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ABSTRACT 

Decentralized provision of public goods provides individuals incentives 

to be free riders, which will lead to undersupply. If provision is central- 

ized, individuals' preferences are not known to the authority or mechanism 

choosing the public goods bundle; hence efficient decisions cannot be 

guaranteed. The authority can ask people to report their preferences, but 

strategic rather than truthful responses must be expected. 

Is it possible to construct a procedure which simultaneously induces 

participants to report their preferences correctly and uses such reported 

preferences to select a Pareto-optimal bundle of public goods? We address 

this question in a model where the public goods are financed through an 

existing tax system. That is, an individual's taxes depend only on the 

chosen bundle of public goods, not on anybody's expressed preferences. 

We have succeeded in constructing such a procedure. It employs a form 

of weighted voting. Each individual has an exogenously given endowment of 

“influence points." A tentative decision is announced, and the individual 

then allocates these points among the various public goods and uses them to 

"vote" for an increase or decrease in the supply of each good. Influence 

points do not purchase votes for movement on a linear basis. As an indi- 

vidual spends more points on one good, the marginal value of an additional 

point decreases. Specifically, votes for movement equal the square root of 

the number of points expended. This decreasing productivity of influence 

point expenditures induces participants to spread out their allocations in a 

way which truthfully reveals their marginal valuations of the different pub- 

lic goods, which are the relevant aspects of their preferences.



If the votes cast in favor of increasing the supply of each public 

good exactly balance the ones cast in the opposite direction, an equilibrium 

is reached. This is the outcome of the procedure. It represents a Pareto- 

optimal decision, 

Practical computation of such an equilibrium will involve all] the 

problems associated with computing competitive equilibria in private goods 

markets. We present an algorithm which seems to work satisfactorily ina 

fairly general class of cases. 

The procedure can be adapted to different sets of distributional 

objectives by varying the endowments of influence points assigned to indi- 

viduals.



J. Introduction 

Public goods choices challenge efficient decision making. Decen- 

tralized provision on a voluntary basis leads to undersupply, for each 

participant will seek to be a free rider. Consequently, most decisions 

to provide public goods are made on a collective or centralized basis, 

typically by a government. Centralized provision encounters a different 

set of difficulties: Individuals’ preferences are not known to whatever 

authority or mechanism is making the choice, yet such information is required 

to guarantee an efficient outcome. In sum, when public goods decisions 

are decentralized, incentives are inappropriate; when they are centralized, 

information is insufficient. In this paper, we construct a method which 

deals with these two problems simultaneously and effectively. In the model 

considered, the revenue raising or tax system is external to the public 

goods decision, as is the case in most government jurisdictions. 

For private goods the competitive market guarantees an efficient 

outcome if, as is traditionally assumed, each participant takes prices and 

other relevant factors about the external world as given. Individuals’ 

decentralized, self-interested purchases and sales reveal all the information 

that is required to reach a Pareto-optimal outcome. 

Public goods decisions are different. If the government, seeking 

to make an efficient decision, asks people to indicate their preferences for 

public goods, it will be clear that the responses will influence the outcome. 

There is nothing to prevent persons who recognize this effect from giving



the responses which will best serve their interests, which may differ 

from their truthful responses. Even if the government then chooses an 

outcome which is efficient relative to the reported preferences, there can 

be no expectation of efficiency relative to the true preferences, which is 

what we want. 

To illustrate the difficulty inherent in obtaining honest revelation of 

preferences, suppose that people are asked to report their marginal monetary 

valuation of a public good, with the understanding that the Lindahl solution 

will be applied. ! Because there is an incentive to understate one's valua- 

tion, too Tittle of the public good will be provided, 

It should be noted that difficulties occur because preferences are 

unknown and, at the same time, efficiency is desired. If we care about only 

one of these factors, there is no problem. Given any particular set of 

individual preferences, the conditions for efficient provision of public 

goods are well known .@ Similarly, as long as an optimal outcome is not 

required, it is possible to elicit honest preferences.° In particular, proce- 

dures based on majority vote will frequently guarantee that people react 

straightforwardly. But because such procedures give no information about 

strength of preference, efficient decisions cannot be assured.” 

Can these two factors be dealt with simultaneously? Recent contribu- 

tions to economic theory give some reason for optimism; procedures have been 

constructed which lead to Pareto-optimal outcomes and which, in a certain 

sense, elicit honest preferences.° An important feature of many of these 

procedures is that incentives to report preferences correctly are provided 

through a system of transfers of private goods or money. In other words, 

people pay taxes or receive subsidies in a way which depends on the preferences 

they express concerning public goods. Actual tax systems do not usually work 

this way.



We will assume that the tax system is given. This is not to say that 

the total amount of money spent on public goods need be Fixed: this total 

can be a part of the decision. What is given is a rule which, for each 

potential public goods decision, specifies each individual's tax bill. 

This implies that payment cannot be extracted from individuals 

directly on the basis of the preferences they express, only on the basis 

of the public goods bundle finally chosen. See Section? for further dis- 

cussion of this condition. 

Given this restriction, we cannot expect outcomes which are Pareto- 

optimal in the strict sense. The best we can achieve is an outcome which 

is Pareto-optimal subject to this constraint. Throughout this paper, we 

will use the phrase "Pareto optimal" in this constrained sense.© 

Usually, there are many Pareto-optimal outcomes. The choice of one 

outcome from among these is a distributional issue. We want 

a procedure which can be used to accommodate varying distributional 

objectives. 

The model we consider has a finite number of public goods, each 

of which is continuous in nature and can be provided in any non-negative 

amount. Some conditions are imposed on individual preferences, but 

these are not very restrictive. - 

To sum up, we make two crucial assumptions concerning the structure of 

the problem: 

(i) Decisions are made by a central mechanism or authority which 

does not know people's preferences. 

(ii) For every possible public goods decision, the financing mechanism 

and tax system are given.



We want to construct a procedure which meets two criteria: 

(a) It produces a Pareto-optimal outcome when each participant reacts 

to the procedure in a self-interested manner. 

(b) It can be adapted to different distributional objectives. 

Underlying the analysis is an assumption that the government has to 

operate in the open; its procedures must be known to everybody ahead of time. 

In particular, the government does not have the option of first telling the 

participants that one procedure will be used, thereby inducing them to report 

their preferences correctly, and then processing this information by a differ- 

ent procedure so as to achieve optimality. We believe this assumption can 

be supported by ethical and legal, as well as practical, arguments. 

Some of the language we use, such as "participants report their 

preferences" or “truthful reporting is elicited," may be somewhat metaphorical. 

The essential point is that individual responses to the procedure must convey 

sufficient information to enable the procedure to satisfy criterion (a). 

When we construct the procedure we must specify the format of the reporting. 

One possibility is to ask people to report their preferences directly. This 

involves an extensive amount of information, probably more than is needed and 

more than in practice can be transmitted. Instead, people can be required 

to reveal some aspect of their preferences, for example, their marginal 

valuations of the public goods at particular points. But the procedure can 

also decree that individual responses take some other form, if the ultimate 

purpose is better served that way. We will, however, continue to use the 

imprecise terminology of “reporting preferences." 

