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PREFACE

The aim of this book is to summarise our current knowledge of evolution-
ary theory as applied to age-structured populations, i.e. populations
whose members are not born into distinct generations, and where fertility
and survival are functions of age. Although theoretical treatments of this
subject date back to the beginnings of population genetics, its growth has
been relatively slow until the last decade or so, when important contribu-
tions have been made by workers in several different areas. Population
geneticists have subjected many species with age-structured populations
to experiments and observations, Drosophila and man being the two
best-known examples. A clear understanding of the implications of age-
structure for such processes as selection and genetic drift is therefore
necessary for a proper interpretation of experimental findings. Similarly,
animal and plant breeders often wish to make predictions about the
effects of artificial selection regimes imposed on age-structured popula-
tions. An understanding of the effects of natural selection on life-history
phenomena, such as ageing and the timing of reproductive effort, also
requires a quantitative theory of the effects of selection in relation to age.
For these reasons, a survey of the present sort seems timely.

My policy has been to develop the mathematical treatment in some
detail, so that the reader can see for himself the logic behind the results
presented. I have deliberately kept the mathematics to an elementary
level, so that anybody with a knowledge of basic calculus and matrix
algebra should have no difficulty in following the derivations. A know-
ledge of elementary genetics is assumed. More advanced mathematical
techniques are essential to a full treatment of certain topics, such as the
application of bifurcation theory to the study of density-dependent popu-
lations, the treatment of temporally varying survival rates and fecundities,
and the use of optimal control theory in life-history evolution. I have
contented myself with citations of what I hope are the major papers on
these subjects.

I have made some effort to discuss the implications of the theoretical
results for empirical biologists, and many examples of the application of
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Xii Preface

the theory to real data are given or quoted. I hope that the material is
arranged in such a way that readers who are not interested in the details
of the mathematical derivations will be able to identify, and make sense
of, the major conclusions. I have tried to give a broad coverage of what I
consider to be the most important results in the field. Inevitably, much
work is only referred to or treated briefly, regardless of its intrinsic
importance, and I trust my colleagues will not feel I have unduly
emphasised my own work at their expense. By no means all the problems
in this field have been solved, and I hope I have indicated clearly where
work remains to be done.

Chapter 1 is a general survey of the basic mathematical theory of the
demography and ecology of age-structured populations, and introduces
many of the concepts and notation used in later chapters. Chapter 2 deals
with such questions as the approach to Hardy—Weinberg equilibrium and
the effects of genetic drift. It also contains a brief account of the problem
of calculating the expected frequencies of consanguineous matings in a
finite population. Chapters 3 and 4 cover the theory of gene frequency
change and equilibrium under selection. Among other things, they con-
tain discussions of the effects of demographic changes on gene frequen-
cies at polymorphic loci, the appropriateness of various fitness measures,
and the effects of selection on a quantitative character. Chapter 5 is
concerned with life-history evolution in general, with particular emphasis
on the evolution of senescence and on the reproductive effort model of
optimal life-histories.
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mental Mutagenesis, National Institute of Environmental Health Scien-
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English. I have not always taken their advice, and the remaining defects
are, of course, entirely my responsibility.
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In addition, the literature on empirical tests of life-history theory has
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Models of age-structured populations

1.1 Introduction
The populations of many species of plants and animals are

age-structured; if such a population is investigated at a given point in
time, it is found to consist of a set of individuals who were born over a
range of past times, and whose fecundities and probabilities of future
survival depend on their age. The human population is an obvious
example. A full ecological description of the state of such a population
should therefore take into account the relative numbers of individuals of
different ages (the age-structure of the population), as well as its overall
size. Similarly, a description of the genetic composition of the population
should contain a classification of individuals by age as well as genotype.
The traditional theories of ecology and population genetics have,
however, usually ignored the problem of age-structure, and have assumed
that populations can be treated as homogeneous with respect to age. This
is clearly legitimate in dealing with organisms with discrete generations,
such as annual plants, where only individuals born in the same season are
capable of interbreeding. Many species of biological importance have
overlapping generations, however, and their fecundities and survival rates
are rarely completely independent of age, so that their age-structure
should be taken into account in any realistic model of their behaviour.

There has recently been considerable interest in extending ecological
and population genetics models to include age-structure as a variable.
Evolutionary theorists have also become interested in the role of natural
selection in moulding the way in which fecundity and survival depend on
age. The purpose of this book is to give an account of the major results
which have been obtained by applying ecological and demographic mod-
els of age-structured populations to population genetics and evolutionary
theory. Before going on to this topic, it is desirable to develop the basic
models and concepts which are needed, and this is the subject of the
present chapter.

We are primarily concerned in this chapter with the construction and
analysis of mathematical models which enable us to handle changes in the
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2 Models of age-structured populations

size and age-structure of biological populations. This is the subject-matter
of mathematical demography, a science which dates from the work of
Euler (1760), although its main development was initiated by Lotka and
his associates in this century (Sharpe and Lotka, 1911; Lotka, 1925).
More comprehensive treatments than the one given here may be found in
the books by Keyfitz (1968), Pollard (1973), Henry (1976), Webb (1985)
and Caswell (1989). It is assumed throughout this chapter that popula-
tions are genetically homogeneous, or at least constant in their genetic
make-up, so that individuals can legitimately be classified solely by sex
and age. It is also assumed that the populations with which we are
concerned are so large that stochastic effects can be ignored, and that
numbers of individuals can be adequately represented by continuous
variables. The concepts and notation introduced in this chapter are
essential for an understanding of later chapters, where we discuss the
problems associated with describing and predicting evolutionary changes
in age-structured populations.

We begin with a discussion of methods for describing the state of an
age-structured population at a given time, and then show how the state at
one time can be related to that at previous times. This is followed by a
detailed analysis of the process of change in state of a population which
lives in an unchanging environment, and whose numbers are not re-
stricted by density-dependent factors resulting from competition for
limited resources, such as food. Although most species of animals or
plants only rarely, and for short periods, find themselves in such an
environment, the concepts which emerge from the study of this case are
fundamental to an understanding of the dynamics of age-structured
populations in general. We then discuss briefly the effects of temporal
fluctuations in the survival and fecundity parameters of a density-
independent population, and go on to consider the problem of density-
dependent factors. The chapter concludes with a brief consideration of
the dynamics of systems of several, non-interbreeding populations.

1.2 The description of age-structured populations

1.2.1  Populations with discrete age-classes

Probably the simplest type of biological population which can
usefully be described as age-structured is one which is characteristic of
many temperate-zone species of vertebrates and perennial plants. Indi-
viduals may survive over many years, but reproduction is limited to one
season of the year. In a given breeding season, individuals who were born
in several different, earlier, breeding seasons may be reproductively
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Description of age-structured populations 3

active, so that it is impossible to assign individuals to separate genera-
tions. The composition of the population when censused at the beginning
of the breeding season in a given year ¢ can be described in terms of the
numbers of males and females falling into age-classes 1, 2, 3, etc. These
correspond to individuals who were born 1, 2, 3, ... years previously.
The number of females aged x at the beginning of the breeding season in
year t can be written as n(x, t), and the corresponding number of males
as n*(x, t). Our problem is to relate these numbers to the state of the
population in the preceding year, ¢t — 1. There are basically two methods
of doing this; one is to formulate the problem in terms of matrix algebra,
and the other is to use difference equations of high order. These two
methods yield equivalent results, and it is solely a matter of technical
convenience as to which is to be used in approaching a particular
problem. We shall therefore consider both of them in this chapter. We
start by developing the matrix formulation for a number of cases, and
then go on to discuss the difference equation approach.

The Leslie matrix
The population at the start of the breeding season in year ¢ is
composed partly of individuals who were present at the corresponding
period of year ¢t — 1, and partly of individuals who were born during the
breeding season of that year. The latter individuals constitute age-class 1
for year t. We can write P(x, ) and P*(x, t) for the probabilities of
survival over one year for females and males, respectively, who are
present in age-class x at the start of the breeding season in year ¢. These
probabilities are usually functions of age, and will be referred to in what
follows as the age-specific survival probabilities. They are also written as
functions of time, to indicate that in general they are expected to change
with time in response to changes in factors of the physical environment,
or to changes in the numbers of individuals in the population. The
probability that a female aged x in year ¢ dies during the year can be
written as Q(x,t)=1-— P(x,1t); a corresponding quantity Q*(x, ) =
1 = P*(x, t) can obviously be defined for males. These are the age-spe-
cific probabilities of death.
Using this notation, we have, for age-classes other than the first, the
relations

nx,)=n(x—-1,t—-1)Px—-1,t—-1) (x>1) (l.1a)
n*(x,)=n*(x-1,t-1)P*x-1,t-1) (x>1) (1.1b)

It is more difficult to construct a realistic model of the way in which
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4 Models of age-structured populations

individuals in the first age-class are generated; in general this would
require a detailed specification of the probabilities of mating events
between pairs of individuals of all possible ages, and the fecundities of
these matings. Fortunately, it is usually reasonable to assume that the
fecundity of females of a given age is independent of the age of their
mates, and that there are sufficient males available to fertilise the
females. Age-specific fecundities can therefore be assigned to females;
these are independent of the age-composition of the population. (This
assumption is standard in demographic theory and is usually referred to as
the demographic dominance of females.) Let M(x, t) be the expected
number of fertile eggs produced in year ¢ by a female aged x at the start
of the breeding season. Let the proportion of females among the offspring
resulting from those eggs be a(x, t); this is the primary sex-ratio for
offspring of mothers aged x at time ¢. The expected number of female
zygotes produced by a female aged x in year ¢ is thus

m(x, t) = M(x, )a(x, t) (1.2)

In order to compute the number of individuals in age-class 1 at the start
of the breeding season in a given year, we need to specify the probability
of survival of a zygote over one year. For simplicity, we assume here that
this probability, which is denoted by P(0, r) for a female zygote produced
in year ¢, is independent of the age of the parents. The net expected
contribution from a female aged x in year ¢ to the population of females
aged 1in year ¢ + 1 is thus

f(x, 1) = m(x, H)P(0, t) (1.3)

This may be called the net fecundity for the female concerned.

The assumption that the survival of an individual over the first year of
life is independent of parental age is probably quite often violated in
practice, especially for species with parental care, where senescence may
affect the ability of parents to look after their young, or affect the quality
of their eggs. For example, Perrins and Moss (1974) have shown that the
rate of hatching of eggs of the great tit (Parus major), in English
woodland, declines with maternal age. This problem may be avoided by
censusing the individuals born in year ¢t at a time when they are old
enough for their future survival to be unaffected by parental age. m(x, )
is then the number of female zygotes weighted by the probability of
survival to this stage, and P(0, ) is the probability of survival from this
stage to the beginning of the breeding season in year ¢ + 1.

We are now in a position to relate the state of the population at two
successive times. There is generally a upper limit to the age at which
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Description of age-structured populations 5

reproduction is possible or, if there is no such limit, so few individuals
survive beyond a certain age that they can safely be disregarded. Let the
last age-class which is taken into account have the index d. Similarly,
there is a lower limit to the age of reproduction, x = b say (b =1). We
obtain from the above definitions the relation

d
n, )= > n(x,t—1)f(x,t-1) (1.4)
x=b
A full description of the population of immature and reproductively
active females at time ¢ is provided by the d-dimensional row vector n(¢),
whose components are n(1,?), n(2,1), ..., n(d, t). (Throughout this
book a row vector consisting of n elements (xy, x5, . . ., x,) is written as
x, and the corresponding column vector as the transposed vector x!.)
Equations (1.1a) and (1.4) can be combined compactly in the matrix
equation

n(t) = n(t — 1)L(t — 1) (1.5)
where L(t — 1) is the d X d matrix defined by the expression
L(t-=1)=
f,t—1) P(1,t-1) 0 0
f2,t—-1) 0 PQ2,t—-1) ... 0
fd=1,t-1) 0 0 ... PA-1,t-1)
fld,t—1) 0 0 cen 0
(1.6)

All the elements of L are zero except for the off-diagonal elements
P(1,t-1), P2,t—1),... P(d—1,t—1), and some of the elements of
the first column, f(x,t—1). A matrix such as L is referred to as a
population projection matrix or Leslie matrix, after P. H. Leslie, whose
papers were largely influential in promoting its widespread use in ecology
and demography (Leslie, 1945, 1948). This method was also suggested
independently by Bernardelli (1941) and Lewis (1942). A matrix which,
like the Leslie matrix, has elements which are positive or zero is called a
non-negative matrix. Such matrices have special properties, which facili-
tate the analysis of the population process described by equation (1.5)
(Seneta, 1973). These will be discussed later, in sections 1.3.1 and 1.4.1.
In most biological applications we are interested mainly in the popula-
tion of pre-reproductive and reproductive individuals, so that the vector
n(t) provides an adequate description of the female population. If for
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6 Models of age-structured populations

some special purpose it is necessary to take into account individuals who
are past reproducing age, it is easy to calculate their numbers using
equation (1.1a). We have
x~d
nx,t)=n(d, t+d-x)[[P(x =y, t—y) (x>d)
y=1

The male population

There are several ways to proceed if one wishes to include the
male population in the analysis. One method is to define an age-specific
fecundity function M*(x, t) for males, in terms of the number of young
which a male aged x is expected to father in year r. If the frequency of
males among these offspring is 1 — a*(x, ¢), then the expected number of
male progeny contributed by a male aged x in year ¢ is

m*(x, 1) = M*(x, 1)[1 = a*(x, 1)] (1.7)

The net contribution of this male to the population of males in age-class 1
in year ¢ + 1 can be obtained by weighting this fecundity by the probabil-
ity of survival of a male zygote over the year, P*(0, ). By analogy with
equation (1.3), this is

¥ (x, ) = m*(x, )P*©0,¢t) (x=b*) (1.8)

where b* is the age at first reproduction for males. If the effective upper
age-limit to male fertility is d* (which is not necessarily equal to d), the
male population at time ¢ can be described by the d*-dimensional row
vector n*(t), with components n*(1,t), n*(2,t), ..., n*(d* ). A
d* x d* Leslie matrix, L*, can be constructed for the male population in
the same way as for the female population in equation (1.6), giving the
matrix equation

n*(t) = n*(t — H)L*(t — 1) (1.9)

This approach is not very useful from the point of view of studying the
population process, since, with the assumption of female demographic
dominance, the basic male fecundities M*(x, t) must depend in general
on the age-composition of the female population. This can change in
time, even if environmental conditions are constant, resulting in changes
in the male fecundities (which are constrained by the condition that every
individual has both a male and a female parent). A more useful method is
to attribute all offspring to their female parents. The net contribution of
male offspring in year ¢ + 1 from a female aged x in year ¢ is thus

f'(x,t) = M(x, ) P*(0, t)[1 — a(x, 1)] (1.10)
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Description of age-structured populations 7

and so we obtain
d

n*(1,0)= > n(x,t = 1f'(x,t—1) (1.11)
x=b
n(t) and n*(f) can be combined into a single vector of dimension
d + d*, [n(t), n*(t)], which gives a complete description of the popula-
tion at time ¢. From equations (1.1), (1.5) and (1.11), we have

Lt-1) | A(t-1)
[n(t), w*(1)] = [n(t = 1), n*(t = 1)]
0 i B(1-1)
(1.12)

where L is the Leslie matrix defined by equation (1.6), 0 is a d* X d
matrix of zero elements; A is a d X d* matrix all of whose elements are
zero, apart from the first column, which consists of f'(1,t—1),
f'@2,t=1),...,f'(d,t —1); Bisad* x d* matrix whose only non-zero
elements are the off-diagonal elements b, . = P*(x,t—1), x =1, 2,
oo d®—1,

The approach embodied in equation (1.12) was introduced by Good-
man (1969) and provides the simplest reasonably realistic method of
handling an age-structured population with two sexes. For accounts of
more complex approaches, the reader should consult Pollard (1973,
Chapter 7), Parlett (1972) and Pollak (1990).

In species where reproduction is purely asexual, or where individuals
are monoecious or hermaphroditic, as in many plants, the problems of
describing a two-sex population clearly do not arise. The population
process is completely characterised by a single equation similar to (1.5),
except that we no longer have to discount male offspring in calculating
net fecundities. The f(x,r—1) are therefore equal to M(x,t—1)
P(0, t = 1) in this case, and the vector n(t) refers to the whole popula-
tion.

Plants with seed dormancy

In plant demography, however, the description of the population
process is considerably complicated by the fact that seeds may persist for
several years in the soil before germinating. In treating hermaphrodite
plants which have seed dormancy, it is thus necessary to take into account
the existence of a population of seeds of various ages, as well as the
population of plants themselves. This topic is discussed in some detail by
Harper and White (1974), Sarukhan and Gadgil (1974) and Harper
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8 Models of age-structured populations

(1977). Here we merely sketch the way in which one can describe the
essentials of the population process, by extending the matrix formulation
developed above.

It is convenient to treat both the seed and plant populations as being
censused at the beginning of the flowering season in a given year,
following the time of germination. We write n'(1, ) for the number of
seeds produced in the flowering season of year ¢ — 1 and which survived
to year ¢t without germinating, n’'(2, ¢) for the number produced in year
t — 2 which survived to ¢, etc. If d’ + 1 is the maximum number of years
over which a seed can survive without germinating, the seed population is
represented by the d’-dimensional row vector n'(t) = [n'(1, t), n'(2, 1),

., n'(d', t)]. Seeds aged more than d' years can be ignored, since they
contribute nothing to the adult population, and hence nothing to the
future reproduction of the population. It is assumed that d’' =1, so that
seeds can survive more than one year; otherwise, it is unnecessary to treat
the seed population as a distinct entity. Let P'(x,¢), forx =1, 2, ...,
d' — 1, be the probability that a seed aged x at the beginning of the
season in year ¢t does not germinate and survives for a year. We also
define P’(0, t) as the probability that a seed produced in year ¢ survives
to year ¢ + 1 without germinating. Similarly, P"(x,¢), forx =1,2, ...,
d', is the probability that a seed aged x in year ¢ survives to year ¢ + 1
and then germinates. P"(0, t) is the probability that a seed produced in
year ¢ survives to year ¢ + 1 and germinates. The population of plants in
year ¢ is represented by the d-dimensional vector n(¢) = [n(1, 1), n(2, t),

., n(d, t)]; n(1, t) is the number of plants present at the beginning of
year ¢t which result from newly germinated seeds, n(2, r) is the number of
plants which result from seeds which germinated in year ¢ — 1, etc. We
write P(x,t), with x =1, 2, ..., d — 1, for the probability that a plant
aged x in year f survives to year ¢ + 1 (where x is one plus the number of
years since it germinated). Similarly, M(x, t) is the expected number of
seeds that a plant aged x in year ¢ produces in that year. It is convenient
to define two net seed fecundities, for non-germinating and germinating
seeds, respectively, by the relations

f'(x, )= M(x, t)P'(0, 1) (1.13a)
and
f'(x,t) = M(x, ) P"(0, t) (1.13b)

Using these definitions, we obtain the following matrix equation for the
population process
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At-1) | B(-1)
[n'(2), n(1)] = [n'(¢ = 1), n(z = 1)] |
Ct—-1) | D(t-1)
(1.14)

where A is a d' X d’ matrix whose elements are all zero, except for the
off-diagonals a,,,; = P'(x,t—1); B is a d' X d matrix whose only
non-zero elements are those of the first column, P"(1,¢-—1),
P"(2,t — 1), etc.; C is a d X d' matrix whose only non-zero elements are
those of the first column, f'(1,t—1), f'(2,t—1), etc.; D is a d X d
matrix whose only non-zero elements are the off-diagonals d, .+ =
P(x,t—1), and the elements of the first column, f"(1,¢—1),
f"(2, t = 1), etc.

The difference equation approach

An alternative way of representing the population processes
described above is by using high-order difference equations rather than
matrix algebra. As will be seen in later chapters, this method often has
certain advantages for population genetics problems. In this section, the
procedure for the female population, corresponding to pp. 3—6 above,
will be presented. The most convenient variable, with this method, for
describing the state of the population in a given year ¢ is the number of
female zygotes produced in the breeding season of that year, BAr). If
t = d, none of these zygotes will have been produced by individuals who
were present at the start of the breeding season in some initial year, when
t is taken as 0. We write I(x, ) for the probability that a female survives
from conception in year f — x to age x at the beginning of the breeding
season in year t. From the definitions presented above, on pp. 3-4, we
have

I(x,t)=[[P(x =y, t=y) (x=1) (1.15)
y=1
It is useful to define /(0, ¢) as equal to unity. These definitions imply that
I(x, t) is a decreasing function of x; if the survival probabilities are all
less than unity, as is generally the case in practice, [(x, t) is a strictly
decreasing function of x. It will be referred to here as the survival
function.
It is also convenient to have an expression for the net expectation of
female offspring at age x, attributable to a female born at time ¢ — x; this
is given by the relation

k(x, t) = I(x, )m(x, t) (1.16)
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10 Models of age-structured populations

This quantity is often referred to as the reproductive function.
Using these definitions, it is easily seen that, for = d, we have

d
B{t) = S BAt — x)k(x, t) (1.17)
x=b

For times such that ¢ < d, some of the females who were present in the
initial population are still reproductively active, and their contributions to
Bg(t) must be taken into account. An individual aged x — ¢ initially
(x =t + 1) has a probability of survival to time ¢ (when it will be aged x)
of

¢

z(xst)::l__[P(x_y:l‘_y)

y=1
The total contribution of such individuals to B{t) is thus
d
g)= 3 n(x—1,0(x, Om(x, 1) (1<d) (1.18)
x=t+1

For t = d, g(t) can be defined as zero, so that equations (1.17) and (1.18)
can be condensed into a single formula

t
BA(t) = g(t) + >, B{t — x)k(x, 1) (1.19)
x=1
Note that k(x, ¢) is zero for x > d and x < b.
The number of females in age-class x at time f(¢ = x) is easily com-
puted from Bg(t — x) by the formula

n(x, t) = BAt — x)I(x, 1) (1.20a)

The definition of Byt) as the number of female zygotes is purely a
matter of convenience; any other stage in the first year of life may be
chosen for this purpose, provided that m(x, t) is re-defined so as to
discount the fraction of zygotes which die before reaching the chosen
stage. There must obviously also be a corresponding modification in
I(x, t). Finally, we may note that, if the primary sex-ratio is constant and
independent of parental age, which is a close approximation to reality in
many cases, then equation (1.19) holds with BA(t) replaced by B(¢), the
total number of male and female zygotes. The only change is that m(x, t)
is replaced by M(x, t) in equation (1.18). If the primary sex-ratio is a,
then the numbers of females and males aged x at time ¢(¢ = x) are given
by

n(x, t) = aB(t — x)l(x, t) (1.200)
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n*(x,t) =1 —a)B(t — x)I*(x, 1) (1.20¢)
where [*(x,t) is defined by an equation similar to (1.15), replacing
Plx =y, t=y)by P*(x =y, 1 - y).

1.2.2  Stage-structured populations

Plant and animal ecologists often find it easier to census indi-
viduals according to some measure of physiological or developmental
state such as size, rather than by age. Models which describe the state of
the population according to the numbers of individuals in different
categories of this kind are known as stage-structured models (Lefcovitch,
1965). Survival probabilities and fecundities are then assumed to be
dependent on stage rather than age. This enables a matrix representation
of the population process, analogous to equation (1.5), to be written, in
which the transition matrix generally contains more positive elements
than the Leslie matrix of equation (1.6). The uses of models of this kind
are discussed by Metz and Diekmann (1986), Caswell (1989), and
Cochran and Ellner (1992). So far, such models have had little application
to population genetics and life-history evolution. This is in part due to the
difficulty of providing concise descriptions of evolutionary dynamics with
these models, and in part to the fact that they fail to include any direct
effect of age on survival and fecundity. They will not be considered
further in this book.

1.2.3  Continuous-time populations

The models described above are exact only for populations which
reproduce at discrete time-intervals, usually one year in length. There
are, however, many species where there are no discrete seasons for
reproduction, so that reproduction and other aspects of the population
process are best thought of as taking place in continuous time. Human
populations are the most familiar example, and the traditional apparatus
of mathematical demography (Sharpe and Lotka, 1911; Lotka, 1925) was
largely developed in an effort to understand and predict the growth of
human populations. We first construct an exact description of the con-
tinuous-time model for the female population, on lines similar to the
difference equation approach to the discrete age-class model described
above. We then discuss how the continuous-time case can be adequately
approximated by a suitable discrete-time formulation.

Exact formulation of the continuous-time model

Time ¢ and age x are now taken to be continuous real variables;
x occupies the closed interval [0, d], where d is the upper limit to the
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12 Models of age-structured populations

reproductive ages. We can define a survival function [(x,t) as the
probability that a female survives from conception at time ¢ — x to age x
at time ¢, and an age-specific death-rate u(x, t) such that

al(x,t) + Sl(x, 1) _
ox ot
With the condition /(0, ¢) = 1, this gives the relation

—u(x, )l(x, t) (1.21)

I(x, ) =exp — J:,u(x -y, t=y)dy (t=x) (1.22)

The probability of death in a small age-interval [x, x + dx] is given by
w(x, t)dx, and is clearly analogous to the age-specific probability of death
Q(x, 1), defined for the discrete age-class model on p. 4. Equation (1.22)
corresponds to equation (1.15).

We can similarly define the fecundity of a female aged x at time ¢ as
her rate of production of offspring M(x, t), such that the number of
offspring of both sexes which she is expected to produce in the small
age-interval [x, x + dx] is M(x, t) dx. More accurately, the number she is
expected to produce in the interval [x, x + x'], given that she is alive at
the end of the interval, is f; M(x + y, t + y)dy. If the fraction of female
zygotes among these zygotes is a(x, t), her fecundity with respect to
female offspring is defined by

m(x, t) = M(x, t)a(x, t) (1.23)

The parallels with the discrete age-class formulae on pp. 3-4 are obvious.
We can also define the reproductive function for the continuous-time
model as k(x, t) = I(x, t)m(x, t), by analogy with equation (1.16).

Finally, the state of the population at any time ¢ can be described by
the quantity By(¢); this is the rate of production of female zygotes by the
population as a whole, such that the number of female offspring entering
the population over a small time-interval [z, ¢ + dt] is B{t)dt. This will
be referred to loosely as the birth-rate of the female population, although
for genetic purposes we normally regard the population as being censused
at the stage of zygote formation, before selection can act to alter its
genetic make-up. Knowledge of Bff) and the survival function I(x, t)
enables us to calculate the number of females in any age-interval. Let
n(x, t) be the density function for the number of females aged x at time
t, such that the number aged between x and x + dx at time ¢ is
n(x, t)dx. We clearly have (for ¢t = x)

n(x, t) = B{t — x)I(x, 1) (1.24a)
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The number of females aged between x; and x, at time ¢ is given by

n(xy, xp, t) = rn(x, 1) dx (1.24b)

We are now in a position to relate Bt) to the past state of the
population; this can be achieved by means of an argument similar to that
which leads to equations (1.17), (1.18) and (1.19). For times ¢ > d, such
that no females who were present at the initial time ¢ =0 are still
reproductively active, we have

BA(t) = I:B,(r — X)k(x — f)dx (1.25)

where b is the lower limit to the reproductive ages (b > 0). For t < d, it is
necessary to take into account the contributions of females who were
present at time t=0. Let n(x,0)dx be the number of females aged
between x and x + dx at this initial time. The contribution of the initial
set of females to B((¢) is given by

d

g(t) = fn(x — 1,0)i(x, Hm(x, t)dx (1.26)

t

where

. t
I(x, 1) =exp —J;]iu(x -y, t=y)dy.

Combining this with equation (1.25) gives the continuous-time analogue
of equation (1.19)

B(t) = g(t) + J:Bf(t — x)k(x, £)dx (1.27)

where g(t) =0 for t > d, and k(x, tr) =0 for x > d and x < b. This is an
example of an integral equation.

The dynamics of the population can also be represented by a partial
differential equation known as the McKendrick—Von Foerster equation
(McKendrick, 1926; Von Foerster, 1959). For most biological applica-
tions, the integral equation (1.27) and the corresponding discrete age-
class representations of equations (1.6) and (1.19) have proved more
useful.

It is reasonable to assume that w(x,¢) and m(x,t) are continuous
functions of x and ¢. It follows from this that /(x, ¢) and k(x, t) are also
continuous in x and ¢. It is not necessary for n(x, 0) to be continuous in x
for equation (1.27) to be valid, but it must satisfy the standard mathemat-
ical conditions for integrability. If these conditions are met, then g(¢) and
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14 Models of age-structured populations

Bg(t) are both continuous functions of ¢. (Continuity of k(x, ?) is, of
course, not necessary for the validity of equation (1.27), and in fact
equation (1.19) can be regarded as a special case of equation (1.27) if the
theory of Lebesgue integration is applied. In an elementary treatment
such as the present, it seems preferable, however, to treat the discrete-
time and continuous-time models as distinct.) Later on we shall see how
equation (1.27) can be used to study the dynamics of the size- and
age-composition of populations (sections 1.3.1 and 1.4.1).

We may note that age-specific death-rates, survival functions and
fecundities can be defined for males in exactly the same way as for
females; as in the discrete age-class model, they will be distinguished by
asterisks from their female counterparts. Furthermore, if the primary
sex-ratio, a, can be treated as constant and independent of parental age,
it is easy to show that equation (1.27) holds if Bf¢) is replaced by the
corresponding rate of production of male and female zygotes, B(t),
except that m(x, t) in equation (1.26) must be replaced with M(x, 1).
The parallel with the difference equation formulation of the discrete
age-class model is, therefore, complete.

Discrete age-class approximations to continuous-time models

The discrete age-class model is obviously far more convenient for
computational purposes than the continuous-time model. By dividing the
continua of time ¢ and age x into discrete intervals of arbitrary length, it
is possible to approximate the continuous-time model to any desired
degree of accuracy by a discrete age-class model, simply by making the
widths of the intervals sufficiently small. For example, let the age interval
[0, d] be divided into m equal sub-intervals of width d/m. Consider a set
of m distinct values of x, {x;} (i=1, 2, ..., m), such that each x; falls
into one of the sub-intervals or on to a boundary between sub-intervals.
(The positioning of the x; with respect to the boundaries is arbitrary; in
ecological applications, it is frequently the case that each x; is taken as the
mid-point of the ith sub-interval.) Equation (1.25) is then approximated
by the expression

B{1) = ngf(r — x)k(x;, t)(d/m)

If time ¢ is also divided into intervals of width d/m, we can approximate
the continuous-time process described by Bft) by the discrete-time
process described by B #(j), where (for j > m) we have

Cambridge Books Online © Cambridge University Press, 2009



Description of age-structured populations 15

By(j) = 21 Byj — i)k(i, )

where k(i, j) = k(x;, t)(d/m).

Similar approximations can obviously be made to equation (1.27). The
parameters of this discrete-time model are obtained directly from the
continuous model. The probability of survival from age-class i to i + 1 at
the jth time-interval is given by P(i, j) = I(Xi41, t;+1)/1(x;, t;); the prob-
ability of survival from conception in the i — jth time-interval to age-class
i in time-interval j is given by [[4=1P(i — k, j — k); the fecundity of a
female in age-class i in the jth time-interval is m(x;, ;)(d/m), etc. With
these definitions, and the appropriate change in notation, we can regard
the matrix or difference equation formulations of section 1.2.1 as approxi-
mations to a continuous-time model, except that the unit of time is now
the time-interval of arbitrary length d/m instead of one year. In practice,
it is usually found that the continuous-time process is well approximated
by the discrete model even if m is not very large. For example, in human
demography it is conventional to take 5-year time-intervals as the basis
for computation, thus dividing up the female reproductive and pre-
reproductive life-span into nine or ten age-classes. The error resulting
from this approximation seems to be negligible in comparison with other
sources of error and artificialities of the model (Keyfitz, 1968, Chapter 8).

1.2.4  The estimation of demographic parameters

As we have seen above, the dynamic properties of a female
population with discrete age-classes are determined by age-specific sur-
vival probabilities P(x, ) (or, equivalently, by the survival function,
I(x, t), and the age-specific fecundities, m(x, t)). Similar functions can be
defined for a male population and, with appropriate modifications, for a
continuous-time population. We may refer to these quantities collectively
as the demographic parameters for the population in question. To apply
our mathematical models to a real population, it is obviously necessary to
possess estimates of the demographic parameters. Such estimates are
usually referred to as the vital statistics or vital rates of the population.
Obtaining satisfactory estimates presents considerable technical prob-
lems, whose detailed discussion is beyond the scope of this book. In-
terested readers should consult one of the standard works in this field,
such as Harper (1977) for plants, Deevey (1947), Southwood (1966) or
Caughley (1977) for animals, Caswell (1989) for plants and animals, and
Keyfitz (1968) or Henry (1976) for humans. Here, we shall simply survey
rapidly the basic ideas and methods involved in obtaining vital statistics,
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in order to provide some feel for the empirical basis of the models
described in this chapter. For simplicity, the account is worded as if
demographic parameters are completely independent of time and depend
only on age and sex; it should be borne in mind that a set of vital statistics
collected at any one time is frequently valid only for a limited period.

Direct methods of obtaining vital statistics

Two basic methods of directly collecting data, the ‘horizontal’
and the ‘vertical’ methods, may be distinguished. With the horizontal
method, which is commonly used in the study of laboratory populations
of animals and in the demography of historical human populations, the
investigator follows the fate of a sample of individuals who were born at
about the same time (a cohort), and records the times at which they die
and the numbers of offspring which they produce at different ages. For
example, if a laboratory strain of Drosophila is used as material, it is
possible to follow the daily egg production of individual females through-
out their life under standard culture conditions, and to record for each
day the number of females surviving out of the set of newly eclosed
females used to found the cohort. Separate experiments have to be
conducted to determine the length of time from the egg stage to eclosion
from the pupa, and the probability of survival from egg to eclosion. In
this way it is possible to determine a set of values, /(x), of probabilities of
survival of a female from egg to day x; the fecundity m(x) is expressed as
one-half of the number of eggs a female alive at day x is expected to lay
over one day (this assumes a sex-ratio of one-half). The table of values of
[(x) is known as the life-table, and the table of values of m(x) as the
fecundity schedule. Table 1.1 shows the life-tables and fecundity
schedules for adult females of the species Drosophila pseudoobscura
grown at 25 °C, both under optimal conditions and when yeast is omitted
from the culture vials. In both cases, the mean time to eclosion is
approximately 13 days, but the fecundity and survival of the flies are
drastically reduced by starvation.

In the vertical method for obtaining vital statistics, the investigator uses
census data on the same population at two successive times, e.g. one year
apart. This is the standard method used in the demography of contem-
porary human populations, where very many data are available from
national census figures. This type of data gives one the number of
individuals of a given age-class that were alive at the start of the interval,
and the number who died at some time during it. The number of offspring
produced during the interval by individuals who belong to a given
age-class at its start can similarly be estimated. There is extensive
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Table 1.1. Vital statistics for adult females of Drosophila

pseudoobscura

Optimal conditions Yeast starvation
Age (x)
(days) I(x) m(x) I(x) m(x)
13 0.60 0.0 0.46 0.0
17 0.60 23.6 0.46 0.3
21 0.60 20.2 0.44 1.1
25 0.60 25.8 0.44 1.2
29 0.60 25.1 0.43 0.5
33 0.59 16.4 0.41 0.8
37 0.53 16.6 0.39 0.7
41 0.46 17.0 0.38 0.6

Data of Anderson and Watanabe (1980) for females of
karyotype AR/AR, reared at 25 °C. One hundred newly
eclosed females were used to found each cohort. Measure-
ments of larval and pupal viability showed that the probabili-
ties of survival to time of eclosion (/(13)) were 0.60 and 0.46
for the optimal and starvation conditions respectively.

literature on the techniques for extracting vital statistics from census data
of this sort, and of obtaining smoothed curves of /(x) and m(x) from
censuses of continuous-time populations taken at discrete time-intervals
(see Keyfitz, 1968). We shall take it for granted here that the technical
problems involved can be satisfactorily overcome. Table 1.2 shows an
example of a life-table and fecundity schedule for the U.S. female
population of 1964. The data are grouped into discrete age-classes of 5
years in length, as is conventional in human demography.

Indirect methods of obtaining vital statistics

Ecologists interested in natural populations often have to resort
to less direct methods for obtaining vital statistics. It is rarely possible, in
dealing with a population which is living under natural conditions, to
follow a cohort of individuals throughout their life, and to distinguish
emigration of animals out of a study area from mortality. One method
which is often used to get around these difficulties is to assume that the
population is stationary in size and constant in age-structure. If this is the
case, it is easy to see (equation (1.50a)) that the frequency of individuals
in age-class x (in a discrete age-class population) is simply /(x)/> I(x). If
new-born individuals (x = 0) are included in the sample whose age-struc-
ture is measured, we can use the fact that /(0) equals 1 to obtain the
values of /(x) from the frequencies of different ages in the sample. If
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Table 1.2. Vital statistics for U.S. females (1964)

Age-class (x)

(5-year intervals) P(x) I(x) m(x)
0 0.9779 1 —
1 0.9966 0.9746 0
2 0.9983 0.9730 0.0011
3 0.9979 0.9710 0.0898
4 0.9968 0.9679 0.3566
5 0.9960 0.9641 0.4868
6 0.9947 0.9590 0.3453
7 0.9923 0.9516 0.1875
8 0.9887 0.9408 0.0778
9 0.9830 0.9248 0.0178
10 - 0.9091 0.0010

These figures are taken from U.S. census data for 1964, as
analysed by Keyfitz (1968, pp. 27-33). P(0) is an estimate of the
probability that a female child born at some time within a 5-year
time interval will live to the end of the interval; P(1) is an estimate
of the probability that a female aged between 0 and 4 years will
live for 5 years, P(2) estimates the probability that a female aged
between 5 and 9 years will live for 5 years, etc. Similarly, m(2)
estimates the number of daughters a female aged between 5 and 9
years is expected to bear over 5 years; m(3) is the similar number
for a female aged between 10 and 14 years, etc. [(x) is obtained
from equation (1.15).

new-born individuals cannot, for technical reasons, be sampled ade-
quately, it is only possible to determine the values of /(x) relative to the
first age-class represented in the sample. An example of this method is
provided by the work of Bulmer and Perrins (1973) on the great tit, who
show that adult females (females aged 1 year and older) have an age-
distribution which fits a life-table with an annual mortality of 0.52,
independent of age. Males have a mortality of 0.44.

A related method, which also assumes a stationary population and
constant age-structure, is to determine the distribution of age at death
among a sample of dead individuals. For example, examination of the
annual growth rings of the horns of mammals such as sheep enables one
to determine the ages at death of a collection of skulls (Deevey, 1947;
Caughley, 1966, 1977). If the population is stationary, it is easily seen that
the frequency of individuals who die while in age-class x is I(x) —
I(x + 1), which enables one to determine the values of /(x) relative to the
value for the first age-class which can be reliably aged. A refinement of
this method, which removes the necessity for assuming a stationary size
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for the population as a whole, is to mark individuals at birth or some
convenient age, and then to attempt to recover as many marked corpses
as possible. In this way, an estimate of the distribution of age at death can
be obtained for a cohort. This method has been widely applied to the
study of bird populations, owing to the ease of identifying individuals by
ringing (Lack, 1954, 1966).

With all these indirect methods, supplementary observations must be
made to determine the fecundity schedule, and also to estimate survival
probabilities for ages which cannot be included in the basic sample
material. Quite apart from the errors resulting from the fact that the
assumptions of the methods are frequently violated in practice, consider-
able sampling errors are usually attached to the vital statistics obtained
for natural populations, due to the difficulty of obtaining large samples.
Relatively few really reliable sets of vital statistics are available for
natural populations. Enough data have been obtained, however, to give
some insight into the types of life-histories adopted by different species,
in terms of the way in which the vital statistics depend on age. We shall
briefly consider some general features of the main types of life-history
below.

Types of life-history

There are two fundamentally different types of life-history, with
respect to the pattern of reproduction as a function of age. These were
named semelparous and iteroparous life-histories by Cole (1954). A
species is said to have a semelparous life-history when reproduction is
confined to a single age-class, after a more or less prolonged juvenile
stage, and is followed by death. The most familiar type of semelparous
life-history is that exhibited by annual species of insects, where indi-
viduals reproduce in the breeding season following the year of their birth.
There are also semelparous species in which reproduction takes place
several years after conception. The pink salmon (Oncorhynchus gorbus-
cha), for example, breeds only at 2 years of age (Aspinwall, 1974). More
extreme postponement of reproduction is exhibited by such organisms as
the periodic cicada (Magicicada) of the eastern U.S.A., which reproduces
and dies at 13 or 17 years (Lloyd and Dybas, 1966a, b; Bulmer, 1977).
Semelparous species with long postponement of reproduction are also
known in plants, e.g. the century plant Agave americana. There is thus
considerable diversity among semelparous species with respect to the age

of reproduction, although annual species are the commonest.
There is a wide range of life-histories among iteroparous species. They
may reproduce in successive discrete breeding seasons (usually annual) as
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Table 1.3. Vital statistics for female grey squirrels in North Carolina

Age-class (x)

(years) P(x) I(x) m(x)
0 0.253 1 -

1 0.458 0.253 1.28
2 0.767 0.116 2.28
3 0.652 0.089 2.28
4 0.672 0.058 2.28
5 0.641 0.039 2.28
6 0.880 0.025 2.28
7 - 0.022 2.28

Data of Barkalow, Hamilton and Soots (1970). Annual survival
was estimated by following marked individuals from the nesting
stage; fecundity was determined by measurements of litter size
(litters from females breeding in their first year of life have been
ignored). Note that the survival probabilities for later ages are
based on small samples.

in many perennial plants and vertebrates; in other species, individuals
produce successive litters at short intervals, without any synchronisation
into breeding seasons (but usually with a suspension of reproduction in
the winter, in temperate species); females may lay eggs continuously
throughout their reproductive life, as in many tropical insects. There is
considerable diversity even among quite closely related species with
respect to such parameters as the age of first reproduction, the human
species being an example of an iteroparous species which has postponed
reproduction considerably, even in comparison with its closest relatives
among the great apes.

The relationship of fecundity to age is very variable among iteroparous
species, and several different types of life-history can be distinguished. A
pattern which is characteristic of many small birds and mammals is annual
breeding, with individuals reproducing for the first time in the breeding
season following the year of birth. It is often found that M(x) (i.e. clutch
size in birds or litter size in mammals) is more or less constant at all ages,
with the possible exception of the first breeding season, where it is
frequently smaller than later on. Similarly, the probability of survival
over one year is generally much lower for juveniles than adults, whose
annual survival rate is approximately independent of age. This type of
pattern is exemplified by the great tit discussed above. A complete set of
vital statistics for a natural population of the grey squirrel (Sciurus
carolinensis), which illustrates this type of life-history for a mammal, is
shown in Table 1.3. In the larger species of birds and mammals, the age
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of first reproduction is frequently more than one year, and they generally
have a considerably higher survival rate. In fact, individuals may live so
long that evidence for semescence may be observed, in the form of
declining survival and fecundity with advancing age (Caughley, 1966).
The human data of Table 1.2 illustrate an extreme type of life-history of
this sort, where a peak level of fecundity is achieved relatively quickly
after the start of reproduction, followed by a slow decline. Mortality
increases at an accelerated rate after a minimum around the age of first
reproduction. The Drosophila data shown in Table 1.1 are similar to this
in general pattern. Both the human and Drosophila vital statistics are for
species which under natural conditions would have much higher mortality
rates, that would tend to conceal the senescent increase in mortality with
age. Another type of reproductive pattern is shown by iteroparous
cold-blooded vertebrates and many perennial herbs or woody plants
(Harper and White, 1974), which continue to grow in size throughout
reproductive life, unlike insects or female higher vertebrates. Since egg or
seed number in these species is highly correlated with size, continued
growth results in a positive correlation between age and fecundity. This is
seen in many fishes, amphibia and reptiles (e.g. Hodder, 1963; Tinkle and
Hadley, 1973).

This is by no means an exhaustive classification of life-history types, but
is intended to give the reader an idea of the great diversity of possible
patterns of reproduction and survival in relation to age. Some evolution-
ary forces which may have been important in moulding life-history
patterns will be considered in Chapter 5. Intervening chapters will deal
with the population genetics theory that provides a foundation for under-
standing life-history evolution. We now pass on to further mathematical
development of the population models, using as illustrative material some
of the sets of vital statistics presented in this section.

1.3 Time-independent and density-independent demographic

parameters

So far we have been concerned only with the construction of a
mathematical framework for describing the population process. A solu-
tion to the population process, in the sense of specifying its size and
age-composition at some arbitrary time (given its initial state), can usually
be obtained only when the age-specific survival probabilities are constant
over time and independent of population size. This case will be con-
sidered in some detail in this section. Its importance does not lie in the
fact that natural populations frequently satisfy these conditions; clearly
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they do not in general. Rather, many of the basic properties of more
complex types of age-structured populations can be understood by refer-
ence to this case. We shall give most attention to the female population
process described by equations (1.5), (1.19) and (1.27); the male popula-
tion and the case of plants with seed dormancy are also considered briefly
(section 1.3.3). Since it is assumed that the demographic parameters are
constant over time, the argument ¢ will be omitted from P(x, 1), I(x, t),
m(x,t) etc. We consider in turn the matrix, difference equation and
integral equation approaches, before developing some general results
which are valid for all three methods.

1.3.1  The dynamics of the population process for the female population

The Leslie matrix solution

Consider first of all the process described by equations (1.5) and
(1.6). The elements of the Leslie matrix L are now independent of time;
it follows from equation (1.5) that we have

n(t) = n(0)L' (1.28)

If L has d linearly independent eigenvectors, this equation can be written
in terms of the spectral expansion of L'

d
n(O)L' = n(0)SAVIU; (1.29)
i=1
where A; is the ith eigenvalue of L, U; is the corresponding row eigen-
vector, and V| the corresponding column eigenvector, normalised such
that U;V] = 1. (Readers unfamiliar with the results of matrix algebra
employed here should consult a standard text on the subject; alternat-
ively, Jacquard (1974, Appendix 2) and Caswell (1989, Appendix A)
provide short summaries.)
The eigenvalues A;(i =1, 2, ..., d) are the roots of the characteristic
equation

IL— AT =0 (1.30)

where I is the d X d unit matrix.
The eigenvectors U; and ‘V;r are defined by the equations

U;L = A;U,‘ (131{1)
LvIi=x3vT (1.31b)

If equation (1.30) is expanded, and the definitions of equations (1.3) and
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(1.16) are used, we obtain the following simple form for the characteristic
equationt

d
S AFk(x) = 1 (1.32)
x=b

(This equation can be derived in a straightforward way using the differ-
ence equation method, as we shall see on pp. 25-6.)

Equation (1.32) is sometimes called the Euler equation, owing to the
derivation of a special form of it by Euler (1760). It is also frequently
referred to as the Lotka equation, after A. J. Lotka (1925) who derived
its continuous-time analogue and applied it to demographic problems.

The asymptotic solution

For large ¢, equation (1.29) is dominated by the term contributed
by the leading eigenvalue, 1y, say; this is the eigenvalue with greatest
modulus (if A; is complex, the term contributed by its complex conjugate
must also be taken into account). In the case when the leading eigenvalue
is real, equation (1.29) approaches, with increasing ¢, the expression

n(t) ~ n(0)AViU, (1.33)

By considering the corresponding expression for n(f — 1), it is seen that
A gives the asymptotic growth-rate of the population; it is a quantity of
fundamental importance in demographic theory. It can be shown from
standard matrix theory (Pollard, 1973, Chapter 4) that there is a unique,
real positive root of equation (1.32) which corresponds to A;, unless the
age-specific net fecundities f(x) are periodic. A periodic f(x) function is
defined here as one which is non-zero only for x values which are a
multiple of some fixed number other than one (e.g. reproduction occur-
ring at ages 2, 4, 6, 8, etc.). The only periodic case likely to be
encountered in biological applications is the semelparous life-history
discussed above (p. 19). For iteroparous species, it is safe to assume that
A is real and positive. These results can also be derived by the following
elementary method, directly from the properties of the characteristic
equation (1.32), using an approach due originally to Haldane (1927a).
Let A; be a root of equation (1.32), real or complex, and write

— bt _ o) o
Aj = e®*19% = e%i(cos w; + isin w;)

+ Many authors index the age-classes in the Leslie matrix 0, 1, 2, .. . instead of 1, 2, 3, . ..
as here. An age-class x in such notation corresponds to age-class x + 1 in the system used
here, so that equation (1.32) takes a slightly different form, with an exponent of A-(*+1}
instead of A~*. Some texts incorrectly use an exponent of 1~*.
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When w;=mnr (m=0, 1,2, ...), Aj is real; when m is zero or even,
A;>0; when m is odd, A; <0. Separating real and complex parts of
equation (1.32) with A = 4;, we obtain

> e cos (—wx)k(x) = 1
> e sin(—wx)k(x) =0

Consider a real and positive A;, for which we simply have > e %" k(x) =
1. But > e % k(x) is easily seen to be a strictly decreasing function of ¢,
when ¢ is an arbitrary real variable. This implies that there is only one
such real and positive 4;. If f(x) and hence k(x) are periodic, it is always
possible to choose @ = 2m/b such that the values of wx for the reproduct-
ive age-classes are even multiples of =, since the only non-zero k(x)
values are those for which x = b, 2b, 3b etc. For such an w, we have
cos(—wx) =1 and sin(—wx) =0 for x = b, 2b, etc., so that equation
(1.32) is satisfied with A = e?*'“. Only if w is itself an even multiple of 7
is this root equal to A;; this occurs if and only if b = 1, which is excluded
from the category of periodic k(x). This proves that in the periodic case it
is always possible to find a negative real root or complex root of equation
(1.32) which is equal in modulus to the positive real root 4;.

If k(x) is not periodic, it is not possible to choose an w such that
cos (—wx) = 1 for all reproductive ages. Suppose that there is a complex
root A, such that ¢, = ¢;, i.e. the modulus of A, is greater than or equal
to that of A;. Then, since |cos (—wyx)| <1 for at least some values of x,
we have

> e " cos (—wpx)k(x) <> e P k(x) < 1
X X

since e”?* <e~%* for all x. Hence A; cannot be a root of equation
(1.32). A; is therefore the root of largest modulus, giving the conclusion
that there is a real, positive leading eigenvalue A; in the non-periodic
case.

Further consideration of the periodic case will be deferred until p. 26.
We can therefore assume that L possess a leading eigenvalue A;, which is
given by the positive real root of equation (1.32). For ¢ taken sufficiently
large, equation (1.33) is the solution of the population process.

Since, by equation (1.33), each age-class asymptotically grows in size at
the geometric rate A, every time-interval, it follows that the age-structure
of the population, in terms of the relative numbers of individuals in the
different age-classes, is constant. The population is said to have a stable
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age-distribution when this state has effectively been reached. The concept
of stable age-distribution plays an important role in demographic theory,
and will be discussed in detail in section 1.3.2.

Before turning to the solution of the population process by the differ-
ence equation method, we may note that equation (1.29) assumes that the
eigenvectors of L are linearly independent. This is usually found to be the
case in practical applications (Keyfitz, 1968, p. 51); if it is not so, a
biologically trivial perturbation to some of the elements of L will usually
suffice to make it true. It is useful to note that, even if this condition is
violated, there is always a positive, real leading eigenvalue in the non-
periodic case, and that the asymptotic result of equation (1.33) is valid.

The difference equation solution

In this section, we show how the population process can be
solved by means of the difference equation formulation introduced on pp.
9-11. If there is a time-independent reproductive function k(x), equation
(1.19) becomes simply

B((t) = g(t) + 213,«(: — x)k(x) (1.34)

This is an example of a remewal equation, a class of linear difference
equations whose properties have been much studied by mathematicians
interested in probability theory and related areas. In the present case,
when k(x) =0 for x > d and g(¢) =0 for ¢t = d, equation (1.34) can be
approached by the method of generating functions, which is outlined in
Appendix 1. Taking generating functions on both sides of this equation,
and defining k(0) as zero, we obtain

E‘f(s) = g(s) + E‘f(s)}?(s) (1.35)
so that

5 oy — _ 8(S)

Bf(s) 1= %G) (1.36)

This equation is of the same form as equation (A1l.3) of Appendix 1; it
follows that, providing that the zeros of 1 — k(s) are all distinct, we have

d
B{1) = 3 Cs7 P (1.37)
j=1

where the C; are given by equation (A1.6) of Appendix 1. Asymptotically
we have

B(1) ~ Cys7"*P (1.38)

Cambridge Books Online © Cambridge University Press, 2009



26 Models of age-structured populations

where s, is the zero of 1— k(s) with smallest modulus. But k(s) =
>s*k(x), so that s~ can be identified with A of equation (1.32). A, is
therefore equal to sth Evaluating the differential coefficient of 1 — k(s)
with respect to s at s;, and using equation (A1.6) of Appendix 1 together
with equation (1.38), gives the asymptotic result

d-1 d
By(1) ~ Aizﬁlf‘g(x)/zxif‘k(x) (1.39)
x= x=1

As with the matrix approach, this asymptotic solution is valid even if
1 — k(s) has repeated zeros, provided that k(x) is non-periodic (see
Appendix 1). The numbers of individuals in any age-class at a given time
t can be obtained from equation (1.39) by using equation (1.20). Equa-
tions (1.33) and (1.39) must therefore correspond; the nature of this
correspondence will be discussed below (pp. 36-7).

It is useful to note that equation (1.32), from which A, is obtained, can
be derived directly from equation (1.34). If the population has attained its
stable age-distribution and is growing at rate A;, we have B((f) = CAj,
where C is a constant of proportionality. Substituting from this into
equation (1.34) for ¢ = d, we find

CA = CS A ™k(x)

so that, cancelling CA{ from both sides, we see that A; must satisfy
equation (1.32).

The difference equation approach to the population process has the
slight advantage over the matrix method that it can be applied to
situations in which reproduction continues indefinitely, without a finite
upper limit d to the fertile age-classes. Techniques which are more
advanced than those employed here can be used to show that, provided
k(x) is non-periodic and »,;—,g() is finite, equation (1.34) has the
asymptotic solution (1.39). The interested reader should consult Feller
(1968, Chapter 13) for a full discussion of this result, the renewal
theorem.

The periodic case

As mentioned earlier, the only periodic case of much biological
interest is the semelparous form of life history. Most semelparous species
effectively consist of a number of non-interbreeding populations (phases)
represented in different years, the individuals born in year t — b becom-
ing the parents of individuals born in year ¢. The number of female births
in year ¢ is therefore connected with those in year ¢ — b by the relation
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B(t) = B{t — b)k(b) (t=b,b+1,...) (1.40)

For ¢t = b, the number of births corresponding to a given phase of the
population increases at a geometric rate k(b), the numbers for r <b
being given by the initial conditions. In certain cases, of which the most
famous is the 13- or 17-year cicada, Magicicada, (Lloyd and Dybas,
1966a, b; Bulmer, 1977), reproduction has been synchronised so that a
breeding population appears only every b years (b = 13 or 17 for Magici-
cada). Possible causes of this synchronisation are discussed by Lloyd and
Dybas (19664, b), Hoppensteadt and Keller (1976) and Bulmer (1977).

The continuous-time model

The continuous-time model with a time-independent reproductive
function yields the continuous version of the renewal equation as a special
case of equation (1.27)

B{t) = (1) + Lsf(t - x)k(x)dx (1.41)

It is easily seen that (for ¢ > d, so that g(¢) = 0) this equation is satisfied
by substituting By(t) = Ce™, where z satisfies the characteristic equation
analogous to equation (1.32)

d
_L e “k(x)dx =1 (1.42)

Using the argument applied above to equation (1.32), it can be shown
that equation (1.42) has a single real root, z; say, which exceeds the real
parts of the complex roots; it is sufficient for this to be true that k(x) be
continuous, non-negative, and take some positive values between b and
d. This condition is normally satisfied in biological applications. By
analogy with the results for the difference equation approach to the
discrete-time case, one might expect equation (1.41) to have a general
solution of the form

B(t) = 3 Cre (1.43)
i=1

where the z; are the roots of equation (1.42), assumed to be distinct, and
the C; are constants given by the initial conditions. This is the form of the
solution proposed by Lotka and his co-workers (Lotka, 1925). If such a
solution in fact exists, then (using the fact that the real root z; is larger
than the real parts of all the complex roots) it follows that equation (1.43)
becomes asymptotically

BA(t) ~ Cye™" (1.44a)
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so that the logarithm of Bg(f) eventually grows at constant rate z;. It
follows from equations (1.24) that the same is true for the number of
individuals in any age-group, so that the population asymptotically
achieves a state of stable age-distribution, just as in the discrete age-class
case.

There are some mathematical problems in rigorously justifying the
solution represented by equation (1.43). These are discussed by Feller
(1941) and Lopez (1961). It seems in practice to provide an adequate
answer in most cases of biological interest and (according to the results of
Lopez) is valid if k(x) is continuous and positive for values of x between
b and d, assuming that all the zeros of equation (1.42) are distinct. The
asymptotic expression (1.444) is known, in fact, to be valid under very
wide mathematical conditions, which subsume those which are sufficient
for equation (1.42) to have a single real root, larger than the real parts of
the complex roots (Feller, 1966, Chapter 11). The constant C; has the
value

d d
C = foe-wg(x)dx/fbx e~ k(x) dx (1.44b)

which shows the analogy between equations (1.39) and (1.44a).

1.3.2  Populations with stable age-distributions

As we have seen, both discrete age-class and continuous-time
populations converge with increasing time to a state in which the age-
structure and rate of population growth are constant. A population which
has attained this state of stable age-distribution tends to return to it if it
suffers a perturbation. The age-structure and growth-rate are independ-
ent of the initial state of the population, and are determined only by the
values of the demographic parameters. This is the so-called strong ergodi-
city property of age-structured populations. We now discuss in some
detail the properties of populations in stable age-distribution.

The intrinsic rate of increase, generation time and expectation of life

As we have seen, a discrete age-class population in stable age-
distribution grows at the geometric rate A;, given as the positive real root
of equation (1.32); a continuous-time population grows at the logarithmic
rate z;, given by the analogous equation (1.42). In order to unify the
discrete-time and continuous-time cases, it is often convenient to work
with the natural logarithm of A; rather than A;. This is designated by the
symbol r, and can be identified with z; of the continuous-time case. It has
been called the intrinsic rate of natural increase, (Lotka, 1925) or the
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Malthusian parameter (Fisher, 1930). Here, r will usually be referred to
simply as the intrinsic rate of increase; it measures the asymptotic log-
arithmic rate of growth in both the discrete-time and continuous-time
models. In the former case, r can be determined numerically (for
example, by Newton—Raphson iteration), using the fact that, by equation
(1.32), we have

d
S e k(x) = 1 (1.45)
x=1

This equation is analogous to equation (1.42) for the continuous-time
model, which can similarly be solved by a combination of numerical
integration and Newton—Raphson iteration. In most cases, equation
(1.45) is too complex for r to be evaluated explicitly. If r is sufficiently
small that terms of order 7 can be neglected, an approximate expression
for r can be obtained by noting that a Taylor expansion of equation
(1.45) gives

1= e "k(x) = > k(x) = ryxk(x) +---
so that

Dk(x) -1
_—Zxk(x) (1.46)

The quantity >, k(x) in this expression is the net expectation of female
offspring to a female zygote, and is called the net reproduction rate. It will
be denoted by the symbol R. It follows from the properties of equation
(1.45) that R must exceed unity for r to be positive. If R =1, the stable
age-distribution corresponds to a population which is stationary in size
(r=0); if R<1, then the stable age-distribution corresponds to a
decreasing population (r < 0).

The quantity Y xk(x) in the denominator of equation (1.46) is the
mean age at reproduction for a female in a stationary population, and
may be used as one measure of ‘generation time’. The above estimate of
r is clearly unreliable if > xk(x) is more than a few per cent i.e. if the
per ‘generation’ rate of population increase is high. For slowly growing
populations, it provides an adequate approximation. For example, with
the grey squirrel data quoted in section 1.2.4, we find that R = 1.119 and
> xk(x) = 3.332, giving an approximate value for r of 0.036. The value
obtained by Newton—Raphson iteration of equation (1.45) is 0.041, in
reasonably good agreement.

r=
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Since the concept of generation time is a rather arbitrary one in the
context of age-structured populations, several alternative measures have
been proposed. When r is high, a more appropriate measure than
> xk(x) is the quantity

To = D xk(x)/> k(x) (1.47a)

This is the mean age at reproduction of a cohort of females, and is
independent of any assumptions about the rate of population growth.
Another definition of generation time is the value T, which satisfies the
equation

R=¢eT

T, = (InR)/r (1.47b)

Finally, another definition of generation time is the mean age of the
mothers of a set of new-born individuals in a population with a stable
age-distribution. Using equations (1.39) and (1.20) it is easily seen that
this mean age is given by the expression

T=>>xe ™k(x) (1.47¢)

which appears in the denominator of equation (1.39). T is in fact the
modulus of the derivative of equation (1.45) with respect to r. As will be
seen shortly, T arises naturally in a number of contexts, and is therefore
to be preferred to other measures of generation time. Provided r is not
too big, all these measures are approximately equal. Using the grey
squirrel data, for example, we find T,=2.794, T,=2.273, and
T = 2.676.

Generation time should not be confused with expectation of life, E,
which is the expected value of the time of death of a new-born individual.
If an individual who dies between ages x — 1 and x is classified as dying in
the xth interval of life, and noting that /(0) is defined as equal to one, we
have

d d
E=Sx[l(x - 1) - I(x)] = 3 I(x) (1.48)
x=1 x=0

Since this measure takes no account of reproduction, it may differ
considerably in value from the generation times. For example, in the grey
squirrel case E = 1.602. In species with high juvenile losses, E very
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largely reflects the fact that most individuals die in the first age-class. This
measure therefore gives a biased picture of the life-span. The bias can be
corrected to some extent by defining a conditional expectation of life for
individuals who have survived to age x, E,, by the relation

d
E.= Y (0-0lly-D-Ip)/ix) (x=1,2,..)

y=x+1

d
= 2 1»)/I(x) (1.49)
y=x

In the squirrel case, for example, we find E; = 2.379, showing a consider-
able increase in expectation of life over E.

All these quantities can be defined for the continuous-time model
simply by replacing summation over age-classes by integration over age.

The form of the stable age-distribution

The form of the stable age-distribution of a discrete age-class
population is defined by the frequencies of individuals falling into the
different age-classes. Using equations (1.39) and (1.20), it is easy to see
that the frequency of individuals in age-class x, ¢(x), is given by the
expression

d
P(x) = e ™ 1(x)/S e l(x) (1.50a)
x=1

Using equation (1.33) and the definition of U;, the row eigenvector of L
associated with the leading eigenvalue 1, (equation (1.31a)), it is evident
that the components of Uy, U(1), Uy(2), . .., Uy(d), are proportional to
(1), Q2), .. ., ¢(d).

With the continuous-time model, we can similarly define a probability
density function ¢(x), which gives the frequency of individuals between
ages x and x + dx as ¢(x)dx. This has the form

d
P(x) = e_”‘l(x)/Le_”l(x)dx (1.50b)

The shape of the stable age-distribution is, from equations (1.50),
obviously determined both by the intrinsic rate of increase and by the
shape of the /(x) function. High fecundity, resulting in high values of r,
leads to a high weight being placed on early ages, so that the age-struc-
ture of the population is dominated by younger individuals. Similarly,
if mortality rates are high throughout life, /(x) will fall off rapidly with
age, giving a similar effect. The form of the stable age-distribution is
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determined solely by the form of the /(x) function only in stationary
populations, where r = 0. Provided r =0, ¢(x) is always a decreasing
function of x.

It is interesting to note that there is no difference in the form of the
stable age-distribution between two populations whose demographic
parameters differ only in a component of survival which is the same for
each age. Thus, if one population has the set of age-specific survival
probabilities P(x)(x =1, 2, ...) and the other the set P'(x) = KP(x)
where K is independent of age, we have /'(x) = K*P(x). Substituting
from this into equation (1.32), it is easily seen that the value of A; for the
second population is equal to that for the first multiplied by K. Using
equation (1.504), it is seen that ¢(x) is the same for both populations.
Ths type of difference in the life-table is what one would expect if the
populations differed with respect to some ‘accidental’ source of mortality
which is indiscriminate with respect to age. Coale (1957, 1972) has shown
that many human populations have changed demographically over time
largely in respect to mortality factors of this sort; they have therefore
remained close to a single stable age-distribution.

Changes in fecundity have quite different effects on the age-distribu-
tion; since they alter the value of r, they must change ¢(x) unless
compensated for by changes in mortality. This suggests that changes in
age-specific survival probabilities have a much smaller effect on the
age-structure of a population than do changes in fecundity, unless they
are highly selective with respect to age (e.g. if juvenile survival alone is
changed).

