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SUMMARY

The increasing proportion of variance in human com-
plex traits explained by polygenic scores, along with
progress in preimplantation genetic diagnosis, sug-
gests the possibility of screening embryos for traits
such as height or cognitive ability. However, the ex-
pected outcomes of embryo screening are unclear,
which undermines discussion of associated ethical
concerns. Here, we use theory, simulations, and
real data to evaluate the potential gain of embryo
screening, defined as the difference in trait value be-
tween the top-scoring embryo and the average em-
bryo. The gain increases very slowly with the number
of embryos but more rapidly with the variance ex-
plained by the score. Given current technology, the
average gain due to screening would be z2.5 cm
for height and z2.5 IQ points for cognitive ability.
Thesemean values are accompanied bywide predic-
tion intervals, and indeed, in large nuclear families,
the majority of children top-scoring for height are
not the tallest.

INTRODUCTION

The use of biotechnology to influence the genetic composition

of human embryos in the absence of specific disease risk rai-

ses many ethical concerns, and the recent live births resulting

from human embryonic CRISPR editing have heightened global

attention to these issues (Coller, 2019; National Academies of

Sciences Engineering and Medicine, 2017). Currently, the

most practical approach to genetic ‘‘enhancement’’ of embryos

is preimplantation genetic screening of in vitro fertilization (IVF)

embryos. Preimplantation genetic diagnosis and screening

(Sullivan-Pyke and Dokras, 2018) have been utilized for years

to avoid implantation of embryos harboring monogenic dis-

ease-causing alleles or aneuploidies. Recently, it also became

technically feasible to generate accurate genome-wide geno-

types from single-cell input (Kumar et al., 2015; Treff et al.

2019). This development, coupled to recent progress in com-

plex traits genetics, has made it possible to genetically screen

embryos for polygenic traits, and has raised the prospect of

‘‘designer babies’’ (The Economist, 2018).

Perhaps the most controversial potential application of poly-

genic embryo selection would be selection for intelligence, espe-

cially given the abhorrent history of the early 20th century

eugenics movement (Tabery, 2015). While most ethicists are

deeply troubled by such prospects, at least one scholar has sug-

gested that there is an ethical obligation for parents to ‘‘select the

best children’’ (Savulescu, 2001). In our view, any discussion of

the ethics of embryo selection would ideally be informed by

quantification of the expected utility of polygenic selection, either

as of today, or as reasonably projected into the future. In this

report, we thus utilize statistical and empirical methods to eval-

uate the potential effects of human embryo selection for poly-

genic traits.
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Polygenic scores (PS) are derived from large-scale genome-

wide association studies (GWAS) of complex traits, which can

be quantitative (such as intelligence or height) or categorical

(such as disease status, in which case they are often referred

to as ‘‘polygenic risk scores’’ [Wray et al., 2013]). A PS is the

count of effect alleles in an individual’s genome, weighted by

each allele’s strength of association with the trait of interest in

an independent GWAS (Purcell et al., 2009). The predictive po-

wer of a PS is usually represented by r2ps, or the proportion of

variance of the quantitative trait explained by the PS. GWASs

of intelligence (Davies et al., 2018; Savage et al., 2018) have

demonstrated a relatively modest out-of-sample r2ps (z5%),

despite large sample sizes (n z 300,000 individuals). By

contrast, recent large-scale GWASs of height have attained r2ps
of �25%, demonstrating a highly polygenic genetic architecture

similar to intelligence (Yengo et al., 2018a). Consequently, in the

present report, we analyze height in addition to cognitive ability,

which also allows us to exploit several datasets in which height

data, but not intelligence data, are available.

PSs are typically evaluated on a cohort basis and are not used

to differentiate one individual from another (although a recent

report has demonstrated that, for an extraordinarily tall NBA

player, the PS for height was >4 SDs above the population

mean [Sexton et al., 2018]). In order for polygenic embryo

selection to hold potential utility (independent of ethical consid-

erations), PSs must provide sufficient predictive power to differ-

entiate between embryos within the restricted range of genetic

variance available in a single family, and with a finite number of

embryos. Two reports utilizing only mathematical modeling

have suggested that substantial effect sizes for embryonic selec-

tion are possible (Branwen, 2016; Shulman and Bostrom, 2014).

However, to our knowledge, despite the widespread application

of polygenic scores to complex traits and precision medicine in

the research literature (Torkamani et al., 2018), no published

studies have empirically examined the possibilities and limita-

tions of a polygenic approach to embryo selection.

We consider here embryo selection in the context of a hypo-

thetical IVF cycle. Our quantity of interest is the difference be-

tween the predicted value of the selected trait (i.e., height or

intelligence) when the embryo with the highest PS is selected,

compared with the mean across embryos. We term this differ-

ence the ‘‘gain,’’ and we further differentiate between the ‘‘pre-

dicted’’ gain, as determined by the PS, and the ‘‘realized’’ gain,

as observed in the fully grown offspring. Because no study can

be performed in actual embryos, we utilize three sources of

data: (1) a quantitative genetic model, (2) simulated embryo ge-

nomes generated using realistic parameters from existing geno-

typed adults with known phenotypic values, and (3) a unique

pedigree dataset of nuclear families with large numbers of

offspring (10 on average), now fully grown adults, with available

genotype and phenotype data. In our simulated data, we

examine the gain as a function of varying predictive strengths

(r2ps) of the PS, as well as of the number of embryos (n) available;

these results are compared against a theoretical model derived

for average gain. Although a typical IVF cycle may produce 3–8

viable embryos (median = 5) (Sunkara et al., 2011), we examine

the gain across a broad range of values of n, given the possibility

of future advances in IVF technology. Particular emphasis is

placed on n = 10, representing a plausible upper bound within

the foreseeable future.

RESULTS

We first developed a simple quantitative genetic model for the

expected gain. The model assumes a polygenic additive trait

with no assortative mating, and hence no correlation between

the scores of SNPs from homologous chromosomes or chromo-

somes of spouses. We recognize that statistically significant as-

sortative mating has been demonstrated for genetic variants

associated with polygenic traits such as height and educational

attainment (Conley et al., 2016); however, the overall magnitude

of this effect accounts for <5% of the variance in spousal pheno-

type (Robinson et al., 2017; Tenesa et al., 2016). Assortativemat-

ing would tend to reduce the efficacy of embryo selection due to

reduced variance available from which to select and lower

within-family score accuracy (Mostafavi et al., 2019), and thus

our results described below represent an upper bound on the

potential gain.

