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Intelligence is associated with important economic and health-
related life outcomes�. Despite intelligence having substantial 
heritability2 (0.54) and a confirmed polygenic nature, initial 
genetic studies were mostly underpowered3–5. Here we report a 
meta-analysis for intelligence of 78,308 individuals. We identify 
336 associated SNPs (METAL P < 5 × �0−8) in �8 genomic loci, 
of which �5 are new. Around half of the SNPs are located inside 
a gene, implicating 22 genes, of which �� are new findings. 
Gene-based analyses identified an additional 30 genes (MAGMA 
P < 2.73 × �0−6), of which all but one had not been implicated 
previously. We show that the identified genes are predominantly 
expressed in brain tissue, and pathway analysis indicates the 
involvement of genes regulating cell development (MAGMA 
competitive P = 3.5 × �0−6). Despite the well-known difference 
in twin-based heratiblity2 for intelligence in childhood (0.45) 
and adulthood (0.80), we show substantial genetic correlation 
(rg = 0.89, LD score regression P = 5.4 × �0−29). These findings 
provide new insight into the genetic architecture of intelligence.

We combined genome-wide association study (GWAS) data for 
intelligence in 78,308 unrelated individuals from 13 cohorts (Online 
Methods). Of these individuals, full GWAS results for intelligence on 

n = 48,698 have been published in two different studies5,6 (n = 12,441 
and n = 36,257, respectively), while GWAS results for the remaining 
29,610 individuals have not been published previously. Across the 
different cohorts, various tests to measure intelligence were used. 
Therefore—following previous publications on combining intel-
ligence phenotypes across different cohorts5,7—the cohorts either 
calculated Spearman’s g or used a primary measure of fluid intelli-
gence (Supplementary Table 1), which is known to correlate highly 
with g8. Previous research has shown that many different aspects of 
intelligence are highly correlated to each other and that Spearman’s g 
captures the latent general intelligence trait, irrespective of the specific 
tests used to construct it9,10.

All association studies were performed on individuals of European 
descent; standard quality control procedures included correcting for 
population stratification and filtering on minor allele frequency (MAF) 
and imputation quality (Online Methods). As 8 of the 13 cohorts  
consisted of children (aged <18 years; total n = 19,509) and 5 consisted 
of adults (n = 58,799; aged 18–78 years), we first performed meta-
analysis of the children- and adult-based cohorts separately using 
METAL software11 and subsequently calculated rg using LD score 
regression12. The estimated rg was 0.89 (s.e.m. = 0.08, P = 5.4 × 10−29),  
indicating substantial overlap between the genetic variants influencing 
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Figure 1 Regional association and linkage disequilibrium plots for 18 genome-wide significant loci. The y axis represents the negative logarithm  
(base 10) of the SNP P value and the x axis represents the position on the chromosome, with the name and location of genes in the UCSC Genome 
Browser shown in the bottom panel. The SNP with the lowest P value in the region is marked by a purple diamond. The colors of the other SNPs indicate 
the r2 of these SNPs with the lead SNP. Plots were generated with LocusZoom34.
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intelligence in childhood and adulthood, and warranting a combined 
meta-analysis. The genetic correlations between all individual cohorts 
were generally larger than 0.80 except for those involving some of 
the smaller-sized cohorts (n < 4,000), which, given the large stand-
ard errors of the rg values, is likely due to the relatively low sample 
sizes in some of the individual cohorts (Supplementary Table 2). The 
full meta-analysis of all 13 cohorts (maximum n = 78,308) included 
12,104,294 SNPs. The quantile–quantile plot of all SNPs exhibited 
some inflation (λall = 1.21; Supplementary Fig. 1 and Supplementary 
Table 3), which is within the expected range for a polygenic trait at 
the current sample size and heritability13. We performed LD score 
regression to quantify the proportion of inflation in the mean χ2 that 
was due to confounding biases. An intercept of 1.01 and mean χ2 of 
1.30 were obtained, suggesting that more than 95% of the inflation was 
caused by true polygenic signal. SNP-based heritability was estimated 
at 0.20 (s.e.m. = 0.01) in the total sample, and this was comparable in 
adults (0.21, s.e.m. = 0.01) and children (0.20, s.e.m. = 0.03). These 
estimates were obtained using LD score regression and are likely to 
be biased downward.

