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Methods S1

1 Background and model

We assume a couple has generated n embryos, and we would like to select the
top-scoring embryo with respect to a given polygenic trait. We assume that the
genetic architecture of the trait is infinitesimal, namely that there are numerous
causal variants, uniformly distributed along the genome. Denote the value of
the trait as z, the number of variants as N , the variance of the trait as σ2

z , and
the heritability as h2, and assume that the trait has zero mean.

Mathematically, we assume an additive model, where for a given individual,

z = g + e =

N∑

i=1

βi(κ̃i,p + κ̃i,m) + e. (1)

In the above equation, κ̃i,p = κi,p − fi, where κi,p ∈ {0, 1} is the number of
minor alleles at site i on the paternal chromosome and fi is the minor allele
frequency. κ̃i,m is similarly defined for the maternal chromosome. βi is the
additive effect size per allele.

The polygenic score for the trait is defined as

PS =
N∑

i=1

β̂i(κ̃i,p + κ̃i,m), (2)

where the β̂is are the estimated effect sizes. We further assume that the trait
can be modeled as

z = PS + ǫ. (3)

The error term now represents both the environmental component as well as
unaccounted-for genetic components. The proportion of variance of z explained
by the polygenic score PS is denoted

r2ps =
Var (PS)

σ2
z

. (4)

rps is also the correlation coefficient between the polygenic score and the trait.
Eqs. (3) and (4) imply Var (ǫ) = σ2

z(1− r2ps).
Next, we make the following assumptions. First, we assume that there is

no assortative mating. This implies that beyond linkage disequilibrium, there
is no correlation between the contributions to the polygenic score from (i) the
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two homologous chromosomes of an individual, at the same locus; (ii) two chro-
mosomes of spouses, at the same locus; (iii) two distinct loci, coming from
the same chromosome; and (iv) two distinct loci, coming from either two ho-
mologous chromosomes or from chromosomes of spouses. While assortative
mating was demonstrated for several polygenic traits [1, 2, 3], our empirical
data shows that the correlation between polygenic scores of spouses is relatively
small. Specifically, we found that the correlation in the polygenic scores for
height between actual spouses was relatively low and did not reach statistical
significance (r = 0.12, P = 0.25). The correlation for the polygenic scores for IQ
was similarly low (r = −0.03, P = 0.76). Either way, since assortative mating
is usually positive, our results may represent an upper bound for the utility of
embryo selection.

Second, to avoid correlation due to linkage disequilibrium (LD), we write
the polygenic score as a sum of K elements, where each element is the score in
a single LD block,

PS =

K∑

i=1

(PSi,p + PSi,m). (5)

Above, PSi,p =
∑

k∈Bi
β̂kκ̃k,p, where Bi is the set of variants in block i, and

similarly for PSi,m. Under the above assumption of no assortative mating, and
assuming no correlation across LD blocks, this implies that for all i 6= j, the
random variables PSi,p, PSi,m, PSj,p, PSj,m are all uncorrelated. Moreover,
PSi,p,PSi,m for any one individual are uncorrelated with PSi,p and PSi,m in the
spouse of that individual, for any block i. The LD blocks can be identified, e.g.,
as in [4].

We further assume that all blocks contribute equally to the variance (al-
though this can be easily relaxed, leading to the same result). Thus, under the
above model, we have

Var (PSi,p) = Var (PSi,m) = σ2
z

r2ps
2K

, (6)

as well as
E (PS) = E (PSi,p) = E (PSi,m) = 0. (7)

Next, we consider the vector PS = (PS1, . . . ,PSn) of polygenic scores for n
embryos. We assume that the distribution of the polygenic scores, PS, is normal
in each embryo (due to the polygenic nature of most complex traits [5]), and
that the joint distribution of the polygenic scores over n embryos is multivariate
normal,

PS =
(
PS1, . . . ,PSn

)
∼ MVN(µ,Σ), (8)

with µ = 0n (a column vector of zeros of length n). The diagonal elements of
the covariance matrix Σ are Var

(
PSi
)
= σ2

zr
2
ps for all i = 1, . . . , n. We will

compute the off-diagonal covariances below (Section 2).
We define the gain G due to embryo selection as the difference between the

polygenic score of the top-scoring embryo and the average scores of all embryos.
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Mathematically,

G = max
(
PS1, . . . ,PSn

)
− PS1 + · · ·+ PSn

n
. (9)

The gain G is a random variable, with a sample space over all theoretical sets
of n siblings. In the following, we will examine the statistical properties (e.g.,
mean and variance) of the gain as a function of n, σ2

z , and r2ps.
For the mean gain, using Eq. (7),

E (G) = E
(
max

(
PS1, . . . ,PSn

))
. (10)

We derive approximate formulas for the mean gain in Section 3 and for
the variance of the gain in Section 4. In Section 5 we derive the mean gain
conditional on the parental scores, and in Section 6 we investigate prediction
intervals for the actual trait of the selected embryo. We consider additional
properties of the gain in Section 7 and selection for multiple traits in Section 8.

2 The covariance of the scores of siblings

In order to obtain the joint distribution of
(
PS1, . . . ,PSn

)
, we need to compute

Cov
(
PSA,PSB

)
, the covariance between the polygenic scores of two distinct

embryos (or siblings), which we name A and B. For two individuals A and
B with kinship coefficient Θ, standard quantitative genetics theory gives the
covariance Cov (zA, zB) = 2σ2

zΘh2 for a quantitative additive trait z with heri-
tability h2 under the infinitesimal model [6]. For full siblings, Θ = 1/4, and thus
Cov (zA, zB) = σ2

zh
2/2. For completeness, we derive the corresponding result

here for the polygenic scores, PSA and PSB .
Recall that we modeled the polygenic score as PS =

∑K
i=1(PSi,p + PSi,m),

where PSi,p is the score of the ith LD block in the paternal chromosome and
PSi,m is the score from the maternal chromosome. For a pair of siblings and for
a given LD block, their scores come from the same parental chromosome with
probability 1/2, or from different parental chromosomes with probability 1/2.
(We neglect the possibility of a recombination event taking place in the middle
of an LD block, because, first, by definition, recombination is depleted within
LD blocks, and second, the distance between crossovers is much greater than
the distance between LD blocks [7].)