We have succeeded in constructing a procedure satisfying (a) and (b). 

When the outcome is reached, individual responses will convey sufficient 

information and will constitute a (strict) Nash equilibrium. That is, any



person who makes a unilateral change of response wil] lose. In this sense, 

the solution is consistent with the assumptions that preferences are unknown 

and that people act in a self-interested manner! 

The logical next question is: How do we actually compute the equili- 

brium? Our answer to this question, which is not an easy one, parallels that 

which obtains for competitive markets in private goods: Existence and 

optimality of equilibria can be proved, but the process by which an equili- 

brium can be reached is not well understood. We discuss this problem in 

Section 5, where we also present a simple iteration algorithm which appears 

to work in a fairly general case. 

The paper is organized as follows: The model is presented in Section 2. 

In Section 3, we outline the procedure: and give a heuristic proof that it 

works. The properties of the procedure are stated and proved formally in 

Section 4. Section 5 contains the discussion of computation of equilibria. 

The appropriate interpretation of the distributional objectives and the 

" applicability of the model are considered in Sections 6 and 7. 

Section 8 presents some concluding remarks.



2. The Model 

There are N individuals, denoted 1,...,1,...,N. Decisions shall 

be made concerning K public goods, which are continuous in nature and 

can be provided in any non-negative amount. A typical decision is thus 

a vector x = (xy o--2oXy)s where x 2 0 for k = 1,...,K. Nothing is said 

about the way the public goods are measured. (We shall later impose 

restrictions on people's valuation functions. These conditions may 

exclude otherwise feasible measurement scales.) For example, some goods 

can be measured in terms of money spent and others in physical units. 

We can let two or more of our "goods," that is, two or more dimensions of the 

K-dimensional space, represent different aspects of what is essentially the 

same public good. For example, one dimension may be the amount of money 

spent on the local public library, while one or more other dimensions 

represent aspects of the institution's purchasing policy (proportion of 

fiction versus non-fiction, modern versus classical literature, etc.). The 

only restriction is that the issues must be formulated in such a way that the 

outcome of necessity will be described by one and only one point 

x= (xy aeeeaXy)- That is, every possible system of decisions must correspond 

to exactly one such point. 

No problem will result if there is an upper bound on the amount 

which can be provided of one of the goods. In fact, our later assumptions 

imply that the set of Pareto-optimal points is bounded. Hence we can 

impose such an upper bound without losing anything of interest. More 

generally, the set of feasible decisions can be any compact and convex 

subset of the K-dimensional Euclidean space whose interior is non-empty.® 

The condition that the levels of public goods be non-negative is 

not very restrictive, because the scale of measurement is arbitrary. If 

it is possible to disinvest in a certain public good, "zero" on our



scale shall not represent zero expenditure, but the largest possible amount 

of disinvestment. For example, the decision variable might be the amount 

of money to be spent this year on the acquisition of open space or park land 

for the city. Perhaps some people think not only that no money should be 

spent for this purpose, but that parks should be sold and the proceeds 

used for tax rebates. Then the appropriate zero point on the scale might 

be “sell all the parks." Our model cannot allow goods for which unlimited 

disinvestment is possible, but that is hardly a severe restriction. 

Individual i is supposed to evaluate potential public goods decisions 

according to a valuation function Vy. “We are concerned only with decision 

making under certainty, hence Fr is determined only up to strictly increasing 

transformations.” As mentioned in the Introduction, we assume that for 

every potential decision x, it is decided in advance how the corresponding 

public goods will be financed and how much each person will have to pay in 

taxes. The function Va is supposed to take account of the taxes person i 

pays for each x. It also must capture any indirect effect of the 

decision x on the individual's welfare. For example, the decision may 

influence prices and market conditions for private goods .!9 

The model does not make specific assumptions about the nature of the 

tax system. Perhaps the simplest would be a system in which each person 

pays a predetermined share of the cost of the final decision. These shares 

must be positive and sum to one; in determining them, one can take into 

account people's initial wealth or whatever other factors are deemed 

relevant. Alternatively, we can have a tax system in which the cost of any 

one public good is shared in a given way, but the sharing rule may be differ- 

ent for different goods. In general, each person's tax is an arbitrary



function of the chosen public goods bundle, subject only to the constraint 

that the sum of the taxes always must cover the cost of the decision. An 

individual's tax may even be negative for certain public goods bundles, 

in which case it represents a subsidy. 

The assumptions we have made concerning the tax system do not rule 

out the possibility that certain aspects of the tax system are variables 

to be determined as a part of the public goods decision . For example, 

some measure of the degree of progressivity of the tax system could be 

included as a coordinate of x. It will still be true that for any potential 

decision x, each individual's tax is determined, !! 

Some of the public goods can represent. income transfers 

to or from specific individuals or groups. Our model can also be applied 

to a situation where income transfer is the only issue. The decision x 

must then describe each individual's wealth after redistribution, 2 It is 

reasonable to assume that people are somewhat altruistic but mainly con- 

cerned with their own wealth, and this can easily be represented in our 

model. . 

It is possible that the taxes are independent of the decision. Then 

total resources will be fixed, and only decisions which satisfy the resource 

constraint are feasibie. 9 

Qur model can also be used to address situations in which no taxes are 

levied on the individuals who make the decisions. The issues can be purely 

non-monetary, or the financing can be unrelated to the participants’ private 

economy. As an example of this we can mention decision making in university 

departments; here a fixed budget is allocated, and decisions without finan- 

cial implications are also made (about curriculum, etc.).



We assume that each V5 is continuous ly differentiable and Strictly 
concave, Moreover, we assume that everybody wants a little of every public 

must be made in terms of other public goods. Formally, this amounts to the 

For any k and any possible decision x = (4 6 x)) with x = 0, (1) wt > 0, 

* 
. 

For any k there exists @ positive number X, Such that, For any Possible (2) 

[>
< 

The Possibility of Finding concave valuation functions may depend 
on the way the Public goods are measured, (Concavity is invariant under 
linear Changes of Scale, but there may exist natural] alternative scales
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assumptions. For example, this conclusion follows if public goods are 

produced at fixed cost, taxes are proportional, and individual preferences 

over bundles of private and public goods can be represented by concave 

utility functions. !®
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3. Qutline of the Procedure 

As noted in the Introduction, the difficulty in constructing a 

successful procedure arises because it must simultaneously satisfy two 

criteria: Individuals’ honest preferences must be elicited, and in light 

of these preferences an efficient bundle of public goods must be selected. 

Below, we will consider these two criteria separately and discuss the 

restriction each one imposes on the procedure. Thereafter, we bring the 

two together and conclude that there is a way to satisfy both. Moreover, 

there is essentially only one way to salve the problem. But first we shall 

make some general remarks on the structure of the procedure. 

The procedure takes the following form: A tentative decision x= 

(xp +++ Xp) is announced. Each individual reacts to this announcement by 

requesting an increase or decrease in the. various public goods. We will 

use the symbol be, = (byyo-++sday) to denote i's request; Day can be posi- 

tive or negative and represents the change i asks for in the provision of 

good k. The number bey will be referred to as the number of "votes" person 

i uses to move the decision concerning good k. 