We assumed a couple has generated n embryos, and

computed the distribution of the polygenic scores of these em-

bryos for a trait with phenotypic variance s2z , of which a propor-

tion r2ps is explained by the PS. The set of n polygenic scores can

bemodeled as having amultivariate normal distribution with zero

means, all variances equal to s2z r
2
ps, and all covariances equal to

ð1 =2Þs2z r2ps. The predicted gain is formally defined as the differ-

ence between the maximal and average PSs among the n em-

bryos. Based on properties of multivariate normal distributions,

the mean gain can be shown to be approximately (for details

see Methods S1, sections 1–3)

E½gain�fszrps
ffiffiffiffiffiffiffiffiffiffiffi
log n

p
; (Equation 1)

where the coefficient of proportion is z0.77. A more accurate

formula based on extreme value theory can also be derived

(Methods S1; Equation 33). Most notably for our purposes, the

mean gain increases with the square root of the variance ex-

plained (or linearly with the correlation coefficient between the

PS and the trait), but the effect of n is considerably attenuated,

as denoted by the square root and log transformation in

Equation 1.

Next, for our simulations, we used genotypic and phenotypic

data from two cohorts. The Longevity cohort contained 102 cou-

ples of Ashkenazi Jewish origin with genome-wide genotypes

and information on height, drawn from a larger longevity study

(Atzmon et al., 2009). The ASPIS cohort (Stefanis et al., 2004)

contained 919 young Greekmales with genome-wide genotypes

and information on general cognitive function. To simulate em-

bryos, we used either actual couples (for the Longevity cohort)

or randomly matched couples (for both cohorts), and generated

n= 10 or 50 synthetic offspring per couple based on a standard

model of recombination (see STAR Methods for details).

To predict the height or IQ of each embryo, we used polygenic

scores based on summary statistics derived from recent large-

scale GWAS meta-analyses. For height, the most recent meta-

analysis contained z700,000 individuals (Yengo et al., 2018a)
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and did not include the subjects in our test (Longevity) cohort.

For IQ, we utilized the most recent published meta-analysis

(Savage et al., 2018), from which the COGENT set of cohorts

(including the ASPIS cohort) had been removed, resulting in a

discovery sample size of n = 234;569. We optimized the poly-

genic scores with respect to imputation, LD-pruning, and the

p value threshold (STAR Methods). Our scores predicted

height in the Longevity cohort with r2ps = 24:3% and IQ in the

ASPIS cohort with r2ps = 4:3%, both within one percentage

point of the out-of-sample predictive power reported in the

original GWASs. Using linear regression of the phenotype

(age- and sex-corrected for height) on the polygenic scores

in each cohort, we predicted the height or IQ of each simu-

lated embryo.

Having calculated the predicted height of each simulated

embryo from the Longevity cohort and the predicted IQ of

each simulated embryo from the ASPIS cohort, we sought

to test the predictions of the mathematical model in Equa-

tion 1. To examine the relationship between predicted gain

and the variance accounted for by the PS, we fixed the num-

ber of embryos to n= 10 and plotted the mean gain for height

against increasing r2ps. Because polygenic contributions to

most complex traits (including height and IQ) are evenly

distributed throughout the genome (Shi et al., 2016), we

generated PSs that were progressively stronger using PSs

derived from growing subsets of the 22 autosomes (e.g., chro-

mosome 1 SNPs only, chromosome 1 + chromosome 2 SNPs

only, etc.). As shown in Figure 1, the average gain reaches

z3 cm or z3 IQ points when the full genome-wide PS is

used (corresponding to z0.5 and z0.2 SDs of the trait,

respectively). The average gains obtained from varying r2ps
are close to the values predicted by the theoretical model

(Equation 1). Our results did not differ when the actual couples

were used as the source of the simulated embryos (Figure 1B),

compared to couples randomly matched from the Longevity

cohort (Figure 1A), indicating that effects of any assortative

mating in this dataset are de minimis.

The PSs used so far are based on current GWAS results and

on a simple LD-pruning and p value-thresholding strategy. How-

ever, GWASs are expected to increase in size (in particular given

the rapid growth of the direct to consumer genetic industry [Khan

and Mittelman, 2018]), and statistical prediction methods are

constantly improving (Chung et al., 2019; Lello et al., 2018;

Mak et al., 2017; Vilhjálmsson et al., 2015). Given that the theo-

retically predicted relationship of the gain with rps was supported

by the data in Figure 1, we can forecast the prospects of embryo

selection as predictors become increasingly accurate. For

example, doubling the proportion of explained variance of height

fromz25% to 50% is expected to increase the mean gain from

z3 toz4.24 cm, with a maximum possible gain ofz5.5 cm for

r2psz80% (the upper bound of the heritability of the trait, as

derived from twin studies [Jelenkovic et al., 2016]). Similarly,

quadrupling the variance explained for IQ would lead to a

doubling of the gain, to z6 IQ points (given n= 10 embryos).

Next, we tested the relationship between the gain and the

number of embryos, holding r2ps constant. In Figure 2, we show

the expected gain versus the number of embryos, for up to 50

embryos. Comparison to the theoretical model again shows

good agreement, with an even better fit demonstrated in Fig-

ure S1 based on a more accurate approximation (Methods S1;

Equation 33). Two implications are immediately apparent from

Figure 2. First, current reproductive technologies are in the

most sensitive area of the curve. With a typical IVF cycle yielding

5 testable, viable embryos (Sunkara et al., 2011), the predicted

gain is reduced fromz3 toz2.5 (cm or IQ points); below 5 em-

bryos, the gain drops precipitously. Second, there is a rather

A B C

Figure 1. The Mean Gain versus the Proportion of the Variance Explained by the PS
Blue dots and the 95% confidence intervals (light blue bands) represent simulations with 10 embryos per couple. To generate scores with increasing proportions

of variance explained, we gradually added chromosomes 1 to 22 to the computed PS. The orange line corresponds to the theoretical model derived in Methods

S1 and described in Equation 1. For each value of r2ps, dots are averages and 95% confidence intervals are based on ±1.96 the SEM over the simulated families.

(A) Gain in height for random couples: 500 simulated pairings drawn from the Longevity cohort.

(B) Gain in height for actual couples: 102 couples from the Longevity cohort.

(C) Gain in IQ for random couples: 500 simulated pairings drawn from the ASPIS cohort.

See also Figure S3.
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slow increase of the mean gain as the number of embryos in-

creases beyond 10. Thus, even with 1,000 embryos, the mean

gain would be only z1.7 times higher compared to selection

with 10 embryos. Again, no differences were observed between

randomly paired and actually married couples (Figures 2A and

2B). The pattern for intelligence was roughly equivalent to that

observed for height (Figure 2C).