Consider the two homologous chromosomes of the father at block i. Denote
the polygenic score of the first chromosome (say, grandpaternal) as ui,1 and
the score of the second chromosome (say, grandmaternal) as ui,2. Similarly,
denote the polygenic scores of the two maternal chromosomes as vi,1 and vi,2.
For embryo A, denote by pA,i the choice of the paternal chromosome it has
inherited at block i: pA,i = 1, 2 with equal probability. Similarly, mA,i = 1, 2
denotes the identity of the maternal chromosome transmitted to embryo A at
block i. With the above notation, the polygenic score of embryo A can be
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written as:

PSA =

K∑

i=1

(
ui,pA,i

+ vi,mA,i

)
. (11)

Similarly,

PSB =

K∑

i=1

(
ui,pB,i

+ vi,mB,i

)
. (12)

The covariance between the scores of the two embryos is

Cov
(
PSA,PSB

)
= Cov

(
K∑

i=1

(
ui,pA,i

+ vi,mA,i

)
,

K∑

i=1

(
ui,pB,i

+ vi,mB,i

)
)
. (13)

According to the assumptions of Section 1, there is no correlation between the
scores of any two blocks on two chromosomes of spouses, or between distinct
blocks on the same chromosome. Thus,

Cov
(
PSA,PSB

)
= K [Cov (upA

, upB
) + Cov (vmA

, vmB
)] , (14)

where pA, pB ,mA,mB are the identities of the chromosomes transmitted by the
father/mother to embryos A and B at a representative block, and u1, u2, v1, v2
are the scores of the four parental chromosomes in that block. pA, pB ,mA,mB

are independent random variables taking the values 1 or 2 with equal probabil-
ities. To compute the remaining terms, we invoke the law of total covariance,
by conditioning on pA, pB or on mA,mB . For example,

Cov (upA
, upB

) = E (Cov (upA
, upB

|pA, pB))
+ Cov (E (upA

|pA, pB) ,E (upB
|pA, pB)) . (15)

However, E (upA
|pA, pB) = E (upB

|pA, pB) = 0, and are both in general indepen-
dent of pA or pB . Thus, the second term (covariance of expectations) vanishes.
We can expand the first term as follows,

E (Cov (upA
, upB

|pA, pB)) =
1

4
Cov (u1, u1) +

1

4
Cov (u2, u2)

+
1

4
Cov (u1, u2) +

1

4
Cov (u2, u1) . (16)

Again according to the assumptions of Section 1, there is no correlation between
the scores of blocks from homologous chromosomes. Thus, the two terms in the
second line vanish. Finally, using Eq. (6),

E (Cov (upA
, upB

|pA, pB)) =
1

4
Var (u1) +

1

4
Var (u2) = σ2

z

r2ps
4K

. (17)

A similar result holds for the maternal scores. Using Eq. (14),

Cov
(
PSA,PSB

)
=

1

2
σ2
zr

2
ps. (18)
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We have thus specified the distribution of the polygenic scores of the n
embryos,

PS =
(
PS1, . . . ,PSn

)
∼ MVN(µ,Σ), (19)

where µ = 0n and Σ is an n× n covariance matrix with elements

Σ = σ2
zr

2
ps




1 1
2 . . . 1

2
1
2 1 . . . 1

2
. . . . . . . . . . . .
1
2

1
2 . . . 1


 . (20)

3 The mean score of the top-scoring embryo

Define PSmax = max
(
PS1, . . . ,PSn

)
. The mean gain (as defined in Section 1) is

the mean of the score of the top-scoring embryo, E (G) = E (PSmax) (Eq. (10)).
Written more generally, we would like to compute the mean of the max-

imum of n multivariate normal variables, denoted PS =
(
PS1, . . . ,PSn

)
∼

MVN(0n,Σ), where the covariance matrix Σ is defined according to Eq. (20).
We can write the covariance matrix also as Σ = Σind +Σsame, where

Σind =
1

2
σ2
zr

2
ps




1 0 . . . 0
0 1 . . . 0
. . . . . . . . . . . .
0 0 . . . 1


 (21)

and

Σsame =
1

2
σ2
zr

2
ps




1 1 . . . 1
1 1 . . . 1
. . . . . . . . . . . .
1 1 . . . 1


 (22)

Given this decomposition, we can write the distribution of the polygenic scores
as a sum of two independent multivariate normal variables, PS = Y +C, where

Y = (y1, . . . , yn) ∼ MVN(0n,Σind) (23)

and
C = (c1, . . . , cn) ∼ MVN(0n,Σsame). (24)

The covariance matrix Σind of Y is diagonal, and hence the variables in Y are
independent. C has a constant covariance matrix Σsame, which means that the
correlation between all variables is 1. Thus, all elements of C are equal to the
same normal variable,

c1 ∼ N

(
0,

1

2
σ2
zr

2
ps

)
and c2 = c3 = · · · = cn = c1. (25)
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Since PS = Y +C, we have

PSmax = max(y1 + c1, . . . , yn + cn)

= max(y1 + c1, . . . , yn + c1)

= max(y1, . . . , yn) + c1

= ymax + c1, (26)

where we defined ymax = max(y1, . . . , yn). The expectation of PSmax is

E (PSmax) = E (ymax) + E (c1)

= E (ymax) . (27)

Therefore, the mean of the maximum of
(
PS1, . . . ,PSn

)
is the same as the mean

of the maximum of n independent normal variables with variance 1
2σ

2
zr

2
ps each.

