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Abstract
Similarities between parent and offspring are widespread in psychology; however, shared genetic variants often confound
causal inference for offspring outcomes. A polygenic score (PGS) derived from genome-wide association studies (GWAS)
can be used to test for the presence of parental influence that controls for genetic variants shared across generations. We use a
PGS for educational attainment (EA3; N ≈ 750 thousand) to predict offspring years of education in a sample of 2517 twins
and both parents. We find that within families, the dizygotic twin with the higher PGS is more likely to attain higher
education (unstandardized β= 0.32; p < 0.001). Additionally, however, we find an effect of parental genotype on offspring
outcome that is independent of the offspring’s own genotype; this raises the variance explained in offspring years of
education from 9.3 to 11.1% (ΔR2= 0.018, p < 0.001). Controlling for parental IQ or socioeconomic status substantially
attenuated or eliminated this effect of parental genotype. These findings suggest a role of environmental factors affected by
heritable characteristics of the parents in fostering offspring years of education.

Introduction

Children typically develop traits and behaviors that are
influenced by both the genes and the family environment
they have inherited from their parents. Decades of twin and
adoption studies have dramatically shifted our under-
standing of the factors that drive parent–offspring associa-
tions, including the discovery that the shared family
environment provided by parents contributes less to the
development of most behavioral traits than do the shared
genetic factors [1, 2]. Despite the elusive nature of shared
environment effects, pinpointing their sources remains a
tantalizing challenge for many researchers. The ability to do
so reliably has been bolstered by advances in quantitative

genetics, which have made it possible to detect and measure
genetic influences on complex behaviors at the molecular
level. In particular, genome-wide association studies
(GWAS) enable us to aggregate the tiny effects of many
genetic variants into a polygenic score, which functions as
an index of genetic propensity towards a phenotype of
interest [3]. Here, we use polygenic scores to test the
hypothesis that both parent and offspring genes contribute
to offspring behaviors in a manner consistent with envir-
onmental mechanisms of intergenerational transmission.

Relevant to this transmission is the observation that
genetic propensities are often associated with environmental
experiences, a phenomenon known collectively as
gene–environment correlation (rGE). Children usually grow
up with relatives whose own genes help to create an
environment that influences the development of the chil-
dren’s traits or behaviors. For example, musically gifted
children may inherit both genes and an environment con-
ducive to developing musical ability—such as instruments
and lessons—from their parents [4]. Evidence that parents
drive such “passive” gene–environment correlation comes
from studies of adopted families and of children of twins,
which both control for genetic influence in different ways.
Since adopted children do not share genes with their par-
ents, a correlation between parent and offspring traits is
likely mediated by the environment that the parents create.
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This approach has uncovered an effect of home environ-
ment on cognitive development [5] and educational attain-
ment [6] of children in adopted families. The children-of-
twins design compares the offspring of adult identical twins
as a way to clarify whether measures of family environment
directly influence child outcomes or are genetically medi-
ated [7]. This method has produced evidence that the rela-
tionship between parental divorce and offspring drug use is
genetically mediated, while divorce plays a direct environ-
mental role in the development of offspring emotional
problems [8].

While these are valuable methods, their utility is limited
by a number of factors, including practical difficulties in
assembling large samples of families with the relevant
structure (e.g., adoption). GWAS, by contrast, provide a
toolkit for direct quantification of genetic transmission from
parents to offspring at the individual level. This is enabled
by the massively polygenic architecture of many complex
outcomes, and that individual scores based on aggregate
single-nucleotide polymorphisms (SNPs) associated with
these outcomes have substantial predictive value. One of the
outcomes that has been studied most successfully in these
ways is educational attainment (measured in total years of
education, or “EduYears”). The most recent GWAS of
educational attainment, which included 1.1 million indivi-
duals, identified 1271 significant SNPs [9]. A polygenic
score (PGS) constructed from this large sample is now able
to predict 11–13% of the variance in educational attainment
and 7–10% of the variance in cognitive ability, exceeding
all previous benchmarks [10, 11], and providing further
evidence that educational attainment is a viable proxy for
cognitive ability.