In analogy with private goods markets, we could say that person i 

"purchases" a change in the provision of each public good. Clearly not 

all purchases can be permitted; some restrictions must be imposed, just 

as prices and budget restrict an individual's purchases of private goods. 

When constructing the procedure, we are free to choose the restrictions 

that shall be imposed on an individual's "purchase." These restrictions 

constitute the "rules of the game" and are the critical aspect of the 

procedure; hence they are the subject of most of the discussion below. 

At this point, we only note that the rules cannot in any way depend on 

individuals’ preferences, since these are unknown to the authority that 

gives the rules.
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The announced, tentative decision x and the votes of all the 

participants determine another possible decision y= (Ypoeee ody) by 

N 

(3) y, = x + y bigs for k = 1,...5K. 

This y shall be thought of as the final decision. In general, y will 

be different from x. But if it so happens that y equals x, that is, 

if the changes requested by the participants precisely cancel each other, 

then we say that y = x is an equilibrium, We declare it to be the 
16 outcome. " Hence the criterion for an equilibrium is the following: 

u
i
m
t
a
e
z
 

(4) bee = 0, for k = 1,...4K. 
i=] 

We could describe our procedure formally by specifying the set 

from which the vector 5; must be chosen. The specification of that set 

for each individual would fully describe the procedure. We shal] 

take a somewhat different approach to facilitate intuitive under- 

standing. 

Our procedure endows each individual with a budget of total influence, 

This influence shall be "spent" on achieving changes in the public goods 

bundle. Individual i is endowed with A; influence points. The numbers 

AqseesoAy are predetermined and non-negative, and at least one Ay is positive. 

These numbers represent people's relative claims on influence or power, 

based on ethical or other considerations external to our model. An important 

special case is the one of equal endowments. If A, = 0, individual i has no 

influence and will be ignored by the procedure. When the tentative decision 

X is announced, individual 7 "spends" the A; points by dividing them among 

the K public goods, indicating whether more or less is desired of each good.
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Formally, i chooses a vector ar = (azyo-+- say) where aay is the influence 

points i spends on good k. We adopt the convention that a positive (nega- 

tive) value of ai, indicates that i wants more (less) of good k. The 

"budget constraint" which must be satisfied by aj, is 

K 
(5) 1 lanl < A, 

The influence points are used to "purchase" votes or changes in the 

public goods bundle. In contrast to ordinary market situations, we will 

not restrict ourselves to linear price systems; indeed, we shal] see later 

that we will have to rely on a non-linear system. We assume that the 

pricing relationship is given by an arbitrary function f, which determines 

how the chosen numbers aay translate into the votes Digs That is, 

(6) by = Flasy) . 

The sign convention on ary implies that f(a) always must have the same 

sign as a. Strictly speaking, the function f is the inverse of a price 

system; f(a) is the amount one can buy for an expenditure of a. The price 

system and f are two ways of representing the same reality, and we shall 

use them interchangeably. !/ 

Once the function f is given, the description of the procedure is 

complete. The individuals choose “expenditures," that is, the a,, vectors. 

These are translated into "purchases" or votes bi,- The decision y is 

given by (3), and when y = x an equilibrium and final outcome is reached. 

Let us now explore the restrictions placed on the procedure (and 

therefore on f) by the requirements of efficiency and compatibility with 

individual self-interested behavior.
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Pareto optimality. In our model, the criterion for Pareto 

optimality is particularly simple: A point is Pareto optimal if and only 

if it maximizes some weighted sum of individual valuations. To state this 

formally, let Aqoreuady be non-negative numbers, at least one of 

which is positive, and define a function Va by 

N 
(7) vy(x) = dy AG (x) . 

Then v, is strictly concave and satisfies (1) and (2); hence it has a 

unique maximum point. This point is Pareto optimal. Conversely, it is 

not difficult to prove that for any Pareto-optimal point, there exists a 

function of the form (7) which is maximized at that point. 8 

Since v, is differentiable and concave, the first-order conditions 

are necessary and sufficient for an interior maximum. Because of 

(1), we can rule out corner solutions. Therefore, x is a maximum of VA 

if and only if 

(a) avy } ov. 
8 a OU May «7 ~O for k = 1,...,K, ax i=1 1 Ox, 

where the derivatives are evaluated at x. Intuitively, this says that 

the sum of the marginal valuations, when appropriately weighted, of those 

who want more and of those who want less of a particular good must cancel 

each other exactly. The condition is closely related to well-known 

characterizations of optimality in public gdods provision when the division 

of costs is not exogenous. '9 

Pareto optimality of an equilibrium outcome is now guaranteed if 

and only if the two criteria (4) and (8) coincide. If all the numbers 

bi, could depend on all the functions Vyoeee Wy there would be many ways 

to achieve this. But for any i, Daqoeeesdiy are determined by person i,
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who does not know the functions V5 for j # 1 and whose actions cannot 

depend on these functions. Therefore, in order to guarantee that (4) 

and (8) coincide, we must require that they be equal term by term. That 

is, we must have 

av. 
(9) Flay.) = by = he an » for all i and k, 

k 

where the derivatives are evaluated at the equilibrium outcome X= y.20 

It is obvious that in order to guarantee Pareto-optimal outcomes, a 

procedure must have access to information about individuals' relative mar- 

ginal valuations of the various goods .°! That is, answers must be known to 

questions of the following type: Given the financing scheme, how much would 

you be willing to give up of public good 1 in order to get a unit more of 

public good 2? The argument above shows that this information must take a 

special form: The votes Deqoressdiys which represent person i's desired 

changes in the amounts of public goods provided, must be proportional to i's 

marginal valuations. In this condition lies the first restriction on the 

procedure and on f. 

Individual self-interested behavior. To deduce the second restriction 

on f, we look at the decision problem for the self-interested individual 7. 

The outcome y, as given by (3), depends on the announced tentative 

decision x, the reaction of everybody but i, and i's own response. Individual 

i can in no way influence the first two factors and should therefore take 

them as given. From (3), it follows that the problem is to choose the 

vector aj, = (ag yoe-+sday) which will 

(10) maximize v, (261) + b.) :
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subject to (5). Here b. = (byy>-. b.,) is given by (6) and =i. ik 

2h) = (204). 24) is the sum of the effects { does not control. 

That is, 

(1) ze=x + ) ob 
k k j#i jk 

Let us assume that f is differentiable and ignore the possibility 

22 of corner solutions.““ Then a solution to the constrained maximization 

problem given by (5) and (10) must satisfy the first-order condition 

my WW) — 
Ox, 

. F'(asy) = Os las for k = 1,...,K. 

Here Tip is the sign of Aays that is, Ti, * lif aay > 0 and Oa, -l if 

ai, <0. The derivative of v, is evaluated at the final decision y. The 

positive number Wy represents the shadow price of the constraint (5). That 

is, Wy is the marginal value, in terms of Vea of an additional infiuence 

point. Equation (11) represents the familiar condition that at the 

optimum the marginal value of spending another influence point must be the 

same for each good, and this common value is equal to the shadow price.2? 

Thus we have found the restriction imposed on f by the assumption 

of individual self-interested behavior. 