For independent normal variables, we can calculate numerically the expec-
tation of the maximum. Consider the maximum R = max(x1, . . . , xn) of in-
dependent standard normals random variables xi ∼ N(0, 1). The cumula-
tive distribution function of R is Φn(x) = [Φ(x)]

n
and the density of R is

φn(x) = nφ(x) [Φ(x)]
n−1

, where Φ is the standard normal cumulative distribu-
tion function and φ is the standard normal density. The expectation of R is
given by

E (R) =

∫ ∞

−∞
xφn(x)dx. (28)

While Eq. (28) does not result in a closed form expression, approximate analyti-
cal results are available. For example, extreme value theory shows that for large
n [8, 9], R has an approximate Gumbel distribution, with parameters (µn, βn)
and CDF

Φn(x) ≈ exp

(
− exp

(
−x− µn

βn

))
, (29)

where

µn = Φ−1

(
1− 1

n

)
, (30)

βn =
1

nφ
(
Φ−1

(
1− 1

n

)) , (31)

and Φ−1 is the inverse CDF of the standard normal variable. The mean of a
Gumbel random variable is µn+βnγ, where γ is the Euler-Mascheroni constant
(γ ≈ 0.577). Thus,

E (R) ≈ Φ−1

(
1− 1

n

)
+

γ

nφ
(
Φ−1(1− 1

n )
) . (32)

Finally, as we have G = σR with σ2 = 1
2σ

2
zr

2
ps,

E (G) ≈ σzrps√
2

[
Φ−1

(
1− 1

n

)
+

γ

nφ
(
Φ−1(1− 1

n )
)
]
. (33)
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We found this equation to fit the simulations reasonably well (Supplementary
Figure 1).

To gain more insight into the behavior of the gain for large n, we use the
result that for n → ∞ [8, 9]

µn = O
(√

log n
)
, βn = O

(
1√
log n

)
. (34)

Thus, to leading order in n,

E (R) ∝
√
log n. (35)

Numerically, we found the best fit to Eq. (35) (over n from 1 to 50) when the
coefficient of proportion was ≈ 1.09. Thus, the mean gain can be approximated
as

E (G) ≈ 1.09
σzrps√

2

√
log n = 0.77σzrps

√
log n. (36)

Due to its simple functional form, we reported Eq. (36) as Eq. (1) of the main
text and used it to produce main Figures 1 and 2.

4 The variance of the gain

To compute the variance of the gain, we start from its definition (Eq. (9)) and
use the decomposition of the score (Eq. (26)),

Var (G) = Var

(
PSmax −

PS1 + · · ·+ PSn

n

)

= Var

(
ymax + c1 −

1

n

n∑

i=1

(yi + c1)

)

= Var

(
ymax −

1

n

n∑

i=1

yi

)

= Var (ymax) +
1

n
Var (y1)− 2Cov

(
ymax,

1

n

n∑

i=1

yi

)

= Var (ymax) +
1

2n
σ2
zr

2
ps − 2E (y1ymax) . (37)

The variance of ymax can be calculated numerically by

Var (ymax) =
1

2
σ2
zr

2
ps

[∫ ∞

−∞
x2φn(x)dx−

(∫ ∞

−∞
xφn(x)dx

)2
]
. (38)

Extreme value theory can also provide an expression for the variance of ymax.

The variance of a Gumbel(µ, β) random variable is π2β2

6 . Thus,

Var (ymax) ≈
1

2
σ2
zr

2
ps ×

π2

6
[
nφ
(
Φ−1(1− 1

n )
)]2 . (39)
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The last term in Eq. (37) can be computed as follows,

E (y1ymax) = P (y1 < ymax)E (y1ymax|y1 < ymax)

+ P (y1 = ymax)E
(
y21 |y1 = ymax

)
. (40)

Due to symmetry, we have P (y1 = ymax) =
1
n and P (y1 < ymax) = 1− 1

n . Thus,

P (y1 = ymax)E
(
y21 |y1 = ymax

)
=

1

n
E
(
y2max

)
. (41)

Assume next that all yj ’s have unit variance and are thus standard normals
(we will bring back the variance later). As in the previous section, denote the
cumulative and density distribution functions of the maximum of n standard
normal variables by Φn and φn, respectively.

To compute E (y1ymax|y1 < ymax), we define δ{y1<ymax} as the indicator for
the event y1 < ymax. In the regime y1 < ymax, ymax is the maximum of
(y2, . . . , yn), and can thus be redefined as a random variable with density φn−1

that is independent of y1. Thus,

E (y1ymax|y1 < ymax) = E
(
y1ymaxδ{y1<ymax}

)
/P (y1 < ymax) (42)

=
1

1− 1
n

∫ ∞

−∞
dymax

∫ ymax

−∞
dy1[ymaxy1φn−1(ymax)φ(y1)].

The term
(
1− 1

n

)
cancels when multiplying by P (y1 < ymax),

P (y1 < ymax)E (y1ymax|y1 < ymax)

=

∫ ∞

−∞
dymax

∫ ymax

−∞
dy1 [ymaxy1φn−1(ymax)φ(y1)]

=

∫ ∞

−∞
ymaxφn−1(ymax)

[∫ ymax

−∞
y1φ(y1)dy1

]
dymax

= −
∫ ∞

−∞
ymaxφn−1(ymax)φ(ymax)dymax. (43)

The last equality results from

∫
tφ(t)dt =

∫
t√
2π

e−t2/2dt = −e−t2/2

√
2π

= −φ(t). (44)

Plugging Eqs. (41) and (43) into Eq. (40) we have

E (y1ymax) =

∫ ∞

−∞

[
1

n
y2max · φn(ymax)− ymaxφn−1(ymax)φ(ymax)

]
dymax

=
1

n

∫ ∞

−∞
[Φn(ymax)− φn(ymax)ymax]

′
dymax

=
1

n
[Φn(ymax)− φn(ymax)ymax]

∞
ymax=−∞

=
1

n
(1− 0) =

1

n
. (45)
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In the second line above, we used

d[Φn(t)− φn(t)t]

dt
= φn(t)−

[
φn(t) + t

dφn(t)

dt

]

= −t
d

dt

[
nφ(t) [Φ(t)]

n−1
]

= −nt
dφ(t)

dt
[Φ(t)]

n−1 − ntφ(t)φn−1(t)

= −nt
d

dt

[
e−t2/2

√
2π

]
[Φ(t)]

n−1 − ntφ(t)φn−1(t)

= t2nφ(t) [Φ(t)]
n−1 − ntφ(t)φn−1(t)

= t2φn(t)− ntφn−1(t)φ(t). (46)

