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A theory oflimits mm artificial selection

By A. RoBERTSON

A.R.C. Umit of Animal Genetics, Institute of Animal Genetics, Hdinburgh

(Communicated by C. H. Waddington, F.R.S.—Received 14 March 1960)

(1) The paper presents a theory of selection limits in artificial selection. It is, however,

developed primarily in terms of single genes.

(2) For a single gene with selective advantage s, the chance of fixation (the expected gene
frequency at the limit) is a function only of Ns, where N is the effective population size. In
artificial selection based on individual measurements, where the selection differential is 7

standard deviations, the expected limit of individual selection in any populationis a function

only of Ni.

(3) For low values of Ni, the total advance by selection is, for additive genes, 2N times the

gain in thefirst generation but may be muchgreater than this for recessives, particularly
if their initial frequency is low. .

(4) The half-life of any selection process will, for additive genes, not be greater than 1-4 NV

generations but may for rare recessives equal 2N.

(5) The effect of an initial period of selection or inbreeding or of both together on the limits

in furtherselection is discussed. It appears that the effects of restrictions in population size
on the selection limit may be a useful diagnostic tool in the laboratory.

(6) The treatment can be extended to deal with the limits of further selection after the

crossing of replicate lines from the same population when the initial response has ceased.
(7) In a selection programme of individual selection of equal intensity in both sexes, the

furthest limit should be attained when half the population is selected from each generation.
(8) The treatment can also be extended to include selection based on progeny or family

records. Consideration of the optimum structure,as far as the limit is concerned, shows that

the use of the information on relatives is always a sacrifice on the eventual limit for the sake of

immediate gain in the early generations. The loss may, however, be small in large populations.

Current theories of artificial selection have been concerned almost entirely with

the prediction of the rate of response of the population mean to selection pressures

of different kinds. The selection may be expected to increase the frequency of

favourable alleles until, in a large population, they eventually reach fixation. But

if the population size is finite there is a possibility that one allele may befixed by

chance even though there is a more desirable one in the population. The smaller the

population, the greater will this possibility be. In this paper, a theory ofselection

limits is developed taking into account at the same timetheforces of selection and

those of chance fixation. Some of the conclusions are not very precise, but, in so

far as they indicate qualitatively what we might expect, they may be of value.

They bear on manypractical problems,for instance the attainmentofthe maximum

possible advance from the existing variation with a population and also the

retention of the potential for change in a population while keeping it in ‘cold

storage’.

It may of course happen that a population will reach a selection limit while

still retaining genetic variation, due to continued selection for heterozygotes.

It is hoped to deal with the effects of restricted population size in such a situation

in a separate paper.

We have first to develop the theory with respect to individual genes whose

selective advantage we know and then to modify the conclusions to deal with
[ 234 ]
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the situation when weare merely selecting the animals extreme for some quantita-

tive measurement. Two kinds of agencies affecting gene frequency are at work in

any selection programme. Thefirst is genetic sampling, or genetic drift, causing

a random change from generation to generation in the frequency, q, of any gene.

The mean changeis zero and its variance is [qg(1—q)]/2N, where J is the effective

population size. The secondis the directed change in gene frequency dueto selec-

tion which we can write in the case of two alternative alleles as sf(q), where s

depends onthe relative selective advantages of the three genotypes at that locus

and f(q) is a function of the gene frequency, depending on the type of gene action

involved. The approach to such problems is essentially due to Wright (1931).

He introduced the concept of the distribution of gene frequencies, which may be

considered alternatively to refer to loci of the same kind and magnitudeofeffect

in one population or to an individual locus in many such populations. The central

concept in this present approach is that of the chance of fixation of the gene in

question, to which Kimura (1957) has given the symbol u(q) where q is the fre-

quency of the gene in theinitial population. wu is then alternatively the propor-

tion of equivalent loci which would be expected to be fixed in any line, perhaps

the easiest model in considering artificial selection, or the proportion of replicate

selected lines in which an individual gene would be expected to be fixed. wu may

then have a value intermediate between 0 and 1 even though homozygosis is

complete. We mayrefer to u(q) as the ‘expected limit’ where the extreme possible

limit will be a value of 1. u(q)—q is then the expected total change in gene

frequency and, corresponding to it in artificial selection, we have the change

in the character under selection when fixation is reached, which weshall describe

as the ‘total advance’. At theextreme, we have a population in whichall desirable

genes in the initial population have been fixed and we shall describe by the phrase

‘possible advance’ the difference in the selected character between this and the

initial population.