The meta-analysis identified 18 independent genome-wide signifi-
cant loci (Figs. 1 and 2a, and Table 1), including 336 top SNPs (below 
the genome-wide threshold of significance; Supplementary Table 4). 
Of the 18 identified loci, 3 have been implicated in intelligence previ-
ously: 6q16.1 (ref. 14), 7p14.3 and 22q13.2 (ref. 6) (Supplementary 
Table 5). The top SNPs implicated 22 genes, of which 11 were new. 
Functional annotation of the 336 genome-wide significant SNPs 
showed that a large proportion were intronic (162/336) (Fig. 2b). Of 
the 18 lead SNPs, 10 were intronic (Fig. 2b), all were in an active chro-
matin state (Fig. 2c and Supplementary Figs. 2–4) and 8 SNPs were 
expression quantitative trait loci (eQTLs; Fig. 2d and Supplementary 
Tables 4 and 6). Lead SNP rs12928404 (located in the intronic region 

of ATXN2L) had the highest probability of being a regulatory SNP on 
the basis of Regulome database score15 and, of the eight lead SNPs that 
were eQTLs, this SNP was associated with differential expression of the 
largest number of genes (n = 14). Focusing on brain tissue, the T allele 
of this SNP, which was associated with higher intelligence scores, was 
associated with lower expression of TUFM (Supplementary Table 6).

We calculated the variance explained (R2) in intelligence by the 
GWAS results in four independent samples, using LDpred16 (Online 
Methods, Supplementary Fig. 5 and Supplementary Table 7). Our 
calculations show that the current results explain up to 4.8% of the 
variance in intelligence and that on average across the four samples 
there is a 1.9-fold increase in explained variance in comparison to the 
most recent GWAS on intelligence6.

Apart from a SNP-by-SNP GWAS, we conducted a genome-wide 
gene association analysis (GWGAS) as implemented in MAGMA17 
(Online Methods). GWGAS relies on converging evidence from mul-
tiple genetic variants in the same gene and can yield novel genome-
wide significant signals on a gene-based level that are not necessarily 
picked up by a standard GWAS. The GWGAS identified 47 associ-
ated genes (Fig. 3a and Supplementary Table 8). The GWGAS and 
GWAS identified 17 overlapping genes; thus, the total number of genes 
implicated either by a SNP hit or by GWGAS was 22 + 47 – 17 = 52. 
Twelve of the 52 genes have been associated with intelligence previously 
(Supplementary Table 9). Tissue expression analyses (Online Methods) 
of the 52 genes using the GTEx data resource showed that 14 of 44 genes 
for which GTEx data were available were more strongly expressed in 
the brain than in other tissues (Fig. 3b). Epigenetic states were calcu-
lated for 51 of the 52 implicated genes (Online Methods) and showed 
that 57% of genes were at least weakly transcribed in at least 50% of 
tissues (Fig. 3c and Supplementary Fig. 6). Pathway analysis for 6,166 
Gene Ontology (GO18) and 674 Reactome19 gene sets (obtained from 
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Figure 2 Results of SNP-based meta-analysis for intelligence based on 78,308 individuals. Association results from the GWAS meta-analysis pertaining 
to individuals of European descent. (a) Negative log10-transformed P values for each SNP (y axis) are plotted by chromosomal position (x axis).  
The red and blue lines represent the thresholds for genome-wide statistically significant associations (P = 5 × 10−8) and suggestive associations  
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MSigDB20) resulted in one associated gene set (GO: regulation of cell 
development, which is defined as any process that modulates the rate, 
frequency or extent of the progression of the cell over time, from its for-
mation to the mature structure) (MAGMA competitive P = 3.5 × 10−6;  
corrected P = 0.03; Supplementary Tables 10 and 11). This gene set con-
tains four genes that were genome-wide significant—BMPR2, SHANK3, 
DCC and ZFHX3—and many other genes that showed weaker associa-
tion (Supplementary Table 12). Three of the genome-wide significant 
genes are involved in neuronal function: SHANK3 is involved in synapse 
formation, DCC encodes a netrin receptor involved in axon guidance 
and is associated with putamen volume, and ZFHX3 is known to regu-
late myogenic and neuronal differentiation. The fourth gene, BMPR2, 
has a role in embryogenesis and endochondral bone formation and has 
been linked to pulmonary arterial hypertension. The four GO pathways 
with the subsequent smallest P values are not independent from the top 
associated gene set and provide insight into more specific functions of 
the genes driving the observed gene set association. These four gene 
sets are regulation of nervous system development (P = 3.0 × 10−5;  
87% of genes overlapping with the regulation of cell development path-
way, including the four genome-wide significant genes), negative regu-
lation of dendrite development (P = 7.9 × 10−5; 100% overlapping, thus 
a complete subset), myelin sheath (P = 8.5 × 10−5; 14% overlapping) 
and neuron spine (P = 1.5 × 10−4; 34% overlapping).

