
Cerebral Cortex, 2018; 1–9

doi: 10.1093/cercor/bhy219
Original Article

O R I G I NA L ART I C L E

A Polygenic Score for Higher Educational Attainment
is Associated with Larger Brains
Maxwell L. Elliott 1, Daniel W. Belsky2,3, Kevin Anderson4,
David L. Corcoran5, Tian Ge6,7,8, Annchen Knodt1, Joseph A. Prinz5,
Karen Sugden3,5, Benjamin Williams3,5, David Ireland9, Richie Poulton9,
Avshalom Caspi1,5,10,11, Avram Holmes4, Terrie Moffitt1,5,10,11 and
Ahmad R. Hariri1

1Department of Psychology & Neuroscience, Duke University, Box 104410, Durham, NC 27708, USA,
2Department of Population Health Sciences, Duke University School of Medicine, Box 3003, Durham, NC 27710,
USA, 3Social Science Research Institute, Duke University, Box 90989, Durham, NC 27708, USA, 4Department of
Psychology, Yale University, New Haven, CT 06511, USA, 5Center for Genomic and Computational Biology,
Duke University, Box 90338, Durham, NC 27708, USA, 6Athinoula A. Martinos Center for Biomedical Imaging,
Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA, 7Psychiatric and
Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston,
MA 02114, USA, 8Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 75 Ames Street,
Cambridge, MA 02142, USA, 9Department of Psychology, Dunedin Multidisciplinary Health and Development
Research Unit, University of Otago, 163 Union St E, Dunedin 9016, New Zealand, 10Social, Genetic, &
Developmental Psychiatry Research Centre, Institute of Psychiatry, Psychology, & Neuroscience, King’s College
London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK and 11Department of Psychiatry & Behavioral
Sciences, Duke University School of Medicine, Durham, NC 27708, USA

Address correspondence to email: maxwell.elliott@duke.edu orcid.org/0000-0003-1083-6277

Maxwell L. Elliott and Daniel W. Belsky contributed equally to this work and are the lead authors

Abstract
People who score higher on intelligence tests tend to have larger brains. Twin studies suggest the same genetic factors
influence both brain size and intelligence. This has led to the hypothesis that genetics influence intelligence partly by
contributing to the development of larger brains. We tested this hypothesis using four large imaging genetics studies
(combined N = 7965) with polygenic scores derived from a genome-wide association study (GWAS) of educational
attainment, a correlate of intelligence. We conducted meta-analysis to test associations among participants’ genetics, total
brain volume (i.e., brain size), and cognitive test performance. Consistent with previous findings, participants with higher
polygenic scores achieved higher scores on cognitive tests, as did participants with larger brains. Participants with higher
polygenic scores also had larger brains. We found some evidence that brain size partly mediated associations between
participants’ education polygenic scores and their cognitive test performance. Effect sizes were larger in the population-
based samples than in the convenience-based samples. Recruitment and retention of population-representative samples
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should be a priority for neuroscience research. Findings suggest promise for studies integrating GWAS discoveries with
brain imaging to understand neurobiology linking genetics with cognitive performance.

Key words: brain volume, intelligence, MRI, polygenic scores

Introduction
People who score higher on tests of intelligence tend to have
larger brains, as measured by ex vivo brain weight and in vivo
magnetic resonance imaging (MRI) (van Valen 1974; Haier et al.
2004; McDaniel 2005; Pietschnig et al. 2015). Twin studies indicate
this relationship partly reflects genetic factors that influence both
brain size (i.e., volume) and intelligence (Posthuma et al. 2002,
2003; Toga and Thompson 2005; Deary et al. 2010). These findings
suggest the hypothesis that one path through which genetic dif-
ferences between people influence individual differences in intel-
ligence is by contributing to the development of larger brains.
This hypothesis can now be tested using molecular genetic data.

A recent genome-wide association study (GWAS) of educa-
tional attainment identified dozens of genetic variants that
showed substantial enrichment for genes expressed during
brain development (Okbay et al. 2016). Follow-up studies further
identified associations between an aggregate measure of GWAS-
discovered influences on education, called a polygenic score,
and intelligence, including in young children who had not yet
entered school (Belsky et al. 2016; Selzam et al. 2017). These find-
ings implicate brain development and intelligence in the path-
way connecting people’s genetics to their educational outcomes.
Further, GWAS research has discovered polygenic variants asso-
ciated with brain size (inferred through intracranial volume)
(Adams et al. 2016) that also overlaps with variants associated
educational attainment (Okbay et al. 2016). Now, studies are
needed to test if genetics discovered in GWAS of education are
associated with in vivo intermediate phenotypes, like brain size,
that could constitute a biological pathway linking genetic varia-
tion to differences in intelligence and educational attainment.