Genetic sampling causes a broadeningof the gene-frequency distribution leading

to eventual fixation at the extreme values and selection causes a general shift of

the distribution in the direction of selection. If we write ¢(q,t) for the distribution

of gene frequencies at time ¢, we can, using a continuous model, write down the

process of change with time as

op 0 (q(1—q)¢@)Bi7 Bqt ANT (Psf(9)) (1)
 

the first term on the right-hand side representing drift and the secondselection.

This may be rearranged as

cp oe (¢1—-q¢)_ 0a eeNTBN .WM) 73g A Tag ONS) (2)

Thus the change in ¢ at a particular value of q in an amountof time t/N is depen-

dent only on Ns and on theinitial function ¢(q, 0). It then follows that the pattern

of the change is determined by Ns andits timescale is directly proportional to NV.
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Fora given value of qg, the value of¢ is a function of Ns and t/N, the exact form of

the function being determined by theinitial gene-frequency distribution. Now the

pattern when ¢t = © is merely the proportion of loci (or replicate populations) in

which the allele in question has been fixed. The chance of fixation of the allele

is then determinedbytheinitial distribution and Vs. If we start with a single locus

in a single population, we can say that the chanceoffixation is a function solely of

Ns and theinitial gene frequency.
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Figure 1. The chanceof fixation of a gene acting additively. The curves
are drawnfor different initial gene frequencies.

The treatment that follows is an extension of someresults of Kimura (1957) who

developed explicit expressions for the chanceoffixation. In the case of a pair of

alleles with additive effects on selective advantage, i.e. the three genotypes have

selective advantage 1—4s, 1 and 1+ 4s, respectively, the chance of fixation of a

gene whoseinitial frequency is gis given by _ |

1 —e-2sq
Ud) = 7eras? (3)

which is shownin figure 1. When Ns = 0, u(q) equals g. This merely says that if

there is no selection, the mean gene frequency is not changed. An expansion in

terms of Ns gives.
u(q) = ¢+q(1—q)Ns+.... (4)

Thusthe slope of the curves, when Vs = 0,isq(1—q). As the total possible advance

is 1 —q,it follows that the greater part of this will be achieved if Ns is greater than

I/q. In fact, if Nsq > 1, it can be shown that more than 70% of the possible

advance will be achieved and if Vsq > 2, more than 93%.

The value of u(q) when Ns is small can be derived by a completely different

approach. We then assume that the mean frequency will changelittle during the

fixation process and that the mean heterozygosity declines by the usual proportion

1/2N each generation. In the first generation of selection, it can be shown that the
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change in gene frequencyis (4s)q (1—q). But we know that the average value of

q(1—q) will decline by a fraction 1/2N each generation. Thus

© 9 1 \é

ug) —4 = B590-9(1-sy}

= Nsq(1—4q). (5)

The total advance is thus 2N times the change in thefirst generation. For larger

values of Ns, the total advance maybe larger than this because at low initial gene

frequencies the mean value of g(1—q) may well increase during selection, in

spite of the inbreeding, as the mean gene frequency increases. For low values of q¢

and large values of Vs we have, by expansion of (3), u(¢) = 2Nsq so that the total

advance approaches 4N times the changein thefirst generation.
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FiaurE 2. The chance of fixation of a recessive gene. The curves are
drawn for different initial recessive frequencies.

If there is no additive gene action, the algebra is more complex. With selection

for a recessive gene with frequency g where the homozygousrecessive has a selective

advantage s, we havef(q) = q?(1—q) and Kimura (1957) has shown that the chance

of fixation is given by a
| e—2Nsq dg

0
= °° (6)

| e—2N'sq? dg

0

u(q)

This function is shown in figure 2. An expansion is possible, giving

ug) = ¢+ gNsq(h—q*) +... (7)

The alternative approach, assuming that u(q)—gq is small, necessitates the use of

the moment generating matrix (Robertson 1952). This gives

“aa = 2 [tact —9 (1-339) ~40—9 (1 — 29) (sy)|
= §Nsq(1—9q?).

