive effects
to effects on later-life outcomes using estimates from this literature.
For instance, Heckman, Stixrud and Urzua (2006) estimate that a 1
sd increase in non-cognitive skills is associated with 0.1–0.14 log-point
increases in wages at age 30. Carneiro, Crawford, and Goodman (2007)
similarly find that a 1 sd increase in non-cognitive skills is associated
with an 8 month increases in cumulative labor market experience by
age 42 and a 20% reduction in the likelihood of being diagnosed with
a mental health disorder by age 42. These and other estimates from
the literature therefore suggest that increases in enrichment time on
the order of a few hours per week should correspond to economically
significant decreases in various life outcomes.
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Fig. 3. Two tests under no distributional assumption. Note: Each panel shows two tests, one at 𝐼 > 0 and another at 𝐼 = 0, both based on the expected value of the residuals
from Eq. (3) (estimated for 𝐼 > 0 only) conditional on 𝐼 . We show a local linear plot of these residuals (bandwidth = 10) along with the 90% confidence interval. For 𝐼 > 0, it
is clear that the linearity cannot be rejected, so we cannot reject Assumption 1. For 𝐼 = 0, it is clear that the average of the residuals is negative, which is equivalent to 𝛿 > 0
(𝑝-value of the test of whether 𝛿 = 0 is also shown at the top). These two tests make no distributional assumption. In these regressions, 𝐾 = 50 as in the main results shown in
Section 5.

6. Testing the identification assumptions

The correction methodology relies on two key assumptions: (1) that
unobservables (indexed by 𝐼∗) affect skills linearly conditional on 𝑋
(Assumption 1) and (2) the particular distributional assumption made
on 𝐼∗|𝑋 necessary to identify E[𝐼∗|𝐼 = 0, 𝑋] (Assumption 2). In this
section, we discuss the tests we implement to detect violations of either
of the two identifying assumptions of the paper, separately or jointly.

6.1. Testing Assumption 1 alone

If Assumption 1 holds for 𝛿(𝑋) = 𝛿,23 then for 𝐼 > 0, E[𝑆|𝐼,𝑋] =
(𝛽 + 𝛿)𝐼 +ℎ(𝑋). That is, Eq. (5) implies that the conditional expectation
for 𝐼 > 0 must be linear in 𝐼 , and this does not depend on any
distributional assumption. Therefore, Eq. (5) may be tested by applying
any specification test to the regression of 𝑌 on 𝐼 and ℎ(𝑋) for 𝑋 > 0.

We run such regressions, collect the residuals and show the local
linear polynomial estimators of the expected value of these residuals
conditional on 𝐼 . The results of this exercise can be seen in Fig. 3. For
both cognitive and non-cognitive skills, the average residual is close to
zero for all values of 𝐼 > 0. This suggests that the linearity assumption
in Eq. (5) holds for the full sample. (Fig. B.9 in Appendix B shows the
analogous figure for the high school subsample.) Standard specification
tests (e.g. Ramsey, 1969’s RESET test) support this interpretation, as
they fail to reject our preferred specification of Eq. (5).

Fig. 3 also shows the results of a second test. As demonstrated
in Caetano et al. (2023), the average residual at 𝐼 = 0 is equal to
𝛿E[𝐼∗|𝐼 = 0]. Since E[𝐼∗|𝐼 = 0] < 0, the sign of the average residuals at
zero is opposite to the sign of 𝛿. Accordingly, the header of each panel
shows the 𝑝-value of a test of whether 𝛿 = 0.24 The results suggest that
𝛿 > 0 for both cognitive and non-cognitive skills. Indeed, our estimates
of 𝛿 in Section 5 are positive, but note that 𝛿 > 0 can already be inferred
here with no distributional assumption.

6.2. Testing Assumption 2 alone

The correction method requires a distributional assumption on 𝐼∗|𝑋
to permit the identification of E[𝐼∗|𝐼 = 0, 𝑋]. In this section, we test
the distributional assumptions we make in our empirical work directly,

23 For simplicity, we denote 𝛿(𝑋) as 𝛿 when we do not allow it to vary
with controls. See Fig. 7 in Section 7.1 as evidence that this restriction is not
consequential.

24 Similarly, 𝑡-tests of the average residuals at 𝐼 = 0 versus the corresponding
average for 𝐼 ∈ (0, 5] reject equality for both cognitive and non-cognitive skills.

without any assumption on Eq. (5), using Kolmogorov-Smirnoff-type
tests. We can do this because 𝐼∗ = 𝐼 when 𝐼 > 0, so we can compare
the observed distribution of 𝐼 above 0 to that implied by any particular
distributional assumption.

We first test the Homoskedastic Tobit assumption by comparing
the enrichment distributions for white versus Hispanic high school
students.25 Fig. B.10 in the Appendix shows the homoskedastic fit, and
the evidence of heteroskedasticity is clear, as the variance for white
high school students is greater than the variance for Hispanic high
school students. Indeed, we can reject this distributional assumption
at standard levels of significance using a Kolmogorov–Smirnov test.

Next, we consider the semiparametric Tobit assumption, which
relaxes the linear mean and homoskedasticity requirements while main-
taining the assumption that 𝐼∗|𝑋 follows a normal distribution. The
fitted distributions for white and Hispanic high school students in
this case (Fig. B.11 in the Appendix) clearly show that allowing for
different variances by groups noticeably improves the fit relative to
the homoskedastic case (Fig. B.10). Nonetheless, it is apparent that
the upper tail of the data is heavier than the upper tail implied by a
normal distribution for both groups.26 We are not able to reject the
semiparametric Tobit assumption with a Kolmogorov–Smirnov test, but
we are able to reject it at 10% with the test developed in Goldman
and Kaplan (2018) which is designed to have more power to detect
deviations from the null at the extremities of distributions.