Per capita birth-rates and death-rates

The per capita birth-rates and death-rates for a discrete age-class
population are defined as the total numbers of new births and deaths,
respectively, occurring over a single time-interval, divided by the total
number of individuals alive in the time-interval in question. A population
with a stable age-distribution must clearly have constant values for these
quantities. If the new-born individuals are counted at the beginning of the
time-interval subsequent to that in which they were born, we obtain,
using equation (1.50a4), the following expression for the per capita
birth-rate, B, of a population in stable age-distribution

d d
B=11)3 e ™k(x)/ e ™I(x)
x=b x=1

d
= f(l)/Zle-fx.f(x) (1.51a)
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Similarly, the per capita death-rate for the stable population is given by
d d
D=3 e ™[l(x) = I(x + 1))/ e ™I(x) (1.51b)
x=1 x=1

The geometric rate of population growth for the stable population is
related to B — D; since each age-class increases in number at the same
geometric rate A;, the total number of individuals in the population at
time ¢, n(t) is related to the number at time ¢t — 1 by the expression

n(t)—n(t—1)=MG—-Dn(t—-1)
But from the definitions of B and D, we must also have
n(t)—n(t—1)=(B—D)n(t—1)

These equations show that B — D is equal to A4; — 1; this can be shown in
a different way by noting that equation (1.51b) gives us

d d d
D x‘%a;*:(x) = Elal—xf(x) - xlzlx;*f(x) +1(1)

which can be combined with equation (1.51a) to yield B— D = A; — 1.
Similar quantities can be defined for continuous-time populations; by
analogy with equations (1.51) we have

d d
B = Le""k(x)dx/fu e ™I(x)dx (1.52a)

d d
D= fﬂe"‘y(x)l(x) dx/fn e "l(x)dx (1.52b)

Integrating equation (1.52b) by parts and combining it with equation
(1.52a) verifies that r = B — D, as one would expect from the definition
of r as the logarithmic rate of increase.

A population which is not in stable age-distribution will not in general
have constant per capita birth-rates and death-rates. It is a well-known
fact of demography that direct estimates for B and D for a population
which is in the process of approaching a stable age-distribution may be
poor guides to their final values, owing to changes in age-structure which
alter the weights attached to ages with different survival rates and
fecundities (see Figures 1.1 and 1.2).

Reproductive value
Fisher (1930) introduced the concept of reproductive value as a
measure of the relative extents to which individuals of different ages, in a

Cambridge Books Online © Cambridge University Press, 2009



34

Models of age-structured populations

(a)

90‘I Aw ........................... |_

Frequencies of age-classes
w

Population growth-rate

/(‘\”*x— X MM MY XC
xl | | 1 | J

0 4 8 12 16 20 24
Time-interval

Figure 1.1. The approach to stable age-distribution for a population with
the demographic parameters of Table 1.2 (U.S. 1964 females). (a) The
histograms show the frequencies of individuals in age classes 1, 3, 5, 7
and 9, at successive time-intervals of 5 years. (b) The graph shows the
corresponding values of the population growth-rate, as measured by
n(1, t + 1)/n(1, t). The initial population was such that each age-class
was equally frequent.

population stable age-distribution, contribute to the ancestry of the future
population. In a discrete age-class population, reproductive value is

closely connected with the column eigenvector V] defined by equation

(1.31b), as was first pointed out by Leslie (1948). This can be seen as
follows. From equations (1.5), (1.6) and (1.3154), we obtain the following
relation, which enables us to determine relative values of the components
Vi(1), V1(2), . .., Vi(d) of V]
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Figure 1.2. The approach to stable age-distribution for a population with
the demographic parameters of Table 1.3 (N. Carolina female squirrels).
(a) and (b) are as for Figure 1.1, except that time-intervals in this case
are 1 year in length.
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MVi(x) = f)Vi(Q) + P)Vi(x +1) (x=1,2,...,4d)

(1.53)

(Note that V; (d + 1) must be defined as zero.)

It is easily verified that equation (1.53) is satisfied if we write
Vi(x) = Co(x), where C is a constant of proportionality and v(x) is the
reproductive value of age x, defined by equation (1.54a)%t

rx d

> e k(y) (x=1,2,...,d) (1.54a)

X) y=x

€

v(x) = ;

Note that from equations (1.32) and (1.15) we have
v(1) = e"/P(0) (1.54b)

This is the reproductive value of an individual who has survived for one
time-interval after conception. We can use equation (1.54a) to define the
reproductive value of a newly produced female zygote (noting that
[(0)=1) as

v(0) =1 (1.54¢)

The reproductive value of a female aged x on this scale can be thought
of as measuring her expected future contribution of zygotes to the
population, counting both the offspring contributed at age x and those
she is expected to contribute if she survives to later ages. Since the
population increases in number by a factor of e” every time-interval, the
value of her contribution at a future age x + y is discounted by e™"™.
Reproductive value is thus measured relative to a value of unity for a
newly-produced female zygote.

Since only the relative values of the components of V] are determined
by equation (1.31b), the above choice of scale for reproductive value is
arbitrary, but turns out to be convenient for genetic purposes (see
Chapters 3 and 4). An alternative scale of measurement, which arises
naturally in a demographic context, has been proposed by Goodman
(1967). Consider the asymptotic expression for the number of individuals

T If the notation referred to at the foot of p. 23 is used (with the first age-class given the
index zero instead of one), it is preferable to define v(x) relative to a value of unity for an
individual who has survived one time-interval since conception, and is thus in age-class 0.
This yields this formula for reproductive value:

d=1
o(x) =e= 3 e"‘”“k{y)]ﬂ(x)

where age-class x is equivalent to age-class x + 1 in equation (1.54a). The reproductive
value for a given age in this system is equal to e~" P(0) times its value in the system used in
the text.
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in age-class y at time ¢, given by equation (1.33)
d
n(y, t) ~ e"Uy(y) D, n(x, 0)Vi(x) (1.55a)
x=1

where U;(y) and V;(x) are yth and xth components of the vectors U;
and VT, when normalised such that U;V] =1 (p. 22). We know from
p. 31 that U,(y) is proportional to e~"I(y); for simplicity, let the constant
of proportionality be unity. We know from the above that
Vi(x) = Co(x), where C is given by the normalisation requirement.
Using this, together with equations (1.54), gives

d d d
1=C> e ™(x)v(x)=C> > e k(y)
x=1 x=1y=x
ie.
d
1=C> xe ™k(x)
x=b

We therefore have
Vi(x) = v(x)/T (1.56)

where T is the generation time defined by equation (1.47¢). Equation
(1.55a) can thus be rewritten as

d
n(y, t) ~ e’ =9Y( y)( > n(x, O)U(x)/T) (1.55b)
x=1

This may be compared with the difference equation solution of equation
(1.39). It is easy to show from the definition of g in equation (1.18) that
we have

d d-1

> n(x, 0o(x) = > e "g(x)

x=1 x=0
Furthermore, from equation (1.20) we have n(y,t) = B[t — y)I(y).
Substituting these expressions into equation (1.39), we recover equation
(1.55b), thus unifying the matrix and difference equation solutions.

The normalisation of reproductive value by the reciprocal of the
generation time in equation (1.56) gives the quantity which Goodman
(1967) has called the eventual reproductive value of age x. It is a measure
of the extent to which individuals aged x at time zero contribute to the
ancestry of the population at some distant time #, when the population
has approached stable age-distribution. It is thus conceptually somewhat
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Table 1.4. Reproductive value in two populations

U.S. humans (1964) Grey squirrels
Age-class (x) v(x) v(x)
0 1 1
1 1.106 4.119
2 1.201 6.454
3 1.300 5.670
4 1.312 5.420
5 1.037 4.866
6 0.586 4.205
7 0.184 2.280
8 0.093 -
9 0.018 —
10 0.001 —

different from Fisher’s reproductive value, as developed above for the
discrete age-class model, despite the fact that the two differ only by a
constant of normalisation.

Reproductive value as defined by equations (1.54) or (1.56) does not
have a simple monotonic relationship with age. If r is non-negative it
follows from the fact that /(x) is a decreasing function of x that repro-
ductive value for the juvenile age-classes is an increasing function of age.
But, for the reproductive age-classes, it is evident that Eﬁq e Vk(y)
decreases with increasing x, so that reproductive value may decrease with
age for at least some reproductive ages. With sufficiently high r and no
upper limit to the reproductive age-classes (d = ®), examples can,
however, be constructed in which reproductive value increases indefin-
itely with age (Hamilton, 1966). Table 1.4 shows the relationship with age
of reproductive value for two of the sets of vital statistics discussed earlier
in this chapter. The differences between the human and squirrel cases
shown here can be understood qualitatively in terms of the differences in
the ways in which their vital statistics depend on age (see Tables 1.2 and
1.3). The human population is subject to very low mortality, so that there
is only a slight increase in reproductive value during pre-reproductive and
early reproductive life, compared with the squirrel population. On the
other hand, the fecundity of human females falls off rapidly from age-
class 5 onwards, whereas squirrel fecundity is constant. Reproductive
value therefore tends to decrease more sharply with advancing age for
older human females than for squirrels. The significance of the behaviour
of reproductive value as a function of age, in connection with evolution-
ary problems, will be discussed in Chapter 5.

Cambridge Books Online © Cambridge University Press, 2009



Parameters independent of time and density 39

Effects of a perturbation of the components of a Leslie matrix on

the population growth-rate

The age-structure and reproductive value vectors also play an
important role in the theory of the effects of perturbations in the
components of the Leslie matrix on the asymptotic population growth-
rate, as shown by Caswell (1978), using standard matrix perturbation
theory. This represents a generalisation of earlier work by Hamilton
(1966), Demetrius (1969) and Goodman (1971). The main results can be
derived as follows. Let the Leslie matrix L be perturbed by the addition
of a matrix of perturbations 6L, corresponding to small changes in the
survival and fecundity components of L. There are resultant perturba-
tions 64; and 8U; in the leading eigenvalue and corresponding row
eigenvector, respectively. Using the properties of eigenvalues and eigen-
vectors, and neglecting second-order terms in the perturbations, it is
easily seen that

(U, + 8U)L + U, 8L = M(U; + 8Uy) + AU, (1.57a)
ie.

OUL + U,8L = 18U, + MU, (1.57b)
Postmultiplying by the column eigenvector V|, we obtain

OU,LVT + U 8LV = 4,6U,VT + AU, VT

Using equation (1.315), the first terms on the left-hand and right-hand
sides of this expression can be seen to cancel, yielding

_ U,LV]
(U,V1)

If only one element, L;;, of L is perturbed, taking the limit of equation
(1.58a) as OL;; tends to zero yields the partial derivative

o _ Ui()Va(i)
3L;  (UVY)

Equations (1.58) enable one to determine the effect of small changes in

the demographic parameters on the asymptotic population growth-rate or

intrinsic rate of increase. This is of great utility in modelling the evolution
of life-histories, as will be discussed in Chapter 5.

&y (1.58a)

(1.58b)

The rate of change of total reproductive value of a population

One final property of reproductive value is of theoretical interest.
We can define the total reproductive value, V(t), of an arbitrary popula-
tion (which is not necessarily in stable age-distribution) at time ¢ by the
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relation
V(1) = n()V] (1.59)

Using equation (1.5), it can be seen that this is related to the population
at time ¢ — 1 by the expression

V(t) = n(t — 1)LV]
and using equation (1.31b), this gives
V() =Mn(t -1V, =A4V(-1) (1.60)

In other words, the total reproductive value of a population increases at a
geometric rate A =e”, regardless of whether or not it is in stable
age-distribution.

The concept of reproductive value can equally well be defined for a
continuous-time population, and in fact this is how Fisher (1930) origin-
ally developed it. By analogy with equation (1.54a) we can write

d

e J’ ry

e Yk(y)d (1.61)
1) (y)dy
Using the continuous-time solution to the population process given by
equations (1.44), we can obtain the analogue of equation (1.55b)

v(x) =

d d
n(y, 1) ~ e NI(y) x fo e"n(x, 0)o(x) dx/jbx e~ k(x) dx
(1.62)
Similarly, if we define the total reproductive value of a population as
V(t)= fon(x, t)v(x) dx, it is possible to show that
W v (1.63)
dt

Convergence to the stable age-distribution

Obviously the properties of the stable age-distribution which we
have just discussed are not of much interest unless real populations
converge towards stability in a reasonably short time. The rate of con-
vergence can be most directly studied using the difference equation
solution given by equation (1.37), which can be rewritten as

d
e "Bt — 1) = C; + > C;el& ) (1.64)
j=2

where the e* (with z; = ¢; + iw;) are the roots of equation (1.32) other
than 4;. Each complex root A; has a conjugate root, e whose C
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coefficient is the conjugate of C;. Each pair of complex conjugate roots
therefore contributes an oscillatory term of the form

e®="'[C} cos (wjt) + C}sin (w;t)

to the right-hand side of equation (1.64). Similarly a real, negative root,
Aj say, contributes a term of form

Cr e ! cos (1)

which oscillates between positive and negative values in successive time-
intervals. The amplitudes of these oscillatory terms diminish at a rate
determined by the values of ¢; — r, which we have already shown to be
negative (pp. 23-5). The constant term in equation (1.64) comes to
predominate after a time that is governed by the magnitude of the
difference between r and the largest of the ¢;, ¢, say. During a period of
time of order 1/(r — ¢,), the smaller roots still contribute significantly,
and generate waves in the value of B(f), and hence in the numbers of
individuals in other age-classes. Keyfitz (1968, Chapter 6; 1972) discusses
the period of these waves and the rate at which they damp out, for the
type of reproductive function characteristic of human populations. The
complex part w, of the largest complex root is approximately equal to
2m/T,, where T is the measure of generation time defined by equation
(1.47a). The periodicity of the waves in a population which is converging
to its stable age-distribution is thus of the order of the ‘generation time’.
The modulus of the real part ¢, is such that effective convergence to the
stable age-distribution takes place within approximately five generations.
This high speed of convergence seems to be fairly common, on the basis
of the numerical examples which have been studied in the literature.
Figures 1.1 and 1.2 show two examples, using the sets of vital statistics
quoted earlier.

1.3.3  The dynamics of the population process for more complex types of
population
The analysis given above is valid only for the female segment of
the population, or (with appropriate notational changes) for a purely
hermaphrodite population. We shall now consider briefly how it can be
extended to the male segment of the population, and to the case of a
species of plants with a distinct seed population (see pp. 7-9).

The male population

On the assumption of time-independent demographic para-
meters, and the model leading to equation (1.12), it is clear that the male
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population must approach an asymptotic state with a stable age-distribu-
tion at the same rate as the female population. This follows from the fact
that, on the assumption of time-independent age-specific sex-ratios a(x)
(which is necessary for a time-independent m(x) function), the number of
male offspring produced in a time-interval is completely determined by
the numbers of females of different ages. As the age-structure of the
female population approaches constancy, therefore, the number of male
births in a time-interval, B,,(t), must approach the same rate of increase,
A1, as the number of female births, Bf(r). More formally, it is known
from standard theory that the set of eigenvalues of the population
projection matrix in equation (1.12) (with time-independent demographic
parameters) is identical with the set of eigenvalues of the sub-matrices L
and B; it can easily be shown the latter are all zero, so that the leading
eigenvalue of the matrix for the population of males and females is A;,
giving the asymptotic rate of increase of both males and females. It
follows that the proportion of males in a population which is effectively in
stable age-distribution is given by an equation similar in form to equation
(1.50a), with I(x) replaced by I*(x) = | |}=1P*(x — y). Furthermore, in
a population in stable age-distribution the male age-specific fecundity
function m*(x), as defined by equation (1.7), must be independent of
time. A male reproductive function k*(x) = I*(x)m*(x) can thus be
defined for the stable age-distribution; application of an argument similar
to that leading to equation (1.17) for the female population gives the
relation (for t = d*)
a*
B,(1) = 2 Bu(t — x)k*(x)
x=b*

(Modifications similar to those made in deriving equation (1.19) can be
used to obtain an expression for B,,(t) when t < d*.) Use of the renewal
theory applied to the female population process of pp. 256 gives us the
characteristic equation

a*

> Ak*(x) =1 (1.65)

x=b*
From the above considerations, the leading root of this equation must be
A;. Equations (1.32) and (1.65) thus relate the male and female demo-
graphic parameters for the stable age-distribution. The values of m*(x)
used for obtaining k*(x) must, of course, be found either from empirical
data on the male age-specific fecundity schedule for the stable age-
distribution, or by detailed specification of the rules of mating with
respect to male and female ages. Generation times, reproductive values
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etc. can be defined using m™*(x) and k*(x), just as for the female
population.

Plants with seed dormancy

The population projection matrix in equation (1.14) can be
handled, for the case of time-independent demographic parameters, by
matrix methods similar to those used on pp. 22-5 for the female popula-
tion. The characteristic equation is of a rather more complex form than
equation (1.32), however, and it is simpler to derive it using the differ-
ence equation approach. Let us define the following quantities; !'(x)
(x=1,2,...,d" +1)is the probability that a seed survives to be aged x,
and then germinates; /(x) (x =0, 1, ..., d — 1) is the probability that a
plant survives x years from the time of germination. We have

I'(1) = P"(0) (1.66a)

I'(x) = P"(x — 1)ﬁP'(x -y) (x=2,3,...,d +1)
y=2

(1.66b)

1(0) =1 (1.66¢)
x=-1

I(x) = HP(x -y) (x=1,2,...,4d) (1.66d)
y=0

The net expected number of progeny seeds ascribable to a seed x years
after it was itself formed is thus

x=1

Kx)=>UI'(x=yIy)My+1) x=12,...,d+d")

y=0
(1.67)
If we define B(t) as the total number of seeds produced by the popula-
tion during the flowering season of year ¢, we have (for t =d + d")

d+d'
B(t)= S B(t - x)K(x) (1.68)

x=1
Applying the renewal theory results, the asymptotic rate of increase of
the population is thus the leading root A, of the equation

d+d’'
SAK(x) =1 (1.69)
x=1
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Provided that K(x) is not periodic, A; is real and positive. As the
population approaches its asymptotic growth-rate, the age-structures of
both the seed and adult plant populations must stabilise.

1.4 Time-dependent and density-dependent demographic parameters
The solution of the population process studied in the preceding
section of this chapter is based on the assumption that the demographic
parameters of the population are independent of time. This is clearly at
best an approximation to the behaviour of a real population, and it
obviously is important to examine the consequences of relaxing this
assumption. It is useful to distinguish between two ways in which time-
dependence of the demographic parameters can arise; factors of the
external environment which affect survival or fecundity may vary over
time (time-dependence in the strict sense), or changes in the size and
age-composition of the population may cause changes in the demographic
parameters (density-dependence). Of course, both of these processes may
operate at the same time in a real population, but it is simplest to treat
them as alternatives. We begin by discussing the case of time-dependent
demographic parameters, and then go on to consider density-dependence.

1.4.1 Time-dependent demographic parameters

This situation may be further sub-divided into two. There is
firstly the case of a deterministically varying environment, where we can
follow a population which is exposed to some definite pattern of variation
over time in its demographic parameters. Secondly, there is the case of a
stochastically varying environment, where the successive sets of demo-
graphic parameters to which a population is exposed are governed by
some probability law. As we shall see, it is not possible in either of these
cases to obtain useful analytical solutions for the age-structure and
growth-rate of the population at a given time, as was possible with
time-independence. It is possible to prove, however, that the initial
age-structure of the population eventually ceases to influence the age-
structure and growth-rate of the population. This is the so-called weak
ergodicity property of the population process, which may be contrasted
with the strong ergodicity property of a population with fixed demo-
graphic parameters (p. 28); in that case, the asymptotic state is character-
ised by a constant, calculable age-distribution and growth-rate. For
simplicity, we shall consider only the female population in the following
analysis.
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Deterministically varying environments

Consider first of all the case of a discrete age-class population. Its
state at time ¢ is characterised by the vector of number of individuals in
different age-classes, n(t), and by the Leslie matrix for time ¢, L(t) (cf.
pp. 3-6). Using equations (1.5) and (1.6), we can express n(t) in terms of
the initial population vector n(0), and the sequence of Leslie matrices
between times 0 and ¢

-1
n(t) = n(0) I:IUL(u) (1.70)

This result is trivial and does not provide in itself any insight into the
properties of the population process, although it can be used for numer-
ical calculations of population trajectories. Lopez (1961) used it,
however, to prove that the age-structure of the population eventually
becomes independent of the initial vector n(0). Let the elements of the
vectors n(t) and n,(t) describe two populations with two different initial
vectors, n;(0) and n,(0), but which are exposed to the same set of Leslie
matrices; then, for large ¢, the following equation is satisfied

nl(xs I) _ nl()"’ '[)
ny(x, t) ny(y, t)

(x #y) (1.71a)

If we use the fact that the demographic parameters are identical for the
two populations at any given time, it is easily verified that this relation
implies that the two population vectors satisfy the equation

n,y(t) ~ Cny(2) (1.71b)

where C is a constant whose value depends on the initial vectors n;(0)
and n,(0). This is turn implies that the geometric growth-rate of the
population at time ¢, as measured by the relative values of (say)
n(l, ¢t + 1) and n(1, t), becomes dependent only on ¢, and is independent
of the initial conditions.

The following conditions are sufficient for the validity of this theorem.
The non-zero elements of L are bounded, and greater than some fixed
number £>0. There are two values of x, x; and x,, with greatest
common divisor of one, such that f(x;, t) and f(x,, t) are non-zero for all
values of ¢. (This is related to the requirement of non-periodicity for the
time-dependent case, discussed on p. 23.) The survival probabilities
P(x, t) are non-zero, as well as at least some of the elements of the initial
population vector n(0). The proof requires fairly lengthy matrix manipu-
lations, which are beyond the scope of this book. The interested reader
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should consult Lopez (1961), Pollard (1973, pp. 51-5) for details of the
proof. Seneta (1973, pp. 69-77) has proved this theorem for the case of
non-negative matrices of more general structure than the Leslie matrix;
his results are used in section 2.2.

A theorem of the same sort exists for continuous-time populations, and
was first stated and proved by Norton (1928), in a paper which has largely
been overlooked by workers in demography. Norton assumed that the
reproductive function k(x, t) in equation (1.27) is some defined function
of t as well as x, due to temporal variation in environmental factors
affecting survival or fecundity. He assumed that there were fixed upper
and lower limits, b and d, to the values of x for which k(x, f) is non-zero;
and that k(x,?) is an integrable function of x and t. (Continuity of
k(x, t) with respect to both x and ¢ is sufficient but not necessary for the
validity of Norton’s results.) Provided that there are at least some
individuals of reproductive or pre-reproductive age at time ¢ = 0, Norton
showed that:

given two communities in which there is the same birth-rate and
death-rate [age-specific fecundities and death-rates in our termi-
nology], the number of births in one tends ... to a constant
proportion of the number of births at that moment in the other

. Finally, if the birth-rate and death-rate are given - and
provided the conditions stated are fulfilled — the eventual age-
distribution is determinable; it will vary, of course, from moment
to moment, but is approximately the same at the same time in all
communities in which the birth- and death-rates have their given
values; in particular, it will not depend on the initial age-distribu-
tion (Norton, 1928, p. 20).

As in the case of time-independent demographic parameters, the
properties of the discrete age-class and continuous-time models are
parallel. The general conclusion is that the age-structure and rate of
growth of a population subjected to demographic parameters which vary
with time tend asymptotically to values which are independent of the
initial state of the population. The speed of this convergence is difficult to
study analytically; some numerical studies have been made by Kim and
Sykes (1976), who conclude that convergence takes place over a few
generations for sets of data drawn from human populations. These results
are of some importance in population genetics, as we shall in Chapters 2
and 4.
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Stochastically varying environments

Cohen (1976, 1977a, b, 1979a, b) has extended these conclusions
to the case of a population exposed to stochastic variation in the demo-
graphic parameters. He considers a discrete age-class model described by
Leslie matrices of the same structure assumed by Lopez (1961); the
sequence of Leslie matrices applied to a population is assumed to be
sampled from an ergodic Markov chain (i.e. the probability law relating
the state of L at two successive times is such that the distribution of L(t)
becomes independent of ¢ for sufficiently large ). Under these condi-
tions, the age-structure and growth-rate of the population exhibit sto-
chastic ergodicity; the probability distribution of the age-structure of the
population eventually become independent of the initial vector n(0), and
of the initial distribution of the demographic parameters. The details of
the assumptions and methods involved in the proof of this result can be
found in the references cited above. Cohen (1977b) gives an example of a
simulation of this type of population process, which illustrates the con-
vergence of the probability distribution of the age-structure to its limiting
state.

Mean growth-rate of a population in a varying environment

An important question in relation to varying environments con-
cerns the mean asymptotic growth rate of the population, over the set of
environments encountered by the population in the deterministic case, or
over the probability distribution of environments in the stochastic case.
This topic has been thoroughly reviewed by Tuljapurkar (1989, 1990a,
Chapters 4, 12), and only the major points relevant to the population
genetic and evolutionary topics discussed in Chapters 4 and 5 will be
considered here.

First, it is necessary to clarify what is meant by the mean asymptotic
growth-rate of a population. The most useful definition, for both demo-
graphic and genetic purposes, is the mean logarithmic growth-rate, de-
noted here by 7. If the conditions for weak ergodicity or stochastic
ergodicity are met, this quantity can be calculated from the rate of growth
of any component of the population vector n(t), or of any linear
combination of the elements of n(¢) given by n(f)c", where ¢ is an
arbitrary row vector. As can be seen as follows, this result is implied by
the fact that the relative values of the components of n(f) become
independent of the initial conditions (although dependent on time). Write
n(1, t)/n(1,t — 1) = A(¢ — 1), so that

n(l, £) = n(1, O)f[x(r - u) (1.72a)
u=1
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Using the property of ergodicity, it follows that, for large ¢, we have
t
n(t)e™ = n(1, )y(t) = n(1, 0)y(t) [TA(t — ) (1.72b)
u=1

where y(¢) is a bounded function, determined by ¢ and the age-structure
of the population at time ¢. We can then write

t—% t

t
7 = lim 15{ S InA(t — u)} = lim %E{ln n(1)e™} (1.73)
u=1 =2

This relation is purely formal, however, and does not permit evaluation
of 7 except under special conditions, or by numerical computations. One
special case of interest is when fecundity and survival from age 1 onwards
are independent of age, but dependent on time (Tuljapurkar, 1982;
Bulmer, 1985). Let the fecundity function for all ages, including 1, be f()
at time ¢, and the survival probability be P(t). Let the total number of
individuals in the population at time ¢ be n(t). The Leslie matrix
representation of equation (1.5) is easily seen to lead to the result

n(t) =n(t—D[f(t —1) + P(t = 1)] (1.74)
so that
A(t) = f(r) + P(1) (1.75)

The mean intrinsic rate of increase, 7, is simply the mean of In A(z), i.e.
the mean of the intrinsic rates for each environment.

A related result holds for cases with arbitrary patterns of dependence
of survival and fecundity on age, when environmental fluctuations take
place over a time period which is long in relation to the time it takes for
age-structure to equilibrate in a constant environment. Under this condi-
tion, population growth will effectively be determined by the intrinsic
rates associated with each successive environment, i.e. 7 is approximately
equal to the arithmetic mean of the intrinsic rates over all environmental
states encountered by the population.

In general, there are formidable difficulties in obtaining useful analytic
results on 7 for arbitrary patterns of environmental variation. An approxi-
mate approach for the case of small random fluctuations in the demo-
graphic parameters has been introduced by Tuljapurkar (1982, 1989,
1990a, Chapter 12). Here we will consider the results for the case when
there are no correlations between the values of the demographic para-
meters in successive time-intervals. This is the opposite extreme to the
situation with long-period fluctuations which we have just discussed.
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Formulae for the case when there are correlations between successive
time-intervals are given by Tuljapurkar (1982, 1989, 1990a, Chapter 12).

Let the Leslie matrix for time ¢ be written as L(¢) = L + SL(t), where
L is the expected value of the Leslie matrix and SL(¢) is the deviation
from this expectation. The expectation of SL(t) is zero by definition; the
expectations of the cross-products of its components, of the form
E{6L;j0Ly}, give the covariances of the components in question,
Cov (Ljj, Li;). We have

L(t —1DL(t—2)...L0)=L"+ ¢(t) + &(1) (1.76a)
where
(1) = iL“"éL(r — )L™ (1.76b)
u=1

and &(¢) is a function of terms involving cross-products of the form
SOL(t)OL(t — u) (u > 1), plus higher-order SL terms.
We can simplify equation (1.76a) by using the fact that

UL'VT = Muvi = A

where A, is the leading eigenvalue of the mean Leslie matrix L, and U,
and V, are the corresponding row and column eigenvectors, normalised
such that their product is one.

Using U, as the initial vector in (1.72b), and substituting into equations
(1.73) and (1.76), we obtain

T T
F=Ini + lim lE{ln(l + D¢V + UiV )} (1.77)

t—w "{;

From the assumption of small L values, and of no covariance across
time-intervals, all terms in { can be neglected, and only second-order
terms in ¢ need to be kept in the expansion of the logarithm in equation
(1.77). We also have

E((W¢(ViY) = E{il(vlafu(r - u)v}"f}

Using this in equation (1.77) together with equations (1.31), and expand-
ing the expectation on the right-hand side of (1.77), we get

Far— = SUOVIG RV Cov (L, L) (1.78a)
14

where r = In A is the intrinsic rate of the mean Leslie matrix L.

Cambridge Books Online © Cambridge University Press, 2009



50 Models of age-structured populations

From equation (1.58b), this can written as

i} 1 ( or )( )
F=pr—= Cov (L, Ly) (1.78b)
2% aL;/\aLy ’

Equations (1.78) provide a relatively simple approximate expression for
the mean population growth-rate in a varying environment, provided
there is no autocorrelation between successive time-intervals. This ex-
pression will prove useful in the applications to population genetics and
evolution in Chapters 4 and 5. Numerical results show that this expression
provides an excellent approximation, even when the variability in demo-
graphic parameters is high relative to the mean (Orzack and Tuljapurkar,
1989).

The arithmetic mean of the intrinsic rates for each environment was
shown above to be the appropriate measure for highly autocorrelated
environments. The first two non-zero terms in the Taylor series expansion
around L of this quantity are

>

Cov (L’r 3 ka)
2,,;(;( aL,,aLH) !

Hence, to the order of approximation for which equations (1.78) are
valid, the measures of mean growth-rate for the cases of zero and high
correlation between successive environments are by no means the same
(Orzack and Tuljapurkar, 1989), despite the widespread assumption in
the older literature that the arithmetic mean of the intrinsic rates for each
environment is the most appropriate measure of average fitness in varying
environments (Schaffer, 1974b; Lacey et al., 1983).

1.4.2  Density-dependent demographic parameters

It is only exceptionally that organisms find themselves in an
environment where there is no check to their continued increase in
numbers due to the operation of factors which increase mortality or
reduce fecundity, in response to increasing population density in a local
area (density-dependent factors). Although the nature of such checks to
population growth varies from species to species, and the full details of
the mechanism of regulation of population density have probably never
been worked out for even one species, there can be little doubt of their
general importance in ecology (Lack, 1954; Nicholson, 1957, 1960). One
of the standard texts on ecology, such as Begon, Harper and Townsend
(1990) or Ricklefs (1990), may be consulted for more information about
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density-dependent factors in natural populations. Qur concern here is to
examine how density-dependent demographic parameters can be incor-
porated into models of the sort outlined earlier in this chapter (pp. 3-15).
It is useful to start by considering the properties of models of density-
dependent populations which neglect age-structure.

Density-dependence in populations without age-structure

The classical approach to modelling a density-dependent popula-
tion is to write down a differential equation which describes the rate of
increase in the number of individuals, n, in a local population

dn/dt = ng(n) (1.79)

where g(n) is a continuous, decreasing function of n. As we have done
earlier, it is best to regard » as the number of females only. The simplest
and most widely used form for g(n) is that of the logistic growth or
Pearl—Verhulst equation

g(n)=a— Pn (1.80)

The expression which results if equation (1.80) is substituted into (1.79) is
readily integrated to give n as a function of time

an(0)
Bn(0) + [a — Bn(0)]e™
If the population is started with a population size close to zero, it
increases initially at a logarithmic rate of approximately «; provided n is

initially positive, the population converges smoothly towards a stationary
population size of

Ai=a/p (1.82)

A is usually referred to as the carrying-capacity of the population. The
logistic equation provides a reasonably good empirical fit to the form of
population growth of model laboratory populations, such as population
cages of Drosophila (e.g. Buzzati-Traverso, 1955).

More complicated forms for g(n) can be studied in a similar way (May,
1973). If g(n) is a strictly decreasing function of n, it is obvious from
equation (1.79) that there is only one carrying-capacity or stationary
population size # >0, which must satisfy g(n)=0. It is not always
possible to integrate equation (1.79) directly to obtain n as an explicit
function of ¢. The convergence to the carrying-capacity can be studied in
such a case by examining the local stability of the equilibrium, 7.

n(t) = (1.81)
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Applying Taylor’s theorem to equation (1.79), for n close to #, and
noting that g(#i) = 0, we obtain

d_ﬂ = (n - ﬁ)(a_g)
dt on /s

n(t) — fi = [n(0) — A]exp [:(a—g) ] (1.83)
an/a

Since g is a decreasing function of n, (3g/dn); is negative, so that the
exponential term decays to zero with increasing time. The equilibrium is
therefore locally stable; a small perturbation away from the carrying-
capacity results in a return towards equilibrium.

Equation (1.79) is clearly a highly over-simplified representation of the
dynamics of a population. It is strictly valid only if the individuals have
death-rates u(x, t) and fecundities m(x, ) which are independent of age
(x), but depend on total population size. In order to avoid the loss of
realism inherent in applying such equations to age-structured populations
reproducing in continuous time, theoretical ecologists have developed
similar models of density dependence for populations with completely
discrete generations. These provide reasonably accurate descriptions of,
for example, annual plants and many semelparous insect species of
economic importance, which live only one year. Equation (1.79) can be
replaced by the related first-order difference equation

n(t) = n(t — Dwln(t - 1)] (1.84)

where n(t) is the number of adult females alive in generation ¢, and w is
the expectation of female offspring (counted at maturity) of an adult
female in the preceding generation. A plausible and simple form for
w(n), analogous to the logistic form for the continuous-time case, is

w(n) = ae”Pr (1.85)
The carrying-capacity 7 now satisfies the equation
w(n) =1 (1.86)

If g(n) is a strictly decreasing function of n, there is a unique solution to
this equation. The dynamics of the population in the neighbourhood of
the equilibrium can again be studied by a local analysis. We have

n(t) — A =[n(t — 1) - a][1 + ﬁ(a_"") ] (1.87)

an/a
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If —-2<#A(dw/dn); <0, the equilibrium is locally stable. If
A(dw/3n); < —2, the population responds to small perturbations away
from equilibrium by oscillations of progressively increasing magnitude
across #, i.e. it is locally unstable. If w(n) is of the form given by
equation (1.85), for example, we have A= (lna)/ and
A(dw/3n); = —In a, so that the equilibrium is locally stable for Ina <2,
and unstable if In & > 2. Too great a sensitivity of the population growth-
rate to population density thus leads to instability. But this stability
analysis is valid only for the neighbourhood of an equilibrium; it is
obvious that a population close to n = 0 must tend to increase in number,
and a population with very large n will tend to decrease, provided that
w(n) is a decreasing function of n. This suggests that the local instability
of the equilibrium actually corresponds to some kind of bounded fluctu-
ations in population size. This was apparently first pointed out in an
ecological context by Moran (1950) and, independently, by Ricker
(1954).

More detailed analyses of the dynamical behaviour of expressions of
the form of equation (1.84) have considerably deepened our understand-
ing of the complex dynamics which are possible when there is formally a
locally unstable equilibrium (reviewed by May and Oster, 1976; Nisbet
and Gurney, 1982; Schaffer and Kot, 1986). Consider, for example, the
population model expressed by equation (1.85). If # is kept fixed, so that
Ino and B are varied proportionately, it is found that the population
converges to fi for Ina <2. When In« is slightly greater than 2, the
population approaches a limit cycle of period 2, i.e. the population
trajectory settles into a state where n switches each generation between
two alternative values, one above 7 and the other below. If In & and S are
further increased, this limit cycle is replaced by one with period 4 (the
population approaches a state in which it switches between four success-
ive values of n), which is in turn replaced by one of period 8, etc. The
dynamical behaviour of the population thus experiences a succession of
bifurcations such that, with increasing sensitivity to population density,
successive stable limit cycles of period 4, 8, ..., 2™ ... are generated. It
can be shown that the pattern of bifurcation behaviour depends only on
@, so that two populations with different 7 but the same o will have the
same type of limit cycle (May and Oster, 1976). (The actual values of n
through which the population passes are, of course, dependent on f as
well as «.) When In « exceeds 2.6924, there is an infinite number of limit
cycles of differing periods; there is also an uncountable set of initial
conditions for which the population trajectories are aperiodic, so that the
pattern of population size with respect to time never repeats itself. This is
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the so-called region of chaos. A population in this region will behave in
an essentially unpredictable fashion, with periods of low population size
succeeded by sudden increases in number, followed by rapid return to a
low level once more.

As is obvious from the simple method described above, cyclic or
chaotic behaviour depends on the species having a high reproductive
capacity, so that « is sufficiently large. If the rate of population growth at
low density is small, then the population will settle down to a stable
equilibrium level, #i, as given by equation (1.86). Hassell, Lawton & May
(1976) analysed data on several species, and concluded that most seem to
be in the region of stability or 2-point or 4-point limit cycles, so that
chaotic phenomena are perhaps infrequent in natural populations. Other
workers have recently argued for an important role for cyclical or chaotic
population behaviour (Schaffer and Kot, 1986; Turchin and Taylor,
1992).

Models of density-dependence with age-structure

The complex behaviour of discrete-generation populations, re-
vealed by the studies summarised above, suggests that it is important to
examine carefully the properties of age-structured populations with den-
sity-dependence. Various special cases have been studied numerically by
Leslie (1948), Pennycuick, Compton & Beckingham (1968), Usher
(1972), Beddington (1974), Smouse and Weiss (1975), and others. Ana-
lytical treatments have been given by Gurtin and MacCamy (1974), Oster
and Takahashi (1974), Oster (1976), Rorres (1976) and Guckenheimer,
Oster and Ipaktchi (1977). General surveys are given by Nisbet and
Gurney (1982) and Costantino and Desharnais (1991). We will first
consider some general properties of density-dependent regulation in
age-structured populations, and then go on to discuss the dynamical
properties of some special cases.

It is clear, both on theoretical grounds and from the results of empirical
studies, that density-dependent regulation in an age-structured population
does not usually involve a response of the demographic parameters to the
total number of individuals present at one time. More usually, the
density-dependent components of the demographic parameters respond
only to the numbers of individuals in a restricted sub-group of the
population. Such a sub-group has been called the critical age-group by
Charlesworth (1972). For example, in many bird species density-depend-
ence seems to occur through limited availability of food for nestlings
(Lack, 1954, 1966), so that the survival of nestlings decreases with an
increase in the number of nestlings in a given area. Similarly, seedling
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survival in plants is affected by competition between seedlings for light
and space, resulting in negative dependence of seedling survival on the
numbers of seedlings (Harper and White, 1974). The critical age-group in
these cases is composed simply of the nestlings or seedlings, respectively.
Nicholson (1957, 1960) describes experimental populations of the sheep
blowfly Lucilia cuprina in which fecundity of adult females was controlled
by competition for a limited food supply. In this case, the critical age
group consists of the entire adult female population.

The simplest type of reasonably realistic model of density-dependence
in a discrete age-class model represents the age-specific survival probabili-
ties or fecundities, for one or more age-classes, as decreasing functions of
the number of individuals in the critical age-group. Let this number be
N(t) at time t. Consider, for example, the case of a species which starts
reproduction b years after birth, and in which juvenile survival depends
on the total number of juvenile individuals. For simplicity, only the
female population is considered. We can write the survival probability for
a juvenile aged x at time ¢ as

P(x, 1) = POX)PP[x, N)] (x=0,1,...,b—1)

where

b-1

N(t) = > n(x, 1)

x=1

P®(x) is the density-independent component of juvenile survival for
age-class x; P®)[x, N(1)] is the density-dependent component, which is
assumed to be a decreasing function of N(t).

The population process in this case can be represented by a Leslie
matrix with density-dependent survival probabilities P(x,t) for ages
x=1,2, ..., b—1, and density-dependent net fecundities f(x, ) =
m(x)P(0, t). Alternatively, we can represent the process by a difference
equation of the form of equations (1.17) or (1.19). We can write

k(x, t) = kO(x)k®)(x, 1) (1.88a)
where
b-1 x-=1
kO(x) = m(x)[T PO(y) [T P(y") (1.88b)
y=0 y'=b
b—1
kP(x, t) = m(x)[] PPy, N(t + y — x)] (1.88¢)
y=0
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The dependence of the reproductive function on the values of N(¢) over a
set of past times, as expressed in equation (1.88a), is typical of what
happens with density-dependence in an age-structured population, and
greatly complicates the analysis of its dynamics. In general, we can
represent it by writing

k(x, t) = k(x, Ny) (1.89)

where Nr represents the set of values of N(t) over some set T of past
times. As in the above example, the actual set of times included in T may
depend on x. The population process is then described in general terms
(for times ¢ = d) by the equations

N() = S Bt — x)I(x, Ny) (1.90a)
xe§
d
BA1) = 3 B{t — x)k(x, Ny) (1.90b)
x=b

S in equation (1.90a) represents the set of age-classes which comprise the
critical age-group.

Appropriate modifications can be made for ¢ < d (equation (1.19)). An
equivalent matrix formulation can obviously be written down, but the
difference equation method of description is convenient for dealing with
the problem of selection in density-dependent populations, as will be
discussed in Chapters 3 and 4. The extension to the corresponding
continuous-time models is straightforward and will not be given here.

Stationary populations

By analogy with the results for discrete-generation populations,
we would expect that an age-structured population with a sufficiently low
reproductive capacity at low population density should converge towards
an equilibrium state with a stationary number of individuals in each
age-class. In such a stationary population, equation (1.90b) gives us the
relation

Sk(x, Np) =1 (1.91a)

By definition, the number of individuals in the critical age-group is
unchanging, so that each number in the set Np is constant at the
equilibrium value of N(¢), N say. This corresponds to the carrying-capa-
city of the population in the simple models described above (pp. 51-2).
The value of N can be determined from this equation by the following
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procedure. We can imagine a set of populations held at different station-
ary states by some artificial means. Let the number of individuals in the
critical age-group in one such imaginary population be N, say. If the
density-dependent components of the demographic parameters are
strictly decreasing functions of the number of individuals in the critical
age-group, it follows that, in such a stationary population, the net
reproduction rate is a strictly decreasing function of N. N is thus given as
the unique root of the equation

Sk(x, N) =1 (1.91b)

This equation is analogous to equation (1.45), which gives the intrinsic
rate of increase in the density-independent case. As in that case, the
solution usually has to be obtained by numerical iteration of the equation.

The uniqueness of N , which follows from the particular model of
density-dependence just described, is useful in analysing the mathematical
properties of the system, especially in connection with the theory of
selection with density-dependence, to be discussed in Chapters 3 and 4. It
should be borne in mind that, although this class of model probably
provides a fairly realistic description of the process of density regulation
in many situations, other types of model with more complex properties
may apply to individual cases. For example, different age-classes within
the critical age-group may contribute differentially to the impact of
density on the demographic parameters, or the decreasing properties of
the latter as functions of N(t) may hold only for a certain range of
population size. Beddington (1974) discusses an example of the second
sort, which results in two alternative equilibria for the same set of
demographic parameters.

Non-equilibrium behaviour

A detailed analysis of the non-equilibrium behaviour of these
models usually presents considerable mathematical difficulties, and com-
puter studies have frequently been resorted to. Oster (1976), Charles-
worth (1980), Nisbet and Gurney (1982) and Costantino and Desharnais
(1991) review general aspects of the population dynamics resulting from
density-dependence with age-structure, as well as studies of some indi-
vidual cases. The results which they discuss indicate that age-structured
populations may show cyclical or chaotic fluctuations in numbers, pro-
vided that the reproductive capacity of the species is sufficiently high.
Organisms with relatively low fecundity may be expected to approach a
stationary population size under density-dependence. There is still debate
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as to whether these instability phenomena are important agents in con-
tributing to cyclic population phenomena in nature (Oster and Takahashi,
1974; Hassell et al., 1976; Schaffer and Kot, 1986; Turchin and Taylor,
1992; Godfray and Grenfell, 1993).

1.5 Systems of several populations

We have so far considered only the case of a single, genetically
homogeneous population. In practice, of course, a species consists of a
mixture of different genotypes, and exists as a member of a community of
species which interact with each other by competition, predation, parasit-
ism, mutualism, etc. Most ecological models of interacting species have
ignored the problem of age-structure, although models of predator-prey
interactions, for example, have been studied by Maynard Smith and
Slatkin (1973), Auslander, Oster and Huffaker (1974) and Beddington
and Free (1976). It is clear from these studies that incorporating age-
structure may introduce novel features into the behaviour of multi-species
systems. As this book is concerned mainly with the consequences of
genetic differences within a species, the problem of ecological interactions
between species will be considered only briefly. An asexually reproducing
population which contains a number of genetically distinct clones is
formally equivalent to a system of different, non-interbreeding species.
We will examine here the simplest kind of system of this sort: one in
which the different sub-populations (asexual genotypes or species) have
different sets of demographic parameters which remain constant over
time, and are unaffected by the composition of the system. This obviously
excludes the standard types of ecological interaction mentioned above,
and is therefore most relevant to the process of selection within an
asexually reproducing population. The models explored below were ori-
ginally investigated by Pollak and Kempthorne (1970, 1971).

1.5.1 Continuous-time populations

It is convenient to examine the continuous-time model first. An
asexual population with m distinct genotypes Ay, A,, ..., A, can be
regarded as composed of m separate sub-populations, each with its own
set of demographic parameters. The sub-population A; is characterised by
a reproductive function k;(x), with which an intrinsic rate r; is associated
(r; is obtained by applying equation (1.42) to k;i(x)). In the case of an
asexual population, there is obviously no need to distinguish between the
sexes in calculating fecundities; if the system is regarded as representing a
set of sexual but non-interbreeding species, we can follow our earlier
practice, and treat the female part of each population only.
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Let n;(x, t)dx be the number of A; individuals aged between x and
xd+ dx at time ¢; the total number of A; individuals is n;(t) =
fon,-(x, f)dx, and the total number of individuals in the system is

n(t) = X;n(t). The theory developed on pp. 27-8 tells us that, for
sufficiently large ¢, we can write

dn,v

dt

= nn; (192)

The state of the system is most conveniently represented in terms of the
frequencies of the different types, and the total number of individuals
n. The frequency of A; at time ¢ is defined as pi(¢) = ni(£)/n(¢); it is
also useful to define the mean intrinsic rate of increase, taken over all
types, as

() = 2pi0)r; (1.93)

Using equations (1.92) and (1.93), we find (with some rearranging) that

L (1.94a)
dr
and
dp; ]
Pi - piri - 7) (1.94b)
dt

Substituting from equations (1.94) into (1.93), we obtain an expression
for the rate of change of 7:

T = Satn- 7 (1.95)
1

This states that the rate of change of the population growth-rate is, for
large ¢, equal to the variance among types in the intrinsic rate of increase.
This is the version of Fisher’s Fundamental Theorem of natural selection
appropriate for an asexual population (cf. Fisher, 1930); the derivation of
a version of this theorem for sexually reproducing populations will be
discussed in section 4.2. Equation (1.94b) tells us that, not surprisingly,
the type with the highest intrinsic rate of increase tends to displace the
others from the population; equation (1.95) implies that this process is
accompanied by a simultaneous improvement in the growth-rate of the
population as a whole.
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The use of reproductive value

The above results are obviously valid only for ¢ taken sufficiently
large that each sub-population has approached its stable age-distribution
and rate of growth. Results which are valid for arbitrary ¢ can be obtained
by applying the concept of reproductive value, which was introduced
earlier in the chapter (p. 38). We saw that the rate of increase of the total
reproductive value of a population is equal to its intrinsic rate of increase,
regardless of the age-distribution. This result can be applied to each
sub-population in the present case. We can define the reproductive value,
vi(x), for A; individuals aged x by using equation (1.61) with the
demographic parameters and intrinsic rate of increase of A;. The total
reproductive value of the ith sub-population at time ¢ is defined as

d

Vi) = [ mix, Do) dx

The total reproductive value of the population is V = »,V;. Using equa-
tion (1.63), it follows that

dv; _
dt
Weighting each individual by its reproductive value, we obtain the

frequency p; for A;, using the relation
d

Pi(o) = | i, o) dx/v (1.97)

Vi (1.96)

We can also define 7 as the corresponding mean intrinsic rate of increase,
¥ =2

Using the same arguments that were applied to equations (1.92) and
(1.93), we obtain

CL_V -7V (1.984)
t
do.
A = pi(Fi — ) (1.98b)
dt
Similarly
5 = 2P =Py (1.99)

These equations are of exactly the same form as those derived above, but
are valid for all 7. They resemble the equations which can be derived for
continuous-time populations with no age-structure, i.e. in which fecundi-
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ties and death-rates are independent of age (cf. Crow and Kimura, 1970,
Chapter 1).

1.5.2  Discrete age-class populations

Somewhat similar results can be derived for the discrete age-class
model. If n;(t) is the total number of A; individuals at time ¢t (n;(t) =
>..ni(x, t)), the results derived in section 1.3.1 imply that, for large ¢, we
obtain the following expression for the change in numbers between ¢ and
t—1.

Ani(t) = ni(t) — ni(t — 1) = Ani(t — 1)

where A; is the value of A; for A; (cf. p. 33). Similarly, we can define the
total number of individuals as n = ;n;, the frequency of A; as p; = n;/n,
and the mean rate of increase as A = Ef piA;, just as for the continuous
model. Using the same type of argument as for the continuous-time
model, we find that, for large ¢, we have

An=A-1Dn (1.100a)
and

Ap; = [pi(4; — i)]/Z (1.100b)
Similarly,

AAL = Zp,—()t,— — 2)? (1.101)

These equations are analogous to equations (1.94) and (1.95). If we
weight individuals by their reproductive value, we can obtain expressions
analogous to equations (1.98) and (1.99). These results resemble those
obtainable for an asexual population with discrete generations (cf. Nagy-
laki, 1992, Chapter 2).

The problem of treating the process of selection in a sexually reprodu-
cing population, where individuals can produce offspring whose genotype
differs from their own, is considerably more complex than for the asexual
case, and forms the subject of Chapters 3 and 4. Before considering this
problem, it is desirable to investigate what happens to the genotypic
composition of age-structured populations in which thére is no selection,
i.e. where there is a mixture of genotypes whose demographic parameters
are identical. This topic is considered in the next chapter.
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The genetics of populations without selection

2.1 Introduction

In Chapter 1, the basic concepts of mathematical demography
were introduced. We shall start to apply these concepts in the present
chapter to the genetics of age-structured populations. The cornerstone of
population genetics theory is the Hardy—Weinberg law, which deals with
a population which is not exposed to the action of any of the standard
evolutionary forces: mutation, migration, selection, non-random mating,
or random sampling of genes due to finite population size. In such a
population, a single autosomal locus reaches an equilibrium with constant
gene frequencies, and in which genotypic frequencies are predicted from
the gene frequencies by the familiar Hardy—Weinberg formula (Crow and
Kimura, 1970, Chapter 2). This result is conventionally derived for the
case of a discrete-generation population, where gene frequencies can be
shown to remain constant for all time, under the stated assumptions, and
in which Hardy—Weinberg frequencies are reached after one generation.
There have been a few attempts to extend this result to more general
types of populations. Moran (1962, Chapter 2) gave a treatment of a
continuous-time model which assumed constancy of gene frequencies for
all time. Charlesworth (1974b) showed that gene frequencies become
asymptotically constant, using a continuous-time model; he gave a proof
for a discrete age-class model with time-independent demographic para-
meters in Jacquard (1974, Chapter 7). This case has also been studied by
Gregorius (1976).

In the first part of this chapter, we shall be concerned with the analysis
of the approach to genetic equilibrium in the absence of evolutionary
factors, using both discrete age-class and continuous-time models. The
cases of a single autosomal locus, a sex-linked locus and two autosomal
loci will each be studied. The general conclusion reached is that constancy
of gene frequencies and Hardy—Weinberg genotypic frequencies are
approached only asymptotically, unless the gene frequencies of each age
and sex group are equal in the intial population. We might, therefore,
expect recently-founded populations to experience transient changes in
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gene frequencies, which have nothing to do with the conventional forces
of evolutionary change.

The other topic of this chapter is the analysis of the consequences of
finite population size for evolutionary change in age-structured popula-
tions. We shall be particularly concerned with the measurement of
effective population number, the parameter which summarises the impact
of finite population size on gene frequency change (Wright, 1931, 1938).
Numerous publications have been devoted to the definition of effective
population number for age-structured populations. Somewhat heuristic
treatments have been given by Kimura and Crow (1963), Nei and
Imaizumi (1966), Nei (1970), Giesel (1971), and Crow and Kimura
(1971). More exact approaches to the problem were introduced by
Felsenstein (1971) and Hill (1972), which have been extended by Johnson
(1977a, b), Choy and Weir (1978), Hill (1979), Emigh and Pollak (1979),
and Nunney (1993). The account in this chapter is based on the treat-
ments of Felsenstein and Johnson. In addition to effective population
number, the probability of fixation of a neutral gene in a finite population
will also be discussed. The chapter concludes with a discussion of the
frequencies of consanguineous matings in an age-structured population,
based on the work of Hajnal (1963).

2.2 Approach to genetic equilibrium

In this section we shall study the process of approach to genetic
equilibrium in a number of genetic and demographic models. It is
assumed that the population size is sufficiently large that the effect of
random sampling of gamete frequencies can be neglected, and that other
evolutionary factors such as selection, mutation and migration are also
absent. All the genotypes in the population are assumed to have the same
demographic parameters. It is simplest to think of these models as
representing populations in which mating is at random with respect to
genotype, although they can also be used to describe gene frequency
change in inbreeding populations, or in populations in which there is
assortative mating of a type which does not lead to genotypic differences
in fecundity. We shall consider in turn the cases of a single autosomal
locus, a sex-linked locus and two autosomal loci.

2.2.1 An autosomal locus: the discrete age-class case
Construction of the model

We shall first analyse the case of a population with discrete
age-classes, of the type whose demographic properties were examined in
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some detail in Chapter 1. Suppose that the population under considera-
tion is segregating at an autosomal locus with m alleles A, A, ..., A,,.
There are m? possible genotypes if we distinguish between heterozygotes
which carry the same pair of alleles, according to the maternal or paternal
origins of the alleles in question. We shall adopt the convention that the
ordered genotype A;A; has allele A; of maternal origin, and A; of paternal
origin.

Consider first the female part of the population. If there are d
age-classes, a complete description of its state at time ¢ is provided by the
set of m? vectors of numbers of females with all possible ordered
genotypes, such that the row vector n;(t) =[n;(1,¢), n;2,t), ...,
n;i(d, t)] represents the numbers of A;A; females in age-classes 1, 2, . . .,
d. Alternatively, we can write p;(x, t) for the frequency of A;A; among
females of age x at time ¢, and p;(¢) = [py(1, 1), p;i(2, 1), ..., py(d, 1)]
for the vector of frequencies of A;A; across age-classes of females. The
vector of numbers of females of all genotypes, n(t) = D ijni(2), together
with m? — 1 of the frequency vectors can also be used to describe the
population. Similar vectors, of dimension d*, can be defined for the male
part of the population. As in Chapter 1, the vectors for males will be
distinguished from their female counterparts by asterisks.

An abbreviated description of the system is provided by considering
numbers or frequencies of alleles rather than genotypes. Thus, we can
define the vector n;(t) = [n;(1, 1), ni(2,1), ..., nid, t)] of numbers of
copies of allele 4; (i =1, 2, ..., m) in the female population; p;(r) is the
corresponding vector of frequencies of A; across female age-classes. We
have

ni(t) = El[ﬂff(t) + nji(1)] (2.1a)
J=

pi(t) = %ZI[PI}(T) + p;i(1)] (2.1b)
i=

Obviously, similar vectors nfand pj can be defined for the male popula-
tion.

It turns out that, much as in the usual discrete-generation case (Crow
and Kimura, 1970, Chapter 2), it is most convenient to study the process
of genetic change in terms of gene frequencies or gene numbers rather
than genotypic frequencies. We shall see below that, since each genotype
is assumed to have the same demographic parameters, the gene frequen-
cies must approach constant values which are independent of sex and age.
Once these equilibrium gene frequencies have been effectively attained,
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the equilibrium genotypic frequencies can be calculated knowing the rules
of mating, e.g. with random mating.

Our method, therefore, will be to work directly with the vectors n; and
n}. The first problem is to relate the values of these vectors for some
arbitrary time ¢ to their values in the preceding time-interval, ¢ — 1. This
can be done by means of a matrix equation similar to that employed in
Chapter 1 (section 1.2.1) for describing the dynamics of a genetically
homogeneous population. We use the same notation as in that chapter;
thus P(x, ) and P*(x,t) are the probabilities of survival over one
time-interval of a female and male, respectively, who are aged x at time
t. The net fecundities f(x, t), f*(x, t) and f'(x, t), as defined by equa-
tions (1.3), (1.8) and (1.10), are also needed. These are, respectively, the
expected numbers of daughters of a female aged x at time ¢, the expected
number of sons of a male aged x at time ¢, and the expected number of
sons of a female aged x at time ¢. In addition, we define f"(x, t) as the
expected number of daughters of a male aged x at time ¢. In the notation
of Chapter 1, we have

f(x, 1) = M*(x, t)P(0, t)a*(x, t) 2.2)

As discussed in Chapter 1 (pp. 6-7), the age-specific fecundities of males
are in general dependent on the age-composition of the population in a
highly complex way, which is determined by the precise rules of mating
with respect to the ages of male and female partners. As will be seen
shortly, the exact nature of this dependence is irrelevant; all that we need
to know is that each genotype at the locus in question has the same
demographic parameters.

We can combine n; and n} into a single (d + d*)-dimensional row
vector #; = [n;, n¥], which describes the state of the population with
respect to allele A; (cf. section 1.2.1). Using the rules of Mendelian
transmission, we can write the following matrix equation

() = w;(t — DVH(t — 1) (2.3a)

The matrix H(z — 1) in equation (2.3a) can be written in the following
partitioned form

A(t - 1) B(t-1)

H(t 1) = (2.3b)
c(t—-1 | D(t-1)

where A is a d X d matrix whose only non-zero elements are those of the
first column, a, = %f(x, t — 1), and the off-diagonal elements, a, ,4+; =
P(x,t—1); Bis ad % d* matrix whose only non-zero elements are those

Cambridge Books Online © Cambridge University Press, 2009



66 Populations without selection

of the first column, b,; = %f’(x, t —1); Cis a d* X d matrix whose only
non-zero elements are those of the first column, ¢, = %f"(x, t—1); Dis
a d* X d* matrix whose only non-zero elements are those of the first
column, d,;= %f*(x, t—1), and the off-diagonal elements,
dyx+1 = P*(x,t —1). H is therefore a non-negative matrix. The sub-
matrices of H describe the transmission of genes between different classes
of individuals, so that H may be regarded as having the following
schematic structure

females to females females to males
males to females males to males

The same type of equation can be written for each allele in the
population, and hence for the total number of alleles. The elements of the
matrix are, from the assumptions which we have made, identical for every
allele; only the vectors 7;(¢) differ. We show below that this means that
every allele in the system comes to increase in numbers at the same rate
(which in general, of course, varies in time), so that the frequencies of all
the alleles eventually become constant. To do this, we make use of the
weak ergodicity property of non-negative matrices, which we discussed in
section 1.4.1. As we saw there, the relative values of the components of a
vector representing the state of a system described by an equation such as
(2.3a) eventually become independent of the initial state of the popula-
tion. Two vectors representing two systems (two alleles) which differ only
in their initial vectors become strictly proportional to each other. Applied
to the present case, this means that the number of copies of a given allele,
A;, in a given age-class becomes proportional to the number of copies of
a different allele, A;, in that age-class, so that their relative frequencies
become constant, but in general depend on the initial conditions.

Analysis of the model

We now develop a proof of the above statements, using the form
of the weak ergodicity property derived by Seneta (1973, pp. 69-77).
Equation (2.3a) can be used to express #;(¢) in terms of the initial vector
7;(0). We have

f(6) = A,(0)H*(1) (2.4a)
where
H*(t)=HO)HQ1)...H(t - 1) (2.4b)

Seneta has shown that a matrix such as H*, which is formed by taking the
product of a sequence of non-negative matrices with bounded compo-
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nents, tends with increasing ¢ to a state in which its rows are proportional
to each other. It is assumed in Seneta’s theorem that the matrices whose
product composes H* have a structure such that H* has no zero elements
(i.e., it is strictly positive) when ¢ is sufficiently large. We assume for the
moment that this condition is satisfied. We therefore obtain the following
type of asymptotic relation between any two elements which belong to the
xth column of H*(t)

i ()/h3:(1) ~ Cuy 25)

C,, is a constant which is independent of x and ¢, and depends only on u
and v (for a given sequence of matrices composing H*(¢)).

Given this result, we can write the following asymptotic expression
for the number of copies of A; in age-class x of the female popuation at
time ¢

d >
ni(x, 1) ~ > ni(u, 0)hi (1) + X nf(u, 0)hi,, (1)
u=1

u=1
or
ni(x, £) ~ hi(1)C} (2.6a)
where
d d*
Ci= S niu,00Cy + 3 1, 0)Casus (2.6b)
u=1 u=1

(The C,; are obtained by using equation (2.5) with v =1.) A similar
result can be written for the number of copies of A; in age-class x of the
male population

ni(x, 1) ~ b 44x () Ci (2.6¢)

The same type of relationship holds for the number of copies of A; in any
other age-class of males or females. The same constant, C/, appears in all
these expressions. C; is determined by the initial vector #;(0), and by the
relations between the rows of H* as expressed by equation (2.5). The
matrix-derived terms, of the form hf.(¢), are of course different for
different age-classes.

The same argument can obviously be applied to each allele in the
population, and expressions similar to equations (2.6) can be written
down by simply changing the allele subscript i. The equations for differ-
ent alleles thus differ only with respect to the constants C; (i=1,2, ...,
m), given by equations of the same form as (2.6b). We have the following

Cambridge Books Online © Cambridge University Press, 2009



68 Populations without selection

asymptotic expression for the frequency of A; among females of age-
class x

pi(x, t) ~ h?‘x(!)CE/ ()X Cj= CE/Z C;=Dbi (2.7)
j=1 j=1

The same asymptotic frequency, p;, clearly holds for each age-class of
both the male and female parts of the population, since the Af.(#) terms
cancel top and bottom.

Hardy—Weinberg equilibrium

The asymptotic allele frequencies, p;, (i=1,2,...,m) are
therefore constant, and independent of sex and age-class. This is the
desired result. It can be seen from equations (2.5)-(2.7) that any allele
which is present initially in at least one reproductive or pre-reproductive
age-class of the male or female population must be represented in the
final population (note that all the elements of H* are positive). Further-
more, the gene frequencies will in general converge only gradually
towards their asymptotic values; only if the frequencies of each allele are
initially the same in each age-class of both the male and female popula-
tions will there be no change in gene frequencies over the course of time.
This gradual convergence of gene frequencies towards constancy is in
contrast to the standard result of population genetics for the correspond-
ing discrete-generation model, where gene frequencies are always con-
stant in the absence of disturbing evolutionary forces (Crow and Kimura,
1970, Chapter 2). If the population mates at random with respect to
genotype, it follows from the constancy of the asymptotic allele frequen-
cies that the genotypic frequencies for each sex and age-class are also
asymptotically constant, and given by the Hardy—Weinberg formula

pi(x, 1) = pji(x, t) = p:p; 28

A random-mating population thus converges to a state of Hardy-
Weinberg equilibrium.

Positivity of H*

These results are based on the assumption that H*(¢) is a strictly
positive matrix for sufficiently large ¢ (p. 46). We now consider the
conditions for the validity of this assumption. It is known that such a
result holds for the product of a sequence of Leslie matrices, under
conditions discussed in section 1.4.1. Now the sub-matrices A and D in
equation (2.3b) are both Leslie matrices, describing the female and male

Cambridge Books Online © Cambridge University Press, 2009



Approach to genetic equilibrium 69

parts of the population respectively. It is reasonable to assume that they
meet these conditions if we are describing an iteroparous species (the ages
with non-zero fecundities may, of course, be different in males and
females). The other sub-matrices contribute additional positive elements.
Provided that b, is always positive, the matrix H in equations (2.3) thus
has the form of a Leslie matrix with some additional positive elements.
Hence, H*(¢) for sufficiently large t must be strictly positive.

Conclusions

These results establish that the conditions for the approach to
Hardy—Weinberg equilibrium in an age-structured population with dis-
crete age-classes are similar to those required for the age-structure of the
population to become independent of its initial state (weak ergodicity).
These conditions are likely to be satisfied for most iteroparous species.
This conclusion applies to populations exposed to environmentally-
induced fluctuations in their demographic parameters, as well as to
populations with time-independent parameters. Furthermore, since we do
not need to specify the functional form of the dependence of the
demographic parameters on time to apply this result, it holds good for
density-dependent populations, despite the fact that the value of the
matrix H in equations (2.3) may depend partly on the initial vectors of
the total numbers of males and females. The rate of convergence to
Hardy-Weinberg equilibrium must be of the same order as the rate of
convergence of the population to its asymptotic state of independence of
the initial conditions, since the equations obeyed by individual alleles are
identical in form to those obeyed by the total number of alleles or the
total number of individuals. As we saw in section 1.3.2, the period of time
required for this convergence is usually a matter of a few ‘generations’.
During the process of convergence, oscillations in gene frequencies may
occur. This conclusion has been confirmed by computer calculations of
population trajectories. An example is shown in Table 2.1.

