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Application of the experimental design of genome-wide association studies (GWASs) is now 10 years old (young), and here we review the

remarkable range of discoveries it has facilitated in population and complex-trait genetics, the biology of diseases, and translation toward

new therapeutics.We predict the likely discoveries in the next 10 years, whenGWASswill be based onmillions of samples with array data

imputed to a large fully sequenced reference panel and on hundreds of thousands of samples with whole-genome sequencing data.
Introduction

Here, we review the remarkable range of discoveries that

genome-wide association studies (GWASs) have facilitated

in population and complex-trait genetics, the biology of

diseases, and translation toward new therapeutics. In the

introductory sections, we provide a background for this

review, summarize its scope and layout, and revisit the sci-

entific rationale for GWASs. We then review general con-

clusions that can be drawn from GWAS discoveries across

a wide range of traits. We subsequently highlightmore spe-

cific results of discoveries and methods on the path from

GWAS to biology and review progress in three exemplar

diseases, namely type 2 diabetes (T2D [MIM: 125853]),

auto-immune diseases (MIM: 109100), and schizophrenia

(MIM: 181500). We end the review with a number of sec-

tions on the limitations of current experimental designs

and possible ways to overcome these and a prediction on

the future of GWASs for human traits.

Background

Five years ago, a number of us reviewed (and gave our

opinion on) the first 5 years of discoveries that came

from the experimental design of the GWAS.1 That review

sought to set the record straight on the discoveries made

by GWASs because at that time, there was still a level of

misunderstanding and distrust about the purpose of and

discoveries made by GWASs. There is now much more

acceptance of the experimental design because the empir-

ical results have been robust and overwhelming, as re-

viewed here.

Scope and Framework

Data generated from genome-wide SNP surveys have been

exploited for addressing many scientific questions other

than SNP-trait associations. We do not have the space to

give adequate coverage of discoveries in evolutionary and
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population genetics, nor can we fully cover the many de-

velopments in analytic methods, although we will briefly

mention some recent developments. The scope of our re-

view is novel discoveries on the genetics and resulting

biology of common adult diseases (auto-immune, meta-

bolic, and psychiatric disease in particular) and their risk

factors and the wider implications of those discoveries.

GWAS discoveries have and are affecting a wide variety of

diseases and traits, many of which have been covered in

other in-depth reviews. Our focus is on associations be-

tween complex traits and SNPs, but we note that there

have been many reported associations between traits and

copy-number variants (CNVs) and that there are known

mechanisms by which CNVs can be associated with dis-

ease.2 Results from other genome-wide surveys, including

exome and whole-genome sequencing (WGS) studies, are

not reviewed here.

GWAS Rationale and Scientific Basis

The GWAS is an experimental design used to detect associ-

ations between genetic variants and traits in samples from

populations. The primary goal of these studies is to better

understand the biology of disease, under the assumption

that a better understanding will lead to prevention or bet-

ter treatment. The path from GWAS to biology is not

straightforward because an association between a genetic

variant at a genomic locus and a trait is not directly infor-

mative with respect to the target gene or the mechanism

whereby the variant is associated with phenotypic differ-

ences. However, as reviewed herein, new types of data,

new molecular technologies, and new analytical methods

have provided opportunities to bridge the knowledge gap

from sequence to consequence. GWASs have also been suc-

cessfully implemented for better defining the relative role

of genes and the environment in disease risk, assisting in

risk prediction (enabling preventative and personalized
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Table 1. The Role of GWAS SNP Arrays in Human Genetic Discoveries

Analysis Purpose Discoveries

GWAS detecting trait-SNP associations �10,000 robust associations with diseases and
disorders, quantitative traits, and genomic traits

Genome-wide CNV analysis detecting trait-CNV associations hundreds of associations with diseases and disorders

Genome-wide assessment of LD quantifying genome architecture large variation in LD in the genome

Estimation of SNP heritabilitya genetic architecture large proportion of genetic variation captured by
common SNPs

Estimation of genetic correlationa detecting and quantifying pleiotropy pleiotropy is ubiquitous

Polygenic risk scoresa detecting pleiotropy; validating GWAS discoveries out-of-sample prediction works as expected;
detection of novel trait associations

Mendelian randomizationa testing causal relationships replication of known causal relationships; empirical
evidence of observational associations that are not
causal

Population differences in allele
frequencies

reconstructing human population history;
detecting selection

genetic structure can mimic geographical structure;
evidence of natural selection

Trait GWAS with -omics GWASa fine-mapping; detecting target genes; function two-thirds of GWAS-associated loci implicate a
gene that is not the nearest gene to the most
associated SNP

aThese analyses can be performed with GWAS summary statistics.
medicine), and investigating natural selection and popula-

tion differences (Table 1).

GWASs to date rely on and exploit linkage disequilib-

rium (LD), the correlation structure that exists among

DNA variants in the current human genome as a result of

historical evolutionary forces, particularly finite popula-

tion size, mutation, recombination rate, and natural selec-

tion. The statistical power to detect associations between

DNA variants and a trait depends on the experimental

sample size, the distribution of effect sizes of (unknown)

causal genetic variants that are segregating in the popula-

tion, the frequency of those variants, and the LD between

observed genotyped DNA variants and the unknown

causal variants. Therefore, the potential of a GWAS to suc-

ceed for a particular trait or disease depends on (1) how

many loci affecting the trait segregate in the population,

(2) the joint distribution of effect size and allele frequency

at those loci (sometimes called genetic architecture), (3)

the experimental sample size, (4) the panel of genome-

wide variants that are used in the GWAS, and (5) how

heterogeneous the trait or disease being studied is. The

last relates to both the biology of the trait and the ability

to diagnose or measure it with precision.

If the genetic architecture of a particular trait or disease

were known, the optimum experiments could be designed

to detect specific variants. However, despite many theoret-

ical studies on the likely relationship between allele fre-

quency and trait loci, until the onset of GWASs, there

was very little empirical data to validate prediction from

theoretical models.

GWASs have been facilitated by the development of rela-

tively inexpensive SNP arrays. Commonly used SNP arrays

vary in their content, but they broadly contain 200,000 to

more than 2,000,000 SNPs. To date, most genetic variants
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that have been surveyed through GWASs are common

in the population, in that they have a minor allele fre-

quency (MAF) typically larger than 1%. For the purpose

of this review, we arbitrarily define common variants to

have MAF R 1% and rare variants to have MAF < 1%.

The GWAS as an experimental design is more than just

an array-based study of common variants. For example, as-

sociation studies using WGS data are also GWASs. There is

a continuum fromGWASs based on SNP arrays to those us-

ing WGS, and the only difference (apart from cost) is the

density of coverage of variation in the genome and the

MAF spectrum of the variants.

LD between genetic variants is commonly measured as

a squared correlation (r2) because this measure is linear in

the sample size required for detecting association between

an observed genotyped and an unobserved causal variant.

