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We performed a scan for genetic variants associated with 
multiple phenotypes by comparing large genome-wide 
association studies (GWAS) of 42 traits or diseases. We 
identified 34� loci (at a false discovery rate of �0%) associated 
with multiple traits. Several loci are associated with multiple 
phenotypes; for example, a nonsynonymous variant in the zinc 
transporter SLC39A8 influences seven of the traits, including 
risk of schizophrenia (rs�3�07325: log-transformed odds ratio 
(log OR) = 0.�5, P = 2 × �0−�2) and Parkinson disease (log 
OR = −0.�5, P = �.6 × �0−7), among others. Second, we used 
these loci to identify traits that have multiple genetic causes in 
common. For example, variants associated with increased risk 
of schizophrenia also tended to be associated with increased 
risk of inflammatory bowel disease. Finally, we developed a 
method to identify pairs of traits that show evidence of a causal 
relationship. For example, we show evidence that increased 
body mass index causally increases triglyceride levels.

The observation that a genetic variant affects multiple phenotypes  
(a phenomenon often called ‘pleiotropy’ (refs. 1–3), although we will 
not use this term) is informative in a number of applications. One 
such application is learning about the molecular function of a gene. 
For example, men with cystic fibrosis (primarily known as a lung 
disease) are often infertile because of congenital absence of the vas 
deferens; this is evidence of a shared role for the CFTR protein in 
lung function and the development of reproductive organs4. Another 
application is learning about the causal relationships between traits. 
For example, individuals with congenital hypercholesterolemia also 
have elevated risk of heart disease5; this is now interpreted as evidence 
that changes in lipid levels causally influence heart disease risk6.

In these two applications, the same observation—that a genetic vari-
ant influences two traits—is interpreted in fundamentally different 
ways depending on known aspects of biology. In the first case, a genetic 
variant influences two phenotypes through independent physiological 
mechanisms (graphically, P1 ← G → P2, if G represents the genotype, 
P1 the first phenotype, and P2 the second phenotype and the arrows 

represent causal relationships7), whereas, in the second case, the effect 
of the variant on the second trait is mediated through its effect on the 
first trait, G → P1 → P2. In some situations, knowing which interpreta-
tion of the observation to prefer is simple: for example, it seems dif-
ficult to imagine how the reproductive and lung phenotypes of a CFTR 
mutation could be related in a causal chain. In other situations, inter-
pretation is considerably more challenging. For example, the causal 
connections between various lipid phenotypes and heart disease have 
been debated for decades (for example, see ref. 8).

As the number of reliable associations between genetic variants and 
various phenotypes has grown over the last decade9, these issues have 
received increasing attention. A number of recent studies have identi-
fied genetic variants associated with multiple traits10–20; in general, 
these associations are interpreted as most plausibly due to the inde-
pendent effects of a genetic variant on different aspects of physiology. 
For example, a genetic variant in LGR4 is associated with bone mineral 
density (BMD), age at menarche, and risk of gallbladder cancer16, pre-
sumably owing to effects mediated through different tissues.

There has also been increasing interest in the alternative, causal 
framework for interpreting genetic variants that influence multiple 
phenotypes, which has been formalized under the name ‘Mendelian 
randomization’ (refs. 21–23). Mendelian randomization has been used 
to provide evidence for (or against) a causal role for various clinical 
variables in disease etiology24–30. For example, genetic variants asso-
ciated with body mass index (BMI) are also associated with type 2 
diabetes27; this is consistent with a causal role for weight gain in the 
etiology of diabetes.

Thus far, most studies of multiple traits have been performed across 
the genome on groups of traits already known or hypothesized to be 
related10,31–33 or via testing small sets of variants for effects on a wide 
range of traits20,34. We aimed to systematically perform a genome-
wide search for genetic variants that influence pairs of traits and then 
to interpret these associations in light of the causal and non-causal 
models described above. In this paper, we describe the results of such 
a search using large GWAS of 42 traits.