Intelligence has been associated with many socioeconomic and 
health-related outcomes. We used whole-genome LD score regres-
sion12 to calculate the genetic correlation with 32 traits from these 
domains for which GWAS summary statistics were available for down-
load. Significant genetic correlations were observed with 14 traits. The 
strongest, positive genetic correlation was with educational attain-
ment (rg = 0.70, s.e.m. = 0.02, P = 2.5 × 10−287). Moderate, positive 
genetic correlations were observed with smoking cessation, intracra-
nial volume, head circumference in infancy, autism spectrum disorder 
and height. Moderate negative genetic correlations were observed 
with Alzheimer’s disease, depressive symptoms, having ever smoked, 
schizophrenia, neuroticism, waist-to-hip ratio, body mass index and 
waist circumference (Fig. 3d and Supplementary Table 13).

To examine the robustness of the 336 SNPs and 47 genes that 
reached genome-wide significance in the primary analyses, we sought 
replication. Because there are no reasonably large GWAS for intel-
ligence available and given the high genetic correlation with edu-
cational attainment, which has been used previously as a proxy for 
intelligence7, we used the summary statistics from the latest GWAS 
for educational attainment21 for proxy-replication (Online Methods). 
We first deleted overlapping samples, resulting in a sample of 196,931 
individuals for educational attainment. Of the 336 top SNPs for intel-
ligence, 306 were available for look-up in educational attainment, 
including 16 of the independent lead SNPs. We found that the effects 
of 305 of the 306 available SNPs in educational attainment were sign 
concordant between educational attainment and intelligence, as 
were the effects of all 16 independent lead SNPs (exact binomial  
P < 10−16; Supplementary Table 14). This approach resulted in nine 
proxy-replicated loci (P < 0.05/16): seven for which the lead SNP 
was significant (16p11.2, 1p34.2, 2q11.2, 2q22.3, 3p24.3, 6q16.1 and 
7q33) and two for which another correlated top SNP in the same 
locus was significant (3p24.2 and 7p14.3). Of the 47 genes that were 
significantly associated with intelligence in the GWGAS, 15 were also 
significantly associated with educational attainment (P < 0.05/47; 
Supplementary Table 15). Given the high (0.70) but not perfect 
genetic correlation between educational attainment and intelligence, 
these results strongly support the involvement of the proxy-replicated 
SNPs and genes in intelligence.