LD r2 can be large only if the allele frequencies at the

two loci match,3,4 and this is the reason why GWASs

from common SNP arrays are not powerful enough to

detect associations due to rare causal variants (in addition

to sample-size considerations; see below). Statistical impu-

tation5–7 of unobserved variants can recover some of

the information lost because of imperfect LD between

observed genotypes and unobserved causal variants.

Imputation is enabled by the fact that the genotypes of

unobserved genetic variants can be predicted by the hap-

lotypes inferred from multiple observed SNPs and the

haplotypes observed from a fully sequenced reference

panel.

In Figure 1, we summarize power calculations (see Ap-

pendix A for theory) of the minimum sample size required

for detecting an association as a function of genotype

method (SNP array plus imputation or WGS), allele fre-

quency, and effect size. Given that statistical imputation



Figure 1. Minimum Sample Sizes for Detecting Trait-SNP Associations from Imputed and WGS Data
Required sample sizes for detecting association were calculated with Equations A1–A5 under the assumption of a type I error rate of 5 3
10�8, 80% power, and Hardy-Weinberg equilibrium. Effect sizes (b) are in phenotypic standard deviation units. For genotyped SNPs
imputed to a fully sequenced reference, we have used the average imputation Rimp

2 values reported by the Haplotype Reference Con-
sortium8 in their Figure S3. This is a conservative estimate of imputation accuracy because it is based on a less dense genotyping array.
For the WGS data, we have assumed no sequencing errors. Note that for some combinations of allele frequency and effect size, the
required minimum number of individuals for detecting association exceeds 100 million.
of variants as infrequent as 1/1,000 is still reasonably accu-

rate,8 not much power of detection can be gained from

WGS. For ultra-rare variants, for example, those with a fre-

quency of 1/100,000, WGS can identify associations but

only when the effect sizes of the polymorphisms (muta-

tions) are very large. For example, for such rare variants

with an effect size of 1 phenotypic standard deviation

unit (about 7 cm for height or 5 BMI units), a sample

size of more than one million is required (i.e., an allelic

count of ten). For case-control studies of disease, the effects

sizes of b ¼ 0.01, 0.1, and 1 phenotypic standard deviation

in Figure 1 correspond approximately to odds ratios of

1.02, 1.2, and 4, respectively, if we assume that both allele

frequency and population prevalence are 0.01 or lower.9

Segregation of rare variants with very large effects might

be observable in certain families, and then a family-based

experimental design would be more efficient at locating

and identifying such (near) monogenic traits. In addition,

other genome-wide scans, such as WES and WGS studies,

allow testing for a burden of rare variants across shared

functional units (e.g., genes) in a way that is not accessible

to GWASs.

Results in Figure 1 are based on unselected population

samples or population-based case-control samples and

the detection of association between the trait or disease

and the same genetic variant. Power will be increased for

highly ascertained cases and enrichment of extreme cases

or family-based studies with multiple cases of a rare dis-
T

ease. Furthermore, using WGS data for association analysis

of rare variants has the potential to boost power through

the combination of alleles of similar impact (e.g., via

burden tests across a gene) under the assumption of

multiple independent causative variants in a gene region.

This strategy is justified from knowledge of monogenic

disorders, where it is typical for different variants of the

same gene to segregate with disease in different families.

However, such tests also have challenges because prior

knowledge about function or frequency is required for

determining which alleles in a gene should be included

in the burden count.

General Results

Complex Traits Are Highly Polygenic

GWAS results have now been reported for hundreds of

complex traits across a wide range of domains, including

common diseases, quantitative traits that are risk factors

for disease, brain imaging phenotypes, genomic measures

such as gene expression and DNA methylation, and social

and behavioral traits such as subjective well-being and

educational attainment. About 10,000 strong associations

have been reported between genetic variants and one or

more complex traits,10 where ‘‘strong’’ is defined as statisti-

cally significant at the genome-wide p value threshold of

5 3 10�8, excluding other genome-wide-significant SNPs

in LD (r2 > 0.5) with the strongest association (Figure 2).

GWAS associations have proven highly replicable, both
he American Journal of Human Genetics 101, 5–22, July 6, 2017 7



Figure 2. GWAS SNP-Trait Discovery Timeline
Data used for generating the graph were taken from the GWAS Catalogue.10 SNPs and traits were selected according to the following
filters. SNPs were selected with a p value < 5 3 10�8. For each trait with two or more selected SNPs, SNPs were removed if they had
an LD r2 > 0.5 (calculated from 1000 Genomes phase 3 data) with another selected SNPs and their p value was larger. For each year
of discovery, only the top three traits and diseases with the largest number of SNPs are labeled in the circle.
within and between populations,11,12 under the assump-

tion of adequate sample sizes.

One unambiguous conclusion from GWASs is that for

almost any complex trait that has been studied, many

loci contribute to standing genetic variation. In other

words, for most traits and diseases studied, the mutational

target in the genome appears large so that polymorphisms

in many genes contribute to genetic variation in the pop-

ulation. This means that, on average, the proportion of

variance explained at the individual variants is small.

Conversely, as predicted previously,1,13 this observation

implies that larger experimental sample sizes will lead to

new discoveries, and that is exactly what has occurred

over the last decade. For example, in 2009 the first

genomic locus robustly associated with liability to schizo-

phrenia was discovered with a sample of 3,000 cases;14 by

2014, this had increased to 108 with a sample size of

35,000 cases.15 Similarly, when the concept of ‘‘missing

heritability’’16 was introduced, it highlighted that in

2008, only 40 genome-wide-significant SNPs had been

identified for height, and together these explained about

5% of heritability.17 In 2014, the number of associated

SNPs had increased to �700, explaining more than 20%

of heritability,18 and from the relationship between sam-

ple size and discoveries in the last 10 years, it is reasonable

to predict that in the next few years, this will increase

to thousands of variants, which will cumulatively explain

a substantial proportion (e.g., more than one-third) of

heritability.
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The term polygenic describes the genetic architecture

underpinning variation in a trait between individuals in

a population, but what does it mean for each individual?

It means that each individual will carry a number of alleles

that increase (þ) and a number of alleles that decrease (�)

the trait or disease risk. There are so many possible combi-

nations of these sets of alleles that each individual is likely

to have a unique combination, and in studies designed

to detect associated loci, the effect size of each allele is

measured across the context of an averaged background,

and the effect size of each locus is found to be small.