Both of the results above demonstrate the average gain ex-

pected under varying levels of r2ps and n across 102 real couples

or 500 simulated couples. However, for any given couple, the

predicted gain will further vary around thismean. The distribution

of thegain,whenchoosingout of 10embryos, is shown inFigure 3

for height (for both random and actual couples) and IQ. The gain

in height is typically between1–6 cm,with amedian of 2.85 cm for

random couples (SD: 1.03; IQR (interquartile range): 2.34–3.80)

and 3.02 cm (SD: 0.98; IQR: 2.30–3.60) for actual couples. The

gain in IQ was between z1–7 points (SD: 1.06; IQR: 2.43–

3.84), with a median of 3.02 IQ points. Thus, the predicted gain

for a given couple may be somewhat higher or lower than sug-

gested by the mean results of our simulations, due to variation

across couples and the random assortment of SNPs in the

offspring (see Methods S1, section 4 for a derivation of the vari-

ance of the gain). The mean gain itself is affected by the geno-

types of the parents, but not by their total scores (Methods S1,

section 5).

Figure 3 demonstrates the variability of the predicted gain

across couples, but environmental variance leads to additional

and substantial variability in the realized gain, as observed in

the phenotype of the offspring. Naively (Methods S1, section

6), given PSmax, the score of the top-scoring embryo, the 95%

prediction interval for the (zero-centered) trait value ish
PSmax � 1:96sz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2ps

q
;PSmax + 1:96sz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2ps

q i
:

(Equation 2)

Equation 2 can be compared to a 95% prediction interval of

½�1:96sz;1:96sz� without selection. However, prediction inter-

vals can be narrowed based on the parental phenotypic values,

which are usually known. For example, it has been long known

that mid-parental height can explain z40% of the variance in

height of the offspring (Aulchenko et al., 2009) or theoretically

h4=2z32% (Visscher et al., 2010). These z32% of the vari-

ance overlap with the z25% explained by the PS, and the

combination of both sources of information can never explain

more than the heritability. As shown in Figure 4A, even under

the extreme scenario where the combination of the PS and

the parental values explain the entire heritability of height

(z80%), there would still be a ±5-cm interval around any pre-

dicted gain due to environmental and stochastic factors. Based

on either the current PS alone, or based on the parents alone,

the interval would be as large as ±9–10 cm. For IQ, the 95%

prediction interval would be ±13–19 points in case the entire

heritability is explained (assuming h2˛½0:6; 0:8�), or ±24–27

points based on the parents (Figure 4B). Thus, the unexplained

variance yields a wide confidence interval around any predicted

value for an offspring’s trait and therefore a considerable un-

certainty in the realized gain that any given couple can expect

from embryo selection. This would need to be combined with

the variability in the predicted gain itself, as depicted in Figure 3,

thereby substantially attenuating any guarantees on the poten-

tial benefit.

To give another example, assume there is no variability in the

gain, the entire heritability is explained by the combination of

the score and the parental phenotypes, and the proportion of

variance explained by the PS is 40% for height and 15% for

IQ. Selecting out of 10 embryos, a 95% prediction interval for

the height of a male child (assuming average parents,

176 cm for the population average, and an SD of 6 cm) would

be �180 ± 5 cm (i.e., 175–185 cm). This is compared to 176 ±

10 cm (166–186 cm) without selection (Methods S1, section 6).

For IQ (mean 100 and SD 15, assuming h2 = 0:6), the 95% pre-

diction interval would be �106 ± 19 (88–125), compared to 100

± 27 (73–127) without selection. The future child has a non-

negligible probability (z0.25, assuming a normal distribution)

to have an IQ below the population average.

To evaluate the utility of embryo selection in a real-world

setting, we examined a unique cohort of 28 large families

A B C

Figure 2. The Mean Gain versus the Number of Embryos

Blue dots are from simulations, and orange lines are for the theoretical prediction (Equation 1). All details are as in Figure 1.

See also Figures S1 and S2.
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with up to 20 offspring each (range: 3–20; mean = 9.6), now

grown to adulthood and phenotyped for height. While all these

families were the result of traditional means of procreation, we

treated the offspring data as if all offspring were simulta-

neously generated embryos available for selection based on

their PSs. Figure 5A depicts the actual difference in height be-

tween the offspring with the highest PS, compared to the

average height of all the offspring in each family, i.e., the real-

ized gain. (All heights were corrected for age and sex.) While

the observed values average around the mean gain predicted

by the theory, there was substantial variability in the realized

gain. Some families realized a gain of up to 10 cm, while for

5 of the 28 families, choosing the embryo with the highest

PS would have resulted in an offspring with height below the

average (i.e., gain <0).

The inherent uncertainty in PS-based selection is also demon-

strated in Figure 5B, which displays the actual height for each

family member. It is notable that the offspring with the highest

PS (red squares) is the tallest actual offspring in only 7 of

the 28 families. Moreover, when repeatedly downsampled to

n= 7 children, the offspring with the highest PS was the tallest

in z31.5% of the families, close to the theoretical prediction

(z33.4%; Methods S1, section 7). Across all families, the tallest

child was on averagez3.0 cm taller than the child with the tallest

predicted height, again very close to the theoretical prediction

(3.1 cm; Methods S1, section 7).

Finally, embryo selection could be desired or attempted on the

basis of scores for multiple traits, some of which may be posi-

tively or negatively correlated. We extended our quantitative

model to predict the outcome of this selection scheme (Methods

S1, section 8). Specifically, we assumed selection for a weighted

average of the scores for T traits, with correlation rps;ij between

the scores of traits i and j. We defined the weight of trait i as

li=sps;i, where sps;i = sz;irps;i is the standard deviation of the score

of trait i (s2z;i is the variance of trait i and r2ps;i is the proportion of

variance in trait i explained by the PS). The mean gain in trait i

(i.e., the predicted value of trait i of the embryo with the maximal

combined score; denoted Gi), is

EðGiÞfsz;i rps;i
ffiffiffiffiffiffiffiffiffiffiffi
log n

p li +
PT

j = 1;jsi

ljrps;ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
j = 1

l2j +
PT
j = 1

PT
k = 1;ksj

ljlkrps;jk

s :

(Equation 3)

We demonstrate the application of this formula when jointly se-

lecting for height and BMI in the Longevity cohort (Figure S2).