We analyzed data from four imaging genetics studies from the
United Kingdom (UK Biobank), New Zealand (Dunedin Study), and
the United States (Brain Genomics Superstruct Project (GSP) and
Duke Neurogenetics Study (DNS)), including 7965 participants, to
test associations among a polygenic score for educational attain-
ment, cognitive test performance, and brain size. We hypothe-
sized that, consistent with previous findings, 1) participants with
higher education polygenic scores would have higher cognitive
test scores and 2) that participants with larger brains as measured
by total brain volume would have higher cognitive test scores.
We further posed the novel hypotheses that participants with
higher education polygenic scores would have larger brains and
that brain size would mediate the association between the educa-
tion polygenic score and cognitive test performance. We com-
bined results across our four imaging genetics datasets using
random effects meta-analysis. We also examined heterogeneity
between the datasets under the hypothesis that effect sizes might
differ between the population-based UK Biobank and Dunedin
Study samples and the GSP and DNS samples, for which range in
cognitive performance is more restricted.

Methods
Participants

We analyzed data from European-descent participants in the
United Kingdom-based UK Biobank (Sudlow et al. 2015; Miller

et al. 2016), a population-based volunteer sample (N = 5691), the
New Zealand-based Dunedin Study, a population-representative
birth cohort (N = 596) (Poulton et al. 2015), and two studies in
the United States consisting primarily of university students,
the GSP (Holmes et al. 2015) (N = 1163), and the DNS (Elliott et al.
2018) (N = 515). Sample sizes reflect participants with available
structural MRI, cognitive testing, and genetic data (Table 1).
Samples are described in detail in the Supplementary Material
and Table 1.

Education Polygenic Score

We computed our polygenic score based on GWAS of educa-
tional attainment rather than GWAS of cognitive performance
because educational attainment is a proxy phenotype for cogni-
tive performance (Rietveld et al. 2014) and the polygenic score
for educational attainment is more predictive of cognitive per-
formance than polygenic scores from GWAS of cognitive per-
formance (Plomin and von Stumm 2018). Education polygenic
scores were computed from genome-wide single-nucleotide
polymorphism (SNP) data based on GWAS results published by
the Social Science Genetics Association Consortium (Okbay
et al. 2016) following the methods described by Dudbridge
(2013) according to the procedure used in our previous work
(Belsky et al. 2016). Genetic data from the Dunedin Study were
imputed to 1000 genomes (Abecasis et al. 2012), data from all
other studies were not imputed. Following established practice
(Wray et al. 2007; Dudbridge 2013; Okbay et al. 2016), we com-
puted polygenic scores using data from all SNPs included in the
EA2 GWAS. SNPs were not clumped or pruned for LD prior to
analysis (Ware et al. 2017). Briefly, for each study, we matched
SNPs in the study’s genetic database with published educa-
tional attainment GWAS results (Okbay et al. 2016). We then
multiplied the education-associated allele of each SNP by the
GWAS-estimated effect size and computed the average of these
products across all SNPs. Polygenic scores were standardized
within each study to have M = 0, SD = 1 for analysis.

Cognitive Performance

Cognitive performance was measured in the UK Biobank using
13 reason and logic puzzles (Lyall et al. 2016). Cognitive perfor-
mance was measured in the Dunedin, GSP, and DNS studies
using intelligence tests (the Wechsler Adult Intelligence Scale-
IV [WAIS-IV] (Wechsler 1997) in the Dunedin Study, the Shipley
Institute of Living Scale (Zachary 1986) in GSP, and the
Wechsler Abbreviated Scale of Intelligence [WASI] (Wechsler
2013) in the DNS).