Pleiotropy Is Pervasive

The number of segregating variants in the human popula-

tion is large but finite. It is not known what proportion of

the segregating variants are associated with complex-trait

genetic variation, but the fact that each of the many stud-

ied traits is associated with variants at hundreds to thou-

sands of loci in the genome strongly suggests that some

of the underlying causal variants are the same. Multiple

lines of evidence are consistent with widespread pleiotropy

for complex traits. First, Mendelian mutations that cause

specific syndromes or diseases are frequently associated

with multiple phenotypes in an affected individual. Sec-

ond, pedigree studies have reported genetic correlations

between traits, implying that a number of the same vari-

ants affect two or more traits in a consistent direction.19

Third, GWASs have shown that the same genetic variants

can be significantly associated with multiple diseases and



traits when the phenotypes are measured on different indi-

viduals (so that no environmental associations are driving

the results).20–22 In the case of auto-immune diseases, evi-

dence implies that at some loci, the same causal variants

are driving the observations of associations across dis-

eases.23–25 Fourth, analytical methods that estimate ge-

netic correlations fromGWAS data have provided evidence

for widespread pleiotropy.20,26

The corollary of pervasive pleiotropy for complex traits is

that the paradigm of ‘‘one gene, one function, one trait’’ is

the wrong way to view genetic variation in the human

genome (and the same applies for studying disease in

experimental organisms).27 It also implies that studying

traits or disease in isolation with respect to past or present

natural selection might lead to the wrong inference. The

true nature of the pleiotropy is currently unknown but,

in some cases, could imply an impact of the variants on

different tissues and/or at different ages.

New Analysis Methodology Underpinning New Discovery

GWAS data have led to new analysis methods that fall into

a number of categories depending on their purpose: (1)

methods of better modeling population structure and

relatedness between individuals in a sample during asso-

ciation analyses,28–34 (2) methods of detecting novel

variants and gene loci on the basis of GWAS summary sta-

tistics,35–37 (3) methods of estimating and partitioning

genetic (co)variance,38,39 and (4) methods of inferring

causality.40–42 In addition, GWAS discoveries and interpre-

tation have benefited substantially from improved algo-

rithms in statistical imputation of unobserved genotypes

and statistical imputation of human leukocyte antigen

(HLA) genes and amino acid polymorphisms.43–46

Common Variants Together Tag a Substantial Proportion of

Additive Genetic Variance

In addition to enabling the discovery of specific trait-locus

associations, GWASs have facilitated estimation of how

much of the total additive genetic variation due to segre-

gating variants in the population is tagged by genotyped

and imputed SNPs. This quantification of ‘‘SNP herita-

bility’’ is informative with respect to the unknown genetic

architecture of the trait. SNP heritability has provided

objective guidance to inform decisions about which exper-

imental designs are most efficient at detecting novel trait-

locus associations on the basis of empirical data, i.e.,

increasing sample size of GWASs. Classical estimation of

total narrow-sense heritability (estimated from phenotypic

records of samples that include family members) captures

the total amount of additive genetic variance in the popu-

lation irrespectively of the joint distribution of allele fre-

quency and effect size47 (we acknowledge a potential for

bias by common environmental effects and non-additive

genetic variation). In contrast, SNP heritability (estimated

from tiny genetic relationships from unrelated individuals)

captures only the proportion of additive genetic variance

due to LD between the assayed and imputed SNPs and
T

the unknown causal variants. Estimation and partitioning

of additive genetic variation for quantitative traits and lia-

bility to disease have implied that one-third to two-thirds

of genetic variation at causal variants can be tagged by

common genotyped and imputed SNPs through LD.1,48

At present, it is not known how much of the total additive

genetic variation is due to causal variants with frequencies

less than 1%. Evidence from imputed genotype data for

height implies that more additive genetic variation is ex-

plained by variants with MAF < 10% than expected under

an evolutionary neutral model, consistent with purifying

selection of the height-associated loci.49 In the near future,

when additive genetic variance will be estimated from

WGS data in large samples, the contribution of observed

rare and low-frequency variants will be estimated explic-

itly. Estimates from data available to date provide the first

evidence for different genetic architectures between dis-

eases,50 for example, there is more signal from rare variants

for amyotrophic lateral sclerosis (motor neuron disease

[MIM: 105400]) than for schizophrenia51 and more pre-

dicted loci for schizophrenia than for immune disor-

ders52 and hypertension.53

Theoretical and empirical observations suggest a place

for non-additive genetic variation, and there have been

many largely unsuccessful attempts to detect epistasis

with GWAS data. There are a number of likely explana-

tions. First, there is limited evidence that non-additive ge-

netic variation makes up a large fraction of the total

genetic variation, so detection requires larger sample sizes

than those necessary for main effects. Second, the loss of

information due to imperfect LD between genotyped

SNPs and causal variants is larger for interactions than

for main effects. For example, loss of information for addi-

tive effects is proportional to the LD r2, whereas informa-

tion loss for dominance and additive-additive interaction

effects is proportional to r4. The first observation also ap-

plies to interactions between genes and environmental fac-

tors. One replicable example of epistatic interaction is the

ERAP1-HLA interaction for psoriasis (MIM: 177900) and

ankylosing spondylitis (MIM: 106300).54

The Utility of GWAS-Derived Genetic Predictors

In 2007, it was shown that one could use GWAS data from

human studies to create genetic predictors for disease and

other complex traits by estimating the effect size atmultiple

loci in a discovery sample andusing those estimated SNP ef-

fects in independent samples13,55 to generate a polygenic

risk score (PRS) per individual. A thorough review of

different methods of generating PRSs is outside the scope

of this review, but currently the key driving force influ-

encing prediction accuracy is the size of the discovery sam-

ple used for estimating the effects of individual variants.

PRSs have been applied extensively over the last 5 years,

not in a clinical setting for the prediction of a healthy indi-

vidual’s risk of disease but in applications that facilitate new

experimental designs and discoveries. Polygenic predic-

tions are not particularly informative for an individual,
he American Journal of Human Genetics 101, 5–22, July 6, 2017 9



but they do explain a sufficient proportion of variation (be-

tween 1% and 15% at present for highly polygenic traits

without amajor gene) to separate groups, for example, sam-

pleswith thehighest and lowest risk. They are alsouseful for

detecting new trait associations by correlating observed

phenotypes in a sample or cohort with the genetic predic-

tion of another trait. This design is powerful, because if

the discovery sample is fully independent of the new sam-

ple, an observed association between a complex trait and

a genetic predictor from the discovery sample must be due

to genetic factors, given that there are no shared environ-

mental factors. The paradigm of PRSs can also be applied

to the prediction of molecular phenotypes such as gene

expression, even when they are not observed,56 for mining

the human ‘‘phenome’’ for association with predictors

derived from diseases and other traits57 or investigating ge-

notype (proxied by PRS) by environment interaction.58

The Public Availability of Data Has Enabled Novel Research

and Discoveries

Sharing of genetic data in the gene-mapping community

has been a major enabling factor in gene-mapping success.

At this point, the vast majority of the available data are

from studies of populations of European descent, and it

is hoped that data from other ethnic groups will be depos-

ited more extensively in years to come.