To gain more insight into Equation 3, consider the case when

all trait-trait correlations are equal to r, and all weights are equal

to l=sps;i. This corresponds to giving each trait an equal weight,

after accounting for the different variance explained by each

score. The mean gain per trait is

EðGiÞfsz;i rps;i
ffiffiffiffiffiffiffiffiffiffiffi
log n

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ ðT � 1Þrp

ffiffiffiffi
T

p : (Equation 4)

If r = 1, i.e., all scores are equal after normalization, the gain per

trait is the same as the gain achieved when selecting for a single

trait, as expected. When r= 0 (i.e., when selecting for T indepen-

dent traits), the mean gain per trait is 1=
ffiffiffiffi
T

p
smaller compared to

selecting for a single trait. When all traits are maximally anti-

correlated (r = � 1=ðT � 1Þ), the mean gain per trait completely

vanishes. Thus, when selecting for multiple traits simultaneously,

the gain per trait can be much smaller compared to selection for

a single trait, in particular if PSs of traits are anti-correlated.

DISCUSSION

In this paper, we explored the expected gain in trait value due to

selection of human embryos for height and IQ. We showed that

the average gain, with current predictors and with five viable em-

bryos, is aroundz2.5 cm andz2.5 IQ points. We predicted and

confirmed by simulations that the gain will increase proportion-

ally to the square root of the proportion of the variance explained

by the predictor, but much more slowly with the number of

A B C

Figure 3. The Distribution of the Predicted Gain from Embryo Selection with 10 Embryos per Couple

(A) The gain in height by simulating 500 random couples from the Longevity cohort.

(B) Same as (A), but with actual spouses (n = 102).

(C) The gain in IQ by simulating 500 random couples from the ASPIS cohort. Lines are estimated densities.
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embryos. Only two previous studies have addressed this ques-

tion to date, both of which employed only mathematical

modeling. One study has assumed the entire heritability can be

explained by the genetic predictor, leading to larger effect sizes

than possible with currently available scores (Shulman and Bos-

trom, 2014). The second study (a blog post) used amodel similar

to ours, but focused on futuristic approaches to increasing the

number of available embryos (Branwen, 2016).

In animal breeding, genomics-based selection is usually per-

formed not by selecting embryos but by genotyping youngmales

and using top-scoring animals as sires for the next generation.

The recent success of genomic selection is mostly attributed

to the shortening of the generation time (Garcı́a-Ruiz et al.,

2016), as the genetic value of an animal can already be deter-

mined at birth (Meuwissen et al., 2016; van der Werf, 2013).

Beyond generation time, genomic selection is expected to be

more powerful than embryo selection, because first, the popula-

tion variance is double the variance between siblings, increasing

the gain by a factor of
ffiffiffi
2

p
, and second, the number of individuals

to select from (n) is not limited as in IVF cycles. Indeed, we have

identified only one study in animal genetics that has suggested

and empirically examined embryo selection (Mullaart and Wells,

2018).

Given that r2ps holds the strongest effect on the potential gain

from embryo selection, it is worthwhile to consider the potential

for increasing r2ps in the foreseeable future. Increasing sample

sizes of discovery GWASs is the most straightforward means

of increasing r2ps (Chatterjee et al., 2013). For educational attain-

ment, a trait strongly correlated with IQ (rgz0:70) (Hagenaars

et al., 2016), increasing GWAS sample size fromz300 K (Okbay

et al., 2016) toz1.1 M (Lee et al., 2018) resulted in an increase in

out-of-sample variance explained from 3.2% to 11%. For height,

the out-of-sample r2ps increased more modestly, from 17% to

24.4% when GWAS sample size increased from z250 k

(Wood et al., 2014) to z700 k individuals (Yengo et al., 2018a).

The variance explained by the predictor should approximately

satisfy r2ps = h2snpð1+M=ðNh2snpÞÞ
�1
, where N is the (discovery)

GWAS sample size, M is the effective number of markers, and

h2snp is the SNP-based heritability (Pasaniuc and Price, 2017;

Wray et al., 2019). The dependence of the gain on N has an

empirical S shape (Figure S3). For IQ, increasing GWAS sample

sizes to Nz107 is expected to double the gain, up to z7 IQ

points (for n= 10 embryos). For height, we are closer to satura-

tion, and using Nz107 will only increase the gain to z4.5 cm.

These limitations are to some extent due to the strict upper

bound r2ps%h2snp.

Further improvement is expected with the use of whole-

genome sequencing (WGS), because it was recently shown

that WGS data explain the entire heritability of height and BMI

(Wainschtein et al., 2019). For cognitive ability, a recent family-

based study (Hill et al., 2018) has demonstrated that more than

half of the variation is attributable to rare variation not captured

by current GWASs. However, as the effective number of markers

in WGS is much larger compared to microarrays and the sample

sizes much smaller, the current predictive power is very low (ex-

pected gain for height <1 cm; Figure S3). Once sample sizes

reach N = 107 � 108, the gain for height can reach z5.5 cm,

nearly double the current gain (Figure S3). To incorporate rare

variation while overcoming the problem of small WGS sample

sizes, imputation is a promising approach (Yang et al., 2015),

and as reference panels grow in size and diversity, imputation

is expected to accurately assess variants with frequencies

down to 0.1% or even lower (Lencz et al., 2018; Taliun

et al., 2019).

Finally, statistical approaches to calculating PSs from GWASs

are becoming increasingly sophisticated (Khera et al., 2018;

Privé et al., 2019a; Torkamani et al., 2018). Most notably, the

application of penalized regression methods to the generation

of PSs holds a potential for rapid gains in r2ps without requiring

any additional data collection in either GWAS datasets or impu-

tation reference panels (Mak et al., 2017; Privé et al., 2019b). For

example, initial evidence suggests that currently available

A B

Figure 4. The Prediction Interval Half-Width as a Function of the Proportion of Variance Explained by the Combination of Parental Pheno-

types and the PS of the Child

If the proportion of variance explained is p, the half-interval width is 1:96sz
ffiffiffiffiffiffiffiffiffiffiffiffi
1� p

p
.

(A) The prediction interval for height, assuming sz = 6cm. The proportion p is unknown, but cannot exceed the heritability, which we assume to be h2z 0:8, and

cannot fall under h4=2z0:32, which is the theoretical variance explained by the mid-parental height.

(B) The prediction interval for IQ, with sz = 15 points. We assume the heritability is in the range [0.6,0.8], with a minimal variance explained of 0:62=2 = 0:18.
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datasets might be able to explain up to 40% of the variance in

height by using LASSO (Lello et al., 2018). Additionally, the use

of multiple related phenotypes has been demonstrated to

enhance the predictive power of PS (Krapohl et al., 2018); for

example, the combination of educational attainment and intelli-

gence GWAS may permit a doubling of cognitive r2ps (Allegrini

et al., 2019). Finally, it has recently been suggested that enrich-

ment of certain subcategories of functional variation (e.g., cod-

ing, conserved, regulatory, and LD-related genomic annotations)

in GWAS results can be leveraged to further enhance prediction

accuracy (Kichaev et al., 2019; Marquez-Luna et al., 2018).