The possibility of gradual convergence of gene frequencies to con-
stancy, and of genotypic frequencies to Hardy—Weinberg proportions,
implies that populations which have recently been founded by a group of
individuals in which gene frequencies differed according to age and sex
may show significant changes in their genotypic composition in the
short-term, over and above any effects attributable to other evolutionary
factors such as selection or genetic drift. This may be of significance in
relation to studies of the genetics of human isolates, e.g. Jacquard (1974,
Chapter 16).

The convergence of the population to a state of identical, constant
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Table 2.1. Convergence to equilibrium for an autosomal locus with two alleles,
using demographic data for the French 1830 population. The frequency of A, was 1
in the first 5 age-classes and 0 in the others.

Genotype frequency

Time Age-  Age- Frequency

t class structure* (A4,A4,) (AA)) (A,A,) of A,

2 1 161.9 0.273 0.499 0.299 0.523
5 0.573 1 0 0 1
9 0.558 0 0 1 0

8 1 153.1 0.362 0.479 0.158 0.602
5 0.620 0.842 0.151 0.007 0.918
9 0.335 1 0 0 1

20 1 153.3 0.513 0.406 0.080 0.717
5 0.650 0.519 0.403 0.078 0.721
9 0.504 0.625 0.332 0.044 0.790

40 1 162.9 0.530 0.396 0.074 0.728
5 0.638 0.531 0.395 0.074 0.729
9 0.515 0.536 0.392 0.072 0.732

60 1 172.6 0.531 0.395 0.074 0.729
5 0.637 0.531 0.395 0.074 0.729
9 0.516 0.531 0.395 0.074 0.729

80 1 182.7 0.531 0.395 0.074 0.729
5 0.638 0.531 0.395 0.074 0.729
9 0.516 0.531 0.395 0.074 0.729

« The total number of individuals entering age-class 1 at time ¢ is given for age 1,
and the numbers entering age-classes 5 and 9 are given as fractions of this number.
(After Table 7.4 of Jacquard (1974).)

genotypic frequencies in each age-class is dependent on the matrix H
having a non-periodic structure such that H* becomes strictly positive
(pp. 66-9). The most biologically important case in which this condition
is not fulfilled is that of a semelparous species in which the age of
reproduction is at 2 or more (cf. Chapter 1, p. 26). In such a case, the
different phases of the population form two or more effectively genetic-
ally isolated populations coexisting in the same locality; gene frequencies
within each phase will be constant, but any initial differences will be
preserved indefinitely. A probable example of such a situation has been
described in the pink salmon by Aspinwall (1974).

2.2.2  An autosomal locus: the continuous-time case

It is possible to approximate the continuous-time case arbitrarily
closely by using the above discrete age-class model with a large number of
age-classes. It is instructive, however, to develop an exact continuous-
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time model incorporating genetic variation and to use it to establish
convergence of a random-mating population to a state of Hardy—Wein-
berg equilibrium. We shall employ the notation and concepts introduced
in section 1.2.3 for the purpose of describing the dynamics of a continu-
ous-time population. We shall assume that the primary sex-ratio, a, is
independent of age and time. The reproductive function for females aged
x at time ¢ is therefore equal to

k(x,t)=Il(x, t)M(x, t)a (2.9a)
and the reproductive function for males is
k*(x, t) = I*(x, )M*(x, 1)(1 — a) (2.9b)

These give, respectively, the expected rate of production of female
offspring at time ¢ attributable to a female zygote formed at time ¢ — x,
and the expected rate of production of male offspring at time ¢ attribut-
able to a male zygote formed at time ¢t — x. The corresponding expected
rates of production of offspring of both sexes are

K(x,t) = k(x, t)/a (2.10a)
and
K*(x, 1) = k*(x, 0)/(1 - a) (2.10b)

As in the discrete age-class model discussed above, the male fecundities
are dependent on the composition of the female population in a compli-
cated way. It is unnecessary for the present purpose to concern ourselves
with the nature of this dependence; as previously, all that we need is the
fact that all the demographic parameters are the same for each genotype.

It is most convenient to describe the state of the population, as far as
total numbers of individuals are concerned, in terms of the rates of
production of female and male zygotes by the population at time ¢, BA(f)
and B, (1), respectively. From the definitions given above and in Chapter
1, we have

BA1) = g(1) + L‘Bf(r — x)k(x, ) dx 2.11a)

B(1) = g*(t) + L:B,,.,(: — x)k*(x, t)dt (2.11b)

where g(t) and g*(¢) are terms representing the contributions to Bg(t)
and B, (t) from individuals alive at the initial time ¢ = 0; these terms are
zero for t > d and ¢t > d*, respectively. Using the assumption of constant
sex-ratio a, it is easy to see that the rate of production of zygotes of both

Cambridge Books Online © Cambridge University Press, 2009



72 Populations without selection

sexes, B(1), is related to B(t) and B,,(¢) by the expressions
B{t) = aB(t) (2.12a)
B,(t) = (1 — a)B(t) (2.12b)
Using these relations and equations (2.11), we obtain the following

expressions for B(t)

B(1) = Lg(r) + afB(z — X)K(x, £)dx (2.13a)
a G

!

B(1) = a1 L )g*(t) +(1- a)fDB(r - x)K*(x, t)dx  (2.13b)
- a

Substituting from equations (2.9) and (2.10) and adding the resulting

expressions, we obtain

B(t) = G(1) + 1 ;B(z - X)[k(x, 1) + k*(x, t)] dx (2.14)

where G(t) = 3{(1/a)g(¢) + [1/(1 — a)]g*(¢)}. This is a renewal equation
of the same general form as that which Norton (1928) showed has a weak
ergodicity property, under suitable conditions. Two such equations,
which differ only in the values of the initial conditions, G(¢) tend
asymptotically to a state in which the B(¢) function for one has a constant
ratio to the B(¢) function for the other (cf. section 1.4.1). Sufficient
conditions for this result to be valid are that k(x,t) and k*(x,t) be
continuous functions of x and ¢, and that the ages of first and last
reproduction for males and females, b, b*, d and d*, be fixed over time.
If it can be shown that each allele in the population satisfies an equation
of similar form to equation (2.14), differing only in the initial conditions,
then Norton’s theorem can be applied to prove that allele frequencies
tend to constancy as ¢ increases. We shall now proceed to demonstate
that this is indeed the case.

Since each individual receives one copy of an autosomal gene at a locus
from its male parent and the other from its female parent, it is essential to
distinguish between alleles of maternal and paternal origin. Consider the
zygotes produced by the population at the instant ¢. Let p;(¢) and p¥(z)
be the frequencies of a given allele A; among maternally-derived and
paternally-derived alleles, respectively, in these zygotes. The rates of
production at time ¢ of maternally-derived and paternally-derived copies
of A; in new zygotes are thus given by B(¢)p;(t) and B(¢)p¥(¢). (Since we
are dealing with the case of an autosomal locus, it is unnecessary to
distinguish the sexes when calculating gene frequencies among new
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zygotes.) The net frequency of A; among the zygotes produced at time ¢
is given by

pi(1) = Apit + p(0)] (2.15a)
and the net rate of production of A; genes in new zygotes is
2B(1)pi(t) = B()[p(1) + pi (1] (2.15b)

Using these definitions, it is possible to derive a renewal equation for
B(#)p;(t) in a way similar to that which yielded equation (2.14).

Consider first a time ¢t > d, d*, such that all new zygotes entering the
population are derived from individuals who were born after the initial
time ¢ = 0. Using equations (2.9), (2.10) and (2.13), we obtain

d
B(t)pi(t) = LBf(t —x)pi(t — x)K(x, t)dx

d
= LB(I — x)pi(t — x)k(x, t)dx (2.16a)

Similarly,
d’*
B()PH) = [ Bult = Bt = x)K*(x, 1 dx

d"
- L*B(t — X)pi(t — x)k*(x, 1) dx (2.16b)

For t < d, equation (2.164) must be modified by addition of a term g(¢),
to take account of contributions from individuals alive initially. Similarly,
for t < d*, equation (2.16b) must be modified by the addition of a term
g¥(t). The exact form of these terms does not concern us here. If we
write Gi(t) = %[g,-(r) + g*i(1)], equations (2.16) can be combined to yield
the final equation

BOP(D = Git) + 3 Bt = )Pt = DlkCx, )+ k*x, 0] dx

(2.17)

This, as anticipated above, has exactly the same form for each allele,
which is that of equation (2.14) for the total number of individuals in the
population. Only the nature of the initial conditions, G;, differ between
alleles. Hence, Norton’s theorem can be applied, and we can conclude
that asymptotically the allele frequencies tend to constancy, i.e. for large
t we have

p()=p; (=12,...,m) (2.18)
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where the values of the equilibrium frequencies p; depend on the initial
conditions G;. These frequencies are clearly the same for males and
females, from what was said above; similarly, for large ¢, such that gene
frequency change among the zygotes has ceased, the gene frequencies
among individuals of any age must also be constant and identical to the
frequencies among the zygotes. When this state has been reached, it also
follows that there is Hardy—Weinberg equilibrium for the genotypic
frequencies among individuals of all ages, assuming that the population
mates at random with respect to genotype. This result has been derived
under conditions on the time-dependence of the demographic parameters
which are almost as non-restrictive as for the discrete age-class model; the
assumption of a constant primary sex-ratio has had to be made, however,
in order to obtain equations to which Norton’s weak ergodicity theorem
can be applied. This is not an unduly restrictive condition, since empirical
evidence suggests that there are only minor variations in sex-ratio with
time and age of parent (cf. section 5.3.6).

2.2.3 A sex-linked locus

This case can be treated in a very similar way to an autosomal
locus, taking into account the fact that a male (assumed to be the
heterogametic sex) receives no genes from his father, whereas females
receive one gene from each parent. Only the discrete age-class model will
be considered here. A special case has previously been treated by
Cornette (1978).

As in the autosomal case, an abbreviated description of the state of the
population is given by the vectors of numbers of copies of each allele in
females and males, n;(t) and nj(¢t) (i=1,2, ..., m). As before, n; and
nf can be combined into one (d + d*)-dimensional vector #; = [n;, n¥]
for the purposes of calculation. We can write

Ai(t) = f(t — DH(t - 1) (2.19a)
where

A(t—1) {B(t-1)

H(t-1)= (2.195)

C(t—1) iD(t-1)

in which A is a d X d matrix whose only non-zero elements are those
of the first column, d,; =%f(x, t — 1), and the off-diagonal elements
Gy 41= P(x,t—1); B is a d X d* matrix whose only non-zero elements
are those of the first column, b, =%f*(x, t—1); C is a d* X d matrix
whose only non-zero elements are those of the first column, &, =
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f"(x,t—1); D is a d* X d* matrix whose only non-zero elements are
those of the off-diagonal, d, ,+; = P*(x, t — 1).

H is of a somewhat different form from H, the matrix for the
autosomal case. As in that case, however, it is equivalent to a Leslie
matrix with some additional positive elements, provided that b, is
positive. The same type of argument that was used for an autosomal locus
can therefore be applied to this case to prove that the frequencies of A;
among males and females of each age-class approach the same constant
value p;, at about the same rate as the age-structure of the whole
population approaches a state in which it is independent of the initial
conditions. The conditions under which this is true are the same as for an
autosomal locus. Since the allele frequencies in males and females be-
come the same, the frequency of the ordered genotype A;A; in females is
given by an equation of the same form as equation (2.8). The genotypic
frequencies in males are, of course, identical with the corresponding
allele frequencies. These results are similar to those for the standard
discrete-generation model of a sex-linked locus in a random-mating
population (Crow and Kimura, 1970, Chapter 2). There may be some
difference in the mode of approach to equilibrium, however. In the
discrete generation case, there is a damped oscillation if male and female
gene frequencies are initially different. With age-structure, such an oscil-
lation would tend to be disguised by differences between age-classes; only
if all age-classes of males in the initial population differed in gene
frequencies from all age-classes of females in the same direction, would
one expect oscillations as marked as in the discrete generation case (cf.
Cornette, 1978).

2.2.4 Two autosomal loci
We shall now consider the case of two autosomal loci. In the
discrete-generation case, it is known that the gamete frequencies for such
a pair of loci eventually approach values corresponding to random
combinations of alleles at the two loci, i.e. the frequency of a particular
gamete in the population approaches asymptotically the product of the
frequencies of the alleles which it contains. This was first proved by
Robbins (1918). A similar result can be proved for the case of an
age-structured population, by means of a generalisation of a method
introduced by Malécot (1948) for discrete-generation populations. An
account of Malécot’s results is given by Crow and Kimura (1970, Chapter
2). Random mating with respect to genotype is assumed.
The problem is most conveniently treated by means of a difference
equation formulation of the discrete age-class model (cf. Chapter 1, pp.
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9-11. The continuous-time case follows from this straightforwardly, by
increasing the number of age-classes without limit. Consider two auto-
somal loci A and B, with alleles A; (i=1,2,...,m) and Bi(k=1, 2,

., n). The genetic state of the system in a given time-interval ¢ can be
characterised by the frequencies of the nm possible gametes, A,Bj,
AB,, ..., A,B,, among the zygotes born in time-interval ¢. Let my(¢)
be the frequency of gametes containing alleles A; and B; among the
gametes of maternal origin in these zygotes. Let the corresponding
frequency for paternally-derived gametes be 7} (¢). The overall frequency
of A;B; gametes in the zygotes is thus given by

Fa(t) = 3[ma(t) + 75(1)] (2.20a)

As we have seen, the frequencies of alleles at autosomal loci tend to
constancy with increasing time, under the conditions discussed in section
2.2.1. Let the equilibrium frequencies be p; for A; and g, for B;. We
shall assume from now on that the population has effectively reached such
a state of constant gene frequencies. Since we are concerned here only
with establishing that gamete frequencies approach those predicted from
random combination of alleles, there is no loss in generality in making
this assumption. If the alleles were combined at random into gametes, the
frequency of A;B; gametes would be equal to p;§,. The deviation from
random combination can be measured by the linkage disequilibrium
parameter D, defined by the equation

Dy(t) = #y(t) — Pigx (2.200)

We shall show that this parameter approaches zero with increasing ¢.

We proceed in a somewhat similar manner to the analysis of the case of
a single autosomal locus with continuous time (section 2.2.2); in particu-
lar, we make the assumption that the primary sex-ratio a is constant, so
that the total number of zygotes born at time ¢, B(t), is related to the
numbers of male and female zygotes, B, (¢) and Bft), by equations of
the same form as equations (2.12). This enables us to write the following
equation for B(¢) (assuming ¢t = d, d*, so that no zygotes are contributed
by individuals alive at the initial time ¢ = 0)

d d*
B(t)= S B(t — )k(x, 1) = S B(t — x)k*(x, 1) 2.21)
x=b x=b*

Let the recombination fraction for loci A and B be c in females and c¢* in
males. For simplicity, we shall assume that these are independent of age,
although it is not difficult to generalise the following argument to allow
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for age-dependence of recombination fractions. Consider the set of
gametes produced by females aged x at a time t >d, d*. There is a
probability 1 — ¢ that a gamete drawn at random from this set is non-
recombinant, in which case there is a probability 7, (¢ — x) that it is A;B;
in constitution. There is a probability ¢ that it is recombinant in origin, in
which case there is a probability p;§, of its being A;B;. The net
frequency of A;B; among these gametes is therefore equal to

(1 = o)m(t — x) + cpig

Summing over all ages, and using the assumption of constant sex-ratio,
we thus obtain the relation

d
B(tymy(t) = X B(t — 0)[(1 — o)Fu(t — x) + cpigrlk(x, t)

x=b
(2.220)

A similar argument can be applied to paternally derived gametes, and
yields the equation
dl‘
B(mi(t) = 3, B(t — x)[(1 — c*)au(t — x) + c*pigi]k*(x, 1)
x=b*

(2.22b)

By using equation (2.21), subtracting B(¢)p;g, from both sides of equa-
tions (2.22), and adding the resulting equations, we obtain the following
expression

d
B(1)Dy(t) = 5(1 — ¢) 3, B(t — x) Dyt — x)k(x, t)
x=b
d’*
+3(1—c*) S B(t — x)Dy(t — x)k*(x, 1) (2.23)

x=b*

Choose a value of ¢, to say, which can be made arbitrarily large. Let b
be the smaller of b and b*, and d be the larger of d and d*. Let | Dy(t1)|
be the maximum value of | Dy(¢)| in the interval [ty — d, to — b]. Equa-
tion (2.23) gives the inequality

d
B(to)| Di(to)l <3(1 — ¢)| Dy(ty)| ZbB(fn — x)k(x, to)
d‘

+3(1 = ¢®)[Du(t)| S, B(tg — x)k*(x, to)

x=b*
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Using equations (2.21), this reduces to
| Di(to)| < [1 = 3(c + ¢*)]| Di(ty)| (2.24)

|Dy(t1)| can similarly be related to the maximum value of |Dy(t)|,
| Di(t,)|, in the interval [t; — d, t; — b], and so on. Continuing this back
[ steps to some arbitrary time ¢, (; = d), we have

| Do) < [1 = 3(c + ¢*)]| Du(1y)| (2.25)

If ¢, is taken sufficiently large, | Dy (to)| can be made arbitrarily small, if ¢
or ¢* >0, since | Dy(1;)| is bounded (its maximum possible value is }), and
J<sl—j(c+c% <l

This proves that the frequency of A;B; averaged over maternal and
paternal gametes, 7;, approaches a constant value, p;§;, which cor-
responds to random combination of the alleles concerned. From equa-
tions (2.22) it follows that the frequencies of A;B; in maternal and
paternal gametes, 7 and 7}, also approach this limiting value. The same
obviously applies to each gamete in the population. We may expect the
average length of the time-interval between successive ¢; to be of the same
order as one of the generation time measures introduced in section 1.3.2;
hence the rate of decay of the D parameters given by equation (2.25) is
such that each D is reduced by a factor of approximately 1 — %(c + ¢¥)
every ‘generation’. This corresponds to the standard result for discrete-
generation populations (Crow and Kimura, 1970, Chapter 2).

2.3 The effects of finite population size

2.3.1 General considerations

In this section we shall study the process of random changes in
gene frequencies due to finite population size (genetic drift), in the
context of an age-structured population. We assume that other evolution-
ary forces, such as selection, mutation, migration and non-random mat-
ing, are absent. The only factor tending to perturb gene frequencies from
the values which they would attain in an infinitely large population is the
effect of random sampling of alleles between successive time-intervals.
The traditional discrete-generation models of population genetics have
dealt with this problem by means either of a measure of the rate of
increase in the inbreeding coefficient (the probability that the two genes
carried at an autosomal locus of a diploid organism are identical by
descent), or by examining the rate of increase in the variance of the
probability distribution of gene frequencies generated by random drift.
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Crow and Kimura (1970, Chapter 7) review this topic, with reference to a
number of classes of discrete-generation populations.

In many cases, the asymptotic rates of increase in both these measures
are governed by similar equations, at least in to a good approximation. If
this is so, the rate of genetic drift can be summarised by a single
parameter, the effective population number, N. This concept was intro-
duced by Wright (1931, 1938). For example, let the inbreeding coefficient
in generation ¢ be F(¢). For sufficiently large ¢, it is found with discrete-
generation models that we can write the approximate equation

F(t) = 12N, + (1 — 1/2N)F(t — 1) (2.26a)

Similarly, if there are two alleles A; and A, with expected frequencies p,
and p, = 1 — p,, the variance in the frequency of A, V(7), asymptotic-
ally satisfies the expression

- PP _ 1 _
V() = ST + (1 T )V(: 1) (2.26b)

€ €

These relations would be satisfied for all values of ¢ in a population with
the simplest type of structure: a random-mating but self-fertile herma-
phrodite species with a constant adult population size N, and a distribu-
tion of number of offspring per adult which is binomial with a mean unity.
In such an ideal population, we simply have N, = N. In discrete-genera-
tion populations with a more complicated breeding structure, relations
such as (2.26) may be obeyed only asymptotically, and N, may differ
from the census number of breeding adults in a way which is calculable
from the breeding structure of the population. One difficulty with the use
of effective number as a measure of the rate of genetic drift is that the
value of N, in equation (2.26a) is sometimes found to differ from that in
equation (2.26b). In such cases, it is necessary to distinguish between
inbreeding effective number and variance effective number (Kimura and
Crow, 1963).

We shall accordingly concentrate on trying to define a measure of
effective population number for the case of an age-structured population.
As mentioned in the introduction to this chapter, this problem has been
tackled by a number of authors. The approach used here is based on that
of Felsenstein (1971), as modified by Johnson (1977b) and Emigh and
Pollak (1979) for the case of a two-sex population. Some results on
probabilities of fixation of genes in a finite population will also be given.
The final section deals with the problem of calculating the frequencies of
consanguineous matings in an isolated population, a question of some
importance in human genetics.
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2.3.2  Effective population number with age-structure

Construction of the model

We shall study in detail only the case of a stationary diploid,
discrete age-class population with two sexes and with time-independent
demographic parameters for both males and females. Furthermore, we
make the somewhat artificial assumption that the numbers of males and
females in each age-class are fixed over time. Survival from age-class
x —1to x (x > 1) is thus assumed to be random with respect to genotype,
but there is interdependence between the deaths of different individuals
such that constant numbers n(x) and n*(x) of females and males are
maintained in age-class x. Similarly, although new-born individuals are
assumed to be formed by combining gametes sampled at random from
infinite pools of male and female gametes, births take place in such a way
as to preserve constant numbers of males and females in the first
age-class. This model is reasonably realistic for a fairly large population
whose size is regulated by density-dependent factors, but is obviously
unrealistic for very small populations, whose size and age-structure must
themselves be subject to stochastic fluctuations. A further assumption
which is needed is that mating is at random with respect to age and
genotype, i.e. the age and genotype of the father of an individual are
independent of the age and genotype of its mother.

We shall mostly be concerned with studying the process of genetic drift
in terms of inbreeding. To do this, it is necessary to generalise the
concept of inbreeding coefficient in the following way. We introduce a
square symmetric matrix of order d + d*, F(t), which describes the state
of the system at time f. The xyth element of F(t), f,(t) (1=x=<d,
1 =<y = d), is the probability of identity of two genes sampled at random
(with replacement) from females of age-classes x and y at time ¢ (for
brevity, the term ‘identity’ will be used here as equivalent to identity by
descent). Similarly, f, 44,(¢) (1 <x <d, 1=y =< d*) is the probability of
identity of a gene sampled from a female aged x with one from a male
aged y at time ¢, fgiy 44y(t) (1 <x <d* 1<y =<d¥)is the probability
of identity of two genes sampled at random from males aged x and y at
time ¢. In order to avoid clumsiness of notation, whenever it is unneces-
sary to specify the sex of the individuals involved, the ijth element of F is
referred to as the probability of identity of a gene sampled from an
individual of ‘class’ i with a gene sampled from an individual of ‘class’ j
(Isisd+d* 1=sj=<d+d*). Note that f; is non-zero even for an
outbred population, since two genes sampled from the same class have a
chance of being the same.
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Analysis of the model

The problem therefore reduces to one of determining a workable
expression for F(t) in terms of F(¢ — 1). In order to do this, it is useful to
introduce a further matrix, G, which describes the flow of genes between
different classes of individuals in successive time-intervals in a somewhat
different way from the matrix H used earlier (section 2.2.1). In general
terms, the ijth element of G, g, is defined as the probability that a gene
of an individual of class j is derived from an individual of class i of the
previous time-interval. Matrices of this type were introduced into popula-
tion genetics by Hill (1972, 1974).

The elements of G can be derived straightforwardly, using the assump-
tions of constancy of the demographic parameters, population size and
age-structure, and the fact that each individual has one maternal and one
paternal allele at an autosomal locus. Using the fecundity parameters
discussed earlier in this chapter (section 2.2.1), but omitting any depend-
ence on time, we have

- _nfx) -1,2,....d 227
B ety e i)
_ e mf® .
NP ) GO R TP SN (2.27b)
S ST IS S

These define, respectively, the probabilities that a randomly-chosen gene
of a female of age-class 1 is derived from a female or male aged x in the
preceding time-interval. Similar probabilities can be defined for a gene of
a male of age-class 1

+ ——"—( )f’( ) X —1., 2,...,d 2.2;6
8x,d+1 22 ( )]“( ) ( ) ( )

+ +1 = —*( ) *( ) X = 1,2,...,d* szd
8d+x,d+1 22 *(y)f*( ) ( ) ( )

The other elements of G may be found as follows. Clearly, a female of
age-class x (x > 1) receives her genes from a female belonging to age-
class x — 1 in the preceding time-interval with probability 1, and similarly
for males. Hence, we have

8x-1x =1 (x=2,...,d) (2.27e)
8dtx-1d+x =1 (x=2,...,d%) (2.27f)

All other elements of G are zero.
If we assume that the primary sex-ratio is constant and independent of
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parental age, these expressions can be simplified as follows (cf. Chapter
1, pp. 10-11, 25-6)

8x1 = Er.a+1 = 7k(x) (1<x<d (2.28q)
Batx) = Ba+xa+1 = 3k*(x) (L<x=<d¥ (2.28b)

G is similar in general structure to the H matrix used earlier in the
chapter, and may similarly be regarded as being composed of four
sub-matrices, each of which describes the flow of genes between a
particular sub-set of the population (cf. p. 66). Unlike H, however, it is
constant in time, and its elements describe probabilities of transmission,
not net numbers of genes transmitted. For future purposes, it is useful to
note that G is the transpose of a stochastic matrix, since the elements in
each column sum to unity. From the standard results concerning sto-
chastic matrices (e.g. Jacquard, 1974, Appendix 2), we can therefore
conclude that G has a leading eigenvalue of unity, to which there
corresponds a row eigenvector whose elements are all equal. An associ-
ated column eigenvector, g", can be found by the method used for
defining reproductive value (equation (1.53)). We have

d
q(x) = z (gyl + g)«',d+1) (x = ls 29 ey d) (229{1)
y=x
d*
Q(d + x) = 2 (gd+y,1 = gd+y,d'+l) (x = 1& 2s sy d*)
y=x
(2.29b)

A measure of the generation time of the population, analogous to the
measures defined in section 1.3.2, is given by

- d+d*
T=33 q(x) (2.30)
x=1

If primary sex-ratio is constant and independent of parental age, we can
use equations (2.28) to obtain the simplified expressions

d
q(x) = > k(y) x=12,...,d) (2.31a)
y=x
d‘
qd+x)= Y k*(y) (x=12,...,d% (2.31b)
y=x
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d da*
T =33 xk(x) + 3> xk*(x) (2.31¢)
x=1 =1

In this case, T is equal to the mean over the female and male populations
of the generation time T defined on p. 30 (note that we are assuming a
constant population size).

Using these relations, we can write an asymptotic expression for G,
using the same methods that yielded equation (1.55a). For large ¢, we
have

G' ~ A =q"12T (2.32)

where 1 is a (d + d*)-dimensional row vector, whose elements are all
equal to unity. The validity of the asymptotic expression (2.32) is guaran-
teed if the age-specific fecundities for males and females are both
non-periodic, since G then has the structure of a non-periodic Leslie
matrix with additional positive elements (cf. equation (1.6)).

We are now in a position to use these definitions to obtain an
expression for F(t). It is in practice somewhat more convenient to work
with the probabilities 1— f;i(t) of non-identity between two genes
sampled at random from individuals of class i and class j at time ¢. (If we
define J = 171 as the square matrix of order d + d* whose elements are
all unity, we obtain the matrix of these probabilities of non-identity as
J — F(t).) Consider firstly 1— fj;(¢), the probability of non-identity
between two genes sampled at random from females of age-class 1 at time
t. In order for these genes to be non-identical, the same gene must not
have been sampled twice from the same female. There is a probability of
1/2n(1) that the two genes are separate but come from the same female,
in which case there is a probability 4g,;84+,, that they come from a
female aged x and a male aged y at time ¢t — 1, with probability of
non-identity 1 — f; 41,(t — 1). There is a probability 1 — 1/n(1) that the
two genes are sampled from two different females; if this is so, there is a
probability g;;g;; that they are derived from individuals belonging to
classes i and j at time ¢ — 1, with probability of non-identity 1 — f;(r — 1).
We thus obtain the recurrence relation

d d*

1= fu® = =253 3 guagasyall = feany( = 1)
x=]1y=
L e
+ [1 - ——| > gagull — fi(t = 1)] (2.33a)
n(1) ij=1
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A similar expression can be derived for genes sampled from males of
age-class 1:

1 — fae1,a+1(2)

d d*
= [2/n*(1)] 21 Elgx,d+1gd+y.d+1[1 = fra+y(t — 1]
x=1y=
d+d*
+[1-1n* V)] 3 8ia+18ja+1l1 — fi(t = 1)] (2.33b)

i,j=1

An expression for 1 — f,,(¢) (1 <x =< d), the probability of non-identity
between two genes sampled from females of age-class x (x > 1), can be
obtained as follows. The probability that the two genes sampled are
separate genes is 1 — 1/2n(x), since the chance that the same gene is
sampled twice is 1/2n(x). If they are separate genes, they must have been
derived from separate genes of females aged x — 1 at time ¢t — 1, with
probability of non-identity [1 — f,—;.—1(t — 1)]/[1 — 1/2n(x — 1)]. We
thus have

1= fo(t) =[1 = fioixa(t = 1)]

[1 - 1/2n(x)] _ .
X 0= 12n(x - 1] (x—2,3,...,d) (2.33¢)

Similarly,
1 = farx,a+x() = [1 = farx-1,a+x-1(¢t — 1)]
[1 - 1/2n*(x)]
[1-12n*x - 1)]

(x=2,3,...,d%

(2.33d)

For a pair of genes sampled from a male and a female both aged 1 at time
t, we have

d+a*
1= fran(®) = 2 gagjanll — fi(t — 1)] (2.33¢)
i,j=1
For a female aged 1 and a male aged x (x > 1), we have

d+d*
1 = fiaex(t) = 21 Ball — fogie=i® — 1) (@ ™2,3; . u,@”)

(2.33f)

Similarly, for a female aged x and a male aged 1, we have
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d+d*
1= fear1(t) = D gignll = fixmi(t=1] (x=1,2,...,4d)
i=1

(2.33¢)

For individuals in all other classes, we have

1= fi(t) = 1= fi1,j-1(0) (2.33h)

Equations (2.33) provide us with a set of linear recurrence relations
which connect the set of probabilities of non-identity at time ¢ with the set
at time t—1, in a form which is extremely suitable for numerical
calculations. From general theory (cf. section 1.3.1), we expect that
asymptotically these probabilities will change with time with a rate
determined by the leading eigenvalue, Ay, of the matrix corresponding to
the recurrence relations. The elements of this matrix are easily deducible
from equations (2.33). When this asymptotic state has effectively been
attained, we can write

1= fi(1) ~ A[1 = fi(t — 1]
or
)~ Q=)+ Afi(t —1) (i,j=1,2,...,d+d*
(2.34a)

Noting that the ‘generation time’ in the present case is defined by
equations (2.30) and (2.31c) as T, and comparing equation (2.34a) with
equation (2.26a), we can define effective population size by the relation

1 -2 =12TN, (2.34b)

(1 — 4)T predicts the asymptotic per generation increase in the fi- The
problem therefore reduces to one of finding a useful approximate formula
for A.

This can be done if we assume that the population size is sufficiently
large that second-order terms in 1/n(x) and 1/n*(x) can be neglected,
and that the asymptotic state represented by equation (2.34a) is
approached while the f; are still small enough that second-order terms in
the f; and terms such as f;/n(x) are negligible.t If these assumptions are

+ The assumption about the rate of convergence to the asymptotic state has been found to
be valid whenever computations of specific examples have been carried out (Felsenstein,
1971; Johnson, 1977b; Choy and Weir, 1978). Furthermore, an identical expression for N,
to that obtained here can be derived by the alternative methods of Felsenstein (1971) and
Emigh and Pollak (1979). If this assumption breaks down in a particular case, the
calculations which follow still provide a valid approximate method for determining the

rates of change of the f; in the early generations of inbreeding.
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made, we can approximate equations (2.33a and b) for low values of the
fij coefficients by the expressions

d+d*

1
fu() = M + ‘_J_Eﬂgngﬂﬁj(f -1 (2.35a)
d+d*
farr,an1(t) = ) + 5J2=1gi'd+1gj’d+lﬁj(r - 1) (2.35b)

(note that 18,1 = Z§;18a+y,1 =3, etc.)
Similarly, equations (2.33¢ and d) can be approximated for low f; by

_ 1 1
ful0) = 2n(x)  2n(x — 1)

+ fx—l,x—l(t - 1)
(x=2,3,...,d) (2.35¢)

11
2n*(x) 2n*(x —1)

farx,aex(t) = + farx-1,a4x-1(t — 1)

(x=2,3,...,d% (2.35d)

The remaining members of equations (2.33) can be rewritten in terms of
the f; coefficients alone; in each case a relationship of exactly the same
form is preserved merely by substituting f; for 1 — f; on both sides of the
equation. Combining these equations (2.35), we obtain the single matrix
equation

F()=G"F(t - 1)G + Y (2.36)

where Y is a diagonal matrix with non-zero elements y;; = 1/2n(1),
Yu=12n(x) -12n(x —1) (x=2,3,...,d), yas1a+1=120*Q),
Yatrdix = 12n*(x) = 12n*(x — 1) (x =2,3,...,d*). Equation (2.36)
gives the relation

=1

F(t) = (GN)'F(0)G' + > (G")“YG*

u=0
where F(0) is the initial value of the F matrix. (If we assume that all
individuals in the initial population are unrelated, F(0) is a diagonal

matrix with non-zero elements f,(0)=1/2n(x) (x=1,2,...,d) and
farx,aex(0) =12n%(x) (x =1,2,...,d*).)
This gives

F(t)-F(t—-1)=(G")'F(0)G' - (GN)" 'F(0)G' '+ (G 'yG'!
Substituting from equation (2.32), we obtain

F(t)—-F(t—-1)=ATYA
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i.e.

F(t) - F(t — 1) = (‘IY‘IZ)J (2.37)
AT

where J is the matrix 171 (p. 83).

The effective population number

Equation (2.37) implies that each f; coefficient experiences the
same increment per time-interval, equal to the scalar (g¥q")/(4T?). This
can be compared with the expression for the change in f; given by
equations (2.34). Provided that the population size is sufficiently large
that equation (2.34a) is a good approximation when the f; are still small,
equations (2.34) can be approximated by

1
2N T

fi(®) = fft =) = (2.38)
A comparison of this with equation (2.37) suggests that the definition of

effective population number for the age- -structured case should be 1/N.
= (q¥q")/2T. Collecting terms in q¥q', and using equations (2.29), we

can write

1 _171 2
N, T{nu) n*(1) Z‘Q( *) n(x) n(x—l)]

+ Z g*(d + x)[ (2.39a)

n*(x)  n*(x - 1)]}

If the primary sex-ratio is independent of parental age and equal to
one-half, this expression can be simplified to the following

- s S

1
N, 2TB i) :*(1) o) [I(x) l(x—l)]

d‘
5 11
+ zzq d+ x)[ e T =) ]} (2.39b)

where B is the total number of zygotes produced by the population in
each time-interval (cf. Chaper 1, p. 10).

A very similar formula can be derived for the case of an hermaphrodite
or monoecious species (Felsenstein, 1971; Johnson, 1977b). If the demo-
graphic parameters, etc. are defined as for the female population in the
two-sex case, except that fecundities are not corrected for the sex of
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offspring (cf. Chapter 1, p. 7) we obtain

1 _ 1 .
Ne {1(1) Zq( )[z() l(x—l)]} (240)

This is obviously equivalent to equation (2.39b) for the case when male
and female demographic parameters are exactly equal.

Equations (2.39) and (2.40) are very useful for displaying the effects of
demographic structure on population size. It is immediately obvious that
when only individuals of age-class 1 are capable of reproduction, equation
(2.39a) reduces to

11+1

N, 4N; 4N,

where Ny and N,, are the numbers of breeding females and breeding
males, respectively (N;=n(1) and N, = n*(1)). This is of course
identical with the standard formula for effective number in the discrete-
generation case (Crow and Kimura 1970, Chapter 7). Similarly, for a
hermaphrodite species equation (2.40) gives N, equal to the census
number of breeding adults when only age-class 1 individuals are capable
of reproduction. If there are no deaths at all (/(x) = I*(x) = 1 for all x),
N, from equation (2.39b) is equal to T B, the total number of individuals
born into the population over a period of one generation (note that this
assumes a primary sex-ratio of one-half). If there are deaths of individuals
only between conception and reaching an age of unity, so that I(x) = /(1)
and I*(x) = [*(1) for all x > 1, then N, = 4T/[1/n(1) + 1/n*(1)],i.e., N,
is equal to the harmonic mean of the numbers of females and males in
age-class 1 over a period of one generation. It can be seen from equations
(2.39) that deaths of individuals in later age-classes reduce N, below
these values, as would be expected intuitively.

Hill’s (1972, 1979) formulae show that the terms in braces in equations
(2.39) and (2.40) are equivalent to the reciprocals of terms involving
variances and covariances of life-time reproductive success (Johnson,
1977b). Nunney (1993) has used Hill’s results to examine the effects of
different systems of mating on effective population number.

Examples of the calculation of effective number

The use of these formulae for N, can be illustrated with some of
the sets of vital statistics used in Chapter 1 (Tables 1.2 and 1.3). In order
to simplify the calculations, it has been assumed that the demographic
parameters of males and females are equal, so that equation (2.40) can be
used. All the essential features of age-structured populations are pre-
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served in this formula. In order to use the data of Chapter 1, which apply
to populations with positive intrinsic rates of increase, for the purpose of
calculating N, from a formula which assumes a stationary population, it is
necessary to scale down the age-specific fecundities by dividing them by
the net reproduction rate for the population in question, so that the
modified age-specific fecundities correspond to those for a stationary
population (cf. Felsenstein, 1971). If this is done with the human popula-
tion data of Table 1.2, we find that

N, = BT/1.03

where B is the number of zygotes born into the population in each
time-interval, and T is equal to 5.31 time-intervals (a time-interval in this
case corresponds to five years). N, in this case is therefore almost exactly
equal to the number of zygotes which enter the population over the
course of one generation, which reflects the low mortality of the popula-
tion in question. It is also interesting to compare N, with N, the total
number of breeding adults. N, can be calculated from B by the formula

d
N, = B I(x) (2.41)
x=b
In the present case, taking b = 2 and 4 = 10, we find N, = 8.63B, so that
the effective population number is only 0.60 of the number of individuals
in the reproductive age-classes.
A similar calculation can be done for the squirrel data given in Table
1.3. In this case, the length of a time-interval is one year. We find that

N.=bT/1.82

where T = 2.79. In this case, we have N, = 0.60B, so that N./N, = 0.59,
a value very similar to that for the human population. The great reduction
in N, below the number of zygotes entering the population per genera-
tion is due to the high mortality of the squirrels, particularly in the first
year of life.

Nunney (1993) has examined the relation between N, and N, for a
variety of different systems of mating, and concludes that N, is frequently
approximately equal to one-half N,.

The inbreeding coefficient of an age-structured population

Up to now we have discussed the problem solely in terms of the
matrix of probabilities of identity, F. It is possible, however, to construct
a measure similar to the discrete-generation inbreeding coefficient (John-
son, 1977bh). It is necessary in general to define inbreeding coefficients for
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males and females separately, although they become equal if the primary
sex-ratio is independent of parental age. The inbreeding coefficient for
the females at time ¢, F(¢), is defined by analogy with the discrete-
generation case as the probability of identity of the maternal and paternal
genes of a female in age-class 1. We have

d d*
F(t) =43 > 8:18a+y1fra+y(t — 1) (2.42a)
x=1y=1

Similarly, for males we have the inbreeding coefficient
d d*
F*(1) = 421 Elgx,a‘ﬂgd+y,d+1f:|r,d+y(r 1) (2.42b)
x=1y=
In practical applications, such as animal breeding problems, it is relatively
simple to calculate these inbreeding coefficients for any desired time, by
combining equations (2.42) with the results of iterating the exact recur-
rence relations (2.33), rather than by using the approximate asymptotic
equation (2.37), or the estimate of F(¢) and F*(¢) of (¢t — 1)/(2N, T)
suggested by equations (2.42) and (2.38).

Variance effective number

In certain discrete-generation models, the effective number
appropriate for calculating the rate of inbreeding differs from that for the
rate of increase in variance in gene frequency (p. 79). It is therefore
important to determine whether or not there is any difference in the
present case. Johnson (1977a) has obtained a formula for variance
effective number with age-structure which is identical with equations
(2.39); the variance effective number given by Hill (1972, 1979) can also
be shown to be the same as that of equations (2.39), for the sampling
scheme assumed here (Johnson, 1977b). Felsenstein (1971) showed that
the inbreeding and variance effective numbers are the same for the
present type of model in the case of an hermaphrodite species. His
argument can easily be extended to the two-sex case. We can conclude
that the variance effective number is identical with the inbreeding effect-
ive number in the present case.

Other models

The results described above have been derived on the basis
of a number of specialising assumptions, notably that the size and age-
structure of the population are constant, and mating is at random with
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respect to age and genotype. The sampling scheme assumed for the
formation of new zygotes implies that each member of a given age-class
has an equal chance of contributing to the new-born population (i.e., a
binomial distribution of family size within age-classes). Some of these
assumptions can be relaxed. Felsenstein (1971) gives a treatment of
variance effective number for the case of an hermaphrodite population
which is growing in size but has a stable age-structure and constant
population growth-rate. Hill (1972, 1979) gives a treatment of variance
effective number which is capable of dealing with non-binomial family
size distributions (see also Johnson (1977a, b)). Choy and Weir (1978)
give recurrence relations for the f; coefficients which can be used for
computations with non-binomial family size distributions. They also give
recurrence relationships for digenic identity probabilities.

2.3.3  The probability of fixation of a gene

General considerations

In this section, we shall be concerned with the problem of
calculating the probability of fixation of a neutral autosomal gene with an
arbitrary initial frequency in an age-structured population of finite size. In
the discrete-generation case, the following argument can be used. The
formula for the inbreeding coefficient in an arbitrary generation, equation
(2.26a), implies that as time increases, F tends to unity, so that all gene
copies at a locus are eventually descended with probability unity from one
particular gene present in the initial generation. Let the frequency of
given allele A; be p;(0) among the females of the initial generation, and
p¥(0) among the males. With stochastic independence of the offspring
distributions for different individuals, the expected frequency of A; in one
generation is equal to the actual population gene frequency of the
preceding generation, in the absence of mutation, selection, etc. This
implies that the expected frequency of A; in any generation in a finite
population is equal to its frequency in an infinite population with the
same initial composition, i.e. to %p,-(()) + %p:"(O). Since the final state of
the population is such that A; is either fixed or lost, the probability of
fixation of A, is thus 3p;(0) + 3p*(0).

This type of argument can be extended fairly easily to the case of an
age-structured population, using the finite population model developed
above. The assumption of random mating with respect to age, is however,
unnecessary in this context. The treatment below is based on Emigh and
Pollak (1979) and Pollak (1982). (See also Emigh (1979, b).)
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The calculation of the fixation probability

The definitions of section 2.2.1 can be extended by introducing a
d-dimensional vector of expected frequencies of A; among females of the
various age-classes at time ¢, X;(¢); a corresponding d*-dimensional
vector, X#(t), can be defined for males. As with the gene frequencies
themselves, these can be combined into a single (d + d*)-dimensional
vector of expected frequencies X;(t) = [X;(¢), X¥(t)]. Using the result
that, with binomial sampling, the expected frequency of a gene in a given
age-class must be equal to the frequency in an infinite population with the
same initial state, it is easily shown that

X:(t)=X,(t - 1)G (2.43a)

where G is the matrix of transmission probabilities defined on p. 81.
Iterating this equation, we obtain

X(t) = X,(0)G' (2.43b)

where X;(0) is the initial value of X(¢), such that

X.(0) = [p(0), p(0)] (2.44)
Using equation (2.32), equation (2.43b) can be rewritten for large ¢
Xi(1) ~ Xi(0)(@")/2T) (2.45)

The elements of X;(¢) are therefore asymptotically all equal to the same
constant value, corresponding to the result derived earlier (section 2.2.1)
for gene frequencies in the infinite population model with a general
demographic structure. This value is the probability of fixation of A;,
which we can symbolise by U;. Equation (2.45) yields the expression

d a*
U = lef(x, 0)g(x) + lei-"(x, 0)q(d + x) /ﬁ (2.46)

A case of particular interest for evolutionary theory is when the allele
in question is a new mutant, and is therefore represented initially as a
single copy among the zygotes of time ¢ = 0. The probability of survival
of a new mutant, U, can be found from equation (2.46) as follows. If the
mutant individual is female, the gene has an initial frequency of
pi(1,0) = 1/2B;, where By is the total number of female zygotes produced
per time-interval. For x > 1, we have p;(x,0)=0. Hence, for a new
mutant among the female part of the population we have

U = 1/4B;T (2.47a)
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For a new mutant in the male part of the population, we find
U =1/4B,T (2.47b)

where B, is the number of male zygotes produced per time-interval.
These probabilities are equal only when the primary sex-ratio is one-half.

The rate of gene substitution

These results can be used to calculate the rate of substitution of
neutral mutations in evolution (Pollak, 1982). The standard method of
doing this for a discrete-generation model (Kimura, 1968) assumes that
there is an infinite number of possible alleles at a locus, which are
selectively equivalent (neutral alleles), and that each time a mutation to
such an allele occurs in a population, the allele has never previously been
represented in the population. If the population has a fixed size N, and
the rate of occurrence of neutral mutations at the locus in question is u
per generation, then 2Nu new mutations appear in the population each
generation, on average. But an individual gene present in the population
in any particular generation has a probability of 1/2N of being fixed by
chance. Hence, the expected number of new mutations which enter the
population each generation and which eventually displace all the existing
alleles at the locus is

K =2Nuf2N = u (2.48)

K is the rate of gene substitution at the locus in question. If the state of
the locus is compared at times ¢, and ¢;, where t; — ¢, is a large number
of generations, the expected number of neutral allele substitutions that
have occurred is equal to K(t, — tg). This result plays an important role
in the interpretation of data on molecular evolution (Kimura, 1983;
Gillespie, 1991).

In order to extend equation (2.48) to age-structured populations, we
need to introduce an appropriate definition of mutation rate. Consider an
allele at a given locus in a new zygote. As the individual develops, its
germ-line cells will be exposed to the risk of mutation. Let u(x) be the
probability that a germ cell in a female aged x contains a mutation to a
different allele. Let u*(x) be the corresponding probability for a male
germ cell. The mutation rate u(t) for time-interval ¢ is defined as the
probability that a gamete involved in a successful fertilisation in this
time-interval contains a mutant allele. In general, we have (for ¢ = d)

d
2B(Hu(r) = > B(t = x)[k(x)u(x) + k*(x)u*(x)] (2.49a)
x=1
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With a constant population size, as assumed here, the mutation rate will
be independent of time, and we have

u= %Z[k(x)u(x) + k*(x)u*(x)] (2.49b)

This definition of mutation rate can be used to determine the rate of
molecular evolution as follows. New mutations entering the population at
time ¢ will be passed to age-class 1 at time ¢ + 1. From equation (2.46),
the chance of fixation of a single such mutation present in age-class 1 is
the product of 1/27 and its initial frequency. The initial frequency of a
mutation in female zygotes is %Bf, and there are 2B mutations per time
interval. Mutations transmitted to females thus contribute a total of u/2T
mutations which are destined to be fixed. Males contribute an equal
quantity. The rate of substitution, in terms of mutations fixed per
time-interval, is therefore

K= (2.50)

LA
T
It follows that the rate of substitution on a time-scale of generations is the
same as that given by equation (2.48).

2.3.4 The frequencies of consanguineous matings in an isolated
population

General considerations

One of the classic problems of human genetics is that of finding
the expected frequencies of consanguineous matings in an isolated popu-
lation. This problem obviously has a close relationship with that of
calculating the effective number of a population. It can be stated as
follows. Consider an isolated human population of fixed size, and assume
that mating is random, so that each individual in the population has the
same chance of marrying a given person of the opposite sex. What is the
expected frequency of occurrence of consanguineous marriages of a
particular degree, e.g. first-cousin marriages? The first attempt to solve
this problem was made by Dahlberg (1929, 1948), using a discrete-
generation formulation. His approach can be illustrated with the case of
first-cousins. Each marriage is assumed to produce two children that
survive to maturity, so that the population size is constant. Assuming a
sex-ratio of one-half, the number of cousins available to a man of
marriageable age can be found as follows. His father had one sibling who
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married and produced two children. On average, one of these is female,
so that the man in question has an expectation of one marriageable
female cousin on his father’s side. Similarly, he has an expectation of one
on his mother’s side, giving a total expectation of two marriageable
female cousins. If the number of breeding adults is N, there is a total of
%N girls of marriageable age, so that the probability of the man’s
marrying a first-cousin is 23N = 4/N. If the frequency of first-cousin
marriages is known, the population size N can be determined. A similar
calculation for uncle—niece and aunt—nephew marriages gives a frequency
of 2/N. These calculations are somewhat artificial, as they assume that
there is a fixed family size of two; more realistic models, which allow for a
probability distribution of family size, can readily be developed (Frota
Pessoa, 1957; Jacquard, 1974, pp. 197-202).

The assumption of discrete generations, which underlies Dahlberg’s
model and its later generalisations, is inadequate when dealing with data
on the human population. The most serious defect of the model is that it
leaves out the fact that the probability of marriage is dependent on the
ages of the individuals concerned, men being on average older than their
wives. The number of potential spouses of a given degree of consanguin-
ity available to a male may therefore differ from the number available to
a female. For example, uncle-niece marriages are more common than
aunt—nephew marriages, simply because the probability of marriage
between a woman and a much older man is higher than the probability of
a marriage between a man and a much older woman. On the discrete-
generation model, the frequencies of uncle-niece and aunt-nephew
marriages should, however, be equal. More subtle effects can arise with
marriages of a lower degree of consanguinity. For instance, first-cousin
marriages can be divided into four classes, according to the sexes of the
ancestors of the partners (Figure 2.1). Data on the frequencies of these
classes of marriage in several populations are given in Table 2.2. It can be
seen that matrilateral cross-cousin marriages are more frequent than
patrilateral cross-cousin marriages, and that maternal parallel marriages

N

Paternal Maternal Patrilateral Matrilateral
Parallel cousins Cross cousins

Figure 2.1. The four kinds of first-cousin. (Squares and circles represent
males and females respectively).
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Table 2.2. Observed frequencies of the four kinds of first-cousin marriages (relative
to a frequency of 100 for all first-cousin marriages)

Parallel Cross
Paternal Maternal Patrilateral Matrilateral
Germany
(1890-1935) 21 29 23 27
Austria
(1901-1931) 18 33 21 28
Italy
(1851-1957) 22 28 21 29
Japan
(1948-1952) 22 33 18 27

After Table 26 of Hajnal (1963)

are more frequent than paternal parallel marriages. Again, the discrete-
generation model predicts equal frequencies of each of these classes. The
excess frequency of matrilateral cross-cousin marriages has a similar
explanation to that for uncle—niece marriages. Mothers are, on average,
younger at the birth of their offspring than fathers, so that a man will tend
to have matrilateral cross-cousins who are younger than himself, and
hence available for marriage, whereas girls who are his patrilateral
cross-cousins will tend to be older than himself. The excess frequency of
maternal parallel marriages is harder to explain, and requires an analysis
based on the marriage model developed below. This model provides a
general solution to the problem of the frequencies of consanguineous
mating in an age-structured population, and was formulated by Hajnal
(1963, 1976) (see also Cavalli-Sforza, Kimura and Barrai, 1966). The
following account is based on that of Hajnal (1963).

Assumptions of the marriage model

We shall assume that the population is closed, so that no indi-
viduals enter or leave. Age and time are treated as continuous variables,
as is realistic for human populations. The population is assumed to be
stationary in size, and to have time-independent demographic para-
meters. The primary sex-ratio, a, is assumed to be independent of
parental age (cf. section 2.2.2). Mating is at random within the popula-
tion, subject to the restriction that the probability of marriage between a
given couple is a known function of their ages. Specifically, we shall
assume that the chance of eventual marriage between two individuals
selected at birth depends only on the interval between their dates of birth.
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Let the time of birth of a given boy be subtracted from that of a given
girl, and write z for the resulting difference (z is measured in years, and
may take negative as well as positive values). The probability that the
couple will eventually marry is thus a function of z. This provides a
realistic model of the marriage process. Finally, it is assumed that there
are no correlations between relatives with respect to their demographic
parameters. This is clearly unrealistic, but is the best that can be done in
the absence of adequate information on such correlations. Some of these
assumptions can be relaxed to a certain extent, as will be discussed below
(p. 103).

Consider consanguineous marriages of a given class &, specified by a
pedigree diagram of the type shown in Figures 2.1 and 2.2. The class & is
specified by the sequence in which males and females occur in the lines of
descent, as well as by the number of steps by which the couple in question
trace their descent from a single ancestral couple.t The different cate-
gories of first-cousin marriages shown in Figure 2.1 thus correspond to
different values of 5. The problem is to calculate Y, the average annual
number of marriages of class & in an isolated population. We can write

Y: = ANII; (2.51)

where A is the total number of marriages per year; Ng is the expected
number of potential marriages of class £ among the descendants of a
couple (i.e. the average number of pairs of males and females related in
the manner § among the descendants of a couple); IT¢ is the chance that a
potential marriage between such a pair actually takes place.

The calculation of N¢

We first examine the relatively straight-forward problem of cal-
culating Ng. Consider, for example, the case of paternal parallel cousins.
Let a pair of brothers produce during their lifetimes 7, girl and n{ boy
babies, and n, girl and n3 boy babies respectively. The total number of
potential marriages among their children is thus nynj+ nfn,. Taking
expectations, and using the above assumption of no correlations between
the demographic parameters of relatives, we obtain

E[nin3] = E[n{n,] = E[m]E[n3] (2.52a)

Using the assumptions that the primary sex-ratio, a, is independent of age

t Relationships such as half-sibs, which have only one common ancestor, will not be
considered here because of the technical difficulties of accounting adequately for illegiti-
macy in analysing data on marriages involving such relationships (Hajnal, 1963).
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and that the population is stationary, we have

d’l
E[n%] = L*k*(x)dx =1

a @ a
—_——— * —
E[n] - an‘k (x)dx n

—a
Hence

2a

E[mnf] + Elntn;] = =

(2.52b)

If a marriage produces j children, the number of possible pairs of
brothers is expected to be (1 — a)?j(j — 1)/2, so that the expected number
of potential paternal parallel cousin marriages among the descendents of
a marriage with j children is, using equation (2.52b), a(1 — a)j(j — 1). If
m; is the chance that a marriage produces j live births, and if there is no
correlation in demographic parameters between parents and offspring, we
have

Ng = a(l - a)zzj(j - 1, (2.53a)
=

The quantity >, j(j — 1)m; depends solely on the mean, u, and variance,
V', of the distribution of numbers of births per marriage. We have

SiG-Daj=jj-Dmj=V +ui—nu
j=2 j=0
1= =

Substituting into equation (2.52a), we obtain
Ne=a(l—a)(V + 1% — p) (2.53b)

A similar calculation can be carried out for any class of consanguineous
marriage. It is found that N is independent of &, so that equation (2.53b)
can be used for any class of marriage.

The calculation of T1g

We now consider the calculation of Ilz. Suppose that we select a
new-born girl and a new-born boy who have relationship &. Let hg(z)dz
be the probability that the girl is born between z and z + dz years after
the boy, and ¢(z) be the probability of eventual marriage with a given
girl born z years after the boy. We thus have

M = [ ¢o)hez)dz (2.54)
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A formula for ¢(z) can be found as follows. We assume that the
population is sufficiently large that stochastic fluctuations in the birth-rate
can be neglected. Since the population is stationary, the birth-rate B is
constant. Over a short time-interval d¢, aB dt girls and (1 — a) B dt boys
will be born. The numbers of pairs which can be formed among male
births occurring between times ¢ and ¢ + d¢, and female births occurring
between z and z + dz later, is thus a(1 — a) B>*d¢ dz. Furthermore, in a
stationary population the number of marriages occurring over a short
time-interval dt is equal to the number contracted over their entire
life-time by the males born in any time-interval of the same length. Let
this number be A dt, where A is the rate of marriage. It follows that

A=a(l- a)BEJ-_mm(p(z)dz (2.55a)

so that

f_wqb(z)dz = A/a(1 — a)B? (2.55b)

Let the proportion of marriages at any time where the woman is z to
z +dz years younger than the man be 6(z)dz. 6(z) is in principle
determinable from census data on the frequencies of marriages classified
by the ages of the partners. Clearly, 9(z)=¢(z)/ffw¢(z)dz. Let
C = A/B be the ratio of the rate of marriage to the rate of birth.
Equations (2.55) thus yield

#(z) = 6(z)C*/a(1 — a)A (2.56)

The calculation of Yy
Equation (2.56) can be combined with equations (2.51), (2.53b)
and (2.54) to obtain the expression

Ye= CHV + 12 — 1) J_:G(z)hg(z)dz (2.57)

Y: is thus independent of the absolute birth-rate and hence of the
population size. The quantities V', u, ¢ and 6(z) can be determined from
empirical data. It thus remains only to find an expression for hg(z) in
terms of observable quantities. This can be achieved as follows. For
concreteness, consider the relationship determined by the pedigree in
Figure 2.2. The difference in age between the individuals of interest, J
and I,is given by z=(t+x;+x) —(t+y +x3)=x1+x— (y + x3).
In order to calculate the probability density of z, hg(z), it is convenient to
assume that the ages x, x; and x; of the ancestors 1, 2 and 3 of / and J
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] Time ¢

t+x,

@ t+x,+x,

Figure 2.2. An imaginary pedigree. I and J are the individuals with
relationship &. The individuals between the dotted lines are counted as
ancestors of I and J. The expressions next to /, J and their ancestors
represent their dates of birth; y is the difference in date of birth between
the first ancestors of the male and female partners in the relationship &
(J and I); x,, x, and x; are the ages of individuals 1, 2 and 3 at the times
of birth of their offspring displayed in the pedigree.

are independently and normally distributed, as is the difference y be-
tween the dates of birth of the sibs 1 and 3. Consider a set of infants born
at the same instant. Let T and V1 be the mean and variance of the ages
of their mothers, and 7* and V% be the corresponding parameters for
their fathers. Since the population is assumed to be stationary, we have
(cf. p. 30)

d d

F= L”k(x)dx’ Vr= L(x — T)*k(x)dx (2.58a)
d* dt

== L»xk*(x) dr, Vi= L.(x — T*)k*(x)dx (2.58b)

The means and variances of x, and x3 are T and V; respectively, while
the mean and variance of x; are 7* and V¥ respectively. The mean of y
is equal to the mean difference between the ages of a randomly chosen
pair of sibs, and is therefore zero. The variance of y, Vj, is equal to the
variance of the difference in age between randomly chosen pairs of sibs.
Hence, in this example the mean and variance of z are equal to

u=T+T*-T=T* (2.59a)
Ve=2Vr+ Vi +V, (2.59b)

More generally, let there be az males and f; females in the ancestry of
the boy involved in the relationship §. (The original ancestral couple are
not counted as ancestors for this purpose.) The mean and variance of z
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are given by

pe = (g — a))T* + (B — BOT (2.60a)
Ve=(ag+aP)Vi+ (B + BHVT +V, (2.60b)
The probability density function hg(z) is thus given by
1 (z — pg)® ]
k an D — .

If we assume that the difference between the ages of spouses is also
normally distributed with mean y, and variance V,, we have

6(z) =

1 (z— 1”'::)2]
exp |- (2.62)
V2V, [ 2V,
Combining this with equation (2.60), substituting into equation (2.56) and
evaluating the integral, we obtain the following expression for Y.

2 2 _ A2
v, = SVt — 1) exp[— 5] (2.63)

V 278 E
& 3

where Ag = ug — u, and Se = Ve + V,.

Applications of the model

The application of equation (2.63) to specific populations re-
quires estimates of the relevant means and variances. Human populations
which are effectively isolated are generally examples of high-fertility,
high-mortality populations, so that we need data on pre-industrial
societies for these estimates. Hajnal (1963) suggests values of T =25,
Vr =40, T* =30 and V% = 70 for such societies. (Note that fathers have
a considerably higher mean and variance than mothers.) Values of y, =5
and V, =40 are also suggested by Hajnal, who used data on an eight-
eenth-century French population to obtain V + > — u= 20 and ¥, =355.
C is the ratio of marriages to births, so that 2C is approximately equal to
the proportion of people who survive to marriageable age. C may be
taken as 0.25 for present purposes.

Armed with these figures, it is easy to calculate the expected rate of
consanguineous marriages of any kind. Table 2.3 shows the values of the
components of Y for the four classes of first-cousin marriage, from the
above formulae, and Table 2.4 shows the relative frequencies of these
marriages as a function of the mean difference in age between spouses.
With u, =5, the sum of the Y; is equal to 0.14; smaller values of y, give
a slightly bigger, and larger ones a slightly smaller, value. Thus in an
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Table 2.3. Some quantities required in the calculation of Y, for the four kinds of
first-cousin marriage

Class & a:+af P+ pE S A,
Paternal parallel cousin 2 0 225 — U,
Maternal parallel cousin 0 2 165 — U,
Patrilateral cross cousin 1 1 195 —2u,
Matrilateral cross cousin 1 1 195 0

Table 2.4. Theoretical frequencies of the four kinds of first-cousin marriage (relative
to a frequency of 100 for all first-cousin marriages)

Parallel Cross
U, Paternal Maternal Patrilateral Matrilateral
0 23.2 271 24.9 24.9
2 23.3 27.1 24.3 25.3
5 24.1 27.5 21.1 273
10 25.6 27.6 12.3 34.4

After Table 27 of Hajnal (1963)

isolated population with high fertility, there would be between 1 and 1.5
first-cousin marriages per decade. This agrees well with data on the
frequencies of first-cousin marriages in some nineteenth century Euro-
pean isolates (Hajnal, 1963). Uncle—niece and aunt-nephew marriages
taken together would be expected to occur at about 0.06 of this rate,
marriages between first-cousins once removed at 0.6, and second cousins
at 3.0, times this rate.

The reason for this low frequency of paternal parallel first-cousin
marriages is clear from inspection of Table 2.3. Although the term arising
from the mean difference between the ages of spouses is the same for
paternal parallel and maternal parallel marriages, both ancestors in the
paternal parallel pedigree are males, whereas both are female in the
maternal parallel pedigree. The variance term Sg is therefore bigger in
the former case; since Y; decreases with S¢, there is a corresponding
deficit in the frequency of marriages between paternal parallel first
cousins. This result may be viewed intuitively as follows. There is greater
variation in the age of fathers than that of mothers, so that paternal
parallel cousins are more likely to be born far apart in time, and hence
are less likely to marry each other. Conversely, maternal parallel cousins
are the most likely of the four classes to be born close in time; this
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explains why maternal parallel cousin marriages are the most common,
except when y, is so big that its effect on Ag overcomes the differences
due to S (cf. Tables 2.3 and 2.4).

Comparison of Tables 2.2 and 2.4 shows that the theory seems to
predict the qualitative pattern of the differences in frequencies of classes
of first cousin marriages. Furthermore, Japan and Italy are known to have
larger values of u, than Germany and Austria, so that the differences
between the top and bottom of Table 2.2 accord well with the differences
between the rows of Table 2.4. The differences between the theoretical
frequencies do not seem as big as the actual ones. Hajnal (1963) discusses
some possible reasons for these discrepancies.

Conclusions

The results derived here show that both the absolute rates and
relative frequencies of consanguineous marriages in isolated populations
are highly dependent on several demographic parameters. Changes in
demography, therefore, may themselves produce shifts in marriage pat-
terns. For example, a reduction in mortality would result in an increase in
C, the ratio of the marriage rate to the birth rate, leading to an increase
in both the absolute rate and frequency of consanguineous marriages
(since Y is proportional to C?). The model predicts a constant annual
rate of consanguineous marriages in a stationary population, independent
of the population size, which seems to agree well with observations on
human populations. Hajnal (1963) has also investigated the effects of
population growth and migration, and Cavalli-Sforza et al. (1966) have
carried out an elaborate investigation of the consequences of migration.
Although some quantitative differences are introduced by these factors,
the general pattern of results is not affected very much. The relative
frequencies of different classes of consanguineous marriages are expected
to be similar to those for a stationary population, unless the rate of
population growth is very high, but the frequency of consanguineous
marriages as a whole will decrease as the population size increases. The
effect of migration is to lower the rate of consanguineous marriages; if
male and female migration rates differ, the pattern of consanguineous
marriages may be affected. Since males often have higher migration rates
than females in man, one might expect migration to lower the frequency
of marriages that involve a relatively large number of male ancestors (e.g.
between paternal parallel cousins), and to raise the frequency of mar-
riages involving a relatively large number of female ancestors (e.g.
between maternal parallel cousins). This may help to explain the dis-
agreements between Tables 2.2 and 2.4.
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Overall, data on the frequencies of consanguineous marriages in human
populations suggest that the assumption of random mating is close to the
truth (Hajnal, 1963), so that people do not appear to select their spouses
on the basis of relationship (except for the avoidance of incest). It is
interesting to note that phenomena such as the relative infrequency of
paternal parallel cousin marriages have sometimes been interpreted as
evidence for such selection. Analyses of this sort can, of course, in
principle be carried out for non-human populations, although data of a
suitable sort are rarely available. Hajnal (1976) has analysed data on an
English population of great tits, and shown that the observed frequencies
of consanguineous marriages are consistent with random mating.