«3
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Formulae (7) and (8) have obvious relevance to the chance that an inbred line

will rid itself of deleterious recessives during inbreeding as u(q) is the proportion of

such recessives which will be fixed. We are then dealing with negative valuesof s.

Thusif 2Ns is more negative than — 1, u(q) will be close to zero, the gene will have

been selected out and will not contribute to the depression of fitness on inbreeding.

As would be expected, the lower the rate of inbreeding and the greater the gene

effect, the greater the chance that a harmful recessive will be selected out. Then

the lower the rate of inbreeding the smaller the effects of the individual harmful

genes fixed by chance andtheless the inbreeding depression when complete homo-

zygosis is reached. |

The ratio of expected total response to initial changein thefirst generation when

Ns is small is 2Nsq(1— q?)/sq?(1—q) = 2N. (1+ )/3q, rather than 2N as in the

additive case. This ratio can then be very much greater for recessives at low

frequencies than for additive genes. This is a consequence of the increase of the

genetic variance within lines due to low-frequency recessives up to inbreeding

coefficients of 0-5 noted by Robertson (1952).

The case of equilibrium at an intermediate gene frequency resulting from selec-

tion for heterozygotes, (f(¢) = ¢(1—¢@) (¢—gp), where qis the equilibrium frequency),

is more complex as the selection may effectively prevent fixation. It is hoped to

deal in detail with this and somerelated problems in another paper.

THE TIME SCALE OF THE SELECTION PROCESS

Wehavebeen discussing so far the limits of selection. How long will it take to

get there? As the approach to the limit will be asymptotic, this question has not

much meaning butit is useful to ask how long it will take the mean gene frequency

to get half-way to the limit. In the language of physics, what is the ‘half-life’ of

the selection process? |

It was shown earlier (2) that the time scale is proportional to N, the effective

population size, and the pattern of change is dependent only on Ns. The expected

half-life in generations will then be a multiple of V, determined by Ns and the

initial gene frequency. In the case of low values of Vs, we can obtain a very simple

expression. Writing g, as the mean gene frequency after ¢ generations, we have

from(5) ; 1 \t

u-F = L3sq(1—q) (1 - 5)

= Nsq(1—q) (l1—e-4#24) approx. (9)

The half-life is then given by e~#?% = 4, ort = 1-4N generations. In the case of

a recessive gene, we have

[301-9 (1-557) - 401-2) -2(1-5y) | 20)
Nsq(l—q)[(1 —e~%) — 3(1 — 2g) (1 -e-3#%)) approx.

lUu-W

When g = 4, the second term vanishes andthehalf-life is the same as in the additive

case. As g approacheszero(i.e. the recessive is at low frequency) it can be shown
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that the half-life is 2-12N generations and as gq approaches unity, the factor

approaches 1:03N. We may then expect that, if Ns is low, the half-life will probably

be between N and 2N generations.

If Ns is not small, the problem becomes extremely difficult to solve explicitly.

It can, however, be explored by evaluating empirically the change in the gene-

frequency distribution as the generations proceed. We then make use of the fact

that the pattern of change is determined only by Ns. Fora given value of JN, there

are 2N +1 possible gene frequencies. If a population has a certain frequency at

a particular generation, the probability distribution of its frequency in the next

generation can be calculated as a binomial distribution with index 2N and mean

correspondingly modified by selection. We can then write down the transformation

matrix to convert the gene-frequency distribution in one generation into that in

the next. It only proved possible to deal with values of NV up to 5 on a desk calceu-

lator because the total increases as N°.

 2N
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initial gene frequency

Fricure 3. The average ‘half-life’ in generations of the selection process
for a gene acting additively.

Someofthe half-lives so calculated with N = 5 are given infigure 3. It appears

that the half-life decreases continuously as Ns increases. In a sense this might

have been expected. The higher Ws, the greater is the chance that the favourable

allele becomes fixed by selection before it is lost from the line by sampling. It

seems then that the values calculated theoretically for low Ns are probably upper

limits. If the half-life of a selection programmeis reached well before the range

of N to 2N, expected when the chance of fixation is not high, we may perhaps

conclude that we havefixed all the desirable alleles.