While it is likely that some combination of the above factors will

increase the accuracy of PSs in the near future, substantial lim-

itations to PSs must also be acknowledged (Loos and Janssens,

2017). First, PSs do not account for extremely rare Mendelian

variants associated with extreme phenotypes such as short stat-

ure (Grunauer and Jorge, 2018) or intellectual disability (Vissers

et al., 2016). More broadly, the lower end of the phenotypic dis-

tribution is less well predicted from common variant PS than the

middle and upper percentiles (Chan et al., 2011); this fact limits

the utility of PSs for ‘‘reverse’’ embryonic selection (i.e., to avoid

extreme low values). Second, it is well known that PSs lose sub-

stantial power, or may even be invalid, when applied across

different populations (Coram et al., 2017; Kim et al., 2018; Martin

et al., 2017). Moreover, even within a single population, subtle

ethnic and geographic stratification effects may result in inflated

estimates of r2ps (Barton et al., 2019; Haworth et al., 2019), and

prediction accuracy may also vary by age and sex (Mostafavi

et al., 2019). Third, polygenic scores are correlated with parental

genotypes and hence with the environment induced by the par-

ents, in particular for education. This leads to lower prediction

A

B

Figure 5. An Analysis of Selection for Height

in 28 Real Families with up to 20 Adult

Offspring Each

(A) The realized gain in each family, defined as the

difference between the actual (age- and sex-cor-

rected) height of the offspring with the highest PS

and the average height of all offspring in the family.

The theoretical prediction is based on Equation 1.

(B) The actual height (age- and sex-corrected) of all

members of all families. The figure demonstrates

the effect of the current low-accuracy prediction

models, as the tallest-predicted sibling (red

squares) is usually not the actual-tallest sibling

(only 7/28 times). Siblings are depicted as gray

dots and the parents of each family as blue tri-

angles. In some families, only one parent was

available.

accuracy within families (Cheesman

et al., 2019; Domingue and Fletcher,

2019; Morris et al., 2019; Mostafavi

et al., 2019; Selzam et al., 2019), which

further limits the utility of embryo

screening. Fourth, SNP effects may be

environmentally sensitive, and may not

be consistent across time and place

(Keyes et al., 2015).

Beyond these limitations in PS power and accuracy, several

additional constraints on the expected utility of embryo selec-

tion are notable. First, we did not explicitly model assortative

mating, which likely exists to some extent for traits such as

height and cognitive ability (Conley et al., 2016; Yengo et al.,

2018b), and is expected to further reduce the potential avail-

able variance for embryo selection. While there was no detect-

able effect of assortative mating in our Longevity cohort, these

subjects represented an older birth cohort, and assortative

mating on phenotypic traits may be increasing. Second, the

number of embryos per IVF cycle is usually less than 10 (Sun-

kara et al., 2011), and, as can be seen in Figure 2, in this

regime the utility drops sharply with a decreasing number of

embryos. Third, with the increasing age of childbearing, the

proportion of aneuploid embryos increases. For example, the

proportion of aneuploid embryos is 35% for women aged 35

and 60% at age 40 (Franasiak et al., 2014). Relatedly, embryos

with particularly high polygenic scores are not guaranteed to

implant and lead to a live birth. While it is theoretically possible

to perform multiple IVF cycles to generate more embryos, IVF

is invasive, involves a substantial discomfort to the prospec-

tive mother, and requires significant financial means (Teoh

and Maheshwari, 2014) (that would often also imply an older

age of the prospective parents and fewer viable embryos per

cycle). To the best of our knowledge, no upcoming technology

is expected to significantly increase the number of oocytes ex-

tracted per IVF cycle (Casper et al., 2017; Lin et al., 2013).

While it has been suggested that induced pluripotent stem

cells may greatly increase the potential number of available

embryos (Hikabe et al., 2016; Yamashiro et al., 2018), such

technologies are not close to implementation for human
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reproduction. Either way, even with tens of viable embryos,

our simulations show that the gain in trait value would be rela-

tively small (Figure 2). Finally, once IVF and genotyping/

sequencing have been performed, couples may attempt to

select for multiple phenotypes, and as we have shown, this

will lead to smaller gains per each individual trait.

Perhaps more importantly, we have also demonstrated that

two sources of variability result in wide confidence intervals for

the prediction of final observed phenotypic values: (1) random

assortment of SNPs will result in variability of the predicted

gain around its mean value; and (2) environmental variation

will produce considerable additional uncertainty around the

predicted gain. In our empirical dataset, the majority of

offspring who were the tallest among their siblings were not

those with the highest PS, and a substantial fraction of the

top-scoring offspring had lower than average phenotypic

values. Regardless of the future accuracy of r2ps or the number

of available embryos, these uncontrollable sources of vari-

ability will limit the appeal of selection for any individual

couple.

A final reason for caution over the utility of embryo selection is

the widespread pleiotropy across most traits (Bulik-Sullivan

et al., 2015; Pickrell et al., 2016; Visscher et al., 2017). For

example, while IQ is negatively correlated with most psychiatric

disorders (Zheng et al., 2017), it is genetically positively corre-

lated with autism and anorexia (Hill et al., 2019; Savage et al.,

2018). Therefore, selecting an embryo on the basis of higher pre-

dicted IQ will increase the risk for autism or anorexia in the

offspring. In animal breeding, selection for production and

growth traits has resulted in serious health issues in dairy cattle

(Oltenacu and Algers, 2005), broiler chickens (Bessei, 2006), and

other animals (Rauw et al., 1998; Rodenburg and Turner, 2012),

and in plants, it was recently demonstrated that a flavor allele

was lost due to human selection (Gao et al., 2019). Thus, nega-

tive effects on correlated health traits should be seriously

considered.

In addition to practical limitations, there are major ethical

and societal concerns with embryo screening, mostly due to

associations with ideas of eugenics. Eugenics was originally

developed by Galton, who envisioned breeding of humans

for higher intelligence (Tabery, 2015). In short order, Galton’s

concept was extended in some countries to the forced steril-

ization of those possessing mental traits deemed as ‘‘undesir-

able’’ (Hoge and Appelbaum, 2012; Wikler, 1999). The specter

of eugenics has accompanied the development of modern

reproductive technologies since the development of IVF and

preimplantation genetic diagnosis of monogenic diseases

(Bonnicksen, 1992). At the same time, application of the

term ‘‘eugenics’’ to modern reproductive practices can lead

to terminological and conceptual ambiguities that require

careful delineation (Cavaliere, 2018). However, even when

completely removed from the context of state coercion, em-

bryo selection raises ethical concerns of equity and justice in

the availability of expensive reproductive technologies (Presi-

dent’s Council on Bioethics (US), 2003), as well as potential

conflicts between individual benefits and societal costs

(Anomaly et al., 2019). More broadly, embryo selection for

non-disease traits raises the possibility of fundamentally

altering ‘‘the meaning of childbearing’’ (President’s Council

on Bioethics (US), 2003).