RESULTS
We assembled summary statistics from 43 GWAS of 42 traits or dis-
eases performed in individuals of European descent (Table 1; 2 of 
these GWAS were for age at menarche). These studies span a wide 
range of phenotypes, from anthropometric traits (for example, height, 
BMI, and nose size) to neurological disease (for example, Alzheimer 
disease and Parkinson disease) to susceptibility to infection (for 
example, childhood ear infections and tonsillectomy). Seventeen 
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of these GWAS were performed by the personal genomics company 
23andMe and have not previously been reported (for details of these 
studies, see Supplementary Data 1–17). For studies that were not 
done using imputation to all variants in Phase 1 of the 1000 Genomes 
Project35, we performed imputation at the level of summary statis-
tics with ImpG v1.0 (ref. 36). We estimated the approximate number 
of independent associated variants (at a false discovery rate (FDR) 

of 10%) in each study using fgwas v.0.3.6 (ref. 37). The number  
of associations ranged from around 5 (for age at voice drop in men) 
to over 500 (for height).

Identification of genetic variants that influence pairs of traits
We first aimed to identify genetic variants that influence pairs of 
traits. To do this, we developed a statistical model (extending that 

Table 1 Phenotypes analyzed in this study

Phenotype Abbreviation Data source
Approx. number 

of loci
Approx. number of participants, in thousands  

(cases/controls, if applicable)