The PGS constructed from these studies are reliable
enough to draw inferences about sources of environmental
variation that are often inconclusive in twin and adoption
studies. As of early 2018, these scores have been used to
predict outcomes in offspring consistent with a causal role
of the environment fostered by the parents. Kong et al. [12],
the first to demonstrate “genetic nurture” with a PGS, found
that almost 30% of the offspring PGS’s correlation with
their educational attainment is due to the environment
provided by their parents, as inferred from a significant
effect of the non-transmitted portion of the parents’ gen-
omes. Bates et al. [13] subsequently produced a similar
finding in a sample of genotyped twins and their parents
using a virtual-parent design, which additionally found that
a family’s inherited socioeconomic status (SES) was sig-
nificantly related to both parents’ and offspring’s polygenic
scores. These studies were followed by Belsky et al. [14],
which was the first to provide evidence for such environ-
mental transmission using a PGS derived from EA3 data in
a sample of siblings and their parents. Liu [15] replicated
the genetic nurture effect of parents’ genome on offspring

outcome and additionally examined this effect with grand-
parents, finding no evidence that the non-biological trans-
mission of educational attainment persists beyond one
generation.

These studies have shed valuable light on questions
surrounding the non-genetic pathways of intergenerational
transmission of outcomes, and in doing so have raised
others of import and interest. For example, it remains lar-
gely unexplored whether and to what extent other social
outcomes and parent/offspring phenotypes—for example,
IQ and “soft” skills—follow a similar pattern of non-genetic
transmission. Additionally, the family characteristics and
processes that could mediate the effects of genetic nurture
remain mostly unexplored.

We replicate the “genetic nurture” effect in a relatively
rare kind of dataset consisting of both monozygotic and
dizygotic twins and (typically) both parents, all of whom are
genotyped. In doing so, we seek to address the outstanding
questions about genetic nurture with the following logic. In
the simplest quantitative-genetic model, the portion of the
parent genotype that leads causally to the measured trait—
their “true” genetic value—affects the educational attain-
ment of the children through the true genetic value of the
offspring, which is inherited fully from the parents. This
model predicts that offspring polygenic scores would
completely mediate the effect of the parent polygenic
scores. However, a unique contribution of parental PGS to
offspring outcomes would suggest that parental genotypes
affect something about the environment that influences the
offspring’s outcome; this causal path would therefore act
apart from and in addition to the parents’ contribution to the
offspring’s genotype. Other parental phenotypes, such as
socioeconomic status, can be used as covariates to test for a
significant reduction in the partial regression coefficient of
parental PGS. This finding would be consistent with a
causal role of parental PGS on these covariates, which may
be good measures of the environmental variables that could
in turn affect offspring outcomes (Fig. 1).

To conduct a direct test of this model, we use EA3-
derived polygenic scores from pairs of monozygotic and
dizygotic twins and both of their parents, enabling the
investigation of two fundamental questions. First, do poly-
genic scores predict educational attainment and related
phenotypes within families, such that the dizygotic twin
with the higher polygenic score will also tend to have
attained the highest education? If genetic nurture is oper-
ating, then a population GWAS will overestimate a given
SNP’s “true” regression coefficient—that is, the regression
coefficient induced by its average effect of gene substitution
[16, 17] and linkage disequilibrium with other causal sites.
The reason for the overestimation is that an individual’s
SNP genotype is confounded by the genotypes of the par-
ents, which affect some parental phenotype that in turn
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affects the trait being studied in the GWAS. In a within-
family setting, however, two siblings with different PGS
values are expected to differ phenotypically by an amount
given solely by the true effects; this is because the con-
founding factor of parent genotype is fixed to be the same
for all siblings begotten by a given pair of parents. Thus, if
the PGS is derived from a GWAS of a trait subject to
genetic nurture, the predictive power of the PGS should
decline when it is applied within families.