Finally, we drop the normality assumption entirely and assume only
tail symmetry. Tail symmetry is not directly testable by observing the
empirical distribution of 𝐼 for 𝐼 > 0. However, provided the bunching
fraction is below 50%, (full) symmetry is testable because we can com-
pare the fitted and raw distributions for part of the support.27 We are
unable to reject symmetry using two distribution tests (Kolmogorov–
Smirnov and Goldman & Kaplan, 2018) for all values of 𝑋, irrespective
of the total number of clusters of the observables or the grade range
we consider. Because symmetry implies tail symmetry, we consider
our estimates under nonparametric tail symmetry as our main results
throughout the paper. For completeness, we show in Fig. B.12 the white
and Hispanic high school distributional fits in this case.

25 For concreteness, we maintain these comparison groups throughout this
section. However, we find broadly similar results – rejections of normality but
not of symmetry – using other comparison groups.

26 We observe a similar pattern for most values of 𝑋.
27 To see how symmetry is testable, consider the case where the bunching

rate is 20%. Then we can compare the empirical distribution between per-
centiles 20 and 50 with the mirror image of the empirical distribution between
percentiles 50 and 80. Under symmetry, the two should match.
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Fig. 4. Estimates for different truncations of the data by 𝐼max — Full sample. Note: Each panel shows the estimate of 𝛽 for cognitive (left panel) or non-cognitive skills (right
panel) restricting the sample to only children whose enrichment hours are lower than or equal to 𝐼max for values of 𝐼max ranging from 1 (only those who chose 𝐼 = 0 or 𝐼 = 1) to
50 (everyone). We cannot falsify our two identifying assumptions with this test.

Fig. 5. Estimates for different truncations of the data by 𝐼max — Grades 9–12. Note: Each panel shows the analogous estimates to Fig. 4 but for the sub-sample of children in
high school.

It is reassuring that we are able to detect violations of the ho-
moskedastic and semiparametric Tobit assumptions, even though their
resulting estimates of 𝛽 are similar to our preferred estimates of 𝛽 under
nonparametric tail symmetry. This is consistent with what Caetano
et al. (2023) finds in a Monte Carlo study of the method: the distribu-
tional tests we use are very sensitive in the sense that they can detect
violations of the distributional assumption even when they are small
enough to have only modest consequences for the estimate of 𝛽.

6.3. Testing Assumptions 1 and 2 jointly

We also jointly test both identifying assumptions by restricting the
sample to 𝐼 ∈ [0, 𝐼max] for increasingly large values of 𝐼max and applying
the control function correction for models estimated on each of the
restricted samples. If Eq. (6) holds and E[𝐼∗|𝐼 = 0, 𝑋] is correctly iden-
tified (i.e., the distributional assumption is valid), then there can be no
sample selection bias from restricting the sample to only observations
such that 𝐼 ≤ 𝐼max when running regression (6). Thus, the 𝛽 estimates
should be stable for different values of 𝐼max. One can then test whether
the estimated coefficients are the same as 𝐼max increases.28

Intuitively, this test relies on the idea that linearity is a weaker
assumption locally than globally. Thus, nonlinearities in Eq. (5) or
nonlinear errors in the identification of E[𝐼∗|𝐼∗ ≤ 0, 𝑋] will cause the
estimates of 𝛽 to not be stable as we increase 𝐼max. In fact, this test

28 A limitation of this test is that under heterogeneous treatment effects, it
is possible that estimates change with 𝐼max even if Assumptions 1 and 2 were
valid, since the target estimand would change with the sample.

is particularly sensitive to deviations from the identifying assumptions
that occur due to the presence of confounders that only affect the
outcome for values of 𝐼 away from 𝐼 = 0. This follows because
this type of confounder will tend to cause nonlinearities in E[𝑌 |𝐼,𝑋]
that show up for high enough values of 𝐼max, where the confounder
operates. Among other potential problems, this test should be sensitive
to essential heterogeneity in which higher-return youth spend more
time on enrichment (Heckman, Urzua and Vytlacil, 2006).

In Fig. 4, we show how our main estimates of 𝛽 for cognitive
(left panel) and non-cognitive skills (right panel) change for different
truncations of our sample ranging from 𝐼max = 1 to 𝐼max = 50.
Irrespective of our choice of 𝐼max, we maintain the same estimate of
E[𝐼∗|𝐼 = 0, 𝑋] using the nonparametric tail symmetry assumption. As
the maximum hours per week spent on enrichment in our full sample
is 50, the estimates in the far right of each panel are the estimates
reported in Table 2. We find that the sample-truncated estimates of 𝛽
are mostly quite similar to the main estimates from Table 2, except for
very small values of 𝐼max where the estimates are more negative (albeit
with substantially wider confidence intervals).

For completeness, Fig. 5 shows the analogous plots for high school
age youth. The findings are similar. We conclude that our two iden-
tifying assumptions – Eq. (5) and the nonparametric tail symmetry
assumption – cannot be rejected with this test.