Eq. (45) applies to standard normal random variables. In our case, the yi’s
have variance 1

2σ
2
zr

2
ps, and thus,

E (y1ymax) =
1

2n
σ2
zr

2
ps. (47)

Using Eqs. (37) and (38), the variance of the gain is

Var (G) = Var (ymax) +
1

2n
σ2
zr

2
ps − 2E (y1ymax)

= Var (ymax) +
1

2n
σ2
zr

2
ps −

1

n
σ2
zr

2
ps

= Var (ymax)−
1

2n
σ2
zr

2
ps

=
1

2
σ2
zr

2
ps

[∫ ∞

−∞
x2φn(x)dx−

(∫ ∞

−∞
xφn(x)dx

)2

− 1

n

]
. (48)

Or, using the Gumbel approximation (Eq. (39)),

Var (G) ≈ 1

2
σ2
zr

2
ps

[
π2

6
[
nφ
(
Φ−1(1− 1

n )
)]2 − 1

n

]
. (49)

In our simulations with random couples for height, we found that the vari-
ance has a maximum around n ≈ 10− 15 (Figure 1 below). The exact integral
based on Eq. (48) has a maximum around n ≈ 5, and then it underestimates
the variance until n & 40. The approximate expression of Eq. (49) shows no
maximum, but becomes close to the simulations around n ≈ 15.

5 The mean gain conditional on the parental

scores or phenotypes

The actual gain realized for a specific embryo selection procedure has two sources
of variation: first, variation between families (i.e. the genetics of the parents),
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Figure 1: The variance in the gain vs the number of embryos n. Circles show
simulations for height (the Longevity cohort; see the main text), where for each
n, the variance was computed over 100 random couples. The red line is the
theoretical curve, Eq. (48), evaluated numerically, where we used σz = 6cm
and r2ps = 0.248. The blue line is the approximate expression based on the
Gumbel distribution, Eq. (49).

and then variation between random embryos that can be generated within the
family. In Section 3, we have calculated the mean gain over the entire popu-
lation, while averaging over these two sources of variation. It is of interest to
consider the expected gain for a specific family, i.e., exclude the first source of
randomness, and determine how the mean gain depends on the parental poly-
genic scores or phenotypes.

We start by assuming that the polygenic scores of the parents are known
for each block of the genome (recall Section 1). This scenario may be realized
when the parents are genotyped and phased. These calculations will be used
later when only the total polygenic scores (or phenotypes) are available.

Recall our notation from Section 2: denote the polygenic score of the father
on his paternal chromosome at block i as ui,1, and the score of the father on
his maternal chromosome as ui,2. Similarly, denote the polygenic scores of the
two maternal chromosomes as vi,1 and vi,2. Denote by pi the choice of the
paternal chromosome transmitted to an embryo at block i (pi = 1, 2 with equal
probability), and define mi = 1, 2 similarly. Finally, let PSi ≡ ui,pi

+ vi,mi
be

the score of the embryo at block i.
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With this notation, the polygenic score of the embryo can be written as

PS =

K∑

i=1

PSi =

K∑

i=1

(ui,pi
+ vi,mi

) . (50)

Define u = (u1,1, . . . , xK,1, u1,2, . . . , uK,2) and v = (v1,1, . . . , vK,1, v1,2, . . . , vK,2).
The mean score of the embryo, given the scores of the parents, is

E (PS|u,v) = 1

2

K∑

i=1

(ui,1 + ui,2 + vi,1 + vi,2). (51)

To calculate the variance of PS (given the scores of the parents), we consider
first the variance at each block,

Var (PSi|u,v) = E
(
PS2i |ui,1, ui,2, vi,1, vi,2

)
− E (PSi|ui,1, ui,2, vi,1, vi,2)

2

=
1

4
(ui,1 + vi,1)

2 +
1

4
(ui,1 + vi,2)

2 +
1

4
(ui,2 + vi,1)

2 +
1

4
(ui,2 + vi,2)

2

− 1

4
(ui,1 + ui,2 + vi,1 + vi,2)

2

=
1

4

(
u2
i,1 − 2ui,1ui,2 + u2

i,2 + v2i,1 − 2vi,1vi,2 + v2i,2
)

=
1

4
(ui,1 − ui,2)

2 +
1

4
(vi,1 − vi,2)

2

=
1

4
ũ2
i +

1

4
ṽ2i , (52)

where ũi ≡ ui,1 −ui,2 is the difference between the two grandparental polygenic
scores that were transmitted to the father. ṽi ≡ vi,1 − vi,2 is similarly defined
for the mother.

Next, as opposed to Section 2, here the polygenic scores per block are fixed,
and thus we need to take into account the covariances between blocks.

Cov (PSi,PSj |u,v) = Cov
(
ui,pi

+ vi,mi
, uj,pj

+ vj,mj
|u,v

)
. (53)

The scores transmitted from the father and those transmitted from the mother
are independent and their covariance vanishes. We next compute the covariance
for scores transmitted from the same parent in different blocks. To compute the
covariance for the father, we condition on pi and pj , the identity of the paternal
chromosomes transmitted from the father at blocks i and j.

Cov
(
ui,pi

, uj,pj
|u
)
= E

(
Cov

(
ui,pi

, uj,pj
|pi, pj ,u

))

+Cov
(
E (ui,pi

|pi, pj ,u) ,E
(
uj,pj

|pi, pj ,u
))

= Cov
(
E (ui,pi

|pi,u) ,E
(
uj,pj

|pj ,u
))

, (54)

because for given pi and pj , ui,pi
and uj,pj

are constants with zero covariance.
To proceed, we denote by cij the probability that pi 6= pj , i.e., the probability
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of an odd number of crossovers between the two blocks (cij = 1/2 for unlinked
blocks and cii = 0).