Second, does accounting for parental PGS improve the
prediction of offspring years of education over and above
how well offspring PGS predicts this outcome, and do
environmental factors correlated with parental PGS explain
this increment in prediction?

We address these research questions in an investigation
of genetic nurture for years of education using molecular-
genetic techniques on large samples.

Methods

Sample

The current project is based on the results of a genome-wide
association study conducted by the Minnesota Center for
Twin and Family Research (MCTFR). The sample under
investigation represents 4478 genotyped individuals of
European ancestry with polygenic scores (PGS) for years of
education [18]. Comprising this sample are sets of parents
and offspring from a total of 1223 families, including 2032
parents (1093 mothers and 939 fathers) and 2446 twins (830
dizygotic, 55% female; 1616 monozygotic, 53% female).
Parent predictors and outcomes are calculated as the mean

of mother and father on a given variable score; e.g.,
EduYears PGS.

Measures

Participants were genotyped on 527,829 SNPs using the
Illumina Human660W-Quad array (see ref. [18] for addi-
tional details on sampling, assessment, quality control, and
imputation performed on the MCTFR sample). A polygenic
score (PGS), often called the polygenic risk score in disease
prediction, is calculated from a set of SNPs that are tested in
the initial sample for association with a trait of interest (see
Supplementary Online Materials Section 1) [19]. Parent and
offspring polygenic scores for years of education are used to
predict outcomes using multivariate regressions, as was
done by Belsky et al. and Liu. A finding of the parent
PGS having a significant partial regression coefficient is
equivalent in interpretation to the finding of non-transmitted
alleles having a significant partial regression coefficient in
the method of Kong et al. and Bates et al. (Supplementary
Online Materials Section 7). Note that such a finding cannot
be the result of ameliorating the noisiness of the offspring
PGS, as the weights in both the parent and offspring PGS
are derived from the same GWAS with the same sampling
errors (Supplementary Online Materials Section 4 and
accompanying Supplementary Fig. S1).

Polygenic scores for two non-behavioral phenotypes,
derived using the same prediction methods as for EduYears,
are used as negative controls to test the assumption that the
hypothesized effect of genetic nurture on years of education
is unique to its PGS, and is not simply the result of
attenuating the noise in the offspring PGS due to GWAS
sampling error. Therefore, if the addition of parent PGS for
EduYears is found to add significant incremental variance to
offspring years of education, we would predict that a non-
behavioral parent PGS would add a nonsignificant incre-
ment in predicting their accompanying offspring pheno-
types. We used a physical PGS for body-mass index (BMI;
body mass divided by the square of body height, kg/m2) and
height for all participants in our sample. These scores are
derived from UK Biobank summary statistics [20].

Outcome variables are represented by a variety of
behavioral and physical phenotype data for both parents and
offspring. Behavioral phenotypes include educational
attainment, assessed as years of education for offspring
(ranging from 11 to 20) and level of education for parents
(coded on a 1–5 scale with 1= less than high-school up to
5= professional degree), self-reported high-school grades
reported on a 0 to 4 grade point average (GPA) scale, IQ
scores for both parents and offspring, family socioeconomic
status (SES; represented by a composite made up of family
income, parent education level, and parent occupation
level on a z-score scale), and soft skills (represented by a

PARENT
PGS

PARENT
true genetic

value

PARENT
PGS

OFFSPRING
true genetic

value

OFFSPRING
PGS

OFFSPRING
years of

education

SES, IQ,
education?
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Fig. 1 Path diagram representing hypothesized causal and mediating
pathways. The true genetic value of the parents, which is imperfectly
captured in a polygenic score, causally influences the offspring’s
genotype. The parents’ genes may influence the offspring trait through
parental characteristics such as socioeconomic status, IQ, and
education
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composite of personality measures of conscientiousness,
capacity to be hard-working, and self-control on a z-score
scale). This soft skill measure is included to explore to what
extent a polygenic score for years of education significantly
predicts a non-cognitive behavioral phenotype that is
plausibly related to educational success. Socioeconomic
status z-scores were available for 1221 families. Offspring
were assessed for some phenotypes at different ages.
Years of education were recorded at an age typical for
having completed education (M age= 29, SD= 1.4).
High-school GPA was assessed at age 17 for all offspring.
IQ scores were assessed using an abbreviated form of
either the Weschler Adult Intelligence Scale-Revised
(WAIS-R [21]) for participants age 16 years and older
(47.1% of sample), or the Weschler Intelligence Scale for
Children-Revised (WISC-R [22]) for those younger than 16
(52.9% of sample), for an overall mean IQ assessment age
of 14.4 (SD= 2.9) for offspring in the sample. BMI and
height were measured directly for both parents and off-
spring in the MCTFR sample, and offspring were assessed
at age 17.