Total Brain Volume

Total brain volume was measured from high resolution, T1-
weighted MRI images. In the UK Biobank, total brain volume
was estimated using SIENAX (Smith et al. 2002). In the
Dunedin, GSP, and DNS studies, images were processed using
the FreeSurfer processing pipeline.
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Statistical Analyses

We tested associations using linear regression models. Models
were adjusted for sex. Models including the polygenic score
were adjusted for the first 10 principal components estimated
from the genome-wide SNP data to account for any residual
population stratification within the European-descent samples
analyzed (Price et al. 2006). Models of UK biobank and GSP data
were adjusted for age. (The Dunedin Study is a single-year birth
cohort and DNS participants vary in age by only by 1–2 years.).
In addition to age, models in the GSP were also adjusted for
scanner, console version, and head coil (12 vs. 32 channel)
because the GSP was collected across multiple sites. Analyses of
individual studies were conducted in R (version 3.4.0). Linear
regressions were performed using the lm function. Mediation
analyses were performed using a system of equations approach
(Preacher and Hayes 2008) implemented with the “mediation”
package (Tingley et al. 2014) in R, using nonparametric boot-
strapping with 1000 iterations. The system of equations includes
three regressions; the first regression tests’ association between
the predictor (polygenic score [PGS]) and outcome (intelligence
quotient [IQ]), the second regression tests’ association between
the predictor (PGS) and the mediator (TBV) and the third regres-
sion tests’ multivariate association between the predictor (PGS)
and outcome (IQ) with covariate adjustment for the mediator
(total brain volume [TBV]). If the regression coefficient between
predictor and outcome is significantly smaller in the third model
than the first, the inference of mediation is made. Coefficients

from these regressions are combined using the formula origi-
nally proposed by Sobel (2007). Standard errors are computed
using the bootstrap method described by Preacher and Hayes
(2008). We combined estimates across studies using random
effects meta-analysis (DerSimonian and Laird 1986) implemen-
ted using STATA (version 15).

Results
Participants with Higher Polygenic Scores Performed
Better on Cognitive Tests

As anticipated, participants with higher polygenic scores per-
formed better on cognitive tests (Fig. 1). Meta-analysis esti-
mated the cross-study effect size as r = 0.18 (P < 0.001; 95% CI
[0.11, 0.24]) with evidence of heterogeneity in effect sizes across
studies (I2 83%, P = 0.001; τ2 = 0.004). Effect sizes were statisti-
cally significant in UK Biobank (r = 0.17, P < 0.001), Dunedin
Study (r = 0.28, P < 0.001) and GSP (r = 0.19, P < 0.001) but not in
the DNS (r = 0.05, P = 0.220).

Participants with Larger Brains had Higher Cognitive
Test Scores

We next tested if participants with larger brains performed bet-
ter on cognitive tests. As anticipated, participants with larger
brains (i.e., those with higher total brain volume) performed
better on cognitive tests (Fig. 2). Meta-analysis estimated the

Table 1 Samples and measures included in analysis

Sample Cognitive test Total brain volume (cm3)

United Kingdom Biobank (UK Biobank) (Sudlow
et al. 2015): An ongoing general population-based
cohort of volunteers that was recruited from the
UK National Health Service records beginning in
2006
N = 5691
54% Female
Age M = 61.35, SD = 7.08

13 verbal–numeric reasoning puzzles
completed during a 2-min time test
(Lyall et al. 2016)
Scored as number of correct responses
M = 6.97, SD = 2.10

Total brain volume was derived from T1-
weighted structural MRI images processed
with SIENAX (Smith et al. 2002)
M = 1172.18, SD = 110.95

Dunedin Multidisciplinary Health and
Development Study (DMHDS) (Poulton et al. 2015):
A population-representative birth cohort born
1972–1973 in Dunedin, New Zealand. Note: Here
we report the available N, as of February 2018,
while data collection is ongoing
N = 596
52% Female
Intelligence testing age = 38, MRI testing age = 45

Wechler Adult Intelligence Scale-IV
(WAIS-IV) (Wechsler 1997):
Scored against a population norm with
mean of 100 and standard deviation of 15.
M = 100, SD = 15

Total brain volume was derived from the
recon-all pipeline in FreeSurfer (Fischl 2012)
using T1- and T2-weighted structural MRI
images
M = 1224.48, SD = 124.19

GSP (Holmes et al. 2015): A convenience sample of
Boston area healthy volunteers primarily recruited
from local universities and medical centers.
N = 1163
53% Female
Age M = 22.23, SD = 5.53