7. Sensitivity analysis

In this section, we provide sensitivity analyses of our preferred
estimates that either relax or consider violations of our identifying
assumptions.
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Fig. 6. Estimates by 𝐾. Note: This figure shows the estimates from columns (ii) and (v) for different number of clusters of 𝑋 in the estimation of both E[𝐼∗|𝐼 = 0, 𝑋] and ℎ(𝑋).
The shaded areas depict the 90% confidence intervals. All standard errors are bootstrapped using 500 iterations.

Fig. 7. Estimates by 𝐾𝛿 . Note: This figure shows the estimates from columns (ii) and (v) for different number of clusters of 𝑋 in the estimation of 𝛿(𝑋). The left figure shows
cognitive estimates, and the right figure shows non-cognitive estimates. The shaded areas depict the 90% confidence intervals. All standard errors are bootstrapped using 500
iterations.

7.1. Using clusters to relax the identifying assumptions

In Section 4.3, we discuss the use of indicators of clusters of 𝑋 to
approximate a nonparametric function of 𝑋. Because ℎ(𝑋) = 𝑋′𝜏 +
∑𝐾
𝑘=1 𝛼𝑘𝟏(𝑋 ∈ 𝑘), the indicators 𝟏(𝑋 ∈ 𝑘) absorb all variation

across clusters, while the linear component 𝑋′𝜏 absorbs part of the
within-cluster variation. As the total number of clusters grows, our
specification becomes a better approximation of a nonparametric func-
tion of 𝑋 because the observations within the same cluster become
more similar to each other in terms of 𝑋s, leaving less variation to be
absorbed by the linear component. Thus, increasing the total number of
clusters offers a simple sensitivity analysis to gauge whether the main
estimates are sensitive to the choice of the number of clusters 𝐾 = 50.

Fig. 6 shows the 𝛽 estimates under tail symmetry for different
numbers of clusters 𝐾. Recall that clusters are used in two ways here:
to estimate the expectation E[𝐼∗|𝐼 = 0, �̂�𝐾 ] as an approximation to
E[𝐼∗|𝐼 = 0, 𝑋] and to relax the specification of controls ℎ(𝑋) by further
controlling for differences in controls across clusters nonparametrically.
The point at 𝐾 = 50 in the figure is identical to the estimate of 𝛽
shown in column (v) of Table 2, so increasing the number of clusters
all the way to 𝐾 = 100 does not change the estimates meaningfully.
This gives us confidence that 𝐾 = 50 seems to be sufficient to control
for all confounders related to 𝑋.

Finally, we relax Eq. (5) by allowing 𝛿(𝑋) to vary by different
clusters of 𝑋, as we did with ℎ(𝑋) in Fig. 6 (see Section 4.3). By
allowing 𝐼∗ to have different effects on skills for different types of
children belonging to different clusters, this generalization provides a

lot of flexibility in the way that our method controls for confounders.
For instance, it allows 𝐼∗ to have a negative effect on skills for some
values of 𝑋 while having some positive effect on skills for other values
of 𝑋. We keep 𝐾 = 50 fixed and change the value of 𝐾𝛿 , the total
number of clusters in 𝛿(𝑋). Fig. 7 shows that the estimates of 𝛽 are
nearly identical for both cognitive and non-cognitive skills as 𝐾𝛿 goes
from 𝐾𝛿 = 1 (as in the main results in Table 2) to 𝐾𝛿 = 10. Because
𝛿(�̂�𝐾𝛿 ) should be approximating 𝛿(𝑋) better for higher values of 𝐾𝛿 ,
we are effectively weakening Assumption 1 as we increase 𝐾𝛿 , yet the
main results do not change. These findings thus suggest that there is no
further confounding variation even at 𝐾𝛿 = 1.29

7.2. Assessing robustness to violations of Assumption 2

Here we assess the robustness of our key empirical results to vi-
olations of the distributional assumption. We do this using the insight
that the distributional assumption only matters for our estimates insofar
as it affects the identification of E[𝐼∗|𝐼 = 0, 𝑋]. Thus, we assess the
robustness of our estimates to alternative distributional assumptions by
systematically plugging in a wide range of values of Ê[𝐼∗|𝐼 = 0, 𝑋]
to the generated regressor in Eq. (6). More concretely, for a range of
values of the factor 𝑓 > 0, we replace our preferred tail symmetry

29 The uncorrected estimate from column (ii) in Table 2 is also shown in the
figure, for comparison. Of course, because this estimator does not depend on
the corrected term, the estimate does not change for different values of 𝐾𝛿 .
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Fig. 8. Robustness to different estimated expectations. Note: For each panel, the thick black curve shows what would be the 𝛽 from the regression in Eq. (6) were we to use
𝑓 ∗ �̂�[𝐼∗|𝐼 = 0, 𝑋] in constructing the generated regressor instead of �̂�[𝐼∗|𝐼 = 0, 𝑋] obtained assuming tail symmetry. The left two panels correspond to the sample and estimates
presented in Table 2, while the right two panels correspond to the sample and estimates presented in Tables 3 and 4. The tail symmetry estimates from these tables are the exact
ones represented in these plots when 𝑓 = 1.

estimates of the conditional expectations Ê[𝐼∗|𝐼 = 0, 𝑋] by 𝑓 ⋅ Ê[𝐼∗|𝐼 =
0, 𝑋], and we then carry out the rest of the estimation as before.