Phenotype data and polygenic scores are standardized
for all analyses. The Supplementary Online Materials
(Section 2) detail our exclusion criteria, standardization, and
bootstrap resampling.

Results

Polygenic scores as predictors of individual outcome

The pattern of correlations found among IQ, years of edu-
cation, and family socioeconomic status for parents and
offspring (Table 1) is consistent with existing literature
on the relationships between these and related variables
[23–25], though the causality underlying these relationships
is still debated [26, 27].

Individual-level predictions of EduYears polygenic
scores on the four outcome phenotypes are robust and
significant at the p < 0.001 level. Variance explained
by polygenic scores in years of education (R2= 0.093), IQ
(R2= 0.082) and GPA (R2= 0.071) is similar to predictions
made for cognitive phenotypes in validation samples stu-
died by Lee et al. Although the effect of PGS on soft skills
(R2= 0.028) is modest, it nevertheless demonstrates that
EduYears PGS is predictive for non-cognitive behavioral
phenotypes, a phenomenon noted in an earlier study [28].
An intercept for years of education of 14.79 indicates that
the average PGS in the sample is associated with 14.79
years of education (equivalent to 2.79 years of college), and
a slope of 0.51 (SE= 0.06) represents a gain of about one-
half year of education for each standard deviation increase
in PGS. Ta
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Predictions within twinships

EduYears PGS is a reliable predictor for individual out-
comes, but within-family predictions can account for pos-
sible effects of the shared environment by examining
whether sibling genetic differences are associated with
differences in sibling outcomes. Dizygotic twins in the
present sample (total pairs= 415) are the same age, the
same sex, and grew up in the same family environment, but
only share an average of half of their genetic material
identically by descent, and therefore have different poly-
genic scores for educational attainment. This makes these
pairs useful for determining whether the random difference
in variants associated with educational attainment inherited
from the parents is a significant predictor of difference in
outcome, thereby controlling for population stratification
and passive gene–environment correlation effects [29].
Within-twinship predictions are made for EduYears poly-
genic score on outcome phenotypes years of education, IQ,
GPA, and soft skills by using the difference score of each
pair of dizygotic twins’ PGS as the predictor for the dif-
ference score of each of the four outcome variables. For
independence of comparisons, the results of these regres-
sions are compared against individual predictions for
monozygotic twins only (total pairs in sample= 808).

In Table 2, the intercept and slope for each outcome
variable, regressed on EduYears PGS, is shown alongside the
standard error (SE) for both individual (MZ twins only) and
within-twinship (DZ twins only) predictions. The PGS of
individual (MZ) twins is a similarly robust predictor of each
phenotype as in the full sample of all twins. Interestingly, the
within-family coefficient for high-school GPA tends to be

larger than the individual-level coefficient. This might be
because DZ twins will mostly attend the same school, and
GPA comparisons between students who attend the same
school are more meaningful than comparisons between stu-
dents who attend different schools. Only the within-twinship
prediction for soft skills fails to reach sta tistical significance.
This indicates that within the same dizygotic twinship, the
twin with the higher EduYears PGS is significantly more
likely to have a higher GPA, more years of education, and a
higher IQ. These findings are highlighted in Fig. 2, which
compares the size and significance of the standardized
regression coefficients for an individual’s PGS in predicting
years of education, GPA, IQ, and soft skills to the within-
twinship coefficients for the same predictor and outcomes.
These findings are consistent with similar within-twinship
comparisons conducted in an earlier study [14]. The Sup-
plementary Online Materials (Section 6) provide further
discussion of these within-family comparisons and their
interpretations (Supplementary Fig. S2).