Cov
(
E (ui,pi

|pi,u) ,E
(
uj,pj

|pj ,u
))

= Cov
(
ui,pi

, uj,pj
|pi, pj ,u

)

= E
(
ui,pi

uj,pj
|pi, pj ,u

)
− E (ui,pi

|pi,u) E
(
uj,pj

|pj ,u
)

=
1

2
(1− cij)ui,1uj,1 +

1

2
cijui,1uj,2 +

1

2
(1− cij)ui,2uj,2 +

1

2
cijui,2uj,1

− 1

4
(ui,1 + ui,2)(uj,1 + uj,2). (55)

After some algebra, we obtain

Cov
(
E (ui,pi

|pi, pj ,u) ,E
(
uj,pj

|pi, pj ,u
))

=
1

4
(1− 2cij)ũiũj . (56)

Thus (using Eq. (53)),

Cov (PSi,PSj |u,v) =
1

4
(1− 2cij) (ũiũj + ṽiṽj) . (57)

Finally, we can write the variance of the entire polygenic score (using Eqs.
(50), (52), and (57)),

Var (PS|u,v) =
K∑

i=1

Var (PSi|u,v) +
K∑

i=1

K∑

j=1,j 6=i

Cov (PSi,PSj |u,v)

=
1

4

K∑

i=1


ũ2

i + ṽ2i +

K∑

j=1,j 6=i

(1− 2cij) (ũiũj + ṽiṽj)




=
1

4

K∑

i,j=1

(1− 2cij) (ũiũj + ṽiṽj) . (58)

We thus conclude that the variance of the score depends only on the grand-
parental differences, which we denote as vectors ũ = (ũ1, . . . , ũK) and ṽ =
(ṽ1, . . . , ṽK).

Defining as before PSi as the score of embryo i, the mean conditional gain
is defined as

E (G|u,v) = E (PSmax|u,v)− E

(
1

n

n∑

i=1

PSi|u,v
)

(59)

= E
(
max

(
PS1, . . . ,PSn

)
|u,v

)
− E (PS|u,v)

= E
(
max

(
P̃S

1
, . . . , P̃S

n
)
|u,v

)
, (60)

where we defined P̃S
i
= PSi−E (PS|u,v). Now note that E

(
P̃S

i
|u,v

)
= 0 and

Var
(
P̃S

i
|u,v

)
= Var (PS|u,v), as calculated in Eq. (58). Further, the P̃S

i
’s
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are independent conditional on the parental scores u,v, because, given the pair
of scores per block of each parent, knowledge of the score of one embryo does
not provide any information on the score of another. Thus, we are back to the
problem of the mean of the maximum of n independent normal variables with
zero mean each, now with variances given by Eq. (58). From here on, we can use
the same approximations for the mean of the maximum as we used in Section
3. For example, we can write

E (G|u,v) ≈ 1.09

2

√√√√√




K∑

i,j=1

(1− 2cij) (ũiũj + ṽiṽj)


 log n. (61)

Thus, the mean gain does not depend on the scores of the parents, but rather
on the differences between the scores of the two grandparents from each side.
Each combination of scores with the same differences, regardless of the absolute
magnitude of the scores, will yield the same mean gain for that family.

5.1 Conditioning on the total parental polygenic scores

Next, we would like to compute the mean gain given not the entire vector of
scores per block of each parent, but given their total scores. In other words,
assume that we know the paternal total score u =

∑K
i=1(ui,1 + ui,2) and the

maternal total score v =
∑K

i=1(vi,1 + vi,2). We will compute the conditional
mean gain E (G|u, v).

First, assume that the scores per block, u1,1, u1,2, . . . , uK,1, uK,2, are nor-
mally distributed in the population. This should be approximately satisfied for
highly polygenic traits in the absence of alleles of very large effects. The scores
are independent by the assumptions on Section 1. Thus, ũi = ui,1 − ui,2 and

u =
∑K

j=1(uj,1 + uj,2) are jointly normal variables. Their covariance is

Cov (ũi, u) = Cov


ui,1 − ui,2,

K∑

j=1

(uj,1 + uj,2)




= Cov


ui,1,

K∑

j=1

(uj,1 + uj,2)


− Cov


ui,2,

K∑

j=1

(uj,1 + uj,2)




= Var (ui,1)−Var (ui,2) = 0. (62)

To arrive at the last line, we used the assumption of independence across loci
and across chromosomes from Section 1. As ũi and u are jointly normal and
uncorrelated, they must be independent, for all i. The same is true for ṽi and
v. Thus, the grandparental differences ũ and ṽ are independent of u and v.

Given this result, we can calculate E (G|u, v) by conditioning on the differ-
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ence vectors ũ and ṽ, and using the law of total expectation,

E (G|u, v) = E (E (G|ũ, ṽ, u, v) |u, v)
= E (E (G|ũ, ṽ) |u, v)
= E (E (G|ũ, ṽ))
= E (G) . (63)

In the second line, we used the fact that the mean gain depends only on the
difference vectors (Eq. (61)). In the third, we used the independence of the
differences and the total scores (recall that the outer expectation is over ũ and
ṽ). In the last line, we used again the law of total expectation. We have thus
shown that the mean gain is independent of the total polygenic scores of the
parents, u and v.

Intuitively, the reason for the independence is that knowledge of the sum
of the parental scores does not provide information regarding the difference
between the grandparental scores, and it is only these grandparental differences
that can generate differences between embryos. In Figure 2, we show empirically
that for our height and IQ data, the gain indeed seems independent of the
parental polygenic scores.

Figure 2: The gain in embryo selection vs the mid-parental predicted traits
based on their polygenic scores. The height was corrected for sex and age. (A)
Random mating for height. (B) Actual couples for height. (C) Random mating
for IQ. The gain was calculated over n = 10 embryos. The correlation coefficient
and its associated P-value are shown at the top of each panel.