Fig. 8 shows the estimates for 𝛽 corresponding to our headline
estimates assuming tail symmetry from Tables 2, 3, and 4 for values
of 𝑓 ranging between 0.1 and 10 (i.e., from 10% to 1000% of the size
of the tail symmetric estimated expectation). These plots make clear
that our headline conclusions are robust to fairly severe mistakes in the
estimation of Ê[𝐼∗|𝐼 = 0, 𝑋]. For example, the high-school cognitive
estimates are indistinguishable from zero for 𝑓 > 0.2 (above 20%
of the tail symmetry estimates of Ê[𝐼∗|𝐼 = 0, 𝑋]) and negative for
𝑓 ≤ 0.2, while the high-school non-cognitive estimates are negative and
statistically significant for 𝑓 < 2.7 (below 270% of the tail symmetry
estimates). For 𝑓 ≥ 2.7, the high school non-cognitive point estimates
are still negative, although they are not statistically significant.

This analysis sheds light on why our empirical results are very
similar across different distributional assumptions, including the two
normality assumptions that are rejected by our data (see Section 6.2).

8. Understanding our empirical results

At first blush, our empirical results may seem surprising. Enrich-
ment activities are oriented towards skill development, so why does
the last hour of enrichment have a negligible effect on cognitive skills?
Moreover, why does this last hour have a significant negative effect
on non-cognitive skills in high school, but not in earlier grades? The
framework developed in Section 2 suggests that a complete answer to
these questions may depend on many factors: different skill production
functions at different ages, different substitution patterns between en-
richment and other time uses, and different usages of complementary

resources such as parental time and market goods. Exploring and
disentangling all of these potential factors is well beyond the scope
of this paper. Instead, we offer here a speculative, yet parsimonious,
explanation, based both on our data and a stylized model of optimal
time allocation, that we believe can help understand our key findings.

Suppose for simplicity that there are only two uses of time: enrich-
ment 𝐼 and leisure 𝐿, with the total time budget normalized to 1. Define
the cognitive (𝑆𝑐) and non-cognitive (𝑆𝑛) skills of each individual as
smooth functions of these two inputs,

𝑆𝑐 = 𝑓𝑐 (𝐼, 𝐿) = 𝑓𝑐 (𝐼, 1 − 𝐼)

𝑆𝑛 = 𝑓𝑛(𝐼, 𝐿) = 𝑓𝑛(𝐼, 1 − 𝐼).

For notational ease we drop the subscript for each individual, with
the understanding that not only the input 𝐼 , but also the production
functions 𝑓𝑐 and 𝑓𝑛 may vary with each individual depending on their
observed and unobserved characteristics.

Next, we consider a stylized assumption that helps explain the main
findings of the paper.

Assumption 3 (Stylized Assumption on 𝐼 , 𝑓𝑐 , and 𝑓𝑛).

a. 𝐼 is chosen to maximize 𝑓𝑐 (𝐼, 1 − 𝐼).
b. 𝑑𝑓𝑛(𝐼,1−𝐼)

𝑑𝐼 < 𝑑𝑓𝑐 (𝐼,1−𝐼)
𝑑𝐼 during high school.

Part (a) of this stylized assumption states that individuals choose
their level of enrichment to maximize cognitive skills. Part (b) states
that enrichment has a higher marginal return for cognitive than for
non-cognitive skills at any level of enrichment during high school.
Assumption 3 is not meant to be taken as valid for all individuals;
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Table 5
Enrichment time breakdown.

Enrichment activity All
grades

Grades
PreK–5

Grades
6–8

Grades
9–12

Homework 0.66 0.52 0.66 0.79
Reading a book 0.14 0.16 0.16 0.10
Before and after school programs 0.07 0.18 0.05 0.00
Other reading 0.04 0.05 0.05 0.03
Non-academic lessons 0.03 0.04 0.04 0.02
Other academic lessons 0.02 0.02 0.02 0.02
Other education 0.02 0.01 0.02 0.03
Being read To 0.01 0.03 0.01 0.00

Note: Each panel shows the average proportion of each type of enrichment activity
over a typical week for different samples. The table pools the 1997, 2002 and 2007
CDS waves.

rather it serves as a helpful simplifying device that leads to a useful
benchmark.

To gather some intuition for why Assumption 3a might be a rea-
sonable benchmark, note that ‘‘enrichment activities’’, are, by their
very definition, geared towards the improvement of skills somehow.
Moreover, note from Table 5 that the vast majority of time spent on
enrichment in the data is on activities that are more directed towards
enhancing cognitive skills, such as homework.

Table 5 also helps motivate Assumption 3b. It shows that there are
important differences in the composition of enrichment activities for
high-school age children compared to younger ages. Older children,
particularly in high school, spend less time on activities that tend to
be self-directed or social, such as ‘‘reading a book’’ and ‘‘before/after
school programs’’, which might be expected to have direct effects
on both cognitive and non-cognitive skills. Instead, their enrichment
time is tilted heavily towards homework, which might be expected to
provide a direct effect on cognitive skills and a smaller (if any) direct
effect on non-cognitive skills. We speculate that these composition
differences may contribute to a divergence around high school between
the marginal return of enrichment with respect to cognitive versus
non-cognitive skills.30

If enrichment time is chosen to maximize cognitive skills, then at
an interior solution 𝐼𝑐 , the marginal skill return to optimally chosen
enrichment, 𝐼𝑐 , and leisure, 𝐿𝑐 = 1 − 𝐼𝑐 , will be equal:
𝜕𝑓𝑐 (𝐼𝑐 , 𝐿𝑐 )

𝜕𝐼
=
𝜕𝑓𝑐 (𝐼𝑐 , 𝐿𝑐 )