Finally, it is useful to note how these results can be used to estimate the
size of isolates, if we have data on populations where it can be assumed
that no migration occurs between random-mating units. If we know that
there are A, marriages of class & per year in the region of interest, but we
expect Yg in an isolated population, the number of isolates is given by
Ag/Y¢. If fe is the frequency of marriages of class &, then the number of
marriages per isolate per year is equal to A/(Ag/Ye) = Yi/f:. If A is the
average number of marriages per year per head of population (counting
individuals of all ages), and N is the size of an isolate, we have
AN = Y¢/fe, so that

N = Y:/Af: (2.64)
This replaces Dahlberg’s (1929, 1948) formulae.
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Selection: construction of a model and the
properties of equilibrium populations

31 Introduction

The problem of the theory of natural selection in age-structured
populations was first considered quite early in the history of population
genetics, by Haldane (1927a) and Norton (1928). Until comparatively
recently, there was little interest in adding to the important contributions
of these authors, apart from the isolated paper of Haldane (1962). This is
probably largely due to the introduction by Fisher (1930) of his well-
known ‘Malthusian parameter’ method of dealing with selection in con-
tinuous-time populations, which apparently provided a simple and elegant
asnwer to the problem, and has since been extensively employed in
population genetics (Crow and Kimura, 1970). This method assumes that
fixed per capita birth-rates and death-rates can be assigned to each
genotype, analogous to the rates defined in section 1.3.2 for a genetically
homogeneous population in stable age-distribution. The Malthusian para-
meter for a genotype is the difference between these two quantities, and
is used in differential equations for gene frequency change in much the
same way that the standard discrete-generation fitness measure of Wright
and Haldane is used in difference equations. But as pointed out by
several authors (Moran, 1962; Charlesworth, 1970; Pollak and Kemp-
thorne, 1970, 1971), an individual genotype cannot have a fixed per capita
birth-rate and death-rate when the genotypic composition of a population
is changing under natural selection, resulting in a continual disturbance of
the population’s demographic structure.

The question of the analysis of the process of selection in age-struc-
tured populations is, therefore, not satisfactorily settled by the Malthu-
sian parameter technique, and interest in the problem revived about
twenty years ago, as can be seen from the publications of Anderson and
King (1970), Charlesworth (1970, 1972-4, 1976, 1990a, 1993), Pollak and
Kempthorne (1970, 1971), King and Anderson (1971), Charlesworth and
Giesel (1972a, b) Charlesworth and Charlesworth (1973), Lande (1982),
Tuljapurkar (1982), Abugov (1986), and Orzack and Tuljapurkar (1989),
among others. During this period, there has also been strong interest
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among evolutionary theorists in the evolution of life-histories, which
reflect the phenotypic consequences of selection in age-structured popula-
tions (reviewed by Roff, 1992; Stearns, 1992; Charnov, 1993). This topic
is discussed in Chapter 5.

The present chapter is concerned with the construction of a reasonably
realistic and rigorous model of the population genetics of natural selec-
tion, and with the analysis of equilibria under selection, mostly with
respect to a single locus. The following chapter deals with the dynamics of
selection, and with selection on quantitative characters. Both finish with a
discussion of the biological implications of the main results.

The mathematical models throughout these chapters are developed
mainly in terms of the difference equation approach to age-structured
populations, described in section 1.2.1, since in studying the selection
process this method gives a more compact notation for the highly non-
linear equations which arise than the equivalent matrix formulation. It
also permits an easy extension to the integral equations of the corres-
ponding continuous-time model. Only sexually reproducing populations
are considered; the relatively trivial case of selection in an asexual
population has already been dealt with in section 1.5. The presentation is
for the case of two distinct sexes, although hermaphrodite and monoe-
cious species can be described by the same equations if male and female
gametes from the same individual are considered separately. Random
mating with respect to genotype is assumed throughout (complete self-
fertilisation has been studied by Pollak and Kempthorne, 1970). Selection
is assumed throughout to be frequency independent, although consider-
able attention is paid to density-dependent selection.

3.2 Construction of a model of selection

3.2.1 Genotypic parameters

As in the case of selection in an asexual species (section 1.5.2), it
is necessary to specify demographic parameters for each genotype. For
concreteness, consider an autosomal locus with alleles A;, A,, ..., A,,
and let A;A; be the genotype of an individual who received A; from its
mother and A; from its father. Reciprocal effects are assumed to be
absent, so that the parameters of A;A4; and A;A; are identical. Let Py(x,
t) and P}(x, t) be the probabilities of survival from age-class x at time ¢
to age-class x + 1 at time ¢ + 1 for A;A; females and males respectively.
As in section 1.2.1, we can derive from these the probabilities of A;A;
females and males surviving to age x at time ¢ from conception at time
t—x
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lij(x, t) = Hlpij(x -y, t=y) (3.1a)
y=

I¥(x, 1) = an}}(x -y, t—y) (3.1b)
s

In principle, we can also define the fecundity of an A;A; individual
aged x at time ¢ in terms of the number of offspring it is expected to
produce in time-interval . By analogy with section 1.2.1, this can be
written as M;(x, t) for a female and Mj(x, t) for a male. Empirically,
these fecundities can be measured simply by estimating the mean number
of offspring attributable to an A;A; female or male of age x at time . As
in the case of a genetically homogeneous population, these parameters
cannot in general be treated as independent of the age-composition of the
population. The problem is even worse in the present case since, if
different classes of matings have different fecundities, the net fecundity of
individuals of a given genotype, age and sex may be affected by the
genotypic composition of the population of the opposite sex, as well as by
its age composition. This problem also arises, in a less acute form, in
discrete generation models of selection (Bodmer, 1965; Kempthorne and
Pollak, 1970; Prout, 1971a, b; Abugov, 1985; Nagylaki, 1987). It is
usually dealt with in that case by making specialising assumptions about
the way in which selection on fecundity works, and this is essentially what
will be done here.

3.2.2 Models of the mating process
It is convenient and realistic to make the assumption used in

deriving equation (1.5): the expected number of offspring produced at
time f by an A;A; female aged x is independent of the genotypes and ages
of her mate or mates. Hence, Mj(x, ¢) is independent of the composition
of the population with respect to both age and genotype, unless fre-
quency-dependent selection is operating.

If Nj(x, ) is the number of A;A; females aged x at time ¢, the total
number of zygotes produced at time ¢ is

B(t) = X Nyj(x, t)Mj(x, 1) (3.2a)

ijx
Similarly, let Nj(x, t) be the number of A;A; males aged x at time ¢.
Since every individual has a mother and father, we must also have

B(t) = SNi(x, OM}(x, 1) (3.2b)

ijx
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The summations in these equations are taken over all reproductively
active individuals. Selection may well involve the ages of first and last
reproduction; in order to avoid excessive use of subscripts, wherever
upper and lower ages of reproduction appear (b and d for females, b*
and d* for males) these are to be taken as representing the maximum
upper and minimum lower values respectively for all genotypes, unless
genotypes are specifically identified by subscripts.

Since M;i(x, t) is assumed to be independent of the population’s
composition, equations (3.2) imply that the absolute values of the
M(x, t) are constrained by the state of the male and female populations.
The nature of this constraint is particularly simple if a second assumption
is introduced: that mating of fertile individuals is random with respect to
both genotype and age. Such randomness arises naturally in the following
two models of the mating process.

Sperm or pollen pool model

In this model, breeding males at time ¢ are assumed to shed their
gametes into a common pool of effectively infinite size, from which
random draws are made to fertilise the ova. Let 6;;(x, t) be the expected
number of gametes contributed to the pool at time ¢ by an A;A; male
aged x. This quantity characterises the absolute fecundity of the class of
male in question in the same way that the M;(x, t) functions characterise
female fecundity. The 6;(x, ¢) may in principle be independent of the
state of the population. The total size of the male gamete pool at time ¢ is

B*(t) = ZN;}E(x, 1)0;i(x, t) (3.3)
ifx
Only B(t) of these gametes actually fertilise ova, so that the net fecundity
of an A;A; male aged x is

Mi(t, x) = 0;(x, t)B(t)/B*() (3.4)

where B(t) is determined by equation (3.2a).

This model of mating is realistic for organisms with external fertilisa-
tion, such as many species of marine animals which shed their sperm and
eggs into the sea, and self-incompatible higher plants, whose pollen is
dispersed by wind or insect vectors. For organisms with internal fertilisa-
tion, the following model is more appropriate.

Mating group model

During time-interval ¢, females mate with males chosen by draws
from a group composed of all fertile males. Independent draws are made
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from the group until all the fertile females present at time ¢ have
successfully mated. The quantity 6;(x, ¢) which characterises a male of a
given class is now to be regarded as the probability that he is chosen in a
draw from the group. The relative values of the 6;;(x, t) are independent
of the composition of the population unless there is frequency-dependent
selection. The net fecundities M(x, ) can be calculated by a technique
similar to that used for the gamete pool model, yielding an expression
identical with equation (3.4). B*(¢) in this case is defined purely formally,
however, and has no concrete biological meaning.

This model provides a reasonably accurate description of, for example,
many species of insect or small vertebrate. It does not apply to species
such as man, where there is a high correlation between the ages of mates.
An examination of the consequences of non-random mating with respect
to age is made later in this chapter (section 3.2.4), but for the present the
assumption of random mating will be retained.

3.2.3  Genotypic frequencies

With the single-locus case and random mating, it is easily seen
that the genotypic frequencies among the zygotes produced at time ¢ are
identical with those obtained by combining pairs of alleles drawn at
random from a pool of maternally derived genes and a pool of paternally
derived genes. As in section 2.2.1, let the frequencies of allele A; among
the maternal and paternal pools be p;(t) and pf(f) respectively. The
frequency of A;A; among the zygotes is

pi(t) = p(1)p}(1) (3.5)
where the allele frequencies are given by
B(t)pi(t) = %Z[M}'(xs £) + Ni(x, )] My(x, 1) (3.6a)
Jx
B(1)pi(r) = 53N}, 1) + Ni(x, )]Mf(x, 1) (3.6b)
Jx

These equations can be simplified by assuming that the frequency of
females among new zygotes has a fixed value a, which is independent of
the ages and genotypes of the parents. The number of male and female
zygotes can then be written as fixed fractions of the total number of
zygotes, aB(t) and (1 — a) B(t) respectively. We can also write m;(x, t)
for the expected number of daughters of an A;A; female, and mj(x, ¢)
for the expected number of sons of an A;A; male, aged x at time ¢.

Cambridge Books Online © Cambridge University Press, 2009



110 Equilibria with selection

my(x, t) = aM(x, t) (3.7a)
mi(x, t) =1 - a)M}(x, 1) (3.7b)
This enables us to define reproductive functions for each genotype as
kif(x, t) = Lj(x, )my(x, t) (3.8a)
ki(x, t) = i(x, tym¥(x, t) (3.8b)
(cf. section 1.2.1). For t = x, we have from equation (3.5)
Nj(x, t) = aB(t — x)pi(t — x)pF(t — x)lj(x, 1) (3.9a)

N¥(x,t) = (1 — a)B(t — x)p(t — x)pF(t — x)I¥(x, 1)  (3.9b)

These relationships can be used to formulate difference equations for
the allele frequencies. When t = d, d*, all the zygotes in the population
are produced by parents who were born after the initial time-interval.
Equations (3.6) become, using equations (3.8) and (3.9),

B(1)p(t) = 52 B(t — x)[pi(t — x)p¥(t — x)

jx

+ pi(t — x)p(t — x)]kii(x, 1) (3.10a)
B(t)pi(t) = %230 — x)[pi(t — x)pj(t — x)

+ pi(t = x)p¥(t — x)]ki(x, t) (3.10b)
where

B(t) = X B(t — x)p(t — x)p¥(t - x)ki(x, t)

ijx

= Y B(t — x)p(t — x)pF(t — x)ki(x, 1) (3.10¢)
ijx
For times earlier than this, contributions from individuals alive in the
initial time-interval must be taken into account as well. We use a method
similar to that of equation (1.18). Write

g(1) =%x zm;[ — 1,0) + Ni(x — £, 0)]1;(x, 1) My(x, t)
(3.11a)

gt = %i 2 —1,0) + N%(x — 1, 0))i%(x, )M¥(x, 1)
T (3.11b)
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where gi(t) =0 for t = d, gf(t) =0 for t = d*; I,;(x t) and [¥ f(x, t) are
defined analogously to I(x, t) in equation (1.18). It is easily seen that the
full versions of equations (3. 10) for arbitrary ¢ are

B(t)pi(1) = gi(1) + 22 B(t - x)E[P: t = x)pj(t - x)

+ pi(t — x)pF(t — x)]ki(x, 1) (3.12a)
B(t)p¥(t) = gf (1) + zZlB(f = I)E[P; (t = x)pf(t — x)
+ pi(t — x)pF(t — x)]kf(x, 1) (3.12b)

B(1) = X8i(t) + ZIB(I = x)2pi(t = x)pf(t — x)ki(x, 1)
J (3.12¢)

B(t) = Eg (1) + Z B(1 - I)ZPI(! = x)pj(t = x)kjj(x, 1)

(3.12d)

There are 2(n + 1) equations in this system, taking i over all possible
values, but only 2n are independent, since Y, p; = >, p¥= 1. These equa-
tions can be simplified further if it is assumed that the life-tables for each
genotype are identical for males and females, and that the age-specific
fecundity functions for each genotype have the same shape with respect to
age in males and females, i.e. if we have

Ir}'(x! t) = I?;'(x, t) (3136)

0ii(x, 1) < My(x, 1) (3.13b)
(Note that this implies b = b* and d = d*.)
If these relations are assumed, it is easy to see that p;(t) = p¥(¢) for
t = d, regardless of the initial conditions. If we shift the time-scale so that
the initial time interval falls in the period when p; = p¥ a full description
of the population’s state is given by the reduced system of n + 1 equa-
tions, n of which are independent

B(t)pi(1) = gi(1) + ElB(f — x)2,pit = x)pt — x)ky(x, 1)
x= j

(3.14a)
B() = Sg(0) + 3 BU = )Spit = 0pit = Dkix, 0
i x= if
(3.14b)
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Table 3.1. Assumptions involved in deriving the difference equations for gene
frequencies

Equations (3.12) and (3.14) require that:
(1) The fecundity of a mating between a given pair of individuals is determined
solely by the age and genotype of the female.
(2) Mating is at random with respect to age and genotype.
(3) The primary sex-ratio is constant and independent of parental age and
genotype.

Equations (3.14) also require that:
(4) The age-specific survival probabilities of males and females of a given
genotype are equal.
(5) The age-specific fecundity functions of males and females of a given
genotype are proportional.

The assumptions embodied in equation (3.13) are somewhat arbitrary,
and are unlikely to hold for many biological situations. Equations (3.14)
are useful, however, since they resemble closely the standard discrete-
generation selection equations of population genetics (Crow and Kimura,
1970, p. 180), which in fact may be regarded as the special case of
equations (3.14) with b = d = 1; they take the form

W(O)pi(1) = pi(t = DX pi(t = YWyt — 1) (3.15a)
]
W(t) = Xt — Dp(t = YWz — 1) (3.15b)
ij

where Wj(1) is the fitness of A;A; in generation ¢.

Equations (3.14) can therefore be used to compare the properties of
age-structured populations with those of discrete-generation populations,
as well as being more tractable than equations (3.12) for mathematical
analysis. Equations of this form, or their matrix or continuous-time
equivalents (equations (3.16)) have commonly been used in studies of the
theory of selection in age-structured populations (e.g. Haldane, 19274,
1962; Norton, 1928; Anderson and King, 1970; Charlesworth, 1970, 1972,
1976; Pollak and Kempthorne, 1971). The numerous assumptions needed
to arrive at these equations are summarised in Table 3.1, and should be
borne in mind whenever they are used. The earlier papers on this subject
were rather casual about the nature of their assumptions concerning the
mating process and mode of selection; Pollak and Kempthorne (1971)
were the first to emphasise the need for clarity on these points. They in
fact went further than we have done and assumed that the fecundities of
each genotype were the same and were independent of age for each
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fertile age-class. These assumptions are not necessary, and their general
results are valid for the model leading to equations (3.14). For further
details of the models described in this section, see Charlesworth (1972,
1976).

The continuous-time model

These results can easily be extended to the continuous-time case
by increasing indefinitely the number of age-classes within the life-span.
As in section 1.2.3, the population size at time ¢ is characterised by the
population birth-rate B(t), such that the number of zygotes produced in a
short time-interval of length d¢ is B(t)d:. The frequency of A; among
maternally-derived genes of new zygotes at time ¢ is defined as p;(¢), such
that the number of A; genes of maternal origin among the zygotes
produced between ¢ and ¢+ dr is B(t)pi(t)dt; the paternal allele fre-
quency, p{(t), is defined similarly. By re-defining ;(x, f), m;(x, t) and
kii(x, t), etc., appropriately and re-formulating the mating models in
terms of arbitrarily small time-intervals, integral equations analogous to
(3.12) and (3.14) can be obtained. For example, the integral analogues of
equations (3.14) are

B(t)pi(t) = gi(t) + LB(I — x)pi(t — x)Zp;(t — x)k(x, t)dx
]
(3.16a)

B(t) = 2_85(‘) + IDB(I = x)zpi(‘ = x)pj(t — x)ky(x, t)dx
’ (3.16b)

d
80 =] SINx = 1,0) + Nytx = 1, 0w, )My, 1) dx
I
(3.16¢)
where I;(x, 1) is defined analogously to I(x, t) in equation (1.26).
Cornette (1975) and Nagylaki (1977, pp. 79-82) should be consulted

for an alternative formulation of the mating process with the continuous-
time model.

The two-locus case
The discrete age-class model developed above can easily be
extended to genetic systems more complex than that of a single autosomal
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locus. For example, consider a two-locus system with alleles A;, A, at
one locus and B;, B, at the other. With the assumptions that led to
equations (3.14), it is easy to derive difference equations which describe
the system completely. Let ¢ be the recombination fraction, and write the
frequencies of the gametes A,By, A1 B;, A;B; and A;,B; at time ¢ as
p1(t), pa(t), ps(t) and py(t), respectively. The coefficient of linkage
disequilibrium (cf. p. 76) is D(t) = p1(t)p4(t) — p2(t)ps(t). For t = d we
have

B(t)pi(t) = ZBU — x)pi(t — x)pj(t — x)k;i(x, t)
jx
* Y ceB(t — x)D(t — x)ku(x, 1) (3.17a)

B(t) = X B(t — x)pi(t — x)pj(t — x)kij(x, 1) (3.17b)
ijx
where the sign attached to ¢ is positive for i =2, 3 and negative for
i=1,4.
The extension of these equations to times ¢ < d is trivial.

3.2.4 Non-random mating with respect to age

Before going on to explore the properties of the gene frequency
equations derived in the previous sections of this chapter, it is worthwhile
to consider the consequences of relaxing the assumption of randomness of
mating with respect to age. The present account is based on that of
Charlesworth and Charlesworth (1973). It is necessary in this case to
consider all possible matings with respect to the ages of the partners. Let
W(x, y, t) be the frequency of matings at time ¢ involving females aged x
and males aged y. Let p;(x, t) be the frequency of A; among the gametes
produced by females in such matings, and p¥(y, t) be the corresponding
frequency among male gametes. It is convenient to write

Bi(x, y, t) =3[pi(x, 1) + pX(y, 1] (3.18q)
6,-(x, Y, t) = pi(xs r) - ﬁi(x’ Y, !) = ﬁ,—(x, Y, t) - P?‘(}', t)
(3.18b)

If there is random mating with respect to genotype, the genotypic
frequencies among the zygotes produced by this class of matings may be
written (dropping the argument ¢ for brevity)
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pi(x, y) = px)p}(y) = pi(x, y) — 8i(x, y) (3.19a)
pii(x, y) + pii(x, y) = pi(x)p;(y) + pi(x)p¥(y)
=2pi(x, y)Pj(x, y) — 28;(x, y)d(x, y)
(3.19b)

Taking expectations over all classes of mating, we find that the overall
genotypic frequencies among the new zygotes are given by

bi = ZW(X» y)[ﬁzz(x’ }’) - 6?(“‘: )’)]
= pi — & + V[pi(x, y)] - V[5(x, y)] (3.20a)

i + pji = 229(x, Y)[Bi(x, y)Bj(x, y) = 8i(x, y)8;(x, y)]
xy

=2p;p; — 28;6; + 2 Cov [pi(x, y), pj(x, )]
—2Cov [6i(x, y), 6j(x, y)] (3.20b)

where §; = D ¥(x, Y)Bi(x, ¥), 8 = S ¥(x, ¥)8,(x, y), and the V and
Cov functions are the variances and covariances across age-classes of the
variables enclosed in square brackets.

If selection is not intense, we can ignore the second-order terms in the
differences in the gene frequencies and in the §; between different classes
of mating (section 4.2), so that the variance and covariance terms can be
dropped from equations (3.20), to a good approximation. Noting that
pi(t) = pi(t) + 6;(t) and p¥(t) = p;(t) — 6;(¢), the approximate express-
ions can be substituted into equations (3.9), enabling us to recover
equations (3.10) and (3.12). This shows that, as far as the formal
expressions for the gene frequencies are concerned, non-random mating
with respect to age has only a second-order effect. But, unlike the
random-mating case (section 3.2.2), it is no longer possible to define
0;i(x, t) functions which are independent of the composition of the
population. This means that with non-random mating between age-clas-
ses, equations (3.10) etc. are useful only in treating equilibrium popula-
tions, and certain restricted types of non-equilibrium situations to be
discussed in section 4.3.1.

With intense selection, equations (3.20) show that deviations from
Hardy-Weinberg frequencies among the new zygotes can be produced
even if there is random mating with respect to genotype. With just two
alleles, A, and A,, equations (3.20) become
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pu = pi— 8 + V[pi(x, y)] = V[&i(x, y)] (3.21a)
P12t pn =2p1p2 + 25% = 2V[pi(x, y)] + 2V[6i(x, y)]
(3.21b)

The effects of differences in gene frequency between the sexes and
differences between classes of mating are in opposition, the former
tending to produce an excess of heterozygotes, and the latter a deficiency,
over the Hardy-Weinberg frequencies. If selection acts in a similar way
in males and females, it is probable that the terms in 61{ will be small,
compared with the variance in gene frequencies over classes of matings,
resulting in a net deficiency of heterozygotes among the new zygotes. Of
course, if there is a viability advantage of the heterozygote, this deficiency
of heterozygotes will diminish among older age-classes and may be
replaced by an excess of heterozygotes. This may be relevant to some
observations of heterozygote deficiencies in natural populations (e.g.
Schaal and Levin, 1976; Charlesworth, 1991).

3.3 Populations in genetic equilibrium

In this section we examine the more important properties of
age-structured populations in genetic equilibrium under selection. For
convenience, the simplified selection equations (3.14) are used for deriv-
ing most of the results, although reference to the more realistic models
will be made where appropriate. The treatment here is derived largely
from the papers of Charlesworth (1972) and Charlesworth and Charles-
worth (1973).

3.3.1 Dependence of genetic equilibrium on demographic stability
One of the most important results in the theory of selection in
age-structured populations is that genetic equilibrium is generally possible
only if there is demographic stability, i.e. if the population is stationary in
size or growing at a constant rate, and has a constant age-structure. A
corollary of this is that populations which are subject to fluctuations in
growth-rate and age-structure may show fluctuations in their composition
at loci undergoing selection (Anderson and King, 1970; Charlesworth and
Giesel, 1972a, b). The biological implications of this result are discussed
in section 3.4.1; here we will investigate its mathematical basis.
In an equilibrium population, the gene frequencies at a locus must take
values independent of time, so we can write p;(t) = p; in equations
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(3.14), yielding the equilibrium equations for t = d

1= %‘,ﬁ@%kﬂx’ 1) (3.22a)
B(r) = X B(t — x)pipjkii(x, t) (3.22b)

ijx

These may be compared with the equilibrium form of the discrete-genera-
tion equations (3.15), writing the fitnesses W; as independent of time, as
must usually be the case in an equilibrium population

W,

1=>p—== 3.23a
; % (3.23a)

W= Zﬁsﬁjw}j (3.23b)
ij

Only the relative values of the Wj; in equations (3.23) are important in
determining the equilibrium gene frequencies. If we wish to define a
fitness measure for the age-structured case which determines the equili-
brium gene frequencies in the same way as the Wj; in the discrete-genera-
tion case, we can therefore choose a scale in which the equivalent of W is
1, with no loss of generality; this yields the following equilibrium fitness
measure for the age-structured case

vy B—x)
Wi g B() kii(x, t) (3.24)
(The fitness measure is given in lower case to distinguish it from the
discrete-generation Wj;.)

For there to be genetic equilibrium, the relative values of these w;
must be independent of time, except in certain degenerate cases discussed
by Charlesworth (1972). Since variation with ¢ of the function B(t — x)/
B(t) affects the relative contributions of different ages to the wy, it is
difficult to imagine conditions under which a population with a varying
growth-rate, and hence varying B(¢ — x)/B(t), could be in genetic equili-
brium, unless we can write for all ij

kij(x’ !) = w;jks(x’ !) (325)

where ky(x, t) is the reproductive function of some standard genotype,
and wj; is a constant independent of x and ¢ but characteristic of A;A;.
It is unlikely that equation (3.25) can often be satisfied. If selection acts
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at the level of age-specific survival probabilities, for example, and if
genotypic differences in these are independent of age, we can write

fij(x) = P;!s(x)

where [(x) is the survival function for the genotype with the highest
survival probabilities, and Pj=<1 is a constant characteristic of A;A;.
Even in this simple case, equation (3.25) is violated. Similarly, if selection
acts at the level of fecundity, it is likely that genotypes will differ in such
parameters as age at first or last reproduction, time of peak fecundity
etc., which will also be inconsistent with equation (3.25).

We may conclude, therefore, that a population will be in genetic
equilibrium only if the population has a constant growth-rate and hence
stable age-structure, unless selective differences among genotypes are
non-specific with respect to age in such a way that equation (3.25) is
satisfied. Of course, deviations from genetic equilibrium caused by chan-
ging age-structure may be so slight as not to be noticeable in practice; the
conditions under which there are significant effects of changing demo-
graphy are discussed in section 3.4.1.

Proof for the time-independent case

A formal proof that demographic stability is necessary for genetic
equilibrium under selection can be given in the case when the k;(x, 1)
functions are independent of f. We assume that the population is at
genetic equilibrium but does not possess a stable age-structure, and show
that this leads to a contradiction except when equation (3.25) is satisfied.

If the population is in genetic equilibrium, it can be treated from the

demographic viewpoint as if it were genetically homogeneous, replacing
the usual reproductive function k(x) (equation (1.16)) by the mean for
the equilibrium population

k(p,x) = 4 ﬁfﬁjki,f(x) (3.26)

y

From the standard theory described in section 1.3.1, it follows that, for a
population with changing age-structure, we can write B(f) at any time as

d
B(t) = S At (3.27)
=1

where the A; are the roots of the dth degree polynomial

SAFk(p, x) = 1 (3.28)
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(Equation (3.27) assumes for simplicity that the A, are all distinct, but the
following proof can easily be extended to cover the cases of multiple
roots.)

If the expression for B(t) in equation (3.27) is substituted into equation
(3.24), the following condition for constant w; must hold for each
genotype and each value of ¢

d d
S CATIIA  i(x) = wi S G (3.29)
=1 x =1
By choosing an arbitrary set of values of ¢, [t;, £, ..., #;], and
substituting them into equation (3.29), we obtain a set of homogeneous
linear equations in d unknowns, [y, y2, - - - , V4]
d
IZlamzy: =0 (3.30)

where

y=SarEE g, = g
x Wi

But, since the choice of r values is arbitrary, it must be possible for the

determinant of the a,, to be non-zero, which implies that the y, must all

be zero for equation (3.30) to hold. Each A; must therefore be a root of

the following equation, for every i and j

wij

Since the coefficients of a polynomial equation are completely deter-
mined by their roots, this implies that the k;(x)/w; are the same for each
ij and a given value of x, so that equation (3.25) is satisfied. Under any
other conditions, the population cannot simultaneously be in genetic
equilibrium and not have a stable age-structure.

3.3.2 Equilibrium fitness measures

The above results mean that there no loss in generality in writing
B(t — x)/B(t) in equation (3.24) as A; *, where A, is the geometric rate of
increase of the equilibrium population; in cases where the fitnesses are
sensitive to changing demography, an equilibrium can only exist if the
population growth-rate is constant, and in cases where the fitnesses are
insensitive, the values of B(t — x)/B(t) are unimportant. We can simi-
larly write k(x, ¢) as independent of ¢. For notational reasons which will

Cambridge Books Online © Cambridge University Press, 2009



120 Equilibria with selection

become clearer when we discuss the dynamics of selection in Chapter 4, it
is convenient to work with the natural logarithm of 4;, which we will write
as 7 in order to emphasise that it is the intrinsic rate of increase for the
equilibrium population (cf. equation (1.45)). The equilibrium fitness
measure for equations (3.14) can therefore be written as

= Y " ky(x) (3.31)

The mean fitness of the equilibrium population is, on this definition,
equal to the mean Fisherian reproductive value for a new zygote (cf.
equations (1.54)), which is equal to unity. The equilibrium fitness of a
genotype can be thought of as its contribution to the reproductive value,
at the zygote stage, of the population as a whole.

Similar conclusions concerning the interdependence of demographic
stability and genetic equilibrium apply to more general situations. For
example, we can use equations (3.20) for the case of non-random mating
and differences in demographic parameters between the sexes. Neglecting
the terms which are second-order in the gene frequency differences
between the sexes, as well as the variance and covariance terms, we
obtain

e 32
Pii = Pi
Pij + pji = 2Pip;

Substituting these into equations (3.9) and (3.10), and solving for equili-
brium, we find that

152 2l U x)ZP; r;(x t)

x B() 7
. < B(t—x)
R TR

which can be added, to yield

=15 BU=X) 55 1k, 1) + K3(x, 1) (3.32)
"By 4

This is clearly analogous to equation (3.22a), and can be used to draw the
same general conclusions. The equilibrium fitness measure corresponding
to that of equation (3.31) is

w;j = ZEe‘”[kq(x) + kj(x)] (3.33)
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This expression shows that the mean of the fitness measures for the two
sexes can, with sufficiently weak selection, be used for determining
equilibrium gene frequencies in the same way as the fitnesses when there
are no sex differences. The same is true in the corresponding discrete-
generation case (Wright, 1942; Nagylaki, 19795).

As discussed by Charlesworth (1972) and Charlesworth and Charles-
worth (1973), similar results can be derived for selection models involving
such additional factors as recombination and mutation (see also pp.
125-6), and expressions analogous to the discrete-generation equations
for equilibrium frequencies can always be derived, with the fitness
measures of equations (3.31) or (3.33) replacing the corresponding dis-
crete-generation formulae. Finally, we may note that analogous results
can be obtained with the continuous-time model; integration replaces
summation and the instantaneous logarithmic growth-rate of the equili-
brium population replaces 7.

In order to utilise these equilibrium fitness measures, it is obviously
usually necessary to know the value of 7. Unless this can be determined
in terms of more fundamental genotypic parameters, or is given by
empirical data, the equilibrium fitnesses are of uncertain value except
when equation (3.25) is satisfied. In the next section, we see how 7 can be
determined in the case of a single autosomal locus under selection alone
and, in the following section, in the case of selection balanced by
mutation.

3.3.3 Equilibrium in a single-locus system under selection

Density-independent case

Consider first of all the system described by equations (3.14) with
time-independent k;(x, t) functions. A convenient way of summarising
the demographic characteristics of a genotype A;A; is by means of the
intrinsic rate of increase of a homogeneous population, all of whose
members have the reproductive function of A;A;, k;j(x). We can call this
the intrinsic rate of increase of A;A;, denoted by r;. As in equation
(1.45), r; is the real root of the equation in z

wi(z) = De ¥ k(x) = 1 (3.34)

x

where w;i(z) generalises the fitness measure of equation (3.31) to arbit-
rary values of the complex or real variable z.
If we imagine a hypothetical population with fixed gene frequencies p,,
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P2s - .., Dn, its intrinsic rate of increase, r,, can be defined as the real
root of

w(p, 2) = 2e” " X pipjki(x) = 1 (3.35)
x if

Obviously, a real population only attains the rate of growth 7, if the gene
frequencies are at equilibrium, but this does not prevent us from using r,
as a useful means of characterising a non-equilibrium population with a
given set of gene frequencies.

Using these definitions in the two-allele case, equations (3.22) become

1= pywn(?) + powna(7) (3.36a)
1= pywia(7) + pawn(F) (3.36b)

Noting that p, + p, = 1, the following pair of homogeneous linear equa-
tions in p; and P, can be obtained from these

pill = wu(P)] + P2[l — wia(7)] =0 (3.37a)
pa[l — wia(P)] + Po[l — wn(F)] =0 (3.37b)

Solving for p, and p, we obtain the gene-frequency equation for a
polymorphic equilibrium

P — wia(7) — wa(7)
P2 wi(?) — wi(?)
This, as anticipated from the general results derived above, is identical in
form with the standard discrete-generation equation for this case (Crow
and Kimura, 1970, p. 270). For an equilibrium with 0 < p; < 1, we must
have either wy; > wyy, wyp or wip < wyy, wy, excluding the degenerate
case wiy = wyp = wy which implies ry; = ry; = rp = 7. Furthermore,
equations (3.37) imply that 7 must lie between ry; and the closer of ry;
and ry,, since the w;(z) are strictly decreasing functions of z when z is
real. This decreasing property also implies that wy; > wy;, wy, is equiva-
lent to ry; > ryy, ryp, and that wy, < wyy, wo is equivalent to rjp < ryp,
Faa.
To determine 7, we note that, for equations (3.37) to be satisfied for
non-zero p; and p,, the determinant of their coefficients must vanish, i.e.
7 must satisfy the equation

[1 = wi(2)] = [1 = wi(2)][1 = w(2)] (3.39)
This equation was first derived by Norton (1928).

(3.38)
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It can be shown as follows that there is only one real value of z which
satisfies both this equation and the above requirements for 7. Consider
the case ry; > r1y, r12. Then, from the fact that this implies wy; > wyy,
wy, at equilibrium and from standard population genetics theory, it
follows that the function w(p, 7) is at a global maximum with respect to
pp in the closed interval [0, 1], keeping z fixed at 7 and using the
constraint p; + p, = 1. Since w(p, z) is a decreasing function of z when z
is real, this implies 7 > r, for all p; # p; in [0, 1]. This excludes the
possibility that there is another equilibrium point which is also a max-
imum of w with respect to p;. The existence of a minimum of w is
excluded by the fact, also given by standard theory, that this requires
wip < wyy, wyp at the equilibrium point; this is incompatible with
Tz = s 2.

We conclude, therefore, that where ry; > ry;, ry, there is a unique
equilibrium point with 7 given by equation (3.39), and which corresponds
with a global maximum in r,. A similar argument can be used to establish
that ryp <ry, rp implies a unique equilibrium with 7, at a global
minimum. For practical purposes, 7 must usually be obtained by
Newton—Raphson iteration of equation (3.39), given the k;(x) functions
for each genotype. An example of the calculation of 7 and the w; for a
set of genotypes of Tribolium castaneum is given by Moffa and Constan-
tino (1977).

Density-dependent case

A very similar result can be obtained for the case when the
population size is regulated by a density-dependent negative feedback
mechanism, using the type of model introduced in section 1.4.2 for a
genetically homogeneous population (Charlesworth, 1972). It is assumed
that we can define a critical age-group consisting of a set § of age-classes,
such that the age-specific survival probabilities or fecundities for one or
more age-classes are decreasing functions of the numbers of individuals in
the critical age-group, either at the present time or at some past time,
depending on the mechanism of density regulation. In a population whose
numbers are changing in time, the value of k;(x, t) for a given genotype
is controlled by the density of the population; in general, it will depend
on some set of numbers of individuals in the critical age-group over a set
of earlier times T (equations (1.89) and (1.90)). Writing Ny for this set of
numbers, we can replace kj(x, ) by k;(x, Nr) in equations (3.14). In a
stationary population the numbers in the set Ny are constant in value and
equal to the number of individuals in the critical age-group.
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The properties of equilibrium populations can be derived if we assume
that the net reproduction rate of each genotype, in a population where
gene frequencies and population numbers are held fixed, is a strictly
decreasing function of the number of individuals in the critical age-group.
(This assumption is analogous to the decreasing property of w;(z) as a
function of z, in equation (3.34).) We can define the carrying-capacity,
N;, of A;A; as the equilibrium number of individuals in the critical
age-group which would be reached by a genetically homogeneous popula-
tion with the demographic parameters of A;A;. This is given as the unique
root of the equation

wi(N) = S kj(x, N) =1 (3.40)

where N is a positive real variable corresponding to a fixed number of
individuals in the critical age-group. The carrying-capacity, N,, for a

mixed population with fixed gene frequencies p;, p,, ..., p, can be
defined, analogously to 7, in equation (3.35), as the root of
w(p, N) = X ppikii(x, N) =1 (3.41)

ifx

Using the decreasing properties of w;(N) and w(p, N) as functions of N,
and proceeding in the same way as in the density-independent case, it is
possible to establish conditions for the existence of an equilibrium in
terms of the Nj; they are identical with the earlier conditi()l,l\s in the r;.
We also have the result that N, takes a maximum value, N, at quili-
brium when N, > N,;, Ny, and a minimum when N, < Ny;, Ny, N is
given by the analogue of equation (3.39) with N substituted for z. These
results are identical with those for the corresponding discrete-generation
model (Charlesworth, 1971).

Muiltiple alleles
With n alleles, the equilibrium is determined by the set of
equations corresponding to equations (3.36)

2 piw(P) =1 (3.42a)
where 7 is a real root of the determinantal equations corresponding to
equation (3.39), with a;; = 1 — w;(z)

|Al =0 (3.42b)

An analogous result holds for the density-dependent case, with the
equilibrium carrying-capacity, N, replacing 7.

Cambridge Books Online © Cambridge University Press, 2009



Populations in genetic equilibrium 125

Unfortunately, it is not possible to prove the same sort of uniqueness
properties for N and 7 as in the two-allele case. It can, however, be
shown that there is at most one maximum in r, or N, with all » alleles
present; this corresponds to a stable equilibrium when selection is weak
(pp. 140-1). Equation (3.42b) can always be solved numerically, given
the k;(x) functions.

In most other cases, it is not possible to obtain an equation such as
(3.39) or (3.42) which determines 7 or N in terms of the more basic
genotypic parameters. This is so even in the case of a single locus with
two alleles when there are demographic differences between the sexes,
since the values of the k}(x, f) depend on the composition of the
population, so that a detailed specification of this dependence would be
necessary to obtain a complete solution for the equilibrium population.
This problem can be evaded when selection is weak, using the methods
described in section 4.2.1. One important case which can be treated
satisfactorily, without having to assume weak selection, is when an allele
at a locus is maintained at a low frequency as a result of a balance
between mutation and selection (Charlesworth and Charlesworth, 1973),
and this case will now be considered briefly.

Mutation-selection balance

In this case, we consider a ‘wild-type’ allele A, at a locus, which
mutates to a deleterious allele A,, kept at a low frequency by selection.
The rate of mutation from A, to A, is u(t), defined by equations (2.49).
The rarity of A, means that it is reasonable to neglect terms of order u?
and up,. Equations (3.12) can be modified in a simple fashion to
incorporate the effect of mutations. Carrying out a similar procedure to
that involved in deriving equation (3.32), we obtain the following equa-
tions for the equilibrium values of the frequencies of A; and A,
averaged over male and female gametes

B, = Zf%(—‘;)i‘lﬁl[ﬁﬁu(x) ¥ Pokp()] - u(t)  (3.43a)
& B(f = x) o - o=
P2=>——>DaD1kn(x) + D2kn(x)] + u(r) (3.43b)

*  B(p)

where !Efj(x) = %[kfj(x) + kj(x)], and B(t) is now the value for the
population as a whole.

For an equilibrium population, there is, as we have seen, no loss in
generality in writing B(t — x)/B(¢) as e ™*, where 7 is the rate of growth
of the population as a whole. It is easily seen that, in the present case, 7
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is equal to ry; plus terms of order u(t), so that equations (3.43) can be
written, to a satisfactory approximation, as

p1=DilPiwn + Pawn] —u (3.44a)
P2=DalPiwia + Pawn] + u (3.44b)
where
u=3>e " [kyy(x)u(x) + kfi(x)u*(x)]
X
and

wi = >e " ky(x)
X

If the relative values of the w;; are written as 1, 1 — hs and 1 — s for
w11, Wiz and wy, respectively, equations (3.44) can be re-arranged to
yield the equilibrium frequency of A, in the standard form employed in
discrete-generation models (Crow and Kimura, 1970, p. 260)

s(1—=2h)p3+ hsp,—u=0 (3.45)

This equation has the familiar approximate solution for the dominant or
semi-dominant case

ﬁz =u/hs (h>0) (3.46a)
and, for the recessive case,
Pr=Vuls (h=0) (3.46b)

Analogous results can be derived for the density-dependent case, with
the fitnesses all being evaluated at N = Ny;. It may be noted that
equation (3.46a) is valid for the case of non-random mating with respect
to age and demographic differences between the sexes regardless of the
intensity of selection, since second-order terms in ﬁ% are neglected in
obtaining it and the terms in 8] and V in equations (3.21) are also of
order p? in this case. A similar treatment can also be made for the case
of a sex-linked locus.

3.4 Biological applications of the results

This section surveys the implications of the theoretical results
derived in this chapter for experimental and observational studies of
natural populations, with emphasis on those properties which are peculiar
to age-structured as opposed to discrete-generation populations.
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Probably the most important single respect in which age-structured
populations differ from those with discrete generations is the inter-
dependence of demographic stability and genetic equilibrium. As we saw
in section 3.3.1, we generally expect an age-structured population to
remain precisely in genetic equilibrium only if the population is demo-
graphically stable. Changes in the age-structure of the population, in-
duced by ecological changes, may therefore cause changes in allele
frequencies at loci under selection, even if the force of selection is
unchanged at the fundamental level of age-specific survival probabilities
and fecundities, i.e. if the relative values of the k;(x) functions for
different genotypes remain unchanged for each value of x.

The possible magnitudes of such shifts in gene frequencies, and their
relationship to the nature and strength of selection, were investigated by
Charlesworth and Giesel (1972a) by means of computer calculations of
population trajectories of two-allele systems, using equations (3.14). They
showed that cyclical fluctuations in gene frequencies could be generated
in populations exposed to regular cycles of population growth, imposed
by an external ecological factor which varied in intensity in time. An
example of such an effect is shown in Figure 3.1. The fluctuations in
population size were produced by periodic switches of the k;(x) functions
such that, at a point of change over from one regime to a new one, the
old k;i(x) values for each genotype and age were multiplied by the same
factor, which was greater or less than one depending on the desired
direction of change in population growth-rate. This corresponds to the
effect of an environmental factor causing periodic changes in the fecundi-
ties, and which affects each genotype and age equally. A;A, initiated and
completed reproduction later than A, A,. The heterozygote A; A, com-
bined the favourable characteristics of the homozygotes, thereby ensuring
maintenance of the polymorphism in each environment (section 4.3.1). In
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Figure 3.1. Fluctuations in gene frequency at a polymorphic locus, in-
duced by cyclical changes in the population growth-rate. The solid line
shows the successive values of log B(t), and the dashed line the fre-
quency of allele A, of the system shown in Table 3.2. Each genotype had
13 age-classes. (After Charlesworth and Giesel, 19724, Fig. 2.).
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Table 3.2. Equilibria corresponding to different environments

Environment F P wu/wi Wa /Wi,
1 -0.10 0.468 0.886 0.898
2 0.00 0.275 0.816 0.930
3 0.10 0.149 0.743 0.955

this example, there were three environmental states, following each other
in regular succession and corresponding to the equilibrium states shown
in Table 3.2, which would be attained if the population were left in a
given state for a sufficiently long time.

As can be seen from Figure 3.1, the actual time-course of change of the
population is such that the gene frequency and growth-rate fluctuate
within the two extreme equilibrium values; when the population is
switched into a new state, it starts moving towards the corresponding
equilibrium, but does not have time to reach it before the environment
changes again. The reason that allele A, is favoured when the population
is declining but A, is favoured in the period of population increase, is that
the A,A; homozygotes reproduce relatively early. The weighting factor
e~ ™ in the equilibrium fitness in equation (3.31) gives increased weight to
early as opposed to late reproduction when 7 is positive, and vice versa
when 7 is negative. From equation (3.38), one would therefore expect 4,
to be most frequent in populations with low 7, since the relative values of
the k;i(x) are independent of the environmental state in this model.

This type of model is of interest in relation to observations on natural
populations, where fluctuations in allele frequencies have often been
reported (e.g. Dobzhansky, 1943; Dubinin and Tiniakov, 1945; Gershen-
son, 1945; Tamarin and Krebs, 1969; Gaines and Krebs, 1971; Gaines,
McCleaghan and Rose, 1978). The observations reported by Gaines and
co-workers on the transferrin locus in Microtus ochrogaster are of espe-
cial interest in this context, since they find that Tf*/Tf* homozygotes at
this diallelic locus show higher growth-rates than other genotypes in
males sampled from populations in both Indiana and Kansas. Since the
onset of sexual maturity is largely determined by body weight in small
mammals, this suggests that males of this genotype may enter reproduct-
ive life earlier than the others. This is a species which shows population
cycling, and there is evidence that the TfE allele tends to increase in
frequency during the phase of population increase.

Although it is not possible in such cases of gene frequency fluctuations
to exclude other interpretations, such as selective responses to environ-
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mental factors like temperature or to population density itself (cf. King
and Anderson, 1971; Charlesworth and Giesel, 1972b), nevertheless
investigators should bear in mind the possibility that gene-frequency
changes may be due to a purely mechanical shift in genotypic fitness as a
result of changing demography, and are not necessarily caused by changes
in the selection regime at the level of age-specific survival probabilities
and fecundities.

The idea that genotypic fitnesses in an age-structured population may
depend on the overall demographic structure of the population is not a
new one. For instance, Bodmer (1968) suggested that the fitnesses of
sufferers from genetic diseases with a late age of onset may change in
response to changes in the mean age of reproduction of the whole
population. The selection models and resulting expressions for equili-
brium fitness described in the present chapter provide, however, an exact
genetic foundation for analysing the effects of demography on fitnesses,
as will be seen in section 3.4.1.

3.4.1 Factors influencing relative fitnesses

The way in which demographic factors can influence relative
genotypic fitnesses, and thereby alter the genetic composition of equili-
brium populations, can be understood in terms of the equations for
equilibrium genotypic fitnesses, such as (3.31) and (3.33). For simplicity,
the former is used here as a basis of discussion. Let us first consider the
effect of a change in an environmental source of mortality, which affects
the /(x) functions of the various genotypes in a similar way. If /;(x) is the
probability of survival to age x for a standard genotype, we can write

JI{J"(x) = Is(x)!:;(x)

where /jj(x) is a function which characterises A;A4;, and /(x) is common
to all genotypes. Changes in the level of an external source of mortality
which affects each genotype equally can be absorbed into /(x). For an
equilibrium population in stable age-distribution, the fitness of A;A; is
given by

wi = e L(x)l(x)my(x) (3.47)

If the population experiences a change in the level of mortality, there
may be a change in its overall age-distribution when equilibrium is
re-established. This would happen if, for instance, the population was
held in check by density-dependent factors affecting the survival of
immature stages, and the survival probability of each adult age-class were

Cambridge Books Online © Cambridge University Press, 2009



130 Equilibria with selection

altered (7 in this case would be zero for the old and new equilibrium).
Any such change will normally be expressed as a shift in e "*/(x) as a
function of age (cf. section 1.3.2). If the age-structure were shifted in
favour of younger reproductive individuals, e ~"* /,(x) must be changed in
such a way as to give greater weight to the [j(x)m;(x) for younger
age-classes in equation (3.47). Genotypes which have relatively high
kij(x) functions for younger ages, such as genotypes which initiate repro-
duction early in life or attain their peak fecundity early, would tend to
have higher relative fitnesses in the new equilibrium population. The
opposite would obviously be true if the age-structure of the population
became weighted in favour of older individuals due to a relaxation in
mortality.

A very similar analysis can be carried out for the case of a change in an
environmental factor affecting age-specific fecundities, as in the computer
model described above. Here, we can write mgy(x) for the fecundity
function of the standard genotype, and mj(x) for the fecundity function
characterising A;A;, so that

wi = >e  FLi(x)my(x)mj(x) (3.48)

If the population is density-independent, an increase in m,(x) at each age
results in an increase in 7, with a shift in the overall age-structure towards
younger individuals which is reflected in e "*/(x), and conversely if
my(x) is reduced. A change in the age-structure is therefore reflected in a
change in the weighting of reproduction with respect to age.

On the other hand, changes in mortality or fecundity which do not
result in any changes in the age-structure of the reproductive age-classes
fail to produce alterations in the weighting of reproduction at different
ages in equations (3.47) or (3.48), unless the changes are directed
specifically at certain age-groups. For instance, if the same extrinsic
probability of death were added to each age-class of each genotype, its
effect on age-structure in a density-independent environment would be
exactly cancelled out by a change in 7 (cf. Chapter 1, pp. 31-2). There
would be no change in e~"*/(x) and hence no change in the weighting of
reproduction in equation (3.48). Similarly, in a population which is
regulated by density-dependent mortality of immature stages, an increase
in my(x) for each age would be compensated for by an increased
mortality of the immature individuals, resulting in no change in 7, no
change in the age-structure of reproductively active stages, and no
increased weighting of early reproduction. Only if the increase in m(x)
were concentrated in early or late reproductive age-classes would there be
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a change in weighting without a change in the age-structure of the
reproductive part of the population.

These considerations suggest that demographic changes which affect
the age-structure of the reproductively active part of the population can
cause shifts in gene frequencies at loci under selective control, provided
that the relative values of the k;(x) functions for different genotypes vary
sufficiently with age. Conversely, demographic changes which leave the
age-structure of the reproductive age-classes unchanged are unlikely to
cause gene-frequency changes, unless they are due to a source of mortal-
ity or a factor affecting fecundity which is directed specifically at certain
genotypes or at a specific group of ages of the reproductive individuals.
Such demographically induced changes in relative fitnesses and gene
frequencies cannot occur to any significant extent if the k;(x) functions
are close to satisfying equation (3.25), i.e. if selection is non-specific with
respect to age. As shown by Charlesworth and Giesel (19724a), selective
situations in which the shapes of the m;j(x) functions with respect to age
vary between genotypes are highly favourable for this effect. Mortality
differences between genotypes are unlikely to result in shifts in relative
fitnesses with demographic changes, unless there are pronounced geno-
typic differences in the patterns with respect to age of the survival
probabilities from one age-class to the next, among the reproductively
active age-classes. Such a case occurs, for example, if one genotype is
afflicted with a reduced survival probability, but the onset of this is
delayed until well after the beginning of reproduction.

Shifts in gene frequencies due to demographic changes might well be
expected in populations which have colonised a new habitat where
density-dependent restraints are lifted and there is a high population
growth-rate. Although one would probably expect only a limited number
of loci to be under sufficiently powerful selective control of a suitable sort
for such changes to be induced, hitch-hiking effects on closely-linked loci
(Maynard Smith and Haigh, 1974; Kaplan, Hudson and Langley, 1989;
Stephan, Wiehe and Lenz, 1992) might cause additional changes in the
composition of the gene pool.

3.4.2 The measurement of fitness in human populations

The results derived in this chapter are of obvious relevance to
human geneticists interested in measuring genotypic fitnesses, for exam-
ple in connection with the ‘indirect’ method of estimating mutation rates
from the theoretical formulae for the balance between mutation and
selection (equations (3.46)). For such purposes, it is usually assumed that
the population is at equilibrium, so that the fitness measures described in
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this chapter are appropriate. Since human populations generally show
marked differences in vital statistics between males and females, the more
general fitness measure of equation (3.33) is preferable, assuming that the
necessary information on the vital statistics of the genotypes involved is
available. It should be borne in mind that this formula is strictly valid only
when the effects of non-random mating with respect to age, and of sex
differences in gene frequencies, can be treated as second-order (section
3.2.4). As pointed out in section 4.3.1, this is necessarily the case for a
rare non-recessive gene, so that studies of selection on rare dominant or
semi-dominant alleles can be carried out without serious error, using
equation (3.33). For rare recessives, or polymorphic loci, the use of the
formula requires relatively small selection intensities.

The greatest difficulty in using the formula is that detailed information
on the vital statistics of the genotypes concerned is rarely available.
Cavalli-Sforza and Bodmer (1971, Chapter 6) review various indirect
methods of obtaining vital statistics for genetic traits. Some examples of
the applications of these methods in connection with the equilibrium
fitness measure described here are given by Charlesworth and Charles-
worth (1973). We shall briefly consider some of their findings.

One of the few human genetic traits for which a reasonably complete
life-table has been estimated directly is the Marfan syndrome, a disease of
the connective tissue and vascular system which is controlled by a rare
dominant gene. Figure 3.2 shows the life-tables obtained by Murdoch et
al. (1972) for U.S. men and women suffering from this disorder, together
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Figure 3.2. Survival functions /(x) and /*(x), at intervals of one year, for
individuals with Marfan syndrome (©O——@), females; A——A , males)
and for average individuals (@——@, females; ye——k, males) from
the same (U.S.) population. (After Murdoch et al., 1972, Fig. 2.)
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with normal life-tables for the same period of time. It will be seen that the
disease first manifests itself as an increased probability of death early in
reproductive life; the mean age of death is 32. No information on the
age-specific fecundities of sufferers from the syndrome appears to be
available, so that we cannot find their fitness directly; but an over-
estimate can be obtained by assigning them the same m(x) and m*(x)
functions as normal individuals. Using census data for the U.S. popula-
tion of 1964, and the 7 value corresponding to the female data for that
year, we find that e "*k(x) for the Marfan syndrome is 0.91, and
> e ™ k*(x) = 0.78, giving an overall fitness value of 0.85. The relatively
small selection coefficient of 0.15 against this trait, despite its substantial
effect on the mortality of adults, is due to its delayed age of onset.
Nevertheless, fitness is relatively insensitive to changing demography in
this case. If the vital statistics for the 1939-41 U.S. population are used as
a basis for calculation, the fitness value is almost unchanged, despite the
fact that, because of lower fecundity, this population has an intrinsic rate
of increase of —0.002 per year compared with +0.016 for 1964. This
illustrates the conclusion reached above concerning the need for strong
differences between the mortality patterns with respect to age of different
genotypes during reproductive life if demographic structure is to affect
relative fitnesses. The time of onset of the mortality effect of the Marfan
syndrome coincides approximately with the onset of reproduction, and so
this condition is not satisfied.

This insensitivity to demographic change is not always the case,
however. Charlesworth and Charlesworth (1973) examined the fitnesses
of carriers of Huntington’s chorea, another rare dominant disease. This is
a disease with a late and variable age of onset. Cavalli-Sforza and Bodmer
(1971) suggested that a useful approximate estimate of the effect of the
disease on fitness could be obtained by assuming that sufferers cease to
reproduce as soon as it is manifested. Using the data of Reed and
Chandler (1958) and Reed and Neel (1959) on the distribution of age of
onset in a U.S. population, it is possible to calculate the fitness of
choreics relative to normal individuals, using vital statistics for different
populations. The results of these calculations are shown in Table 3.3.
Only the female fitnesses, >,e "~ k(x), were calculated in this case.

It is apparent that the high-mortality, rapidly-growing Taiwan popula-
tion of 1906 has the lowest selection coefficient against Huntington’s
chorea. This is what one would expect from the earlier discussion, since
such demographic conditions place the least weight on reproduction late
in life, whereas early reproduction is not greatly affected in sufferers from
this disease.
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Table 3.3. Selection coefficients against Huntington’s chorea in populations with
different demographic conditions

Intrinsic rate Selection

of increase coefficient
Population (per year) against chorea
U.S. (1939-41) —0.002 0.152
U.S. (1964) +0.016 0.126
Taiwan (1906) +0.021 0.088

There are numerous other diseases in man which either have a simple
mode of genetic determination, or for which there is evidence of the
involvement of genetic factors, and which do not manifest themselves
until after the start of reproductive life (Finch, 1990, Chapter 6). Exam-
ples of the former include genetically controlled cancers such as multiple
polyposis of the colon (Reed and Neel, 1955) and of the latter, such traits
as high blood pressure (Cavalli-Sforza and Bodmer, 1971, pp. 583-5). In
all these cases, we may expect that the reduction in overall mortality rates
which has accompanied advancing civilisation will have increased the
selection pressure against the genes that are implicated in such condi-
tions. Their frequencies in contemporary populations may therefore be
far from reflecting the equilibrium which they would eventually reach if
demographic change were to cease. The estimation of mutation rates
from the formulae for mutation-selection balance (Cavalli-Sforza and
Bodmer, 1971, pp. 88-92) is, accordingly, especially dangerous for genes
affecting characters of this sort.

Approximate estimators of fitness

In most cases, even such indirect approaches to determining
genotypic vital statistics are not possible, and various approximations
have to be resorted to. Provided that the population is not growing too
fast, the mean completed family size, discounting individuals who die
before reproductive maturity, should provide a reasonably good approxi-
mation.

This is equivalent to the net reproduction rate, R (section 1.3.2), which
is widely used as a fitness measure in studies of natural populations
(Clutton-Brock, 1988). If all that is known is that a mutant phenotype
suffers an enhanced average probability of death of Q per age-class,
without any information on the relationship of Q to age, it is possible to
approximate w;; in equation (3.33) by

1e (1 = Q) [k(x) + k*(x)] =1 =303 x e [k(x) + k*(x)]
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where k(x) and k*(x) are given by the vital statistics for the normal
population. The multiplier of Q on the right-hand side of this expression
is the mean generation-time of the population (cf. equation (1.47¢)).
Similarly, if all that is known is that the mutant has a fecundity of 1 — K
relative to normal, the best estimate of its fitnessis 1 — K.

Charlesworth and Charlesworth (1973) have discussed various other
measures of genotypic fitnesses which have been proposed by other
authors, and compared them with the values given by equation (3.31), for
the case of Huntington’s chorea. The measure discussed here has the
definite advantage of being based on a clear-cut genetic model, whereas
earlier measures rest on somewhat intuitive grounds. Provided that
adequate data are available, there is no greater computational difficulty
in using equations (3.31) or (3.33) than the less well-founded measures,
with modern computing methods. Of course, the inherent sampling error
and biases in the available data will usually mean that the use of an
incorrect fitness measure is only one of many sources of error in estima-
tion.
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Selection: dynamic aspects

4.1 Introduction
This chapter is concerned primarily with the analysis of the
process of gene frequency change under selection in age-structured popu-
lations, in particular with the question: to what extent can this process be
understood in terms of fixed parameters which characterise individual
genotypes, analogous to the fitnesses of genotypes in discrete-generation
models? The first investigation of the problem of the dynamics of
selection in the context of age-structured populations was that of Norton
(1928). (According to Haldane (1927a), Norton started work on the
problem as early as 1910 and had established his results by 1922.) He
studied the case of a single diallelic locus with time-independent and
density-independent demographic parameters for each genotype, with no
sex-differences, using the continuous-time equivalents of equations
(3.14). He showed that the long-term results of selection (whether one of
a pair of alleles is fixed or a polymorphism is maintained) are completely
predicted by the relationships between the intrinsic rates of increase of
the three genotypes, in the same way that the outcome of selection can be
predicted from the genotypic fitnesses in the discrete-generation case.
Haldane (1927a) established some approximate results for the rates of
spread of rare dominant and recessive genes in slowly growing popula-
tions, and concluded that selection proceeded in much the same way as in
the discrete-generation case. Both Haldane and Norton based their work
on equations which explicitly incorporated the characteristics of age-struc-
tured populations, in contrast to the approach of Fisher (1930, 1941) who
used differential equations to describe gene frequency change with con-
tinuous-time models but did not derive these from more basic equations.
Later work (Haldane, 1962; Pollak and Kempthorne, 1971; Charles-
worth, 1973, 1974a, 1976) has established that no single parameter can be
regarded as the fitness of a genotype with arbitrary selection intensities.
When selection is weak, however, it is possible to show that the intrinsic
rate of increase of a genotype can be equated with its fitness, with
time-independent and density-independent demographic parameters

Cambridge Books Online © Cambridge University Press, 2009



Approximate equations with weak selection 137

(Charlesworth, 1974a, 1976). Useful results can also be obtained for the
density-dependent case with weak selection.

In this chapter, we start by examining how the basic equations for gene
frequency and population size, such as equations (3.12) and (3.14), can be
approximated with weak selection to yield equations which are similar in
form to those for the usual discrete-generation models. We then go on to
consider the case of arbitrary selection intensities, by means of the local
stability properties of equilibria. Selection on rare alleles with variable
environments, and the probability of survival of a favourable mutant
gene, are treated. Selection on quantitative characters is also considered.
Finally, the relation between evolutionary optimisation theory and the
population genetics of selection with age-structure is discussed.

4.2 Approximate equations with weak selection

Most of the models in this section are developed in terms of a
single autosomal locus with an arbitrary number, n, of alleles, as in the
preceding chapter, although the case of two loci is considered briefly. In
addition, discussion is largely confined to the case of equations (3.14),
with some mention of the problem of sex differences in demographic
parameters. Both density-independent populations (with time-independ-
ent k;(x) functions) and density-dependent populations are considered.
Before proceeding to the detailed results, it is useful to have a clear
definition of what is meant by weak selection. We choose some genotype
as an arbitrary standard, and write its reproductive function as k(x, t).
The reproductive function for another genotype A;A; can be written as
kif(x, 1) = ko(x, 1) + g;(x, 1), where |¢;(x, 1) < eforalli, jand x, eis a
positive number which measures the strength of selection. Selection is
said to be weak when terms O(&%) can be neglected, compared with terms
O(e).t

4.2.1 The density-independent case

Approximate equations for B(t)

The first step in obtaining expressions for changes in gene fre-
quency and population growth-rate is to obtain an approximation for
B(t). From equation (3.14b) we have the exact expression for t = d

B(t) = 2)B(t — )2 pi(t — x)pi(t — x)k;i(x) (4.1)
x if

T As is conventional in mathematical usage, a function of &, f(¢), is said to be of order £ or
O(e) if |f(€)/e| < a when ¢ is taken sufficiently small, where a is a constant independent
of &. If | f(£)/e| approaches 0 as e — 0, we write f(&) = o(e).
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In constructing an approximate solution to this equation, we need the
result that the change in gene frequency between times ¢ and ¢ + 1 (more
technically, the first difference in gene frequency), which we can write as
Ap;(t) for allele A;, is of order ¢ for sufficiently large ¢. This result, which
is what one intuitively expects, is derived in Appendix 2. As mentioned
there, convergence to terms of order & should normally be fairly rapid.

We now choose a time ¢, which is sufficiently large that convergence of
the Ap; has taken place for each allele, and consider a time ¢ such that ¢
is previous to ¢t — d. We can write pi(t — x) = pi(to) + (¢ — x), where
;i is O(¢) if t and ¢, are sufficiently close, since &; is simply the sum of the
Ap; between tg and t — x — 1. Equation (4.1) can therefore be rewritten
as

B(t) = > B(t — x) ZPi(fo)P;(to)kfj(x)
X ij

+ ZZCf(I - x)P;(fo)ks;(x)] + 0(&) (4.2)

But ijj(ro) kij(x) = ,jp,(tu)p}(tg)k {(x) + O(g). Substituting this into
equation (4.2), and using the relation 5: &; = 0, we obtain

B(1) = 3 B(1 = x) 3 pi(10) pi{t0) k(%) + O())] (4.3)
x ij

Applying to this equation the type of argument used in Appendix 2, we
obtain Aln B ~ ry + O(£?), so that

B(t — x) ~ B(t)e™"* + O(&?) (4.4)

where ry is the intrinsic rate of increase associated with the mean
reproductive function for time ¢, z;jp;(tg) Ppj(to)kij(x). In other words, ry
satisfies the equation

Ee zxsz(tﬂ)pj(tﬂ)ku(x) =1

X ij
If terms O(e”) are neglected, this gives us the approximate asymptotic
result which we need. This can validly be done if selection is sufficiently
weak (¢ is sufficiently small), so that second-order terms can be neglected
in the total gene frequency change which takes place over the period of
time needed to stabilise the age-structure of a population with a constant
reproductive function. In most cases of biological interest this should not
be a long time, so that the condition is not unduly restrictive.
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Intuitively, this result can be viewed in the following way. Equation
(4.3) shows that the effect of selection on the mean reproductive function
of the population is second order compared with the selection intensity,
so that the population can be treated as though it has a fixed reproductive
function and hence a fixed rate of population growth over a sufficiently
short period of time.t This can be compared with the result for discrete-
generation models that the rate of change of population mean fitness is
second-order, with respect to the fitness differences between genotypes
(Crow and Kimura, 1970, pp. 208-9; Nagylaki, 1992, Chapter 4).