neurological phenotypes
Alzheimer disease AD Ref. 75 11 17/37

Migraine MIGR 23andMe 37 53/231

Parkinson disease PD 23andMe 43 10/325

Photic sneeze reflex PS 23andMe 66 32/67

Schizophrenia SCZ Ref. 59 222 34/46

anthropometric and social traits
Beighton hypermobility BHM 23andMe 18 64

Breast size CUP 23andMe 14 34

Body mass index BMI Ref. 72 30 240

Bone mineral density (femoral neck) FNBMD Ref. 17 19 33

Bone mineral density (lumbar spine) LSBMD Ref. 17 21 32

Chin dimples DIMP 23andMe 57 58/13

Educational attainment EDU Ref. 76 93 294

Height HEIGHT Ref. 71 584 253

Male-pattern baldness MPB 23andMe 49 9/8

Nearsightedness NST 23andMe 183 106/86

Nose size NOSE 23andMe 13 67

Waist–hip ratio WHR Ref. 77 13 143

Unibrow UB 23andMe 61 69

immune-related traits
Any allergies ALL 23andMe 43 67/114

Asthma ATH 23andMe 35 28/129

Childhood ear infections CEI 23andMe 15 47/75

Crohn’s disease CD Ref. 78 61 6/15

Hypothyroidism HTHY 23andMe 30 18/117

Rheumatoid arthritis RA Ref. 79 74 14/44

Tonsillectomy TS 23andMe 48 60/113

Ulcerative colitis UC Ref. 78 42 7/21

Metabolic phenotypes
Age at menarche AAM Ref. 43 70 133

Age at menarche (23andMe) AAM (23) 23andMe 55 77

Age at voice drop AVD 23andMe 5 56

Coronary artery disease CAD Ref. 45 11 22/65

Type 2 diabetes T2D Ref. 80 11 12/57

Fasting glucose FG Ref. 81 15 58

Low-density lipoproteins LDL Ref. 82 41 85

High-density lipoproteins HDL Ref. 82 46 89

Triglycerides TG Ref. 82 31 86

Total cholesterol TC Ref. 82 53 89

Hematopoietic traits
Hemoglobin HB Ref. 83 16 51

Mean cell hemoglobin concentration MCHC Ref. 83 15 46

Mean red blood cell volume MCV Ref. 83 42 48

Packed red blood cell volume PCV Ref. 83 13 44

Red blood cell count RBC Ref. 83 25 45

Platelet count PLT Ref. 84 50 44

Mean platelet volume MPV Ref. 84 29 17

For each study, we show the name of the phenotype, the abbreviation that is used throughout this paper, the data source, the number of independent autosomal loci identified  
at an FDR of 10%, and the number of participants in the study. For studies where the data source is 23andMe, a complete description of the GWAS is presented in the  
supplementary note and supplementary Data 1–17.
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used by Giambartolomei et al.38) to esti-
mate the probability that a given genomic 
region (i) contains a genetic variant  
that influences the first trait (model 1);  
(ii) contains a genetic variant that influences 
the second trait (model 2); (iii) contains a 
genetic variant that influences both traits 
(model 3); or (iv) contains both a genetic variant that influences the 
first trait and a separate genetic variant that influences the second trait 
(model 4) (Fig. 1). The input to the model is the set of summary sta-
tistics (effect size estimates and standard errors) for each SNP in the 
genome on each of the two phenotypes, and (if the two GWAS were per-
formed on overlapping sets of individuals) the expected correlation in  
the summary statistics due to correlation between the phenotypes. 
We can then fit the following log likelihood function 

l D
i

M

j
j i

j( | ln RBFΘ Π) = +
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where D is the data, M is the number of approximately independent 
blocks in the genome, Π0 is the prior probability that a region contains 
no genetic variants that influence either trait, Π1, Π2, Π3, and Π4 
represent the prior probabilities of the four models described above, 

Θ is the set of all five Π parameters, and RBFi
j( )  is the regional Bayes 

factor measuring the support for model j in genomic region i (see the 
Supplementary Note for details). In the presence of missing data, 
we consider only the subset of SNPs with data in both studies; if the 
causal SNP is not present, this acts to reduce power to detect a shared 
effect38. In fitting this model, we estimate the prior parameters and the 
posterior probability of each model for each region of the genome (for 
numerical stability, in practice, we penalize the estimates of the prior 
parameters and so obtain maximum a posteriori estimates). We were 
mainly interested in the estimated prior probability that each genomic 
region contains a variant that influences both traits (Π3

) and the cor-
responding posterior probabilities for each genomic region.

Several caveats of this method are worth mentioning. First, note 
that the estimate Π3

  is best thought of as the proportion of genomic 
regions that detectably influence both traits—if one study is small and 
underpowered, this estimate will necessarily be zero. This approach 
contrasts with methods that aim to provide unbiased estimates of 

the ‘genetic correlation’ between traits, which 
do not depend on sample size39–41. Second, 
in general, it is not possible to distinguish 
a single causal variant that influences both 
traits (model 3 in Fig. 1) from two separate 
causal variants (model 4 in Fig. 1) in the 
presence of strong linkage disequilibrium 
(LD) between the causal variants. For any 
individual genomic region discussed below, 
the possibility of two highly correlated causal 
variants must be considered as an alternative 
possibility in the absence of functional fol-
low-up. (Indeed, this latter possibility appears 
to be common in quantitative trait locus  
studies performed in model organisms42.) 
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Figure 1 Schematic of the different models 
considered for a given genomic region and two 
GWAS. We divide the genome into approximately 
independent blocks (Online Methods) and 
estimate the proportion of blocks that fit into 
the shown patterns. The null model with no 
associations is not shown. Each point represents 
a single genetic variant.
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Figure 2 Heat map showing patterns of overlap 
between traits. Each square [i,j] shows the 
maximum a posteriori estimate of the proportion 
of genetic variants that influence trait i that 
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and j indexes columns. Note that this is not 
symmetric. Darker colors represent larger 
proportions. Colors are shown for all pairs of 
traits that had at least one associated region 
in the set of 341 identified loci; all other pairs 
are set to white. Phenotypes were clustered 
by hierarchical clustering in R (ref. 74). 
Abbreviations are defined in Table 1. 