THE EFFECT OF SELECTION AND INBREEDING ON SUBSEQUENT SELECTION LIMITS

Wehave been discussing so far the chance of fixation of a gene with a known

initial frequency and have shownthat it is dependent only on Ns. We now proceed

to ask how this dependence on Ns is affected by an initial period of inbreeding or

selection or of both together. It may be of advantage here to think of the gene-

frequency distribution as referring to genes at different loci, all with the same

selective advantage. In the initial population we shall assume that they all have
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the same gene frequency. This frequency will be altered by the initial period of

selection or inbreeding and we wish to know how the chanceoffixation (or the

proportion of the genes likely to be fixed) considered as a function of Vs, has been

altered in this initial period. The detailed discussion will be devoted to the case of

additive action.

There are three alternative treatments in the initial period that we shall consider.

(a) Selection in a very large population

The frequency of all genes will have been altered by the same amount and the

curve of chanceof fixation against Ns is that corresponding to the new frequency.

 I
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Figure 4. The effect of various treatments on the curve of chance offixation against Ns for
a gene with initial frequency of 0-3. The treatments are three generations of (a) selection
with s = 0-4 in a large population, (b) restriction of effective population size to 5,

(c) selection with s = 0-4 and effective population size 5. O = original.

(b) Restriction of population size without selection

The mean gene frequencywill stay the same but different genes will have different

initial frequencies. Some maybelost altogether from the population so that the

ultimatelimits of selection at high values of Ns will be reduced. This effect will be

most marked at low initial gene frequencies. For additive genes, the slope of u(q)

plotted against Ns at low values of N's will be reduced dueto the decline in hetero-

zygosity. The slope will also be less for recessives.

(c) Restricted population size with selection

We have now a mixture of the two effects. The mean gene frequency will be

higher when Vs = 0 becauseof the selection but the ultimate limit will be reduced

because of chancefixation in the initial period. But the new curve of u(q) against

Ns must intersect the old one at the point corresponding to the value of Ns used

in the initial period. The further selection process is then merely a continuation of

the old and will have the same expected limit. |

Figure 4 shows the curves of chance of fixation against Ns for an initial gene

frequency of 0-3 for the initial population and after three generations of (a)
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selection with s = 0:4 in a large population (6) restriction of population size to

N = 5 and(c) selection andrestriction together. The curves for the last two were

obtained by calculating the gene-frequency distribution after the three generations

using the transformation matrix as in the calculation of the half-life. The curves

illustrate well the points madeearlier.

Theeffect of restriction or ‘bottleneck’ in populations for some generations may

be enlarged upon in relation to initial gene frequency. The lower the initial fre-

quency the greater the chance a gene will be lost from the population by a sudden

reduction in population size. Figure 5 showsthe curve of limit against Vs for the

‘bottleneck’ of restriction of parents to a single pair, and of such a restriction for

three consecutive generations, in each case followed by expansion. The effect of
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Ficure 5. The effects of ‘bottlenecks’ in population size on the curve of chanceoffixation

against calculated for initial gene frequencies of 0-1, 0:3 and 0-5. (a) initial population,
(b) restriction to a single mating for one generation only, (c) restriction to a single mating
for three consecutive generations.

the bottleneck on the maximum advance possible in further selection is very

marked for the genes with low initial frequency. If the initial frequencyis 0-5,

a single restriction of parents to one pair reduces the possible further advance to

0-80, so that the possible advance is only 60% of that in the initial population.

If the initial gene frequencyis 0-05,such a restriction reduces the expected ultimate

advance to 0-185 so that the possible advance is only 14% of that in theinitial

population. But a further two generations of restriction only reduce the possible

advance by a further factor of two. In the first generation, many such genes would

be lost altogether, but those that were retained would have their mean frequency

increased to at least 0:25 so that further restriction would not have such a large

effect. In selecting from a previously unselected large population, it is the first

generation that is critical in losing low-frequency genes. Thereafter the population

has its segregating genes at higher frequencies.