Approximate equations for Ap;: type 1
From equation (3.14a) we have the gene frequency equation for
t=d

B(1)p(t) = 2 B(t = x)pi(t = x) 2 p(t = x)k;i(x) (4.5)
x j

Substituting from equation (4.4), this becomes (for ¢ sufficiently close
to tg)

pi(t) = X e pi(t — x) X pi(t — x)kyi(x) + o(¢) (4.6)
x j

This equation can be simplified further if we approximate p;(t — x) by
pi(t) — xAp;(t). This type of approximation was first used in the context
of models of age-structured populations by Haldane (19274, 1962). It is
valid under conditions discussed in Appendix 2. Substituting into equa-
tion (4.6), and dropping the arguments from p;(¢) and A p;(t), we obtain

pi = piY, e " X piki(x) — Api Y x ™" piki(x) + O(¢?)
x ] x )

4.7)
In order to proceed further with this equation it is necessary to eliminate
the unknown quantity ry, which depends on the arbitrary choice of time
to. This can be done by again using the argument which led from
equations (4.1) to (4.3); we have

ZPf(fu)Pj(ta)kq(x) = ZPinkij(x) + O(&%)
i L)

t Of course, as time passes, f — t, will become so large that the O(£?) terms in equation
(4.4) can no longer be neglected. This problem can be overcome by shifting to a later time
t;, in place of t;, to which there corresponds a different intrinsic rate of increase r,
(cf. p. 140). Provided that ¢ is sufficiently small, and the demography of the population is
such that the time needed to stabilise age-structure is small compared with the time
needed for a change in gene frequency of O(¢), there will always be some intrinsic rate of
increase which can be substituted into equation (4.4).
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This means that, to order &2, ry can be replaced in equation (4.7) by r, as
defined by equation (3.35); the subscript p represents the set of gene
frequencies at time .

It is useful to define the following quantities;

T;‘,(Z) = Ex e ¥ ,;,-(x) (48&)

T(z)=2x e-zxzpipjkij(x) (4.8b)
x ij

wi(z) = 2 pwii(2) (4.80)
j

where the w;(z) are given by equation (3.34).
Using these definitions, and replacing ry by r,, equation (4.7) can be
rearranged to give the first type of approximate expression for Ap;

T(r,)Ap; = pi{wi(r,) — 1] + O(¢?) (4.9)

T(r,) in this equation may be regarded as a measure of the generation
time of the population at time ¢ (cf. Chapter 1, p. 30, and provides a
time-scale for the process of gene frequency change.

This equation is closely connected with the equilibrium theory devel-
oped in section 3.3.2. When r, = 7, as given by equations (3.42), we have
w; =1 for the alleles which are present in the population. Hence, the
equilibrium solution of equation (4.9) is, if we neglect the O(g?) terms,
identical with that given by the exact equations of Chapter 3. Since the
O(£?) terms in equation (4.9) vanish when allele frequency change ceases
and stable age-distribution is reached, it is not surprising that this
equation gives an equilibrium solution identical to that given by the
approach of Chapter 3 when the O(&?) terms are omitted. Furthermore,
standard theory tells us that, as in the two-allele case discussed on pp.
121-3, this equilibrium corresponds to a stationary point in the function
w(p, 7) defined by equation (3.35), with respect to variation in gene
frequency while holding 7, constant at 7 (cf. Crow and Kimura, 1970, pp.
272-7). This implies that, as in the two-allele case, 7, is at a stationary
point at the equilibrium. In the neighbourhood of equilibrium, equations
(4.9) can thus be satisfactorily approximated by substituting 7 for r,.

It follows that the w;;(?) control the local stability of the equilibrium in
the same way as the fitnesses W; in the discrete-generation case. From
the standard theory of the discrete-generation case, the mean fitness of
the population is at a global maximum at a stable equilibrium point with
all alleles present, and there is only one such equilibrium. Comparing the
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discrete-generation case with the present system, using the w;(7) as
fitness parameters, we see that w(p, ¥) is at a global maximum at a stable
equilibrium point, neglecting the O(e®) terms; it follows that 7 is a
maximum of r, at such a point, and that there can be at most one stable
equilibrium with all alleles present. In the case of a diallelic locus, it
follows that the equilibrium is locally stable if ri, > ry, rp, and is
unstable if ry; <ry, ryp. Study of equation (4.9) shows that these
relations also determine the global stability conditions with two alleles
and weak selection (cf. Charlesworth, 1974a).

Approximate equations for Ap;: type 2

Although equation (4.9) provides a useful characterisation of the
dynamics of the system, it suffers from the weakness that 7, is itself an
implicit function of the gene frequencies, so that it is tedious to calculate
the rate of change of gene frequencies at any given point. We now
develop a further approximation to this equation, which yields an ex-
pression for Ap; that depends only on gene frequency and on the
genotypic intrinsic rates of increase.

We note that we can approximate w;(r,) (given by equation (3.34)),

using Taylor’s theorem. We have

1= wy(ry) = wi(r,) + (rj = r,)(@w;/32),, + O(£?)
so that
wii(rp) = 1= (ry = 1,) T(r,) + O(&?) (4.10)

Substituting this into equation (4.9), and noting that Tj(r,)=
T(r,) + O(€), we obtain the final result

Ap; = pi(ri = ) + O(&?) (4.11)
where
= zpjr,} and 7= Zp,-pjrfj.
I i

An analogous procedure can be gone through for the continuous-time
model, for which we obtain

i = piri = P) + 0(E) (4.12)
dt
where the genotypic intrinsic rates of increase are now defined by the
integral equation analogue of equation (3.34).
It is clear from these results that, when selection is sufficiently weak,
the use of the genotypic intrinsic rates of increase provides a useful
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approximate method of calculating rates of gene frequency change in a
density-independent environment, with the r; playing much the same role
as the W in the discrete-generation case with weak selection (in which
case the normalising term W on the right-hand side of equations (3.15)
can be dropped; see Crow and Kimura, 1970, p. 191). Equation (4.12)
with weak selection is also similar in form to Fisher’s Malthusian para-
meter equation for gene-frequency change (Fisher, 1930, 1941). If selec-
tion is too strong, however, the O(g?) terms in equations (4.11) and
(4.12) may become significant, and one cannot expect the main term to
provide an adequate approximation.

Rate of change of the population growth-rate

The similarity between equation (4.11) and the more usual equa-
tions for gene-frequency change suggests that it should be possible to
derive an expression for the rate of change of the population growth-rate,
analogous to that given by Fisher’s Fundamental Theorem of natural
selection. This can be done as follows. Ignore for the moment the O(&?)
terms in the equations. The results given above show that the rate of
growth of a population at time ¢ is approximately r,. Using equation
(4.10) it is easy to see that r, can be approximated to O(&%) by 7, so that
we have (approximately)

A%ln B(t) = AF (4.13)
By standard theory (Crow and Kimura, 1970, pp. 205-10), we have
AF =23 pi(r; — F)* + O(&°) (4.14)

where the term on the right-hand side is the additive genetic variance in
the intrinsic rate of increase. Putting equations (4.13) and (4.14) together
gives us a version of Fisher’s Fundamental Theorem: the rate of change of
the population growth-rate is approximately equal to the additive genetic
variance in the intrinsic rate of increase.

This result as it stands is purely formal, however, since terms in ¢* were
neglected before taking the differences in equation (4.13); if the first
differences in these terms were themselves of order &, they would
contribute significantly to the final result and destroy the approximation.
Retracing our steps through the successive approximations, it is possible
to show, by arguments similar to those of Appendix 2, that the first
differences in the O(&?) terms are themselves O(&®), so that equations
(4.13) and (4.14) combined give

A?In B(t) = 22 pi(ri — F)? + O(&%) (4.15)
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Accuracy of the approximations

The utility of the results derived above depends on being able to
neglect the O(g?) and O(&%) terms in the equations for gene frequency
change and change in population growth-rate. It is obviously important to
determine in practice how weak selection must be for this to be done
without significant error. This question was investigated numerically by
Charlesworth (1974a), who compared the results obtained from exact
population trajectories with the approximate values of Ap; and A?In B
obtained from equations (4.9), (4.11) and (4.15). He used a ten age-class
system with the T; of equation (4.8a) all approximately equal to 4. A
crude measure of the strength of selection in per generation terms is
therefore obtainable by multiplying the differences in genotypic intrinsic
rates of increase by 4. Cases of dominant, recessive and semi-dominant
favourable alleles in diallelic systems, as well as heterozygote superiority,
were studied. Even with selection differences of up to 40% per genera-
tion, there is fairly good agreement between the exact and approximate
values for Ap; and A’In B, after a few generations have elapsed and the
age-structure of the population has stabilised. As might be expected from
its relationship to the exact equilibrium equations, equation (4.9) seems
to provide a better approximation than (4.11) for the neighbourhood of a
polymorphic equilibrium. Away from such a point, equation (4.11) pro-
vides, if anything, a better fit. Since it does not depend on any parameters
other than the gene frequencies and the r;, it is to be preferred to
equation (4.9). In using these approximate equations, it should be noted
that they are designed to predict the rates of change of gene frequencies
and population growth-rate, given the current gene frequencies. It cannot
be expected that they will necessarily provide an accurate basis for
calculating a whole population trajectory, since the errors will tend to
accumulate over successive time-intervals.

Sex differences in demographic parameters

The problem of handling sex differences in demographic para-
meters, which was avoided in the above treatment by basing it on
equations (3.14), can be approached in the following way when there is
random mating with respect to age (cf. Charlesworth, 1974a). Consider
an arbitrary standard and homogeneous population with female repro-
ductive function k;(x) and growing at its intrinsic rate of increase r. Each
male genotype can be characterised by its age-specific fecundity function
when introduced at a very low frequency into this population; from the
assumption of a stable age-distribution, these fecundities will be inde-
pendent of time. Denote the ‘standard’ reproductive function for A;A;
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males as given by this procedure by k7i(x), with a corresponding intrinsic
rate of increase r}. In a real population, with a mixture of genotypes
changing in frequency under selection, the kj(x, t) functions at a given
time, ¢, must differ somewhat from their standard values. If mating is at
random with respect to age, and the other assumptions about the mating
process which lead to equations (3.10) are fulfilled, we can write
ki(x, 1) = kjj(x)(1 + &)

where &, is the same for each genotype, but in general changes with t.
Using the assumption of weak selection, terms of order &2 can be
neglected, since differences in the male reproductive functions between
different populations result from differences in the composition of the
female population, and these are O(¢).

Given these assumptions, the value of &, at a time ¢ close to some
arbitrarily chosen fixed time t, is equal to & + O(g%), where &, is
given by

(1 + &)X e™"* X pto) pi(to)kj(x) = 1 (4.16)
x if

(rq is defined on p. 138).

By the same type of argument that led to equation (4.11), it is possible
to use equations (3.10) to obtain an approximate equation for the first
difference in p; = %( pi + pf). We define a new intrinsic rate rj; for A;A;
males as the root of

1+ &) e ¥ kj(x) =1

It turns out that Ap; is determined by the p; and the functions %(r,-j + )
in the same way that Ap; in equation (4.11) is determined by the p; and
r;j. Furthermore, if we write T} = S xe T k¥(x), it follows from the
Taylor’s expansion of the equation for rj; that

rl = rk+ (E/T¥) + O(ED)

Neglecting terms in &7, r/; for any genotype is thus equal to r7 plus a term
common to each genotype. Hence, Ap; is determined by the fitness
functions 7; = X rj + r}) for each genotype, to order €%. We have

Ap; = ﬁ,-(f,- - Zﬁ,ﬂ-) + O(e?) 4.17)

where
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The mean of the intrinsic rates of the males and females thus provides a
measure of the fitness of a genotype. This is similar to the result for weak
selection in the discrete-generation case, where the means of the male
and female fitness values control gene frequency change (Wright, 1942;
Nagylaki, 1979b). Abugov (1986) has developed an alternative method
for dealing with sex-differences in fitness with age-structure.

The two-locus case
The two-locus case can be approached in a similar way to the
one-locus model; using equations (3.17) we have for t = d

B(t)pi(t) = X B(t — x)pi(t — x)zpj(f — x)k;i(x)
x j
+ ¢> B(t — x)D(t — x)kya(x) (4.18)

where the sign attached to c is positive for gametes 2 and 3, and negative
for gametes 1 and 4.

When c is close to zero, the system can be treated as a multiple-allele
systems with four alleles, so that with weak selection, equations similar to
(4.9), (4.11) and (4.15) must be obeyed. When linkage is loose in relation
to the intensity of selection, so that £ <« ¢, the following approach can be
used, which is similar to that of Nagylaki (1976, 1992, Chapter 8) for the
discrete-generation case.

Writing ky(x) for the reproductive function of a standard genotype, as
before, equation (4.18) becomes

B(t)pi(t) = X, B(t — x)pi(t — x)k(x)
* ¢ B(t — x)D(t — x)ky(x) + O(¢) (4.19)

Using equation (2.24) we can write
[D(t)| < (1 = ©)| D(11)| + O(e)

where ty, and t;(f; < 1) are two times separated by approximately one
generation. Extending this back over a sequence of past times #;, t3, . . .,
t; (ti+1 < 1;), as in equation (2.25), we obtain

|D(t0)| < (1 = ¢)'|D(1)|
+[A=-)+A=-c)T+...(1-0)]O(e)
= (1= 0)|D(B)] + {1 = )1 = (1 = ¢))/c}O(e)
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Hence, if t; is taken sufficiently large, we have
|D(t0)| ~ O(e)

Substituting this into equation (4.19), we have for ¢ > 1,

B(t)pi(t) = 2, B(t — x)pi(t — x)[ki(x) + O(e)]

Using the argument of Appendix 2, we conclude that Ap; ~ O(€) and
A%p; ~ O(€?). Since D ~ O(g), AD for large ¢ depends on the first
differences of O(¢) terms. By the methods of Appendix 2, these can be
shown to be O(g?), so that AD ~ O(£?). Using the same type of
argument that led to equation (4.11), we can reduce equation (4.18) to
the first-order form

Ap; = pi(r; = 7) £ (¢D/T;) + O(£) (4.20)
where
T, = Sxe " ky(x)

This equation is similar to that for the discrete-generation case when
selection is weak compared with the recombination frequency (Nagylaki,
1976, 1992, Chapter 8); the resemblance is perfect if both sides are
multiplied by T;, so that changes in gamete frequencies are measured in
‘per generation’ terms.

This completes the analysis of the case of weak selection with time-
independent and density-independent demographic parameters. We have
seen how it is possible to obtain approximate equations for this case
which resemble closely the familiar equations for discrete-generation
selection models, and that the intrinsic rate of increase of a genotype
serves as an adequate measure of its fitness in this situation. It is even
possible to handle the case of sex differences in demographic parameters,
but the effects of non-random mating with respect to age have not been
coped with. The significance of these results is discussed in the final
section of this chapter. We turn next to the case when population size is
limited by density-dependent factors.

4.2.2  The density-dependent case

The analysis of this situation is complicated by the fact that
genetic changes due to selection must generally result in changes in
population size, accompanied by changes in the density-dependent sur-
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vival and fecundity components. It turns out, however, that one can
obtain results which are very similar to those of the previous sections. The
discussion here will be confined to the single-locus model obeying equa-
tions (3.14). Time-dependence of the k;(x, t) is caused by their depend-
ence on the numbers of individuals in the critical age-group at a given
time or set of times, Nz, as described in sections 1.4.2 and 3.3.3.

Approximate equations for Ap;

Consider a population at time ¢ with gene frequencies p,(1),
pa(1), ..., p.(t) among the new zygotes. Assuming random mating with
respect to age and genotype, it can be characterised demographically by
its mean reproductive function Z,Tp,-(t) pi(t)kij(x, Nr). We assume that a
genetically homogeneous population with a reproductive function equal
to this, and having the same functional relationship to Ny, would tend to
a stationary size, with a number N, of individuals in the critical age-
group. It is assumed that such convergence to stationarity would take
place for all reproductive functions which correspond to possible sets of
gene frequencies, although the stationary population size N, is, of course,
a function of gene frequency, given by equation (3.41). It is also neces-
sary to assume that, in a population with changing gene frequencies, the
number of individuals in the critical age-group becomes equal to the
equilibrium number for a standard genotype, plus terms of order &, and
the population growth-rate becomes O(¢).T This can be used to show that
Ap; is asymptotically O(e), and that A%p; is asymptotically O(&%), (see
Appendix 2).

The number of individuals in the critical age-group at some time ¢
sufficiently close to a fixed time ¢y can, from this, be approximated to
O(€?) by methods similar to those used in deriving equation (4.3). This
number is given by

N(1) = ESB(I = X) 2 pto)p(to)ll(x, Np) + O(e)]  (4.21a)
xXe if

and the total number of new zygotes satisfies

B(1) = 3 B(1 = x) 3 pi(to) pi(to) [ ky(x, Np) + O()]  (4.21b)
x i

+ This assumption is tantamount to the density-regulating mechanism being such that a
genetically homogeneous population, exposed to continual, externally-imposed perturba-
tions of order ¢ to its demographic parameters, will eventually settle down to a constant
size, to O(€). This size corresponds to its equilibrium size in the absence of perturbations.
For a treatment of a density-dependent, discrete-generation model which does not require
such an assumption, see Nagylaki (1979a).

Cambridge Books Online © Cambridge University Press, 2009



148 Selection dynamics

Equations (4.21) describe, to order &*, the dynamics of a genetically
homogeneous population with reproductive function ;pi(to) p;(to) kj(x,
Nr). From the above assumptions about the properties of this case, it
follows that

N(t) ~ Ny + O(€?) (4.22q)
B(t — x) ~ B(t) + O(&%) (4.22b)

where N is the value of N which satisfies Z,}-‘p,-(to) pi(to)kii(x, N) = 1.

Carrying through the same type of manipulations as were used in the
density-independent case, we obtain the gene-frequency equation analo-
gous to equation (4.9)

T(N,)Ap; = pi[wi(N,) — 1] + O(¢?) (4.23)

We can make the same assumption as in Chapter 3: in a stationary
population the net reproduction rate of each genotype is a strictly
decreasing function of the number of individuals in the critical age-group.
N, is then given as the unique root of equation (3.41), and w; and T in
equation (4.23) are defined in the same way as in equations (4.8) and
(4.9), but substituting k;j(x, N,) for e™"»* k;(x).

Equation (4.23) has an obvious resemblance to equation (4.9) for the
density-independent case, and exactly the same properties hold for both,
substituting the carrying-capacities N; and N, of the density-dependent
case for the r; and r, of the other. There is thus at most one stable
equilibrium with all alleles present, which corresponds to a maximum in
N,; with a system of two alleles, a stable equilibrium exists if and only if
Ni1, Nz < Ny, etc. Equation (4.23) can be approximated further on
lines similar to those which yielded equation (4.11) for the density-
independent case, by noting that

wi(Ny) =1+ (N, — M,-)(z‘;f ) ok o(?)

L

Choosing an arbitrary genotype as standard, and writing 7; for the value
of > xk(x, Ny) for a stationary population with the demographic para-
meters of the standard genotype, and dw,/dN for the corresponding value
of (3w;;/dN)y,, we obtain

(M_ﬁ)(aws
Ap; = —p;
Pi P T, \GN

) + 0(£%) (4.24)
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where

N; = ijij N = ZPinMf
i) i

Rate of change of population density

It is also possible to derive an equation for the rate of change of
N(r). Going through a similar procedure to that involved in obtaining
equation (4.14), but using equation (4.24), we obtain the analogue of
equation (4.15)

72
AN = —2( aws)gp, Ni= N | o (4.25)
aN /7 T;

Equations similar to (4.23), (4.24) and (4.25) can be derived for the
discrete-generation case (cf. Charlesworth, 1971; Roughgarden, 1976;
Le6n and Charlesworth, 1978; Kimura, 1978; Nagylaki, 1979a, 1992,
Chapter 4). They demonstrate that the progress of selection in a density-
dependent population is controlled by the genotypic carrying-capacities,
the Nj (see equation (3.40)) and that selection tends to maximise the
number of individuals in the critical age-group, subject to the assumption
of weak selection. Numerical checks of these equations, based on com-
puter calculations of population trajectories, show that, for moderate
selection intensities, these equations provide accurate approximations for
the rates of change of gene frequency and population density. For further
discussions of the theory of selection in density-dependent populations,
see Ginzburg (1983) and Costantino and Desharnais (1991).

4.3 Local stability analyses

The results of the preceding section have shown that, with weak
selection, it is possible to develop equations which give good approxima-
tions to the changes in gene frequencies and population size. It is
obviously important to extend the theoretical analysis of the dynamics of
selection to situations where there is arbitrarily strong selection, so that it
is not legitimate to neglect second-order terms in the selection intensity.
One way of tackling this problem is to carry out local stability analyses,
by neglecting second-order terms in deviations of genotypic frequencies
from their equilibrium values, in the neighbourhoods of equilibria. The
present section describes this approach. In addition to local analyses
based on the deterministic equations, the stochastic behaviour of a
mutant gene in a large population is examined by branching process
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methods. Only the case of a single autosomal locus with two alleles has
been studied.

4.3.1 Gene frequencies near 0 or 1 with density independence

A rare, non-recessive allele

This case may be exemplified by considering the fate of allele A,
when introduced at a low frequency into a population fixed for A;. Terms
involving the square of the frequency of A, can be neglected in the initial
stages after its introduction, while it remains rare. In principle, this
enables us to deal with the case when mating is non-random with respect
to age, since by inspection of equations (3.21), we can neglect terms
arising from the variance in gene frequency across age-classes, and the
second-order terms in the difference between the male and female gene
frequencies. This enables us to use equations (3.10) even with non-
random mating with respect to age. We have for t = d

B(t) = 2 B(t — x)ku(x) + O(p2) (4.26)

so that asymptotically (cf. Appendix 2)
B(t — x) ~ B(t)e™ ™ + O(p,) 4.27)

Substituting this into equations (3.10a4) and (3.10b), for the two-allele
case with time-independent reproductive functions, gives (cf. p. 144)

Pat) = 33, €7 ot = x)[kna(x) + kh(x)] + O(p3) (4.28)

Note that the kf(x) here are the values derived using the age-specific
fecundities of A;A4, males when mated to females drawn from a wholly
A1 A population in stable age-distribution. To determine their values in a
given case, one would need to specify in detail the rules of mating with
respect to age and genotype, or to have empirical data on the fecundities
of rare A, A, males in a largely A, A; population.

The logarithmic rate of increase in frequency of A, is therefore given
asymptotically, to order O(p,), by the real root of

3> e @[k (x) + k(x)] = 1 (4.29)

The utility of this result depends on the approach to the asymptotic values
for B(t) and p,(t) being sufficiently fast that the latter is still small
enough for terms of order P to be negligible after convergence has taken
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place. As discussed in section 1.3.2, convergence to the asymptotic
solutions of equations of the same form as equations (4.26) and (4.28) is
normally a matter of a few generations. Provided pj, is initially fairly
small, there should be no problem. Numerical examples indicate that in
practice the result can be used for initial 5, values of up to 0.01 or so,
even with strong selection.

When mating is at random with respect to age and genotype, and when
the assumptions of equations (3.13) are satisfied (no mortality differences
between males and females of the same age and genotype, and propor-
tionality of male and female fecundities), it is possible to show that
mi(x) = myp(x) plus terms of order p,. ky(x) can therefore be sub-
stituted for kf(x) in equation (4.29), so that for large ¢

Alnp; = (ri; — ri1) + O(p2) (4.30)

Obviously, the same analysis can be carried out for the other endpoint
in gene frequency, p; = 0. The rate of spread of A; when introduced at a
low frequency into an A, A, population is governed by equations similar
to (4.29) and (4.30), except that ry, is substituted for ry;, p; for p,, and
the values of the k}5(x) are those for mating A, A, males to females from
a stable A, A, population.

A point of interest which emerges from this analysis is that, for the case
of random mating with respect to age and no demographic differences
between males and females (equation (4.30)), both endpoints of gene
frequency are unstable if there is heterozygote superiority in the intrinsic
rate of increase. In other words, each allele tends to increase in frequency
when rare, so that there is a protected polymorphism in the sense of Prout
(1968), when ry; > ryy, ry. If the reverse inequality holds, both alleles
tend to be eliminated when rare. This corresponds to the results of the
analysis for weak selection, and to the standard results for discrete
generations if the genotypic fitnesses W;; are substituted for the r;. It
suggests that, with strong selection, there may be convergence to the
equilibrium given by equations (3.38) and (3.39) when there is hetero-
zygote advantage in the r;. If ryy <ry; <ry, the endpoint p; =1 is
unstable, and p, =1 is stable, which suggests that A, spreads towards
fixation. The extent to which these conjectures are true is discussed in
section 4.4.

A rare, recessive allele

If either ry; = ryp or ry = ryp, the above approach breaks down
when A, or A,, respectively, is rare, since the initial rate of spread of the
recessive allele is of the same order as the square of its frequency. A
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different method of approximation must therefore be used when a rare
allele is recessive in its effect on the intrinsic rate of increase. We examine
here equation (4.5) for a two-allele system, with A, introduced at low
frequency into an A;A; population and with ry; = ry;. Using the result
that Ap, is O(p3), we can employ the same type of approach as for
equations (4.2), (4.3) and (4.4) to obtain

B(1) = 3 B(t — x){[1 — 2p,(t0)]k11(x) + 2pa(to) k1a(x)} + O(p3)
(4.31)

where t, is a fixed time not too far from t. (Note that this does not
assume anything about the strength of selection.) Since r; = ry;, we thus
have

B(t — x) ~ B(t)e™"™* + O(p3)
Substituting this into equation (4.5) for allele A,, we obtain

pa(t) ~ D e py(t — x)[pr(t = x)kyp(x) + pa(t = x)kpp(x)]

+ 0(p3) (4.32)

Taking first differences on both sides, we have

Apy ~ e Ap,(t — x)kp(x) + O(p3)
X

so that Ap, approaches a constant value asymptotically, to order p% (cf.
Appendix 2). The second-order and higher-order differences in p, can
therefore be neglected, so that equations (4.32) can be expanded on
similar lines to equations (4.6) and (4.7), to yield the final result

2
-1
pa~ PZ[WZZ("U) ] + O(pg) (4.33)
T1o(r11)
If selection is weak, we can use the argument that led to equation (4.11);
neglecting terms O(?), we obtain

Apy ~ pi(rn — ) (4.34)

If selection is strong, however, equations (4.33) and (4.34) yield different
values for the change in gene frequency. Comparisons with the values of
Ap, obtained by exact calculations of population trajectories show that
equation (4.33) is accurate with strong selection, provided that p, is small
(< 0.05 or so), whereas equation (4.34) breaks down with strong selec-
tion, although A, can spread only when r,; > ry;. We therefore have the
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somewhat surprising result that when selection is strong, the rate of
spread of a rare recessive gene cannot be calculated purely from its effect
on the intrinsic rate of increase, although the direction is determined by
this quantity. This contrasts with the results for the case of a gene with a
significant effect on the intrinsic rate of increase of the heterozygote.

4.3.2 Gene frequencies near 0 or 1 with density dependence

The results of the previous two sections can easily be extended to
the density-dependent case. The introduction of a rare allele will, as
before, perturb the demographic parameters of the population by an
amount of the order of the gene frequency (or square of the gene
frequency in the case of a recessive allele). If the density-regulating
mechanism is such that a genetically homogeneous population tends to a
stationary size, as is assumed throughout our treatment of density-
dependence, the analogues of equation (4.27) for this density-dependent
case with a rare, non-recessive gene are

B(t — x) ~ B(t) + O(p2) (4.35q)
N(t) ~ Nyp + O(p2) (4.35b)

Substituting from these equations into the gene frequency equations
(3.14), we find that the asymptotic logarithmic rate of increase in the
frequency of A, is, to order p,, given by the real root of the equation

> e Fkp(x, Ny) =1 (4.36)

It is easy to see that for this root to be positive we must have Ny, > Ny, in
the case when the w;(N) as defined in equation (3.40) are strictly
decreasing functions of N. Hence, a rare gene spreads if the carrying-
capacity of the heterozygote exceeds that of the initial population.
Applying this to the other endpoint gives the result that there is a
protected polymorphism if N, > Ny, Np. This is similar to the results
derived in section 4.2.2 for the case of weak selection, but is obviously
more restricted, since nothing has been proved about convergence to the
equilibrium.

A similar type of argument can be applied to the problem of the
introduction of a rare recessive gene. The analogue of equation (4.33) is

_ Pilwa(Ny) = 1]
T12(Nu1)
A recessive gene, therefore, spreads if and only if the carrying-capacity of

Ap; + O(p3) (4.37)
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the homozygote exceeds that of the initial population, in the case when
the w;;(N) are decreasing functions of N.

4.3.3 Gene frequencies near 0 or 1 with temporally varying environments

The results derived up to now have assumed that the demo-
graphic parameters of each genotype are independent of time, or that
they depend on time solely via changes in population density. There has
been much interest in the population genetics of selection in temporally
varying environments (e.g. Haldane and Jayakar, 1963; Gillespie, 1973a,
b, 1991; Karlin and Liberman, 1974), so that it is natural to enquire how
far the results can be extended to age-structured populations. The discus-
sion here is confined to the question of the conditions for maintenance of
a protected polymorphism in a temporally varying environment. The
nature of the method of analysis means, as will be seen, that the
population is density independent. As previously, the gene-frequency
equations (3.14) are used.

A rare, non-recessive allele
For A, introduced into an A;A; population at a low frequency,
we have

B(t)px(t) = 2 B(t = x)pa(t = X)kpa(x, 1) + O(p3) (4.384)

B(1) = > B(t — x)kq(x, t) + O(py) (4.38b)

The process represented by these equations can be expressed in terms of
the equivalent Leslie matrix formulations, using the matrices for A; A,
and A;A,, which we can write as L;i(¢t) and L.,(¢) for time ¢ (cf.
equation (1.6)). Since we have assumed density independence we can use
weak ergodicity (section 1.4.1) to deduce that for sufficiently large ¢

B(1)pa(t) = Ma(t — 1)B(t — Dpa(t — 1) + O(p?) (4.39a)
B(t) = A(t — D)B(t — 1) + O(p,) (4.39b)

where A;;(f — 1) is the geometric growth rate of a homozygous A;A;
population from time ¢ — 1 to ¢, and A;;(¢ — 1) is the rate for a population
with the demographic parameters of A;A,.

Combining these two equations, we obtain the analogue of equation
(4.30)

Aln py(t) = [r2(2) — ru(0)] + O(p2) (4.40)
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where r;;(t) = InA;(t), and measures the increase in In B between ¢ and
t + 1, for a population with the demographic parameters of A;A;.

From the weak ergodicity theorem, the r;(¢) and A;(¢) are independent
of the initial conditions, for sufficiently large ¢, and are determined only
by the environmental process which generates the time dependence of the
demographic parameters. The difficulty with this result is that it is not
generally possible to obtain an analytic expression for the values of the r;
and A; as functions of time. The following useful conclusions can,
however, be drawn from equation (4.40).

In the first place, equation (4.40) tells us that the mean change in gene
frequency between generations ¢ and ¢ + n for large ¢ is given by

n—1
%[lnpz(f + n) — Inpy(2)] = %{Z[rlz(f +j)—ru(t+ f)]}

j=0
+ O(p,) (4.41)

so that, to order p%, there will be an average increase in the frequency of
A, if an A;A, population has a higher arithmetic mean value of r;(r)
than an A, A, one. This is analogous to the result of Haldane and Jayakar
(1963) for the corresponding discrete-generation case, with the r;(¢) in
the age-structured case playing the same role as the logarithms of the
genotypic fitnesses with discrete generations. It implies that, in a deter-
ministically varying environment, a rare gene will increase in frequency
asymptotically if a population with the demographic parameters of the
heterozygote has a higher mean rate of increase than the population
homozygous for the original allele.

A similar conclusion can be drawn for the case of a stochastically
varying environment by using the theorem of Cohen (1976, 19774, b) that
the probability distribution of age-structure, and hence rate of increase of
a population at a given time ¢, converges to a stationary distribution when
exposed to Markovian temporal variation in its demographic parameters
(cf. section 1.4.1). This implies that the r;(t) in equation (4.41) can be
regarded as sampled from such a stationary distribution, provided that
the assumptions of the theorem apply to the matrices Ly;(¢) and Li,(¢).
This enables us to apply the arguments used for the discrete-generation
case by Gillespie (1973a) and Karlin and Liberman (1974), as noted by
Charlesworth (1980, p. 175) and Tuljapurkar (1982). We can conclude
that there is a probability close to one that p, is bounded away from zero
(i.e. the endpoint p; =1 is stochastically unstable) if the expectation of
ri2(t) — r11(¢), over the stationary distribution generated by the environ-
mental process, is positive.
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These results can obviously be extended to the other endpoint p, =0,
provided that A, is not recessive to A,; a protected polymorphism is
maintained, therefore, if the arithmetic mean of the r;(¢) for a population
with the demographic characteristics of the heterozygote exceeds the
means for the homozygotes.

In the notation of section 1.4.1, the value of 7 for genotype ij is thus
the most appropriate fitness measure in a temporally varying environ-
ment. If a homozygote for one allele has a higher 7 value that the
homozygote for the other allele, and the value for the heterozygote lies
in-between, these results suggest that the first allele will eventually be
fixed. Numerical studies are in accord with this conjecture (Orzack,
1985). Formulae for the genotypic 7 values can be obtained for the special
cases considered in section 1.4.1 by applying equations (1.75) and (1.78)
to individual genotypes. The variances and covariances among demo-
graphic parameters induced by environmental fluctuations, as well as
autocorrelations across time-intervals, can have important effects on the
conditions for maintenance of genetic variability (Gillespie, 1973a, 1991;
Orzack, 1985, 1993; Orzack and Tuljapurkar, 1989; Tuljapurkar 1982,
1989, 1990a). Templeton and Levin (1979) discuss the analysis of selec-
tion with fluctuating environments for the special case of plants with seed
dormancy.

A rare, recessive allele

When one allele, say A,, is recessive to the other, the above
approach breaks down for the same reasons as in the time-independent
case. In the discrete-generation case, Haldane and Jayakar (1963) showed
that a protected polymorphism can be maintained at a locus where one
allele is completely recessive to the other, as a result of temporal
fluctuations in fitnesses. This requires the arithmetic mean of the fitness
of the homozygote for the recessive allele (A,) to exceed that of A;A4,
and A;A,, whereas its geometric mean must be less than the geometric
mean for A;A; and A;A,. Unfortunately, it does not seem possible to
provide a general analysis similar to this for the age-structured case. The
following special case proves, however, that the Haldane-Jayakar me-
chanism can work in an age-structured context.

Consider the situation in which there are environmental states which
alternate at intervals which are very long compared with the life-span of
an individual. For most of the time between the environmental changes, a
population in such a situation can be described accurately by the gene
frequency equations with the demographic parameters which are appro-
priate for the given environmental state in which it finds itself, since the
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transitional states created by a change in environment occupy a negligible
part of the population’s history. Hence, for a population in environmental
state i, the rate of gene frequency change for A, when rare is approxi-
mated accurately for most of the time by equation (4.33) with the
demographic parameters for environment i

palwBei) - 11

Ap; ~
T(f)(r(l))

+ 0(p3) (4.42)
where rg"l) is the intrinsic rate of increase of an A;A; population main-
tained in environment i indefinitely, etc. By the same type of argument as
employed by Haldane and Jayakar (1963), p, tends to increase in
frequency in the long term if the arithmetic mean of

Wgz)(?' 1) — 1
TH(rY)

taken over all the environmental states, exceeds zero. The same type of
argument concerning the effects of the long environmental period can be
applied to the other endpoint; combined with the results of sectlon 4.3.1,
we find that A, increases when rare if the arithmetic mean of rlz - rg’z) is
positive. The existence of a protected polymorphism requires both these
conditions to be satisfied simultaneously.

If selection is weak, the condition for the increase of A, reduces to
requiring the arithmetic mean of r9—r¥ to be negative (cf. equation
(4.34)). This is obviously impossible if the condition for the increase of
A, is satisfied. We can conclude that a protected polymorphism cannot
exist when selection is weak. (This is also true for the discrete-generation
case, since the arithmetic and geometric means of the fitnesses approach
each other for weak selection.) When selection is strong, however, it is
possible for the condition for the spread of A, to hold when the mean of
r%‘z) - r%'z) is positive, so that a protected polymorphism can exist under
suitable forms of environmental fluctuation. An extreme example of how
this is possible is as follows. Suppose there are just two environment
states, in one of which A, A, is near-lethal, so that ry, for this state is very
large and negative. Provided that rp for the other environment is
bounded, the mean of r{) — r$) will be positive if A;A; and A, A, have
reasonable survival rates in both environments. If, however, A,A, has a
sufficiently high survival in the second environment compared with A; A,
and A;A,, the criterion for the increase of A, when rare can be satisfied,
despite the near-lethality of A, A; in the first environment.

Computer calculations of population trajectories have shown that this
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approximate method predicts the conditions for maintenance of poly-
morphism when the environmental period is of the order of several
generations, and that there is no more difficulty in generating numerical
examples which satisfy the conditions than in the discrete generation case.
The conditions for the spread of a rare recessive gene, and hence for
protected polymorphism, are less clear for the case when the environ-
mental period is of the order of or smaller than the life-span, or when
there is stochastic variation in the environment. In such cases, the
response of the population to changing demographic parameters means
that the rare gene can never settle down to a constant rate of increase in
frequency. All that can be done with present theory is to calculate the
asymptotic growth rates, the r;(¢), for specific numerical examples.

4.3.4 Gene frequencies near 0 or 1 with spatially varying environments

The case of a spatially varying environment can be treated in a similar
way. Two extreme models of spatial variation have been treated in the
literature (Dempster, 1955). Wallace’s (1968) terms ‘hard’ and ‘soft’
selection were applied to these models in the context of a discrete-genera-
tion population by Christiansen (1975). Each model assumes that the
zygotes produced by a random-mating population encounter a variety of
spatial patches (niches), such that the probability that a zygote encounters
a patch of type m in which its reproductive function is k;j(m, x) is c,,. In
both cases, the individual spends the selectively relevant part of its
life-history in the patch in which it is born; in the simplest situation,
mating is assumed to be random between patches, although restricted
migration between patches can be incorporated (Christiansen, 1975).

Under hard selection, there is no density-dependent population regula-
tion, at least at the level of the individual patch. Under these circum-
stances, it is easily seen that selection acts similarly to the case of a
homogeneous environment (cf. Dempster, 1955), replacing the repro-
ductive function of the ijth genotype by its mean over all patches:

zcmkij(ma x)

If the intrinsic rate of increase for the population as a whole is 7, the
equilibrium fitness measure equivalent to that of equation (3.31) is

wi = > e S ckii(m, x) (4.43)

The dynamics of selection can be investigated by the methods employed
for the case of a homogeneous environment, using the mean reproductive
function described above. In particular, genetic variation is maintained at
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a single locus with two alleles if the heterozygote has the highest intrinsic
rate associated with the mean reproductive function (cf. section 4.3.1).

With soft selection, there is strict density-regulation within each patch,
so that the mth patch makes a fixed contribution c,, to the pool of new
zygotes at each time-interval. The single-locus system with two alleles can
be analysed by the following method, which is a straightforward extension
of the discrete-generation treatment introduced by Levene (1953). Let A,
be a new allele invading an A;A; population. Under soft selection, the
proportion of A, alleles at time ¢ among the zygotes contributed from
patches of type m is approximated by

> B(t = x)pa(t = x)kyo(m, x)/ X, B(t — x)kyy(m, x)

The net frequency of A,, p,(¢), is the sum of this over all patches,
weighting each term by c,,. If the overall population is growing at rate
ri1, given by the intrinsic rate associated with the mean reproductive
function of A, A, we get the recurrence relation

— cpkia(m, x
pat) = 3 e py(t = )3 — iz ) (4.440)
x m =y
[E € kii(m, x)]
This leads to the initial increase criterion analogous to Levene’s:
kip(m,
ey O o(mX) (4.44b)

X

" [2 e " ki (m, x)]

A symmetrical expression can be written for the case of an A, allele
invading an A, A; population:

2™y
x m[ze-mxkn(m’x)]

Genetic variation will be maintained if conditions (4.44b) and (4.44c)
are both satisfied. As in the discrete-generation case, the conditions for
maintenance of variation for the case of soft selection differ significantly
from those with hard selection. Since the denominator of equations
(4.44b) and (4.44c) must be less than one for those patches in which the
prevailing homozygote is at a disadvantage, it is not necessary for there to
be heterozygote advantage with respect to the mean reproductive func-
tion for variation to be maintained (cf. Levene, 1953; Dempster, 1955).

kau(m, x)

>1 (4.44c¢)

Cambridge Books Online © Cambridge University Press, 2009



160 Selection dynamics

4.3.5  The probability of survival for a non-recessive mutant gene

The above results are based on the assumption that the spread of
a rare gene in an infinite population can be satisfactorily described from a
purely deterministic viewpoint. In actual fact, a rare gene is represented
by so few copies in the initial generations after its occurrence by mutation
that even in an infinite population it is subject to stochastic fluctuations
and a significant probability of loss. This process was first studied by
Fisher (1922, 1930) and Haldane (1927b) for the case of a discrete-
generation population. In this section, we shall study the problem of the
probability of survival of a mutant gene in an infinite population with
time-independent demographic parameters. The account is based on the
treatment of Charlesworth and Williamson (1975). A somewhat more
general treatment is given by Pollak (1976). The results will be used in
Chapter S (p. 193).

We again use the model expressed in equation (4.5), which assumes
random mating with respect to genotype and age, equality of age-specific
survivorships of males and females of the same genotype, and proportion-
ality of male and female age-specific fecundities. If A, is introduced by
mutation into an A;A; population, it will initially be overwhelmingly
represented in A;A, heterozygotes. Furthermore, if the initial A; A,
population is in stable age-distribution, or is held at a stationary equili-
brium size by density-dependent factors, we saw on p. 151 that
miy(x) = myy(x) plus terms of order p,. It is therefore reasonable to
assume that, neglecting terms O(p,), the distributions of numbers of
offspring for A; A, males and females of a given age are identical,
provided that they are completely characterised by their mean (e.g. when
they are Poisson). This assumption is made from now on, and enables us
to disregard the sex of individuals. A final assumption is that the primary
sex-ratio is equal to one-half. This implies that the mean number of A, A,
offspring, of either sex, of an A;A, heterozygote is equal to the mean
number of its offspring that are the same sex as itself, which enables us to
simplify the notation.

A new mutant gene A, will first manifest itself as an A; A, zygote. The
problem therefore reduces to that of finding the probability of survival of
a line of A, A, individuals descended from a single A; A, zygote. Let this
probability be U. We can arbitrarily classify the set of progeny produced
by a given zygote during the whole of its lifetime as belonging to the same
‘generation’, although many of them will in fact have been produced in
different time-intervals. Standard branching-process theory (Feller, 1968,
Chapter 12) can thus be applied to successive ‘generations’ descended
from the initial zygote carrying A,. This yields the probability of loss of
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A, as the smallest value of s, in the interval 0 =< s < 1, which satisfies the
equation

hia(s) = s (4.45)

where h,(s) is the probability generating function (p.g.f.) of the distribu-
tion of the number of A, A, offspring produced by an A, A, individual
over the whole of its life-span (cf. Appendix 1). It follows from standard
theory that the mutant gene has a non-zero probability of survival if and
only if the mean of this offspring distribution exceeds one, i.e. the net
reproduction rate, Ry, = > ki,(x), exceeds one. This is also the condition
for rp > 0.

The functional form of A,,(s) can be obtained as follows. Let the p.g.f.
for the number of A A, offspring produced by an A; A, parent aged x be
hi(x, s). Assuming that, for a parent who has survived to a given age,
the offspring distributions for different earlier ages are independent, the
p.g.f. for the number of A;A, offspring produced between ages b and x
by an individual now aged x(x = b) is

X
Hyp(x,s) = [] hia(y, 5) (4.46)
y=b
The probability that an A;A, individual survives to age x and dies
between x and x + 1is /15(x) — l15(x + 1). By partitioning the life-history
of an individual into mutually exclusive events corresponding to these
probabilities for all different x values, it is easy to see that

d
hip(s) =1 — Ip(b) + zb[fu(x) = lp(x + 1)]Hp(x, 5)
(4.47)

In the important case when the offspring distribution for each age-class is
Poisson, so that hyy(x, s) = exp[(s — 1)m(x)], the survival probability
U, from equation (4.45), satisfies the equation

U+ Y[la(x) = lp(x + 1)) exp [— M(x)U] = 115(b) (4.48)

where le(x) = 2;=bm12(}')'

As shown by Charlesworth and Williamson (1975), the survival prob-
ability given by equation (4.48) is always less than that for a discrete
generation model with a Poisson offspring distribution and the same
mean. These authors give an example for a human population where the
reduction is as high as 40% of the discrete generation value.

Cambridge Books Online © Cambridge University Press, 2009



162 Selection dynamics

For U close to zero and Rj; close to unity, equation (4.45) can be
approximated in the standard way (e.g. Ewens, 1969, p. 80) to give

U= Z(ng - 1)/V12 (449)

where V', is the variance of the lifetime offspring distribution. In the case
of a Poisson distribution for each age-class,

Vig = D[la(x) = Ip(x + 1)]M3y(x)

when Rj; =1.

Equation (4.49) may be thought of as giving a useful approximation to
the survival probability of a mutant gene with a small effect on demo-
graphic parameters in the heterozygous state, when introduced into a
stationary or near-stationary population. Using the approximation for the
intrinsic rate of increase (equation (1.46)), equation (4.49) can be rewrit-
ten as

U=2r,Tn/Vi (4.50)

where Ty, = D xkpp(x). It will be seen from these equations that small
changes in the demographic parameters which affect Ry, and ry, alone
have much bigger effects on U than changes which affect Vy, or Ty,
provided that U is small. This implies that the probability of survival of a
mutant gene in a near-stationary population is largely controlled by its
effect on Ry or, equivalently, ry5.

4.3.6  Local stability of a polymorphic equilibrium

The purpose of this section is to extend the method of local
stability analysis to the polymorphic equilibrium which exists in the
two-allele case when there is heterozygote superiority or inferiority in the
intrinsic rates of increase, for the time-independent case (Chapter 3, pp.
122-3). We saw on p. 141 of this chapter that heterozygote superiority in
the r; corresponds to global stability of the equilibrium in the case of
weak selection, and heterozygote inferiority to instability. We show here
that similar results hold for local stability with arbitrary selection intensi-
ties.

Derivation of a stability criterion

The equilibrium gene frequencies p; and p, =1 — p; are given
by equation (3.38), and the equilibrium population growth-rate by equa-
tion (3.39). We can linearise equations (3.14), for the two-allele case, by
neglecting terms in (p; — p1). This will give an adequate approximation
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for gene frequencies close to their equilibrium values. Writing B;(¢) =
B(1)[p:(1) = pi], we obtain

B(1)py + By(1) = g1(1) + py >, B(t — x)ky(x)

x=1
t
+

x

B(t — x)Kq(x) (4.51a)
1

B(1)p, — By(1) = ga(t) + P2, B(t — x)ka(x)

x=1

- ZlBl(I - I)Kz(x) (451b)

where
ki(x) = prku(x) + pakia(x)
K1(x) = 2p1kni(x) + (1 = 2p1) kpa(x)
ka(x) = Prkin(x) + Prka(x)
Ky(x) = 2prkn(x) — (1 — 2p1) k1a(x)

and where g;(¢) and g,(t) are zero for t = d.

Taking generating functions on both sides of these equations (see
Appendix 1 for the properties of generating functions which are used
here), we obtain

p1B(1— k) + Bi(1 - Ky) =& (4.52a)
pBl-k)-Bi(1-K)=5 (4.52b)

These equations are easily solved for B and B:

B =[g:1(1 - Ky) + 2:(1 - Ky))/A (4.53a)

By = [p281(1 = kp) — p132(1 — ky))/A (4.53b)
where

A = pi(1 = ky)(1 = Ky) + po(1 — kp)(1 — Ky) (4.54)

Using the results described in Appendix 1, it follows that for sufficiently
large ¢t we have

B(t) = Cys7 ¢V (4.55a)
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where s; is the zero of A in equation (4.54) with smallest modulus,
excluding any common zeros of 1 — K; and 1 — K,.
Similarly, for large ¢ we have

Bi(f) = Cps7 1D (4.55b)

where s, is the zero of A with smallest modulus, excluding any common
zeros of 1 — k; and 1 — k,. Note that it is possible for s; and s, to be
equal. Equations (4.55) assume that s; and s, are simple zeros. The
modifications to these equations when s; or s; is a repeated zero of A are
relatively straightforward (see Appendix 1), and do not materially affect
the results described below.

As with the renewal treatment of the case of a genetically homogen-
eous population (equation (1.34)), it is more convenient in practice to
work with the natural logarithms of s;' and s, !, which we denote by z;
and z,. Equations (4.55) thus become

B(t) = Cyent+D (4.56a)

By(1) = C,es*D (4.56b)
If z, is a complex number, then equation (4.56a) must be replaced by

B(t) = Cyex(™*D) 4 Cett(ttD) (4.57)

where z{ and C{ are complex conjugates of z; and Cj, respectively. A
corresponding equation replaces (4.56b) if z, is complex.

If we can show that the real part of z; is equal to 7, and that the real
part of z, is less than 7, the equilibrium can be said to be locally stable,
since B(t) must return to its equilibrium rate of growth, and p; to p;.
Conversely, if the real parts of z; and/or z, exceed 7, the equilibrium
must be locally unstable.

Unfortunately, it is difficult to give an analysis of the zeros of A
analogous to that of equation (1.32), owing to the large number of terms
in equation (4.54). An indirect approach can, however, be used to
establish that, when there is heterozygote superiority in the intrinsic rates
of increase, the equilibrium is locally stable.

Stability when r;; > ryy, 122

We first note that 7 is, from equations (3.37), the root of both
1—k;=0 and 1— k; =0 with largest real part (from now on, the
generating functions are treated as functions of z = In(s~!) rather than
5). Assume arbitrarily that p, > p;. Then K,(x) is non-negative, from
equations (4.51), and the zero of 1 — K; with largest real part, denoted
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by z’, is real by the argument of pp. 23—4. The formula for K;(x) also
implies that ry; < z’ < ry,. Furthermore, we can write

Ki(x) = ki(x) + pilku(x) — kia(x))

This implies z’ <7 since it is easily seen from this formula that
Ye Ki(x)<1.

If the real parts of z; and z, are greater than 7, we must have z; = z,,
since only the common zeros of 1 — K; and 1 — K, or 1 — k; and 1 — k;
are not simultaneous roots for B and B, and we have just established
that only 1 — K, can have a zero with real part greater than 7. Hence,
either the real parts of z; and z, are smaller than or equal to 7, or
21 = 22.

It can be established as follows that there can be no real zero of A
which is greater than 7. Rearranging equation (4.54) gives

A = pi(1 = kyy)(1 = kp) + Po(1 = kp)(1 — ky) (4.58)

It is easy to see that, for all real z > 7, A >0, so that A cannot have a
real zero greater than 7. The only way in which the equilibrium can be
unstable in this case is if there is a complex zero of A, z; = z,, with a real
part greater than 7. The following argument shows that this situation
cannot occur.

Substituting from equation (4.57) into equation (4.51a), we obtain
P1C1 81 = ky) + pyCHes (1 - k)
+ Cet™*D(1 - K)) + CFe* V(1 - kP =0
where
ki=3e M k(x), Kif=3Ye Ky(x)
If we write z; = & + i3, this gives
e?PHD[H,Cy(1 — ky)
+ G -K))+pCiA-kH+C31-KH=0 (4.59)

This equation must be satisfied for arbitrary ¢, which is impossible unless
zq is a zero of both 1 — k; and 1 — K;; this possibility has been excluded
already. Hence, there cannot be a complex zero of equation (4.54) with
its real part greater than 7.

This completes the results which are necessary to establish that the
polymorphic equilibrium is locally stable if 71, > ry;, r,. Since there is no

complex zero of A with real part greater than 7, it follows that z;, the
largest root for B(t), must equal 7 (see equation (4.54), and that z,, the
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largest root for Bj(t), must have its real part less than 7. From the
definition of B;(?), the deviation of the gene frequency from its equili-
brium value, p; — p;, must asymptotically be proportional to e!*~"*  and
hence tend to zero. Convergence of the gene frequency to equilibrium
takes place via a series of damped oscillations. The population growth-
rate similarly converges to its equilibrium value 7. Computer calculations
of population trajectories show this pattern clearly (see, for example,
Figure 2 of Anderson and King, 1970). The rate of convergence is
determined by the difference between the real part of z; and 7. In
general, z, can be determined only by numerical evaluation of the zeros
of A. The convergence to equilibrium via damped oscillations in this case
contrasts with the result for discrete generations with heterozygote super-
iority in fitness, where convergence to the equilibrium is monotonic (cf.
Nagylaki, 1992, Chapter 4).

Instability when r;; <rjj, 22

In this case, it is easy to see from equation (4.58) that there is a
real zero of A which exceeds 7. An argument similar to the one used
above shows that there cannot be a complex zero with real part greater
than this. The population in the neighbourhood of the equilibrium thus
asymptotically moves away from the equilibrium point at a constant rate.

4.4 The asymptotic results of selection

Some theoretical results concerning the ultimate states reached
by populations under arbitrarily strong selection intensities have been
obtained by Norton (1928), Pollak and Kempthorne (1971) and Charles-
worth (1974a). These results all pertain to the two-allele versions of
equation (4.5), with time-independent and density-independent demo-
graphic parameters, or to the corresponding continuous-time equations.
The most complete analysis was given by Norton for the continuous-time
model. His analytical methods are too complex to describe here, but his
conclusions are summarised in Table 4.1, along with the corresponding
discrete-generation results. They agree with the results derived in section
4.2.1 for the case of weak selection, and complement the results of the
local stability analyses carried out in sections 4.3.1 and 4.3.6. The
genotypic intrinsic rates of increase, r; are predictors of the ultimate
outcome of selection in the same way as the fitnesses Wj; in the discrete-
generation case. Except when there is heterozygote superiority or in-
feriority in the r;, natural selection tends to fix whichever allele is
associated with the highest intrinsic rate of increase when homozygous.
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Table 4.1. The outcomes of various types of selective regimes with a diallelic locus

Discrete-generation populations Age-structured populations®
Selection Outcome of Selection Outcome of
regime selection regime selection
Wy = Wp = Wyn  py constant (neutral ry = rp = ry P constant, or neutral
equilibrium) oscillations
wp<wpswp, p—0 m<rnps<ry p—0
wpswp<wy p—0 r=rp<rn p—0
Wi = Wy, Wa p— b Fio=> Py, o p, — Py, or sustained
0<p, <1 oscillations about p,
Wi < Wi, Wn pi—1, T < Iy, I'a =1
orp,—0 orp,—0

a These results are due to Norton (1928), and were derived for a continuous-time
model.

When there is heterozygote superiority, Norton showed that the gene
frequency either converges to equilibrium or undergoes oscillations in
which the gene frequency repeatedly passes through the equilibrium
value. The local stability analysis given above can be extended to the
continuous-time case by increasing the number of age-classes indefinitely;
when combined with Norton’s result, it implies that there can be no
oscillatory behaviour with heterozygote superiority; if the population
converges to a neighbourhood of the equilibrium point, it must eventually
reach the equilibrium itself. This result is confirmed by numerous com-
puter calculations of particular cases. The biologically interesting possibil-
ity of a stable limit cycle in gene frequency, which was left open by
Norton’s results, is therefore ruled out for the continuous-time model. No
analogue of Norton’s results for discrete time has yet been obtained,
except for some special cases studied by Pollak and Kempthorne (1971)
and Charlesworth (1980, pp. 186-8).

4.5 Selection on quantitative characters

4.5.1 General considerations

The results described in the preceding sections of this chapter
have been concerned solely with the effects of natural selection on gene
frequencies. In this section, we shall consider some aspects of the theory
of the effects of selection on quantitative characters, which has been
developed in recent years.
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The case of selection on a single trait will be discussed first, primarily
from the point of view of predicting the response to artificial selection.
We will then consider selection on a multivariate character set, which is of
relevance to the theory of natural selection on life-histories.

4.5.2  Prediction of the response to artificial selection

With artificial selection on a single trait, only individuals exceed-
ing some chosen value of the character of interest to the breeder are used
for breeding. In the classical, discrete-generation theory of artificial
selection (Falconer, 1989, Chapter 11), it is assumed that the character
under selection has a known heritability, h*, defined as the proportion of
the total variance in the character which is of additive genetic origin. In
order to predict the rate of response to selection, we also need to know
the selection differential, S, which is defined as the deviation from the
mean of the unselected population of the mean phenotypic value of the
parents chosen for breeding, in the generation under consideration. The
selection response, R, (which should not be confused with the net
reproduction rate) is defined as the deviation of the mean value of their
offspring from the mean of the unselected population. If it is assumed
that the parents are chosen independently of each other with respect to
their phenotypic values, that linkage disequilibrium and epistatic con-
tributions to the genetic variance are negligible, and that there are no
environmental sources of resemblance between parent and offspring, we
can write

R = hW’S (4.60)

This equation is only valid for one generation. If it can be assumed
that the heritability and selection differential remain constant in time,
repeated application of equation (4.60) enables us to write an equation
for the cumulative selection response, R., which is defined as the deviation
of the mean of the character in generation ¢ from its mean in the initial
generation. We have

R. = th®S (4.61)

Provided that an estimate of A® is available from prior genetic experi-
ments, this is a result of genuine predictive value. On theoretical and
empirical grounds, we would expect h* to remain approximately constant
for the first 5-10 generations of selection, so that equations (4.60 and
(4.61) provide a useful means of predicting the initial rate of response to
artificial selection (Falconer, 1989, Chapter 11).

Many species of economic importance, such as most domestic animals,
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have populations with overlapping generations, so that it is not possible to
apply equations (4.60 and 4.61) directly. It is therefore of importance to
extend the above results to age-structured populations. Some approxi-
mate theory was developed by Dickerson and Hazel (1944) and Rendel
and Robertson (1950). An exact matrix approach was introduced by Hill
(1974, 1977) and, independently, by Elsen and Macquot (1974). Some
refinements have been added by Pollak (1977). The results described
below are based mainly on the papers by Hill.

Breeding values

We shall consider a population described by the discrete age-class
model of section 2.3.2, in which the demographic parameters of indi-
viduals of both sexes are constant over time, and which is constant in size
and age-structure. The size of the population is assumed, however, to be
sufficiently large that sampling effects can be neglected. In order to
develop the theory, we will make use of the concept of the additive
genetic value or breeding value of an individual (Falconer, 1989, p. 118).
We let X(1) =[X(1, 1), X2, t), ..., X(d, t)] be a row vector of the

mean breeding values of females aged 1, 2, ... d at time ¢, with respect
to the character of interest. Similarly, X*(¢) is the corresponding vector
of mean breeding values for males aged 1, 2, ..., d*. It is convenient to

combine these into a single (d + d*)-dimensional row vector, X (1) =
[X (1), X*(1)] (cf. p. 65), which gives a full description of the state of the
population at time ¢. This scheme is most easily understandable in terms
of a character which is measured at a single age, x, such as weight at
sexual maturity. A change in the mean breeding value of the individuals
of a given sex who are of age x, from one time-interval to the next, must
be exactly proportional to the corresponding change in the mean pheno-
typic value of the individuals in this age—sex class. Changes in the
breeding values X(x, t) and X*(x, f) can therefore be monitored by
following the changes in mean phenotypic values of the females and males
aged x. If, as is frequently the case, the character can be measured only
in one sex, changes in the relevant breeding value can be detected
through changes in the mean value of individuals of the appropriate
age-sex class. Alternatively, the mean breeding value of individuals of a
given class can, in principle, be determined by measurements of the mean
value of the progeny produced when they are mated to a standard stock
of constant composition. There is thus no theoretical difficulty in assign-
ing breeding values to individuals on which the character of interest
cannot be directly measured.
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From the relationship of breeding value to the underlying allele fre-
quencies at loci controlling the character (Falconer, 1989, p. 118), it
follows that the following expression must hold in the absence of selection

X(1) = X(0)G* (4.62a)

where G is the matrix introduced on p. 81. For large ¢, X(¢) is thus given
by the asymptotic expression

X))~ X(0)A (4.62b)

where A is defined on p. 83. From the form of A it follows that the mean
breeding value asymptotically approaches the same, constant value for
each class of individual, in the absence of selection. This reflects the
approach of the underlying gene frequencies to constancy, discussed in
section 2.2.1.

Selection differentials with age-structure

Suppose that artificial selection is imposed on the population only
at time ¢ = 0. The vector of mean breeding values X (0) for the unselected
population is incremented by a vector s, so that the vector of mean
breeding values of the selected individuals is X(0) + s. The components
of s depend on the relationship of the character to age, the heritability,
and the phenotypic selection differential. Assume, as above, that the
character of interest can be measured only at age x. If it can be measured
in both sexes, the selection procedure at time ¢ = 0 will therefore consist
of selecting males and females aged x according to their phenotypes.
Only these individuals or their survivors will be used for breeding at the
current and future time-intervals. This selection on individuals aged x can
be represented by the resulting increments in the mean values of the
character, S for females and S* for males. § and S* thus define the
selection differentials for females and males. If the heritability of the
character is h? for both sexes, the components of s are given by the
following expressions

s(x) = h*S (4.63a)
s(d + x) = K2S* (4.63b)
s(i)=0 (i#x,d+x) (4.63¢)

If the character can be measured in only one sex, or if selection is
practised on one sex alone, all the components of s except that for the
appropriate age—sex class are zero.
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The response to selection

The response to the selection imposed at ¢ =0, in terms of
breeding values, can be found by applying the matrix G to the vector of
breeding values of the selected individuals. We thus have

X(t) = X(0)G' + sG' (4.64)

This assumes that the age as well as breeding value of one parent are
independent of those of the other. In addition, the age-structure of the
population is assumed to be unchanged by the selection regime. Compar-
ing equations (4.62a) and (4.64), it follows that selection has resulted in
an increment sG* in the breeding value vector. Only part of this is due to
the genetic effects of selection, since X(¢) contains components which
have been incremented solely because they relate to individuals who have
survived from ¢ = 0. In order to distinguish the genetic effects of selec-
tion, it is useful to define a matrix G which contains only the survival-
related components of G, i.e. in which the columns 1 and d + 1 have
been deleted from G. This genetic response to selection at ¢ = 0 is thus
given by the vector s(G' — G").

If selection is now assumed to be applied at each time-interval, instead
of just at t = 0, we can describe the cumulative response to selection at an
arbitrary time t by a vector of the net increases from ¢ =0 in mean
breeding values of each class of individuals, R.(¢). This vector is given by
the sum of the responses due to selection in each time-interval prior to .
If selection is practised with the same intensity in each time-interval, and
if h? remains constant, we obtain the following relation

t
R(t) = 3 s(G* — G¥) (4.65)
u=1
For a character which can be measured at age x in both sexes, the
phenotypic cumulative response at time f is given by the components
R.(x, t) and R.(d + x, t), for females and males, respectively.

Equation (4.65) gives an exact prediction of the selection response,
subject to the assumptions of the model. Provided that the matrices G
and G and the vector s have been specified by the structure of the
breeding programme, it is straightforward to use the equation to compute
the expected cumulative response at time f. An asymptotic formula can
be given for the response at time ¢, R(¢), defined as R.(t) — R.(t — 1).
(This corresponds to the response given by the classical prediction equa-
tion (4.60).) We know that G approaches the matrix A of p. 83, when ¢
becomes large. Furthermore, when ¢ =d, d*, G' is a matrix of zero
elements, since no individual can survive so long. From equation (4.65),
we have
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R(?) = s(G' — G)
so that
R(1) ~ sA (4.66)

The response per time-interval therefore approaches the same asymptotic
value, R say, for each age-class. Using the definition of A, this asymptotic
response can be written as

d+d*
R= Y s(i)q(i)2T (4.67a)
i=1
where the terms g(i) and T are defined on p. 82. In the case of a
character which is measured at age x in both sexes, this expression can be
combined with equations (4.63) to give

R = h*[Sq(x) + S*q(d + x)]|2T (4.67b)

If the character can be measured in one sex only, the ¢ term correspond-
ing to the other sex must be omitted from this expression.

Hill (1974, 1977) has shown that the asymptotic response is approached
fairly quickly. It is therefore tempting to use R to predict the cumulative
response to selection by an expression analogous to equation (4.61), i.e.
by writing

R.= (R (4.68)

As shown by Hill, this provides a good approximation to the cumulative
response given by the exact equation (4.65); the difference between the
exact and approximate values converges rapidly to a constant level, so
that there is little cumulative error in using equations (4.67) and (4.68).