5.2 Conditioning on the parental traits

We have so far studied the conditional gain given the polygenic scores (per block
or total) of the parents. Suppose that the scores are not available, but that the
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parental phenotypes are observable (this is almost always possible, in particular
for traits such as height or BMI). Denote the paternal and maternal traits as
zp, zm, respectively, and recall that u and v are the parental polygenic scores.
By Eq. (3), we have

zp = u+ ǫp,

zm = v + ǫm, (64)

where Var (ǫp) = Var (ǫm) = σ2
z(1− r2ps). Conditioning on the parental scores u

and v and using the law of total expectation,

E (G|zp, zm) = E (E (G|u, v, zp, zm) |zp, zm)

= E (E (G|u, v) |zp, zm)

= E (E (G) |zp, zm)

= E (G) . (65)

In the second line above, we used the fact that E (G|u, v, zp, zm) = E (G|u, v),
because the gain is determined by the polygenic scores of the embryos, and
thus, given the scores of the parents, there is no additional information from
their phenotypes. We then used the independence of E (G|u, v) on u and v (Eq.
(63)). Hence, conditioning on the parental phenotypes does not change the
mean gain. In Figure 3, we show empirically that for our height and IQ data,
the gain seems independent of the parental trait values.

Figure 3: The gain in embryo selection vs the mid-parental trait value. The
figure is the same as Figure 2, except that the x-axis here is the average of the
actual traits (residual height or IQ) of the two parents.
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6 A prediction interval for the phenotype of the

top-scoring embryo

The actual value of the trait of the top-scoring embryo, zmax, may differ con-
siderably from that predicted by its polygenic score or by the mean gain. We
have

zmax = PSmax + ǫ. (66)

Following Section 1, ǫ has zero mean and variance

Var (ǫ) = σ2
z

(
1− r2ps

)
. (67)

Given the PS of the top embryo, and assuming a normal distribution for ǫ, a
95% prediction interval for the actual value of the trait will be approximately

[
PSmax − 1.96σz

√
1− r2ps,PSmax + 1.96σz

√
1− r2ps

]
. (68)

Eq. (68) is Eq. (2) in the main text.
In a näıve calculation for no selection, we assume no information is available

regarding the embryo, and thus, the 95% prediction interval would be

[−1.96σz, 1.96σz] , (69)

as for any normal variable with zero mean and variance σ2
z . However, the

phenotype can be predicted based on the traits of the parents. Denote the trait
of an offspring as zo and the mid-parental trait value (i.e., the average of the
(sex-adjusted) trait between the two parents) as zmp. A well-known result in
quantitative genetics is that the slope of the regression of zo on zmp is equal to
the heritability h2 [6]. The correlation coefficient is the product of the slope and

the ratio of the standard deviations, r = h2 σmp

σo
. But σ2

o = σ2
z and σ2

mp =
σ2
z

2 .

Thus, r = h2 σz/
√
2

σz
= h2

√
2
. The proportion of variance explained is r2 = h4

2

(see also, e.g., [10]), and the remaining variance is σ2
z

(
1− h4

2

)
. Thus, a more

realistic 95% prediction interval for the case of no selection would be

[
h2zmp − 1.96σz

√
1− h4

2
, h2zmp + 1.96σz

√
1− h4

2

]
. (70)

In theory, having both the mid-parental value and the offspring’s PS may
lead to a more accurate prediction, with a narrower prediction interval, even
for the case of selection. Prediction in this setting is in general non-trivial.
However, the combination of both the PS and the mid-parental value cannot
explain more variance than implicated by the heritability. Thus, the proportion
of variance explained by all of the available data (PS and parents’ trait value)

can be anything within the range
[
max

(
r2ps,

h4

2

)
, h2
]
, i.e., it is at least the best

of the two predictors, but no higher than the heritability.
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7 Properties of the top-scoring embryo

7.1 The mean difference between the top-ranked trait and

the trait of the top-scoring embryo

In the main text, we analyzed real large nuclear families. When reduced to
n = 7 children per family, we found that the average height difference be-
tween the tallest child and the child with the maximal PS was 3.0cm. To
determine the expectation based on our quantitative model, consider n sib-
lings, whose polygenic scores are modeled as a multivariate normal variable,(
PS1, . . . ,PSn

)
∼ MVN(0n,Σ) with Σ defined in Eq. (20).

We assume that the phenotypes, z1, . . . , zn, can be modeled as

z = (z1, . . . , zn) = g + e, (71)

where g ∼ MVN(0n,Σg) and e ∼ MVN(0n,Σe), with

Σg = σ2
zh

2




1 1
2 . . . 1

2
1
2 1 . . . 1

2
. . . . . . . . . . . .
1
2

1
2 . . . 1


 (72)

and

Σe = σ2
z

(
1− h2

)



1 0 . . . 0
0 1 . . . 0
. . . . . . . . . . . .
0 0 . . . 1


 . (73)

In the matrix Σg, the off-diagonal elements are 1
2σ

2
zh

2 due to the covariance
between sibs, as in Section 2. We assume no covariance between the environ-
mental components or between them and the genetic components. Thus, in
total, (z1, . . . , zn) ∼ MVN(0n,Σz), where

Σz = Σg +Σe = σ2
z




1 h2

2 . . . h2

2
h2

2 1 . . . h2

2
. . . . . . . . . . . .
h2

2
h2

2 . . . 1


 . (74)

As we showed in Section 3, because the covariance terms are all equal, the mean
of the maximum of the phenotypes (z) is equal to the mean of the maximum of
n independent normal variables, each with zero mean and variance σ2

z(1−h2/2).
Denote by E (R) the mean of the maximum of n standard normal variables (e.g.,
as we calculated in Eq. (32)), and denote the maximum phenotype across the
sibs as zmax,actual. Since the identity of this sib is not known at the time of
selection, the phenotype of the selected embryo, zmax,selected, may be lower, and
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we have (using Eq. (66)),

E (zmax,actual − zmax,selected) = E (zmax,actual)− E (zmax,selected)

= σz

√
1− h2

2
E (R)− E (PSmax)

= σz

√
1− h2

2
E (R)− σz

rps√
2
E (R)

= σzE (R)

(√
1− h2

2
−
√

r2ps
2

)
. (75)

Eq. (75) gives the expected loss in the phenotype due to the imperfect predictive
power of the score. To find the expected difference for the nuclear families, we
calculated E (R) exactly based on numerical integration (Eq. (28)), substituted
h2 = 0.8, σz = 5.6cm, and r2ps = 0.27 (as in the real families data), and obtained
E (zmax,actual − zmax,selected) = 3.1cm, very similar to the observed value.