©
20

16
N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

4  ADVANCE ONLINE PUBLICATION Nature GeNetics

a n a ly s i s

Finally, we evaluated the method in simulations (Supplementary 
Figs. 1–5) and found that the model gives a small overestimate of the 
proportion of shared effects (Supplementary Fig. 3). This is because 
the amount of evidence against the null model of no associations is 
greater when a variant influences both phenotypes as compared to 
when it only influences a single phenotype (Supplementary Fig. 4).

Overlapping association signals identified in 43 GWAS
We applied the method to all pairs of the 43 GWAS listed in Table 1.  
For each pair of studies, we first estimated the expected correlation 
in the effect sizes from the summary statistics and included this cor-
rection for overlapping individuals in the model. Note that this is 
conservative: in pairs of GWAS where we are sure that there are no 
overlapping individuals (for example, age at menarche and age at 
voice drop), we saw that the correlation in the summary statistics 
was nonzero, indicating that we are correcting out some truly shared 
genetic effects on the two traits (Supplementary Fig. 6).

To gain an exploratory sense of the relationships between the phe-
notypes, we examined the patterns of overlap in associations among 
all 43 studies. Specifically, the model can be used to estimate, for each 
pair of traits [i,j], the proportion of detected variants that influence 

trait i that also detectably influence trait j. These estimates are shown 
in Figure 2, with phenotypes clustered according to their patterns of 
overlap. We see several clusters of related traits. For example, of the 
variants that detectably influence age at menarche (in the study by 
Perry et al.43), the maximum a posteriori estimate is that 36% detect-
ably influence height, 30% detectably influence age at voice drop, 
28% influence BMI, 10% influence breast size, and 10% influence 
male-pattern baldness. We interpret this as a set of phenotypes that 
share hormonal regulation. Additionally, there is a large cluster of 
phenotypes including coronary artery disease (CAD), type 2 diabetes, 
red blood cell traits, and lipid traits, which we interpret as a set of 
metabolic traits. Further, immune-related disease (allergies, asthma, 
hypothyroidism, Crohn’s disease, and rheumatoid arthritis) all cluster 
together and also cluster with infectious disease traits (childhood ear 
infections and tonsillectomy). This biologically relevant clustering 
validates the principle that GWAS variants can identify shared mecha-
nisms underlying pairs of traits in a systematic way. As a control, we 
performed the same clustering of phenotypes by the estimated pro-
portion of genomic regions where two causal sites fall nearby (model 4 
in Fig. 1). In this case, there was no biologically meaningful clustering 
(Supplementary Fig. 7).
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Individual loci that influence many traits
We next examined the individual loci identified by these pairwise 
GWAS. We identified 341 genomic regions where we infer the presence 
of a variant that influences a pair of traits, at a threshold of a posterior 
probability greater than 0.9 of model 3 (Supplementary Table 1). This 
number excludes ‘trivial’ findings where a genetic variant influences 
two similar traits (two lipid traits, two red blood cell traits, two platelet 
traits, both measures of BMD, both inflammatory bowel diseases, or 
type 2 diabetes and fasting glucose) and the MHC region. A previous  
‘phenome-wide association study’ identified 44 genetic variants  
associated with multiple phenotypes34, so this represents an order  
of magnitude increase in the number of such loci.

Some genomic regions contain variants that influence a large number 
of the traits we considered. We ranked each genomic region according 
to how many phenotypes share genetic associations in the region (that 
is, if the pairwise scan for both height and CAD and the pairwise scan 
for CAD and LDL both indicated the same region, we counted this as 
three phenotypes sharing an association in the region). The top region 
in this ranking identified a nonsynonymous polymorphism in SH2B3 
(rs3184504) that is associated with a number of autoimmune diseases, 
lipid traits, heart disease, and red blood cell traits (Supplementary 
Fig. 8 and Supplementary Table 2). This variant has been identified 
in many GWAS, particularly for autoimmune diseases44.