The strongest emerging association with intelligence is with 
rs2490272 (6q21) in an intronic region of FOXO3 and neighbor-
ing SNPs in the promoter of the same gene. This gene is part of the 
insulin/insulin-like growth factor 1 signaling pathway and is believed 
to trigger apoptosis, including neuronal cell death as a result of oxi-
dative stress22. Moreover, it has been shown to be associated with 
longevity23,24. The gene with the strongest association in the GWGAS 
is CSE1L, which also has a role in apoptosis and cell proliferation25. 
Of all 52 genes that were implicated, 35 were reported in the GWAS 
catalog for a previous association with at least one of 67 distinct traits. 
Nine genes (ATP2A1, NEGR1, SKAP1, FOXO3, COL16A1, YIPF7, 

table 1 Genomic loci and lead sNPs associated with intelligence in the meta-analysis based on n = 78,308
rsID Annotation Locusa Ref Alt RefF z P value Directionb n nGWS

rs2490272 FOXO3 intronic 6q21 T C 0.63 7.44 9.96 × 10−14 ++++−+++ 78,307 28

rs9320913 Intergenic 6q16.1 A C 0.48 6.61 3.79 × 10−11 ++++−+++ 78,307 13

rs10236197 PDE1C intronic 7p14.3 T C 0.63 6.46 1.03 × 10−10 +++++−++ 78,286 35

rs2251499 Intergenic 13q33.2 T C 0.26 6.31 2.74 × 10−10 ++++++++ 78,307 22

rs36093924 CYP2D7 ncRNA_intr 22q13.2 T C 0.46 −6.31 2.87 × 10−10 ?−−????? 54,119 100

rs7646501 Intergenic 3p24.2 A G 0.74 6.02 1.79 × 10−9 ?++−++++ 65,866 5

rs4728302 EXOC4 intronic 7q33 T C 0.60 −5.97 2.42 × 10−9 −−−+−−+− 78,307 45

rs10191758 ARHGAP15 intronic 2q22.3 A G 0.61 −5.93 3.06 × 10−9 ?−−????? 54,119 17

rs12744310 Intergenic 1p34.2 T C 0.22 −5.88 4.20 × 10−9 ?−−−−−−− 65,866 28

rs66495454 NEGR1 upstream 1p31.1 G GTCCT 0.62 −5.75 9.08 × 10−9 ?−−????? 54,119 1

rs113315451 CSE1L intronic 20q13.13 A ATTAT 0.43 5.71 1.15 × 10−8 ?++????? 54,119 1

rs12928404 ATXN2L intronic 16p11.2 T C 0.59 5.71 1.15 × 10−8 ++++++++ 78,307 19

rs41352752 MEF2C intronic 5q14.3 T C 0.97 −5.68 1.35 × 10−8 ?−−????? 54,119 1

rs13010010 LINC01104 ncRNA_intr 2q11.2 T C 0.38 5.65 1.56 × 10−8 ++++++++ 78,308 11

rs16954078 SKAP1 intronic 17q21.32 A T 0.21 −5.55 2.84 × 10−8 ?−−−−+−− 65,866 7

rs11138902 APBA1 intronic 9q21.11 A G 0.54 5.49 4.12 × 10−8 +++++−++ 78,307 1

rs6746731 ZNF638 intronic 2p13.2 T G 0.43 −5.46 4.88 × 10−8 −−−−−+−− 78,307 1

rs6779302 Intergenic 3p24.3 T G 0.37 −5.45 4.99 × 10−8 ?−−????? 54,119 1

SNP P values and z scores were computed in METAL by a weighted z-score method. A total of 336 SNPs reached genome-wide significance (P < 5 × 10−8); 18 independent 
signals were obtained by linkage disequilibrium (LD)-based clumping, using an r2 threshold of 0.1 and a window size of 300 kb. Ref, effect or reference allele; Alt, non-effect or 
alternative allele; RefF, effect allele frequency in UK Biobank, based on individuals of European ancestry; z, z score from METAL; Direction, direction of the effect in each of the 
cohorts; n, sample size; nGWS, number of genome-wide significant SNPs in the locus.
aCytogenetic band, build hg19. bOrder: CHIC, UKB-wb, UKB-ts, ERF, GENR, HU, MCTFR, STR.
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DCC, SH2B1 and TUFM) were previously implicated with body mass 
index26–29, seven (CYP2D6, NAGA, NDUFA6, TCF20 and SEPT3, 
FAM109B and MEF2C) were implicated with schizophrenia30 and four 
(NEGR1, SH2B1, DCC and WNT4) were implicated with obesity31–33. 
EXOC4 and MEF2C have been associated previously with Alzheimer’s 
disease (Supplementary Tables 16 and 17). Many of the implicated 
genes are involved in neuronal function, including DCC, APBA1, 