𝜕𝐿
. (7)

As shown in Eq. (2) (in Section 2), our cognitive estimates correspond
in this model to the total derivative 𝑑𝑓𝑐∕𝑑𝐼 , which, by the above first-
order condition, is equal to 0. In particular, noting that 𝜕𝐿

𝜕𝐼 = −1 because
𝐿 + 𝐼 is constant,
𝑑𝑓𝑐 (𝐼𝑐 , 𝐿𝑐 )

𝑑𝐼
=
𝜕𝑓𝑐 (𝐼𝑐 , 𝐿𝑐 )

𝜕𝐼
+ 𝜕𝐿
𝜕𝐼

𝜕𝑓𝑐 (𝐼𝑐 , 𝐿𝑐 )
𝜕𝐿

=
𝜕𝑓𝑐 (𝐼𝑐 , 𝐿𝑐 )

𝜕𝐼
−
𝜕𝑓𝑐 (𝐼𝑐 , 𝐿𝑐 )

𝜕𝐿
= 0.

Thus, this simple model predicts zero total cognitive effects, approxi-
mately consistent with what we find across all age groups.31

Turning to non-cognitive skills, it is immediate that the correspond-
ing first-order condition equating the marginal returns to 𝐼 and 𝐿 for

30 This comparison is likely to understate the true disparity, since the nature
of the homework across grades is different as well, with high school homework
likely being less associated with non-cognitive skills than homework in earlier
grades.

31 For observations at a ‘‘corner solution’’ 𝐼𝑐 = 0, 𝜕𝑓𝑐 (0, 1)∕𝜕𝐼 < 𝜕𝑓𝑐 (0, 1)∕𝜕𝐿.
This implies that the total derivative 𝑑𝑓𝑐∕𝑑𝐼 at the optimum would actually
be negative for such individuals. Aggregating all individual effects 𝑑𝑓𝑐∕𝑑𝐼
across everyone at both interior and corner solutions, the average total effect
should be negative but small, with magnitude depending on the probability of
bunching.

non-cognitive skills will not generally hold at (𝐼𝑐 , 𝐿𝑐 ), the optimal levels
for cognitive skills. This happens because one generally cannot maximize
cognitive and non-cognitive skills at the same time when choosing the
allocation of time 𝐼 . Thus, under Assumption 3a alone, we can conclude
that we should not expect to find near-zero non-cognitive estimates.
Moreover, under Assumption 3b, it follows that, in high school,
𝑑𝑓𝑛(𝐼𝑐 , 𝐿𝑐 )

𝑑𝐼
<
𝑑𝑓𝑐 (𝐼𝑐 , 𝐿𝑐 )

𝑑𝐼
= 0.

This inequality implies that at the level of enrichment that maximizes
cognitive skills, the total derivative 𝑑𝑓𝑛(𝐼𝑐 , 𝐿𝑐 )∕𝑑𝐼 < 0, which is again
consistent with what we find empirically.32 In contrast, enrichment
activities in earlier grades might not be geared so heavily towards
cognitive skills, so 𝑓𝑐 (⋅) and 𝑓𝑛(⋅) might be sufficiently similar to each
other that 𝑓𝑛(𝐼𝑐 , 𝐿𝑐 ) would approximate zero.33

This stylized model thus predicts that in cases where enrichment
𝐼 is chosen to maximize cognitive skills, we should expect to see
near-zero cognitive estimates and, depending on the extent to which
𝐼 targets cognitive vs. non-cognitive skills (which may change across
grades), non-cognitive estimates might be different from zero, and
likely negative in high school.

As discussed in Section 2, the specific activity replaced by en-
richment also matters. If the last hour of enrichment is obtained by
spending one less hour on an activity that would have been beneficial
for non-cognitive skills, such as sleeping or socializing with friends,
then the negative non-cognitive effect would likely be greater. In this
regard, we note that teenagers in high school seem to be spending
substantially more time on duties and chores than younger children,
as shown in Table 1. We conjecture that duties/chores is a special type
of activity, in the sense that the time a child or teenager spends on
it is more likely to be imposed by others, rather than chosen by them
(e.g., perhaps their parents or their employer impose restrictions on the
amount of duties/chores they need to accomplish on a day). If that is
the case, then the fact that teenagers spend substantially more time on
duties/chores than younger children may imply that they would have
a higher opportunity cost for the last hour of enrichment, since they
would have effectively less time available, after performing obligatory
duties and chores, to allocate among the remaining activities.

These explanations are speculative, and the motivating model is
very simple and omits many factors likely to be important. Making
further progress in understanding the possibly heterogeneous opportu-
nity costs of enrichment would involve estimating the additional causal
effects detailed in Eq. (2).

9. Conclusion

Our results suggest that the sizable, positive correlations observed
between enrichment time and childhood skills are mostly driven by
unobservables. Using our control function approach to correct for the
bias introduced by these unobservables, we find that the net causal
effect of enrichment activities is around zero for cognitive skills. For
non-cognitive skills, the corrected estimates are quite negative and very
significant in high school, while closer to zero for earlier grades.