Shipley Institute of Living Scale (Zachary
1986)
Scored against a population norm with
mean of 100 and standard deviation of 15
M = 113, SD = 9

Total brain volume was derived from the
recon-all pipeline in FreeSurfer (Fischl 2012)
using T1- and T2-weighted structural MRI
images
M = 1174.58, SD = 110.64

DNS: A convenience sample of university students
primarily from Duke University
N = 515
53% Female
Age M = 20.26, SD = 1.20

Matrix reasoning and vocabulary subtests
of the Wechsler Abbreviated Scale of
Intelligence (WASI; Wechsler 2013)
Scored against a population norm with
mean of 100 and standard deviation of 15
M = 124, SD = 7

Total brain volume was derived from the
recon-all pipeline in FreeSurfer (Fischl 2012)
using T1-weighted structural MRI images
M = 1162.40, SD = 110.34

Note: Polygenic scores for all samples were computed based on the most recent GWAS of educational attainment (Okbay et al. 2016) following established methods.
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cross-study effect size as r = 0.20 (P < 0.001; 95% CI [0.12, 0.29])
with evidence of heterogeneity in effect sizes across studies
(I2 = 75.8%, P = 0.002; τ2 = 0.005). Effect sizes were statistically
significant in all studies (UK Biobank r = 0.19, P < 0.001;
Dunedin Study r = 0.35, P < 0.001; GSP r = 0.12, P = 0.002; DNS r
= 0.16, P = 0.004).

Participants with Higher Polygenic Scores for
Educational Attainment had Larger Brains in Two
Samples

Finally, we tested if participants with higher polygenic scores
tended to have larger brains. Meta-analysis estimated the
cross-study effect size as r = 0.06 (P = 0.006; 95% CI [0.02, 0.10])
(Fig. 3). The test for evidence of heterogeneity in effect sizes
across studies was statistically significant at the α = 0.05 level
(I2 = 71.8%, P = 0.014; τ2 = 0.001). Participants with higher poly-
genic scores had larger brains in the UK Biobank (r = 0.09, P <
0.001) and the Dunedin Study (r = 0.07, P = 0.024). Effect sizes
were smaller and not statistically significant in the GSP r = 0.02,
P = 0.380 and DNS r = 0.04, P = 0.288.

Brain Size was a Weak Mediator of the Polygenic Score
Associations with Cognitive Test Scores in Two Study
Samples

To test the hypothesis that larger brains mediated the poly-
genic score association with intelligence, we used the system
of equations described by Baron and Kenny (1986) and the
methods described by Preacher and Hayes (2008). Meta-analysis
estimated the cross-study indirect effect to be b = 0.01, 95% CI
[0.00, 0.02], P = 0.045, with evidence of heterogeneity in effect
sizes across studies (I2 = 79.5%, P = 0.003; τ2 = 0.000) (Fig. 4). The
mediation effect was statistically significant in the UK Biobank
(b = 0.02, 95% CI [0.01, 0.02], P < 0.001) and the Dunedin Study
(b = 0.02, 95% CI [0.00, 0.05], P = 0.028). We did not find evidence
of a mediation effect in the GSP (b = 0.00, 95% CI [0.00, 0.00], P =
0.36) or DNS (b = 0.01, 95% CI [−0.00, 0.02], P = 0.24) (for details
see Supplementary Table S2).

Sensitivity Analysis: Associations Among Polygenic
Scores, Brain Size, and Cognitive Test Scores were
Partially Attenuated by Range Restriction

UK Biobank and Dunedin Study participants’ polygenic scores,
brain size, and cognitive test performance were positively cor-
related, with similar effect sizes (Dunedin Study effect sizes for
analyses including IQ were somewhat larger, possibly reflecting
greater measurement precision of the WAIS as compared with
the UK Biobank reason and logic puzzle test). By comparison,
effect sizes for these associations were smaller among GSP and
DNS participants. To test if this difference could reflect the rela-
tively restricted range of cognitive test performance in the GSP
and DNS samples relative to the population-based UK Biobank
and Dunedin samples, we conducted sensitivity analysis.
Cognitive test scores were on average, 1–1.5 SDs higher in the
GSP and DNS samples as compared with the general population
and 30–50% less variable, indicating restricted range (Table 1).
Sensitivity analysis restricted the UK Biobank sample—the larg-
est study in our analysis—to participants with cognitive test
scores 1 SD above the mean (i.e., scores of 9–13; n = 1391) for
which the variance was approximately 45% of the full-sample
variance. In this restricted sample, associations among partici-
pants’ polygenic scores, brain size, and cognitive test