The next region in this ranking contains the gene encoding the 
ABO histo-blood groups in humans and has a variant associated with 
11 traits in these data (and many other additional traits not in these 
data; see also refs. 20,45–47). In Figure 3a, we show the association 
statistics in this region for CAD and probability of having a tonsil-
lectomy. At the lead SNP, the non-reference allele is associated with 
increased risk of CAD (z = 5.7, P = 1.1 × 10−8) and increased risk of 
having a tonsillectomy (z = 6.0, P = 1.5 × 10−9). This variant is also 
strongly associated with other immune, red blood cell, and lipid traits 
in these data (Fig. 3b). A tag for a microsatellite that influences the 
expression of ABO48 is correlated with the 
lead SNP rs635634, as is a tag for the O blood 
group (Fig. 3a). However, the lead SNP is an 
expression quantitative trait locus (eQTL) for 
both ABO and the nearby gene SLC2A6 in 
whole blood46, so this allele may in fact have 
downstream effects via effects on the expres-
sion of two genes.

Among the top ranked regions were several  
where the likely causal variant is known:  
(i) a nonsynonymous variant in the zinc trans-
porter SLC39A8 (rs13107325; Supplementary 

Fig. 9) that is associated with schizophrenia (log OR for the non-
reference allele = 0.15, P = 2 × 10−12), Parkinson disease (log OR = 
−0.15, P = 1.6 × 10−7), and height (b̂  = −0.03 s.d., P = 3.8 × 10−7),  
among others; (ii) a nonsynonymous variant in the glucokinase regu-
lator GCKR (rs1260326; Supplementary Fig. 10) that is associated 
with fasting glucose levels (b̂  = 0.06 s.d., P = 5 × 10−25) and height  
( b̂  = 0.019 s.d., P = 2.6 × 10−11), among others; (iii) a set of variants 
near the APOE gene (which we presume to be driven by the APOE4 
allele; Supplementary Fig. 11) that is associated with nearsightedness 
(rs6857: log OR = −0.04, P = 1.8 × 10−5), waist–hip ratio (b̂  = −0.02 
s.d., P = 8.3 × 10−5), and several lipid traits apart from the well-known 
association with Alzheimer disease; and (iv) regulatory variants in 
an intron of the FTO gene49,50 that are associated with breast size 
in women (rs1421085: b̂  = 0.06 s.d., P = 3.5 × 10−7; Supplementary 
Fig. 12) and age at voice drop in men (b̂  = −0.02 s.d., P = 2.7 × 10−5), 
among others.

It has previously been observed that association signals for differ-
ent phenotypes tend to cluster spatially in the genome51; these results 
suggest that, in some cases, clustered associations are driven by single 
variants. We note anecdotally that the variants that influence a large 
number of phenotypes often seem to be nonsynonymous rather than 
regulatory changes, which contrasts with the pattern seen in associa-
tion studies overall (for example, see ref. 37).

Identifying pairs of phenotypes with correlated effect sizes
In our scan for variants that influence pairs of phenotypes, we did 
not assume any relationship between the effect sizes of a variant on 
the two phenotypes. However, if two traits are influenced by shared 
underlying molecular mechanisms, we might expect the effects of a 
variant on the two phenotypes to be correlated. To test this hypoth-
esis, we returned to the set of variants identified by analysis of each 
phenotype individually (the numbers of these variants for each trait 
are given in Table 1). For each set, we calculated the rank correlation 
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Figure 4 Heat map showing patterns of 
correlated effect sizes for variants across 
pairs of traits. For each pair of traits [i,j], we 
extracted the set of variants that influence trait 
i and their effect sizes on both i and j. We then 
calculated Spearman’s rank correlation between 
the effect sizes on i and the effect sizes on j and 
tested whether this correlation was significantly 
different from zero. Shown in color are all pairs 
of traits where this test gave P < 0.01. Darker 
colors correspond to smaller P values, and color 
corresponds to the direction of the correlation 
(red, positive; blue, negative). The phenotypes 
are in the same order as in Figure 2.  
For a comparison to genome-wide genetic 
correlations, see supplementary Figure 13.
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between the effect sizes of the variants on the 
index trait (the one in which the variants were 
identified) and all of the other traits.