Parent polygenic scores and offspring outcomes

To test for direct effects of parental influence on offspring
outcomes, we include parental EduYears PGS (mean of
mother and father) along with offspring EduYears PGS as
predictors of offspring outcomes. We found that parental
EduYears PGS adds significant incremental R2 to offspring
EduYears PGS in predicting actual years of education
attained by the offspring, raising total variance explained in
outcome from 9.3 to 11.1% (ΔR2= 0.018, p < 0.001;
Table 3). While the offspring’s β-coefficient of 0.566 (SE=
0.06) on its own translates to ~6.8 months of education
gained for every standard deviation gained in the offspring’s
EduYears PGS, the parents’ β-estimate of 0.477 (SE=

Table 2 Individual and within-twinship regression coefficients
(unstandardized) for EduYears PGS on four behavioral outcome
phenotypes

Phenotype Intercept (SE) β-estimate (SE)

Individual predictions

Years of education 14.79 (0.06) 0.51 (0.06)

IQ 102.73 (0.43) 4.16 (0.47)

GPA 3.04 (0.03) 0.21 (0.04)

Soft skills 0.04 (0.04) 0.15 (0.03)

Within-twinship predictions

Years of eduction 0.32 (0.11)

IQ 2.24 (0.72)

GPA 0.24 (0.05)

Soft skills 0.10 (0.07)

Individual predictions are based on the subset of the sample
comprising only monozygotic twins (N pairs= 808), and within-
twinship predictions on dizygotic twins (N pairs= 415), to ensure
independence of observations. Within-twinship predictions are based
on difference scores and have intercepts forced to zero

p < .001

p = .003

p < .001

p < .001
p < .001

p = .002

p < .001

p = .145

0.0
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Fig. 2 Comparison of β-coefficients of offspring polygenic score (PGS)
on outcomes between individual monozygotic twins (N pairs= 808)
and within dyzgotic twinship (N pairs= 415) for years of education,
high-school GPA, IQ score, and soft skills. Error bars represent ±
1 standard error. All values are standardized
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0.099) in the full model predicts a gain of nearly 6 months
in educational attainment of the offspring for every standard
deviation of parents’ EduYears PGS. IQ, GPA, and soft
skills show a more modest association with parent PGS (all
ΔR2 < 0.009). These results indicate that parents’ genetic
value for educational attainment uniquely predicts their
children’s educational achievement, in a way that is not
explained by children’s own genetic value, consistent with
the hypothesized operation of genetic nurture. Our estimate
of genetic nurture affecting EduYears is larger than that of
other studies (Supplementary Table S2), but not by enough
to suggest substantial heterogeneity, as all studies are con-
sistent with a ratio of direct causal effect to nurture-
confounded coefficient exceeding 0.6. Note that such a ratio
is also consistent with the ratio of our within-family and
individual-level coefficients (Fig. 2) and the estimate of the
EA3 authors, who used a more indirect method.

Polygenic scores and their accompanying phenotypes for
two non-behavioral traits, BMI and height, are used as
negative controls. While it is in- tuitively plausible that
parents’ genetic value associated with a complex behavioral
phenotype could change their children’s environment in
important ways, it would be difficult to explain an effect of
similar size on a physical property such as height. Offspring
polygenic scores for height explain ~33.4% of the variance
in actual height measured at age 17 in this sample of twins,
and polygenic scores for BMI explain ~13.4% of the var-
iance in BMI. In contrast to the 1.8% added by parental

EduYears PGS, the parental PGS for both height and BMI
add essentially 0.0% of incremental variance to offspring
outcomes (coefficient p= 0.665 and coefficient p= 0.511
for height and BMI, respectively). A comparison of off-
spring and offspring+ parent PGS models for height and
BMI is shown in Fig. 3. This pattern of results, where the
increment added to offspring outcome by parent PGS is
much larger and less likely to be due to chance for Edu-
Years than it is for BMI or height, provides further evidence
that the parents’ genes associated with educational attain-
ment are influencing aspects of the offspring’s environment
that lead to differences in actual educational attainment.