As a consequence, for genes with an initial low frequency in populations that

have been through a bottleneck, the values of Vs necessary to attain a major part

16 Vol, 153. B.
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of the possible advance will be less than before the restriction. In this they

are similar to selected lines. In both cases, the genes that arestill segregating are

at a higher frequency than they were before.'Thefigure showsthat to get 70 % of the

distance to the possible limit, the Vs value should be 12-2 if the initial gene fre-

quencies are 0-05 but declines to 3-0 after one restriction to a single pair mating.

Highly selected populations or those which have passed through a severe

‘bottleneck’ in population size will be tolerant of any further size restrictions in

the sense that the desirable alleles will be harder to lose because,if they are present

at all, they will have a reasonable frequency. This has a paradoxical practical

consequenceto the storage of populations for possible use in a selection programme,

a problem now facing many poultry breeders. The more highly selected a strain

the smaller the numbers needed for keeping it. Any desirable genes that arestill

segregating are probably at a high frequency. Much more care should be given to

a completely unselected strain because there the desirable alleles are more likely

to be at low frequency and therefore to be lost by accident. The extreme type of

population of this kind is one in which the desirable alleles are all at very low

frequency, as would happen in attempting to produce new useful variation by

irradiation. As Dempster (1958) has pointed out, it is then very important to

keep the population size high in storage and in the early generations of selection.

THE CROSSING OF SELECTED LINES

If we cross together two selected lines from the same population after they have

reached fixation, we may expect to make further progress in the cross if either

line contained a desirable gene which the other did not. Let us assume that we

takea series of lines which reachedfixation with a given value of Vs and cross them

together in pairs. What can we predict about the limits to further selection as

a function of Ns? If the chance of fixation in the initial selection is uw, then this

will be the expected gene frequency when Ns is zero. We may expect further that

a proportion u? of the pairs will both have the gene in question, in 2u(1—w) one

will have it and one will not and in (1—¥w)? neither will have it. The possible limit

for high values of Vs is 1—(1—w)?. Any further gain will come from the 2u(1—w)

pairs in which the gene frequencyis one-half.

Wetherefore know the values for Vs = 0 and Ns = oo. A surprising result

holds for additive genes if the further selection from the cross has twice the value

of Ns as had the original selection. The expected limit is then exactly the same

as the limit for selection from the original population with twice the original value

of Vs. The result in fact holds more generally. If we make populations by crossing

any numberof lines together and then use a proportionally higher value of Ws,

we have the same expected limit as if we had used the higher value all the

time.

These results only hold approximately for recessive genes. The discrepancies

are not large but, in single crosses, the expected limit on selecting the cross with

double the original value is for high-frequency recessives rather higher than if

all the selection had been at the higher value and rather lower for low-frequency

recessives.
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SELECTION FOR A QUANTITATIVE CHARACTER

Wehavebeen dealing so far with genes whose selective advantage we know. But

in many of our laboratory selection experiments, we select animals on the basis of

their measurement for some ‘metric character’. We presume that we increase the

frequency of the desirable genes, but we know neither their frequency northeselec-

tive advantage that we confer on them by ourartificial selection. We merely

observe that the mean of the population changes.

We can take the first step in applying the earlier results by using a formula

originally derived by Haldane (1931). He showed that underartificial selection the

selective advantage associated with any small difference on the metric scale, on

whichselection is based, is equal to that difference multiplied by [/o?, where I is

the superiority of chosen parents above the mean of the population and o? is the

phenotypic variance in the population. If we express the intensity of selection as

a dimensionless character, by putting 1 = I/o, the factor becomesi/o. For a gene

acting additively with a difference of ‘a’ units on the metric scale between the mean

of the two homozygotes, we then know thatit will act additively as far as concerns

selective advantage underartificial selection and that

Ss =

a
l
s

Wesaw that, for all individual genes, the chance of fixation is a function of Ns

and the initial frequency qg. In artificial selection, we may write

w(q) = fia, q)

and since the mean phenotypeat fixation can, in the absenceofinteraction between

genes at different loci, be written by summing over loci Xau(qg) = Xaf(Nia, q) it

follows that in any population the expected limit of selection is a function only

of Ni. The exact form of this function will depend on the distribution of gene

frequencies and effects and on the type of gene action involved.