PRR7, ZFHX3, HCRTR1, NEGR1, MEF2C, SHANK3 and ATXN2L 
(see the Supplementary Note for the GeneCards summaries).

In conclusion, we conducted a meta-analysis GWAS and GWGAS 
for intelligence, including 13 cohorts and 78,308 individuals. We 
confirmed 3 loci and 12 genes, and identified 15 new genomic loci 
and 40 new genes for intelligence. Pathway analysis demonstrated 
the involvement of genes regulating cell development. We showed 
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Figure 3 Gene-based genome-wide analysis for intelligence and genetic overlap with other traits. (a) Negative log10-transformed P values for each gene 
are plotted. Green dots represent significantly associated genes from GWGAS. The threshold for gene-wide statistical significant associations was set at 
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genetic overlap with several neuropsychiatric and metabolic disor-
ders. These findings provide starting points for understanding the 
molecular neurobiological mechanisms underlying intelligence, one 
of the most investigated traits in humans.

URLs. UK Biobank, http://www.ukbiobank.ac.uk; genotyping 
and quality control of UK Biobank, http://biobank.ctsu.ox.ac.uk/ 
crystal/refer.cgi?id=155580; CHIC summary statistics http://ssgac.
org/documents/CHIC_Summary_Benyamin2014.txt.gz; SNPTEST, 
https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.
html; MAGMA, http://ctg.cncr.nl/software/magma; MSigDB, http://
software.broadinstitute.org/gsea/msigdb/collections.jsp; METAL, 
http://genome.sph.umich.edu/wiki/METAL_Program; LD score 
regression (LDSC), https://github.com/bulik/ldsc.

METHoDS
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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Discovery sample. The current study was based on 78,308 individuals. The 
origin of the samples is as follows:

(1)  UK Biobank web-based measure (UKB-wb; n = 17,862). GWAS results 
have not yet been published; raw genotypic data were available for the 
present study.

(2)  UK Biobank touchscreen measure (UKB-ts; n = 36,257, non-overlapping  
with UKB-wb). Results have been published before6; raw genotypic 
data were available for the present study.

(3)  CHIC consortium5 (n = 12,441). Results have been published before; 
meta-analysis summary statistics were available for the present study.

(4)  Five additional cohorts (n = 11,748). For these, 69 SNP associations 
with IQ have previously been published as part of a lookup effort7, but 
full GWAS results have not been published previously. Per-cohort full 
GWAS summary statistics were available for the present study.

We describe these data sets in more detail below.
UK Biobank samples (UKB-wb, UKB-ts). We used the data provided by the 

UK Biobank Study35 resource (see URLs), which is a major national health 
resource including >500,000 participants. All participants provided writ-
ten informed consent; the UK Biobank received ethical approval from the 
National Research Ethics Service Committee North West–Haydock (refer-
ence 11/NW/0382), and all study procedures were performed in accordance 
with the World Medical Association Declaration of Helsinki ethical principles 
for medical research. The current study was conducted under UK Biobank 
application number 16406.