7.2 The probability of the top-scoring embryo to have the

top-ranked trait

When reduced to n = 7 children per family, we found in the real data that on
average, in ≈ 31.5% of the families the child whose PS was ranked first was
also ranked first in actual height. To determine the expected probability under
our quantitative model, consider again n siblings. Recall that their phenotypes,
z = (z1, . . . , zn), are modeled as

z = PS+ ǫ, (76)

as in Eq. (3). The polygenic scores are multivariate normal, as defined above
(Eq. (8)). For the error term, we have ǫ ∼ MVN(0n,Σǫ), and

Σǫ = σ2
z




1− r2ps
h2−r2ps

2 . . .
h2−r2ps

2
h2−r2ps

2 1− r2ps . . .
h2−r2ps

2

. . . . . . . . . . . .
h2−r2ps

2

h2−r2ps
2 . . . 1− r2ps




(77)

To explain the above equation, each ǫi has variance σ2
z

(
1− r2ps

)
. However,

here the ǫi’s must be correlated because they model not only the environment
but also genetic factors not modeled by the PS. The off-diagonal entries in

the covariance matrix of the phenotypes z are equal to σ2
z
h2

2 from Eq. (74).
Assuming independence between PS and ǫ, these entries are equal to the sum

of the off-diagonal entries in the covariance matrix of PS, i.e., σ2
z
r2ps
2 (Eq. (18)),

and the off-diagonal entries in the covariance matrix of ǫ. Thus, the latter must

be σ2
z
h2−r2ps

2 .
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To estimate the probability that the top-scoring child is also the tallest, we
simulated values for PS and ǫ, assuming n = 7, h2 = 0.8, and r2ps = 0.27, and
then calculated the phenotypes according to Eq. (76). (The value of σz does
not change the relative ranks, and can be set to any value.) We found that in
≈ 33.4% of the simulations, the sibling top-ranked for the score (PS) was also
top-ranked for the phenotype (z), in a reasonable agreement with the empirical
results. An integral expression for this probability can also be derived and solved
numerically, giving the same result (not shown). An analytical approximation
can be derived based on Eq. (14) in [11].

7.3 The probability that the realized gain is negative

Using the above simulated values of PS and ǫ, we calculated the proportion of
simulations in which the realized gain was negative, i.e., zmax < 1

n

∑n
i=1 zi. The

proportion came out as 22.5%, compared to 16.4% in the real data.

8 Multiple traits

8.1 The model

Consider T traits normalized to have zero means and variances σ2
z,1, . . . , σ

2
z,T .

Let PS = (PS(1), ...,PS(T ))
t be a column vector of polygenic scores for these

traits (for a single individual). (xt is the transpose of a vector x.) We assume
that PS is multivariate normal,

PS ∼
(
PS(1), ...,PS(T )

)t ∼ N
(
0T ,Σ

(T )
)
, (78)

with

Σ
(T ) =




σ2
ps,1 σ2

ps,12 · · · σ2
ps,1T

σ2
ps,12 σ2

ps,2 · · · σ2
ps,2T

· · · · · · · · · · · ·
σ2
ps,1T σ2

ps,2T · · · σ2
ps,T


 . (79)

We defined σ2
ps,i = Var

(
PS(i)

)
= σ2

z,ir
2
ps,i as the variance of the PS of trait i,

and σ2
ps,ij = Cov

(
PS(i),PS(j)

)
as the covariance between the scores of pairs of

traits, which may be non-zero due to pleiotropy.
The polygenic scores for all T traits and for all n sibling embryos can be

represented as an T × n matrix with a matrix normal distribution [12]:



PS1(1) · · · PSn(1)
· · · · · · · · ·

PS1(T ) · · · PSn(T )


 ∼ MNT,n

(
0T×n,Σ

(T ),Σ(s)
)
, (80)

where Σ(s) is an n×n matrix representing twice the kinship coefficient between
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siblings, and is given, similarly to Eq. (20), by:

Σ
(s) =




1 1
2 . . . 1

2
1
2 1 . . . 1

2
. . . . . . . . . . . .
1
2

1
2 . . . 1


 . (81)

Eq. (80) holds because for two embryos i 6= j and two traits k 6= l,

Var
(
PSi(k)

)
= σ2

ps,k,

Cov
(
PSi(k),PS

i
(l)

)
= σ2

ps,kl

Cov
(
PSi(k),PS

j
(k)

)
=

1

2
σ2
ps,k

Cov
(
PSi(k),PS

j
(l)

)
=

1

2
σ2
ps,kl. (82)

The first two equations hold by definition, and the third was shown in Section 2.
The proof of the fourth equation (covariance between scores of different traits
in two embryos) is analogous to that of the third equation (Section 2), and is
thus omitted.

8.2 Selection for a linear combination of traits

Suppose we select for a fixed linear combination of the scores, where the weight of
trait i is a real number wi. Denote w = (w1, . . . , wT )

t, and define the combined

score of an individual as PSw =
∑T

i=1 wiPS(i) = wt
PS. PSw is a scalar, and is

a linear transformation of a multivariate normal variable. Thus,

PSw ∼ N(0,wt
Σ

(T )w), (83)

Denote σ2
w = wt

Σ
(T )w (the variance of the combined score of a single individ-

ual) and PSiw as the combined score of embryo i. Based on the distribution of
a linear transformation of a matrix normal variable [12], the combined scores of
all n embryos are distributed as

(
PS1w, . . . ,PS

n
w

)
∼ MVN(0n, σ

2
wΣ

(s)). (84)

Define Gw be the gain in the combined score by selecting the embryo with
the top combined score, as compared to the average combined score (across
embryos),

Gw = max
(
PS1w, . . . ,PS

n
w

)
− 1

n

n∑

i=1

PSiw. (85)

Following the same derivation as for a single trait, we have

E (Gw) = E
(
max

(
PS1w, ..,PS

n
w

))
=

σw√
2
E (R) ≈ 0.77σw

√
log n. (86)

As in previous sections, R is the maximum of n independent standard normals.
The approximation based on extreme value theory can also be used (Eq. (32)).
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8.3 The mean gain per trait