Socioeconomic status and other parental
phenotypes as covariates

If parents’ genes are changing something about their off-
spring’s environment, it may be possible to detect this by
adding covariates to the model and determining whether the
coefficient of the parent PGS declines, as expected if the
covariates are on the causal path from the parent PGS to
offspring EduYears [29, 30]. Family SES and parent IQ are
two possible mediators. When each of these variables is
added to the model where offspring PGS and parent PGS
are both significant predictors of offspring years of educa-
tion, the β-coefficient declines and the p-value increases for
the parent PGS coefficient, but not for the offspring’s own
PGS. The effect is particularly dramatic for family socio-
economic status, which reduces both the coefficient and the
ΔR2 of parent PGS to close to zero on its own. We again
used the physical phenotypes of height and BMI as negative
controls. Figure 4 shows that for both height and BMI, the

Table 3 Comparison of variance explained in six phenotypes by
offspring polygenic score to variance explained by offspring PGS in
addition to parent PGS

Offspring
outcomes

Model

Offspring
PGS alone

Offspring+ parent PGS

Total R2 Parental ΔR2 (p-value) Total R2

Behavioral phenotypes

Years of
education

0.093 0.018 (<0.001) 0.111

IQ 0.082 0.004 (0.041) 0.085

GPA 0.071 0.008 (0.004) 0.078

Soft skillsa 0.028 0.005 (0.012) 0.033

Physical phenotypes

Heighta 0.334 <0.001 (0.665) 0.334

BMIa 0.134 <0.001 (0.551) 0.134

Behavioral phenotypes are predicted for offspring and parent using
EduYears PGS. Physical phenotypes are predicted for offspring and
parent using height and BMI PGS, respectively. Parent values
represent the mean of mother and father. Total R2 for both
offspring-only model and offspring+midparent model are significant
at the p < 0.001 level
aIndicates standardized phenotypes (z-scores)
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addition of the parental characteristics as covariates does
not appreciably change the effect size and significance of
parental PGS as a predictor, consistent with the use of these
as negative controls detailed in Fig. 3. Supplementary
Table S1 details the persistence of parental PGS as a sig-
nificant predictor of offspring outcomes across a number of
different parental characteristics as covariates.

Discussion

Through the use of polygenic scores constructed from the
largest GWAS of educational attainment yet conducted [9],
we have provided evidence of causal mechanisms under-
lying the relationship between genotype and phenotype by
examining the effects of these scores in a sample of
families. While it is well known that genes can affect an
individual’s environment [31, 32], and that observed
environmental effects on phenotypes may be at least par-
tially under genetic control [33], the study of these effects
has historically been confined to traditional twin and family
designs. The application of GWAS results to data from
family units of parents and their twin offspring permits
causal inference to be drawn from within-family prediction
models that are robust against confounding. This design
also enables us to use mean polygenic scores of mothers and
fathers to predict offspring outcomes, thereby testing for the
presence of genetic nurture. These techniques, which make
use of “triangulation” [34] to elucidate an effect, have
produced evidence consistent with environmental causation.

Our results indicate a difference in magnitude of the
effects of “genetic nurture” on different outcomes. For

example, while polygenic score associations with education
and IQ are of similar magnitude, trans-generational effects
of parental genome on offspring outcomes—that is,
“genetic nurture”—are smaller for IQ than for education.
Although this is possibly a chance difference, this pattern of
influence is consistent with the body of literature on how
families affect children’s outcomes, particularly the well-
established finding from 50 years of twin studies that shared
environment effects are substantial for educational attain-
ment but are often negligible for IQ. The 2015 twin study
meta-analysis conducted by Polderman et al. [2], for
example, reports shared environment as explaining an
average of 27% of the variance in educational attainment.
By contrast, they report the average shared environment
effect of “intellectual functions” at 12.3%. At the same time,
it is noteworthy that the within-twinship association of PGS
with IQ is attenuated by roughly 50% of the individual-level
effect (Fig. 2). Given that our polygenic scores are con-
structed from a GWAS of years of education rather than IQ,
it is unclear how this ought to be interpreted from this
dataset. This finding should be investigated analytically and
empirically in future research, taking note of changes in the
magnitudes of heritable and environmental influences on IQ
with age.