Faiture of a linear price system. Returning to the question of what form should 

be employed for the function f, we might at first think of making it the 

identity function f(a) = a for all a. This would imply that changes in 

the provision of public goods, as given by the votes Days could be 

"purchased" at the constant price of 1 influence point per unit change 24 

In other words, individual i can influence the public goods vector x 

by the total of A, units, these units being divided among the K goods in 

any way.
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This approach does not work. It is easy to see that if i's influence is relatively small, and if the announced decision X 7S some distance away 

Ay influence points on the Single public good that yields the highest mar- ginal valuation.©° In violation of (9), the numbers bay Will not be pro- portional to i's marginal valuation of the goods. Indeed, the only infor- mation that js revealed is which good has highest marginal valuation. The 

has a parallel in private goods markets: Assume that You are endowed with a bundle of Private goods which is very different from your optimal bundle at the Prevailing Prices, and assume that you have a smal7 amount of money to spend but cannot make other transactions. Then you will most likely Spend all the money on one good, namely the one for which Marginal utility Per dollar is highest. With private goods, People are in Practice not confronted with this problem. Each individual is permitted to purchase the bundle which is optimal at the Prevailing prices, For public goods, however, the problem is real. Unless preferences are remarkably similar among individuals, at Teast some people will be far from their optimal points. Straightforward ber-unit pricing fails to elicit the required information about individuals' preferences, Instead we must find a Pricing 

the public goods. Moreover, they must be Spread in such a way that (9) holds. The Solution, the Square-root formula. To assure that influence points are spread around, we must offer diminishing marginal returns to the influence points spent on purchasing the Changes given by Dips In other words, the



some influence points on every public good. 26 Formally, this means that f(a) should increase at a decreasing rate when a is positive and increasing, with a parallel property for negative a. 

The question then is: How quickly should the "marginal Productivity" of the influence points decrease? In fact, all requirements are satisfied if f is the square-root function. As we shall see later, this function is essentially the only one that works. Since the humbers as, can be both j 
positive and negative, the formal definition of f is 

va for a> 0 (12) f(a) = 
-v-a for a< Q 

There are several] Ways to see that this function wil] indeed solve the Problem. First we give an informal argument. Assume that there are only two public goods, and suppose that individual i's marginal valuation of each good is positive and constant over the relevant range <7 We write 

aa 
dx, “ik 

for k = 1,2 and all i. The self-interested individual i then faces the problem: 

maximize Caf asy + Cio V2;0 

subject to 

i 7 852 SA, . 
Tt is clear that the constraint wil] be binding. We substitute for aso 
and get: 

imi . +7 tec, -a. 
maximize Ce y7n Cy A; i
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Setting the derivative equal to 0, gives 

oi Ci2 

24a, 2yAs-aiy 

By rearranging terms, we get 

= 0. 

aay 5] 
og. 

Van i2 

But the numerator and denominator on the left-hand side are bay and 

  

Dios respectively; that is, they are the changes induced jn the two goods. 

These values are proportional to the marginal valuations, as is required. 

Then we give a formal proof. The number of public goods is now arbi- 

trary, and no special assumptions are made concerning marginal valuations. 

The derivative of f is easily seen to satisfy: 

(13) f' (a) . F(a) > 
  

for a # 0, where o = 1 for a > 0 ando = -1 fora <0. Except when the mar- 

ginal valuation of a good is 0, i will not choose a corner solution. This is 

true because the derivative of f is infinite at 0; hence spending a few 

influence points on any good yields substantial returns. Therefore, indi- 

vidual self-interested behavior is described by (11). From (11) and (13) we 

get 

av 

~
 | = 2u; F(a) 

@|
 

Xk 

Thus (9) holds, with 2u. = 1/d.. This proves that the function f, as given i i 

by (12), satisfies the requirements .28
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Uniqueness of the solution. Essentially, the Square-root function 
given by (12) is the only function f which guarantees Pareto optimality in the framework of our model. © 

We know that equations (9) and (11) both must hold. Together they imply, for all 7 and k, 

(14) Faye) FH ay,) = OA GH 
For a given i, the right-hand side. of (14) depends on k only through Says that is, the sign of ape If,for a moment, we restrict ourselves to 
Positive values of aps the right-hand side is independent of k. Since 
we do not know Vj» we must be prepared to encounter any vector a. = (ajys+- sayy) which satisfies (5). In order to guarantee that (14) holds, we must 
therefore construct the function -f such that the left-hand side does not 
depend on aye Hence there must exist a positive constant C such that 

(15) F(a) -f'(a) = C, for alla > 0. 

The left-hand side of (15) is half the derivative of the function 
(F(a))?, Hence this function has @ constant derivative and must be linear. Since f(a) > 0 for a > 0, we conclude that f must Satisfy 

(16) f(a) = V Cat, , fora>o, 

Here C, = 2C is a positive constant, and C, is a constant. If Cy <0, 
f(a) is not defined for smalla>OQ. If Cy > 0, (14) is satisfied. 
But if we go back to the original requirements, we see that the maximization Problem given by (5) and (10) will sometimes have a corner solution, and 
(9) will not hotd. Hence we must have Cy = 0. 

An analogous argument can be applied to (14) for the case ai, < 0, 
and we can deduce a formula similar to (16). Again, Cy must be 0, and C 

] must be the same in the two cases in order for-(14) to hold. Thus we have
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Proved that the function f must be the one given by (12), except for 
the constant C. 

The numbers AysessoAy are chosen when the Procedure is designed. 
(This choice is exogenous to the aspects of the model discussed in this 
section.) It is easy to see that a change in the constant Cy always 
can be compensated by a change in Ayers oAys that is, the two changes 
taken together do not alter the procedure. This proves that there is 
no loss of generality in setting Cy = 15 everything we might want to do 
by varying Cy can be done by varying Ay sess oAy instead.3] 

This completes the argument that the function f given by (12) 
essentially is the only solution to the problem.22 

An example. In order to illustrate the equilibrium concept, we give 
a simple example. We assume that there are two public goods and three 
individuals; this is the simplest non-trivial case. Preferences are of the 
following form: Each individual has an optimal point; individual i's optimal 
point is denoted xi) Preferences depend only on the distance to the optimal 
point, that is, i prefers one point to another if the former is closer to 
x4), This uniquely specifies the preferences; we can define 

V(x) = [x - x2, The indifference curves will be concentric circles. 23 
For any tentative decision Xs a; will be chosen such that b., points 

in the direction from x to xf), 

Now assume x) = (1,1), x(2) = (1,10) and x(3) = (10,1), and let 
A, = 1 for i = 1,2,3. The average of the three optimal points is (4,4); 
therefore, it seems natural to try that point in order to see if it is an
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equilibrium. This is illustrated in Figure 1 and Table 1. It turns out 

that the sample point (4,4) is not an equilibrium; the sum of the votes 

b., points from (4,4) towards x) and the origin. The equilibrium is 

given by x; = Xp = 4 - $ V3 = 2.90195 see Figure 2 and Table 2.
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4, Properties of the Procedure 

We describe the procedure formally in this section and derive a 

number of its properties. The presentation at points parallels that of 

Section 33 in order to ease understanding, there is some repetition. 