Wesawearlier that, for an additive gene, at least 70% of the possible gain in

gene frequency at the limit would be obtained provided Nsq > 1. In artificial

selection, the condition may be written Niag > o. At low values of Ni we can

only be sure to fix genes either with large effect or with high frequency. As Ni

increases we begin to fix the rarer genes with smaller effects.

But in an artificial selection programme we do not observe changes in gene

frequency, we only see a change in the mean of the measurement in the population.

The total change in the mean, X —X,will for additive genes be given by

X—X = La(u(q)—9)
= La(q(l1—q)Ns+...)

2 —_
~ ang st”+ if Ni is low

20

_ 207
Ni”,I

16-2
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where o” is the additive genetic variance. We can therefore predict the slope of

the curve ofX—X plotted against N72 for low values. Asin the case ofsinglegenes,

the total advance is 2N times the response in the first generation (togl) as
Dempster (1955) has pointed out.

Again, as with single genes, this does not hold for recessives. Then

X—X = La(u(q)—¢)

 
2Ni a?q(1 —4q?

= (an-g+= 24...)

of which the first term is the inbreeding depression. The coefficient of Ni,

[2X02q(1— q?)]/30, maybe much greater than 207/o0, which equals [42a2q3(1 —q)]/c,

especially for recessives at low frequency,so that the total advance dueto recessives

may be much greater than 2N times the response in the first generation.

The possible advance in the case of additive genes is given by the expression

xa(l1—q) and this we cannot predict merely by measuring the genetic variance

in the initial population. The smaller the numberofgenes contributing to any given

additive genetic variance (and in consequencethe greater their individual average

effect) the lower will be the possible advance by selection and the quicker will it

be reached. Though we can in some measure predict the initial slope of the curve

of limit against Ni there is no way in which we can predict the possible limit at

high values of N72.

Some of these points are illustrated in figures 6 and 7 which show the curves

of advance plotted against Ni for two imaginary populations. In figure 6,all genes

have the sameinitial frequency of 0-5, but it is assumed that the advanceat high

values of Ni is contributed equally by three classes of genes with a/o values of

0-5, 0-3 and 0-1, respectively. In figure 7, it is assumed that a/o = 0-3 for all genes

but that the ultimate advanceis contributed equally by genes with frequencies of

0-5, 0-3 and 0-1, respectively. It will be seen that the further increase in limit when

Ni is high is due almost entirely to the genes with small effects or low initial

frequencies.

Weare nowin a position to take over into the contextof artificial selection the

results that were obtained for single genes. We cannot now observe the chance of

fixation, as we cannot observe gene frequency. If u(q) is very different from unity

for many genes, we will notice that replicate lines from the sameinitial population

will be very different in the limit they reach. The variation will be greatest when

the average value of u for the different genes controlling the character is in the

neighbourhood of 0-5. The variation between replicates will again be a function

of Ni, but the type of function will depend on the gene frequencies in the initial

population. If they are low, the variation in limit between replicates may pass

through a maximum as Ni increases but will decline to zero at high values. This

is important in any experimental work on this problem as many replicates may be

needed at low values of Nz. The possibility of utilizing the variation between

replicate programmes may too have important consequences in practical animal

breeding.



‘

 

 

   
 

 

  

O
F

FicurE 6. The expected limits to artificial selection in a population in whichall genes have

initial frequency 0-5 and in which the possible advance is contributed equally by genes
with a/o = 0-1, 0-3 and 0-5, respectively.
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FIGURE 7. Similar to figure 6 except all genes now have a/o = 0:3 and the possible

advance has equal contributions from genes with frequency 0-1, 0-3 and 0-5.

The discussion of the time-scale of the selection process is immediately relevant

to the quantitative case. We may then expect that selection programmes should

have an upperlimit to their half-life in the region of 1-4N generationsif the genetic

variation is mainly additive. If the half-life is reached earlier than this, we may

presume that the majority of desirable alleles have been fixed and that there is

little point in crossing two such lines derived from the same base population.
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Theeffect of theinitial treatment of the population on the curves of advance as

a function of Ns is directly referable from the single gene to the quantitative

situation. The section on the effects of a restriction in population size on the possible

limits at high Ni values may be important here. In dealing with continuous

variation, it is usual to describe the situation in terms of variance components.