The study design of the UK Biobank has been described in detail else-
where35,36. Briefly, invitation letters were sent out in 2006–2010 to ~9.2 million 
individuals, including all people aged 40–69 years who were registered with 
the National Health Service and living up to ~25 miles from one of the 22 
study assessment centers. A total of 503,325 participants were subsequently 
recruited into the study35. Apart from registry-based phenotypic information, 
extensive self-reported baseline data have been collected by questionnaire, in 
addition to anthropometric assessments and DNA collection. For the present 
study, we used imputed data obtained from UK Biobank (May 2015 release) 
including ~73 million genetic variants in 152,249 individuals. Details on the 
data are provided elsewhere (see URLs). In summary, the first ~50,000 samples 
were genotyped on the UK BiLEVE Axiom array, and the remaining ~100,000 
samples were genotyped on the UK Biobank Axiom array. After standard qual-
ity control of the SNPs and samples, which was centrally performed by UK 
Biobank, the data set comprised 641,018 autosomal SNPs in 152,256 samples 
for phasing and imputation. Imputation was performed with a reference panel 
that included the UK10K haplotype panel and the 1000 Genomes Project Phase 
3 reference panel.

We used two fluid intelligence phenotypes from the Biobank data set. 
These are based on questionnaires that were taken either in the assessment 
center at the initial intake (‘touchscreen’, field 20016) or at a later moment at 
home (‘web-based’, field 20191). The measures indicate the number of correct 
answers out of 13 fluid intelligence questions. The data distribution roughly 
approximates a normal distribution.

For the analyses in our study, we only included individuals of European 
descent. After removal of related individuals and those with discordant sex, 
who withdrew consent or had missing phenotype data, 36,257 individuals 
remained for analysis for the fluid intelligence touchscreen measure and 28,846 
remained for the web-based version. As 10,984 individuals had taken both the 
touchscreen and web-based test, we only included the data from the touch-
screen test for these individuals. This resulted in 54,119 individuals with a 
score on either the fluid intelligence web-based (UKB-wb) or touchscreen 
(UKB-ts) version (Supplementary Table 1). At the time of taking the test, the 
age of the participants ranged between 40 and 78 years. Half of the participants 
were between 40 and 60 years old, 44% were between 60 and 70 years old and 
6% were older than 70 years. The mean age was 58.98 years with a standard 
deviation of 8.19.

Summary statistics from the CHIC consortium. We downloaded the pub-
licly available combined GWAS results from the meta-analyses as reported 
by CHIC5 (see URLs). Details on the included cohorts and performed  

analyses are reported in the original publication5. Briefly, CHIC includes  
six cohorts totaling 12,441 individuals: the Avon Longitudinal Study of 
Parents and Children (ALSPAC, n = 5,517), the Lothian Birth Cohorts 
of 1921 and 1936 (LBC1921, n = 464; LBC1936, n = 947), the Brisbane 
Adolescent Twin Study subsample of the Queensland Institute of Medical 
Research (QIMR, n = 1,752), the Western Australian Pregnancy Cohort 
Study (Raine, n = 936) and the Twins Early Development Study (TEDS, n =  
2,825). All individuals are children aged from 6–18 years. Within each 
cohort, the cognitive performance measure was adjusted for sex and age 
and principal components were included to adjust for population stratifica-
tion. See also Supplementary Table 1.

Full GWAS data from additional cohorts. We used the same additional (non-
CHIC) cohorts as described in detail in ref. 7, which included 11,748 individu-
als from five cohorts. In ref. 7, results were only reported for 69 SNPs, as these 
served as a secondary analysis for a lookup effort. In the current study, we used 
the full genome-wide results from these cohorts. GWAS were conducted in 
2013, and summary statistics were obtained from the PIs of the five cohorts. 
The quality control protocol entailed excluding SNPs with MAF <0.01, imputa-
tion quality score <0.4, Hardy–Weinberg P value <1 × 10−6 and call rate <0.957. 
The five cohorts included the Erasmus Rucphen Family Study (ERF, n = 1,076),  
the Generation R Study (GenR, n = 3,701), the Harvard/Union Study (HU,  
n = 389), the Minnesota Center for Twin and Family Research Study (MCTFR, 
n = 3,367) and the Swedish Twin Registry Study (STR, n = 3,215). Detailed 
descriptions of these cohorts are provided in ref. 7 and summarized in 
Supplementary Table 1. Within each cohort, the cognitive performance meas-
ure was adjusted for sex and age and principal components were included to 
adjust for population stratification.