The results of this analysis are presented 
in Figure 4. Apart from closely related traits 
(for example, the two measurements of bone 
density), we saw a number of traits that were 
correlated at a genetic level. We focus on 
two of these. First, variants associated with 
delayed age of menarche in women tend, on 
average, to be associated with decreased BMI  
(ρ = −0.53, P = 1.2 × 10−6), reduced risk of male-
pattern baldness (ρ = −0.45, P = 5.9 × 10−5),  
and increased height (ρ = 0.52, P = 2.2 × 10−6;  
Fig. 4). These patterns held both for the GWAS 
on age at menarche performed by Perry et al.43 
and that performed by 23andMe (Fig. 4). Most 
of these variants also delay age at voice drop 
in men (Fig. 2), so we interpret these vari-
ants as ones that influence pubertal timing in 
general. The negative correlation between a 
variant’s effect on age at menarche and BMI 
has previously been observed39,43,52, as has the 
positive correlation between a variant’s effect on age at menarche and 
height39,43. The negative correlation between a variant’s effect on age at 
menarche (or, more likely, puberty in general) and male-pattern bald-
ness has not been previously noted but is consistent with the known 
role for increased androgen signaling in causing hair loss53–55.

Second, we found that genetic variants associated with increased 
risk of schizophrenia tended to be associated with increased risk  
of both Crohn’s disease (ρ = 0.27, P = 2.2 × 10−4) and ulcerative colitis 
(ρ = 0.33, P = 6.6 × 10−6). These correlations (identified only at the 
most strongly associated SNPs) are also present at the level of genome-
wide genetic correlations between the diseases39 (Supplementary 
Fig. 13). This observation is consistent with slightly higher rates  
of autoimmune diseases (including Crohn’s disease and ulcerative 
colitis) in patients with schizophrenia in Denmark56–58 and with 
molecular evidence for a partial autoimmune etiology for schizo-
phrenia (for example, see ref. 59).

Inferring causal relationships between traits
Finally, we were interested in identifying pairs of traits that may be 
related in a causal manner. Because we are using observational data 
(rather than, for example, a randomized controlled trial), we view 
strong statements about causality as impossible. Nonetheless, a realis-
tic goal might be to identify aspects of the data that are more consist-
ent with a causal model than a non-causal model.

As a motivating example, we considered the correlation between 
levels of LDL cholesterol and risk of CAD, now widely accepted 
as a causal relationship60. We noticed that variants ascertained  
as having an effect on LDL cholesterol levels had correlated effects 
on risk of CAD (Figs. 4 and 5c), whereas variants ascertained as  
having an effect on CAD risk did not in general have corre-
lated effects on LDL levels (Fig. 5d). This is consistent with the 
hypothesis that LDL cholesterol is one of many causal factors that 
influence CAD risk. An alternative interpretation is that LDL  
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Figure 5 Putative causal relationships 
between pairs of traits. For each pair of traits 
identified as candidates to be related in a 
causal manner (Online Methods), we show the 
effect sizes of genetic variants on the two traits 
(at genetic variants successfully genotyped 
or imputed in both studies). Lines represent 
one standard error. (a,b) BMI and triglyceride 
levels. The effect sizes of genetic variants 
on BMI and triglyceride levels are shown for 
variants identified in the GWAS for BMI (a) 
or triglycerides (b). (c,d) LDL and CAD. The 
effect sizes of genetic variants on LDL levels 
and CAD are shown for variants identified in 
the GWAS for LDL (c) or CAD (d). (e,f) BMI and 
type 2 diabetes. The effect sizes of genetic 
variants on BMI and type 2 diabetes are shown 
for variants identified in the GWAS for BMI (e) 
or type 2 diabetes (f). (g,h) Hypothyroidism 
and height. The effect sizes of genetic 
variants on hypothyroidism and height are 
shown for variants identified in the GWAS for 
hypothyroidism (g) or height (h).
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cholesterol is highly genetically correlated to an unobserved trait that  
causally influences risk of CAD.