Our results suggest a number of potential avenues for future re-
search. For example, prior literature has emphasized the importance of
children’s time with parents/adults for skill development, particularly
in early childhood (Becker, 1991; Caetano et al., 2019; Hsin & Felfe,
2014; Linver, Brooks-Gunn, & Kohen, 2002; Yeung, Linver, & Brooks-
Gunn, 2002). As demonstrated in Section 8, enrichment time for older

32 Although not necessary, for clarity one may make the standard assump-
tions that 𝑓𝑐 and 𝑓𝑛 are increasing and concave in 𝐼 , so that 𝐼𝑛 < 𝐼𝑐 , where 𝐼𝑛
is the level of 𝐼 that maximizes non-cognitive skills.

33 During grades K-5, enrichment activities might be geared predominantly
towards non-cognitive skills, which would explain why non-cognitive point
estimates, although noisy, are positive in those grades.
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children is more oriented towards homework and other activities that
are likely to be solitary. Thus, exploring heterogeneity in the effects
of enrichment time by who the time is spent with (i.e. parents, other
caregivers, friends, or alone) might prove fruitful. It would also be
interesting to estimate the effects of enrichment time, particularly in
high school, on alternative, longer-run outcomes.

As discussed in Sections 2 and 8, a comprehensive assessment of
the mechanisms driving our results would require the estimation of
the (likely heterogeneous) time use substitution patterns. Currently,
these questions can only be studied with two datasets, both with
limited sample sizes (the CDS-PSID and the Longitudinal Study of
Australian Children—LSAC), which restrict the researcher’s ability to
uncover important sources of heterogeneity. We hope larger datasets
on time use linked to measures of cognitive and non-cognitive skills be-
come available, which will enable researchers to study these important
questions.
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Appendix A. Details of the estimation of E[𝑰∗
|𝑰 = 𝟎, 𝑿]

This appendix provides the formulas of the three strategies to
estimate E[𝐼∗|𝐼 = 0, 𝑋] presented in Section 4.

Homoskedastic tobit

In this case, the formula of the expectation is

E[𝐼∗|𝐼 = 0, 𝑋] = 𝑋′𝜅 − 𝜎𝜆(−𝑋′𝜅∕𝜎) (8)

where 𝜅 = 𝜋 + 𝜃 and 𝜆(⋅) is the inverse Mill’s ratio. The parameters 𝜅
and 𝜎 are estimated straightforwardly via a Tobit regression of 𝐼 on 𝑋.

Semiparametric Tobit

In this more general case, the formula of the expectation is

E[𝐼∗|𝐼 = 0, 𝑋] = 𝜓(𝑋) − 𝜎(𝑋)𝜆 (−𝜓(𝑋)∕𝜎(𝑋)) , (9)

where 𝜓(𝑋) = 𝑔(𝑋) + 𝑙(𝑋). We estimate 𝜓(𝑋) and 𝜎(𝑋) separately for
each cluster of 𝑋 by running a Tobit regression of 𝐼 on a constant using
only the observations in that cluster. See Section 4.3 for details about
clustering.

Nonparametric tail symmetry

Under tail symmetry, the formula is

E[𝐼∗|𝐼 = 0, 𝑋] = 𝐹−1
𝐼|𝑋 (1 − 𝐹𝐼|𝑋 (0)) − E[𝐼|𝐼 ≥ 𝐹−1

𝐼|𝑋 (1 − 𝐹𝐼|𝑋 (0)), 𝑋], (10)

where 𝐹𝐼|𝑋 (⋅) is the cumulative distribution function of 𝐼 conditional
on 𝑋. We carry out the estimation of E[𝐼∗|𝐼 = 0, 𝑋] using Eq. (10) in
three steps. For each cluster of 𝑋, we first estimate the probability of
bunching at zero enrichment, 𝐹𝐼|𝑋 (0). Then we estimate the quantile
of I in the upper tail that corresponds to the mirror image of 𝐼 = 0,
𝐹−1
𝐼|𝑋 (1 − 𝐹𝐼|𝑋 (0)). Finally we estimate the mean of 𝐼|𝑋 at the upper

tail, E[𝐼|𝐼 ≥ 𝐹−1
𝐼|𝑋 (1 − 𝐹𝐼|𝑋 (0)), 𝑋]. See Section 4.3 for details about

clustering.

Appendix B. Supporting tables and figures

Table B.6
The composition of various time use aggregates in the PSID-CDS.

Other enrichment Share Passive leisure Share

Sports (Structured) 0.61 TV 0.67
Arts 0.17 Other media 0.30
Arts excursions 0.11 Other 0.03
Computer (Educational) 0.09
Volunteering 0.01

Play and social activities Share Duties/Chores Share

Play and interactive games 0.44 Traveling 0.28
Conversations 0.17 Meals 0.27
Socializing 0.13 Personal care 0.21
Religious activities 0.12 Chores 0.11
Hobbies 0.06 Shopping 0.06
Sports (Unstructured) 0.05 Paid work 0.06
Other group activities 0.03 Caring for others 0.01

Note: Panels present the average division of time into different categories over a typical
week for our full CDS sample. The panels pool the 1997, 2002 and 2007 CDS waves.

Table B.7
Cognitive and non-cognitive factor loadings.