The availability of GWAS summary statistics (the effect

sizes and their standard errors or p values on millions of

SNPs) in the public domain has increased dramatically in

the last 5 years, and in 2017 hundreds of such datasets

are publicly available.59 There are a number of reasons

for this. Previous concerns about potential individual iden-

tification from GWAS summary data have proven to be

unfounded, either because the sample size from GWAS

summary statistics is typically very large or because a sim-

ple step such as providing average allele frequencies from

a reference sample negates potential identification. The

entire genomics field benefits from wide availability of ge-

netic data. When a GWAS is published, full genome-wide

summary statistics (at the very least) should be available

for uncontrolled download. Funding bodies and journals

could play a stronger role in enforcing such a requirement.

The availability of summary statistics in the public domain

has enabled discoveries of novel associations,37,60–62

estimation of SNP-based heritability,63 quantification of

pleiotropy across many traits,20,21,38 and creation of more

accurate prediction scores, as well as follow-up with

computational tools, functional assays, andmodel systems

for the identification of candidate genes.

For the near future, the UK Biobank is pushing the bar-

riers further by releasing both genome-wide genotypes

and rich phenotypic data on 500,000 people to the inter-

national research community.

From GWAS to Biology

By design, associations detected by GWASs do not yield a

particular gene target or mechanism. This is in contrast
10 The American Journal of Human Genetics 101, 5–22, July 6, 2017
to the detection of Mendelian coding mutations in family

studies, where the variant, target gene, and mechanism

(change in protein) are identified simultaneously. More-

over, the sheer number of associated variants means that

the battery of follow-up functional studies traditionally

applied to new discoveries from Mendelian disease is not

appropriate or achievable for discoveries of genes associ-

ated with complex traits. It should be noted that although

the effect sizes of individual genetic variants are small in

populations, their effect sizes on molecular phenotypes

can be large, and the drug effects of gene targets can also

be magnified (e.g., statins). Notably, the last 5 years have

witnessed some clever laboratory experiments that have

followed up on GWAS association, and these have led to

the discovery of the target gene, for example, the targets

of the associations between FTO (MIM: 610966) and

obesity (MIM: 601665)64 and between the major histo-

compatibility complex (MHC) and schizophrenia.65 Per-

forming similar or new laboratory experiments for many

loci could be possible but would be time consuming and

expensive.

Until recently, efforts to understand the biological

mechanisms through which these various risk variants

act have been thwarted by limitations in the capacity to

perform large-scale evaluation of functional impact.66

The advent of sequence-based -omic analyses have been

transformative by allowing functional analyses of risk

variants to be pursued on the same genome scale (which

has fueled their discovery) and allowing mechanistic

inferences to be based on the behavior of the full set

of risk loci for a given trait.67 The maps of regulatory

annotations and connections in disease-relevant tissues,

generated by projects such as ENCODE,68 Epigenome

RoadMap,69 and GTEx,70 have been crucial to interpreta-

tion of the non-coding variants that account for the

majority of GWAS-identified risk alleles. Tissue-specific

resources could become increasingly important, and for

neuro-psychiatric disorders in particular, appropriate hu-

man brain resources are essential. New initiatives such as

CommonMind and PsychENCODE are providing data

and tools for the neuro-psychiatry research community

to follow up on GWAS signals. New analytical methods

now provide the first steps of functional in silico

follow-up by exploiting the availability of resource data-

sets detailing gene expression, epigenetic marks, 3D

chromatin contacts,71 or other genomic annotations,

including drug targets. One fertile area of method devel-

opment is integrating data from GWASs and expression

quantitative trait locus (eQTL) studies to identify associa-

tions between transcripts and complex traits.56,61,62

These methods are useful for prioritizing genes from

known GWAS loci for functional follow-up, detecting

novel gene-trait associations, and inferring the directions

of associations.21,27,62 The analytical results that only

about one-third of the associated genes are the nearest

genes61,62 are informative for the design of fine-mapping

experiments.



Figure 3. Examples of Links between
GWAS Discoveries and Drugs
One of the ultimate objectives of genetic research is to

drive translational advances that enablemore effective pre-

vention and/or treatment of disease. Despite the inevitable

time lag between basic research discoveries and clinical im-

plementation, a growing number of examples highlight

the diverse routes by which human genetics can inform

translational medicine.

Three Exemplars of GWAS Success

Here, we focus on three examples of adult-onset disease to

demonstrate some of the significant advances that have

followed as a direct result of GWASs. Figure 3 illustrates

examples of an overlap between GWAS signals that are

known drug targets. In general, drug targets that are genet-

ically informed have a higher probability of making it to

phase III trial or to market, implying potential huge cost

savings to the pharmaceutical industry.72

Type 2 Diabetes

Variant and Gene Discovery. Scores of genes have been

causally implicated in monogenic forms of diabetes

(e.g., neonatal diabetes mellitus [MIM: 601410]73), but

GWASs have now identified over 100 common variant sig-

nals.74–76 Recent efforts to extend GWASs beyond array-

based genotyping and to access a broader range of variants

through sequencing (particularly those of lower frequency)

have revealed that most genetic variation influencing T2D

appears to reside at common variant sites.74,77 This chimes

with the viewof T2D as a largely post-reproductive trait and

is consistent with a failure to detect compelling empirical

evidence that T2D risk alleles have been subject to marked

purifying selection.78,79 In keeping with the age of these

common risk alleles (which predates the diaspora of

modern humans out of Africa), most common variant

associations for T2D are replicated across major ethnic

groups.75,80 However, as increasingly diverse populations

are genotyped and sequenced, more ethnic-specific alleles
The American Journal of H
are being identified. Several of these

alleles have a relatively large pheno-

typic impact and have risen to high

frequency in specific populations,

including variants in PAX4 (MIM:

167413) in East Asians74 and

TBC1D4 (MIM: 612465) in Inuit.81 Ef-

forts to identify compelling evidence

for gene-gene and gene-environment

interactions have been largely unsuc-

cessful.82

From GWAS to Biology. Regulatory

information on the key tissues of

insulin action (fat, muscle, and

liver)82,83 and equivalent data from
pancreatic islet material67,84 have provided compelling ev-

idence that the variants most strongly associated with T2D

(as well as fasting glucose and other related quantitative

traits) are preferentially located at active enhancers (partic-

ularly stretch enhancers) in pancreatic islets67,84 and, to

a lesser extent, at enhancers active in fat, muscle, and

liver.83,85 Increasing refinement of regulatory annotation

has brought more precise localization of these global regu-

latory effects, for example, emphasizing specific transcrip-

tion factor genes (such as FOXA2 [MIM: 600288]).86 These

patterns of tissue-specific genomic enrichment tie in with

studies of the physiological correlates of T2D risk alleles, as

observed in physiological data from non-diabetic subjects;