performance were attenuated by roughly 1/3 to 1/2 relative to
the full-sample estimates (Supplementary Table S3). Parallel
analysis testing restriction at the other end of the cognitive test
score distribution yielded similar results (Supplementary
Table S4). Statistical correction of effect sizes for range restric-
tion using Thorndike’s formula (Stauffer and Mendoza 2001)
yielded similar results (Supplementary Table S7).

Discussion
We analyzed data from four imaging genetics studies in the
United Kingdom, New Zealand, and United States to test if
genetic associations with cognitive performance were mediated
by differences in brain size. As anticipated, we found that parti-
cipants with higher educational attainment polygenic scores
tended to score higher on tests of cognitive performance, as did
those with larger brains. We also found new information that
participants with higher education polygenic scores tended to
have larger brains. In mediation analysis, brain size accounted
for only a small fraction of the association between partici-
pants’ educational attainment polygenic scores and their cogni-
tive performance, and this mediation effect was statistically
significant in the population-based UK Biobank and Dunedin
samples but not in the GSP and DNS samples.

Effect size variation across the samples we analyzed fol-
lowed a consistent pattern; effect sizes were larger in the
population-based UK Biobank and Dunedin Study samples than
in the GSP and DNS samples (see Figs (1–4) and Supplementary
Table S1). One reason for these differences may be the more
restricted range of variation in cognitive performance in the
GSP and DNS samples arising from, for example, overrepresen-
tation of university-educated individuals. Such range restric-
tion biases association estimates (Mendoza and Mumford 1987;
Bland and Altman 2011) and has previously been shown to bias
brain imaging research (Falk et al. 2013; Lewinn et al. 2017). In
these relatively high-IQ and restricted-range samples, average
cognitive performance was 1–1.5 SDs above the general popula-
tion mean and the variance was reduced by 30–50%. We con-
ducted sensitivity analysis in a UK Biobank subsample selected
to have high cognitive performance similar to the GSP and DNS
samples. In this sample with restricted range of cognitive test
performance, effect sizes were attenuated by roughly 30–50%.
We obtained similar estimates when we performed a statistical
correction for range restriction using Thorndike’s formula
(Stauffer and Mendoza 2001). Selective observation of high-
cognitive performance individuals in the GSP and DNS samples
may have contributed to the lower effect size estimates in
these samples and to overall heterogeneity across samples in
our meta-analysis.

We acknowledge limitations of our current analyses, which
can be addressed in future research. First, analyses were
restricted to European-descent participants. We focused on
European-descent participants to match the population studied
in the GWAS of educational attainment. Application of GWAS
results from European-descent samples to compute polygenic
scores for samples of different ancestry has uncertain validity
(Martin et al. 2017). As GWAS of education and related pheno-
types in non-European samples become available, replication
in additional populations will be needed. Second, polygenic
scores were measured with substantial error. Genetic effect
sizes thus represent lower bound estimates. As larger sample
GWAS become available, error in polygenic score measurement
will decline and effect sizes can be expected to increase
(Cesarini and Visscher 2017). A third education polygenic score
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is available, but we were unable to use EA3 to compare across
cohorts because the discovery sample included all of UK
Biobank (Supplementary Table S6 reports EA3 for the other
samples). Measurement error may also affect the other vari-
ables in our analysis. For example, as noted by Gignac and
Bates (2017), effect size estimates from more reliable cognitive
tests, such as the WAIS administered in the Dunedin Study,
tend to be larger compared with effect size estimates from
briefer less reliable cognitive tests. We report effect sizes disat-
tenuated for estimated measurement error and reliability using
the approach proposed by Tucker-drob (2017) in Supplementary
Table S8. Third, total brain volume is only one route through
which the genetics linked with educational attainment could
affect cognitive performance. We studied this specific phenotype

because it is the best-replicated neural correlate of cognitive
function (Pietschnig et al. 2015). As more refined neural pheno-
types of cognitive function are developed, including measures of
cortical thickness, surface area, gyrification, and brain function,
it will be important to test their potential mediating role in link-
ing genetics with cognitive performance. Importantly, the hunt
for neural phenotypes mediating genetic associations with cog-
nitive performance need not assume that education-linked
genetics directly affect brain development. For example, there is
evidence that exposure to education increases cognitive perfor-
mance (Ritchie and Tucker-Drob 2018). It could be that higher
education-linked genetics, and higher IQs, lead to more educa-
tion, which in turn enhances brain size and other neural
phenotypes.