Cognitive skills 1997 2002 2007

Letter word 0.95 0.94 0.85
Applied problems 0.89 0.89 0.76
Passage comprehension 0.96 0.96 0.90

Non-cognitive skills

Cheat or tells lies 0.46 0.52 0.56
Bullies or mean to others 0.55 0.56 0.51
Feels no regret after misbehaving 0.41 0.45 0.43
Breaks things on purpose 0.46 0.48 0.47
Has sudden changes in mood 0.55 0.56 0.58
Feels no love 0.49 0.52 0.57
Too fearful or anxious 0.41 0.47 0.50
Feels worthless or inferior 0.48 0.53 0.64
Sad or depressed 0.52 0.55 0.64
Cries too much 0.42 0.36 0.38
Easily confused 0.50 0.53 0.53
Has obsessions 0.51 0.51 0.60
Rather high strung, tense and nervous 0.48 0.54 0.53
Argues too much 0.60 0.59 0.59
Disobedient 0.51 0.58 0.57
Stubborn, sullen, or irritable 0.61 0.61 0.64
Has a very strong temper 0.59 0.65 0.64
Has difficulty concentrating 0.57 0.59 0.59
Impulsive, or acts without thinking 0.62 0.62 0.62
Restless or overly active 0.55 0.52 0.49
Has trouble getting along with other children 0.59 0.59 0.59
Not liked by other children 0.44 0.43 0.50
Withdrawn, does not get involved with others 0.37 0.43 0.45
Clings to adults 0.32 0.31 0.27
Demands a lot of attention 0.58 0.53 0.54
Too dependent on others 0.43 0.46 0.49
Thinks before acting, not impulsive 0.52 0.52 0.58
Generally well behaved, does what adults request 0.53 0.59 0.60
Can get over being upset quickly 0.42 0.44 0.51
Waits turns in games and other activities 0.47 0.52 0.49
Gets along well with other children 0.60 0.62 0.61
Admired by other children 0.55 0.55 0.57
Cheerful, happy 0.42 0.48 0.58
Tries things for himself/herself 0.35 0.34 0.46
Does neat, careful work 0.39 0.41 0.49
Curious and exploring, likes new experiences 0.12 0.21 0.26

Note: Cognitive and non-cognitive factor loadings are shown for each CDS wave. Each
behavioral variable has been recoded so that a higher value corresponds to ‘‘better’’
behavior.
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Table B.8
Uncorrected and corrected results — Alternative skill measures.

(i) (ii) (iii) (iv) (v)
Uncorrected
No Controls

Uncorrected
w/ Controls

Homosk.
Tobit

Semip.
Tobit

Nonp. Tail
symmetry

Cognitive

Applied 𝛽 0.013** 0.008** 0.000 −0.004 0.000
problems (0.003) (0.002) (0.006) (0.005) (0.006)

𝛿 0.007 0.010** 0.007
(0.005) (0.004) (0.005)

Letter word 𝛽 0.012** 0.008** −0.001 −0.003 −0.001
(0.003) (0.001) (0.006) (0.005) (0.006)

𝛿 0.007 0.009** 0.007
(0.005) (0.004) (0.005)

Passage 𝛽 0.014** 0.009** −0.001 −0.003 0.000
comprehension (0.003) (0.001) (0.006) (0.005) (0.006)

𝛿 0.009* 0.010** 0.008*
(0.005) (0.004) (0.005)

Non-cognitive

External 𝛽 0.010** 0.006** −0.014 −0.023** −0.017*
(0.002) (0.002) (0.009) (0.008) (0.009)

𝛿 0.016** 0.023** 0.018**
(0.008) (0.007) (0.008)

Internal 𝛽 0.002 −0.001 −0.021** −0.026** −0.017*
(0.003) (0.003) (0.010) (0.009) (0.010)

𝛿 0.016** 0.020** 0.013
(0.008) (0.007) (0.008)

Note: N = 4330. Bootstrapped standard errors in parentheses (500 iterations). Specifications (ii)–(v) use 𝐾 = 50 and specifications (iii)–(v) use
𝐾𝛿 = 1, where 𝐾 and 𝐾𝛿 refer to the total number of clusters defined in Section 4.3. Both the external and internal behavioral indexes are
scaled so that a higher score corresponds to better behavior. ** 𝑝 < 0.05, * 𝑝 < 0.1.

Table B.9
Uncorrected and corrected results — Broad enrichment.

(i) (ii) (iii) (iv) (v)
Uncorrected
No Controls

Uncorrected
w/ Controls

Homosk.
Tobit

Semip.
Tobit

Nonp. Tail
symmetry

Cognitive 𝛽 0.024** 0.010** −0.001 −0.003 −0.002
(0.002) (0.001) (0.007) (0.006) (0.006)

𝛿 0.011* 0.012** 0.011**
(0.006) (0.006) (0.005)

Non-cognitive 𝛽 0.009** 0.007** −0.018* −0.018** −0.017**
(0.002) (0.002) (0.011) (0.009) (0.008)

𝛿 0.023** 0.023** 0.021**
(0.009) (0.008) (0.007)

Note: N = 4330. Bootstrapped standard errors in parentheses (500 iterations). Specifications (ii)–(v) use 𝐾 = 50 and specifications (iii)–(v) use
𝐾𝛿 = 1, where 𝐾 and 𝐾𝛿 refer to the total number of clusters defined in Section 4.3. ** 𝑝 < 0.05, * 𝑝 < 0.1.

Table B.10
Uncorrected and corrected results — Homework only.