these have indicated that, whereas some T2D risk alleles

have a primary effect on insulin action, most appear

to be associated with reduced insulin secretion.87 These

approaches have generated some notable advances, for

example, cis-expression mapping has highlighted KLF14

(MIM: 609393) as the mediator of a chromosome 7 T2D

signal that is associated with insulin resistance and hyper-

lipidemia (appropriately, this expression signal is specific

to adipose tissue).85 Equivalent data from human islets

have characterized the likely effector transcripts at several

T2D GWAS loci (such as ZMIZ1 [MIM: 607159], MTNR1B

[MIM: 600804], and ADCY5 [MIM: 600293]), where the

major impact is to reduce insulin secretion.86,88 Additional

clues to the identification of the causal transcripts at

certain GWAS loci have come from examining the creden-

tials of the regional transcripts themselves, assigning can-

didacy on the basis of known biology (e.g., NOTCH2

[MIM: 600275] and GIPR [MIM: 137241]),89 involvement

in related monogenic conditions (WFS1 [MIM: 606201],

HNF1 [MIM: 142410], and HNF4A [MIM: 600281]),90,91

or data from animal models (CDKAL1 [MIM: 611259]).92

Finally, the accumulation of data on coding variants

(via exome sequencing and/or exome array genotyping)

has highlighted several instances where GWAS signals
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previously attributed to non-coding variants can be reas-

signed to causal coding variants (e.g., TM6SF2 [MIM:

606563] 74). For others, such as RREB1 (MIM: 602209),

identification of T2D-associated coding variants, statisti-

cally independent of the original GWAS signal, flags the

likely effector transcripts.74 All in all, it is possible to point

to a compelling effector transcript at around one-third of

the 100 T2D loci identified by GWASs. These genes repre-

sent legitimate targets for detailed empirical validation

and mechanistic exploration. They also support efforts,

via network-based approaches, to establish the extent to

which the biology of T2D predisposition converges onto

a restricted set of pathways.

Translation. Examples from T2D research highlight the

diverse routes by which human genetics can inform trans-

lational medicine: (1) the combination of common-variant

GWASs and candidate-gene resequencing has demon-

strated that loss-of-function mutations in SLC30A8

(MIM: 611145; encoding a zinc transporter expressed in

pancreatic islets) are protective for T2D, leading to efforts

by several pharma companies to develop ZnT-8 antago-

nists;93 (2) the use of genetic variants as instruments that

‘‘simulate’’ variation in environmental and biochemical

exposures has clarified the extent to which vitamin D

intake, early nutrition, circulating lipid levels, and chronic

inflammation play causal roles with respect to the develop-

ment of T2D94–98 and has defined the relationship be-

tween insulin resistance and the distribution of adipose

tissue;99 (3) the identification of genetic variants associated

with individual variation in response to commonly used

therapeutic agents has refined our understanding of the

mechanisms through which those agents operate100,101

and, in some instances, has led to therapeutic optimization

on the basis of genetic and/or clinical phenotype;102 and

(4) the combination of -omic measurements, longitudinal

clinical phenotypes, and GWAS data has highlighted sets

of molecules (e.g., branched-chain amino acids) that not

only are prospectively associated with T2D progression

but could also play a causal role in T2D development and

thereby provide valuable clinical tools for stratification

and prognostication.103,104

Auto-immune Diseases

Variant and Gene Discovery. In the last 5 years, GWASs have

been undertaken for nearly all major immune-mediated

diseases (with sample sizes of tens of thousands of case

and control individuals for more common immune-medi-

ated diseases studied either by GWASs or by more targeted

chips, such as Illumina’s Immunochip105), resulting in

hundreds of associated loci. The development of statistical

approaches for cross-disease studies to identify pleiotropic

loci has been particularly productive in identifying new

genes and in better understanding the pathogenic related-

ness of immune-mediated diseases. A recent cross-disease

study involving the conditions ankylosing spondylitis

(AS [MIM: 106300]), inflammatory bowel disease (IBD

[MIM: 266600]), primary sclerosing cholangitis (MIM:
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613806), and psoriasis identified without any further gen-

otyping 30 new loci at genome-wide significance.24 Trans-

ethnic studies have demonstrated substantial genetic

overlap between ethnically remote populations;106–108 for

example, genetic correlations of 0.76 and 0.79 between

European and East Asians have been estimated for Crohn

disease and ulcerative colitis (UC).106 Trans-ethnic compar-

isons of associations at shared loci have been quite helpful

in pinpointing causal variants; for example, population-

specific variation in HLA-DRB1 (MIM: 142857) associa-

tions in rheumatoid arthritis (RA [MIM: 180300]) has

helped to define the key amino acids underpinning that

association.

From GWAS to Biology. GWAS results have made key con-

tributions to deeper biological understanding of immune-

mediated diseases in the last 5 years. For example, in a

cross-disease study, new loci included genes that for the

first time implicate pathogenesis associated with methyl-

ation variation (DNMT3A [MIM: 602769] and DNMT3B

[MIM: 602900]), bacteria-sensing genes (TLR4 [MIM:

603030]), genes influencing the host microbiome (FUT2

[MIM: 182100]), and NFKB pathway genes (NFKB1 [MIM:

164011], NFKBIA [MIM: 164008], TNFAIP3 [MIM:

191163]).24 Evidence of extensive pleiotropy includes

variants that have different directions of association in

different diseases or disease-specific variants at the same

loci. This has relevance for the likely impact of targeting

these loci therapeutically. For example, SNP rs1800693 in

the major TNF-receptor gene TNFR1 (MIM: 191190) is

associated in different directions with multiple sclerosis

(MS [MIM: 126200]) and AS.109 The SNP leads to loss of

the transmembrane domain of the receptor, and the risk

SNP for MS (protective for AS) leads to increased serum sol-

uble TNF receptor.110 TNF inhibition, including by decoy

TNF receptor therapies, is highly effective for AS and

many other immune-mediated diseases, but its use can

be complicated by de novo development of MS, and in

MS itself, it can exacerbate disease. Although this is a retro-

spective example, it demonstrates the potential of using

genetics to predict toxicities. There are several agents in

development where the genetics would point to the likeli-

hood of toxicities. Examples include CD40 and its ligand,

where SNP rs1883832 in the C allele of CD40 (MIM:

109535) is a risk factor for RA and auto-immune thyroid

disorder (AITD) but is protective against MS and IBD,

and the PTPN22 (MIM: 600716) variant c.1858C>T

(p.Arg620Trp), which increases the risk of type 1 diabetes

(MIM: 222100), systemic lupus erythematosus (MIM:

152700), vitiligo (MIM: 606579), AITD, and UC but is pro-

tective against Crohn disease.23 At the very least, this sug-

gests that any clinical trials in these conditions should

carefully screen for the development of the diseases with

the converse genetic associations.