Our first result states that if x is an equilibrium of the procedure, 

as described in Section 3 and defined formally below, then x and the 

corresponding individual responses constitute a Nash equilibrium of an 

appropriately defined game, and hence no person can gain by a unilateral 

change of response. Second, we prove that an equilibrium will always be a 

Pareto-optimal decision. Conversely, our third proposition states that for 

any Pareto-optimal point there exists a distribution of influence among 

the individuals such that the given point becomes an equilibrium of the 

Procedure. The last two statements correspond to the first and second 

fundamental theorems of welfare economics. The last result is non-vacuous , 

since Pareto-optimal points clearly exist and can be obtained by maximizing 

functions of the form (7). But in order to guarantee that the first two 

results are true in more than a trivial sense, we must prove that equilibria 

always exist. This is our fourth proposition. 

The numbers AqoseesAy are fixed and are supposed to be given by con- 

siderations outside the model. They are non-negative, and at least one of 

them is positive. For each 1, we define B. = vi, The distribution of 

influence can be described either by the numbers A or by B,. We will use 

either, as convenience dictates. The function f and the numbers aj, were 

used in Section 3 to facilitate intuitive understanding; they play no 

role in the formal definitions in this section.
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A tentative decision x is announced. For each i, individual i 

chooses a vector b= (Deyoveeaday)s subject to 

ik <Be =A. 

This means that the length of the vector 5, must not exceed Be The 

vector is chosen so as to maximize 

(18) vy) s 

where y = (Ypres ay) is given by 

u
M
t
=
a
 

(19) Ye = Xt Dips for k = 1,...5K. 
7 1 

Here the numbers Dix for j # i are supposed to be determined by similar 

maximizations. It is easy to see that this parallels the description in 

Section 3; given (6) and (12), (17) is equivalent to (5). 

When characterizing the solution of this maximization problem, we must 

distinguish between two cases. We focus on one individual i, and assume 

that x and by, for j # i are given. If it is possible, without violating 

(17), to choose bj. such that y becomes equal to the maximum of vo then 

i will obviously choose this by. In this case, (17) need not be a binding 

constraint. Otherwise, that is, if it is not possible to reach the maximum 

of Vas individual i could always benefit from increasing the absolute value 

of some baie Hence (17) will be binding. Since v,(y) is a concave function 

of be, » the first-order conditions are necessary and sufficient for a



25 

. tag sas . 3 solution, and it is easy to prove that these conditions can be written: 4 

av. 

(20) bsp =A, a>, for k= 1, 2.4K. ik “4 8x, 

Here A; is a positive constant chosen so that (17) holds with equality. The 

derivatives are evaluated at y. This equation corresponds to (11); the 

equivalence is proved by using (12) and setting Ag 5 1/(2u5). 

The basic characteristics of the individuals are their preferences; 

the functions Vys+e+5Vy are just representations of these preferences. We 

do not want the results of our model to depend on the particular representa- 

tions chosen. This requirement is satisfied. The solution to the maximization 

problem given by (17) - (19) does not change if iF is replaced by a 

differentiable, strictly increasing transformation of Vee In the case where 

i's optimal point can be reached, this is obvious, since Ve and the trans- 

formation are maximized at the same point. When (20) applies, the trans- 

formation has the effect of multiplying dv, / OX,» for k = 1, ...,K, by a positive 

constant. .This is compensated by a change in Age and b., remains unchanged. 

Definition 

A feasible decision x is an equilibrium of the procedure if there 

exist numbers bi >» for 71 = 1,...,N and k = 1,...,K, such that: 

(i) For each i, the maximization problem given by (17) - (19) 

* 

has aSolution at be, = be. , when all be, for j # i are fixed 

: _ * : 

with be = be 

* 

(ii) y = x, where y is given by (19) with bey substituted for b,,.



26 

If x is an equilibrium and is no individual's optimal point, then 

all the numbers bay will be given by (20). Hence i's equilibrium response 

bs, depends only on x, A, and Vas That is, it depends only on common 

information and on i's own characteristics. If, on the other hand, x is 

i's optimal point, i's response by is chosen so as to "balance" the 

responses and make y equal to x; hence by, will depend on all the data of 

the problem. 

Note that the equilibrium concept is invariant to changes of 

scale in the numbers AyseeesAy (or By s+++2By). To state this formally, 

assume that x is an equilibrium, Tet a be a positive number, and let 

B ayo. Suppose that A; is replaced by oA. for i = 1,...3;N (or, 

equivalently, that 8, is replaced by BB, ). Then x is stil] an equilibrium. 

In the definition of equilibria, bry must be replaced by Bb; for all i 

and k. The statement is easily proved; the two cases referred to in the 

discussion of the maximization problem (17) ~ (19) must be considered 

separately, Given this result, it follows that the numbers A only represent 

people's relative power or influence; the absolute size of these numbers has no 

significance. 

Now we are in the position to state precisely the sense in which an outcome 

of our procedure is consistent with individual, self-interested behavior. 

Proposition 1 

Let x be an equilibrium in the above sense, and let bags for 

i =1,...,N and k = 1, ...,K, be the corresponding numbers, as 

given by the definition.
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Consider the following game: Each person i submits a vector bs, 

which satisfies (17). Then y is computed by (19), and the decision 

y is implemented. 

In this game, the responses given by bs, = by for all i constitute 

a (strict) Nash equilibrium. That is, any individual who makes a 

unilateral change of response is made worse off. 

The proof is trivial, since the proposition is only a restatement of 

the definition of an equilibrium. The converse statement is equally obvious: 

If there is given a feasible decision’x and individual responses Di, which 

make y equal to x and constitute a Nash equilibrium of the game described 

in Proposition 1, then x is an equilibrium in the sense of our definition. 

In the Nash equilibrium described in Proposition 1, everybody is sup- 

posed to act honestly, that is, all the numbers bi are found by solving 

(17) - (19). This is not an essential assumption. Neither person i nor 

the procedure knows the functions Vy for j # i. Hence i can always assume 

that V5 is such that the given response bs. is an honest one. Therefore, 

correct revelation of preferences is i's optimal response in the game des- 

cribed in the proposition, regardless of the correctness of other individuals! 

reporting. ; 

Even if x is an equilibrium, it is possible that two or more persons 

could all gain by making coordinated changes in their responses. Therefore, 

we have to assume non-coordinated (or competitive) behavior in order to 

conclude that an equilibrium outcome is consistent with individual self- 

interested behavior. (Competitive markets for private goods, by analogy, 

break down if cartels are formed.) But it is not hecessary to assume that 

the number of participants is "large" in any sense; the proposition is true 

even for small No?
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Proposition 2 

Tf x is an equilibrium, then X is Pareto optimal. 

Proof 

If x maximizes some Vz» any change away from xX will be opposed by person . 
i, and optimality follows. 