(i) (ii) (iii) (iv) (v)
Uncorrected
No Controls

Uncorrected
w/ Controls

Homosk.
Tobit

Semip.
Tobit

Nonp. Tail
symmetry

Cognitive 𝛽 0.032** 0.010** 0.007 0.002 0.003
(0.003) (0.002) (0.007) (0.007) (0.008)

𝛿 0.003 0.006 0.006
(0.005) (0.005) (0.006)

Non-cognitive 𝛽 0.011** 0.006** −0.020* −0.032** −0.029**
(0.003) (0.003) (0.011) (0.010) (0.013)

𝛿 0.020** 0.028** 0.028**
(0.008) (0.007) (0.010)

Note: N = 4330. Bootstrapped standard errors in parentheses (500 iterations). Specifications (ii)–(v) use 𝐾 = 50 and specifications (iii)–(v) use
𝐾𝛿 = 1, where 𝐾 and 𝐾𝛿 refer to the total number of clusters defined in Section 4.3. ** 𝑝 < 0.05, * 𝑝 < 0.1.
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Table B.11
Alternative cognitive skill measures — Homework only.

(i) (ii) (iii) (iv) (v)
Uncorrected
No Controls

Uncorrected
w/ Controls

Tobit Het.
Tobit

Het.
Symmetric

Applied 𝛽 0.032** 0.010** 0.016** 0.008 0.008
problems (0.003) (0.002) (0.006) (0.006) (0.007)

𝛿 −0.004 0.001 0.001
(0.005) (0.004) (0.006)

Letter 𝛽 0.030** 0.007** 0.010 0.005 0.004
word (0.003) (0.002) (0.006) (0.006) (0.008)

𝛿 −0.002 0.002 0.003
(0.005) (0.004) (0.006)

Passage 𝛽 0.031** 0.009** 0.005 0.002 0.001
comprehension (0.004) (0.002) (0.006) (0.005) (0.006)

𝛿 0.003 0.005 0.006
(0.005) (0.004) (0.005)

Note: N = 4330. Bootstrapped standard errors in parentheses (500 iterations). Specifications (ii)–(v) use 𝐾 = 50 and specifications (iii)–(v) use
𝐾𝛿 = 1, where 𝐾 and 𝐾𝛿 refer to the total number of clusters defined in Section 4.3. ** 𝑝 < 0.05, * 𝑝 < 0.1.

Table B.12
Adding lagged scores as controls: The effect of enrichment time on skills.

(i) (ii) (iii) (iv) (v)
Uncorrected
No Controls

Uncorrected
w/ Controls

Homosk.
Tobit

Semip.
Tobit

Nonp. Tail
symmetry

Cognitive 𝛽 0.018** 0.006** −0.003 −0.001 0.000
(0.003) (0.002) (0.007) (0.006) (0.007)

𝛿 0.007 0.006 0.005
(0.006) (0.005) (0.006)

Non-cognitive 𝛽 0.006** 0.001 −0.012 −0.013 −0.012
(0.002) (0.003) (0.012) (0.010) (0.012)

𝛿 0.010 0.011 0.010
(0.009) (0.008) (0.010)

Note: N = 1572. Bootstrapped standard errors in parentheses (500 iterations). Columns (ii)–(v) use all control variables discussed at the
end of Section 4, plus lagged cognitive and non-cognitive scores. Columns (iii)–(v) makes two identifying assumptions: Eq. (5) and a
distributional assumption on 𝐼∗|𝑋. Column (iii) assumes homoskedastic Tobit, column (iv) assumes semiparametric Tobit, and column (v)
assumes nonparametric tail symmetry. Section 6 tests these two assumptions. Specifications (ii)–(v) use 𝐾 = 50 and specifications (iii)–(v) use
𝐾𝛿 = 1, where 𝐾 and 𝐾𝛿 refer to the total number of clusters defined in Section 4.3. ** 𝑝 < 0.05, * 𝑝 < 0.1.

Fig. B.9. Two tests under no distributional assumption: Grades 9–12. Note: Each panel shows two tests, one at 𝐼 > 0 and another at 𝐼 = 0, both based on the expected value of
the residuals from Eq. (3) (estimated for 𝐼 > 0 only) conditional on 𝐼 . We show a local linear plot of these residuals along with the 90% confidence interval. For 𝐼 > 0, it is clear
that the linearity cannot be rejected, so we cannot reject Assumption 1. For 𝐼 = 0, it is clear that the average of the residuals is negative, which is equivalent to 𝛿 > 0 (𝑝-value of
the test of whether 𝛿 = 0 is also shown at the top). These two tests make no distributional assumption.
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Fig. B.10. Homoskedastic tobit fit. Note: Each panel depicts the raw CDF of enrichment (𝐼) for white (left panel) and Hispanic (right panel) high school students (thick curve)
along with the corresponding homoskedastic Tobit fit (thin curve). The plots show evidence that the homoskedastic normal fit for positive values of enrichment is not satisfactory.
We are able to reject this distributional assumption with a Kolmogorov–Smirnov test.

Fig. B.11. Semiparametric tobit fit. Each panel depicts the raw CDF of enrichment (𝐼) for white (left panel) and Hispanic (right panel) high school students (thick curve) along
with the corresponding semiparametric Tobit fit (thin curve). The fit improves relative to the homoskedastic case (Fig. B.10), but the upper tail of the raw distribution seems
heavier than the fit. We are unable to reject this distributional assumption with a Kolmogorov–Smirnov test, but we can reject this assumption with a more powerful test (Goldman
& Kaplan, 2018).

Fig. B.12. Nonparametric tail symmetry fit. Each panel depicts the raw CDF of enrichment (𝐼) for white (left panel) and Hispanic (right panel) high school students (thick curve)
along with the corresponding nonparametric tail symmetry fit (thin curve). We are unable to reject full symmetry with both distributional tests (Kolmogorov–Smirnov and Goldman
& Kaplan, 2018).
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