The MHC, as well as the HLA genes encoded within it, is

the major locus for the majority of immune-mediated dis-

eases. Although the major highly penetrant HLA types

involved in different diseases have long been established,



in the last 5 years, the ability to impute the composite

amino acids and then test these for disease association

has enabled research that has better defined the key com-

ponents of the HLA proteins involved in disease. In RA,

it had been known for roughly 30 years that a sequence

of amino acids at positions 70–74 of HLA-DRB1 largely,

though not fully, determine the differential association

between HLA-DRB1 types and disease.111 Through the

use of amino acid imputation and association studies,

this ‘‘shared epitope’’ sequence was extended,112 and this

information used to provide a molecular explanation for

the propensity of peptides with citrullinated component

amino acids to induce disease.113 HLA variants have long

been known to be major determinants of severe immuno-

logically mediated adverse drug reactions. For example,

toxicity to the anti-retroviral abacavir is largely restricted

to HLA-B57 carriers. With the use of GWAS and HLA impu-

tation, an HLA-DQA1*0201-HLA-DRB1*0701 haplotype

has been shown to be strongly associated with the risk of

thiopurine-induced pancreatitis, such that homozygotes

for this haplotype have a 17% risk of this major side ef-

fect.114 It is likely that with the increasing use of genetic

profiling in clinical practice, further examples will be iden-

tified in coming years.

Translation. GWAS results have already proven highly

successful at initiating medication repositioning. For

example, GWAS discoveries triggered the repositioning of

biological medications targeting components of the IL-23

pathway (including IL-12p40, IL-17, and IL-23p19), and

now these are mainstay treatments for psoriasis and psori-

atic arthritis (MIM: 607507), are highly effective in AS, and

(with the exception of IL-17 blockade) are effective in IBD,

as suggested by early studies.115–117 The annual sales of

these medications alone are likely to be greater than the

total amount spent on GWASs in the past decade.

Many other GWAS discoveries have stimulated tar-

geted therapy-development programs, a few of which are

described here. The discovery of the association between

PADI4 (MIM: 605347) and RA provided conclusive evi-

dence that immunological reactions to epitopes that

had been citrullinated by PAD enzymes were causatively

involved in RA. This led to programs developing PAD

inhibitors in RA, and these have shown significant

promise.118,119 Major drug-development programs have

been initiated to target the M1 aminopepidase genes

ERAP1 (MIM: 606832) and ERAP2 (MIM: 609497) because

of their genetic associations with AS, psoriasis, IBD, Behcet

disease (MIM: 109650), and the rare condition Birdshot

retinopathy (MIM: 605808).120

Bioinformatic follow-up of GWAS results has also been

fruitful. For example, Okada et al. screened the overlap be-

tween genetic associations and known drug targets to

demonstrate that existing RA therapies disproportionately

target RA-associated gene products and their interacting

protein partners.108 From this, they extrapolated that

other agents with high levels of effects on these proteins

would be enriched with potential new RA therapies and
Th
provided suggestive evidence that CDK4 and CDK6 inhib-

itors already in use, particularly in oncology, could be

effective in RA. These agents have been shown to be effec-

tive in the collagen-induced arthritis model of RA and are

now in human trials in RA in Japan.

Schizophrenia

Variant and Gene Discovery. Although psychiatric diseases

had a slow start in GWAS locus identification, more than

50,000 samples have been genotyped in the last 5 years;

the typical linear relationship between sample size and

number of loci has been observed, and more than 100

risk loci have been discovered to date. These risk loci

are enriched in genes containing de novo mutations in

schizophrenia, autism (MIM: 209850), and intellectual

disability,15 and several identified loci contain genes rele-

vant to major hypotheses of schizophrenia etiology,

including DRD2 (MIM: 126450; the target of anti-

psychotic drugs) and genes involved in glutamatergic

neurotransmission (GRM3 [MIM: 601115], GRIN2A

[MIM: 138253], and GRIA1 [MIM: 138248]), as well as

genes that extend previous observations of association

with voltage-gated calcium channel subunits (CACNA1C

[MIM: 114205], CACNB2 [MIM: 600003], and CACNA1I

[MIM: 608230]).15 One of the most striking findings that

emerged early in schizophrenia studies—at the stage where

there were only a handful of genome-wide-significant

loci—was the highly polygenic nature of the common var-

iants contributing to risk.14 This observation has been

widely replicated, and estimates are that 71% of 1 Mb

genomic regions have at least one variant influencing

schizophrenia risk,53 and there is evidence of substantial

pleiotropy with other psychiatric disorders.26 However,

genetic architecture, described as the mix of rare and com-

mon variants, is likely to differ between psychiatric disor-

ders, as is already being observed for the higher rates of

rare, de novo penetrant CNVs and single-nucleotide vari-

ants found in autism than in schizophrenia or bipolar dis-

order.121–129 PRS studies are being utilized extensively to

investigate disease heterogeneity and contributions from

environmental risk factors.

FromGWAS to Biology. Functional follow-up is necessarily

more difficult for psychiatric disorders, and to date, bio-

informatic analyses have been the key focus providing

strategies for prioritization of loci. Schizophrenia risk loci

are over-represented in regulatory regions active in the

brain15,130,131 and are enriched in genes from postsynaptic

density, postsynaptic membrane, dendritic spine, axon,

and voltage-gated potassium channel pathways, as well

as histone H3-K4 methylation132 overlap with pathways

identified in rare-variant studies of autism. Prioritization

of GWAS results has progressed through integration

with eQTL datasets, implicating synaptic genes (SNAP91

[MIM: 607923], TSNARE1, and CLCN4 [MIM 302910])

and genes with roles in neurodevelopment (FURIN [MIM:

136950] andCNTN4 [MIM: 607280]). 3D contacts between

risk variants and promoters, explored by chromosome
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conformation capture (Hi-C) in the subcortical plate and

germinal zone of the developing human cortex, supported

putative interactions between causal risk variants and

promoters in glutamatergic and calcium signaling genes

(GRIA1 [MIM: 138248], NLGN1 [MIM: 600568], GRIN2A

[MIM: 138253], and CACNA1C [MIM: 114205]), in

several genes long implicated in schizophrenia (including

DRD2 and DRD6, encoding acetylcholine receptors sub-

units), and genes SNAP91, TSNARE1, CLCN4, FURIN, and

CNTN4.71

Fine-mapping has been accomplished for the strongest,

and first identified, association with schizophrenia in the

MHC region, a challenge because of its high genic content

and high LD. The position of the association signal within

the MHC region led to investigation of common structural

haplotypes of complement factor 4 genes C4A (MIM:

120810) and C4B (MIM: 120820), combinations of which

correlated well with schizophrenia risk and increased C4

expression and showed differential brain expression be-

tween case and control individuals.65 Several other com-

plement proteins play a role in synapse elimination, and

decreased numbers of synapses have long been suggested

as a primary abnormality in schizophrenia. Observations

that, in mice, a complement gene that shares features

with human C4A and C4B is expressed in neurons and pro-

moted synapse elimination in a developmental brain cir-

cuit strongly implicate this gene and its protein.