The legal and regulatory framework for preimplantation ge-

netic diagnosis (PGD) remains unsettled, especially in the

United States. While PGD is legal in most countries, its use is

often restricted (European Society of Human Reproduction

and Embryology, 2017; Jones and Cohen, 2007; Knoppers

et al., 2006). Across much of Europe, PGD is legally allowed

only when risk for a serious medical condition is high (Dondorp

and de Wert, 2019). In this context, high risk generally refers to

highly penetrant (dominant or recessive) alleles for clearly

defined diseases; thus, polygenic scores for quantitative traits

would fail to meet these requirements. In the United Kingdom,

the set of permitted conditions is determined by a designated

body, which issues explicit guidelines as to which diseases

and genes are included (Bayefsky, 2016). In Israel, such deci-

sions are made by institutional review boards, and PGD is

not permitted for traits (Israel Ministry of Health, 2013). In

China, PGD is regulated and social sex selection and selection

for traits are not permitted (Cyranoski, 2017). In contrast, in the

United States, the targeted use of PGD is not regulated, and

hence, to the best of our knowledge, embryo selection for poly-

genic traits can be offered to consumers (Bayefsky, 2018,

2016). In such an environment, given the results of this work,

the concerns over pleiotropic effects, and the invasive nature

of PGD, it may be desired to introduce oversight over at least

the advertised outcomes.

Beyond legal restrictions, an additional concern involves the

principle of informed consent (Katz, 1994), which suggests that

embryo screening should be offered in the context of appro-

priate genetic counseling. It is our hope that the present work

provides an initial evidence base for professionals and regulators

to consider the risks and benefits that are at the heart of the

informed consent process.

Finally, in this paper, we did not consider the prospects, nor

the ethics, of ‘‘population-scale’’ embryo selection for IQ or other

traits. While claims were made that population-scale selection

could lead to a dramatic increase in trait values at the population

level (e.g., the popular article [Hsu, 2016]), we leave a rigorous

evaluation of this prediction to future studies.
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STAR+METHODS

KEY RESOURCES TABLE

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Shai

Carmi (shai.carmi@huji.ac.il). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cohorts for simulating offspring
Longevity

Our data included 208 individuals from 104 couples who were part of the LonGenity study of longevity and aging in Ashkenazi Jews

(the ‘‘Longevity’’ cohort). Genotyping was performed using Illumina HumanOmniExpress array. Genotyping and QC were previously

described (Chang et al., 2014; Eny et al., 2014; Roshandel et al., 2016; Sathyan et al., 2018). The number of SNPs was 704,759, with

an average missing rate 0.2%. We removed duplicate variants and variants with missingness rate > 1%. Height was available for all

individuals except two who were discarded along with their spouses. Height was 177 ± 6cm (mean ± SD) in males (range 163-191)

and 163 ± 6cm in females (range 147-175). BMI was available for 203 individuals. BMI was 26.5 ± 3.9 (kg/m2) (mean ± SD) in males

(range 15.9-42.9) and 25.4 ± 5.0 (kg/m2) in females (range 18.0-51.2).

ASPIS

The Athens Study of Psychosis Proneness and Incidence of Schizophrenia (Stefanis et al., 2004) (henceforth ‘‘ASPIS’’) included 1066

randomly selected young male conscripts aged 18 to 24 years from the Greek Air Force in their first two weeks of admission. All par-

ticipants were free of serious medical conditions. Cognitive measures included: Raven Progressive Matrices Test (Raven Matrices;

raw score); Continuous Performance Task, Identical Pairs version (CPT-IP; d-prime score); Verbal N-Backworkingmemory task (Ver-

bal NBack; total accuracy); and Spatial N-Backworkingmemory task (Spatial NBack; total accuracy). General cognitive ability scores

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

The Longevity study Sathyan et al., 2018; Roshandel et al., 2016;

Eny et al., 2014; Chang et al., 2014

https://www.einstein.yu.edu/centers/

aging/longevity-genes-project/

The Schizophrenia study (ASPIS) Smyrnis et al., 2007; Hatzimanolis et al.,

2015; Stefanis et al., 2007

N/A

Height study genotypes and phenotypes Zeevi et al., 2019 https://www.ncbi.nlm.nih.gov/projects/

gap/cgi-bin/study.cgi?

study_id=phs001852.v1.p1

The Ashkenazi Genome Consortium data Lencz et al., 2018 https://ega-archive.org/studies/

EGAS00001000664

Summary statistics for height and BMI Yengo et al., 2018a http://cnsgenomics.com/data.html

Summary statistics for cognitive ability

(our stats were modified to exclude the

ASPIS cohort)

Savage et al., 2018 https://ctg.cncr.nl/software/

summary_statistics

Genetic maps International HapMap 3 Consortium

et al., 2010

ftp://ftp.ncbi.nlm.nih.gov/hapmap/

recombination/2011-01_phaseII_B37/

Software and Algorithms

PLINK Chang et al., 2015 https://www.cog-genomics.org/plink2/

SHAPEIT2 O’Connell et al., 2014 https://mathgen.stats.ox.ac.uk/

genetics_software/shapeit/shapeit.html

Impute2 Howie et al., 2009 https://mathgen.stats.ox.ac.uk/impute/

impute_v2.html

Python code implementing the data

analyses

This study https://bitbucket.org/ehudk/embryo-

pgs-selection

An R implementation of the quantitative

genetic model

This study https://github.com/orzuk/

EmbryoSelectionCalculator.
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(g) were generated using the first principal component. We transformed the scores to IQ points by scaling the mean to 100 and the

standard deviation to 15 (range 47-140).We note that thismeasure of cognitive ability is only an estimate of the IQ aswould have been

obtained from standard tests (such as the Wechsler Adult Intelligence Scale), and hence the somewhat wide range. Genotyping was

performed on Affymetrix 6.0 arrays (Hatzimanolis et al., 2015; Smyrnis et al., 2007; Stefanis et al., 2007). The number of SNPs was

487,126, with an average missingness rate of 0.3%. Out of the 1066 genotyped samples, 147 had their cognitive function scores

missing and were discarded from the analysis, leaving 919 individuals.