* Otherwise, the numbers bey of the definition are all given by (20). 
By (ii) of the definition, 

for all k. Then (20) implies 

ave 
(21) de OK = 0, for k = 1,...,K. 

i W
o
o
d
 

] 

The numbers dG are all non-negative, and if A > 0 then Ay > 0. Hence AG > 0 
for at least one i. Therefore, (21) is exactly the criterion for the point 
¥ = X being Pareto optimal; see the discussion of equations (7) and (8) in 
Section 3. The proof is complete. \| 

So far, the numbers Ay see sAy have been regarded as given and fixed. 
In the next result we do not make this assumption. Instead, the problem 

now is to find AyseeesAy such that a given Pareto-optimal point can be 
obtained as an equilibrium.
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Proposition 3 

Let x be a Pareto-optimal point. Then there exist non-negative 

numbers Ay sees sAys at least one of which is strictly positive, such 

that x ts an equilibrium of the corresponding procedure. 

Proof 

If x is the optimal point for some 4, we let A; = 1 and A, = 0 for 

J # i. Moreover, we let bye 0 for all j and k. Then part (ii) of the 

definition of an equilibrium obviously holds. Part (i) holds for j fi, 

since Dik = by, = 0 for all k is the only choice which satisfies (17). 

For person i, part (i) is satisfied since x= y is i's optimal point. 

Then assume that x is the optimal point for no individual. Condition (1) 

implies that the Pareto-optimal point x does not lie on the boundary of the 

feasible set. We can conclude that x is the maximum of a function Va as 

given by (7). Then (8) or, equivalently, (21) follows. We define, 

for i = 1,....N, 

2 Kav, 
(22) A= sD Cal , 

where the derivative is evaluated at x. Each A; is clearly non-negative. 

We know that Ay 0 for some 7. The sum in the right-hand side of (22) is 

strictly positive; otherwise, x would be the maximum of Va, a case we have 

‘* 

ruled out. Hence A; > 0 for same i. Then we define ba by 

av. 
at , 

* 

(23) b, 
aX, ik 

Wt
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for all ji and k. It is easy to see that the definition of an equilibrium 

is satisfied: From (22) and (23), we conclude that by. satisfies (17) 

with equality; the discussion in connection with equation (20) verifies 

part (1) of the definition; and part (ii) follows from (21). This completes 

the proof. I 

Returning to the assumption that Ay sees oy are fixed, we have finally: 

Proposition 4 

There exists an equilibrium. 

Sketch of Proof 

The proof uses Kakutani's fixed-point theorem. °° That is, we construct 

a correspondence $ which satisfies the premise of that theorem. This corres- 

pondence has a fixed point, which is then shown to be an equilibrium, 

Let x be given. For each i, choose numbers bys... sbey which satisfy 

the following: 

(i) If x is the maximum of Vz» let Dipores Day be any numbers which 

satisfy (17). 

(ii) Otherwise, define b;, by (20), where A; > 0 is chosen such that (17) 

holds with equality. (The derivative is evaluated at x.) 

When these numbers are chosen, compute y by (19). This y shall be an 
element of $(x). The set 6(x) is constructed by choosing the numbers b 

k 
in every way consistent with the description above; for each choice, y is 

computed and included in the set. 

As long as x is not the maximum of Vea bs is uniquely determined 

by (ii). Moreover, in this case b;, is a continuous function of x. But
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if x maximizes Vi and A; > 0, there are infinitely many possible choices for 

b,_ . If this is the case for any i, $(x) will have more than one element. 

For any x, the set $(x) is convex and compact. Moreover, $ is upper 

semicontinuous. It is possible, however, that some yed(x) ies outside 

the feasible set. Moreover, the set on which is defined is not compact. 

To solve these problems, we observe that (17) can be used to find an 

upper bound for lly - x|| » when yed(x). Let the compact and convex set 

S be defined by?” 

* 

xeS if and only if O< x, <x < %& for all k = 1,...5K; 

* 

where x, is the number given by (2). Using the bound on |ly - x]], we can con- 

struct a compact and convex set S' such that Sc S' and $(x)<S' for all xe S. 

Theri we extertd@ to S' in the following way: 

For x ¢ S', define x" = (xy a+++ 9X) eS by*8 

0 if xy < 0, 

1 . * 

Xp, * x TF OSX <%& 5 

x. * 
x, TF xy > X& 

Then let 

o(x) = o{x'). 

Here x' is a continuous function of x. Now ¢ is defined as a 

correspondence on S, and it satisfies all the conditions of the fixed- 

point theorem. Hence » has a fixed point, that is, there exists a point 

Xe s" such that xe (x). From conditions (1) and (2), it can be proved 

that xeo(x) is impossible if xeS'N Ss hence the fixed point must belong 

to S. From the definition of @ , it is now easy to prove that x is an 

equilibrium. ll
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Conditions (1) and (2) are not used in the proofs of the first two 

propositions 22 In the proof of Proposition 3, condition (1) is used 

to show that any Pareto-optimal point is interior to the feasible set. In 

the absence of (1), it will still be true that any interior Pareto-optimal 

decision can be obtained as an equilibrium. 

The conditions are used in a more essential way in the proof of 

Proposition 4, Without (1) and (2), we can still construct the set S' and 

the correspondence @, and will have a fixed point in S'. But the fixed 

point need not belong to S; instead, it may have been created when we extended b 

from S to S', Hence we cannot conclude that there exists an equilibrium. 

In practice, it is not unlikely that (1) and (2) will hold for most 

individuals but not all. Then the existence of an equilibrium is likely to 

depend on the relative influence of these groups of individuals. Of course, 

if the persons for whom (1) or (2) fails are without influence, that 

is, if A; = 0 for these i, no problems can occur. It seems reasonable to 

expect that the same is true if A, is relatively small for these individuals. 

Only if the persons who want nothing at all or an unbounded amount of a 

certain public good are fairly influential compared to those whose preferences 

are bounded, can problems arise.
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5. Computation of Equilibria 

When an equilibrium has been found, it represents a solution with 

several desirable properties, as described in Section 4. But how can an 

equilibrium be computed? 

Problems arise on two levels. For one thing, even if the functions Yi 

were known, computing an equilibrium would not be a trivial matter. We will 

return to this problem shortly, and we will also describe an algorithm which 

works in a fairly general class of cases. But first we will discuss the 

other problem: If a procedure is designed which brings us to an equilibrium 

when people report their preferences correctly, can we be sure it will be 

in their interest to do so? 

Misrepresentation of preferences. Proposition 1 guarantees: that when 

an equilibrium has been reached, nobody can gain by making a unilateral 

change of response. The interpretation of this result is discussed in 

Section 3, immediately following the Proposition. The result only addresses 

what happens at an equilibrium. Here we ask the following question: Can an 

individual, by incorrect reporting of preferences, bring about a change in 

the equilibrium, and thereby get a better outcome than the one which would 

have resulted from correct reporting? 

When the number of individuals is small, it is easy to construct 

examples in which some individual can gain in this way 4! If the number of 

individuals is greater and everybody's influence is small, these kinds of 

examples can still be constructed, but we expect them to become rarer and more 

special.”
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This issue relates to the sense in which our method solves the problem 

that preferences are unknown to the central authority. In our procedure, 

the equilibrium responses constitute a Nash equilibrium. Ideally, we would 

want a solution based on dominant strategies. That is, we want the following 

situation: 

For each i, a set Si is specified; this is the set of possible 

strategies or actions individual i can choose. When each i has 
chosen a strategy, the procedure mechanically computes the decision. 
For each i and any possible Vas there exists a strategy in S; which 

is an optimal action for i no matter what all other individuals do. 
This strategy shall only depend on Vy and is said to be a dominant 
strategy (for Va). 