A numerical example

As an example of possible applications of these results, consider
the following case of an imaginary herd of cattle, discussed by Hill (1977).
The herd is maintained in such a way that all progeny are got by bulls
aged two years; one-third each come from cows aged two, three and four
years, respectively. The matrix G therefore has the form

[ e R 1= N [= N )
[ I I i =}

oS O o O = O
o0 O OO

[N i e =2 = N = N T
(=R == P B e P )
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The vector ¢ is equal to (1, 1, %, %, 1, 1), so that the generation time, T,is
equal to 2.5 years. We assume that selection is practised for weight at one
year of age, on bulls only. If weight is normally distributed with standard
deviation 40 kg, and the 7% heaviest bulls are retained for breeding, then
standard selection theory tells us that the selection differential on bulls is
S$* =40 x 1.9 = 70.6 (cf. Falconer, 1989, Chapter 11). If the heritability
of weight at one year is 0.4, we obtain the following value for R from
equation (4.67b)

R = (0.4 X 70.6)/(2 x 2.5) = 6.08 kg/year

This expected response can be compared with that for a population in
which males are retained for two breeding seasons and females for five,
each fertile age-class being assumed to contribute an equal fraction of the
progeny. If selection is again practised for weight at 1 year, but now 3.5%
of males and 60% of females are selected, the selection differentials .S
and S* are equal to 24.0 and 88.0, respectively. T is now found to be
equal to 3.25 years, and we have ¢(1) = q(7) = 1.0. Equation (4.67b)
gives us an expected asymptotic response of

R = (0.4 X 112)/(2 X 3.25) = 6.89 kg/year

There is therefore little to choose between the two schemes.

4.5.3  Natural selection on quantitative characters

Most empirical work on the evolutionary genetics of life-history
traits involves the use of quantitative genetic methods (see section 5.4).
It is therefore important to have a sound theoretical framework for
interpreting the effects of natural selection on quantitative characters in
age-structured populations. Life-histories inherently involve a multiplicity
of age-related traits, and so a multivariate description must be used.
Work on this topic was initiated by Lande (1982). The basic theory has
been applied to a variety of problems by Charnov (1989), Charlesworth
(1984, 19904), Kirkpatrick, Lofsvold and Bulmer (1990), Law (1991), and
Kirkpatrick and Lofsvold (1992), among others.

We shall assume that the system of interest is described by a vector z,
whose components are in general age-specific, e.g. z for a given pheno-
type might be composed of the set of specific survival probabilities and
fecundities for that phenotype (Lande, 1982), or be a growth-trajectory
which determines these traits (Kirkpatrick et al., 1990; Kirkpatrick and
Lofsvold, 1992). We also assume that knowledge of z for a given
phenotype allows the intrinsic rate of increase for that phenotype to be
calculated. Following standard quantitative genetic procedures (Lande,
1982), the state of the population at a given time ¢ is determined by the
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vector of means Z(¢z) for the new zygotes formed at time ¢, and by the
corresponding matrix of additive genetic covariances G = {gy}, where gy
is the additive genetic covariance between the kth and /th components of
z (g is the additive genetic variance of z;).

Multivariate selection dynamics

An equation for the rate of change of Z(¢) can be derived as
follows, on the assumption that the life-history traits are controlled by a
number of loci, each of small effect, which combine additively to produce
the values associated with each multi-locus genotype. It is also assumed
that allele frequency changes at each locus are approximately the same as
if there is no linkage disequilibrium. This is reasonable if selection on
each locus is weak and linkage is loose (cf. equation (4.20); Nagylaki,
1992, Chapter 8, 1993). These two assumptions together imply that the
rate of change of mean phenotype can be deduced by summing the effects
contributed by the changes in allele frequencies at each locus affecting the
trait in question. The following derivation is based on that of Charles-
worth (1993).

Assume that the value of z for a cohort of individuals determines their
reproductive function k(z, x), and the corresponding intrinsic rate of
increase, r(z). The reproductive function for a given genotype is thus the
mean of k(z, x) over the environmentally determined distribution of
phenotypes around the mean value of z for individuals with the genotype
in question. Let the mean vector associated with individuals of genotype
A;A; at the mth locus be zj;. The assumption of additivity between loci,
together with random mating of ages and genotypes, implies that

a(r) = 23 pl ()P} ()2 (4.69)
ijm

where p["(t) is the frequency of the ith allele at the mth locus. If there is
additivity within as well as between loci, we can write z] =z;" +z/,
where z[" is the effect of the ith allele at the mth locus. If there is
dominance, the allelic effects depend on the state of the population at the
locus in question, and hence change with time (Falconer, 1989, Chapter
7). If the number of loci affecting the trait is large, then the changes at
each locus are negligible over a short period of time, and so the z;" can be
treated as constant even with dominance.

In order to obtain a recurrence relationship for Z(t), we introduce the
variable z;'(t) = p{"(t)z{". Let ¢ be the measure of the overall strength of
selection on the set of traits, analogous to the measure for a single locus
introduced on p. 137. Using an argument similar to that leading to
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equation (4.9), and dropping the arguments from Z(¢) etc., we obtain,
after some manipulations (Charlesworth, 1993), the relation

T(r)Az =232 wi'(ry) — 1] + O(¢?) (4.70)

where r; is the intrinsic rate associated with the current population mean
vector Z, which satisfies the equation

> e Y plpiki(x) =1 (4.71)
x ijm

T(r;) is the corresponding generation time for the population as a whole,

and w; (r;) is the average fitness associated with the ith allele at the mth

locus in a population growing at rate r;. These are defined in the same

way as the analogous quantities in equations (4.8).
The mean fitness of the population is given by the mean of the average
fitnesses of each allele at each locus:

() = Spiwl(ry) = 1 @)

From now on, the argument r; will be usually be omitted from w, T, etc.

Write Vi for the gradient vector of w with respect to z, Viw = (3w/9Z,,
dw/3%,, . . .), noting that the argument r; is held constant while carrying
out the differentiations. Further manipulations (Charlesworth, 1993) lead
to the result that

TAzZ=2Vwyp/'(z]" — D" - 2) + 0(8Y) 4.73)

m

From standard quantitative genetics theory, the assumption of additive
genetic effects among loci implies that

G=23p"a"-9)"@" -2 (4.74)
This yields
TAz = VwG + O(&?) (4.75a)

Using implicit differentiation of equation (4.71) (cf. equations (1.58)), we
have TV# = Vr;, where Vr; = (3r;/3Z, 9r;/372, . . .).
Hence

Az = Vr,G + O(£%) (4.75b)
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If the O(&%) term is ignored, this is equivalent to the equation derived
by Lande (1982), using normal distribution theory (which is equivalent to
our assumption of small effects of each locus) and the assumption that the
population is always in stable age-distribution.

If the phenotypic variances and covariances of z are sufficiently small
that their second and higher powers can be neglected, and the third- and
higher-order derivatives of r with respect to the components of z are of
similar magnitude to the first derivatives (Charlesworth, 1993; Abrams,
Harada and Matsuda, 1993), we can write

VFi=Vr(z) (4.76)
where Vr(Z) is the vector of partial derivatives of r with respect to the
components of z evaluated at the population mean ([3r/3z,);, [87/3z2];,
...). Under the above conditions, Vr(Z) can be substituted for Vr; in
equations (4.75) without much loss of accuracy. This provides a form
which is usually more convenient for computational purposes. The result
is exact if r is a linear or quadratic function of z (Charlesworth, 1993;
Abrams ef al. 1993).

While this analysis has assumed density-independent demography, an
essentially similar analysis can be carried out for the case of density-
dependent population regulation, using the gene-frequency equations
derived in section 4.2.2. The intrinsic rate of increase r is replaced as a
fitness measure by the fitness measures of equations (4.23) or (4.24); all
other expressions remain unchanged. Similarly, the case of small sex
differences in demographic parameters can be analysed by the same
averaging procedure employed to obtain equation (4.17). Modifications
to deal with frequency-dependence are discussed by Charlesworth (1993).

Equilibrium conditions

At demographic and genetic equilibrium, the order & terms
which were neglected in order to derive equations (4.73) must vanish.
This implies that, given the assumption of small allelic effects at each
locus contributing to additive variation in z (needed to obtain equation
(4.70)), we have

0=VrG (4.77)
where 0 is the vector of zero elements.

This equation has some important implications for experimental studies
of life-history genetics (Charlesworth, 1984, 1990a; Charnov, 1989). It
means that either all the components of G are equal to zero, that Vr; =0,
or that the determinant of G is zero. If the components of z are
life-history variables such as fecundity or survival (or increasing functions
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of these variables), the derivatives of r must be positive, and so the
second of these conditions cannot apply. In this case, if there is additive
genetic variance in some of the z;, so that the corresponding g, are
positive, equation (4.77) requires that there be negative additive genetic
covariances between some of the z; in order for the terms on the
right-hand side to sum to zero, consistent with the third of the conditions.
This conclusion about equilibrium does not require that selection be
frequency-independent, although the dynamical equations (4.75) assume
frequency-independence (Charlesworth, 1990a, 1993).

Hence, under rather general conditions, selection theory predicts that
life-history traits in equilibrium populations which exhibit additive genetic
variance which is maintained by selection will be expected to show
negative genetic covariances with some other additively variable traits.
This has been known to specialists in animal improvement for a long time
(Dickerson, 1955; Robertson, 1955). It is a consequence of the fact that
selection exhausts additive genetic variance for net fitness, so that any
remaining additive genetic variation in fitness-related traits must reflect
the properties of genes whose beneficial effects on some traits are
counter-balanced by deleterious effects on other characters (antagonistic
pleiotropy: see Chapter 5, section 5.3.1). Rose (1982, 1985) has provided
some explicit models of how this can be achieved. To the extent that
genetic variation in life-history traits reflects non-equilibrium situations or
the action of non-selective pressures, such as mutation, this conclusion is
weakened (Charlesworth, 1990a; Houle, 1991). Nevertheless, it suggests
that genetically variable components of the life-history may often have
negative genetic covariances with other traits.

An important qualification of this conclusion follows from an analysis
of the relations between genetic covariances and underlying functional
constraints between life-history traits, which shows that positive genetic
covariances between some pairs of traits will usually be expected at
equilibrium under selection (Charlesworth, 1990a). Only in exceptional
cases, such as when functional constraints exist only between isolated
pairs of variables (e.g. between z; and z,, z3 and z4, etc.), will there be
only negative or zero covariances between all pairs of traits (Charnov,
1989; Charlesworth, 19904). As discussed in Chapter 5, section 5.4.5, this
complicates the use of quantitative genetic methods to infer the existence
of functional relations among life-history variables.

4.6 Conclusions
In this section we bring together the main conclusions from the
work described above, and discuss their biological implications. It is
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convenient to consider density-independent and density-dependent popu-
lations separately.

4.6.1 Density-independent populations

Fitness measures and their merits

As should be clear from the analyses described above, the
theoretical basis for predicting the rate and direction of gene frequency
change is less complete than that for studying genetic equilibrium, which
was described in the preceding chapter. In particular, the effects of
non-random mating with respect to age have not yet been satisfactorily
dealt with. When there is random mating between age-classes, and when
male and female demographic parameters are the same, it is clear that the
intrinsic rate of increase of a genotype, as defined by equation (3.34), is
an adequate measure of its fitness for many purposes, provided that the
population is in a temporally constant, density-independent environment.
The ultimate fate of a new allele at a diallelic locus can be predicted from
the relations between the genotypic intrinsic rates, by the results of
Norton (1928), Pollak and Kempthorne (1971) and Charlesworth (1974a),
which are summarised in section 4.4. The rate of spread of a rare
dominant or semi-dominant allele is proportional to its effect on the
intrinsic rate of increase (sections 4.3.1 and 4.3.2). Finally, with weak
selection, equations for gene frequency change can be derived which are
similar in form to the first-order difference equations of discrete genera-
tion population genetics, or the Malthusian parameter equations of Fisher
(1930, 1941), as described in section 4.2.1.

To make equations (4.11) and (4.15) more comparable with those of
discrete-generation population genetics, one can choose the generation-
time of a standard genotype, T, = >, e "*k,(x), as a biological unit of
time. The equations for Ap; and A2In B can be multiplied by T, and T2
to obtain ‘per generation’ changes. (A similar operation can obviously be
carried out for the corresponding continuous-time model.) The ‘per
generation’ measure of the selective difference between two genotypes
with intrinsic rates r; and 7, can then be taken as Ty(r; — r;,). By the
argument used in equation (4.10), we have

T(rj = nm) = 2 €7 kj(x) = 3 &7 kym(x) + O(£%) (4.78)

This is in turn related to equation (3.31) for equilibrium fitness, and is in
fact equal to the difference w;; — wy, as given by that equation, plus
second-order terms. The equilibrium fitness measure and the intrinsic
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rate of increase are thus unified by this approximation. When the intrinsic
rates of increase of all the genotypes are close to zero, equation (4.78)
can be further approximated to give

(zxks(x))(”fj = ) = Ek,-;(x) - Ekfm(x)

If this is used in equation (4.11) to obtain the per generation rate of
change of gene frequency, we obtain the type of result that Haldane
(1927a) first derived. For weak selection in a slowly growing population,
we can conclude that the net reproduction rate of a genotype provides an
approximate measure of its fitness, both for predicting the composition of
equilibrium populations and for obtaining the rate of change of gene
frequency per generation. It is widely used in studies of fitness in natural
populations (Clutton-Brock, 1988).

If there are demographic differences between the sexes, so that equa-
tions (3.12) have to be used as a starting-point, the analysis of pp. 143-5
shows that, with weak selection and random mating with respect to age,
the intrinsic rate of increase of a genotype is replaced as its measure of
fitness by the mean of the male and female intrinsic rates, the male rate
being measured under the demographic conditions of some arbitrary
standard population with a stable age-structure. This fitness measure can
be translated into a per generation measure by the same type of approxi-
mations used above, with the male and female intrinsic rates being
multiplied by the male and female ‘generation times’, respectively. For
the case of strong selection, and with possible non-random mating be-
tween age-classes, equations (4.28) and (4.29) show how the rate of
spread of a non-recessive allele can be determined with demographic

differences between the sexes.
The general conclusion is, therefore, that for the case of weak selection

and random mating with respect to age, the intrinsic rate of increase of a
genotype or, more generally, the mean of the male and female intrinsic
rates, provides an adequate measure of fitness in a density-independent
and constant environment. This parameter can be used in much the same
way as the discrete generation fitness to predict, to a good approximation,
the rate of change of frequency and ultimate composition of populations
with respect to single loci. Provided that linkage is either very tight or is
rather loose, in comparison with the selection intensity, the analysis of
equation (4.20) shows that this is true for the two-locus model as well,
with some minor qualifications.

If selection is strong, however, there is no unitary measure of fitness.
As we have seen (section 4.3.1), the intrinsic rate of increase provides a
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good predictor of the rate of spread of a rare non-recessive gene, but a
different fitness measure must be used for a rare recessive gene. Further-
more, in the neighbourhood of a polymorphic equilibrium, the intrinsic
rate of increase will not predict the rate of change of gene frequency
accurately (pp. 140-3), and it also gives an inaccurate prediction of the
composition of the equilibrium population (section 3.3.3). This conclu-
sion is important for experimenters who wish to study selection by
following gene frequency changes in a continuously breeding population
such as a Drosophila population cage. This has been one of the classical
methods for estimating genotypic fitnesses (cf. Du Mouchel and Ander-
son, 1968). In many cases, particularly in studies of inversion polymorph-
isms, strong selection has been detected, and some evidence for apparent
changes in selection coefficients during the course of selection has been
obtained (Dobzhansky and Levene, 1951; Watanabe et al., 1970). The
fact that, in age-structured populations, strong selection may lead to
deviations from the changes in gene frequency which would be expected
on the basis of constant fitness parameters suggests the need for caution
in interpreting apparent evidence for frequency-dependent selection.

One final point concerning strong selection is worth mentioning. With
heterozygote superiority in the genotypic intrinsic rates of increase, we
have seen that the equilibrium is locally stable (section 4.3.6). The
analysis of Norton (1928) left open the possibility that there might be
sustained oscillations in gene frequency in this case, since he proved only
that there was convergence to a neighbourhood of the equilibrium, but
did not demonstrate convergence to the equilibrium itself. The existence
of such oscillations would have been of considerable interest to students
of gene frequency changes in fluctuating populations, particularly in view
of Chitty’s (1960) hypothesis that gene frequency changes may drive
cycles of population numbers. As we have seen in section 4.4, oscillations
do not appear to be possible in this case, at least as far as the continuous-
time model is concerned.

Demetrius (1975, 1989) has argued that a measure of entropy of the
life-history is an useful predictor of gene-frequency change. While this
may be true under some special circumstances (Demetrius, 1989), the
result is derived from the properties of the intrinsic rate of increase, and
therefore offers no new insights into the dynamics of selection.

Malthusian parameters and gene frequency equations
Fisher (1930, 1941) introduced equations for gene frequency
change in continuous-time models of the form
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dpi/dt = pi(m; — m) (4.79)

where m; — i is the average excess in Malthusian parameters of allele A;,
and p; is the frequency of allele A; among the population as a whole.
Fisher appears to have identified the Malthusian parameter of an indi-
vidual with its intrinsic rate of increase as we have defined it here (see pp.
37-8 of the 1958 edition of The Genetical Theory of Natural Selection
(Fisher, 1930)). Later users of equations of this form have usually
assumed that the Malthusian parameter m;; of a specific genotype A4;A; is
equal to the difference between the per capita birth-rate and death-rate
for that genotype, and that in principle these can be treated as independ-
ent of the genotype-composition and age-composition of the population
(e.g. Crow and Kimura, 1970, pp. 190-5). (As we saw in Chapter 1,
p. 33, a homogeneous population with the demographic characteristics of
A;A; will have an asymptotic value for the difference between its per
capita birth-rate and death-rate which is equal to the intrinsic rate of
increase.) It is also usually assumed that the frequencies of the genotypes
in the whole population can be approximated adequately by Hardy-
Weinberg frequencies, so that m; and 77 in equation (4.79) can be written
as

As mentioned in section 3.1, however, it is not in general possible to
assign a fixed birth-rate and death-rate to each genotype in a population
whose genetic composition and age-structure are being altered by selec-
tion. (Moran, 1962, p. 60; Charlesworth, 1970; Pollak and Kempthorne,
1971). In fact, this can strictly only be done if m;(x) and dIn /;(x)/dx are
independent of x for all x. This is clearly impossible with the type of
reproductive schedule characteristic of most organisms, where reproduc-
tion starts some time after birth, so that m;(x) necessarily depends on x.

Despite these difficulties, it turns out, as we have seen, that an
equation similar in form to equation (4.79) can be used to describe
gene-frequency change in an age-structured population for a continuous-
time model with weak selection (equation (4.12)). The gene frequency is
measured among new zygotes rather than the whole population. With
sufficiently weak selection, this will not make much difference in practice.
The use of this equation leads to the conclusion that the rate of change of
the population growth-rate under selection is equal to the additive genetic
variance in intrinsic rates of increase (the continuous-time analogue of
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equation (4.14)), which is similar to the Fundamental Theorem that
Fisher derived using his Malthusian parameter equation for gene fre-
quency change. Fisher gave no indication, however, that his results were
to be restricted to the case of weak selection, together with the other
assumptions discussed in Chapter 3; these assumptions are necessary for
the basic difference or integral equations for gene frequency and popula-
tion size to be valid. It is remarkable that equations similar to those
proposed by Fisher do, in fact, provide good approximations to the rate
of gene-frequency change with weak selection. Other interpretations of
the Malthusian parameter approach to age-structured models have been
proposed by Pollak and Kempthorne (1971), Price (1972), Price and
Smith (1972), Nagylaki and Crow (1974) and Nagylaki (1992, Chapter 2).
It is obviously not possible to decide which, if any, of these corresponds
to what Fisher had in mind; it is more important to have some
firmly-established methods for studying selection in age-structured popu-
lations. (Crow (1978) has shown how weighting of individuals by their
reproductive value can overcome some of the difficulties of Fisher’s
approach.)

Furthermore, with temporally-varying environments the Malthusian
parameters m;; would be functions of the state of the environment at a
given moment, rather than fixed constants; however, equations having
the form of equation (4.79) are misleading when regarded as descriptive
of gene-frequency change in an age-structured population in this situ-
ation. Consider for example the two-allele case with A, recessive to A;.
Assuming Hardy—Weinberg frequencies, and examining the criterion for
A, to increase on the average when rare (cf. section 4.3.3), gives the
condition

E[my] < E[my,)],

where E denotes expectation over all environmental states. The criterion
for A; to increase when rare is the reverse of this, so that one concludes
that a polymorphism cannot be maintained by temporal changes in
the environment when there is complete dominance, in contrast to
the discrete-generation model of Haldane and Jayakar (1963). But we
have seen that it is possible to produce examples in which the
Haldane-Jayakar model works for age-structured populations, due to the
fact that the rate of increase of a rare recessive gene is not controlled
solely by its effect on the intrinsic rate of increase when selection is strong
(section 4.3.3). Another application of equations of the form of equation
(4.79) has been to regard them as approximations to discrete-generation
difference equations (cf. Kimura, 1955, p. 45). It has been pointed out
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that, with temporally-varying environments this form of approximation is
not adequate (Jensen, 1973; Gillespie, 1973b), for rather different
reasons from those just discussed for the case of age-structured popula-
tions.

4.6.2  Density-dependent populations

The results derived in section 4.2.2 show that, with weak selec-
tion, the genotypic carrying-capacities as defined by equation (3.40)
control the direction of selection in the same way as the intrinsic rates of
increase in the density-independent case. In the one-locus case, natural
selection tends to maximise the number of individuals in the critical
age-group as opposed to the maximisation of the population growth-rate
in a density-independent population. It should be borne in mind that this
result depends on the assumption that the net reproduction rate of each
genotype is a strictly decreasing function of the number of individuals in
the critical age-group, and that the maximisation principle applies to the
number of individuals in the critical age-group, not necessarily to the
population as a whole, or to age-classes outside the critical ones.

The idea that natural selection should, under suitable conditions, result
in increasing population density goes back at least as far as Fisher (1930,
Chapter 2). Its significance as a general principle was stressed especially
by Nicholson (reviewed in Nicholson (1960)). Mathematical treatments
for the discrete-generation case have been given by Charlesworth (1971),
Roughgarden (1976), Kimura (1978), Nagylaki (197956, 1992, Chapter 4),
and Ginzburg (1983), with conclusions very similar to those described
here. Asmussen (1979) has analysed density-dependent selection with
cyclical or chaotic behaviour of population size.

Buzzati-Traverso (1955), Beardmore, Dobzhansky and Pavlovsky
(1960) and Nicholson (1960), as well as a number of later workers (e.g.
Mueller, 1991; Costantino and Desharnais, 1991), have described
measurements on experimental populations in which population density
or biomass has increased as a result of selection.

It should be noted that the conclusions about the control of the
direction of selection by the genotypic carrying-capacities and the maxim-
isation of population size do not require the different genotypes to
respond differently to the density-dependent regulating factors. As in the
discrete-generation case (Charlesworth, 1971), it is perfectly possible for
genotypic differences in density-independent components of the life-cycle
to result in differences in the carrying-capacities. This may be seen from
an example in which density-regulation occurs through a response of the
survival of immature stages to the total number of immature individuals

Cambridge Books Online © Cambridge University Press, 2009



184 Selection dynamics

at any one time, but where selection affects fecundity. Let the density-
dependent probability of survival to reproductive maturity be w(®)(N),
and the density-independent net expectation of offspring for an individual
who has survived to adulthood be w,gf ) for genotype A;A;. The genotypic
carrying-capacity, Nj;, is defined by

S ki(x, N) = wP(N)w{ =1

From the fact that w(P)(N) is a decreasing function of N, it follows that
genotypes with high values of w%’) have high carrying-capacities.

This result shows that the often-quoted statement of Haldane (1953),
that natural selection will increase the density of a population only if
genotypes differ in their ability to survive a density-dependent source of
mortality, is not generally valid. Some experiments of Nicholson (1960)
where he artificially adjusted the mortality rates of adult sheep blow-flies
in a situation where the size of the population was limited by female
fecundity, and found that population density was inversely related to
mortality, provide a model which illustrates this fact.

These conclusions about the maximisation of population size depend on
the assumptions of frequency-independent selection and a single-locus
genetic system. With discrete generations, it is well known that mean
fitness is not necessarily increased when there is frequency-dependent
selection, or in multi-locus systems except when linkage is very tight or
very loose (reviewed by Turner, 1970). The same applies to population
size in the present case. In addition, we have considered only the
case of a single-species ecological system. As shown by Levins (1975),
Roughgarden (1976) and Léon and Charlesworth (1978) for discrete-
generation models, evolutionary change in multi-species systems does not
necessarily lead to maximisation of population size. For example, in a
predator-prey system where the predator is only weakly regulated by its
own numbers, evolutionary change in the predator species tends to
increase its own numbers but decreases the numbers of the prey, whereas
evolution of the prey species has only a trivial effect on its own numbers.
Similar conclusions can easily be derived for age-structured populations
by the methods described here for the single-species density-dependent
case. For further discussions, see Ginzburg (1983) and Costantino and
Desharnais (1991).

4.6.3  Quantitative genetics and life-history evolution

Two main theoretical techniques have been employed in the
study of life-history evolution. The first is the method of evolutionary
optimisation theory, which assumes that natural selection will lead to the
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establishment of a life-history which maximises Darwinian fitness, subject
to a set of constraints among the life-history traits in question (see e.g.
Gadgil and Bossert, 1970; Schaffer, 1974a, 1983; Sibly and Calow, 1986;
Roff, 1992, Stearns, 1992). In such models, fitness is usually equated to
the intrinsic rate of increase, r, and the optimal life-history is determined
by determining the maximum of r with respect to variation in the set of
trait values z, subject to an assumed set of functional constraints among
the components of z, such that a vector function f(z) =0 exists (see
section 5.3 for specific examples). A genetical justification for this ap-
proach is provided by the fact that a mutant gene which perturbs the
life-history can only invade the population if it confers a higher intrinsic
rate of increase on its carriers (section 4.3.1), so that a population which
is at a local maximum in r constitutes an evolutionarily stable strategy
(ESS) (Maynard Smith, 1982). Alternatively (and more realistically,
given the generally polygenic control of life-history variables), a quanti-
tative genetics model of life-history evolution can be employed (section
4.5.3). Here, the effects of selection on the population mean values of a
set of life-history traits are determined by the genetic variance—
covariance matrix for the set of traits, and the vector of selection
gradients of r with respect to the population mean values of the traits. In
principle, the evolutionary equilibrium life-history can be determined
from the conditions for the changes in the mean life-history variables to
be zero, given knowledge of the genetic variance—covariance matrix, G.

The extent to which these two approaches lead to the same conclusions
about the effects of natural selection on life-histories has been the subject
of discussion (Clark, 1987; Charnov, 1989; Pease and Bull, 1988; Charles-
worth, 19904, 1993; Abrams ef al. 1993). The results derived by Charles-
worth (1990a), using a model of underlying functional constraints to
generate the G matrix, show that there is approximate correspondence
between the results of an evolutionary optimisation model of a con-
strained multivariate system, and of the quantitative genetics model. The
equilibrium mean values of the characters under the quantitative genetics
model approximate the solution to the corresponding optimisation model,
provided that the traits have small variances and covariances (section
4.5.3). This condition is likely to hold if z is measured on a logarithmic
scale, provided that the coefficients of variation on the original scale are
small. If the fitness functions are linear or quadratic with respect to the
trait vector z, and the constraint functions are linear, the correspondence
between the quantitative genetics and optimisation models is exact.
Extensions to the case of discrete variables, and to frequency-dependent
selection, are discussed by Charlesworth (1990a, 1993).
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4.6.4 Determining optimal life-histories

Under the conditions just mentioned, the problem of predicting
the equilibrium attained under selection on a set of life-history traits
subject to a set of constraints reduces to that of finding the maximum of
the fitness measure with respect to perturbations of z. If there is fre-
quency-dependence, as is often the case when fitness is influenced by
competition, the procedure can be modified by representing fitness of
individuals with phenotype z as a function both of z and of the population
mean Z, w(z, Z), the second term representing the dependence of fitness
on the composition of the population as a whole (Charlesworth, 1990a,
1993). The maximisation procedure is then carried out with respect to z,
holding Z constant, giving results which are equivalent to the standard
ESS analysis (Charlesworth, 1990a, 1993).

In the case of a density-independent population, the optimal life-
history corresponds to the maximum in the intrinsic rate of increase, r.
The technicalities of maximising r are simplified to some extent by
the following facts, discussed in more detail by Taylor, Gourley and
Lawrence (1974). If a life-history corresponding to a certain reproductive
function k'(x) yields a local maximum in r, r’ say, the characteristic
equation (1.45) gives the relation

e Yk'(x) =1 (4.80a)

Any small perturbation to another reproductive function k"(x) #* k’'(x)
with, by definition, r” < r', must therefore be such that

Se k" (x) < S ek (x) =1 (4.80b)

The sum D, e "*k(x) is therefore at a local maximum when k(x) =
k'(x). Conversely, if > e "*k(x) is at a local maximum when
k(x) = k'(x), r' is a local maximum in r. This can be summed up by
saying that the necessary and sufficient conditions for a life-history k’(x)
to be at a local maximum in r is that the sum Y e "*k(x) is at a
maximum when k(x)= k'(x), with r’ being specified by equation
(4.80a). The conditions for a global maximum in r can be expressed
similarly.

Analogous principles can be developed for studying life-history evolu-
tion in a density-dependent environment (Charlesworth and Leén, 1976).
Using the model of density-dependence developed in section 1.4.2, a
given life history k’(x) is associated with a carrying-capacity N’, deter-
mined by the equation

w(NY)=Sk'(x N)=1 (4.81a)
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If w(N) is a strictly decreasing function of N, it follows from the results
described in section 4.3.2 that a mutant gene associated with a perturbed
life history k”(x) will be eliminated if and only if

w'(N') = Sk"(x, Ny <w/(N") =1 (4.81b)

This is, therefore, the necessary and sufficient condition for the life-
history k'(x) to be an ESS. It is also the condition for the carrying-
capacity N’ to be a maximum. There is thus no real difference between
the density-dependent and density-independent cases, as far as the tech-
niques of determining the ESS life-histories are concerned.

When applying this general procedure to a particular problem, it is
important to distinguish between local and global maxima in fitness. It is
perfectly possible in principle for there to be several points in the space
specified by the permissible values of z which are local maxima in fitness;
each of these constitutes an ESS with respect to small perturbations in z.
Only one of these can be a global maximum in fitness, except in the
unlikely event that two or more turn out to be associated with exactly
equal fitnesses. Some examples of this are discussed by Schaffer and
Rosenzweig (1977). It may be difficult for a population which for histor-
ical reasons is located at an ESS to approach the global maximum, unless
a mutation of large effect occurs or Wright’s shifting-balance process
combining random genetic drift and selection operates (Wright, 1932).
There are reasons for doubting that these two possibilities often can be
realised (Charlesworth, 1990b6).

A complete mathematical solution to an optimal life-history problem
requires enumeration of all the life-histories corresponding to local max-
ima. This is usually a formidable task. Mathematical methods for deter-
mining the phenotype vector z corresponding to an optimum in general
require the methods of dynamic programming or optimal control theory,
which are difficult to apply to the problems of high dimensionality usually
encountered in life-history theory. Accounts of these methods are pro-
vided by Le6n (1976), Schaffer (1983), Sibly and Calow (1986), Mangel
and Clark (1988), and Roff (1992, Chapter 8). Charlesworth (1990a)
describes a numerical method of locating the optimum z, which involves
translating the set of constraints among the components of z into a G
matrix and then iterating equations (4.75) to equilibrium. This is a
relatively painless method of arriving at an optimum. Multiple optima can
be searched for by starting with different initial z values.

In general, however, it has proved most profitable to obtain insights
into the outcome of natural selection on life-histories by asking questions
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about the ways in which the demographic environment can affect the
effects of selection on aspects of the life-history, without necessarily
solving explicitly for optima. Predictions about the effects of the demo-
graphic environment on the outcome of selection can then be compared
with empirical results. This approach will form much of the subject matter
of the next chapter.
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The evolution of life-histories

5.1 Introduction

This chapter is concerned with the role of natural selection in
moulding the forms of life-histories, as described by the relationships of
age-specific survival probability and reproduction to age. This is an aspect
of the theory of natural selection which was not investigated by Charles
Darwin, although Alfred Russel Wallace briefly discussed the topic
(Rose, 1991, pp. 4-5). The first detailed discussion was apparently that of
August Weismann (Weismann, 1889; Rose, 1991, pp. 6-7), who was
primarily concerned with the evolutionary explanation of ageing. In the
absence of a well-developed science of population genetics, these early
attempts were necessarily confused, and led nowhere. After the rise of
population genetics, Fisher (1930, Chapter 2) and Haldane (1941, pp.
192-4) both briefly discussed aspects of selection on age-specific survival,
but their remarks had little immediate impact.

The modern era was initiated by Medawar (1946, 1952), who was the
first to formulate clearly the concept that the strength of selection on
genes affecting survival or reproduction depends on the ages at which
they exert their effects. He suggested that senescence has evolved as a
result of stronger selection on effects of genes which are expressed early
in life than on effects expressed later on. This idea was elaborated in
relation to comparative data by Williams (1957), and made quantitative
by Hamilton (1966). It is discussed in section 5.2 of this chapter. A large
body of work now exists which was stimulated by these basic ideas and
which provides a firm connection between population genetics models of
the kinds described in the last two chapters and biological data on ageing
(Rose, 1991). This is described in sections 5.3.1 and 5.4.3.

The relation of reproductive activity to age is another aspect of the
life-history problem which has been intensively studied in the last twenty
years. This involves such questions as the effects of selection on the age at
reproductive maturity, selection for iteroparity versus semelparity, the
relations between age and reproductive effort, allocation between male
and female reproduction (in hermaphrodites), and offspring sex ratio
(when there are separate sexes). This topic was initiated by Cole (1954),
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who emphasised the selective advantage of early reproduction. The main
theoretical ideas are described in sections 5.3.2-5.3.7, and their relation-
ships to data are discussed in sections 5.4.4-5.4.6.

The viewpoint adopted here is that life-history evolution is usually
caused by natural selection acting on individual variation within popula-
tions. The fact that, as we shall see, the theoretical study of life-history
evolution frequently reduces to a discussion of the consequences of
changes in demographic parameters for population properties, such as the
intrinsic rate of increase or the carrying-capacity, does not mean that
group selection (Wynne-Edwards, 1962) is being advocated. The use of
these population-level variables is merely an aid to calculation (see
section 4.6). While there are circumstances under which group selection
can have significant evolutionary effects, there are difficulties in accepting
that it can often play an important role in the evolution of characters so
closely connected to fitness as life-history traits (Fisher, 1930, Chapter 2;
Maynard Smith, 1976; Williams, 1966a; Charlesworth, 19905).

In addition, while the evolutionary history of a species must impose
constraints on the possible range of phenotypes attainable at any one time
through mutational variation, it will be assumed that the life-history
which characterises a population or species is generally close to a local
equilibrium under the forces of selection and mutation, and that there is
sufficient genetic variation for the population to track environmental
changes which alter the position of this equilibrium. If this view is even
approximately correct, it should be fruitful to compare patterns of vari-
ation within and between species with the predictions of evolutionary
models, without taking evolutionary history into account. Readers can
judge for themselves whether the results of this approach are indeed
fruitful.

5.2 Effects on fitness of age-specific changes in life-history traits
Chapter 4 laid the foundations for the theory of the effects of
natural selection on life-histories, by providing measures of Darwinian
fitness in age-structured populations which predict changes in gene fre-
quencies and the means of quantitative traits. With weak selection, and
sufficiently small phenotypic variances and covariances in the life-history
traits under study, the direction of evolution can be predicted to a good
approximation from the relation between the appropriate measure of
individual fitness and individual phenotypic value (sections 4.5.3 and 4.6).
The requirement of weak selection can be relaxed as far as evolutionary
equilibrium is concerned. From now on, we can thus largely avoid
gene-frequency calculations, and merely use the effects on fitness of
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changes in life-history traits as predictors of the direction of evolutionary
change, and of evolutionary equilibria in life-history traits.

An essential first step is to determine the relationships between changes
in individual life-history traits and the corresponding changes in fitness.
These can be calculated from the partial derivatives of the appropriate
fitness measure with respect to age-specific survival or fecundity (Hamil-
ton, 1966; Caswell, 1978). Given these partial derivatives, the effect on
fitness of any arbitrary small change in the life-history can be found.
Hamilton’s expressions for the partial derivatives are thus of fundamental
importance in the theory of life-history evolution.

5.2.1 Density-independent populations

We first consider the case of a density-independent population in
a constant environment. In this situation, fitness can be measured by the
intrinsic rate of increase, r (section 4.6.1).

Effects of changes in survival

Using equations (1.58), or applying implicit differentiation to
equation (1.32), it is easily seen that the partial derivative of r with
respect to survival at age x is

d
Y, e Vk(y)
or _ _y=x (5.1a)
3P(x) 4
P(x) Eby eV k(y)
=

In many respects, it is more useful to use the derivative of r with respect
to the natural logarithm of P(x), since genetic effects on survival prob-
abilities are more likely to be additive on a log scale. If this is done, we
obtain

or _ s(x) (5.1b)
dln P(x) T
where
d
s(x)y= > e "k(y) (5.1¢)
y=x+1

and T is the familiar measure of generation time, introduced in section
1.3.2.

s(x) is a measure of the sensitivity of fitness to a change in log survival
at age x, expressed on a time-scale of generations rather than time-inter-
vals. Equations such as (5.1) were first introduced by Hamilton (1966),
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and have since been discussed by Demetrius (1969), Emlen (1970),
Goodman (1971) and Caswell (1978). It is interesting to note that s(x) is
equal to Fisher’s reproductive value at age x + 1, times e "**D](x + 1),
and that 3r/31n P(x) is equal to Goodman’s eventual reproductive value
at age x + 1, times e "D (x + 1).

It is evident from equations (5.1) that s(x) is a strictly decreasing
function of x, for ages within the reproductive period of an iteroparous
species, and takes its maximum value of unity throughout the pre-
reproductive period. Fitness is therefore most sensitive to age-specific
changes in survival which take place early in the life-cycle; after the age of
first reproduction is reached, sensitivity declines monotonically with age.
As pointed out by Hamilton (1966), this has important implications for
the evolution of senescence. These will be discussed in section 5.3.1.

Effects of changes in fecundity
A similar calculation can be carried out for the effects of small
changes in age-specific fecundity. We obtain

or _ e "l(x) _ s'(x)
am(x) T T

where s'(x) is a measure of the sensitivity of fitness to a change in
fecundity at age x, expressed on a time-scale of generations. From
equation (1.50a), it is evident that s'(x) is proportional to the stable age
distribution of the population. In contrast to s(x), s'(x) is a strictly
decreasing function of x if r = 0. If r <0, however, s'(x) may have a
non-monotonic relation with x, or even be an increasing function of x (cf.
Mertz, 1971a, b). This situation is probably of little biological import-
ance, since a population cannot decline in numbers over the period of
time needed for significant evolutionary change without risk of extinction.
It seems safe to assume, therefore, that fitness is most sensitive to
changes in fecundity early in the life-cycle. Again, equation (5.2) was first
obtained by Hamilton (1966).

(5.2)

5.2.2  Density-dependent populations

In this case, the appropriate measure of fitness is the net repro-
duction rate, R, evaluated at the equilibrium density for the population’s
current demographic parameters (Chapter 4, section 2.2). The sensitivity
function for change in log survival at age x is

s(x, N) = Ed: k(x, N) (5.3)

y=x+1
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where N is the equilibrium number of individuals in the critical age-

group, given by equation (1.91b). The generation time T in the denomi-

nator of the equivalent of equation (5.1) is given by >,xk(x, N).
Similarly, the sensitivity function for fecundity is

s'(x, Ny = I(x, N) (5.4)

5.2.3  The probabilities of fixation of genes with age-specific effects

The above results give insight into the effects of selection in terms
of the rates of change of gene frequencies or trait means, which are of
evident importance as measures of evolution over the short-term. It is,
however, of interest to ask a slightly different question: what are the
differences in the long-term rates of evolution between classes of genes
which differ only with respect to their age of action? In order to do this,
we can use the probabilities of fixation of new favorable mutations, since
the fixation probability associated with a class of gene with a given effect
on fitness provides an index of the rate of substitution of mutations
belonging to this class (section 2.3.3; Kimura and Ohta, 1971, p. 12).
Fixation probabilities also play a fundamental role in the theory of
long-term response to artificial selection (Robertson, 1960; Hill, 1982).

The results of section 4.3.5 can be used to relate fixation probability U
to the age of action of the gene concerned, in a very similar way to that
used above for the other fitness measures (Charlesworth and Williamson,
1975). As we saw, the survival probability for a new mutation introduced
into a stationary, random-mating population is proportional to the
amount by which it increases R when heterozygous. If such a mutation
also increases survival or fecundity when homozygous, it will spread to
fixation if it survives in the population at all. In this case, therefore, the
relative fixation probabilities of genes with different age-specific effects
will be determined by the fitness sensitivities already introduced, and no
new theory is required.

The situation is more complex when the initial population is increasing
in numbers. In this case, the sensitivity functions must be replaced by the
partial derivatives of U with respect to age-specific survival or fecundity.
Expressions for these are derived by Charlesworth and Williamson
(1975). Their overall conclusion is that the relations with age of the
derivatives of r and U are very similar. This suggests that both long-term
and short-term rates of evolution have similar relationships with the ages
of action of genes affecting survival and fecundity. An example is shown
in Figure 5.1.
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Figure 5.1. Partial derivatives of U (dashed lines) and r (full lines) with
respect to m(x) (triangles) and In P(x) (circles), using vital statistics for
the U.S. population of 1939—41 and the Taiwan population of 1906. A
Poisson distribution of offspring is assumed for each age-class.

Dependence of the fitness sensitivities on the demographic
environment
It is clear from the above equations that the sensitivity functions

depend on the demographic state of the population, which will be
affected by ecological factors such as the level of mortality due to disease
or predation. Tests of evolutionary models by means of comparisons of
the life-histories of different populations or species often involve compari-
sons between groups with different ecologies (section 5.4). It is therefore
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of great importance to have a clear understanding of how the demo-
graphic environment of the population affects the likely outcome of
natural selection on life-histories. The relations of the sensitivities to age
provide a basis for this.

Density-independent populations

The factor e™” or e~ in equations (5.1) and (5.2) provides a
greater weighting to younger ages if r is large than when it is small,
implying that the sensitivities decline faster with age, the greater the rate
of population growth (other things being equal). Similarly, a higher rate
of mortality, giving rise to a faster decline of /(x) with age, results in a
faster decline in sensitivity with age (only a change in adult mortality is
relevant for s(x)). Finally, there is a slower rate of decline of s(x) with x
if fecundity increases with age. Figure 5.1 illustrates the effect of a higher
level of mortality and higher rate of population growth in a high-fecundity
human population (Taiwan in 1906), compared with a low-fecundity,
low-mortality population (the U.S. population of 1939-41).

These results suggest, at first sight, that some clear predictions about
differences in the effects of selection on life-histories in different demo-
graphic environments can be made. In particular, environments where
populations grow fast, at least temporarily, or where mortality is high,
should favour early life-history traits more strongly than environments
where population size is stationary and/or mortality is low. The examples
of changes in the net fitness effects of some deleterious major mutations
in human populations (section 3.4.2) illustrate how demographic changes
may alter the outcome of selection on genes with age-specific effects.

Some caution needs to be exercised in applying this conclusion,
however, since the detailed nature of the ecological factors causing the
demographic differences in question influences their effects on the con-
tributions of different ages to net fitness (section 3.4.1; Abrams, 1993).
For instance, it was shown on p. 32 that a change in log survival which is
constant across ages (i.e. P(x) for each age is multiplied by the same
factor K) has no effect on the age distribution, since r is changed by
In K, exactly cancelling the effect of the change in survival (Coale, 1957).
Such a change in survival will leave both sensitivity functions unchanged.
In contrast, if adult fecundity for all ages is multiplied by the factor
K' > 1, there will be a corresponding increase in 7, and a faster decline in
the sensitivities with age. An exactly similar effect is produced if survival
at age 0 is multiplied by K’. In the case of s(x), any change in juvenile
survival will affect the sensitivities in the same way as a change in
fecundity. This is true only of the adult ages in the case of s'(x).
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Density-dependent populations

In the case of density-dependent populations, the effect of
changes in demography induced by density-independent survival or fecun-
dity changes depend both on the nature of the mechanism of density-
dependence and on the nature of the density-independent changes.
Assume first that density is regulated by a survival factor P®)(N) which
is applied equally to each age-class, so that survival to age x can be
written as I(x, N) = PO(N)*ID(x) (where ID(x) is the density-
independent component of I(x)). A density-independent change in sur-
vival which is also age-independent will be exactly compensated by a
change of opposite sign in P®)(N), such that equation (1.91b) is satis-
fied. There is thus no change in net survival or in the sensitivity functions.
On the other hand, if there is an increase in fecundity or in survival at age
0, the compensatory decrease in P®)(N) results in a faster decline in the
sensitivities with age. The same is true of an increase in juvenile survival
at any age in the case of s(x).

An alternative mode of density-dependence is through a fecundity
factor m®)(N) applied to each age (density-dependent survival at age 0
has exactly the same consequences). If density-independent changes due
to increases in mortality at all age-classes occur, then compensation will
occur through an increase in m®)(N), and the sensitivities will decline
faster with age. As before, only changes in adult mortality rates are
needed in the case of s(x). Conversely, uniform changes in fecundities at
all ages will leave the sensitivities unchanged. If density-dependence
operates through juvenile survival, these conclusions still hold for s(x),
but apply only to the adult ages for s'(x).

Conclusions

In all cases, demographic shifts which tilt the age-structure of the
population in favour of younger individuals, or which result in a more
rapid decline in fecundity with age, will cause an increased weighting of
the sensitivity of fitness toward changes at earlier ages. Changes which
have no such effects will leave the weightings unchanged (Abrams, 1993),
in agreement with the findings of section 3.4.1 on the effects of demo-
graphy on the fitness measure used for calculating equilibrium gene
frequencies. In particular, there is no necessary relation between a high
intrinsic rate of increase and a greater weighting of younger ages, as is
often stated in the literature (e.g. Lewontin, 1965). This implies that
comparative studies need to incorporate data on age-structure and the
relation of fecundity to age, in order to be truly informative.
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5.3.1 The evolution of senescence

General considerations

We are now in a position to see how these results can be applied
to an evolutionary interpretation of senescence and related phenomena.
In demographic terms, senescence is defined as the tendency for the
age-specific survival probabilities and fecundities to decline with age, for
individuals of sufficiently advanced age. This process of decline at the
level of life-history traits reflects the decline in performance of many
different physiological functions with respect to age, and the increase in
incidence of pathological factors such as cancer and cardio-vascular
disease (Comfort, 1979; Finch, 1990; Rose, 1991). Examples of senescent
decline in both fecundity and survival are shown in Tables 1.1 and 1.2.

The problem raised by senescence for evolutionists has been to devise a
credible theory to account for the establishment and maintenance by
natural selection of this apparently deleterious phenomenon. As men-
tioned in the introduction to this chapter, Medawar (1946, 1952) sug-
gested that the key to solving this problem was the concept that the
strength of selection on a gene, whose effects on survival or fecundity are
confined to a given age or set of ages, is dependent on the age or ages in
question, such that the intensity of selection is higher, the earlier the time
of action of the gene. The intuitive basis for this effect is that unavoidable
sources of mortality cause the size of a cohort to dwindle with advancing
age, so that a gene with delayed expression will have a smaller net effect
on the composition of a population than a gene which is expressed early
in life.

Medawar proposed that Fisherian reproductive value should be used as
an index of the intensity of selection on genes acting at a given age. This
proposal was criticised by Hamilton (1966), who suggested the use of the
partial derivatives of r with respect to age-specific survival and fecundity
as such indices, based on Fisher’s (1930) Malthusian parameter formulae
for gene-frequency change. As discussed above, these derivatives or the
related measures described in section 5.2, can be given a concrete
interpretation in terms of the population genetics of age-structured popu-
lations, whereas Medawar’s suggestion was based on intuition. It seems
clear that reproductive value should not be used in this context.

As Hamilton (1966) pointed out, reproductive value v(x) behaves
differently as a function of age from both s(x) and s'(x). In populations
with r =0, v(x) increases with x for the juvenile age-classes, whereas
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s(x) is constant and s’(x) decreases (equations (5.1) and (5.2)). In
addition, v(x) generally reaches its maximum value somewhat after the
age of first reproduction, as may be seen in Table 1.4, whereas s(x) and
s'(x) decline monotonically throughout the reproductive period. Hamil-
ton also pointed out that, in organisms where fecundity increases mono-
tonically with age, v(x) increases with advancing age, so that its use as an
index of selection intensity would predict the reverse of senescence. The
difference between the two viewpoints is, therefore, not just a technical
detail.

Paths for the evolution of senescence

Having decided on the appropriate way of measuring the depend-
ence of selection intensity on age of gene action, we can now examine
ways in which this dependence may contribute to the evolution of
senescence. It is useful to distinguish three possible ways in which the
dependence of the strength of selection on the age of gene action may
contribute to the evolution of senescence. For brevity, the discussion will
concentrate on senescence in relation to survival, although very similar
principles govern the evolution of senescence with respect to reproductive
characteristics.

(1) Hamilton (1966) suggested that there would be a higher rate of
incorporation of favourable mutations which increase survival at earlier
ages within the reproductive period, compared with genes acting later.
Over a long period of evolutionary time, this would have the effect of
raising survival rates at early adult ages relative to survival rates later in
life. An initially non-senescent life-history, with constant adult P(x)
values, would thus become converted into one which exhibits senescence.
The relation between age of gene action and fixation probability of a
favourable mutation, discussed in section 5.2.3, provides an exact founda-
tion for this idea.

It seems unlikely that this mechanism provides a full explanation of
senescence, since so many of the physiological changes involved in
senescence seem to be pathological (Finch, 1990). It is improbable that
such malfunctioning was characteristic of the younger age-groups of the
ancestors of present-day species, and has simply been eliminated by the
accumulation of favourable gene substitutions. Rather, it seems necessary
to invoke processes which involve an accumulation of genes causing
harmful effects at later ages, as discussed in the following paragraphs.

(2) It is plausible to imagine the existence of genes with pleiotropic
effects on survival, such that increased survival at one age is accompanied
by decreased survival at another. The decline in fitness sensitivity with
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increasing adult age means that a gene which increases survival early in
adult life (or in the juvenile period), at the expense of a reduction in
survival of comparable size later in life, is more likely to spread to
fixation than a gene with the reverse pattern of effects. The accumulation
of such gene substitutions would therefore tend to produce senescence, as
emphasised by Williams (1957). Detailed population genetic models of
this antagonistic pleiotropy path for the evolution of senescence have
been described by Charlesworth (1980, pp. 208-9), Templeton (1980),
and Rose (1985). Possible physiological mechanisms for generating the
trade-offs between early and late survival rates required for antagonistic
pleiotropy have been discussed by Williams (1957) and Kirkwood (1977,
1990). An analysis of the physiological basis of the trade-off between
early fecundity versus survival and late fecundity in Drosophila melano-
gaster has been made by Rose ef al. (1984), Service et al. (1985) and
Service (1987).

(3) A final contributory factor to the evolution of senescence may be
the maintenance of deleterious genes by mutation pressure, the mutation
accumulation theory (Medawar, 1952; Edney and Gill, 1968). The equili-
brium frequency of a deleterious allele maintained in the population by
recurrent mutation from wild-type was determined in section 3.3.3 (equa-
tions (3.45) and (3.46)). As we have seen (section 4.6), the fitness
measure for the mutant genotype which appears in the relevant formulae
is directly related to the corresponding r value, so that the same relation
holds between the age of action of a mutant gene and its effect on fitness
which we discussed in section 5.2 above. In the case of a dominant or
semi-dominant mutation with a small effect on survival at a single age x,
application of the above methods to equation (3.46a) gives the equili-
brium frequency of heterozygotes for the mutant as

2”/{[111 Pyy(x) — In Pyy(x)]s11(x)} (5.5a)

where s11(x) is the sensitivity function for the population of wild-type
homozygotes.

Similarly, for a completely recessive gene, equation (3.46b) gives the
frequency of mutant homozygotes as

u/{[In Pyy(x) = In Pp(x)]s11(x)} (5.5b)

These equations are readily extended to situations where the effects of
the mutations extend over more than one age-class, by replacing the
denominator by the sum of the relevant terms over all ages involved.
They show that deleterious mutant alleles with late ages of action will give
rise to higher equilibrium frequencies of affected individuals than genes
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with similar effects on survival early in reproductive life. If there is a
sufficiently large number of loci capable of mutating to deleterious alleles
with age-specific effects, there will therefore be a net decline in survival
with advancing adult age. A quantitative genetics model of the conse-
quences for senescence of age-specific mutations at a large number of loci
has been analysed by Charlesworth (1990a), who showed that such
senescent decline can be produced given reasonable mutation rates and a
supply of age-specific mutations (see also Partridge and Barton, 1993).

An idea related to mutation accumulation was proposed by Haldane
(1941, pp. 192-4), who suggested that there might be a significant
selection pressure in favour of modifier genes which delay the time of
onset of hereditary diseases, since this would lower the impact of the
diseases on fitness. Medawar (1952) emphasised this process as a major
factor in the evolution of senescence. While in principle it is clearly
capable of operating, it is open to the same objection which Wright
(19294, b) raised to Fisher’s theory of the evolution of dominance
(Fisher, 19284, b). The selection pressure in favour of a modifier of a
rare allele initially at equilibrium under mutation—selection balance must
be of the same order as the mutation rate. For example, in the case of a
recessive mutation, the equilibrium frequency of mutant homozygotes is
given by equation (5.5b), and the selective advantage to a rare, unlinked
modifier gene which completely abolishes its effect can be obtained by
multiplying by the denominator, giving a net result of . The advantage
to a gene which simply retards the age of onset of the disease is obviously
considerably smaller. Such a small selective advantage seems unlikely to
be capable of overcoming any deleterious pleiotropic effects of the
modifier, or the effects of random genetic drift. It thus seems far more
plausible to assume that mutant alleles have a wide distribution of ages of
action, and that those whose effects are restricted to later parts of the
life-cycle tend to accumulate at the highest frequencies.

5.3.2  The evolution of iteroparity versus semelparity

Another major question in life-history evolution has been the
evolution of iteroparity versus semelparity (Cole, 1954; Charnov and
Schaffer, 1973; Young, 1990). Other things being equal, it seems from the
considerations of section 5.2 that selection on age-specific fecundity
would favour reproduction as early as possible in the life-cycle, so that in
species with seasonal environments the life-history associated with highest
fitness is one in which reproduction occurs as a single burst in the first
season following birth. This is, of course, the reproductive pattern
characteristic of organisms such as univoltine insects, and is extremely
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widespread. One limitation to this mode of reproduction is the necessity
of a high level of reproduction in the single breeding season, in order to
compensate for the loss of progeny from later seasons. There may well be
physiological upper limits to fecundity; in organisms with parental care,
there may also be a selective limitation to fecundity due to the need to
have a clutch of sufficiently smail size to be cared for adequately (Lack,
1954, 1966; Stearns, 1992, Chapter 7).

Constant density-independent environments

The strength of this limitation for a population in a constant
environment can be assessed as follows, using the method of Charnov and
Schaffer (1973). Consider an iteroparous life-history with an age-
independent adult survival probability, P, from one age-class to the next.
Let the age-specific fecundity, m;, also be age-independent. Let the age
of first reproduction be b, and the probability of survival to this age be
I(b). Then, if there is no upper age limit to survival or reproduction, the
characteristic equation for the intrinsic rate of increase, r;, can be written
as follows (cf. equation (1.32))

1= l(b)my(e™"® + Pe "btD 4 p2eribt2) 4 )
Summing this geometric series, we obtain
1=I1(byme /(1 - Pe™") (5.6a)

A semelparous life-history with the same age at maturity and same
probability of survival to maturity, but with fecundity m;, has an intrinsic
rate of increase, rg, given by

1= I(b)ymge" (5.6b)

For equal fitness of the two life-histories, we require r; = r; = r, say; the
condition for this is

mi/mg=1— Pe™’ 5.7

For a semelparous life-history to be at an advantage, m; must exceed the
value given by this equation. The higher P and the lower r, the greater
the value of m; required. If P = 0.5 and r = 0, fecundity would have to
be doubled for semelparity to do as well as iteroparity; if P = 0.9 and
r = 0, fecundity would have to be increased tenfold. Iteroparity is there-
fore favoured by high adult survival and a low rate of population growth
(i.e. low fecundity or low juvenile survival); as discussed above in section
5.2.4, these are general conditions which are favourable to the evolution
of late life-history traits.
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This result is particularly clear when b =1, so that reproduction is
initiated after one season (annuality). Equations (5.6) then yield the
following expressions

e =11ym;+ P (5.8a)
e’ = [(1ym; (5.8b)

For equality of the intrinsic rates, we therefore need

mg = my

+ 2 (5.9)
(1)

High adult survival relative to juvenile survival is thus particularly favour-
able to iteroparity in this case (Charnov and Schaffer, 1973). This accords
well with the fact that annuality is common among insects of the temper-
ate zone, and in plants associated with unstable, temporary habitats
(Stebbins, 1950, Chapter 5). In both cases, the chance that an adult
survives from year to year is presumably very low.

Constant density-dependent environments

These conclusions can readily be extended to density-dependent
populations. The case when density-dependent regulation is exerted
through an age-independent survival factor P‘D)(N) (section 5.2.4) yields
the following expressions for the equilibrium numbers of individuals in
the critical age-group in iteroparous and semelparous populations respect-
ively

1 = 1OB)PO(N)Y my/[1 — POPO(A)] (5.10a)
1 = IO(b) PPYN)’ my (5.10b)

where P® and /®(b) are the density-independent components of adult
survival probability, and probability of survival to age b, respectively.

From the results of section 4.2.2, we can use N as a fitness measure, so
that the two types of life-history confer equal fitness when P®(N) is the
same for both, i.e. when

mi/ms =1 — PO PO)(N) (5.11)

This is obviously analogous to equation (5.7), with the density-dependent
component of survival playing the same role as e™’ in the density-
independent case. Low-fecundity or low-juvenile-survival environments,
with correspondingly high density-dependent survival probabilities, will
therefore tend to favour iteroparity, as in the density-independent case.

If population regulation operates through a density-dependent compo-
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nent of fecundity or juvenile survival, a similar line of reasoning leads to
the condition for equality of life-history type

m®/m® = 1 = p® (5.12)

where the superscript (I) again indicates the density-independent com-
ponent of the relevant life-history variable. In this case, there is no effect
of juvenile survival or absolute level of fecundity on the condition. Given
the lack of a population growth or density-dependent survival term in
equation (5.12), this type of population regulation is more favorable to
iteroparity than density-independence or regulation through age-
independent survival.

Temporally varying environments

The ESS life-history with temporally varying environments cor-
responds to the life-history with maximum mean rate of population
growth, 7, defined in section 1.4.1, since a rare non-recessive gene can
only invade the population if its 7 exceeds that of the current population
(section 4.3.3). There is currently no quantitative genetic model for
age-structured populations which permits a justification for the maximisa-
tion of 7 similar to that for the constant environment case discussed in
section 4.6.3. The ESS approach may be considered as providing neces-
sary but not sufficient conditions for a given life-history to be an evolu-
tionary equilibrium.

Murphy (1968) suggested that temporal variation in juvenile survival
might enable iteroparity to evolve under conditions when the demo-
graphic parameters of the average life-history would favour semelparity.
Consider, for example, the extreme case of an environment in which
there is an occasional season in which juveniles completely fail to survive.
A semelparous life-history would be lethal in this season, whereas an
iteroparous life-history would be able to produce offspring in the next
favourable season, as a result of the survival of the adults. Less extreme
variation can also promote iteroparity, as Murphy showed by computer
calculations of the spread of a gene causing iteroparity (cf. Hairston,
Tinkle and Wilbur, 1970).

This principle, called bet-hedging by Stearns (1976), can be illustrated
with the following example, using the result of section 4.3.3 that, as far as
the spread of a rare gene is concerned, 7 is equal to the average of the r
values for each environment, if reproduction starts at age 1 and there is
age-independent adult survival and fecundity.

Suppose that the environment alternates between two states, such that
the probability of survival of individuals to age 1 is (1+s)/(1) or
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(1 — s)I(1), with a mean of I(1). Using equation (5.8a), 7 for an itero-
parous population is given by

7= sIn[1(D)A + s)m; + PI[I(DA = s)m; + P]
= [I1()*Q - sH)m? + 21()m; P + P?] (5.13a)
Similarly, the mean for a semelparous life-history is given by
7o = 3In[1(1)%(1 — s*)m?] (5.13b)

A semelparous life-history will therefore be at an advantage if m
exceeds the value given by the following expression
mz — m2 + P[21(1)m, + P]

11)*(1 - 5?)

Clearly, the higher s, the greater must be the fecundity of the semel-
parous life-history in order for it to have an advantage. The existence of
environmental variation of this kind can thus mean that iteroparity is
advantageous, whereas semelparity would be favoured in a constant
environment.

A similar result holds if fecundity is variable. On the other hand, if
adult survival alternates between (1 + s) P and (1 — 5) P, the equivalent of
equation (5.14) is

= m? + PR2I(1)m; + P(1 — 5%)]
1(1)°
Fluctuations in adult survival thus tend to favour semelparity.

Bulmer (1985) has studied the effects of density-dependence on the
relative advantages of iteroparity and semelparity in this type of model.
When there is variation in adult survival, but density is regulated by
juvenile survival, the changes in juvenile survival induced by the fluctu-
ations in population numbers caused by the changes in adult survival tend
to favour iteroparity, compared with the situation when density-depend-
ence is absent.

Orzack and Tuljapurkar (1989) and Tuljapurkar (1989, 1990a, Chapter
15) have extended the analysis of the effects of temporal variation to
more complex life-histories than this, using the theory described in
sections 1.4.1 and 4.3.3. Strictly speaking, their theory cannot be applied
to the contrast between semelparous and iteroparous life-histories, since
semelparity violates the conditions for weak ergodicity needed for the
validity of their formulae (section 1.4.1). It is possible, however, to
compare two iteroparous life-histories, which both satisfy the weak ergo-
dicity conditions, one of which has reproduction concentrated early in the

(5.14)

(5.15)
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reproductive period and thus approaches semelparity. This should pro-
vide insight into the effects of variable environments on the advantages of
semelparity versus iteroparity.

Only the situation when there is no correlation in demographic para-
meters between successive time-intervals has been studied in detail.
Consider the case when survival from age-class 0 to age-class 1 varies.
From equation (1.3), the fecundity components of the Leslie matrix are
given by f(x) = I[(1)m(x). This means that we need to apply equations
(1.78) to all pairs of fecundity components. Writing the covariance
between f(x) and f(y) as m(x)m(y)l(1)*c?, where c is the coefficient of
variation in /(1), we have

622 e TN k(x)k(y)
xy

2

F=r-—

277
i.e.

62

— (5.16)

where r and T are the intrinsic rate of increase and generation time for
the mean L matrix.

Differences in T between life-histories may thus reduce or even out-
weigh differences in r. Since T is necessarily greater for an iteroparous
than for a semelparous life-history with comparable juvenile survival, this
suggests that the effect of variation in early survival on the conditions for
an advantage to iteroparity is quite general. Of course, this does not
mean that such variation will necessarily cause iteroparity to have an
advantage over semelparity in every case, but merely that the effect of a
difference in r between a pair of life-histories may be weakened or
overcome by a sufficiently large value of ¢ (Orzack and Tuljapurkar,
1989).

In contrast, variance in adult survival reduces the mean intrinsic rate
for iteroparous life-histories, but clearly has no effect on semelparous
life-histories, again in agreement with the more specialised model con-
sidered above. As discussed by Orzack (1985), lowered sensitivity of
life-history traits to environmental variation, so that ¢ in equation (5.16)
is smaller, is also favoured under these conditions.

2

F

5.3.3  The evolution of age at maturity

Equation (5.2) shows that, other things being equal, selection
favours reproducing early in life, particularly when there is high mortal-
ity. Most species defer reproduction to a greater or lesser extent,
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however, so that it is clear that things are usually not equal, and that
reproduction early in life must incur a fitness penalty. Several models for
such penalties have been proposed (Roff, 1992, Chapter 7; Stearns, 1992,
Chapter 6; Charnov, 1993). One of the most widely discussed models
assumes that there is a conflict between growth and reproduction, but
that the reproductive success of mature individuals increases with their
body size, so that early maturity implies lower fecundity (Schaffer, 1974a;
Wiley, 1974a, b; Bell, 1976, 1980). This possibility will be considered
here, as an illustration of the ways in which the evolution of the age of
reproductive maturity can be modelled.

Following Schaffer (1974a), assume that growth is a multiplicative
process such that size at age x, G(x), is equal to g(x — 1)G(x — 1),
where g(x) is the growth-rate at age x. The size of a zygote is G(0), so
that

G(x) = G(0) ng(x —y) (5.17)
y=

This has the same form as /(x) in equation (1.15), and it is convenient to
combine growth and survival into one expression by writing

P(x) = g(x)P(x) (5.18q)
I(x) = ﬁ P(x - y) (5.18b)
y=1

Finally, we can represent fecundity at age x in terms of fecundity per unit
body size, fi(x), so that

m(x) = A(x)G(x) (5.18¢)
k(x) = I(x)mi(x) (5.184)

In cases when fecundity is not dependent on size, but on some other
function of age such as experience in catching prey (Brown, 1987, p. 66),
we can use the same type of representation, except that G(x) represents
growth in reproductive efficiency rather than size.