Above, we calculated the mean gain of the combined score PSw. In practice, we
are interested in the gain per trait. Denote the combined score of the top-scoring
embryo as PS∗w, and the scores of the individual traits (for the top-scoring
embryo) as PS∗(1), . . .PS

∗
(T ). Denote the gain of trait i as Gw,i,

Gw,i = PS∗(i) −
1

n

n∑

j=1

PSj(i) (87)

Based on the law of total expectation,

E (Gw,i) = E
(
PS∗(i)

)
= E

(
E
(
PS∗(i)|PS∗w

))
. (88)

Let us first compute the inner expectation. As shown in Eq. (83), for a
given embryo,

PSw =

T∑

i=1

wiPS(i) ∼ N(0, σ2
w). (89)

The joint distribution of PS(i),PSw is bivariate normal with zero means and
covariance

Cov
(
PS(i),PSw

)
= Cov


PS(i),

T∑

j=1

wiPS(j)


 = wiσ

2
ps,i+

T∑

j=1,j 6=i

wjσ
2
ps,ij . (90)

The conditional mean for a bivariate normal variable is

E
(
PS(i)|PSw

)
= PSw

Cov
(
PS(i),PSw

)

Var (PSw)

= PSw
wiσ

2
ps,i +

∑T
j=1,j 6=i wjσ

2
ps,ij

σ2
w

, (91)

which gives the inner expectation. Using Eq. (86), we can compute the outer
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expectation,

E (Gw,i) = E
(
PS∗(i)

)
= E

(
E
(
PS∗(i)|PS∗w

))

= E

(
PS∗w

wiσ
2
ps,i +

∑T
j=1,j 6=i wjσ

2
ps,ij

σ2
w

)

= E(PS∗w)
wiσ

2
ps,i +

∑T
j=1,j 6=i wjσ

2
ps,ij

σ2
w

=
σw√
2
E (R)

wiσ
2
ps,i +

∑T
j=1,j 6=i wjσ

2
ps,ij

σ2
w

= E(R)
wiσ

2
ps,i +

∑T
j=1,j 6=i wjσ

2
ps,ij√

2σw

= E(R)
wiσ

2
ps,i +

∑T
j=1,j 6=i wjσ

2
ps,ij

√
2
√∑T

j=1 w
2
jσ

2
ps,j +

∑T
j=1

∑T
k=1,k 6=j wjwkσ2

ps,jk

. (92)

8.4 Specific cases

More insight can be gained under natural weights, wi = σ−1
ps,i, under which

all traits are equally weighted after scaling by the standard deviations of their
scores. Substituting in Eq. (92), and using the correlation coefficient ρps,ij =

σ2
ps,ij

σps,iσps,j
, we obtain

E (Gi,w) = E (R)
σps,i +

∑T
j=1,j 6=i σps,iρps,ij

√
2
√

T +
∑T

j=1

∑T
k=1,k 6=j ρps,jk

= σps,iE (R)
1 +

∑T
j=1,j 6=i ρps,ij

√
2
√

T +
∑T

j=1

∑T
k=1,k 6=j ρps,jk

. (93)

We can gain further insight by assuming all correlations across traits to be
equal, ρps,ij = ρ for all i 6= j. Substituting in Eq. (93), we obtain

E (Gw,i) = σps,iE (R)
1 + (T − 1)ρ√

2
√
T + T (T − 1)ρ

=
σps,iE (R)

√
1 + (T − 1)ρ√
2T

. (94)

Let us analyze Eq. (94) in more detail. First, consider the case of no
pleiotropy, or ρ = 0. In this limiting case, we obtain

E (Gw,i) =
σps,iE (R)√

2T
=

E (G)√
T

. (95)
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In other words, when selecting for the sum of T independent traits, the gain per
trait decreases by a factor

√
T compared to selecting for each individual trait.

When ρ = 1, we obtain

E (Gw,i) =
σps,iE (R)

√
T√

2T
= E(G) . (96)

That is, for ρ = 1, all traits are equal (after scaling), and selecting for one trait
is equivalent to selecting for all others. The most negative value of ρ possible
(allowing a valid joint distribution of the scores per trait) is ρ = −1/(T − 1).
This corresponds to all traits being maximally inversely correlated with one
another. In that case, Eq. (94) gives E (Gi,w) = 0, and selection based on the
sum of the scores does not lead to any gain in any individual trait.

Finally, assume we wish to retain the natural scaling of the weights, but
assign unequal importance to each trait. We can use wi = λiσ

−1
ps,i. (We can also

impose
∑T

i=1 λi = 1 or
∑T

i=1 |λi| = 1 for an easier interpretation; however, only
the relative value of each λi matters.) From Eq. (92), we have

E (Gw,i) = σps,iE (R)
λi +

∑T
j=1,j 6=i λjρps,ij

√
2
√∑T

j=1 λ
2
j +

∑T
j=1

∑T
k=1,k 6=j λjλkρps,jk

. (97)

For the case of two traits analyzed in the main text, the coefficients can be
written as λ1 = λ and λ2 = 1− λ. This gives (denoting ρ ≡ ρps,12)

E (Gw,1) = σps,1E (R)
λ+ (1− λ)ρ√

2
√

λ2 + (1− λ)2 + 2λ(1− λ)ρ
,

E (Gw,2) = σps,2E (R)
1− λ+ λρ√

2
√

λ2 + (1− λ)2 + 2λ(1− λ)ρ
. (98)

For the case of height and BMI, we select for smaller values of the second trait
by setting 0 < λ < 1 and λ2 = −(1− λ). This gives

E (Gw,height) = σps,heightE (R)
λ− (1− λ)ρ√

2
√

λ2 + (1− λ)2 − 2λ(1− λ)ρ
,

E (Gw,BMI) = σps,BMIE (R)
−(1− λ) + λρ√

2
√
λ2 + (1− λ)2 − 2λ(1− λ)ρ

. (99)

For height and BMI, ρ < 0. Thus, E (Gw,height) > 0, while E (Gw,BMI) < 0.

9 Code availability

R code that implements some of the calculations in this document can be found
at https://github.com/orzuk/EmbryoSelectionCalculator.
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