If such a procedure exists, there is no loss of generality in assuming 

that each S; is the set of possible valuation functions and that the domi- 

nant strategy always is telling the truth 43 Hence the procedure can be 

assumed to be a "direct mechanism," that is, people report their preferences 

and the result is computed directly from these. Our procedure is not a direct 

mechanism in this sense; the outcome of the procedure as described in Section 3 

depends not only on individuals' responses but also on the announced tentative 

decision, and the equilibrium concept is based on this description. 

The question, therefore, is the following: Does there exist procedures 

which admit dominant strategies and at the same time guarantee Pareto-optimal 

outcomes? The answer is yes. For each i, we can define a procedure which 

makes i a "dictator," that is, a procedure which chooses i's optimal point as 

the outcome, regardless of other people's preferences. These procedures 

obviously lead to Pareto-optimal outcomes, and correct reporting of preferences 

is a dominant strategy for everybody. These procedures divide influence in
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an extremely uneven way. Since our goal is to construct a procedure which 

- can be adapted to various distributional objectives, we are not satisfied 

with this class of procedures. When there are two or more public goods, 

the “dictatorial” procedures are, however, the only ones which satisfy the 

stated conditions. Therefore, if we insist on a more even distribution of 

influence and on Pareto optimality, we cannot rely on dominant strategies. 

Based on experience from related models, this conclusion should come as no 

surprise.“ To the best of our knowledge, however, the statement does not 

follow from published results. It is not difficult to prove, but the proof 

is long and not very interesting, and it is not given here, “9 

The conclusion, therefore, is that an “ideal” solution of the type des- 

cribed above does not exist. Hence the procedure constructed in this paper 

is as good a solution as one can expect to the problem of misrepresentation 

of preferences. Again, there is a paraliel to private goods markets: The 

competitive equilibrium is consistent with self-interested behavior only to 

the extent people actually regard prices as fixed. 

The question then is: How good is this solution in discouraging misrepre- 

sentation? Stated in another way: How likely is it that participants in a 

practical application of the procedure will be able to gain by misrepresenta- 

tion of preferences? /© In the end, this is an empirical question, and it 

depends on the particular procedure used to compute equilibria. To answer the 

question, we would have to construct an algorithm which solicits information 

and computes an equilibrium, and then try it and see how it works when people 

47 
react to it. Nevertheless, something can be said about the issue on theore- 

tical grounds. In our judgment, the problem of misrepresentation is not 

likely to be serious, at least not when the number of participants in the
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decision is large. Successful Strategic behavior requires a lot of informa- 
tion about other people's preferences, information unlikely to be available. 
Therefore, it seems reasonable to assume that given their ignorance the 

participants will, after all, find it advantageous to report their preferences 

correctly. Misrepresentation will be a gamble, and, most likely, an unfavor- 

able one.*8 

Informational considerations. Now Suppose that people will answer 

questions about their preferences correctly, In the design of a 

procedure which computes equilibria, an important practical issue is the 

amount of information people are asked to transmit to the central authority. 
We cannot simply ask them to report their valuation functions. Even if this 
generated no incentive to report incorrectly, there is far too much informa- 
tion involved. 49 If we could restrict the functions to some class indexed by 
a finite number of Parameters, the situation would be different; then the 
values of the parameters could be transmitted, °° We will not discuss this 
issue further; we hope it will be explored in future investigations. 

The information problem also implies that we can never compute equili- 
bria exactly; the most we can hope is to come close. The sense in 

which we come close is important. In particular, we want Propositions 2 and 3 
to hold approximately. That is, the outcome must always be close to the 
Pareto frontier, and any point on this frontier must be close to an outcome 
for some distribution of influence.
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Iterations towards the equilibrium. A natural proposal for a computa- 

tional algorithm is the following: We start with a point x, arbitrarily 

chosen (or chosen in a way not specified here). This is considered the 

"tentative decision" as described in Section 3. Individual responses are 

given by equation (9), and a new decision y is computed by equation (3). This 

y is then treated as the tentative decision in a new round, and so on. 

Hopefully, this process will converge to an equilibrium, 

As far as the equilibrium concept is concerned, the scale of the numbers 

Ayo. ++ Ay (or, equivatently, By s+ ++ sBy) has no significance; only the relative 

size of the numbers matters. For the iteration procedure just described, 

however, the scale is important, since it corresponds to.the step length of 

the algorithm. The step length issue creates a problem in designing the 

mechanism: If the step length is small, the procedure will move slowly and 

will require many steps to come close to an equilibrium (unless the starting 

point happens to be close). On the other hand, if the step length is too 

large, there is a risk that the procedure will repeatedly "overshoot" the 

equilibrium and hence never converge. Faced with this dilemma, one can try 

to vary the step length as circumstances change, as is done in the mechanism 

used for illustration below. 

There is no realistic chance of refining the procedure so that it always 

converges.” This conclusion is related to the issue of stability of equili- 

bria in an ordinary competitive economy, a complicated question which is 

discussed at length elsewhere, and thus not explored in detail here>
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An example. For illustrative purposes, we have constructed an iteration 

mechanism of the type outlined above. Applied to a number of cases where the 

preferences are chosen from a relatively general class of valuation functions, 

the mechanism seems to function satisfactorily. 

The procedure works in the following way? 

(a) For each i, the maximum xf) of Vy is found. Each individual 

but 7 is asked to react to xf as described in Section 3, and it is 

determined whether x) is an equilibrium. 

(b) If no x) is an equilibrium, a weighted average of xO) (M) 
is computed, Aq ores Ay being used as weights. The iteration procedure 

is started at this point. As long as the movement produced by any two 
consecutive steps in the iteration procedure point approximately in the 
same direction, the step length is not changed. 

{c) When the increment of two consecutive steps form an angle which 
exceeds a prescribed limit, the step length is reduced by a fixed 
factor, that is, Ay ones oly are scaled down. 

(d) If the increment is less than a given (small) number times the 

current step length, we stop. 

The idea is that as long as any two consecutive increments are parallel or 

almost so, we move steadily towards the equilibrium and should continue to 

move at unchanged speed. When this is not true, we may have "overshot" 

the equilibrium or be in the process of doing so, and a cut in the step 

length is in order. 

For each step in the iteration, every individual must send a message 

to the center consisting of K real numbers. This should not cause great 

problems. The total amount of information to be transmitted depends, of 

course, on the number of steps, which is related to the accuracy required.
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At no stage will a participant who is ignorant about other people's 

preferences have an obvious incentive to engage in strategic behavior. 

During each iteration (except the last one), we do not compute the final 

outcome, but rather the starting point for the rest of the procedure, 

In general, an individual will want this starting point to be the best 

possible decision (though exceptions may again occur if good information about 

other people's preferences is available), This objective is achieved by 

responding honestly all the time. 55 

This mechanism could be applied to any profile of preferences; sometimes 

it will converge and sometimes, we expect, it will not. 26 We have experimented 

with preferences from a class of valuation functions formed by analogy from 

the class of production functions with constant elasticity of substitution. 