Nuclear families

We used 28 large nuclear Jewish families with an average of 9.6 adult offspring (full-siblings) per family who have completed their

growth. The families were recruited in Israel and in the US after obtaining IRB approvals in both locations. Details on the cohort, mea-

surements, and genotyping appear elsewhere (Zeevi et al., 2019). In short, participants signed a consent form and filled a medical

questionnaire (to ensure there were no medical conditions that could have affected their growth), and their heights were measured

with four technical repeats at an accuracy of ± 0.1cm. All 308 consented participants were genotyped on the Affymetrix Axiom Bio-

bank array (z630,000 SNPs). One from each of six pairs of monozygotic twins was excluded. Heights were corrected for age and

age2, then standardized to Z-scores in each sex separately, then reported as 173:0 + 5:6Zcm.

METHOD DETAILS

Phasing
We phased the Longevity and ASPIS cohorts (separately) using SHAPEIT2 (O’Connell et al., 2014). Default parameters were used,

except for using 200 states (to improve precision), and an effective population size of 12k, similar to the value suggested for Euro-

peans. The genetic map used was from HapMap (International HapMap 3 Consortium, 2010).

Polygenic score calculation
Longevity cohort: height and BMI

We used summary statistics from Yengo et al. (2018a), a meta-analysis based on Wood et al. (2014) and the UK Biobank (Bycroft

et al., 2018). Effect sizes were available for 2,334,001 SNPs, of which 1,789,210 were missing from the Longevity panel. Another

241 variants had mismatching alleles, leaving a total of 544,550 for downstream analyses. Scoring of individuals based on the sum-

mary statistics was performed in PLINK (Chang et al., 2015) with the no-mean-imputation flag.

Given a polygenic score (PS), we predicted height in a two-step approach. First, the heights of the Longevity individuals were re-

gressed against age and sex. Second, the residuals from the first step were regressed against their PS. The regression line from the

second step was used to predict the height of the simulated offspring.

To optimize the PS, we first determined whether imputation had an effect on prediction accuracy. We used IMPUTE2 (Howie et al.,

2009) and The Ashkenazi GenomeConsortium reference panel (Lencz et al., 2018). Imputed data was post-processed to include only

single nucleotide variants present in the summary statistics and with IMPUTE2 INFO-score > 0.9. The r2ps for height prediction (using

all SNPs) was 0.201, which was slightly lower than for the PS generated without imputation, consistent with previous reports (Ware

et al., 2017). Since imputation incurs a significant computational and storage burden, we proceeded with the genotyped SNPs only.

Next, we considered the effect of linkage-disequilibrium (LD) pruning and p value thresholds. LD-clumpingwas performed in PLINK

(Chang et al., 2015) with window size of 250kb and r2 threshold of 0.1. LD was estimated based on 574 genomes from The Ashkenazi

Genome Consortium (Lencz et al., 2018), reduced to the 657,179 SNPs intersecting with the Longevity study. The number of remain-

ing SNPs after LD-clumping was 93,345. We considered p value thresholds between 10�7 to 1 in multiples of 10. We then searched

for the parameter combination giving the maximum r2ps between predicted and actual phenotypes. Without LD-pruning, the maximal

r2ps was 0.207 (using a p value cutoff of 0.1). With LD-pruning, the maximal r2ps was 0.243 (comparable to Yengo et al., 2018a; Figure

S4), using a p value cutoff of 0.001. Thus, our final score used LD-pruning and p < 0.001, and included 15,752 SNPs.

We used the same GWAS (Yengo et al., 2018a) to obtain summary statistics for BMI. We regressed BMI on age and sex, and then

we regressed the residuals on the PS. The optimal parameters were r2 = 0:1 and p = 0:1, and the optimal score included 15,695 SNPs

and explained 3.1% of the variance (Figure S4). This is less than previously reported (z10% of the variance) but was significantly

non-zero. Scores for BMI were only used for the analysis of selection for multiple traits.

Nuclear families: height

We used the set of 15,752 SNPs obtained for the Longevity cohort with the thresholds p < 0.001 and LD r2 < 0:1. Of these, we used

15,124 SNPs that were present on the array or could be imputed from the AJ reference panel (Carmi et al., 2014). We excluded SNPs

homozygous in all participants. The weight of each SNP was its effect size (Yengo et al., 2018a), zero centered for the cohort. Scores

were standardized into Z-scores and reported as for the actual heights.

ASPIS: general cognitive ability

We used summary statistics from Savage et al. (2018), based on a meta-analysis of intelligence (excluding the ASPIS cohort). Out of

total of 9,145,263 SNPs, 468,809 intersected with the ASPIS panel. Following the results from height, we did not consider

imputation. The optimal LD-clumping threshold and p value threshold were r2 = 0:3 and 1, respectively, leaving 130,199 SNPs

and reaching r2ps = 0:043 (Figure S4). For improving the accuracy of LD estimation, we considered the entire 1066 genotyped individ-

uals, including those without phenotypes.
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We note that other approaches for genetic prediction may have slightly higher predictive power. However, an extensive bench-

marking of methods and thresholds for trait prediction is beyond the scope of this paper. Our quantitative model can approximate

the utility of any score based on its proportion of variance explained.

Simulating embryos
The Longevity cohort included actual couples, and these were used to simulate offspring (‘‘actual matching’’). For both the Longevity

and the ASPIS cohorts, we also matched parents randomly (‘‘random matching’’). Given a pair of parents, we simulated offspring

(embryos) by specifying the locations of crossovers in each parent. Recombination was modeled as a Poisson process, with dis-

tances measured in cM using the HapMap genetic map (International HapMap 3 Consortium, 2010). For each parent, we drew

the number of crossovers in each chromosome from a Poisson distribution with mean equal to the chromosome length in Morgans.

Random positions along the chromosome (in Morgans) represented the locations of the crossovers. We mixed the phased paternal

andmaternal chromosomes of the parent according to the crossovers’ locations, and randomly chose one of the resulting sequences

as the chromosome transmitted from that parent. Note that due to phase switch errors, the paternal and maternal chromosomes are

each a mixture of both. Nevertheless, phasing is expected to be accurate over short distances (switch error rate around 1%) (Choi

et al., 2018), thus correctly representing LD blocks.

We repeated the process to generate either 10 or 50 embryos per couple (whether a true couple or randomlymatched). The number

of couples for random matches was such that the total number of embryos was 5000. For a number of embryos other than 10 or 50,

we downsampled embryos from the n= 50 simulations.