Constant density-independent environments

We can now apply this model to the problem of selection on the
age of maturity. Consider first the case of a semelparous organism in a
density-independent environment. The possible life-histories to be com-
pared are characterised by the values of I(x) for all possible pre-
reproductive ages, and the fecundity per unit weight at age b, 7. Both
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I(x) for x < b and i, are assumed to be independent of the value of b
for the given life-history, and are determined purely by some specified
model for growth, survival and reproduction. The equivalent of equation
(5.6b) is thus

1= I(b)iwge " (5.19a)
i.e.

= Ini(b) + Inmy (5.19b)
b

For a value of b > 1 to be advantageous over b = 1, In I(x) must clearly
increase faster with x than 1/x declines. The age of maturity which
maximises r; must be less than that corresponding to the maximum of
In /(x) and hence I(x). The higher i, the greater the contribution of the
second term on the right-hand side of equation (5.19b), so the harder it is
for late maturity to be advantageous.

A necessary condition for selection to favour b > 1 is clearly that I(x)
increases with x over at least part of its range. But I(x) is composed of
two components, one of which, /(x), decreases with x, as a result of
mortality. On general grounds, it is reasonable to assume that the other
component, G(x), initially increases rapidly with age, and then levels off.
Delayed maturity can only evolve if the decline in /(x) is sufficiently slow
that it can be outweighed by the increase in G(x). The position of the
maximum in [(x) must be earlier than the point at which growth ceases
(Figure 5.2). Hence, growth should never cease before the age of
reproductive maturity under this class of model. High mortality or rapid
deceleration of growth in the range of ages around potential ages of
reproductive maturity favour early maturity; low mortality and late
completion of growth favour postponement of reproduction.

Iteroparous life-histories can be analysed in a similar way. Assume for
simplicity that growth and survival rates remain constant after repro-
ductive maturity, so that P(x)= P for x =b. Similarly, age-specific
fecundity per unit weight is constant at 77;. The equivalent of equation
(5.6a) yields the relation

. In(1 - Pe™™) _ Ini(b) + In
‘ b b

Provided that Pe™" < 1, as required for convergence of the series equiva-

lent to that of equation (5.6a), the left-hand side is an increasing function

of b as well as r;. This implies that the conditions for an advantage to
delayed reproduction are more stringent than in the case of semelparity.

(5.20)



208 Evolution of life-histories

1.0 4

_0--0--0--0--0--0--0--0

‘15 X e

[ | § i 1 1 1 [ 1 J

o t 2 3 4 5 6 7 8 9 10
Age-class (x)

Figure 5.2. The graphs of /(x) (solid circles), G(x) (open circles) and
I(x) (crosses) for an imaginary example. G(x) and [ are in arbitrary
units.

Constant density-dependent environments

These considerations can easily be extended to density-dependent
environments, using the approach of section 5.3.2. The result will only be
sketched here (cf. Charlesworth, 1980, pp. 235-7). As before, assume
first that density-dependence is mediated through an age-independent
survival/growth term P®)(N) which plays a similar role to e~” with no
density-dependence. A high value of fecundity per unit weight implies a
high equilibrium N, so that [(x) increases less rapidly with age, and
accentuates the advantage of early reproduction. Density-regulation of
this type does not, therefore, especially favour delayed maturity.

In contrast, if fecundity per unit weight or early survival/growth are
density-dependent, there is no factor corresponding to e™’. From the
equivalent of equations (5.6), it can be seen that the optimal value of b in
this case corresponds to the value that maximises /(x). This type of
density-regulation is thus favourable to delayed maturity.

Extensions of the models, and alternative models

Elaborations of these models, and some alternatives, are re-
viewed by Roff (1992, Chapter 7) and Stearns (1992, Chapter 6). A few
examples which are particularly relevant to the tests of life-history
theories described in section 5.4 are noted here.
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Roff (1981, 1984, 1991) has proposed specific models of the relations
between growth, reproduction and fecundity, applicable to lower verte-
brates with indeterminate growth such as fishes, and to holometabolous
insects. The fish model will be described here. It assumes that age is a
continuous variable, and that growth in length follows the von Bertalanffy
equation, such that body length at age x is given by

L(x) = L(~)1 —e™) (5.21a)

where L() is the length on completion of growth, and k is the rate of
growth of length. Body weight at age x, G(x), is given by the cube of
L(x), and fecundity per unit weight is assumed to be independent of age.
If there is a density-dependent component of survival very early in life,
and thereafter a constant mortality rate u, we find that

I(x) o €7 L(0)3(1 — e~%)? (5.21b)

As noted above, with this model of density-dependence the optimum b
corresponds to the age which maximises /(x). Differentiating equation
(5.21b) with respect to x, and setting the derivative equal to zero, yields
the following expression for the optimal age at maturity

b="Lin (3—" + 1) (5.22)
K [

As expected from the general considerations discussed above, this model

predicts that increased growth-rate and higher mortality both favour

earlier maturity.

Stearns and Crandall (1981) and Stearns and Koella (1986) have
developed somewhat different models, several of which assume that the
survival probability of juveniles is a decreasing function of the age of
maturity. As noted by Roff (1992, pp. 202-4), the mathematical predic-
tions of these models about the optimal age at maturity are similar in
general form both to each other and to those of his models.

Charnov (1990, 1993) and Charnov and Berrigan (1991a, b) have
developed a theory of the evolution of age at maturity in stationary
populations, by assuming that the action of selection on b can be
described purely in terms of the effect of age on the chance of survival to
maturity, and on the subsequent expectation of offspring (i.e. reproduct-
ive value at maturity, given by equation (1.61) with r = 0). They further
assume that the age-specific mortality rate over the range of possible ages
at maturity is a constant, u. Under the assumption of density-dependence
through early survival (or adult fecundity), fitness can be measured by the
density-independent component of the net reproduction rate. For a
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possible optimum age at maturity x, fitness is thus proportional to
e_l-l'x V(x) (5.23a)

where V(x) is the reproductive value at age x. Differentiating with
respect to x, and equating the derivative to zero, the condition for an age
at maturity b to be optimal is

(alnv) =y (5.23b)
ox x=b

The further assumption is made that the functional relation of V(x) to x
for possible ages at maturity takes a simple form. For example, assume
that it is a power function, V(x) « x%. Then we have

dlnV d
= — = 5.23¢
( ox )x=b b # ( )

This implies that the product bu for an optimal life-history is a dimension-
less constant, d, so that higher mortality favours earlier reproduction, in
line with earlier conclusions.

Charnov and Berrigan (1991a), Shine and Charnov (1992) and Charnov
(1993, Chapter 4) discuss how formulae relating V(x) to x for possible
ages at maturity can be justified for species with indeterminate growth;
Charnov and Berrigan (1991b6) and Charnov (1993, Chapter 5) discuss
justifications for species such as mammals with determinate growth. Their
models will be considered in section 5.4.4, in relation to tests of life-
history theory.

Temporally varying environments

The effects of temporal fluctuations on selection for the age of
maturity of a semelparous species have been discussed by Klinkhammer
and de Jong (1983), Roerdink (1988, 1989) and Tuljapurkar (1990a,
Chapter 16). Their analyses indicate that variation in fecundity tends to
favour delayed maturity, although the effect is not large unless the
coefficient of variation is 0.5 or more. For iteroparous life-histories with
variable fecundity or juvenile survival/growth, and no autocorrelation,
equation (5.16) yields a similar result, since the generation time T must
increase with b. With a long environmental period, approximation of the
mean of the left-hand side of equation (5.20) by the first term of a Taylor
expansion around the parameter values for the mean life-history yields
the difference between the mean intrinsic rate and the intrinsic rate of the
mean life-history as
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ry —

- Pe "E{Inl(b) + ;)
[b—(b—-1)Pe"
_  (1=Pen)c?
C2b - (b-1)Pe"

(5.24)

If Pe~" <1, as is required for convergence of the series yielding equation
(5.20), this implies that a higher age at maturity reduces the effect of
environmental variability on the intrinsic rate of increase, and hence is
more likely to be favoured in a variable environment.

A similar approximation shows that variable adult survival/growth has
no major effect on the intrinsic rate of increase when there is a long
environmental period. The situation is not immediately clear if there is no
autocorrelation, since the numerator of the equivalent of equation (5.16)
may be increased as well as the denominator (see equations (1.78)). The
case when log survival probabilities at each adult age at a given time are
affected by the same random deviation, with variance & for each age, can
be examined as follows. Noting that the covariances between log survival
probabilities at different ages are also equal to &2, equations (1.78b) and
(5.1b) yield the relation

2
[E > s(x)]
7= 0 5.25
riy=sr-— T ( . a)
From equations (1.47¢) and (5.1b), we obtain the relation

T=0b+ > s(x) (5.26)
x=b

so that equation (5.25a4) can be written as
ST _ Y2
ey _ [T b))
2T
In the case considered above, when adult survival/growth and fecundity

per unit weight are independent of age, the use of the properties of the
geometric series and equation (5.6a) enables us to write

(5.25b)

T =b+l(b)ie ™ je TP/
j=1

Hence,

N 2
Fp=r— : ¢ 5.25
net 2([b(1~"1e" —1)+ 1]) (429
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If two life-histories with the same r; and P values are compared, the
effect of variable adult survival is to confer an advantage on the life-
histoiy with the later age of maturity, provided that Pe ™" <1. The
magnitude of the advantage is diminished if #; is large, or P is small, as
might be expected on general grounds. An increased P value can,
however, outweigh the effect of later age of maturity in the second term
of equation (5.25¢).

Spatially varying environments
Discussion of the consequences of spatially variable environments
for the evolution of life-histories was initiated by Stearns and Koella
(1986), in the context of selection for phenotypic plasticity. Following the
models of section 4.3.4, it is assumed that the environment is divided into
different types of spatial patch, that an individual spends the selectively
relevant portion of its life in the patch in which it is born, and that the
nature of the patch affects certain aspects of the life-history, such as the
rate of growth in body size. It is further assumed that a single genotype
can respond to the patch type, and adjust the life-history traits of its
carriers (e.g. age at maturity) to match the patch type. If, for example,
growth is slow in a given patch, because of scarcity of resources, it might
pay to delay reproductive maturity (see the discussions above). The
problem is thus to find the ESS distribution of ages at maturity which
match the distribution of patch types encountered by the population.
Stearns and Koella (1986) assumed that the ESS can be found by
determining the life-history for each patch type which maximises the
intrinsic rate of increase within each patch. While this would be appropri-
ate for a model of phenotypic plasticity in a temporally varying environ-
ment with a long period, where the ESS would be given by the maximal
mean intrinsic rate of increase over all environments, it lacks a population
genetic justification in the context of spatial variation (Houston and
McNamara, 1992; Kawecki and Stearns, 1993). For the model of hard
selection described in section 4.3.4, it is evident that the ESS must be
such that the quantity

S e " k(m, x) (5.27a)

is to be maximised for each patch type m, subject to the constraint that

the intrinsic rate for the whole population, 7, satisfies the characteristic
equation

S e ™Y cpk(m, x) =1 (5.27b)
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As discussed by Kawecki and Stearns (1993), use of these criteria can
lead to predictions about the optimal adjustment of life-history traits to
local conditions which differ significantly from those of Stearns and
Koella (1986). Details of the nature of the predictions concerning the
optimal response of age at maturity to varying growth and mortality
regimes are given by Kawecki and Stearns (1993). As might be expected,
earlier maturity is favoured in patches with higher mortality rates at the
potential ages of maturity; later reproduction is favoured in patches
where higher fecundity is attained relatively late in life (e.g. due to slower
growth).

Analogous criteria can be established for the case of density-dependent
populations, where the equilibrium density for the population as a whole
is used in the reproductive functions for each patch, and the net reproduc-
tion rate R for each patch m is to be maximised.

While these criteria apply to a population under hard selection, some-
what different criteria will apply to the case of soft selection, where
equation (4.44b) implies that the ESS is to be found by maximising the
following quantity for each value of m

S o k(m, x)
* (E e " k(m, x))

subject to equation (5.27b), and holding the reproductive function in the
denominator constant when performing the maximisation. An analogous
condition can be written with density-dependence.

(5.27¢)

5.3.4  Reproductive effort

Much work in life-history theory has been devoted to the ‘repro-
ductive effort model’, originally suggested in verbal form by Williams
(19664, b), and first studied quantitatively by Gadgil and Bossert (1970).
Later investigations include those of Fagen (1972), Schaffer (1974a, b),
Schaffer and Gadgil (1975), Charlesworth and Léon (1976), Leén (1976),
Ricklefs (1977), Schaffer and Rozenzweig (1977), Michod (1979), Law
(1979b) and Charlesworth (1990a). The basic idea is that, at any age x an
individual can allocate a fraction E,(0 < E, <1) of its available energy
resources to reproduction, and the remainder to maintenance (survival)
and growth. E, is called the reproductive effort at age x. Using the model
developed on p. 206, we can represent the fecundity per unit weight at
age x as a strictly increasing function of E,, #,(E,); the product of
growth and survival at age x is a strictly decreasing function of E,, P,(E,)
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(Schaffer, 1974a). (The subscript x attached to # and P is intended to
emphasise that, in general, the nature of the functional dependence of
these variables on reproductive effort will vary with age.)

The optimisation problem in this case is thus to determine the vectors
of values of E, which yield maxima in r, in the density-independent case,
or N, in the density-dependent case. Since fecundity per unit weight is
assumed to be an increasing function of effort, it is convenient in practice
to use it directly as an independent variable, 7i,, and to write l~’x as a
function of #i,, P,(#i,). When reproductive effort at age x is unity, 7,
takes a maximal value M,, such that P,(M,)=0. When reproductive
effort at age x is zero, P, takes its maximal value P,(0). Various forms of
functional relationships between P, and #i, can be imagined (Figure 5.3);
most of the results discussed below are based on the simplest (concave
and convex) forms. Finally, it is important to note that parental care may
form an important component of reproductive effort in some species;
since we imagine that the survival of the young is an increasing function
of the amount of parental care, this factor can be incorporated into the
models by counting offspring at the age at which parental care ceases, so
that 7, includes this survival probability.

The problem of solving for the optimal life-history with this model is a
formidable one, and no general analytic solutions have been found.
Schaffer (1974a) and Schaffer and Rosenzweig (1977) have studied some
special cases, and numerical solutions have been obtained by Gadgil and

oot

0

Figure 5.3. Some possible functional relationships between P, and i,:
concave (full line), convex (dashed line) and concavo-convex (dotted
line). P, and 7, are in arbitrary units.
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Bossert (1970), Fagen (1972) and Charlesworth (1990a). Insights into the
properties of optimal life-histories can, however, be gained without
knowing the full solutions, and these will be discussed below.

We first examine the conditions for r to be at a maximum with this
model. Consider those age-classes for which reproductive effort is inter-
mediate (0 < /i, < M,). In order for r to be at a local maximum under
such conditions, we need 3r/3#i, = 0 for all such age-classes. Using the
derivatives of r given in equations (5.1) and (5.2), we have

T3 — e i1+ 2 erisx + 1) (5.28)
JiFi, o,

The quantity ¥(x + 1) is Schaffer’s modified reproductive value for age
x + 1, which is analogous to Fisher’s reproductive value (equations
(1.54)), but takes growth as well as survival into account. We have

d
e 7 I(y)Ai(y) (5:29)

_ erx

b(x)

x) y=x

A necessary condition for a maximum in r is, therefore, that for age-
classes with intermediate levels of reproductive effort, we must have¥

1+

3P

Te"px +1)=0 (5.30)
o,
The second-order derivatives of r for all pairs of age-classes x and y such
that 3r /0, = 9r /o, = 0 are given by

2 2p .
Ta—’2 S—P;e-'<x+l>z(x)5(x +1) (5.31a)
am?  am?
2
_9r o (5.31b)
o, o,

Using the standard analytical conditions for a maximum of a function of
several variables, the necessary and sufficient conditions for r to be
maximised, with respect to perturbations in the age-classes with inter-
mediate effort, are thus given by equation (5.30) and the following
inequality

t An alternative procedure is used by Schaffer (19744, et seq.). He gives the first age-class
the index 0 instead of 1, and works with B, = P(0)#, as the independent variable, instead
of .. On this scale, b, is defined as e~” P(0) times the value of &, on the present scale
(see the footnote to p. 23). If r is differentiated with respect to B,, we obtain the
equivalent of equation (5.42) as 1+ (3P,/0B,),,, = 0. The two notations yield identical
conclusions.
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3P,
o2

The necessary and sufficient conditions for » to be at a maximum with
respect to perturbations at age-classes with #i, =0 or i, = M, (i.e.
boundary values of #i,) are

<0 (5.31¢)

O <0 (M, =0) (5.32a)
o,
O S0 (A, = M) (5.32b)
o,

In general, of course, perturbations to the life-history need not be
confined to sets of age-classes within one of these three divisions. For
small perturbations, it is easy to see that, if the above conditions are met,
any change in r will be dominated by terms in which #, is on a
boundary, since the total differential of r, dr, is zero with respect to
perturbations in the other age-classes. Conditions (5.30), (5.31) and
(5.32) are thus necessary and sufficient for r to be at a local maximum.

Similar conditions can be derived for the case of a density-dependent
population, using the method of p. 187. We obtain the equivalents of
expressions (5.28), (5.30) and (5.31), for example, as

. oP
w _ l(x)[l + 2+ 1)] =0 (5.330)
i, o7,
azw azf’x 3 ~
= e+ 1) <0 (5.33b)

aml  omi
In carrying out these differentiations, it is important to note that the
demographic parameters in these equations are held constant at the

values for population density equal to the carrying-capacity given by
equation (1.91b) (section 4.6).

Properties of optimum life-histories with the reproductive effort

model: semelparity

Some useful results can be obtained merely by inspection of the
above formulae. We may note first of all that a necessary condition for
inequality (5.31c) to be satisfied is that P, be a concave function of i,
for at least part of its range (cf. Gadgil and Bossert, 1970; Schaffer,
1974a). If P, is a convex function of i, aZ?x/ami is necessarily positive
throughout its range, so that there can be no age-classes with intermedi-
ate levels of reproductive effort; the life-history in such a case must be
semelparous, with a number of non-reproductive age-classes terminating
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in an age-class with maximal reproductive effort. This, as we have
discussed earlier, is characteristic of a number of groups, and it is
tempting to speculate that such semelparous life-histories are associated
with convex relationships between f’x and 77, .

There is, unfortunately, little direct evidence on this point. Gadgil and
Bossert (1970) suggested that semelparous life-histories characteristic of
Pacific salmon involve convexity; these species undertake long migrations
from the ocean to rivers in order to breed, so that much energy has to be
expended, and exposure to considerable risks undertaken, in order for
the salmon to breed at all. This means that the curve relating #i, to E,
rises very slowly at first, and then increases rapidly, whereas P, is
reduced considerably by a small increase in E,. This is likely to generate a
convex relationship between P, and #i,. Similarly, Schaffer and Gadgil
(1975) proposed that the contrast between the semelparous agaves and
the phenotypically similar but iteroparous yuccas may be traceable to
greater competition for pollinators in the former, the insects preferring
large inflorescences which require large stalks. Evidence for such prefer-
ences is presented by Schaffer and Schaffer (1977, 1979). Since a large
expenditure of energy is probably needed to develop an infloresence
stalk, which is required for even a low level of reproduction, a convex
relationship between P, and 7, may be generated. This is particularly
likely in a competitive situation, since plants with relatively small stalks
may have difficulty in attracting pollinators if others with larger stalks are
present, despite a significant expenditure of effort. There is evidence
from a number of different plant species that larger inflorescences attract
more pollinators, and enjoy greater reproductive success (Willson, 1983;
Broyles and Wyatt, 1990).

Properties of optimum life-histories with the reproductive effort

model: iteroparous life-histories

For studying iteroparous life-histories in which there is a number
of age-classes with intermediate reproductive effort, it is useful to restrict
attention to the case when the P, have the same, concave dependence on
the i, for each age-class with intermediate reproductive effort. P, (i, )
can therefore be written simply as P(#%,). The first result that we can
derive in this case is that there must be an inverse relationship between
i, and §(x + 1) for all ages with intermediate reproductive effort. By the
hypothesis of concavity, [9P/o#,| is an increasing function of .
Equation (5.30) thus implies that, if we compare two ages x and y,
mi, > fi, if and only if #(x + 1) <#(y + 1). A relationship of this sort,
but between Fisherian reproductive value and reproductive effort, was
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first proposed by Williams (1966b) on intuitive grounds. He suggested
that what he called residual reproductive value at age x, defined as the
component of reproductive value attributable to future reproduction,
should be inversely related to reproductive effort at age x. From equation
(5.29) it is evident that we have

b(x) = mi(x) + e "P.0(x + 1) (5.34)

Residual reproductive value in this formulation is thus equal to
e"P.0(x + 1), so that Williams’ suggestion and the use of it by Pianka
and Parker (1975) are not quantitatively correct.

Another question which can be answered without knowing the full
details of the optimal life-history solutions concerns the relations between
reproductive effort and age. It was suggested by Williams (19664, p. 182)
and by Gadgil and Bossert (1970) that reproductive effort should increase
with age, since the cost of present reproduction to future fitness depends
on the number of future reproductive age-classes, which clearly decreases
with increasing age. Gadgil and Bossert constructed some computer
examples of optimal life-histories which always showed an increase in E,
with x for the ages with intermediate effort. Some counter-examples
were, however, produced by Fagen (1972). An algebraic treatment was
given by Charlesworth and Leén (1976), who found that reproductive
effort may increase with age, but need not necessarily do so (see also
Charlesworth (1990q)).

With density-independence, they found that constancy or a decrease in
reproductive effort with age is favoured when r is high, survival and
growth do not fall off too fast with increasing reproductive effort, and the
maximal fecundity per unit weight remains low. These are circumstances
in which the considerations discussed in section 5.2.4 would lead us to
expect a premium on reproduction early in life. The converse conditions
favour an increase in reproductive effort with age.

It is of some interest to determine the conditions under which repro-
ductive effort remains constant for each adult age-class in an optimal
life-history, particularly as several analyses have been carried out on the
assumption that this is so (Schaffer, 1974a, b; Ricklefs, 1977). In such a
case, we can write 7, = i and P,(#,) = P for each adult age-class in
the optimal life-history. If we assume that there is no upper limit to the
age to which individuals can survive and reproduce (equation (5.6a)) and
substitute the above values for m, and P,(7,) into equation (5.29) we
find that

B(x) = e™/l(x) (x <b) (5.35a)
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(x)=m/1—e"P) (x=b) (5.35b)
Equation (5.30) thus gives us the condition on the adult age-classes
~ "

2l Pl (5.36a)

omi m
Using equation (5.64) this can be expressed as

OP| _ -re-1(p) (5.36b)

o

The above results on the relations between reproductive effort and age
can easily be extended to density-dependent populations, using equations
(5.33). As before, the consequences of density-dependence vary accord-
ing to the model assumed. With regulation through an age-independent
component of survival/growth, the relevant term cancels the effect of the
intrinsic rate (cf. equations (5.10)), so there is no reason for the absence
of population growth to make it any easier for reproductive effort to
increase with age. In contrast, regulation through density-dependent
juvenile survival or adult fecundity favours an increase in reproductive
effort with age.

Optimal life-histories in which reproductive effort increases so slowly
with age that it appears constant for all practical purposes were found to
be extremely common in numerical studies by Charlesworth (1990a). But
if recurrent mutations at many loci with age-specific effects are added to
the model, some of which reduce both survival/growth and fecundity at a
given age as a result of their reducing the individual’s ability to harness
resources, while others affect only the partitioning of resources between
survival/growth and reproduction, there is a much sharper increase in
reproductive effort and fecundity with age. There is a collapse in both
survival and fecundity at the end of life. This is due to the fact that the
decline in fitness sensitivities with age eventually leads to a situation in
which mutation pressure overpowers selection. The mutational collapse
occurs sooner, the higher the rate of mutation to alleles with deleterious
effects on both survival and fecundity. This suggests that some degree of
increase in reproductive effort with age might be expected under many
ecological circumstances, although the abrupt terminal decline in fecun-
dity predicted by this model does not seem very realistic. The properties
of more general models of this kind, including deleterious mutations with
effects on more than one age-class need to be investigated, since it is
possible that there would be a less abrupt change in fecundity at the end
of life.
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Age at maturity under the reproductive effort model

It should be noted that the age of reproductive maturity b is itself
a component of the optimal life-history solution. The constraints imposed
by the relation between survival/growth and reproductive effort affect the
evolution of the age of maturity in a way distinct from that discussed in
section 5.3.3, where reproduction was assumed to have no direct effect on
growth or survival. In order for a life-history to be optimal under the
reproductive effort model, equations (5.32a) and (5.35a) imply that
3P,
J,

>e *i(x+1) (1<x<b,,=0) (5.37)

Joint satisfaction of this equation and equation (5.36b), for the case
when reproductive effort remains constant with age, requires P, for age
b — 1 to be more sensitive to increases in 7, than P, for adults.

Effects of the demographic environment on reproductive effort—

constant environments

It has been suggested (Gadgil and Bossert, 1970; Schaffer 1974a)
that the level of reproductive effort at each age, in an optimum life-
history, will depend on the level of extrinsic causes of mortality, such as
predation or density-dependent factors. Thus, if adult mortality is high,
the optimum life-history should have a higher level of reproductive effort
at each age than if adult mortality is low. Conversely, a low level of
reproductive success or juvenile survival will tend to favour a low level of
reproductive effort. Analytical results concerning this question are hard
to obtain because of the difficulty of solving for the optimal life-history.
Schaffer’s treatment assumes that the optimal life-history is such that
reproductive effort for the adults is independent of age, and that repro-
ductive maturity occurs at age b = 1. Equation (5.36b) for the optimal
life-history in a density-independent environment thus becomes
dP

i

Assume that P(7) is changed by an increase in some extrinsic source of

mortality to P’ P(#), where P’ is less than one and independent of

reproductive effort. The equivalent of equation (5.384) for the optimal

life-history under the new regime of adult mortality is

p[2P
i

=1(1) (5.38a)

=1Q) (5.38b)

If P is a concave function of 7, satisfaction of this relation requires that



Theories of life-history evolution 221

the new optimal life history have a higher value of # than the old, in
accordance with the idea that higher adult mortality should lead to higher
reproductive effort. On the other hand, if /(1) or # are changed to new,
lower values in a similar fashion, it is easily seen that the new optimal
life-history should have lower reproductive effort.

We have seen above that reproductive effort is not always independent
of age in the optimal life-history, so that these results must be treated
with some caution as a generalisation. Some progress in analysing the
problem by a more general approach has been made by Michod (1979).
Using partial differentiation, he was able to obtain expressions for the
changes in the 7, values for the optimal life-history which are induced by
a small change in the probability of survival at an arbitrary age y. More
explicitly, if ?y(ﬁ y) is changed to a new value P, ?y(r’ﬁ y), as the result of
a change in some extrinsic cause of mortality, the new solution for the
optimal life-history differs from the old in a way which is calculable from
Michod’s formulae, provided that P is close to unity.

The exact consequences of a change in survival at one age-class depend
on whether or not there is density dependence and, if there is, on its exact
form. In density-independent populations, an increase in mortality at age
y will generate a new optimal life-history which has greater reproductive
effort at each age up to and including y, but lower reproductive effort
following age y. Thus, an increase in mortality among the juveniles will
lead to a decrease in reproductive effort among the adults in this case,
and a new source of mortality late in life will lead to an increase in
reproductive effort at earlier age-classes. With density-dependence, it is
still true that an increase in mortality at age y leads to an increase in
reproductive effort at all reproductive ages x < y; the consequences for
ages x >y depend, however, on the specific model of density depend-
ence assumed. If density-dependence operates in such a way that #i, and
P, are insensitive to density for x > u (where u is some fixed age), then
there is no effect on reproductive effort at ages later than u. Thus, a
change in mortality among the juvenile age-classes when there is density-
dependent juvenile survival has no effect on the reproductive effort of the
adult age-classes, in contrast to a reduction of reproductive effort in a
density-independent population.

The effects of an increase in mortality in several age-classes can be
complex. It is still true, however, that all reproductive ages prior to any
ages at which mortality is increased will increase their reproductive effort.
In a density-independent population, there will also be a reduction in
reproductive effort at each age greater than the last age to be affected by
a mortality change. For other ages, the nature of the changes is difficult
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to determine. In a population regulated by density-dependent juvenile
survival, we would expect an increase in reproductive effort at each
reproductive age up to and including the last reproductive age-class at
which there is an increase in mortality, and no change thereafter. Finally,
the effects of an increase in mortality applied equally to each age-class
also depend on the mechanism of density-dependence. In a density-
independent population, such a change is exactly compensated for by a
reduction in r (p. 32), so that there is no change in the characteristic
equation for the optimal life-history, and hence no change in the distribu-
tion of reproductive effort (Gadgil and Bossert, 1970). This is also true in
a population regulated by an age-independent, density-dependent com-
ponent of survival, but in a population regulated by density-dependent
juvenile survival, an increase in reproductive effort of the adults is to be
expected as a result of this type of mortality change (cf. section 5.2.4).

Effects of the demographic environment on reproductive effort—

temporally varying environments

Schaffer (1974b) initiated the study of the effects of temporally
varying environments on optimal reproductive effort. The results of his
approach can be sketched as follows, using the assumption that reproduc-
tion starts at age 1 and that reproductive effort is constant over age in an
iteroparous life-history with no upper limit to age. Under these condi-
tions, fitness in a density-independent population can be measured by the
average of the r values for each environment (section 4.3.3). Assume, as
in section 5.3.2, that the probability of survival to age 1 varies between
(1 +s5)I(1) and (1 — s)I(1). Using equation (5.13a), and assuming that
the reproductive effort is equal to the optimal value for a constant
environment given by equation (5.36a), we have

aF _ (s { 1 3 1 }

() +s)ym + P]  [I()(A - s)i + P

am 2
(5.39)

This implies that the optimal solution for a constant environment yields a
negative derivative of fitness with respect to #; hence, the optimum with
a varying environment must be at a lower #i value. A similar result holds
when fecundity varies, but the opposite is true when adult survival varies,
since there is an additional factor of 3P/37 (which is negative) outside
the bracketed term in equation (5.39).

These results can easily be extended to more general frequency dis-
tributions of survival/growth rates. Thus, fluctuations in juvenile survival/
growth rates or in fecundity lead to an optimal life-history which allocates
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less to reproductive effort than that for the mean life-history over the set
of environments. The converse is true if adult survival varies. This
suggests that long-period environmental variability in juvenile life-history
traits or fecundity will generally cause the evolution of lower allocation to
reproductive effort than expected for a constant environment, whereas
variation in adult survival/growth has the opposite effect. This parallels
the earlier results for iteroparity versus semelparity, and for age at
maturity.

Similarly, if there is no autocorrelation, equation (5.16) for a general
iteroparous life-history implies that larger T is favoured by variable
fecundity or juvenile survival/growth. Since this requires higher adult
survival/growth, lower reproductive effort than in the constant environ-
ment case is favoured. Conversely, from equation (5.25¢), fluctuating
adult survival or growth favours reduced adult survival/growth, and hence
higher reproductive effort. These conclusions may need modification
when there is density-dependence in early survival, since fluctuating adult
survival will then induce compensating variation in early survival, which
will tend to damp out the effects of varying adult survival (Bulmer, 1985).

Effects of the demographic environment on reproductive effort—

spatially varying environments

Kawecki and Stearns (1993) discuss the effects of varying adult or
juvenile survival on optimal reproductive effort for different patch types
using the hard selection model discussed above, and the reproductive
effort model with constant adult survival/growth and fecundity per unit
weight. They find that a phenotypic response of reduced reproductive
effort is favoured in patches with higher adult survival, but variable
juvenile survival should not produce any response.

5.3.5 Kin selection in age-structured populations

Up to now, selection has been assumed to act solely through
genetic effects on the individual’s own life-history traits. There are,
however, instances where life-history traits seem to have been modified
as a result of kin selection, i.e. in response to the fitness effects on close
relatives of a change in an individual’s life-history. Important examples
include the evolution of sociality in insects (Charnov, 1978; Craig, 1979;
Seger, 1983; Stubblefield and Charnov, 1986), and the evolution of
cooperative breeding, whereby an individual defers reproduction and
assists others to raise their young. This is a life-history strategy which is
found in some bird and mammal species (Brown, 1987; Stacey and
Koenig, 1990; Emlen et al., 1991).



224 Evolution of life-histories

A general theory of kin selection in age-structured populations was
developed by Charlesworth and Charnov (1981), and has been extended
by Rogers (1993) to include time-lags between behavioural acts and their
effects on survival or fecundity. Models devised to account for special
situations are described by Charnov (1978), Craig (1979), Maynard Smith
(1983) and Brown (1987). The general theory for an autosomal locus will
be briefly reviewed first. It is based on the conditions for invasion of a
random-mating population which is initially homozygous for allele A;, by
a rare allele A, whose effects are assumed to be expressed in 4,4,
heterozygotes. Given the possibility of asymmetric behavioural inter-
actions between the sexes, it is necessary to distinguish between males
and females; as previously (e.g. section 3.2.1), asterisks are used to
denote male parameters, and the frequency of females among new
zygotes is assumed to be a, independent of parental age or genotype.
Individuals may be either donors or recipients of ‘altruistic’ acts on the
part of donors, e.g. an A; A, individual may defer reproduction in order
to aid the reproduction of its parents, who are the recipients of its
altruism. The question is: what differential weightings must be given to
different sexes and ages of donors and recipients in determining the
conditions for spread of A,, given its effect on behaviour?

This question can be answered if certain simplifying assumptions are
made which enable the inclusive fitness approach of Hamilton (1964) to
be applied, in which the effect of altruism on the life-history trait of a
recipient is weighted by its coefficient of relatedness p with the donor. p is
here defined as the chance that the recipient contains an A, allele present
in the donor, determined from the transmission probabilities for a neutral
gene through the pedigree connecting donor and recipient. This is either
exact or a good approximation if the effects of different behavioural
interactions on the same individual are strictly additive (Cavalli-Sforza
and Feldman, 1978), or if interactions occur at a low frequency or have
only small effects on fitness components (Toro et al., 1982). The theory is
not confined to the evolution of altruism, as the changes in life-history
traits of donor and recipient are permitted to be either negative or
positive.

The conditions for the spread of A, can be found as follows (for full
details, see Charlesworth and Charnov, 1981). Consider first the case
when interactions occur only between one pair of age and sex classes, so
that only survival probabilities to the next age-classes or fecundities at the
ages in question are affected. If the species is monogamous, we adopt the
convention that changes in offspring number due to altruism received by a
mated pair, each member of which has the same relation to the donor,
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are accredited to both parents, i.e. are effectively counted twice. For
interactions between individuals of the same sex, changes in survival
probability to donor and recipient are each weighted by the Fisherian
reproductive value of the age-class following that to which the individual
in question belongs. The change to the recipient is weighted by p. For
interactions between members of the opposite sex, the change for the
recipient is weighted by a/(1 — a) if male, and (1 — a)/a if female. A, will
spread if the sum of the terms for the donor and recipient is positive, e.g.
if the donors are females of age x and the recipients are males of age y,
with changes in survival 6 P(x) and 6 P*(y) respectively, the condition is

v(x + 1)6P(x) + a pa )v*(y + 1)6P*(y) > 0 (5.40a)

If the interactions involve fecundity rather than survival, the repro-
ductive value weights are omitted, but otherwise the conditions are the
same. If there is an interaction involving an effect on the survival
probability of a donor aged x and the fecundity of a recipient aged y, the
reproductive value weight for the donor is retained, multiplied by a factor
of e™", where r is the intrinsic rate of increase of the initial A;A,
population. If the effects involve the fecundity of the donor and the
survival probability of the recipient, the donor is unweighted and the
recipient is given the relevant reproductive value weight multiplied by a
factor of e™". For example, if a female donor aged x experiences a change
in fecundity om(x) and the male recipient experiences a change in
survival 6P*(y), the condition for spread is

Sm(x) + 2L 1% (y + 1)6P*(y) > 0 (5.40b)
1-a)

If there are effects involving more than one age and class of relation-
ship, these conditions can easily be extended by summing the contribu-
tions from all sources (Charlesworth and Charnov, 1981, who also
describe how continuous-time populations can be modelled).

Cooperative breeding provides a specific biological situation to which
these general conditions can be applied. Consider a monogamous, sea-
sonally breeding iteroparous species in which offspring production per
breeding pair per season is constant (m) in the absence of help. For
simplicity, assume that the sex-ratio is one-half, and that males and
females have the same demographic parameters. Let the probability of
survival per season be P for breeding adults. An allele A, which causes
some carriers to defer reproduction for one season and assist their parents
to raise young appears. Let the increase in fecundity to a mated pair
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which has one helper be ém’. There is a loss in fecundity ém = —m to
helpers in their first possible breeding season. Since helpers do not incur
the risk of dispersal or the cost of breeding, they may also experience a
change in survival 6P >0, yielding a direct fitness benefit to delayed
breeding of the type we have already considered (section 5.3.4). The
reproductive value weight for this term is m/(1 — e’ P) (equation 5.35b).
The value of p for parents and offspring is one-half, but (as noted above)
the increment in fecundity must be credited to both parents if both are
alive at the time they receive aid, so that p is effectively one. If only one
parent is alive, however, the value of one-half is appropriate. The
probabilities of these two possible events, conditioned on at least one
parent being alive, are P?/(1—[1— PJ*) and 2P(1 - P)/(1—[1 - P}
respectively, yielding an overall indirect increment in fitness of
Pém'/[1 — (1 — P)?]. This assumes that the donor breeds itself if both
parents die, and the nest is either deserted or occupied by non-relatives.
If it remains as a non-breeder, as has usually been assumed by previous
authors (Brown, 1987, p. 198), the denominator is dropped.

The condition for the spread of the gene causing helping behaviour is
thus

me "OP + Pém’ _
(1-¢7P) [1—(1- PV

If the survival probability P is high, this equation shows that only a
slight increase in survival probability to a helper is required to confer an
advantage, even in the absence of a direct advantage to delayed breeding
from increased survival (expressed in the first term in the inequality),
provided that the increase in fecundity to the helped parents is compar-
able to the loss in fecundity to the helper.

If the species is only serially monogamous with a change in breeding
partner each season, or is polygamous, so that the male which is assisted
by the helper is not the father, then the multiplicand of ém’ in equation
(5.41) is simply one-half, since the consequences of help are now credited
only to the mother. The results are also easily extended to situations in
which the donors defer reproduction for more than one season (Brown,
1987, p. 198). Instead of a factor of P in the numerator of the multi-
plicand of m’, we have a factor of P* for u seasons of delayed breeding.
The corresponding denominator is 1 — (1 — P)*.

Charnov (1978) and Craig (1979) have applied a modification of this
type of model to the evolution of sociality in Hymenoptera, which have
haplodiploid inheritance instead of the diploid inheritance assumed here.
They imagine a species which has two breeding seasons a year, such that

m>0 (5.41)
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the adults of the first season always fail to survive to the next year.
Offspring produced in the first season of a year thus have parents who
were produced in the second season of the preceding year. A female who
produces a brood in the first season may also produce a brood in the
second season, which is assumed to be fertilised by sperm from the male
which fathered the first brood. In the initial A;A; population, the
first-season offspring found their own, independent nests. Assume that a
mutant allele A, causes a female who emerges in the first season to rear
the second-season offspring of her mother instead of founding her own
nest, and thereby reduces her own fecundity by m, but increases her
mother’s fecundity by ém’. By the above type of argument, the condition
for the spread of A, is simply ém’ > m, implying that a slight dispropor-
tion in the ratio of enhancement of maternal fecundity to the reduction in
offspring fecundity is sufficient to select for this form of altruism.

The same method can be applied to a mutant allele which acts in the
mother, to cause a first-generation offspring to sacrifice reproduction and
assist the mother ( parental manipulation). Here, the offspring are viewed
as recipients and the mother as a donor, so that change in the offspring
fecundity is weighted by p = 3. We now simply require 26m’ > m, a much
lighter condition than before (Charnov, 1978; Craig, 1979). A change in a
life-history pattern may thus be brought about as a result of a genetic
change expressed in an individual’s relatives rather than in the individual
itself.

5.3.6  Sex differences and life-history evolution

Up to now, we have largely ignored the possibility that natural
selection might promote different life-history patterns in males and fe-
males, or influence the sex-ratio of offspring (in species with separate
sexes) or allocation to opposite sex functions (in hermaphrodite or
monoecious species) as a function of age. These topics are now the
subject of a large literature (reviewed by Charnov, 1982, 1993; Karlin and
Lessard, 1986; Roff, 1992, Chapter 7), and will only be briefly mentioned
here.

Sex differences in timing of reproduction

In many animal species, there is competition between males for
mates which is based, in part at least, on differences in body size. Large
males accordingly have the greatest reproductive success (Roff, 1992,
p. 128). If such competition is sufficiently intense, there may be strong
selection on males to prolong the growth period by postponing sexual
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maturity (cf. section 5.3.3). Because of the competitive nature of selec-
tion in this case, the effects tend to be self-reinforcing, in the sense that
selection for genotypes with delayed maturity is intensified once males
with a modest degree of postponed reproduction have been established in
the population. An evolutionary equilibrium will only be reached when
the cost of further postponement of reproduction becomes large enough
to balance the reproductive advantage. A model of such competitive
selection on body size has been analysed by Maynard Smith and Brown
(1986). Clearly, this type of selection does not operate on females, and
we would therefore expect them to become sexually mature and cease
growth considerably earlier than the males. This is, indeed, commonly
observed (Roff, 1992, pp. 207-12).

Satellite males

An interesting outcome of selection on male reproductive success
can be the maintenance of more than one type of male life-history
strategy, by the frequency-dependent selection inherent in some types of
sexual selection (Gross and Charnov, 1980; Gross, 1985; Gross, 1991;
Roff, 1992, pp. 207-12). The commonest situation is when there are two
classes of male, ‘territorial’ and ‘satellite’ (Roff, 1992, p. 209). The
former are late-maturing, large, and defend territories in order to gain
access to females. The latter are early-maturing, small, and obtain
matings by intercepting females attracted to the territorial males or by
sneaking between the male and female during fertilisation (in cases when
there is external fertilisation). It is easy to see that, in principle, satellite
males might be able to gain an advantage when rare, but that their
reproductive success is likely to fall as they become common, owing to
the lack of territorial males to attract females, and the increased competi-
tion among satellite males for access to females attracted to the remaining
territorial males. If the relative net fitnesses of the two forms become
equal, then the conditions for an ESS are met (Maynard Smith, 1982),
and they should be maintained at that frequency. This can arise if the two
forms are genotypically identical and are the products of phenotypic
switching, whose frequency in the population has been adjusted by
genetic modifiers to meet the ESS condition of equal fitness. Alter-
natively, they might represent a genetic polymorphism due (for example)
to dominant and recessive alleles at a single locus. Unfortunately, the
genetic basis of the differences between the forms is unknown in all cases
studied so far, other than the size morphs of the swordtail Xiphophorus
nigrensis, which appear to be under single-locus control (Zimmerer and
Kallman, 1989).
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If the ESS condition is met, and the population size is stationary, then
the net reproduction rates of the two types of male must be equal. As
shown by Gross and Charnov (1980), this has the consequence that the
fraction of eggs fertilised by the satellite males at a given time (#) should
be equal to the fraction of satellite males in the population (g). If R; and
R, are the net reproduction rates of satellite and territorial males,
respectively, the proportions of fertilisations accruing to the two types are
gR; and (1 — q)R,. We thus have

gRs  _ h
I-g@R (A-h)

But at the ESS, we have R, = R,, and so g = h.

This prediction can be tested by obtaining empirical values for both g
and h (Gross and Charnov, 1980; Gross, 1991). For the case of blue-gill
sunfishes, there is good agreement with the expectation of equality, but
the confidence intervals are too wide to permit a rigorous test. Gross
(1991) describes the results of experiments in which the frequencies of
satellite males are artificially perturbed, which provide support for the
hypothesis of frequency-dependent mating success.

(5.42)

Sequential hermaphroditism

This is a phenomenon whose selective causes are probably closely
related to those for deferred maturity of males. It describes cases in which
at least some individuals in a population start reproductive life as one sex,
and change over to the other sex at some point. Sequential hermaphro-
dites may be protandrous or protogynous, depending on whether they
start life as males or females, respectively. It is common, for example,
amoung certain groups of fishes, such as the wrasses. Ghiselin (1969)
suggested that sequential hermaphroditism has a selective advantage
when there is a tendency for the fecundity of one sex to increase more
rapidly with age than that of the other. Consider, for example, the case of
an initially bisexual species with two age-classes, and in which the
age-specific survival probabilities for males and females are equal. If the
population size is stationary, then the fact that each individual has a
mother and a father implies that, using the notation of section 1.2.1, we
must have

IDMQ) + IQ)MQ) = I[()M*Q) + I2)M*(Q2) (5.43)

If female fecundity is constant with age but male fecundity increases, we
have M(1) = M(2) and M*(1) < M*(2). It follows from equation (5.43)
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that M*(1) < M(1) < M*(2). The carriers of a rare mutant gene which
causes them to be female up to age-class 1, and male in age-class 2, will
have an expectation of offspring of /(1) M(1) + /(2) M*(2), and so will be
at a selective advantage over the rest of the population.

The main problem in the theory of the evolution of sex change is to
determine what the optimal age of sex switching should be, granted that
sequential hermaphroditism is advantageous. This can be tackled by an
ESS approach as follows. Consider a protogynous species in which the
age of switching is ¥;. A rare mutant allele A, at an autosomal locus is
introduced into the population, which changes the age of switching to x,.
Assuming random mating, the frequency of A, among new zygotes
produced at time ¢ is equal to the mean of the frequency of A, among
male and female zygotes, i.e.

S B(t — x)py(t — x)k(x)

x=b
po(t) = Py
2> B(t — x)k(x)
x=b
d
> B(t = x)pa(t — x)k*(x)
x=x,+1

y (5.444a)
2 > B(t-x)k*(x)

x=X+1
If the initial population has an intrinsic rate of increase r, it will be

immune to invasion by A4, if

X d
Sek(x) S e Tk*(x)
x=b

x=xs+1

2 y <2 (5.44b)
> e ™ k(x) > e k*(x)
x=b x=F+1
An equivalent equation can be written for the case of protandry. These
equations enable predictions to be made about the timing of sex change
(Warner, 1975; Warner, Robertson and Leigh, 1975; Leigh, Charnov and
Warner, 1976; Charnov, 1979). Charnov (1982, Chapter 9-11) provides a
comprehensive review of the theory and pertinent data. Later work is
reviewed by Warner (1988), Mangel (1990) and Charnov (1993, Chapter
3). There appears to be good empirical support for the theory that sex
switching is an evolved response to differences between the sexes in the
relation between age and reproductive success.
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Selection and the sex-ratio

Fisher (1930, pp. 158-60) was the first to propose a mechanism
for the adjustment of the sex-ratio by natural selection. He pointed out
that both parents make an equal genetic contribution to a zygote, with
respect to autosomal loci. A male zygote will therefore have a higher net
fitness (survival X fecundity) than a female zygote, in a discrete-genera-
tion population whose primary sex-ratio (sex-ratio among the zygotes,
section 1.2.1) is biased towards females. (This is true even if males have a
lower probability of survival than females.) Consequently, a genotype
which tends to produce offspring with a higher frequency of male zygotes
than average, but otherwise has the same fecundity and survival prob-
ability, will have a selective advantage. If the sex-ratio is biased in favour
of males, then female-producing genotypes are favoured. The sex-ratio
should therefore tend to stabilise at one-half, if there is genetic variation
available at autosomal loci. This idea has been confirmed by studies of
one-locus models of sex-ratio variation, e.g. Spieth (1974), Karlin and
Lessard (1986). Variation at X-linked loci has similar consequences
(Trivers and Hare, 1976).

As Fisher realised, a primary sex-ratio of one-half is not necessarily
favoured if parents can replace offspring which die before reaching a
certain age. If, for example, males tend to have a higher mortality than
females, then a mother who produces a higher frequency of male zygotes
than average will compensate for the greater frequency of death of these
males by producing more zygotes than average, so that she will have an
increased fecundity over and above any advantage due to a female-biased
population sex-ratio. This results in a primary sex-ratio biased in favour
of males at equilibrium. It can be shown that selection favours a sex-ratio
of one-half at the age at which parents can no longer compensate for
death of an offspring (Crow and Kimura, 1970, pp. 291-2).

Recurrence equations for a rare mutant allele A, at an autosomal locus
which changes the sex-ratio among new zygotes can be derived as follows.
In general, it is necessary to allow for the possibility that the sex-ratio
genotype influences the age-specific survival probabilities and fecundities
of the parents, since male and female offspring may incur different costs
which influence the demographic parameters of their parents, e.g. male
offspring might be larger than female and therefore require greater
exertion on the part of the mother in species with parental care, leading
to a lower survival rate of mothers who produce a high frequency of sons
(Fisher, 1930; Charlesworth, 1977; Charnov, 1982, Chapter 6). For the
initial A; A, population, assumed to be in stable age-distribution, let the
overall frequency of female zygotes be a; let the frequency of female
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zygotes produced by an A; A, mother aged x be a, and the frequency of
female zygotes produced by an A;A, father aged x be a}. The cor-
responding values for the A; A, population are denoted by overbars. Let
the products of survival to age x and number of zygotes produced at age
x for A A, females and males be K;(x) and K$(x) respectively. Let
p>(t) and p3(t) be the frequencies of A, among female and male zygotes
at time ¢. The following recurrence relations are obtained

aB(H)py(t) = %230 — x)pa(t — X)Kpp(x)ay
+ (1 - d) * %* *
TEB(t - xX)pi(t — x)KH(x)a¥  (5.45q)
(1 - )B()pX1) = %230 — x)pa(t — X)Kpp(x)(1 — ay)

+ %23(1‘ = x)p3(t — x)KH(1 — af)
(5.45b)

If the intrinsic rate of increase of the initial population is 7, these simplify
to

pat) = %{Epz(t —x)e " Kp(x)ay

+ a—fQEpi"(t —x)e K i‘z(x)a;"} (5.45¢)
a x

pi(t) = %{ a —> Dot — x)e T Kpp(x)(1 - ay)
(1-a)%=

P - x) e K )1 — a;")} (5.45d)

Using the same technique as was used for the case of the stability of an
equilibrium with heterozygote advantage (section 4.3.6), the asymptotic
rate of increase of A, when rare is given by the largest real root z; of

2=3 e U [Kp(x)a, + KH(x)(1 = aP)]
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X

+ %{2 e (rtax Klz(x)} {2 e~ (r+a)x K’l“z(x)a;“} (5.46)

This provides a means for determining the ESS pattern of sex-ratio as a
function of age, since a population for which the population sex-ratio
pattern is such that z; < 0 for all small perturbations meets the definition
of an ESS (Maynard Smith, 1982). A necessary condition for this is that
the total differential of z, is zero at the population sex-ratio pattern, i.e.
that the derivatives 3z,/da, and 3z;/3a¥ are zero for all reproductive
ages, when evaluated at the sex-ratio pattern for the population in
question.

In the simplest case, there is no relation between offspring sex-ratio
and parental demographic parameters, as is likely in species with no
parental care. The relevant derivatives in this case are as follows

91 o e'"‘K(x){l -is e_”‘K*(x)} (5.47a)
a, x
azi o e'”‘K*(x){%z e K(x) - 1} (5.47b)

where K(x) and K*(x) are the products of survival to age x and
fecundity at age x for females and males, respectively, for the initial
population. For the initial population to be in stable age-distribution,
considerations analogous to those leading to equation (1.32) show that

SeKE) =5, Se KA x) = —
p a x (1 - d)
Substituting these into equations (5.47), we find the ESS conditions
1-—1 -1 _1-0 (5.48)
2(1-a) 2a

i.e. an overall zygotic sex-ratio of one-half is favoured, as in the cor-
responding discrete-generation case.

Clearly, these relations make no predictions about sex-ratio as function
of parental age; as long as the overall sex-ratio is one-half, the ESS
conditions can be satisfied regardless of the relations between sex-ratio
and parental age.

The situation is more complicated when there are different costs of
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male and female offspring, which affect the subsequent performance of
the parents. Consider the case when sex ratio is controlled only by
maternal genotype. It is reasonable to assume that offspring sex ratio at
age x can only influence the demographic parameters of mothers aged x
or more. This effect can be encapsulated in the partial derivative of K(y)
with respect to a,, 3K(y)/3a, (y = x). If male offspring cost more than
female offspring in terms of maternal survival or fecundity, for example,
we would have 3K(y)/3a, > 0; the opposite inequality would hold if
females were more costly than males. Including these effects in the
derivatives of z;, we obtain the following relation for each reproductive
age x

e K@)+ S e—'y<%(”}(aya +a)=0 (5.492)

y=x a,

where 6 =2(1 — a) — 1 is a measure of the bias of overall zygotic sex-
ratio towards males. If males cost more than females, the second term is
positive, so that d must be negative for an ESS to exist, i.e. the overall
zygotic sex-ratio is female-biased, as would be expected intuitively. The
opposite bias obviously occurs if females cost more than males. This is
qualitatively the same as the bias found in discrete-generation models
with different costs of males and females.

If only fecundity at age x is affected by the sex-ratio of the offspring of
mothers aged x, as would be the case if male female and female offspring
require different amounts of resources to raise to age 1, then equation
(5.494) becomes

e“”‘K(x){(S + (—aln M (x))

ax

(a,6 + d)} =0 (5.49b)
ay
where M(x) is the total number of offspring produced at age x.

If the effect of sex-ratio on fecundity is small, neglect of second-order
terms leads to the following approximation for

o= - (M) (5.50)

2

If In M(x) is linear in a,, then this is also the approximate sex-ratio bias at
all ages. If In M(x) is non-linear, so that the value of the derivative
changes with a,, an infinite number of solutions to (5.49b) is possible, as
in the case of no dependence of fecundity on sex ratio, with the only
constraint being that the overall sex-ratio satisfies equation (5.50).

If survival probability at age x is affected by the sex-ratio of the
offspring of mothers aged x, as would be the case if a brood with a bias
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towards males makes higher demands on the mother than a female-biased
brood, we have

e K(x)6 + (a’“—”("))(axa +3)T e VK@) =0  (5.49)
aax y>x

The different functions of age on the left-hand side of this equation

indicates that the ESS sex-ratio is normally constrained with respect to

the relation between maternal age and sex-ratio. Insight into the possible

nature of the constraints can be obtained by rewriting equation (5.49¢) as

follows

5+ (aln—m)(axa +a)Y e ket g (5.49d)
da, u=1 K(x)

If the life-history shows senescence, the summation over u will frequently
decrease with increasing x. This is the case, for example, if fecundity is
constant with age and survival decreases. Under this condition, the
decline in the summation term must be balanced by an increase in the
absolute value of its multiplicand, for equation (5.49d) to be satisfied for
each x. If the effects of sex-ratio on survival are small, the leading term in
the multiplicand is (3 In P(x)/da,)/2.

Evolutionary stability of the sex-ratio requires P(x) to be a concave
function of a,, over the range of possible ESS values, ensuring that z; is a
maximum at the solution of equations (5.49) (cf. equation (5.31¢)). It
foliows that, if P(x) increases with a,, implying that males cost more than
females (so that < 0), the decline in the summation term with age must
be balanced by an increase in 3ln P(x)/da,, and hence there is an
increase in the proportion of males with advancing maternal age. The
reverse is true if males cost less than females. More complex patterns are
clearly possible if the summation term does not decrease monotonically
with age, as might be the case if female fecundity increases with size.

Charlesworth (1977) studied models in which there was compensation
of the type likely to occur in non-contracepting human populations. Here,
there is a prolonged period of natural sterility during lactation, so that a
child which dies in utero or before weaning causes its mother to become
fertile sooner than if the child had survived to weaning. A maternal
genotype that tends to produce a higher-than-average frequency of male
zygotes (which have a higher mortality than females during most of the
period of life in question) is thus associated with a shorter interval
between successive conceptions than average. Using the renewal model of
Henry (1953, 1957) for human age-specific fecundity, Charlesworth
showed that the ESS primary sex-ratio for human populations is biased in
favour of males, as expected from the discrete-generation result. By the
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end of the first eighteen months or so of post-natal life, death of an infant
is not likely to shorten the period of infertility significantly, and the ESS
sex-ratio at this age is biased in favour of females. If the mortality rates
for male and female infants in the first year of life in typical pre-industrial
populations are combined with typical statistics on sex-ratios at birth
(which are usually male-biased), a female-biased sex-ratio for one-year
old infants is obtained, in agreement with the ESS prediction.

It was also possible to carry out a somewhat crude analysis of the ESS
for sex-ratio as a function of parental age, as well as the overall sex-ratio.
A tendency for younger females to produce a higher frequency of males
than older females would be predicted. An intuitive interpretation of this
is that older women have a greater chance of becoming sterile or dying in
the intervals between conceptions than young women, so that they have a
lower net ability to compensate for the deaths of offspring than younger
women. Their offspring should accordingly have a sex-ratio closer to
one-half. It is interesting to note that the sex-ratio at birth in human
populations is dependent upon maternal age in the way predicted by this
theory (Novitski and Kimball, 1958; Teitelbaum, 1972). There is thus
reasonably good agreement between the expectations of sex-ratio theory
and observations on human populations. This should not be taken as
confirming the theory, since sex-ratios at birth are affected by a variety of
socio-economic factors, and alternative explanations of the association
between maternal age and sex-ratio can be put forward. If it could be
shown that the primary sex-ratio in man is indeed biased in favour of
males, the theory would be considerably strengthened, but at present this
sex-ratio is an unknown quantity.

Sex-ratio selection with variable environments

Werren and Charnov (1978) and Seger (1982) have shown that
variable environments may have significant effects on the outcome of
selection on the sex-ratio in age-structured populations. One model which
is especially relevant to insect populations is when there are two breeding
seasons, spring and autumn say. Individuals of either sex which are born
in the spring reproduce in the autumn and die. Females born in the
autumn survive over winter and reproduce and die in the spring; males
born in the autumn also reproduce in the spring, and some survive to the
autumn and reproduce. This has the consequence that males born in the
spring face competition for mates from those born in the autumn,
whereas spring-born females do not face such competition. This favours
an ESS zygotic sex-ratio which is biased towards females in the spring and
towards males in the autumn. Seger (1982) reviews data on a number of
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species of solitary Hymenoptera with life-histories which fit the assump-
tions of this model. Statistically significant sex-ratio biases in the pre-
dicted direction are frequently observed. Charnov (1982, Chapter 6)
reviews further evidence on sex-ratio shifts associated with varying
environments in age-structured populations.

Sex allocation with age-structure

There is a large literature on the evolutionary adjustment of
resources between male and female allocation in cosexual (hermaphrodite
or monoecious) species, which is particularly relevant to flowering plants
(Charlesworth and Morgan, 1991). Differential costs of male versus
female structures in cosexuals may affect subsequent survival or growth of
mature individuals, and this may have significant effects on the ESS
proportion of resources allocated to different sex functions (D. Charles-
worth, 1984; Charnov, 1988; Charnov and Dawson, 1989; Tuljapurkar,
1990b).

5.3.7 Some general aspects of life-history theory
We shall conclude this section with a brief discussion of some
general aspects of life-history theory.

The uses of reproductive value

Ever since Fisher introduced the concept in 1930, there has been
a strong temptation for biologists to use reproductive value as a tool for
analysing life-history evolution and related problems. As we have seen, it
cannot be used as an index of the intensity of selection as a function of
age, despite Fisher’s (1930, p. 29) remarks concerning the possible
significance of the inverse relationship between reproductive value and
mortality observable in human populations, and Medawar’s use of it in
discussing the evolution of senescence (section 5.3.1). Reproductive value
or, rather, Schaffer’s (1974a) generalisation of it, does play an important
role in determining the conditions for an optimal life-history under the
reproductive effort model (section 5.3.4). Furthermore, as discussed by
Schaffer and by Taylor et al. (1974), Caswell (1980), Charlesworth (1980,
pp. 265-7), Schaffer (1981), Goodman (1982) and Yodzis (1982), there is
a certain sense in which reproductive value at each age is maximised in
optimal life-histories. This may be seen as follows. As we saw on p. 186,
the condition for an optimal life-history in a density-independent popula-
tion is that the sum > e ™ k(x) be at a local maximum with respect to
perturbations in k(x), r being held constant at the value which makes the
original sum unity. If we consider a certain age y, variations in the
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life-history at age y and later ages affect only the component
e y € " k(x) of the above sum, regardless of the particular constraints
assumed in the optimisation model. Hence, if a given life-history maxi-
mises ), e "“k(x), the sum >,_,e ™k(x) must be maximised with
respect to perturbations at ages y, y + 1, ..., the life-history at earlier
ages being held constant. This is true for each value of y. Conversely,
maximisation of each sum ,,_, e ™k(x) implies that the life-history is
optimal. The maximisation of reproductive value follows from this, since
we have

e” -
o(y) = ~—3 e k(x)

I(y) <=y
and I(y) is unaffected by perturbations at ages y and beyond. Similar
remarks apply to density-dependent populations. There is, of course,
nothing of particular biological significance in this maximisation of repro-
ductive value, since any product of EFye"" k(x) and a factor that is
independent of events at age y and beyond would have the same
properties.

The restriction that r be held constant while carrying out perturbations
to the life-history can be relaxed for the case of perturbations to age-
classes which do not have boundary values for the life-history variables
under consideration (e.g. age-classes with intermediate reproductive ef-
fort). The total differential of r, dr, must be zero at a local maximum in r
with respect to such perturbations, so that the restriction of constant r
when finding maxima in reproductive value, etc. is unnecessary in this
case. With the reproductive effort model, described in section 5.3.4, v(y)
(or, more generally, (y), if growth as well as survival is taken into
account) is maximised with respect to perturbations at ages x < y as well
as x = y. (The restriction of constant r must be applied if these ages have
reproductive efforts of 0 or 1.) This is because P(x) or P(x) depend only
on m(x) or #(x) in this model, so that perturbations to reproductive
value at age y leave later ages unaffected. The result is, of course, not
true if the effects of changes in reproductive effort at ages x < y influence
survival or growth at age y and beyond. There is therefore a much
stronger sense in which selection can be said to maximise reproductive
value in reproductive effort models, than in more general optimisation
models.

Another role for reproductive value has been suggested by Slobodkin
(1974). He proposed that the life-history of a prey species which is
subjected to an increased rate of predation at a certain age would tend to
evolve in such a way that reproductive value is withdrawn maximally from
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that age. This possibility has been investigated analytically by Michod
(1979) and Law (1979b), using the methods described on p. 221. They
were able to confirm Slobodkin’s suggestion for certain types of popula-
tion, although its general validity remains to be established.

Finally, MacArthur and Wilson (1967, Chapter 4) suggested that a
colonising species would be selected to send out individuals to found new
colonies at an age when these individuals have maximal reproductive
value, on the grounds that their probability of successfully founding a new
population would be highest at this age. This was investigated by William-
son and Charlesworth (1976), using branching process theory. They found
that there is often no particular relationship between reproductive value
at a given age and the probability of survival of a population founded by
an individual of that age.

Maximisation of population parameters

A number of life-history studies have been published which make
use of the maximisation of population parameters. For example, Holgate
(1967) and Mountford (1971, 1973) treated certain problems by finding
the maximum probability of survival of a population. Cohen (1966, 1967,
1968, 1970) maximised the geometric mean of the growth-rate of a
population in a temporally varying environment. As has already been
discussed (section 5.1), it is necessary to demonstrate that natural selec-
tion can actually have the effect of maximising the population parameter
in question, unless one is willing to invoke group selection. The use of
survival probability can be justified in selectionist terms by regarding the
calculations in question as dealing with the probability of survival of a
mutant gene rather than a whole population, as mentioned in section
5.2.3. Although the calculations often turn out to be identical, the
conceptual distinction between the two procedures is important. Simi-
larly, under suitable conditions, Cohen’s models can be translated into
considerations of the rate of spread of a rare gene, along the lines
indicated in section 4.3.3.

54 Tests of theories of life-history evolution

In the previous section of this chapter, we have discussed a
variety of theoretical ideas about the ways in which natural selection can
mould life-histories. In the past 15 years, a great deal of effort has been
expended on attempts to test these ideas against data from both experi-
ments and species comparisons. This literature has recently been the
subject of several books (Finch, 1990; Rose, 1991; Roff, 1992; Stearns,
1992; Charnov, 1993). There is no point in trying to emulate these here.
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Instead, a number of case-studies of specific topics will be described,
which are intended to illustrate some of the main biological points
involved.

5.4.1 Some principles of life-history evolution

In order to introduce the empirical studies, some of the main
principles which have emerged from the theoretical work will first be
summarised.

(i) Age-specificity and effects on fitness of changes in life-history

variables

As we saw in section 5.2.1, the sensitivity of fitness to changes in
age-specific survival probabilities or fecundities decreases with age (apart
from changes in survival during the pre-reproductive period in the case of
survival, or changes in fecundity in the unimportant case of a rapid and
sustained decline in population size). This implies that, other things being
equal, there is always a selective premium on genetic improvements in
life-history traits early in life, relative to comparable changes later on.
This provides an inbuilt selection pressure towards the evolution of
senescence, early reproductive maturity, and semelparous rather than
iteroparous reproduction. The fact that organisms often postpone repro-
duction or are iteroparous means that there must be costs attached to
early or intense reproduction, as modelled in sections 5.3.2-5.3.4. Deter-
mining the nature of these costs has been a major goal of empirical
research.