SNP analysis in the UK Biobank sample. Association tests were performed 
in SNPTEST37 (see URLs), using linear regression. Both phenotypes were 
corrected for a number of covariates, including age, sex and a minimum 
of five genetically determined principal components, depending on how 
many were associated with the phenotype (5 for the web-based test and 15 
for the touchscreen version, tested by linear regression). Additionally, we 
included the Townsend deprivation index as a covariate, which is based on 
postal code and measures material deprivation. The touchscreen version 
of the phenotype was also corrected for assessment center and genotyping 
array. SNPs with imputation quality <0.8 and MAF <0.001 (based on all 
Europeans present in the total sample) were excluded after the association 
analysis, resulting in 12,573,858 and 12,595,966 SNPs for the touchscreen 
and web-based test, respectively.

Gene analysis. The SNP-based P values from the meta-analysis were used as 
input for the gene-based analysis. We used all 19,427 protein-coding genes 
from the NCBI 37.3 gene definitions as the basis for a genome-wide gene 
association analysis (GWGAS) in MAGMA (see URLs). After SNP annotation, 
there were 18,338 genes that were covered by at least one SNP. Gene associa-
tion tests were performed taking LD between SNPs into account. We applied 
a stringent Bonferroni correction to account for multiple testing, setting the 
genome-wide threshold for significance at 2.73 × 10−6.

Pathway analysis. We used MAGMA to test for association of predefined 
gene sets with intelligence. A total of 6,166 GO and 674 Reactome gene sets 
were obtained (see URLs). We computed competitive P values, which are less 
likely to be below the threshold of significance than self-contained P values. 
Competitive P values are the outcomes of the test that the combined effect of 
genes in a gene set is significantly larger than the combined effect of all other 
genes, whereas self-contained P values are informative when testing against the 
null hypothesis of no association. Self-contained P values are not interpreted 
and not reported by us. Competitive P values were corrected for multiple 
testing using MAGMA’s built-in empirical multiple-testing correction with 
10,000 permutations.

Meta-analysis. Meta-analysis of the results of the 13 cohorts was performed 
in METAL11 (see URLs). We did not include SNPs that were not present in the 
UK Biobank sample. The analysis was based on P values, taking sample size 
and direction of effect into account using the sample size scheme.
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Genetic correlations. Genetic correlations (rg) were calculated between intel-
ligence and 32 other traits for which summary statistics from GWAS were 
publicly available, using LD score regression (see URLs). This method corrects 
for sample overlap, by estimating the intercept of the bivariate regression. 
A conservative Bonferroni-corrected threshold of 1.56 × 10−3 was used to 
determine significant correlations.

Functional annotation. We identified all SNPs that had an r2 value of 0.1 or 
higher with the 18 independent lead SNPs and were included in the METAL 
output. We used the 1000 Genomes Project Phase 3 reference panel to calculate 
r2. We further filtered on SNPs with P < 0.05. In addition, we only annotated 
SNPs with MAF >0.01.

Positional annotations for all lead SNPs and SNPs in LD with the lead SNPs 
were obtained by performing ANNOVAR gene-based annotation using RefSeq 
genes. In addition, CADD scores38 and RegulomeDB15 scores were annotated 
to SNPs by matching chromosome, position, reference and alternative alleles. 
For each SNP, eQTLs were extracted from GTEx (44 tissue types)39, the Blood 
eQTL browser40 and BIOS gene-level eQTLs41. The eQTLs obtained from 
GTEx were filtered on gene P < 0.05, and eQTLs obtained from the other 
two databases were filtered on FDR < 0.05. The FDR values were provided 
by GTEx, BIOS and the Blood eQTL browser. For GTEx eQTLs, there is one 
FDR value available per gene–tissue pair. As such, the FDR is identical for all 
eQTLs belonging to the same gene–tissue pair. For BIOS and the Blood eQTL 
browser, an FDR value was computed for each SNP.