To calculate the polygenic scores for the synthetic embryos, we used the same summary statistics as for the parents. To predict the

phenotypes of the embryos, we used the regression model that we have generated for the parents. The predicted phenotype is thus

in its natural units (cm, kg/m2, or IQ points). Adding sex- or age-specific means was unnecessary, as we considered only the differ-

ences between embryos attributed to their polygenic scores.

Multiple traits
We used the Longevity cohort, which had data on both height and BMI. We used the same sets of simulated embryos as for height.

For each embryo, we computed the scores for height and BMI, and normalized the scores by the standard deviations of the predicted

phenotypes (2.89cm for height and 0.78kg/m2 for BMI). The combined score per embryo was the normalized height score minus the

normalized BMI score (to simulate selection for lower BMI). The gain for height was the predicted height for the embryo with the high-

est combined score, and similarly for BMI. The correlation between the scores of height and BMI was �0.16, which we used in the

equations for the gain (Equations 3 and 4).

QUANTIFICATION AND STATISTICAL ANALYSIS

Polygenic scores were calculated with PLINK (Chang et al., 2015). Other data analyses were performed using custom Python and R

scripts.

In Figures 1, 2, S1, and S2, 95% confidence intervals are based on ± 1.96 the standard error of the mean (SEM) over the simulated

families. Regressions (as in Figure S4) were performed using statsmodels (Seabold and Perktold, 2010). For the regression of the trait

on the PS, the proportion of variance explained was the squared correlation coefficient, and the p value for a non-zero correlation

coefficient was computed with scipy.stats.pearsonr. The mean and 95% confidence bands in Figure S4 were generated by boot-

strapping with seaborn.lmplot.

The quantitative genetic model
We modeled the vector of polygenic scores for a set of embryos as a multivariate normal variable with zero means, and derived its

covariancematrix. Themodel implies that the score of each embryo can be represented as a sumof two normal variables, one shared

across embryos and one independent, both with variance equal to half the variance in the trait explained by the PS. The maximal

score, and thereby the gain, could be written using the maximum of n independent normal variables. We derived formulas for the

mean and variance of the gain, and then: the mean gain conditional on the parental scores and phenotypes, a prediction interval

The Sets of Simulated Embryos

Cohort Phenotype Matching Matches (n) Offspring per Couple (n)

Longevity height/BMI random 500 10

Longevity height/BMI random 100 50

Longevity height actual 102 10

Longevity height actual 102 50

ASPIS cognitive ability random 500 10

ASPIS cognitive ability random 100 50
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for the phenotype, the difference between the maximal-predicted and the actual maximal trait value, and the gain when selecting for

multiple traits. Full details are available in Methods S1.

DATA AND CODE AVAILABILITY

Python code implementing the analyses described in this paper is available at https://bitbucket.org/ehudk/embryo-pgs-selection.

R code that implements some of the calculations of the gain under the quantitative genetic model can be found at https://github.

com/orzuk/EmbryoSelectionCalculator.
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Supplemental Figures

Figure S1. The Mean Gain in Embryo Selection versus the Number of Embryos n, Related to Figure 2

All details are the same as in Figure 2. The theoretical prediction here is based on extreme value theory, as given in Methods S1 Equation 33, providing a slightly

better fit compared to main text Equation 1.



Figure S2. Selection for Multiple Traits, Related to Figure 2

We simulated up to 50 embryos per (random) couple from the Longevity cohort, and calculated PSs for height and BMI. In (A) (height) and (B) (BMI) we show the

gain per trait when selecting either for the focal trait (height in (A) and (negative) BMI in (B), blue dots along with their 95% confidence intervals; as in Figures 2

or S1) or when selecting for the sum of the scores for height and negative BMI, after normalizing each score by its standard deviation (green dots along with their

95% confidence intervals). Note that the gain for BMI is negative, since we select for lower values of BMI. As expected, selection for multiple traits leads to lower

gains (in absolute value) per trait. The orange lines correspond to Equation 33 of Methods S1 for the mean gain when selecting for a single trait. The red lines

correspond to Equation 93 of Methods S1, where we used the expression for the mean of the maximum of n normal variables based on extreme value theory

(Equation 33). In (C) and (D), we plot the gains for height and BMI, respectively, when the (normalized) score of height is weighted by l and the (normalized) score

for BMI is weighted by –ð1 � lÞ. Green dots and 95% confidence intervals are based on simulations, whereas the red lines are based on Equation 99

of Methods S1. The gain in height increases and the gain in BMI decreases (in absolute value) with l, as expected. Note that the gain is non-zero even for l= 0 or

l = 1, due to the correlation between height and BMI.



Figure S3. The Expected Increase in the Mean Gain with Discovery GWAS Sample Sizes, Related to Figure 1

To evaluate the expected gain given a GWAS sample sizeN, we used the relation r2ps = h2snpð1+M=ðNh2snpÞÞ
�1

(Pasaniuc and Price, 2017; Wray et al., 2019). In this

equation, h2snp is the SNP-based or chip heritability (the variance in the trait explained by all SNPs on the array) and M is the effective number of SNPs. To

estimateM for height, we substituted h2snp = 0:48, Nz700,103, and r2psz0:24 (Yengo et al., 2018a), which gaveM = 328,103. For IQ, h2snp = 0:19, Nz 270, 103,

and r2ps = 0:05 (Savage et al., 2018), which gave M = 136,103. Given these values of M, we calculated the expected r2ps for a range of GWAS sample sizes. To

compute the expected gain when selecting one embryo out of n = 10, we used an exact numerical solution for the mean of the maximum of independent normal

variables (Methods S1 Equation 28), and assumed standard deviations of 6cm for height in (A) and 15 points for IQ in (B). The red lines denote the gain with current

GWAS sizes. (C) The expected gain in height for scores based on whole-genome sequencing (WGS) data. Based on Wray et al. (2019), we used a value ofM 10x

larger compared to that of arrays, giving M = 3:28,106. Instead of h2snp, we used h2wgs = 0:79 (Wainschtein et al., 2019).



Figure S4. Height, BMI, and Cognitive Ability (IQ) versus Their Polygenic Scores, Related to STAR Methods

Results are shown for the heights and BMI of 204 individuals in the Longevity cohort (A) and (B), respectively), the heights of 308 individuals from the large nuclear

families (C), and the IQ of 919 individuals from the ASPIS cohort (D). Also shown are the regression lines with 95%bootstrap confidence intervals (seaborn.lmplot),

the proportions of variance explained, and the p values (scipy.stats.pearsonr). The proportions of variance explained by the polygenic scores arez25%–27% for

height, z3% for BMI, and z4.3% for IQ.
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