We developed a method to detect pairs of traits that show this 
asymmetry in the effect sizes of associated variants, which we inter-
pret as more consistent with a causal relationship between the traits 
than a non-causal one (Online Methods). At a threshold of a relative 
likelihood of 100 in favor of a causal versus a non-causal model, we 
identified five pairs of putative causally related traits. (At a less strin-
gent threshold of a relative likelihood of 20 in favor of a causal model, 
we identified 11 additional pairs of traits (Supplementary Fig. 14).) 
Simulations suggest that this threshold corresponds approximately to 
a P value around 0.001 (Supplementary Fig. 15) and that the power of 
this test depends on the number of genetic variants used as input and 
the true underlying correlation in their effect sizes (Supplementary 
Fig. 16). Four of these are shown in Figure 5. First, genetic vari-
ants that influence BMI had correlated effects on triglyceride levels, 
whereas the reverse was not true; this suggests that increased BMI is a 
cause for increased triglyceride levels (Fig. 5). Randomized controlled 
trials of weight loss are also consistent with this causal link61,62, as 
are Mendelian randomization studies63,64. Second, we confirmed the  
evidence in favor of a causal role for increased LDL cholesterol levels in 
CAD (Fig. 5) and in favor of a causal role for increased BMI in type 2  
diabetes risk (Fig. 5 and Supplementary Fig. 17). Finally, we sug-
gest that increased risk of hypothyroidism causes decreased height 
(Fig. 5). Although it is known that severe hypothyroidism in child-
hood leads to decreased adult height (for example, see ref. 65), these 
data indicated that hypothyroidism susceptibility may also influence 
height in the general population. A fifth potentially causal relation-
ship (between risk of CAD and rheumatoid arthritis) could not be 
confirmed in a larger study and so is not displayed (Supplementary 
Fig. 18 and Supplementary Note).

DISCUSSION
We have performed a scan for genetic variants that influence multiple 
phenotypes and have identified several hundred loci that influence 
multiple traits. This style of scan complements methods to quantify 
the genetic correlation between two traits39,41,66,67, which are not gen-
erally concerned with identifying individual variants that influence 
both traits. We were interested in using the individual variants found 
to affect multiple traits to identify biological relationships between 
traits, including potential relationships where one trait is causally 
upstream of the other. Other potential mechanisms that could lead to 
an association between a genetic variant and two phenotypes include 
transgenerational effects for a variant, with one effect on a parental 
phenotype and an effect on a separate phenotype in the offspring (for 
example, see refs. 68,69), or assortative mating that involves more 
than one trait70.

A number of limitations of this study are worth mentioning. First, 
all of the GWAS we have used are based on genotyping arrays and 
imputation, and thus the loci identified are generally common (minor 
allele frequency over 1%). Inferences from common variants such 
as these may not hold for rarer variants that may emerge from large 
sequencing studies. Second, we reiterate that all of our inferences 
are based on sets of ‘detectable’ loci; the GWAS we have used have 
highly variable sample sizes, and the traits have variable genetic archi-
tectures. As sample sizes for all traits reach the millions, inferences 
from detectable loci will converge to inferences from all loci. If traits 
truly follow an infinitesimal model (where every genetic variant influ-
ences every trait), we speculate that patterns of genetic overlap (such 
as those in Fig. 2) will become less interpretable, while patterns of 
genetic correlation (such as those in Fig. 4) may be more useful.