Socioeconomic status (i.e., a composite of parental
education, income, and occupational status) emerges as a
plausible explanation for the effect parents are able to have
on their children’s educational attainment. The finding that
socioeconomic status and its correlates have substantial
effect on the stratification of cognitive and educational
outcomes is well-established in the behavior genetics lit-
erature, and they have recently been found to account for
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the majority of shared environment variance in education
and IQ [35]. Moreover, there are some plausible pathways
between parental SES and offspring educational attainment:
higher-SES parents may, among other things, be able to
provide financial assistance to their offspring in obtaining a
college education.

The use of BMI and height as negative controls adds
further credence to the genetic nurture interpretation of the
effect of parental genome on offspring years of education.
The near-zero effect sizes for genetic nurture on these
phenotypes as compared to years of education is consistent
with the latter being a real effect. The causal pathway from
parental attributes to offspring education is plausible,
straightforward, and consistent with our covariate analysis
of SES and other parental traits that may mediate genetic
nurture. A similar pathway for BMI or height is difficult to
conceive and certainly less straightforward: It is hard to
imagine what mechanism would connect parental genetics
to the height or BMI of their offspring other than simple
genetic inheritance. For example, the height of a parent
might change over time, since people tend to become
slightly shorter as they age, but the propagation of any such
change to the offspring’s height seems highly unlikely.
However, it is important to note that the existence of such a
pathway might be more plausible in a population that has
not developed in a modern environment where caloric
intake is arguably excessive, and very likely at saturation in
its ability to influence development. As such, nutrition is
unlikely to be a mitigating issue for this finding in this
population of Minnesotans, but care should be taken in
generalizing the utility of these negative controls to other
populations.

Although genomic methods can mitigate certain draw-
backs of twin and adoption studies, these tools have their
own limitations. Missing heritability is a perennial problem
in GWA studies, and while each subsequent GWAS has
shown that sample size dovetails with predictive value, we
are still only able to explain a maximum of 13% of the
variance in educational attainment with a polygenic score at
this time. True causal inference is always difficult to
establish in correlational genetic studies and our presented
results, while consistent with a causal explanation of par-
ental environment on offspring outcome, are no exception.
Socioeconomic status as a mediating variable of this posited
influence is a complex phenotype and could be correlated
with any number of variables that contribute to a causal
effect on offspring outcome, such as parents’ level of edu-
cation. Additionally, the generalizability of our findings is
limited by the single point in time at which phenotypes such
as IQ were measured in offspring. It remains an open
question whether and to what extent the effects of “genetic
nurture” persist or change across childhood into adulthood,
with previous literature suggesting that development plays a

complex role in establishing genetic and environmental
contributions to cognitive phenotypes [36].

The use of genome-wide association studies has opened up
new possibilities in testing for the presence of environmental
effects on phenotypes, and EA3 polygenic scores are our best
genetic predictors of years of education yet constructed. By
examining the net effect of genetic variants across genera-
tions, we can now directly test decades-old predictions about
the passive interplay between genes and environment
[4, 29, 31, 37]. The available data may present further
opportunities to detect gene–environment interaction, reci-
procal sibling effects, the effects of ontogenetic development
on genetic nurture, and bidirectional parent–offspring trans-
mission, as well as to further understand the nature of parental
phenotypes, such as socioeconomic status, and whether and to
what extent they causally influence offspring phenotypes. In
sum, we have provided direct quantitative-genetic evidence
consistent with an enduring effect that parents can have on the
educational outcomes of their children.
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