Figure 2. Associations between brain size and cognitive test scores. The figure shows a graph of effect sizes for analyses of the UK Biobank, Dunedin Study (Dunedin),

GSP, and DNS samples (solid blue diamonds) and the cross-study effect size estimated from random effects meta-analysis (open blue diamond). Gray boxes around

the solid blue diamonds show the weighting of study-specific estimates in the meta-analysis (larger gray boxes indicate higher weights). 95% CIs for estimates are

shown as error bars for the study-specific estimates and as the left and right extremes of the diamond for the meta-analysis effect size. The meta-analysis estimate

of between-study heterogeneity (I2) is listed to the left of the open blue diamond showing the meta-analysis effect size. The table to the right of the effect size graph

reports values for effect sizes, 95% CIs, and meta-analysis weights.

Figure 1. Educational attainment polygenic score associations with cognitive test scores. The figure shows a graph of effect sizes for analyses of the UK Biobank,

Dunedin Study (Dunedin), GSP, and DNS samples (solid blue diamonds) and the cross-study effect size estimated from random effects meta-analysis (open blue dia-

mond). Gray boxes around the solid blue diamonds show the weighting of study-specific estimates in the meta-analysis (larger gray boxes indicate higher weights).

95% CIs for estimates are shown as error bars for the study-specific estimates and as the left and right extremes of the diamond for the meta-analysis effect size. The

meta-analysis estimate of between-study heterogeneity (I2) is listed to the left of the open blue diamond showing the meta-analysis effect size. The table to the right

of the effect size graph reports values for effect sizes, 95% CIs, and meta-analysis weights.

Education Genetics & Brains Elliott et al. | 5
D

ow
nloaded from

 https://academ
ic.oup.com

/cercor/advance-article-abstract/doi/10.1093/cercor/bhy219/5095370 by guest on 13 Septem
ber 2018



We also cannot rule out age differences as a potential expla-
nation for the difference in findings between the population-
based UK Biobank and Dunedin Study samples as compared with
the GSP and DNS samples. UK Biobank and Dunedin Study parti-
cipants were measured in midlife, whereas GSP and DNS sam-
ples primarily included young adults. Among midlife UK Biobank
participants, restricting the range of cognitive performance to be
similar to the GSP and DNS samples reduced effect sizes for asso-
ciations among polygenic scores, brain size, and cognitive test
performance. Population-based samples including both young
and midlife individuals with DNA, MRI, and cognitive testing are
needed to evaluate whether genetic associations with brain vol-
ume and cognitive performance vary with age. A final concern is
potential reverse causation between brain size and cognitive
function. Higher cognitive ability and related educational and
socioeconomic attainments may be protective of age-related

decline in brain volume or they may promote brain development.
As GWAS of these phenotypes become available, new and devel-
oping methods may help address this question (Burgess et al.
2015; Grotzinger et al. 2018). Ultimately, longitudinal studies with
repeated measures of brain volume and cognition will be needed
to further inform our understanding of the relationship between
cognitive development and brain development.

Within the bounds of these limitations, our findings contrib-
ute to evidence that genetics discovered in GWAS of educational
attainment influence brain development and cognitive function.
Bioinformatic analysis of education GWAS results have identi-
fied enrichment of variants near genes expressed in brain devel-
opment, specifically neural proliferation, neural development,
and dendrite formation (Okbay et al. 2016). Epidemiologic analy-
sis of an education GWAS-based polygenic score found that chil-
dren who carried more education-associated genetic variants

Figure 3. Educational attainment polygenic score associations with brain size. The figure shows a graph of effect sizes for analyses of the UK Biobank, Dunedin Study

(Dunedin), GSP, and DNS samples (solid blue diamonds) and the cross-study effect size estimated from random effects meta-analysis (open blue diamond). Gray

boxes around the solid blue diamonds show the weighting of study-specific estimates in the meta-analysis (larger gray boxes indicate higher weights). 95% CIs for

estimates are shown as error bars for the study-specific estimates and as the left and right extremes of the diamond for the meta-analysis effect size. The meta-

analysis estimate of between-study heterogeneity (I2) is listed to the left of the open blue diamond showing the meta-analysis effect size. The table to the right of the

effect size graph reports values for effect sizes, 95% CIs, and meta-analysis weights.