Translation. No new molecular targets for schizophrenia

have been successfully identified since the first antipsy-

chotic drugs were identified several decades ago. The rea-

sons are likely to be manifold, but most drug development

for schizophrenia has focused on achieving high-potency

drugs for a single target—a methodology successful

in many other areas of medicine—which necessitates a

choice between the competing hypotheses of schizo-

phrenia pathophysiology. GWAS results have provided

unequivocal evidence of polygenicity, and because many

of the GWAS loci contain genes that code for proteins

among those indicated throughmultiple prior hypotheses,

e.g., dopamine, glutamate, immune modulation, calcium

signaling, and nicotinic cholinergic, future drug develop-

ment could benefit from taking a multi-target approach.

A proof-of-concept gene-set enrichment of schizophrenia

risk alleles in sets of genes for drug targets identified several

potential repurposing opportunities.133 Single-target med-

ications could be appropriate for specific genetic sub-

groups, although identifying genetic subtypes is not yet

part of the clinical trial paradigm.

Discussion

The Present

We have summarized the major kinds of discoveries made

from GWASs focusing on adult traits and have reviewed

the new biology and emerging translational outcomes for

three diseases. Over the last decade, this experimental

design has delivered a remarkably diverse set of discoveries

in human genetics. For most traits and diseases studied,
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the mutational target in the genome appears large, in

that polymorphisms in many genes contribute genetic

variation in the population. Furthermore, the empirical

evidence of widespread pleiotropy implies that many

segregating variants affect multiple traits. A precise esti-

mate of the proportion of all segregating genetic variants

that are ‘‘functional’’ in the context of being associated

with one or more traits, conditional on all other causal var-

iants, remains elusive. For the highlighted traits, disorders,

and diseases, we have given examples of routes fromGWAS

to biology and translation. For an experimental design

only a decade old, this is an example of rapid translation

of genetic findings toward clinical application.

The relationship between sample size and number of risk

loci detected varies between traits, but all show a sharp in-

crease at a critical sample size. To date, there has been no

trait with evidence of a plateau of the number of risk loci

discovered with increasing sample size. For some traits,

such as height, schizophrenia, and IBD, discovery samples

in the next 5 years are likely to continue to increase,

perhaps at a lower rate per additional sample. A diminish-

ing rate of discovery of new loci will provide a more com-

plete picture of genetic architecture andwill best satisfy the

understanding of contributing biological pathways. Ac-

cording to the knowledge of Mendelian disease, the expec-

tation is that multiple risk variants will be detected within

loci that have already been identified. Hence, as sample

sizes increase, the new discoveries of associated pathways

will be saturated first, followed by genes and lastly variants.

GWASs have been successfully applied to molecular

traits such as gene expression, DNA methylation,134 and

metabolites.135 Conclusions from these studies are that

most molecular phenotypes are just like other complex

traits, in that differences between individuals are due to a

combination of genetic factors and environmental expo-

sures and that genetic loci can be mapped by GWASs.136

This makes the discovery of causal pathways from ge-

nomes to phenomes challenging, in that variation be-

tween people in modifiable risk factors might be partially

anchored in DNA sequence variation for these ‘‘expo-

sures.’’ Nevertheless, the combination of sequence varia-

tion with molecular phenotypes and disease data with

novel analytical methods, such as Mendelian randomiza-

tion,42 has great potential to unravel cause and conse-

quence and to improve phenotypic prediction.137

GWASs to date have been based on SNP arrays designed

to tag common variants in the genome. These arrays do

not cover all genetic variants in the population, and it

would seem natural that future GWASs will be based on

WGS. However, the price differential between SNP arrays

and WGS is still substantial, and array technology remains

more robust than sequencing. Nevertheless, now hun-

dreds of thousands of genomes are being sequenced as

part of major initiatives, and the next 5 years will allow

direct comparisons of discoveries made from sequencing

and array studies. Interestingly, custom arrays without a

GWAS ‘‘backbone’’ (such as the Immunochip, Metabochip,



and exome-only arrays) have by and large failed to identify

rare (MAF < 1%) variants at loci that were initially discov-

ered from a GWAS, one of their aims. The reason for this is

not clear. It could be because there are no rare variants of

major effect, because the sample size is too small for detect-

ing rare variants and/or estimating their effect size, because

the chip coverage of rare variants is inadequate, or because

of a combination of these. However, these custom arrays

have led to the discovery of new loci and to fine-mapping

at existing loci, mostly driven by increasing experimental

sample size (see Appendix A on the relationship between

sample size, imputation accuracy, and allele frequency on

power of detection). A recent study of height using exome

SNP arrays and a sample size of �700,000 reported 83

height-associated coding variants with a frequency of less

than 5% and effect sizes of up to 2 cm.138 These variants

each explain, on average, about the same amount of varia-

tion as common variants, whose effect sizes are of the order

of 1 mm, because it is the combination of frequency and

effect size that determines variation (Appendix A).

One limitation of both current array and WGS technol-

ogy is that the precision of detection of structural variants

(indels or inversions> 50 bp) is less than that of SNP detec-

tion. New technologies that enable long-range haplotyp-

ing are helping to overcome the weakness of short-read

technologies, and cheap, genome-wide technologies for

structural variants would constitute an important advance.

Fine-mapping of SNP-trait associations is the attempt to

identify one or more causal variants that are responsible

for the observed GWAS signals. Fine-mapping solely by sta-

tistical association is limited by experimental sample size

and LD, given that the statistical evidence to separate a

causal variant from a variant in LD with it is proportional

to n(1 – r2) (see Equation A1 in Appendix A). If causal var-

iants are not in the data (e.g., they have not been geno-

typed), then the imputation error also limits fine-mapping.

With the likely availability of SNP-array-based GWAS data

on very large sample sizes and WGS data on large sample

sizes, statistical fine-mapping power will improve, and a

small number of variants that are in extremely high LD

might be identified as a plausible set of variants with a

high probability of containing one or more causal variants.

The use of additional information, such as prior knowledge

of the likely function of specific variants given their loca-

tion and surrounding DNA motif(s),139,140 could help to

reduce the set of statistical candidates to a smaller number.

This is already a fertile area of statistical and bioinformatic

research56,62,131,141,142 bringing together trait or disease

GWAS results with those of tissue gene expression. More

research on the resolution of fine-mapping is warranted,

and this will be fueled by an expected increase in GWAS

data on tissue- and cell-specific gene expression.

Most GWASs to date have been conducted on individ-

uals of European descent, but there is a growing number

of studies on populations of Asian and African ancestry.