(ii) Effects of a constant demographic environment on the evolu-

tion of the life-history

The demographic environment (sources of mortality such as
predation and disease, over which the individual has little control; the
rate of population growth-rate; the mode of density-dependent popula-
tion regulation) greatly influences the extent to which the sensitivity of
fitness to changes in life-history traits alters with age. As discussed in
section 5.2.4, the decline with age in the sensitivity functions depends on
the age-structure of the population. Ecological circumstances which tilt
the age-structure towards younger individuals, such as high adult mortal-
ity in populations regulated by adult fecundity or by survival very early in
life, lead to a faster rate of decline in the sensitivities, compared with
populations in which a high proportion of old individuals is maintained.
As described in sections 5.2.4 and 5.3.2-5.3.4, populations of the first
type should tend to evolve more rapid senescence, should reproduce
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earlier and be more likely to be semelparous, and should invest in higher
reproductive effort if iteroparous, than populations of the second type.
Conversely, under the reproductive effort model of section 5.3.4, higher
juvenile mortality favours lower reproductive effort. In addition, popula-
tions with high adult survival, a high degree of sensitivity of survival to
reproductive effort and a high maximum fecundity per unit weight are
likely to experience an increase in reproductive effort with age, especially
if they are density-regulated through fecundity or juvenile survival.

(iii) Effects of variation in the demographic environment

The expected effects of temporally varying demographic para-
meters on the evolution of the life-history are more complex. As de-
scribed in section 5.3.2, temporal variation in juvenile survival allows
iteroparity to evolve under lighter conditions than when the environment
is constant. The reverse is true when adult survival varies. Similarly,
delayed reproduction is favoured by temporally varying juvenile survival
or growth-rate when fecundity is size-dependent, but the effect of varying
adult rates depends on the autocorrelation between time-intervals (sec-
tion 5.3.3). Large variances in survival or fecundity may be necessary to
overcome differences in intrinsic rate for the mean life-histories,
however, so that such effects of temporal variation are far from inevit-
able. Reduced reproductive effort is favoured by varying juvenile survival
or fecundity; the opposite is true when adult survival varies (section
5.3.4). Facultative adjustments of the life-history to local conditions are
favoured when there is spatial variation in the demographic environment.
The expected nature of these adjustments is broadly in line with those
predicted for populations evolving in a constant environment, except that
variable juvenile survival has no effect on the optimal level of repro-
ductive effort (sections 5.3.3 and 5.3.4).

(iv) Consequences of kin selection or parental manipulation

Under suitable conditions the direct effects of selection on the
life-history traits of individuals of the kind just described may be out-
weighed by the fitness consequences of these traits for close kin, or
individuals may be manipulated into adopting life-histories which benefit
their kin. In particular, deferred reproduction may be favoured if non-
breeders help their parents raise young (section 5.3.5).

(v) Sex effects on life-history evolution
Males and females may exhibit different age-specific patterns of
fitness sensitivities (section 5.3.6). This can result in relatively minor
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adjustments to the life-histories of the two sexes, such as postponement of
reproductive maturity in males relative to females when there is strong
size-based sexual selection. More dramatic patterns, such as age-depend-
ent sex switching, may evolve when male and female reproductive success
have sufficiently different patterns of dependence on age or size. Finally,
if sex-ratio (in species with separate sexes) or allocation of reproductive
resources to different sex functions (in cosexual species) can be adjusted
either genetically or facultatively, age-specific patterns of sex allocation
or offspring sex-ratio may be favoured. Evidence relating to sex effects
has already been discussed briefly, and we will not consider this topic
further.

5.4.2  The nature of tests of theories of life-history evolution

The theoretical principles of life-history evolution just described
follow logically from the rules of genetics and demography. It is obviously
unnecessary to test some of the most basic principles, since we know that
these rules are empirically valid. It is not a matter for controversy or
empirical investigation whether the sensitivity of fitness to changes in
life-history traits declines with age, or how the rate of decline is affected
by the demographic environment. However, even the most basic prin-
ciples will have no consequences for what happens in evolution if ancillary
requirements are not satisfied, notably that genetic variability of the
appropriate type must be available if selection is to be effective. Thus,
although a selection pressure in favour of senescence is an inevitable
outcome of genetics and demography when there is a distinction between
somatic and reproductive structures, senescence cannot evolve if there is
no age-specificity of genetic effects on life-history traits (section 5.3.1).
As in other areas of evolutionary biology, the collection of data on the
physiological and genetic phenomena assumed in different types of model
forms an extremely important component of empirical work on life-
history evolution.

The other component concerns the question of whether or not life-
history patterns observed in nature agree with theoretical predictions.
Conversely, one can ask which type of evolutionary model is most likely
to explain an observed pattern, e.g. why is the characteristic age at
reproductive maturity of a species often negatively correlated with its
species-specific mortality rate, when related species are compared (sec-
tion 5.4.5)? The difficulty here is that, as is often the case in evolutionary
biology, similar patterns can be produced by different causes, e.g. both
the size-related fecundity and reproductive effort models predict earlier
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reproduction when mortality is high (sections 5.3.3 and 5.3.4). Thus,
causes cannot be securely inferred from effects.

Ideally, a combination of research on the nature of life-history variation
within species and analyses of the products of evolution under different
demographic environments should provide a resolution of this problem.
As we shall see, although a great deal of valuable data on both aspects of
life-history evolution has been amassed, this ideal has been rarely, if ever,
been approached. On the one hand, we have evidence in many systems
for the physiological and genetic phenomena postulated in many of the
models of life-history evolution; on the other, patterns of life-history
differences between populations or species which match the predictions of
the models have been repeatedly described. There can be little doubt that
life-histories are indeed being moulded by selective forces of the kind
described above; what we are usually unsure of is the exact nature of
these forces in individual cases.

5.4.3 The evolution of senescence
This topic has recently been the subject of two full-length books
(Finch, 1990; Rose, 1991), and so will only be briefly discussed here.

Genetic evidence

There is ample evidence for age-specific genetic effects on life-
history traits, which are required for senescence to evolve in response to
the decline in fitness sensitivity with age (section 5.3.1). This evidence
comes from studies of a variety of species, from Caenorhabditis elegans
through Drosophila melanogaster to humans, and both major gene and
quantitative genetic effects have been described (Finch, 1990, Chapter 6;
Harrison, 1990; Rose, 1991, Chapter 4).

What is less clear from the genetic studies is which of the two most
plausible scenarios for the evolution of senescence, mutation accumula-
tion and antagonistic pleiotropy, is likely to be the more important factor
in the evolution of senescence, or indeed whether both of them may have
contributed significantly. The evidence concerning mutation accumulation
is as follows. Consider first a mutant allele at a locus that is expressed
only at a given age x. From equations (5.5) of section 5.3.1, it is easily
seen that the population’s equilibrium reduction in log survival prob-
ability at age x (below that for the wild-type homozygote) is proportional
to the mutation rate to the allele in question, u, divided by the fitness
sensitivity for age x. If the effects of different loci are approximately
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additive, a large decline with age in survival probability requires that the
sum of the u values over all loci be large, except for very late in life when
the fitness sensitivities approach zero. Given the fact that mutation rates
per locus are typically of the order of 107> or less, this requires the
existence of a substantial number of loci capable of mutating to deleter-
ious alleles with highly age-specific effects. Similar results apply to
fecundity.

Research into the total rate of mutation to deleterious alleles in several
species suggests that in Drosophila and flowering plants there is probably
an average of at least one new deleterious mutation per diploid individual
per generation (Crow and Simmons, 1983; Kondrashov, 1988; Charles-
worth ef al., 1990; Houle et al., 1992). The rate is likely to be substan-
tially higher in mammals, with their much greater genome size (Kondra-
shov, 1988). Thus, a critical requirement of the mutation accumulation
theory is met: there is a wealth of mutational input into the population of
deleterious alleles at a large number of loci.

The question of whether their effects are sufficiently often age-specific
to account for senescent decline is less easy to answer. In humans,
research in medical genetics has uncovered numerous cases of low fre-
quency, highly deleterious alleles maintained by mutation, whose effects
are age-dependent (Finch, 1990, Chapter 6). The case of Huntington’s
chorea, discussed in section 3.4.2, is a classic example of a mutant gene
whose expression is deferred until late in life. Major genes of this kind
clearly meet the requirements of the mutation accumulation theory, but
their rarity means that their net contribution to the net decline in survival
or fecundity with age is likely to be small. Genetic factors with more
minor effects have been implicated in many disorders associated with
ageing in humans, such as cancer and heart disease, although the mechan-
isms by which the genes concerned are maintained in the population have
mostly not been elucidated (Finch, 1990, Chapter 6). Although mutation
accumulation seems an attractive candidate as a contributory factor to
human senescence, its proportionate contribution remains to be deter-
mined.

In Drosophila, Mueller (1987) maintained a laboratory population of
D. melanogaster for over 120 generations under conditions in which early
reproductive performance was favoured but where there was no selection
for reproduction late in life. No increase in early performance was
observed, but fecundity late in life declined, suggesting that deleterious
mutations affecting fecundity late in life had accumulated in the absence
of counter-selection. On the other hand, mutations which have been
accumulated for 44 generations on the second chromosome of D. melano-
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gaster in the almost complete absence of selection show high positive
genetic correlations between life-history components measured early and
late in life (Houle et al., in preparation). This indicates that there is little
scope for age-specific mutations of the type postulated in the mutation
accumulation theory. Similarly, Rose and Charlesworth (1981) found no
statistically significant increase with age in additive genetic variance in
female fecundity, despite the fact that the mutation accumulation theory
predicts that additive variance due to deleterious mutations should in-
crease with age in parallel with the decline in mean, since both reflect
higher frequencies of deleterious alleles with late ages of expression
(Charlesworth, 1990a). More recently, Hughes and Charlesworth (1994)
and Hughes (in preparation) have found significant increases with age in
the additive genetic variances of mortality rate and male mating success.
Other evidence is reviewed by Rose (1991, Chapters 3-4), and Partridge
and Barton (1993). Overall, there is only limited support for the mutation
accumulation theory from studies of Drosophila. This may simply reflect
the difficulty of obtaining statistically significant evidence.

There is now extensive genetic evidence, primarily from Drosophila,
that early reproduction has adverse effects both on survivorship and on
late reproduction (Rose, 1991, Chapters 3-4; Partridge and Barton,
1993). This comes from quantitative genetic studies in which early female
fecundity is found to be negatively genetically correlated with longevity
and with fecundity later in life (Rose and Charlesworth, 1981; Service and
Rose, 1985), and from experiments in which laboratory populations
derived from natural populations are maintained under conditions where
individuals reproduce unusually late in life (Rose, 1991, Chapter 3).
Increased longevity and late female fecundity are frequently observed in
such experiments. Increased late fecundity is commonly, but not always
(Partridge and Fowler, 1992), accompanied by a decrease in early fecun-
dity. The decline in early fecundity could in theory be due to the
accumulation of mutations with effects specific to early life, but the
absence of evidence for such age-specific mutations in accumulation
experiments and the fact that the rate of decline is too fast for the
observed rate of mutational decline for early female fecundity, even if all
mutations were age-specific, rule this possibility out (Charlesworth, 1984;
Houle et al., in preparation).

Overall, these experiments demonstrate very clearly that ample addi-
tive genetic variability with respect to life-history traits is available in
natural populations of Drosophila, of a kind which permits experiment-
ally induced changes in the demographic environment to produce the
theoretically expected shifts in the timing of senescence. Negative genetic
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correlations between early and late fecundity, and between early fecun-
dity and adult survival rate, seem to play a major role in producing these
shifts.

Comparative evidence

The two major candidates for evolutionary causes of senescence
both make similar predictions concerning the effects of the demographic
environment on the intensity of selection for senescence (see section
5.2.4), and so comparisons of species or populations cannot be expected
to shed light on which is the more important factor. Comparative studies
can, however, provide useful evidence on whether or not observed
differences in patterns of ageing among taxa have evolved in the ways
predicted by theory. This question was first discussed by Williams (1957),
whose paper laid the foundations for the interpretation of the compara-
tive biology of ageing in the light of evolutionary theory. More recent
discussions are given by Comfort (1979), Finch (1990, Chapters 1-5),
Rose (1991, Chapter 5), Austad and Fischer (1991), and Promislow
(1991).

There is one caveat which should be borne in mind when considering
the comparative evidence. Much of the data are expressed in terms of
estimates of the expectation of life (mean longevity) or the maximum
life-span characteristic of the species. The latter statistic is sample-size
dependent, and hence rather unreliable. Both measures are affected by
the initial mortality rate of the group of individuals being followed, as
well as the rate of increase in mortality with age (Finch, 1990; Promislow,
1991). Few comparative studies have attempted to separate out these two
determinants of life-span, only the second of which reflects senescence
(see Finch, Pike and Whitten (1990) and Promislow (1991) for excep-
tions). While it seems reasonable to suppose that the great differences in
life-span between mice and humans, for example, must reflect differences
in the rate of ageing, this is less clear for closer taxonomic comparisons.
There is also very little information on senescent decline in reproductive
capacity. Use of data on captive populations, where extrinsic sources of
mortality are minimised, and senescence is much easier to detect, should
help deal with this problem (Austad and Fischer, 1991).

The first point brought out by Williams (1957) was that senescence is
expected to be universally present in organisms in which there is a clear
distinction between parent and offspring, even if reproduction is asexual.
No such distinction can be made in multicellular organisms which repro-
duce by vegetative means which involve splitting of the whole organism
into nearly equal parts, or in unicellular organisms. Groups such as
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ciliates provide an exception to the latter. Their cells contain a vegetative
macronucleus responsible for synthesis of most proteins and a micro-
nucleus which participates in sexual reproduction, following which the
macronucleus is reconstituted from the micronucleus. Consistent with
theory, ciliates display a form of senescence if individuals are maintained
by asexual reproduction, associated with genetic deterioration of the
macronucleus (Bell, 1988).

The rules seem to be well obeyed by multicellular organisms, where
senescence seems to be observed whenever detailed studies have been
made and the demography of the species makes it feasible to detect
senescence (Williams, 1957; Comfort, 1979; Rose, 1991). Finch (1990,
pp- 208-24) points to some cases of long-lived species in which there is no
apparent evidence for senescence. These are difficult to evaluate, as
long-term studies in captivity have not been done in these cases. Bell
(1984) compared species of freshwater invertebrates which reproduced by
fission with sexual species, and showed that the former lacked detectable
senescence with respect to mortality whereas the latter often exhibited
senescence, in accord with theory. Martinez and Levinton (1992) have
demonstrated senescence in two species of asexually reproducing animals
in which there is a clear-cut distinction between parent and offspring.

Second, demographic environments with high external sources of mort-
ality such as predation should select for faster rates of senescence than
populations with low intensities of such factors (see section 5.2.4 for some
qualifications on this). Austad (1993) has shown that an island population
of the Virginia opossum exhibits higher survival, slower senescence and
reduced reproductive rate than mainland opposums, from which the
island population presumably originated. While it remains to be conclus-
ively established that these differences are genetic, they are in the
direction expected if predation pressure is relaxed on the island compared
with the mainland. As pointed out by Williams (1957), the prediction also
corresponds well to major differences between groups. Large body size in
mammals is associated with longer maximum life-span (Comfort, 1979;
Prothero and Jiirgens, 1987), and larger species tend to have lower
mortality rates in the wild (Caughley, 1966; Harvey and Read, 1988;
Promislow, 1991), presumably because of factors such as lower predation
rates. Promislow (1991) failed, however, to find the expected relation
between mortality rate of reproductively mature individuals and the rate
of increase in mortality with age in data on natural populations of
mammals. This may reflect the difficulty in obtaining reliable estimates
from such data. Significant associations between the rate of senescence
and other life-history traits which are expected to be selected for by high
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mortality (such as early development and high reproductive rate — section
5.4.1) were, however, detected by Promislow. Flying, gliding and tree-
dwelling species of mammals tend to have much longer life-spans than
terrestrial species of comparable size (Austad and Fischer, 1991, 1992). It
is reasonable to suppose that their modes of life protect against predation.
The same applies to birds when compared with mammals (Williams,
1957; Prothero and Jurgens, 1987; Calder, 1990). It is in groups which
have high levels of unavoidable mortality, such as small insects, that rapid
senescence is expected and observed.

Third, species where fecundity increases with age, such as many
cold-blooded vertebrates (section 1.2.4), should show relatively low rates
of senescence with respect to survival, since increasing fecundity tends to
reduce the differential in favour of younger age-classes that is seen in the
fitness sensitivities. This is in agreement with the observation that species
of large reptiles, amphibia and fish may have very high maximum
life-spans (Williams, 1957; Comfort, 1979).

Fourth, the theory suggests that senescence with respect to survival
should start immediately after the age of first reproduction, since the
sensitivity s(x) is constant for all pre-reproductive ages, and then starts to
decline. Owing to the inadequacies of the data on animal life-tables, and
the confounding effects of differences in ecology between juvenile and
adult stages in many species, it is difficult to be certain how generally this
prediction is verified. Human life-tables do show a minimum in mortality
rates at or near the age of puberty, with a continuous increase with age
after that point (see Williams, 1957; Hamilton, 1966, and Table 1.2); the
rise in mortality after puberty fits the theory well. This raises the question
of why juvenile mortality rates should be so high in many species. On the
present theory, there should be no selection for changes in the distribu-
tion of mortality within the pre-reproductive period, except insofar as any
age-specific gene effects overlap the beginning of reproduction; this might
lead to some tendency for higher survival rates early in the pre-repro-
ductive period. It is easy to invoke developmental and ecological reasons
for high juvenile mortality, such as the small size of juveniles and
consequent vulnerability to predation and accidental death. In verte-
brates, the existence of a period of immunological tolerance in very young
individuals necessarily implies a relatively high rate of death due to
infectious disease.

Finally, there should be no opposition to the spread of genes which
reduce survival after the age of termination of reproduction, in species
where there is an abrupt termination. This does not, of course, imply that
the end of reproduction should necessarily be followed by immediate
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death, merely that selection against senescent decline is ineffective after
reproduction has ceased. Possible advantages of the extended post-
menopausal lives of human females, in terms of better ability of
non-reproducing women to care for children or grand-children, have been
discussed by Williams (1957), Hamilton (1966) and Rogers (1993). This
presupposes the post-menopausal survival of a significant fraction of
women under primitive conditions, for which there is evidence from
studies of hunter-gatherer societies (Howell, 1976).

5.4.4  Iteroparity versus semelparity

Three circumstances which tend to favour iteroparity over semel-
parity have been discussed in sections 5.3.2 and 5.3.4: (i) high adult
survival (if an iteroparous life-history is achieved), and a relatively low
ratio of semelparous to iteroparous fecundities; (ii) a fluctuating environ-
ment in which fecundity or juvenile survival rather than adult survival
varies; and (iii) a concave rather than convex relation between repro-
ductive effort and survival or growth. Conditions (i) and (iii) are closely
connected, since condition (iii) implies that only a modest gain in fecun-
dity would result from a shift of all resources into reproductive effort in

the case of a concave curve, compared with the gain for a convex curve
(Fig. 5.3).

Phenotypic evidence

Experimental manipulations of some semelparous species have
demonstrated that the survival of individuals can be greatly prolonged by
preventing or delaying reproduction, e.g. removal of the optic gland of
octopuses prevents reproduction and death (Wodinsky, 1977), and castra-
tion of Pacific salmon greatly prolongs their life (Robertson, 1961). Other
examples are reviewed by Finch (1990, Chapter 2). These examples
suggest that individuals of these species have been programmed to
re-allocate so many resources to reproduction that death ensues.

Genetic evidence

There is evidence in some cases for within-species variation in
semelparity versus iteroparity, e.g. in rice (Sano, Morishima and Oka,
1982). This suggests that at least some species have the capacity to
respond to a pressure of selection to change their life-history in this
radical way. An unusual example of genetic variation for semelparity
versus iteroparity has been studied by Grosberg (1988) in the ascidian



250 Evolution of life-histories

Botryllus. This is a colonial marine animal, where the zooids produced by
asexual budding of an individual originating by sexual reproduction
remain physiologically connected. Zooids reproduce sexually and shelter
the developing young within their body. In a population studied by
Grosberg, semelparous and iteroparous morphs could be clearly distin-
guished and the polymorphism appears to be genetic, although the details
of the genetics are unknown. Grosberg showed that the semelparous
morph reproduces earlier, and has higher reproductive output per clutch,
than the iteroparous morph. There is also evidence for temporal variation
in the survival to maturity of both morphs. The difference in reproductive
output between the two morphs is qualitatively in accord with conditions
(i) and (iii). The means by which the polymorphism is maintained is
obscure, but might be related to the observed temporal variation in
survival (Hairston et al., 1970; Bulmer, 1985).

Comparative evidence

This has been thoroughly reviewed by Roff (1992, pp. 246-50),
who concludes that semelparous species do indeed show higher levels of
investment in reproduction compared with iteroparous relatives, in com-
parisons across taxa in groups as different as grasses (Wilson and Thomp-
son, 1989) and gastropods (Calow, 1978). Again, this is qualitatively
consistent with conditions (i) and (iii). Young (1990) reached a similar
conclusion from a review of a large number of studies of plants. He also
attempted to test condition (i) quantitatively, using data from his long-
term demographic study of two closely related species of Lobelia on
Mount Kenya, one of which is semelparous and the other iteroparous,
and which differ in habitat. The demographic parameters of the itero-
parous species in the habitat to which it is adapted seem to fit the
requirement for iteroparity to be stable to invasion by semelparity
(Young, 1990).

There is little direct evidence on the shape of the curve relating survival
to reproductive effort which would allow any firm conclusion concerning
the importance of condition (iii). Some indirect evidence that semel-
parous species may have life-styles which constrain the trade-off curve to
be convex was discussed in section 5.3.4.

Roff (1991, 1992, pp. 287-90) has reviewed the available evidence on
the possible role of environmental variability in influencing the evolution
of iteroparity versus semelparity (condition (ii)), and concludes that there
is no firm evidence for a correlation between iteroparity and temporal
variability.
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5.4.5 Age at maturity

Again, we have discussed several conditions under which delayed
reproduction can be favoured, despite the decline with age in sensitivity
of fitness to changes in fecundity (sections 5.3.3-5.3.5). These are: (i) an
increase in reproductive success with increasing body size, with a trade-
off between growth and reproduction; (ii) temporal or spatial variation in
fecundity or juvenile survival; (iii) a trade-off between reproductive effort
and subsequent survival or growth; and (iv) benefits to close kin from
deferral of reproduction.

Phenotypic evidence for trade-offs

There is a mass of data supporting the existence of a phenotypic
correlation between size and reproductive success, in a variety of differ-
ent groups of plants and animals, including mammals (Roff, 1992, pp.
126-8). Such a trade-off is required for condition (i) to be effective.
There is also evidence for negative phenotypic correlations between
reproduction and growth, particularly in plants and fishes (Roff, 1992,
pp- 154-5). This type of trade-off is required under both conditions (i)
and (iii).

For reproductive effort to be effective in setting the age at maturity
(condition (iii)), it is necessary that the sensitivity of survival or growth to
increased fecundity be greater for younger individuals (equation (5.37)).
Such a pattern can be achieved in a number of different ways. In
Drosophila, a minimum body weight must be obtained for pupation to be
successful (Bakker, 1959); hence the speed of development cannot be
advanced beyond a point which prevents this weight from being attained
at the time of pupation. Early reproduction may place a greater strain on
younger individuals, leading to lower survival and growth rates for a given
level of realised reproductive success than for older individuals (Lack,
1954, Chapter 6), but there appears to be only a small amount of direct
evidence for this (Promislow and Harvey, 1990). In birds and mammals,
increased experience in parental care and food gathering may mean that a
higher fecundity can be achieved by older individuals for a given level of
survival or growth. There is good evidence for an increase with age in
foraging skills in a number of bird species (Brown, 1987, p. 66), and for
an increase in breeding success with previous experience (Clutton-Brock,
1988, Chapters 12, 13, 16, 17). In humans and some other mammals,
infant mortality is higher for very young mothers than for somewhat older
mothers (Stearns, 1992, p. 130; Promislow and Harvey, 1990, p. 428),
which suggests that their realised reproductive success for a given level of
reproductive effort may be lower.
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Genetic evidence

Genetic correlations between body size and female fecundity
have been demonstrated in Drosophila (Robertson, 1957) There is also
evidence for a genetic correlation between body size and male mating
success (Wilkinson, 1987). Such correlations are clearly required for the
validity of model (i).

There is a wealth of quantitative genetic data from a diverse range of
species demonstrating the existence of heritable variation in age at
maturity (references in Roff and Mousseau, 1987; Mousseau and Roff,
1987). For example, the capacity of Drosophila populations to respond to
a pressure of artificial selection on age at maturity has been repeatedly
demonstrated (e.g. Clarke, Maynard Smith and Sondhi, 1961). There is
also genetic evidence for trade-offs between growth and reproduction,
mostly from fishes (Reznick, 1983) and plants (Law, 1979a; Geber,
1990), as required by conditions (i) and (iii).

In fish populations exposed to intensive commercial fishing, the high
mortality involved has been shown to lead to the evolution of earlier
maturity (Law and Grey, 1989). Edley and Law (1988) applied size-
specific artifical selection to laboratory populations of Daphnia magna,
mimicking predation pressures. Populations where only large individuals
were removed showed increased rates of growth in body size early in life,
accompanied by delayed maturity, compared with populations in which
only small individuals were removed. Most of the response appeared to
be due to changes in the populations where large individuals were
removed. The increase in early fecundity in these populations (at ages
earlier than those where the increase in mortality was applied) is in
accord with the theoretical expectations under the reproductive effort
model (p. 221).

A particularly informative experiment on the consequences of altering
the demographic environment has been done by Reznick, Bryga and
Endler (1990) on the guppy, Poecilia reticulata, which links evidence on
between-population differences to the effects of experimentally-induced
changes in demography. Previous work had shown that populations of
guppies subject to different predation regimes exhibit genetic differences
in their life-histories which correspond with theoretical expectation (Rez-
nick, 1982). Fish from sites where the main predator is a species which
prefers adult guppies reproduce earlier than fish from sites where the
main predator prefers juveniles. This is consistent with the hypothesis
that the predator’s preference for adult guppies causes higher mortality
around the age at maturity, favouring earlier reproduction than when
juveniles are preferred, assuming that density-dependent juvenile mortal-
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ity compensates for mortality due to increased predation on juveniles.
Either conditions (i) or (iii) above could be involved in this response.
Guppies were taken from the first type of environment and released into
a site where the predator preferred juveniles. After eleven years (30-60
generations), the laboratory-reared grandchildren of fish taken from the
original and transplanted populations showed differences which indicated
that the transplanted stock had indeed undergone evolutionary change of
the expected kind, i.e. it had evolved later reproduction.

Comparative evidence

A general prediction from models of type (i) concerns the rela-
tion between age at maturity and age at cessation of growth. As shown in
section 5.3.3, these models for the evolution of the age of reproductive
maturity predict that it should never follow the age of cessation of
growth, a point which was first stressed by Gadgil and Bossert (1970).
The - prediction seems to be fairly well borne out by the evidence;
although there are many species in which growth is prolonged past sexual
maturity, there are only a few examples where growth ceases much before
maturity. These will be discussed below. As pointed out by Gadgil and
Bossert, this type of model would lead one to expect the times of sexual
maturity and cessation of growth to coincide most closely in species where
growth is rapid and then stops abruptly, as in holometabolous insects,
since the maximum of /(x) will then be close to the point at which G(x)
levels off (Figure 5.2). In species where slow growth continues for a long
time, on the other hand, we would expect sexual maturity to be consider-
ably in advance of the cessation of growth, as in cold-blooded vertebrates.

A strategy which has been widely employed to test models based on
condition (i) is to compare their predictions with data on closely related
species or different populations of the same species which have been
exposed to different demographic conditions, and whose ages at maturity
can be assumed to have evolved in response to these conditions. For
example, if the model underlying equation (5.22) is correct, the age at
maturity for a given population can be determined knowing only the
growth coefficient k¥ and the mortality rate u for the population in
question, both of which can be estimated from data which are independ-
ent of the age at maturity. Agreement between predicted and observed
values of age at maturity is taken as confirmation of the model.

The results of attempts to apply this approach to a number of different
models have been reviewed by Roff (1992, pp. 183-207). As he points
out, there is often impressive agreement between observed and predicted
values, but this may not mean very much, as alternative models may
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generate rather similar predictions. As has been repeatedly stressed in
this chapter, high mortality favours early reproduction under almost any
life-history model. Comparative studies which conform with this predic-
tion therefore validate the general principles involved, but do not neces-
sarily shed much light on the details of the nature of the costs of early
maturity which must be involved.

There are now comparative studies of age at maturity in a variety of
taxonomic groups which demonstrate the expected relation between
mortality and age at maturity, e.g. in fish (Charnov and Berrigan, 1991aq,
b), snakes and lizards (Shine and Charnov, 1992), birds (Saether, 1988),
and mammals (Promislow and Harvey, 1990, 1991). The most recent
studies on mammals adjust for the effects of both body size and phy-
logeny on the association between mortality and age at maturity, leaving
little doubt that we are seeing evolutionary responses to differences in
demographic conditions (Promislow and Harvey, 1991; Harvey and Key-
mer, 1991).

Charnov and Berrigan (1991a) and Charnov (1993, Chapter 5) have
attempted to carry the analysis of the relation between mortality and age
at maturity in mammals further by deriving their phenomenological
equation for predicting the ESS age at maturity (equation 5.23¢) from a
model of growth. This model assumes that the growth of juvenile mam-
mals follows a well-known empirically-derived differential equation,
dW/dx = Ax®7, where A is a constant of proportionality. This leads to
the relation between weight W and age for a possible age at maturity x

W(x)ps = 0254 (5.51)
(1 - 8°%)
where & is the ratio of weight at maturity to weight at weaning.

It is also assumed that growth ceases abruptly at maturity and that
fecundity is constant through adult life and is proportional to the rate of
increase in weight at maturity. The biological justification for the last
assumption is that resources previously used for growth are now devoted
to reproduction (Kozlowski and Wiegert, 1986, 1987; Kozlowski, 1992).
Using these assumptions in conjunction with the growth equation, it
easily shown that equation (5.23¢) becomes

u= A0.75W 0% (5.52)
Combining equations (5.51) and (5.52), we obtain the relation
bu= 31 - &%) (5.53)

The result of plotting estimated values of bu against 6 for 23 species of
mammals gives good agreement with the curve predicted by equation
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(5.53) (Charnov and Berrigan, 1991a, Charnov, 1993, Chapter 5), sug-
gesting that the model is well-founded. The fact that equation (5.52)
predicts the observed allometric relation between mortality and adult
body size (Charnov, 1993, Chapter 5) seems at first sight very satisfac-
tory, but is in reality a source of concern. This equation is a consequence
of the assumption that body size evolves in response to the mortality rate;
in fact, many other ecological factors must affect the selective significance
of body size (LaBarbera, 1986, Roff, 1992, pp. 120-2), rendering this
assumption suspect. As with the other tests of quantitative agreement
between observed and predicted age at maturity, the possibility that
somewhat different causes may produce the same effect should be borne
in mind in this case.

Cooperative breeding

As discussed in section 5.3.5, there is evidence from a number of
species of birds and mammals that deferred reproduction is sometimes
associated with helping close kin raise their young (condition (iv) above).
Equations (5.40) and (5.41) show that such deferral of reproduction is
most likely to be favoured by kin selection when there is a close
relationship between donors and recipients, and when the recipients
receive a large benefit from the aid. The highest relatedness value is
achieved with monogamy, when both parents receive aid from their
offspring. This requires high survival of breeding individuals from year to
year (equation (5.41)).

A large number of empirical studies on cooperative breeding have now
been carried out on birds, and a smaller number on mammals (Brown,
1987; Stacey and Koenig, 1990; Emlen ef al., 1991). The general conclu-
sion from these studies is that there is indeed good evidence in most cases
for close genetic relationships between helpers and helped, with parent
and offspring being the most common relationship (Brown, 1987, Chapter
12; Stacey and Koenig, 1990; Emlen et al., 1991). In cases where there is
the opportunity to assist a variety of different individuals, donors seem to
aid close relatives preferentially (Curry and Grant, 1990; Emlen, 1990;
Emlen et al., 1991; Emlen and Wrege, 1994). There is also evidence in
many cases that the reproductive success of recipients is indeed enhanced
by aid (Brown, 1987, Chapter 11; Smith, 1990; Emlen and Wrege, 1994),
although it is not always possible to exclude the possibility that the
apparent effect of aid is due to confounding environmental effects, such
as aid accruing preferentially to breeders in high-quality territories
(Woolfenden and Fitzpatrick, 1990). Cooperatively breeding species also
seem to have high survival rates (Brown, 1987, pp. 41-3; Smith, 1990), as
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is required for a substantial effect of kin selection. In some cases, the
effect of donors on the reproductive success of closely-related recipients
seems to be sufficiently large that kin selection alone could have been
effective in promoting delayed breeding (Brown, 1987, Chapter 13).

These facts do not, however, constitute proof that deferral of reproduc-
tion evolved by kin selection in most cases. As we have seen, high adult
survival is also favourable to deferral of reproduction under individual
selection, especially if early breeding entails a greater risk of death (e.g.
because of the greater hazards associated with dispersal for inexperienced
individuals). Furthermore, as already noted there are considerable un-
certainties associated with the estimates of the benefits of aid from
non-breeders. In addition, recent behavioural and genetic studies have
called into question the extent to which apparently monogamous species
are truly monogamous, so that relatedness values may be lower than the
estimates from purely behavioural studies (Quinn et al., 1987; Birkhead
and Mgller, 1992). There is presently no consensus on the extent to which
kin selection as opposed to individual selection has promoted the evolu-
tion of deferred breeding, although it seems probable that the giving of
aid by non-breeders is a product of kin selection (Brown, 1987, pp. 41-3;
Smith, 1990, p. 605; Emlen et al., 1991). The key life-history question is
whether deferred breeding in these cases would have evolved if there
were no donation of aid by non-breeders, and this has proved hard to
answer conclusively. Even if, as seems probable, kin selection has in fact
facilitated the evolution of deferred breeding (Emlen and Wrege, 1994),
it should be remembered that the age at maturity in most species with
helping at the nest is usually only delayed by a year or two (Brown, 1987;
Stacey and Koenig, 1990). This is relatively modest delay, compared with
many cases in which individual selection has caused delays of several
years, as discussed next.

An example of postponed reproduction

A life-history which, at first sight, presents several problems for
the theories discussed above is exhibited by island-breeding sea-birds
which feed offshore, particularly tropical species. As discussed by many
authors (Lack, 1954, Chapter 6, 1966, Chapter 16; Wynne-Edwards,
1955, 1962, Chapter 5; Ashmole, 1963; Goodman, 1974), these birds
show a combination of traits associated with apparently low reproductive
effort, including postponement of reproduction for several years, a clutch
size of one, prolonged incubation and nestling periods, frequent abandon-
ment of the nest by parents, and long intervals between successive
clutches. The extreme example is provided by the royal and wandering
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albatrosses, Diomedea epomophora and D. exulans, which reach sexual
maturity at about 10 years of age, have an incubation period of around 80
days, and a nestling period of about 250 days; since it takes over a year to
rear a chick successfully, breeding occurs only once every two years
(Lack, 1966; Goodman, 1974). These features have been interpreted by
Wynne-Edwards (1955, 1962) as evidence that the life-history has evolved
by group selection in favour of a low reproductive potential, in order to
avoid exhaustion of the food supply and consequent extinction of the
population. As mentioned on p. 190, there are strong theoretical objec-
tions to group selection, and we shall now consider some alternative
interpretations of this form of life-history, which have been proposed by
Ashmole (1963), Lack (1966) and Goodman (1974).

In the first place, the small clutch size of these species is understand-
able in terms of the difficulty they have in feeding their young; since the
birds are large in size and restricted to breeding on islands, many adults
will be competing for food within foraging range, so that strong density-
dependent mortality of nestlings would be expected. Evidence for such
mortality is described by Ashmole (1963), Lack (1966) and Nelson
(1969). Experimental addition of an extra chick to nests of the Laysan
albatross, D. immutabilis, increases mortality due to starvation, to such
an extent that there is a considerable net decrease in the number of chicks
raised per pair (Rice and Kenyon, 1962). There is thus little difficulty in
accounting for the small clutch size. The prolonged nestling period can be
interpreted in terms of slow growth of the young, evolved in response to
the limited food supply (Ashmole, 1963; Lack, 1966; but see Shea and
Ricklefs, 1985). The long incubation period of the eggs is more difficult to
explain. As suggested by Lack, it may be impossible to prolong the
nestling period except by a general slowing-down of growth, which also
retards the development of the egg. The main question of interest here is
the reason for the prolonged period of sexual immaturity, despite the fact
that growth is essentially completed before the birds can fly (Ashmole,
1963). There is good evidence for a very low annual mortality of full-
grown birds (5-10%), presumably due to the virtual absence of predation
(Goodman, 1974). The intensity of selection in favour of early breeding is
therefore low. Because of the early completion of growth, any explana-
tion based on the ideas discussed in section 5.3.4 has to be couched in
terms of an increase in potential reproductive efficiency with age. As
suggested by Ashmole (1963), it is probable that older birds are more
efficient than younger ones in foraging for food, and that the more time
the birds have to acquire skill in hunting the greater their chance of
raising a chick successfully. In view of the high mortality of chicks by
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starvation, there could well be a threshold level of skill needed for
reproductive success, below which no chick can be reared.

Evidence for increased reproductive efficiency with age has already
been discussed, and it is an attractive explanation for postponed repro-
duction. For example, in the Atlantic fulmar both sexes show increased
breeding success for ten years after first breeding (Ollason and Dunet,
1988). This is a seabird in which males and females have a modal age of
first reproduction of eight and twelve years respectively, with some
females postponing breeding until 19, and there is a high (97%) probabil-
ity of annual survival. There is also evidence that early breeding reduces
the survival of females, consistent with the model, e.g. fecundity in the
second and third years has a correlation coefficient of —0.28 with life-
span.

The hypotheses discussed above can be examined quantitatively by
means of the reproductive effort model (cf. Goodman, 1974). We can use
equations (5.36) for the adult age-classes, since the data show that adult
survival and fecundity are approximately constant. We may take P to be
equal to the annual adult survival probability, P, as there is no growth of
adults. Since parental care is an important component of reproductive
effort, #i is taken to be one-half the average number of chicks reared per
nest. The populations are probably regulated by density-dependent nest-
ling mortality, so that 7 is density-dependent and r is zero. Equations
(5.36) thus give us the optimal life-history equation

oP
om

=1U=P)_ ) (5.54)
m

Taking 1 — P as equal to 0.05, an increase in 7 of, say, 10% of its value
for the optimal life-history need only lead to a reduction in adult survival
of about 0.5% in order for this relation to be satisfied. The powerful
effect of high adult survival in promoting low reproductive effort is
emphasised by this fact.

We must also consider the effects of increases in fecundity on survival
among the juvenile age-classes, since an optimal life-history must be
stable to perturbations such that reproduction occurs earlier in life. In the
present case, condition (5.37) becomes

dP,
o,
Since I(x) <1, and decreases with age, a sufficient condition for this

condition to be satisfied is that the slope of survival plotted against 77, be
greater than one at the origin, for all the juvenile age-classes. The

>ix+1) (Q<x<b, i, =0) (5.55)
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postulated increase in breeding skill with age can be incorporated into this
model in the form of a decrease with age in the sensitivity of P, to higher
i, ; the sensitivity is measured by the value of [3 P,/3#i,| for a fixed 7i,.
This is because a greater degree of reproductive effort will be needed to
attain a given value of #i,, the lower the hunting ability of the parents.
Since the survival probability of full-grown birds is high, only a modest
increase in breeding skill with age is necessary to favour postponed
reproduction, as may be seen by comparing equations (5.54) and (5.55).

Variation in survival or fecundity

There is little evidence on whether temporal variation in fecun-
dity or juvenile survival tends to promote the evolution of delayed
reproduction (section 5.3.3). There is some evidence for facultative
adjustments of the life-history to local environmental conditions of the
kinds expected theoretically. For example, in Drosophila, poor nutrition
leads to slower growth and later age at maturity (Gebhardt and Stearns,
1988). Similar results have been observed in guppies (Reznick, 1990).
Whether this pattern is an evolved response, or is simply an unavoidable
response to harsh conditions, is an open question (cf. Roff, 1992, pp.
229-32).

5.4.6 Reproductive effort

The reproductive effort model of section 5.3.4, which postulates a
trade-off between present reproduction and future survival or growth, has
probably been the subject of more investigation and debate than any
other part of life-history theory. Here, we will be concerned with the
question of the extent to which there is empirical evidence that the
characteristic level of age-specific reproduction of a species is often
controlled by this type of constraint.

Phenotypic evidence
There are two categories of purely phenotypic evidence concern-
ing trade-offs between reproductive effort and survival or growth: (i) the
observation of a negative correlation between reproduction and survival
or growth in an unmanipulated population; and (ii) the detection of a
reduction in growth or survival in individuals whose reproductive effort
has been artificially increased (or the converse if reproductive effort is
decreased). The results of both kinds of studies have recently been
reviewed by Bell and Koufopanou (1985), Partridge and Sibly (1991),
Reznick (1992), Roff (1992, Chapter 8) and Stearns (1992, Chapter 4).
It is clear that, while studies of type (i) often reveal the expected
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negative correlations, they frequently do not: non-significant negative
correlations or even significant positive phenotypic correlations have been
reported in a variety of species (see Appendix 1 of Stearns, 1992). There
is a plausible explanation for this, which is consistent with the existence of
an underlying trade-off. If there is variation in the quality of the environ-
ment to which individuals have been exposed, individuals raised in good
environments may have high fecundity and high survival/growth, com-
pared with individuals raised in poor conditions (Charlesworth, 1984; van
Noordwijk and de Jong, 1986), obscuring any trade-off which might be
observed with individuals raised under constant conditions. Differences
between individuals subject to natural phenotypic variation in repro-
ductive effort of known cause are not so subject to this difficulty. For
example, the phenomenon of mast-seeding in plants, where a season of
intense seed-set in a perennial is followed by a one or more seasons of
reduced seed set and reduced growth (Harper and White, 1974), is
indicative of an adverse effect of reproductive effort. Similarly, in red
deer, nursing mothers have higher mortality and lower fecundity in the
next season than non-reproductive females of comparable age (Clutton-
Brock, Guinness and Albon, 1983). Mating has been shown to incur a
risk of reduced survival to both males and females in many species of
arthropods and vertebrates (Stearns, 1992, Appendix 2). For example,
the mating calls of some species of male neo-tropical frogs attract
predatory bats, so that they suffer a higher risk of predation (Tuttle and
Ryan, 1981).

Manipulation experiments are also not open to the problem of arte-
factual positive correlations, and can provide valuable information on the
physiological basis for trade-offs. For example, Maynard Smith (1958)
showed that sterilisation of Drosophila subobscura females by radiation
or by the maternally-acting mutant gene grandchildless caused increased
adult survival. In the blue tit, Nur (1988) has shown that an artificial
increase in clutch size leads to lower survival and subsequent reproduc-
tion of females. The review in Appendix 2 of Stearns (1992) shows a
general, but not universal, tendency for effects of this kind.

Genetic evidence

Again, there are two categories of evidence: (i) evidence for
negative additive genetic covariances or correlations between repro-
ductive effort and survival or growth; and (ii) responses of the life-history
to natural or artificial changes in the demographic environment of a
population which agree with the predictions of the reproductive effort
model. Ideally, both types of evidence should be obtained for the same
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system, but this has only been done a few times (see below for some
examples).

There are, however, difficulties with both approaches. Genetic co-
variances and correlations have high sampling errors, and satisfactory
estimates can only be obtained in breeding experiments where large
numbers of individuals are measured (Falconer, 1989, Chapter 19). If
accurate estimates can be obtained, negative genetic correlations may not
be observed even if there are trade-offs at the genetic level, for two
reasons. First, as pointed out in section 4.5.3, some positive genetic
correlations between pairs of constrained variables in a multivariate
system are inevitable, even in a population at equilibrium under selection
alone. Large negative genetic correlations may only be observed between
pairs of variables which both exhibit a trade-off between each other and
are virtually independent of all other variables (see Table 1 of Charles-
worth, 1990a). Second, by analogy with the above argument concerning
artefactual positive environmental correlations, there may be a substan-
tial component of genetic variation in (for example) survival and fecun-
dity which reflects the overall ability of the organism to harness resources
for both components of fitness, rather than the partitioning of resources
between them. Variation arising from deleterious alleles maintained in
the population by mutation may be an important contributor to this, as
there is evidence that such mutations frequently affect multiple life-
history traits adversely (Charlesworth, 1990a; Houle, 1991; Houle et al.,
in preparation). In addition, if the population has recently been exposed
to a novel environment, there may be genotypic variation for adaptation
to this environment, involving similar effects on multiple fitness compo-
nents (Service and Rose, 1985).

For these reasons, measurements of genetic correlations should be
carried out on populations which have been allowed to adapt to the
experimental environment for several generations; inbred stocks should
also be avoided, since these are more likely to reveal the effects of
recessive or partially recessive deleterious mutations (Charlesworth,
1990a; Houle, 1991). Service and Rose (1985) have demonstrated how
a large negative genetic correlation (between early fecundity and a
correlate of survival in Drosophila melanogaster) can be significantly
reduced if the population is raised in a novel environment. Similarly,
Rose (1984) showed that inbreeding can change this genetic correlation
from negative to positive.

Estimates of genetic correlations from artificial selection experiments
may be problematical for additional reasons, unless they are well-replic-
ated and the selection lines were maintained with large population sizes.
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This is because genetic drift in small populations can cause substantial
genetic correlations due to linkage disequilibrium between loci controlling
the traits, which may obscure genetic correlations present in the base
population (Falconer, 1977, 1989, Chapter 19). In addition, the fixation
of deleterious alleles by drift may cause a correlated decline in multiple
life-history traits.

Experiments in which suitable precautions have not been taken when
measuring genetic correlations by either method may account for some of
the positive genetic correlations between fecundity and survival reported
in the literature (see Appendix 1 of Stearns, 1992). The numerous failures
to detect negative genetic correlations between reproductive effort and
survival/growth have led some authors to question the utility of the
genetic approach (Bell and Koufopanou, 1985; Pease and Bull, 1988;
Partridge and Sibly, 1991). However, neither type of phenotypic evidence
can provide a conclusive proof that natural selection is constrained by any
trade-offs which they may suggest. For this reason, genetic data are
required to test the evolutionary significance of such trade-offs (Charles-
worth, 1990a; Reznick, 1992). As will be shown below, there are exam-
ples of properly designed genetic experiments which are encouraging for
the view that there is an evolutionarily significant cost of reproductive
effort.

(1) As has already been mentioned, there is evidence from breeding
experiments for a large negative genetic correlation between early fecun-
dity and survival in an old-established laboratory population of D.
melanogaster (Rose and Charlesworth, 1981; Service and Rose, 1985). In
agreement with this finding, and with the results of the manipulation
experiments of Maynard Smith (1958) on D. subobscura, maintenance of
stocks derived from this population by breeding from large numbers
of old flies has led to a pronounced decline in early female fecun-
dity, accompanied by increased longevity (section 5.4.3; Rose, 1991,
Chapter 3).

(2) Law, Bradshaw and Putwain (1977) and Law (1979a) have carried
out genetic studies on natural populations of the annual meadow grass,
Poa annua, which parallel these Drosophila tesults, except that the
alterations in the demographic environment to which responses were
observed were natural rather than experimental.

Despite the species’ name, the plants studied by these authors had a
maximum life-span of about 18 months. Reproduction is initiated approx-
imately 15 weeks after germination in winter, and continues through
spring and summer of the first year. If the plant survives to the following
year, a second period of reproduction in spring and summer precedes
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death. These plants are largely self-fertilising, so that reproduction is
effectively clonal. Life-history data were collected on plants raised from
seed in standard conditions, and derived from 29 different natural popula-
tions. These could be divided into two broad categories of roughly equal
size, ‘opportunist’ and ‘pasture’. The opportunist populations were sub-
ject to a good deal of density-independent mortality due to disturbance,
and the pasture populations were relatively stable communities, subject to
regulation by density-dependent seedling mortality. Differences between
the two classes of population, as well as between populations within each
class, were detected in a number of different life-history variables.
Fecundity, as measured by number of inflorescences per plant, was much
higher in the second than the first year of life for the pasture populations.
Opportunist populations mostly had higher fecundity in the first year than
the pasture populations, and a more even distribution of reproduction
between the two years. They also reproduced significantly earlier within
the first year than did the pasture populations, and the plants were
smaller. The opportunist populations had higher mortality than the
pasture populations; this was concentrated in the period following repro-
duction in the first year, which suggests that it is due to the adverse effect
of reproductive effort on subsequent survival. There is no doubt that the
differences observed in this study are genetic, since the plants were raised
under the same conditions. The differences are consistent with theoretical
expectations for the differences between populations subject to density-
dependent juvenile mortality, and populations subject to high age-in-
dependent and density-independent mortality. The observation that
fecundity increases with age in the density-dependent pasture populations
is particularly interesting, in view of the predictions of the reproductive
effort model discussed on pp. 218-19.

Law (1979q) also carried out measurements of the mean values with
respect to various life-history traits, for families produced by individual
plants taken from both types of population. These can be used to infer
genetic correlations. There was evidence for negative genetic correlations
between early reproduction and subsequent survival, growth and repro-
duction, in agreement with the differences between populations just
described.

(3) Reznick (1983) demonstrated genetically-determined trade-offs be-
tween reproduction and growth in laboratory comparisons of guppies
taken from different locations in the wild. The results of Reznick (1982),
discussed in connection with age at maturity in section 5.4.5, indicated
that female fecundity early in life was significantly reduced in populations
where there was little predation pressure on adults, compared with
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populations where the dominant predator preferred adults. This differ-
ence was reproduced when the demographic environment was altered by
transplanting fish from the first to the second type of environment, and
allowing the population to evolve for many generations (Reznick et al.,
1990). Again, the differences were shown to be genetic rather than
environmental. While there is no direct evidence for a trade-off between
reproduction and survival/growth in these data, the response of fecundity
and offspring weight to changed demography is as predicted for repro-
ductive effort (section 5.4.1), although their measure of reproductive
effort did not show a statistically significant change.

Comparative evidence

One of the main conclusions of section 5.3.4 was that repro-
ductive effort might often be expected to increase with age, under
conditions summarised in section 5.4.1. Roff (1992, pp. 264-9) has
discussed the evidence from studies of a variety of species as to whether
this prediction is met. There are considerable difficulties in measuring
reproductive effort, and use has frequently to be made of indices such as
the ratio of weight of gonads to somatic parts, which are not always valid
measures. Any conclusions must therefore be treated cautiously. Roff
(1991) showed that in many fish species the sufficient condition for
reproductive effort to increase with age of Charlesworth and Leén (1976)
is met: the product of growth and survival for minimal reproductive
effort, P(0), exceeds one. In cod and plaice, there is good evidence that
the proportion of available energy devoted to reproduction does increase
with age (Roff, 1992, p. 264). A survey of 30 species of animal (including
fourteen fish species) and one plant (a palm) using both energy budget
and data on relative clutch mass showed that an increase in reproductive
effort with age is observed in 27 cases (Roff, 1992, Table 8.4). An
additional case in a bird species, the collared flycatcher, has recently been
described (Pi#rt, Gustafsson and Moreno, 1992). In the majority of these
cases, however, there is inadequate information to test the theoretical
conditions quantitatively.

The expectation that the level of reproductive effort will be affected by
the demographic environment (section 5.4.1) has been examined by
species comparisons in both birds (Saether, 1988) and mammals (Promis-
low and Harvey, 1990, 1991). In both cases, the effects of body size were
removed statistically, and phylogenetic corrections were applied in the
case of the mammalian data. The major finding is that measures of
reproductive output per unit time, such as litter or clutch size and
gestation length (in mammals), are significantly correlated with adult
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mortality rates, in the direction predicted by theory. Less satisfactorily,
high juvenile mortality is also positively correlated with higher repro-
ductive output in the mammalian data, in contradiction to theoretical
expectation. As discussed by Promislow and Harvey (1990, 1991), this
may be at least partly artefactual, since juvenile and adult mortality rates
are highly correlated across species in their studies, so that there is little
information on the effects of their relative values. In addition, juvenile
mortality is often estimated from information on the age-structure and
reproductive rates of older individuals.

A final difficulty is that the data used in these analyses were collected
under field conditions. If populations are regulated by density-dependent
fecundity or mortality, then a positive correlation between fecundity and
mortality across species would be expected purely on the basis that the
net reproduction rate must equal one (Sutherland, Grafen and Harvey,
1986). The observed patterns could thus be due solely to demographic
rather than evolutionary causes. While it seems unlikely that the correla-
tions for variables such as age at maturity and gestation length, which
seem to be species-specific when studied in captive populations (Promis-
low and Harvey, 1991), could be explained in this way, it might apply to
litter or clutch size. Measures of life-history traits for captive populations
of the species used in these studies will help clarify this question.

5.4.7 r-selection and K-selection

Correlations of the type we have discussed between the demo-
graphic environment of a species and its life-history have been recognised
in general terms for a long time, and led to the concept of r-selection
versus K-selection (MacArthur and Wilson, 1967). r-selection is said to
operate on species which are not usually subject to density-dependent
regulation of population size, and which undergo frequent episodes of
rapid population growth. It leads to the evolution of early maturity, high
reproductive effort, and short life-span. K-selection acts on populations
held in check by density-dependent factors, and leads to the evolution of
delayed maturity, low reproductive effort, and long life-span.

While the distinction between these modes of selection has had con-
siderable value, it should be remembered that the original formulations of
r-selection and K-selection were in terms of models that largely neglected
the factor of age-structure, and were based on the logistic growth equa-
tion described by equation (1.79) (MacArthur, 1962; MacArthur and
Wilson, 1967). It is not very surprising that some important aspects of the
impact of demographic factors on the outcome of selection are missing
from the r-selection versus K-selection contrast. For instance, we have
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seen in several contexts that the effects of density regulation by means of
a mortality factor applied equally to each age-class are similar to the
effects of a high rate of population growth (section 5.4.1). If we were to
compare two populations which differed only in that one was held in
check by this form of density dependence, and the other was density
independent, no differences in the outcome of selection would be ex-
pected. On the other hand, population regulation by means of density-
dependent juvenile survival or fecundity reduces the intensity of selection
for early breeding, compared with a density-independent population. As
in the cases discussed in section 3.4.1, differences in age-structure are the
important factors. We have also seen that temporal fluctuations in
survival rates and fecundities may have consequences for the form of the
life-history which are not included within the compass of r-selection and
K-selection (section 5.4.1). It would therefore seem wisest to investigate
the effects of demographic factors on the outcome of life-history evolu-
tion by means of models which take account of details of the age-specifi-
city of these factors, rather than by appealing to the blanket concept of
r-selection and K -selection.

Similar views were expressed in the older literature by Wilbur, Tinkle
and Collins (1974) and Mertz (1975). Recent surveys of life-history
evolution have concurred with these criticisms (Mueller, 1991; Promislow
and Harvey, 1990, 1991; Roff, 1992, pp. 44-6; Stearns, 1992, pp. 206-7).
The approach of comparing the predicted and observed responses of
individual life-history traits to specific changes in the demographic en-
vironment is widely accepted as being more fruitful.

5.5 Conclusions

The theories and facts reviewed in this chapter seem to show that
we have a valid broad picture of the forces which control the evolution of
age-specific patterns of survival and reproduction. There can be little
doubt that senescence has evolved in response to the decline with age in
the sensitivity of fitness to changes in survival and reproduction. Simi-
larly, the empirical evidence is in good agreement with the notion that the
evolution of the age at maturity, and of semelparity versus iteroparity, is
controlled by a balance between the inherent advantage of early repro-
duction, and a cost of reproduction in terms of survival or growth. There
is less strong, but still quite persuasive, evidence that the level of
reproductive effort per breeding period is also modulated by a balance
between immediate reproductive advantage and a cost to future survival
and reproduction. It seems clear that differences in demographic environ-
ment, especially those due to differences in extrinsic sources of mortality,



Conclusions 267

have been responsible for observed evolutionary shifts in patterns of
genetically controlled survival and reproduction. Similarly, there has been
considerable success in interpreting patterns of age-specific allocation to
different sex functions in sequential hermaphrodites.

Despite the proliferation of theoretical and empirical studies of life-
history evolution in recent years, there are major gaps which need to be
filled, as in any other thriving field. There is still a shortage of adequate
experimental and comparative information on the response of the rate of
ageing to different demographic environments, as opposed to studies of
longevity. There is also uncertainty concerning whether or not differences
in reproductive patterns between species are caused by density-dependent
responses to different demographic environments rather than by evolu-
tionary change. More comparative studies of captive populations, espe-
cially of within-species differences between populations which have been
exposed in the wild to different demographic conditions, and more
experimental studies of genetic responses to artificially induced changes
in demography, would be helpful. There is very little evidence on whether
or not variable environments have the expected consequences for life-
history evolution, and suitable systems for investigating this remain to be
explored. On the theoretical level, there is currently no treatment of the
quantitative genetics of life-history evolution in variable environments,
and the incorporation of the effects of mutational variation on the form of
the life-history is just starting to be explored. These problems are a
challenge for the next generation of research workers.
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Generating functions and their properties

The purpose of this appendix is to summarise the properties of generating
functions used in this book. For a more detailed treatment, Feller (1968,
Chapter 11) should be consulted.

Consider a finite or infinite sequence of real numbers a(0), a(1), a(2),
.... The generating function of this sequence, d(s), is defined by the
function

a(s) = isfa(f) (Al.1)
j=0

where s is a real or complex variable; a(s) is defined only for values of s
for which the sum converges. For a finite sequence of n + 1 numbers, the
upper limit of the summation is taken as n. If the sequence a defines a
probability distribution, then a(s) is called a probability generating func-
tion, for obvious reasons. It is easily seen that the mean of the distribu-
tion is given by (da(s)/ds),—;; more generally, (d"a(s)/ds"),=; gives the
rth factorial moment of the distribution.

One very useful property of generating functions is exploited in the
manipulation of the convolution, ¢, of two sequences a and b. The
convolution is itself a sequence, whose jth element c(j) is defined by

J

c(j) = kzoa(k)b(j - k) (Al.2a)

It is easily seen that the generating function of ¢ is given by the following
simple expression

¢ = ab (A1.2b)

Another useful property of generating functions arises from the fact
that they can often be expanded into partial fractions. Suppose we have a
generating function a of the form

a(s) = b(s)/d(s) (A1.3)

where b and d are both polynomials in s without common zeros. Assume
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for simplicity that b is of lower degree than d, and that d has m distinct
zeros, so that we can write

dis)=( —s)E —5) ... (s — 5y (A1.4)

It is known from algebra that in this case a can be expanded into partial
fractions
m

C
a(s) =3 —

i=1(Sj —5)

(A1.5)

where the C; are constants. The value of C; can be found by multiplying
both sides of equation (Al.5) by s; — s, and letting s approach s;. The
product (s, — s)a(s) approaches C; as s — s;; from equations (A1.3) and
(Al.4), we have
—b(s)
(s = s2)(s = 53) ... (5 — 5m)
As s — s, the numerator approaches b(s;) and the denominator tends to
(51— s2)(s1 — 53) ... (51 — 5,,), Which is equal to (dd/ds),—;,. A similar
procedure applied to each zero in turn yields the general expression
—.C)
" (dd/ds)s=,
We also have

1 _ 1 =l[1+i+(i)2+(i)3+...]
G-o sa-sk slo5 \s) o\

provided that |s| <|s;|. Substituting from this into equation (A1.5) and
equating coefficients of s on both sides, we obtain the coefficient of s*

(s1 = s)a(s) =

(AL.6)

a(k)=S fi‘l (A1.7)

=18

If 5, is a zero of d which is smaller in modulus than any other, then as
k — o, we obtain the asymptotic expression

G
k+1
§1

a(k) ~

(A1.8)

Relatively trivial modifications are required to deal with cases when b is
of the same or greater degree than d, or when d has repeated zeros. The
asymptotic expression (A1.8) still holds in these cases, provided that s is
a unique zero; a related expression can be obtained even when s; is a
repeated zero (Feller, 1968, p. 285).
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Asymptotic values of Ap; and A%p;

Equation (4.1) gives the number of births at time ¢. It can be written as
B(t) = > B(t — x)[ki(x) + O(g)] (A2.1)

where the term O(¢) depends on the gene frequencies at time ¢ — x and
on the genotypic differences in the reproductive functions. It follows that
it must be possible to choose two positive numbers of order ¢, ¢ and &,
such that ky(x) — & < ky(x) + O(¢) < ks(x) + &, for all values of ¢. It is
easily seen that

2Bi(t = X)[ky(x) = &] < B(t) < Y By(t — x)[ky(x) + 2]

(A2.2)

where B;(t) and B,(t) are the solutions to the renewal equations associ-
ated with the reproductive functions ky(x) — & and ky(x) + &, (the initial
conditions for B; and B, are assumed to be the same as for B, B(0),
B(), ..., B(d—-1)).

Using the standard solution to the renewal equation, given by (1.39),
for sufficiently large ¢ we have

Bi(t) ~ C1e™M* < B(t) < By(t) ~ C,elstm)t (A2.3)

where r, — 1, and r, + 1, are the intrinsic rates of increases associated
with the reproductive functions k(x) — & and k,(x) + &. Both n; and n,
are O(¢), asis C; — C,. Equation (A2.3) implies that

Aln B ~ ry + O(e) (A2.4)

Exactly the same argument can be applied to equation (4.5). We have

B(t)p(t) = 2 B(t — x)pt — x)[ky(x) + O(&)] (A2.5)

As in the previous case, positive numbers of order ¢, & and &, can be
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assigned, such that (for sufficiently large ¢) we have
C3e ™Mt < B(t)pi(t) < Cyels=m! (A2.6)

where 73 and 7,4 are defined analogously to 7; and 7,, and are O(g). We
therefore obtain the asymptotic expression

Aln Bp; ~ r; + O(¢) (A2.7)
Subtracting equation (A2.4) from equation (A2.7), we find that

Aln p; ~ O(¢) (A2.8q)
from which we obtain

Ap; ~ O(¢) (A2.8b)

Having established that Ap; is asymptotically of order &, we can now
consider the magnitude of A2p;, the second difference in p;. The O(¢)
term in equation (A2.8b) for a given time ¢ is a complicated function, ¢;
say, of the sequences of O(¢) terms in equations (A2.1) and (A2.5) at
successive times ¢, ¢t — 1, . . .. Similarly, Ap; for the preceding time ¢ — 1
is a function, ¢¥ of the O(¢) terms for t — 1, ¢ —2,.... Attime t — 1 we
have A%p; = ¢; — ¢}, which is of the same order as the first differences in
the O(¢) terms in equations (A2.1) and (A2.5). These terms involve only
the products of gene frequencies and constant O(¢) terms given by the
genotypic differences in reproductive functions. Without loss of general-
ity, we can assume that ¢ is taken sufficiently large that the gene
frequency terms are changing by O(¢), so that the first differences in the
O(¢) terms are O(&?). This establishes that A2p; is asymptotically O(£?).

This result can be used to establish the approximation for p;(¢) in terms
of p;(t — x) and Ap;(¢), used on p. 139. We have

X
pi(t) = pi(t — x) + X Apt — y) (A2.9)
y=1
Furthermore, for y = 1 we have (writing A?p;(t) = Api(t + 1) — Api(¢))
y
Ap(t) =Ap(t —y) + D A’p(t — u) (A2.10)
u=1

But A?p; is asymptotically O(g?), so that, combining equations (A2.9)
and (A2.10), we obtain

pit) ~ pi(t = x) + xAp(1) + O(?) (A2.11)

These asymptotic results are based on the properties of the renewal
equation. The period of time needed for convergence to the asymptotic
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solution of this equation is of the order of a few ‘generations’ in biological
applications, as discussed in section 1.3.2. The above results should,
therefore, be valid after a relatively short time has elapsed.

The case of a density-dependent population can be analysed in a similar
way, using the assumption of section 4.2.2 that the population growth rate
tends to O(¢) and the number of individuals in the critical age-group, N,
tends to the equilibrium number for a standard genotype, plus O(¢)
terms. By the argument leading to equations (A2.4) and (A2.8), this
implies that, to order O(¢), Aln B(¢) and A In B(¢)p;(t) also tend to zero.
This implies that equation (A2.8) applies to this case also.

Using this result, equations (4.21) and (4.22) of the text can be
immediately derived, by the same argument that led to equation (4.4).
These imply that the changes in the O(¢) terms in equation (A2.8b) are
again O(g?), since they can be partitioned into a component which
reflects the effect of changes in N on the reproductive function of the
standard genotype, and components reflecting the products of changes in
genotype frequencies and deviations of the corresponding genotypic
reproductive functions from the reproductive function of the standard
genotype. By equations (4.22), the first term must be O(g?); from
(A2.8b), the other terms must also be O(?).
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