Figure 4. Mediation effect of brain size on the association between the polygenic score for educational attainment and cognitive test scores. The figure shows a graph

of effect sizes for analyses of the UK Biobank, Dunedin Study (Dunedin), GSP, and DNS samples (solid blue diamonds) and the cross-study effect size estimated from

random effects meta-analysis (open blue diamond). Gray boxes around the solid blue diamonds show the weighting of study-specific estimates in the meta-analysis

(larger gray boxes indicate higher weights). 95% CIs for estimates are shown as error bars for the study-specific estimates and as the left and right extremes of the dia-

mond for the meta-analysis effect size. The meta-analysis estimate of between-study heterogeneity (I2) is listed to the left of the open blue diamond showing the

meta-analysis effect size. The table to the right of the effect size graph reports values for effect sizes, 95% CIs, and meta-analysis weights.

6 | Cerebral Cortex

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article-abstract/doi/10.1093/cercor/bhy219/5095370 by guest on 13 Septem

ber 2018



scored higher on cognitive tests as early as age 5 and that poly-
genic score-associated differences in cognitive test scores grew
larger from middle childhood through adolescence (Belsky et al.
2016, 2018). Several studies have reported that an education
GWAS-based polygenic score is predictive of cognitive test perfor-
mance in adolescents and adults (Domingue et al. 2015; Selzam
et al. 2017; Plomin and von Stumm 2018). Here, we show that
adults with higher education GWAS-based polygenic scores have
larger brains and score higher on cognitive tests as compared
with peers with lower polygenic scores. Evidence for larger brains
as a statistical mediator of polygenic score associations with cog-
nitive performance was mixed in our analysis. But findings sug-
gest promise for future neuroscientific investigation of education-
linked genetics. One design to complement formal mediation
analysis is gene–environment interaction analysis to test if expo-
sures that slow brain growth or restrict brain size, for example,
Zika virus (Calvet et al. 2016), diminish associations between
genetics and cognitive performance.

Our finding that genetics associated with educational and
socioeconomic attainments are also related to brain volume
has implications for research on effects of poverty on the devel-
oping brain. Childhood poverty exposure is associated with
smaller brain volumes (Luby et al. 2013; Hair et al. 2015).
Education polygenic scores also tend to be lower in children
growing up in poorer families, a gene–environment correlation
that presumably reflects the effects of education-linked genet-
ics on parents’ economic attainments, which children inherit
along with their genotypes (Belsky et al. 2016). Studies that
include controls for education genetics could complement
intervention studies (Brody et al. 2017) to help rule out potential
confounding in associations between poverty and brain
development.

A challenge facing research on how genetics affect the brain
is the lack of population-representative samples with available
brain imaging data. Human brain imaging research has typi-
cally been conducted in samples similar to those in the GSP
and DNS whose data we analyzed (Sears 1986; Peterson and
Merunka 2014). Our findings illustrate how studies of samples
preselected for high levels of cognitive functioning and related
characteristics impose limitations on analysis of cognition-
related neurobiology. Opportunities to understand the brain
afforded by 21st-century measurement technologies must still
reckon with 20th-century discoveries about selection bias
(Berkson 1946; Heckman 1979). Efforts to recruit more represen-
tative samples that reflect the full range of cognitive function-
ing in the population are needed.

Individual differences in cognitive performance have a par-
tial genetic etiology (Plomin and Deary 2015; Plomin and von
Stumm 2018). This genetic etiology should be evident in indi-
vidual differences in brain biology. As GWAS discoveries for
intelligence and related traits clarify genetic etiology, follow-
up in genetically informed brain imaging studies can shed
light on the neurobiological correlates of this genetic varia-
tion. Our findings not only encourage enthusiasm for this
research but also highlight the limitations of the existing data
resources. Recruiting and retaining samples that are represen-
tative of the general population must be a priority in neurosci-
ence research.
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Supplementary material is available at Cerebral Cortex online.
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