Because common variants contribute to the genetic archi-

tecture of complex traits, the expectation is that these
Th
common variants are evolutionarily old and shared across

ethnicities, which is encouraging for generalizing treat-

ments. The clearest demonstration of this, as discussed

above, has been for IBD, for which the genetic correlation

between Asian and European samples is close to 0.8, even

though some individual risk loci differ in frequency or

effect size.106 A characteristic of GWAS analyses to date is

to strictly exclude individuals outside ethnicity boundaries

on the basis of standard deviation units in principal-

component dimensions. However, as sample sizes become

larger, it is becoming possible to not only utilize but also

take advantage of mixed and admixed ethnicity. The

differing allele frequencies and LD structure across popula-

tions should aid in fine-mapping causal variants. New

methods have emerged to deal with these data,75,143 and

we expect that this will be a fertile area of method develop-

ment and discovery in the coming years.

The Future

Does the GWAS have a future? Extrapolating the discov-

eries from the last 10 years to the future, if we were to

keep with the current experimental strategy of SNP arrays

and imputation, then ever-increasing sample sizes would

undoubtedly lead to new genetic discoveries, particularly

(1) the discovery of more variants and more genes associ-

ated with one or more traits, (2) accounting for more ge-

netic variation, (3) more accurate genetic predictors, and

(4) a greater ability to evaluate disease heterogeneity and

to derive genetically informed diagnoses that might be

more aligned to specific treatments. For biological enrich-

ment analyses and the discovery or fine-tuning of path-

ways involved in quantitative traits and disease, more

loci are likely to increase resolution. In fields where diag-

nostic criteria are not based on biological markers, such

as psychiatry, GWASs have turned the field on its head

by, for the first time, contributing quantitative data that

can be used for completely re-evaluating the relationship

of previously distinct disorders.

The future of GWASs will have old and new challenges.

With ever larger studies, the new loci identified will typi-

cally individually have smaller effect sizes (e.g., less than

0.5 mm for a trait such as height and an odds ratio of

1.01 for common disease) or, for rare variants, will be at

very low frequency.138 For disorders with population prev-

alence of the order of 0.1%, discovery will still be limited

by experimental sample size, given that it will take many

years to accumulate sample sizes of 100,000 cases or

more. One challenge is how such loci can be fine-mapped

or studied for mechanism. Upscaling of technology, either

through interfacing with sequenced-based -omic data or

through upscaling by experimental perturbations (e.g.,

multiple-locus or genome-wide CRISPR) are likely to be

key to overcoming the challenges of small effect size.

What is likely to change in the near future is that GWASs

by SNP arrays will be gradually replaced by GWASs by

WGS, particularly for quantitative traits and very common

diseases. Nonetheless, given a finite budget, larger sample
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sizes that are phenotypically more informative and

genotyped on a SNP chip remain a powerful strategy

for maximizing discovery. Fifteen years ago, genotyping

technology was the limiting step to discovery, but now dis-

covery is limited by phenotypic descriptors that could

link with genetic data to allow disease stratification that

might be more aligned with treatments. Furthermore, the

emphasis in research will need to shift from gene discovery

to translation into biological understanding and patient-

focused outcomes, such as better diagnostic tests and

novel treatments.

In conclusion, the experimental design of GWASs has

led to a remarkable range of discoveries in human genetics

over the last decade. It has delivered on its original aim of

detecting associations between commonDNAvariants and

human disease and disorders. It has led to a better under-

standing of the genetic architecture of complex traits and

therefore of past natural selection on traits associated

with fitness. It has led to the discovery of variants, genes,

and biological pathways that play a role in specific diseases

and disorders. It has led to new discoveries in disease epide-

miology and to the discovery or repurposing of candidate

therapeutics. As foreshadowed in 2007, it has indeed

been a case of drinking from the fire hose.144 For the future,

the combination of whole-genome surveys of genetic vari-

ation and detailed phenotypic and -omics data onmillions

of individuals will be a treasure trove for making new

fundamental discoveries in human genetics. Some of those

discoveries will be wholly unexpected, and others will

detect or unravel biological mechanisms. Disease-specific

discoveries will continue to spur the development and tri-

als of new therapeutics, the understanding of pathways

from sequence to consequence, and for some diseases, pre-

vention or early intervention. In 10 years from now,

genomic ‘‘personalized’’ or ‘‘precision’’ medicine is likely

to be widespread and will include some applications

to common diseases either directly through risk stratifica-

tion for targeted prevention or intervention strategies or

indirectly through new treatments where GWAS results

provide the first step in the discovery pipeline. The exper-

imental design of GWASs, which started as a theoretical

exercise more than 20 years ago,145 has matured and

delivered.
Appendix A: Experimental Power to Detect

Association

We re-visit statistical power because the interplay of exper-

imental sample size, causal variant frequency and effect

size, and platform (genotypes, imputed genotypes, and

whole-genome sequence) remains essential to judging

the optimum experimental design for discovery. The po-

wer to detect a variant-trait association from LD between

an unobserved causal variant and an observed genotype

can be quantified in the non-centrality parameter (NCP)

of a statistical test to detect association (i.e., the expected
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value of the test statistic under the alternative hypothesis).

It is defined as

NCP ¼ n3 r2 3q2
��

1� r2q2
�
; (Equation A1)

where n is the experimental sample size, q2 is the propor-

tion of phenotypic variance explained by a causal variant

in the population, and r2 is the squared LD correlation be-

tween the causal variant and a genotyped SNP. This can

also be expressed as the proportion of variance explained

by the genotyped SNP in the population (R2 ¼ r2q2),

NCP ¼ n3R2
��

1� R2
�
: (Equation A2)

If the genotypes at the causal locus are in Hardy-Wein-

berg equilibrium, then

q2 ¼ 23MAF3 ð1�MAFÞ3 b2; (Equation A3)

where b is the effect size of an allele on the phenotype in

standard deviation units. This assumes that the analysis

for detecting an association is by regression of the pheno-

type on the genotype count (e.g., zero, one, or two minor

alleles). Therefore, when q2 is small,

NCP ¼ n3 r2 323MAF3 ð1�MAFÞ3 b2:

(Equation A4)

The power to detect an association between a trait and an

ungenotyped but imputed causal variant is, similarly,

NCP ¼ n3R2
imp 323MAF3 ð1�MAFÞ3b2;

(Equation A5)

where Rimp
2 is the squared correlation between the actual

and imputed genotypes at the locus. These power calcula-

tions illustrate the trade-off between sample size, allele fre-

quency, and effect size. In the future, when GWASs are

likely to be performed by WGS, the r2 and Rimp
2 values

in Equations A4 and A5 will be 1 if the causal variant is

sequenced without error, and considerable power can

be gained to detect association between a trait and a

sequenced variant in comparison to having array-based

genotyped or imputed data if r2 or Rimp
2 is small to modest,

but only when the experimental sample size is kept con-

stant. The equation above also demonstrates that the po-

wer to detect the association for a rare variant is limited

because of its low allele frequency, even if the effect size

is larger than that of a common variant. This means that

for rare-variant associations, the sample sizes need to be

very large or at least comparable to those used for GWASs

with common variants, even with WGS data.
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