To test whether the SNPs were functionally active by means of histone mod-
ifications, we obtained epigenetic data from the NIH Roadmap Epigenomics 
Mapping Consortium42 and ENCODE43. For every 200 bp of the genome, a 
15-core chromatin state was predicted by a hidden Markov model based on five 
histone marks (H3K4me3, H3K4me1, H3K27me3, H3K9me3 and H3K36me3) 
for 127 tissue and cell types44. We annotated chromatin states (15 states in 
total) to SNPs by matching chromosome and position for every tissue or cell 
type. We computed the minimum state (1, the most active state) and the con-
sensus state (majority of states) across 127 tissue and cell types for each SNP.

Chromatin states were also determined for the 52 genes (47 from the gene-
based test + 5 additional genes implicated by single-SNP GWAS). For each 
gene and tissue, the chromatin state was obtained per 200-bp interval in the 
gene. We then annotated the genes by means of a consensus decision when 
multiple states were present for a single gene; that is, the state of the gene was 
defined as the modus of all states present in the gene.

Tissue expression of genes. RNA sequencing data from 1,641 tissue samples 
with 45 unique tissue labels were derived from the GTEx consortium39. This set 
includes 313 brain samples over 13 unique brain regions (see Supplementary 
Table 18 for sample size per tissue). Of the 52 genes implicated by either the 
GWAS or the GWGWAS, 44 were included in the GTEx data. Normalization 
of the data was performed as described previously45. Briefly, genes with 
RPKM value smaller than 0.1 in at least 80% of the samples were removed. 
The remaining genes were log2 transformed (after using a pseudocount of 1), 
and finally a zero-mean normalization was applied.

Proxy replication in educational attainment. For the replication analysis, we 
used a subset of the data from ref. 21. In particular, we excluded the Erasmus 
Rucphen Family Study, the Minnesota Center for Twin and Family Research 
Study, the Swedish Twin Registry Study, the 23andMe data and all individuals 
from UK Biobank, to make sure that there was no sample overlap with our IQ 

data set. Genetic correlation between intelligence and educational attainment  
in this non-overlapping subsample was rg = 0.73, s.e.m. = 0.03, P = 1.4 × 
10−163. The replication analysis was based on the phenotype EduYears, which 
measures the number of years of schooling completed. A total of 306 of our 
336 top SNPs (and 16 of 18 independent lead SNPs) were available in the 
educational attainment sample. We performed a sign concordance analysis 
for the 16 independent lead SNPs, using the exact binomial test. For each 
independent signal we determined whether either the lead SNP had a P value 
smaller than 0.05/16 in the educational attainment analysis or another (cor-
related) top SNP in the same locus had such a P value, if this was not the case 
for the lead SNP. All 47 genes implicated in the GWGAS for intelligence were 
available for lookup in the educational attainment sample. For each gene, we 
determined whether it had a P value smaller than 0.05/47 in the educational 
attainment analysis.

Polygenic risk score analysis. We used LDpred16 to calculate the  
variance explained in intelligence in independent samples by a polygenic 
risk score based on our discovery analysis, as well as two previous GWAS for  
intelligence5,6. LDpred adjusts GWAS summary statistics for the effects of 
LD by using an approximate Gibbs sampler that calculates the posterior  
means of effects, conditional on LD information, when calculating polygenic 
risk scores. We used varying priors for the fraction of SNPs with nonzero 
effects (priors: 0.01, 0.05, 0.1, 0.5, 1 and an infinitesimal prior). Independent 
data sets available for polygenic risk score analyses are described in the 
Supplementary Note.

Data availability. Summary statistics have been made available for down-
load from http://ctg.cncr.nl/software/summary_statistics. Genotype data that 
underlie the findings of this study are available from UK Biobank but restric-
tions apply to the availability of these data, which were used under license for 
the current study (application number 16406) and so are not publicly available. 
Summary statistics from the CHIC consortium are available from http://ssgac.
org/documents/CHIC_Summary_Benyamin2014.txt.gz. Additional supporting  
data are provided in the supplementary material.
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