But it is very difficult to penetrate these to discover anything about the effects

and frequencies of the genes which give rise tothem. In theeffect of a ‘bottleneck’

in population size on theultimate limit of selection, we have a phenomenon which

depends almost entirely on the frequencies of the desirable genes in theinitial

population and hardly at all on the magnitude of their individual effects. The

investigation of the effects of bottlenecks on selection limits may thus be valuable

in the analysis of laboratory populations.

These results are also relevant to the problem of how to get the maximum

possible advance from a given initial population. 'To stand a high chanceoffixing

all the rare but desirable genes we shall start obviously with as high a value of Ni

as we could. How large this should be will depend on the previous history of the

population. If it has been previously selected or restricted in population size, the

need would not be so great. Then as selection proceeded, the size of the programme

could be reduced because the frequency of the desirable genes would continually

be increasing. Unfortunately we cannot give a recipe of how rapid this reduction

could be.

The control we have over Ni lies mostly in N, the effective population size,

rather than in 7, the selection intensity. In most selection programmes that are

at all efficient, 2 lies between 1 and 2, these figures corresponding to a proportion

selected, », of 40°% and 6%,respectively.

Occasionally, a selection programmeis arranged so that the genetic contribution

of all parents to the next generation is equal in order to minimize the increase in

inbreeding each.generation. It is rather doubtful whether this would affect the

total advance by selection. It prevents the loss of variation by chance fixation but

at the price of exposing only a part of the genetic variation to selection. In the

simplest case of each mating contributing one male and one female as parents of

the next generation, the effective breeding size of the population is twice the actual

size. But the selection acts only on the variation within full-sib groups, i.e. half

the total additive variance. The limit would not then be changed as the increase

in NV is exactly balanced by the decrease in the effective value of o?. This argument

would not hold if there were considerable non-genetic differences between full-sib

groups when the accuracy of the selection might thereby be increased.

THE OPTIMUM INTENSITY OF INDIVIDUAL SELECTION

Suppose we have aselection programme in which we measure 7’ animals and

select the proportion p that are highest for some metric character. What is the

optimum value of p?

If the character is normally distributed, we may put 7 = z/p, where z is the

ordinate of the unit normal curveat the point where the area cut offisp. But N, the

numberofparents selected, is equal to T'p so that Nt = Tz. zhas a maximum when
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p = 4s0 that the greatest advance will be attained when on half the population

is selected each generation, as Dempster (1955) has shown. But the maximum of

the curve may be very flat, especially when 7’ is large, because of the asymptotic

nature of the curve of limit against Nz. Figure 8, which is based on theresults for

the synthetic population givenin figure 7, shows the expected limit plotted againstp

for two different values of 7. When 7' = 50, the curve has become extremely

flat-topped. In practice, the problem is to find the value which will combinea high

rate of initial response with a reasonable approach to the ultimate possible limit.
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Ficure 8. The expected limits to individual selection in the population in
figure 6 when the number of animals measuredis 7.

THE EXTENSION TO FAMILY SELECTION

It is a frequent practice in a selection programme to use the records of the

relatives of the animals underselection. It can be shown that, if the information

on which selection is based has a correlation of r;q with the animal’s breeding value,

the selective advantage of an additive geneis tar,,/h, where h?is the heritability of

the measurement underselection. Thus the use of measurements on relatives in

a selective programme changes by the same factor the selection pressure on all

the genes affecting the character. Ifwe have the same responsein twolarge selection

programmesof different kinds from the sameinitial population, we may expect the

gene frequencies in the two lines to be very similar. We can now generalize our

earlier results to state that the selection limit is a function of Nir;g/h. This will not

apply if other characters are taken into account in selection. Therelative selection

pressures on the different genes may then be altered, and the effect on selection

limits cannot be predicted. Finally,if the value of 7 is different in the two sexes

the valueto be inserted in the formula is the arithmetic mean of the two.