One clear observation from these data is that genetic variants that 
influence puberty (age at menarche and age at voice drop) often have 
correlated effects on BMI, height, and male-pattern baldness (Fig. 4). 
In our scan for causal relationships between traits, we found mod-
est evidence of a causal role of age at menarche in influencing adult 
height and for a causal role of BMI in the development of male-pattern  
baldness (Supplementary Fig. 12). The non-causal alternative (also 
consistent with the data) is that all of these traits are influenced by 
some of the same underlying biological pathways, and perhaps the 
most likely candidate for this pathway is hormonal signaling. This 
highlights the importance of considering evidence from multiple 
traits when interpreting the molecular consequences of a variant 
and designing experimental studies. Although variants that influ-
ence height overall are enriched near genes expressed in cartilage71 
and variants that influence BMI are enriched near genes expressed 
broadly in the central nervous system72, it seems that a subset of these 
variants also influence age at menarche and male-pattern baldness. 
For these variants, it may be worth considering functional follow-up 
in gonadal tissues or specific brain regions known to be important 
in hormonal signaling.

It is also striking to note how many genetic variants influence 
multiple traits (Fig. 2) but without a consistent correlation in effect 
sizes (Fig. 4). For example, many of the autoimmune and immune-
related traits appear to have many genetic causes in common, but the 
effect sizes of the variants on the different traits seem to be largely 
uncorrelated (see also refs. 10,39). Likewise, many variants appear 
to influence lipid traits, red blood cell traits, and immune traits, but 
without consistent directions of effect. A trivial explanation for this 
observation is that we are underpowered to detect correlations in 
effect sizes because we are using only a small set of the SNPs with 
the strongest associations. However, the genetic correlations between 
many of these traits (calculated using all SNPs) are not significantly 
different from zero39 (Supplementary Fig. 13). Another possibility is 
that a given genetic variant often influences the function of multiple 
cell types through separate molecular pathways or that the effects of 
a variant on two related phenotypes vary according to an individual’s 
environmental exposures.

From the point of view of epidemiology, the ability to scan through 
many pairs of traits to find those that are potentially causally related 
seems appealing, and some previous analyses have had similar goals73. 
Our approach makes the key assumption that, if two traits are related in a 
causal manner, then the ‘causal’ trait is one of many factors that influence 
the ‘caused’ trait. This results in an asymmetry in the effects of genetic 
variants on the two traits that can be detected (Fig. 5). We also assume 
that we have identified a modest number of variants that influence both 
traits. This naturally means we are limited to considering heritable traits 
that have been studied within cohorts with moderate sample sizes (on 
the order of tens to hundreds of thousands of individuals). It seems 
likely that the main limiting factor to scaling this approach (should it be 
generally useful) will be phenotyping rather than genotyping.

URLs. gwas-pw code, https://github.com/joepickrell/gwas-pw; 
approximately independent LD blocks, https://bitbucket.org/ 
nygcresearch/ldetect-data.

METhODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METhODS
Study overview. The sources of the GWAS data analyzed in this study are described 
in detail in the Supplementary Note. For each study, we imputed summary statis-
tics or genotypes for all autosomal variants in the March 2012 release of the 1000 
Genomes Project Phase 1 (ref. 35). Our method uses the z scores and standard errors 
of the estimated effect sizes for each SNP. In studies where standard errors were not 
provided, we approximated them using the allele frequencies from the European-
descent individuals in the 1000 Genomes Project Phase 1 release and the reported 
sample size of the study (see ref. 37). Throughout the paper, we report effect sizes of 
variants as the effect of the non-reference allele in human genome reference hg19.

Hierarchical model. The hierarchical model used for the main scan for over-
lapping association signals in two GWAS data sets is described in detail in the 
Supplementary Note. Software implementing the model is available through 
GitHub (see URLs).

Causal inference. We aimed to develop a robust method for measuring the 
evidence in favor of a causal relationship between two traits using data from 
many genetic associations, while recognizing that strong conclusions are likely 
impossible in this setting. The approach we developed is described in detail 
in the Supplementary Note.
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