Theeffect of different kinds of selection programme maybeillustrated by the

following table which gives the value of Nir,,/h for some of the different kinds of

selection programmesfor bristles in Drosophila which have been carried out in

this laboratory. Following Crow (1954), we shall assume that in mass-mating

populations of Drosophila the effective population size is 0-55 of the actual size.
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The character selected for will be assumed to have a heritability of 0-50. The symbol

20/100 meansthat the extreme 20of the 100 flies measured were chosen as parents.

selection method intensity Niriglh

individual 20/100 31

20/50 | 21
20/25 (eachsex) 8
10/25 10
1/5 2-4.

half-sib family (size 20) 2/10 9

full-sib family (size 10) 4/20 — 10

This leads naturally to the question of the optimum values of selection intensity

and family size, if selection is based on family average, in order to achieve the

greatest advance. The not very useful answer turns out to be that, for a given

numberofanimals measured, the highest limit (determined by the maximum value

of Nir,q) is reached when one-half of the families are selected and the family size

is one, which would mean that selection was based only on the individual’s own

measurement. In other words, a family selection or progeny testing programme

always involves somesacrifice of ultimate response for the sake of greater immedi-

ate gain.

DEFECTS OF THE MODEL

From the point of view of the frequencies of single genes, the modelis clearly

of direct applicability. But, in transferring the conclusions to selection for quanti-

tative characters, several hidden assumptions have been made which should now

be mentioned. |

Thefirst one is that a/o will remain constant throughout the selection. On simple

theory, we would expect the genetic part of o to decline gradually as the genes

at other loci become fixed. On the other hand, as the level of homozygosity rises,

the environmental part of o might be expected to increase in some characters.

And in manyselection experiments there is evidence that even the genetic part

does notdecline greatly as the limit is reached becauseofselection for heterozygotes.

Rather of the same kind are problemsof scale. These are almost impossible to cope

with in a completely logical and satisfactory manner and each case has to be treated

on its merits. But scaling difficulties should be more of a nuisance in discussing

the extent of the selection limit rather than how long it takes to get there.

Linkage presents the second problem. One might expect @ priori that the

greater the number of generations over which a given selection differential was

spread, the greater the response because of the high probability of recombination

within chromosomes. If this is true, one might expect that the optimum proportion

selected in individual selection would be rather less than the value of one-half

which holds for the independent segregation ofgenes. But the theoretical treatment

of linkage and selection in a population of limited size is a complex one. The use

of Monte Carlo methods with digital computers, now being tried by Fraser (1957)

and by Cockerham & Martin (1960), is probably the most satisfactory way of

handling the problem.

We must also consider natural selection, probably for heterozygotes, in the
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sense that any population may have many gene frequencies held in equilibrium.

The effect of this tendency to return to the original set of gene frequencies will be

to reduce the effective value of 7 by a constant proportion (see Robertson 1956,

p. 246). The optimum proportion selected in individual selection would then remain

in the neighbourhoodof 0-5.

The problem has been discussed entirely in terms of two alternativealleles. The

existence of many alleles at each locus tremendously complicates the detailed

treatment but some useful statements can still be made. It will still be possible

to recast the basic differential equations, similar to (1), into a form similar to (2)

so that again the pattern of change will be determined in artificial selection by

Ni and the time scale will be proportional to NV. The limits of selection in any

population will then still be a function of N?. When N72is small, we canstill say

that the slope of the curve of advance against Nz will have slope 20%/o.

Finally, the effective population size in any artificial selection programme may

be dependent on the intensity of selection. All parents chosen in one generation

will not have an equal chance of contributing progeny to the group chosen in the

next. The parents with a higher breeding value will have a higher chance of

contributing than those with a low breeding value. A theoretical examination

has been made of this effect in individual selectionwhich will be published else-

where in detail. It has been found that the ratio of the actual number of parents

to the effective numberis very roughly equal to 1+ Ki#h? where K depends on the

relationship within families. This factor would have to be borne in mind in a more

detailed discussion of the problem.

It must beemphasizedthat this theoretical investigation has probablyits real value

not in predicting exactly what is going to happen in realitybut in enabling one to

design experiments on selection limits and to interpret them when we havedonethis.

I am muchindebted to my colleaguesfor their critical reading ofthe manuscript,

in particular to Dr D. 8. Falconer.
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