For a given 7, we let Xig denote the amount of money person i can spend after 

taxes if public goods decision x is made. (This depends on x, 7 and the 

predetermined tax system.) Then i's valuation function is given by?! 

vel) = C+ DlagxG8 # oxy? + 2. + ay xe?) 

where p and Cig 2p ree dy are parameters (which may vary from person to per- 

son). The numbers Og and Oy sree sty are positive and represent the weights 

person i puts on private goods and the various public goods, while p is 

related to the "elasticity of substitution” and satisfies o#O0andp>-l. 

When p tends to 0, Vi essentially converges to the Cobb-Douglas utility 

function, given by 

v4 (x) = 9 fn %ot Oy kn Xp tee Fay Ln Xy
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We have apptied the mechanism to a number of cases in which the prefer- 

ences are of this type and the tax system is linear, that is, each person 

pays a predetermined share of public expenditure. We have tried the mechanism 

on a number of typical cases, and on a number of examples generated by choosing 

the parameters by lottery from a given probability distribution. In each of 

these cases, the mechanism succeeded in computing an equilibrium in a reason- 

able number of steps. Therefore, we feel confident that the: procedure works 

for this fairly general class of preferences. °°
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6. Distributional Objectives 

In the Introduction, we formulated two conditions the procedure should 

satisfy. Condition (a) requires that when individuals behave in a self- 

interested manner, the procedure assure Pareto optimality. Propositions 1, 

2 and 4 guarantee this; an equilibrium will always exist, it is sustained when 

«os : 5 
individuals act in a self-interested way, and it is Pareto optimal. 9 

Condition (b) requires that the procedure be able to accommddate differ- 

ent distributional objectives. Proposition 3 addresses this issue. It says 

that any point on the Pareto frontier can be obtained as an equilibrium of our 

procedure for an appropriate distribution of influence points. In a sense, 

this implies that the condition is satisfied. Some questions remain, however. 

Multiple equilibria. Problems may arise if, for the same distribution 

of influence points, there are two or more possible equilibria. The specific 

method of computing outcomes will then decide which of the equilibria is 

reached. No matter how the computation is done, there will be at least one 

equilibrium which cannot be obtained using our procedure, 2 

Is this a serious problem? When there are only two participants, it is 

serious. Then the possibility of multiple equilibria makes the procedure 

trivial, in the following way: If one person has more influence points than 

the other, no matter how small the difference, the former is a "dictator" 

whose optimal point is always chosen. If we rule out dictatorial procedures, 

therefore, we must give the two individuals equal influence. But then all 

Pareto-optimal points will be equilibria. Hence the outcome will depend 

entirely on the specific procedure used for computing the equilibrium, and we 

have no opportunity for accommodating different distributional objectives |
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When there are three or more individuals, there is reason for optimism. 

For certain kinds of preferences, uniqueness of the equilibrium can be proved © 

Examples can be constructed in which there are two or more equili- 

bria, but these examples have the flavor of being "special cases." The 

issue is complicated, and we will not go into detai1.© 

Interpretation of the distribution of influence points. Distributional 

objectives can be formulated in many ways, both formal and informal. In 

order to apply our procedure, we must “translate” a given set of distributional 

objectives into an allocation Ayoeee oAy of influence points. To do this, we 

would like to have an answer to the converse question: What does it mean, in 

terms of some formally or informally expressed objectives, that people are 

given influence points Ayoees oAy? 

Precise answers to these questions cannot be given. More influence 

points imply, in an intuitive sense, more influence. But how good the outcome 

is, in individual i's opinion, will depend on V4 as well as on A;- If the 

preferences expressed by Vv, are "average," the outcame may be very good even 

if A; is small. 

Suppose that our distributional objective is to treat everybody equally. 

The obvious way to achieve this is to let all the numbers Ay oee sAy be equal. 

But even in this case, it is not clear in what sense equality will be achieved. 

This problem of interpretation is illustrated by the fact that the 

equilibrium concept is not invariant under changes in the units of measurement 

of the public goods. That is, if these units are changed while everything 

else (including Ay see sAy) is kept fixed, the equilibrium may change. Some- 

body will gain and somebody will lose from the changes in units of measurement,
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therefore, the numbers Ay se sAy do not fully describe the distribution of 

influence. 

These problems are mitigated by the fact that when influence points are 

assigned, preferences are unknown. In this situation, it is reasonable to 

say that an equal number of influence points implies equal influence, and a 

higher number of points means more influence, recognizing that the interpre- 

tation of these concepts is not absolutely clear.
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7. Applicability of the Model 

The ultimate purpose of our analysis is normative: We want to con- 

tribute to the construction of procedures for practical decision making. 

The main subject of this paper, namely the formal construction of a proce- 

dure and description of its theoretical properties, is but one step towards 

this goal. Much work remains before it can be determined whether our proce~ 

dure, in the present or some modified form, is suited for practical applica- 

tions. In part, this work will take the form of trials and experiments .o* 

We will not attempt an exhaustive discussion of implementation issues, but 

a few remarks should be made. , 

Much of the discussion which follows is concerned with application of our 

mechanism to decisions made by and for the society at large, through direct 

votes by the citizens or through legislative action. Realistically, however, 

we do not expect the procedure to be implemented soon in such situations. 

Other kinds of decision-making bodies are more likely to attempt to use 

formalized mechanisms of the type we describe. The discussion should be 

viewed in this light. 

Resemblance to informal procedures. We believe that our procedure, to 

some extent, captures aspects of existing informal processes for selecting 

public goods. Frequently, one can observe that an assembly is reluctant to 

make decisions by majority vote even if its rules allow such decisions; the 

members prefer to debate and debate and debate until consensus is reached, 

Somehow, participants in such a procedure must decide whether to stick to 

their positions or to yield. Usually, this involves some judgment about 

the strength of other people's preferences.
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We believe that decision making in university departments often takes 

this form. Jo see the analogy, consider a department meeting (or a series 

of meetings) in which decisions must be made about a number of issues, such 

as appointments, curriculum, allocation of funds among competing uses, etc. 

Endowments of influence points will correspond to power or prestige in the depart- 

ment. These are not specified exactly, but regular participants will usually have 

a fairly good idea about who the powerful members are. Discussions are held 

and a consensus emerges on most issues. Some may speak in favor of a greater 

share of funds for fellowships, others for less, while some stay completely 

out of the debate on this issue. Eventually, a balance of power and views is 

established, that is, a consensus is reached. 

Casual observation suggests that something akin to the diminishing 

returns property of our square root formula may be in effect. A lengthier 

or more passionate speech carries more weight than a brief expression of 

opinion, but not nearly in proportion to the relative time or intensity 

expressed. No participant can get more total influence by speaking passionately 

on every issue; this will have the effect of depreciating this person's 

"currency." 

To the extent that our procedure reflects aspects of existing, informal 

decision processes, it is more likely to be accepted and implemented. In 

this case, the procedure does not represent entirely new principles, instead, 

it is a formalization of familiar phenomena. 

This is not to say that our procedure merely replicates existing processes. 

One important difference has to do with decision-making costs. In an informal 

process as described above, real resources have to be expended as the
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participants express the relative strength of their preference on the differ- 

ent issues. The cost, in the form of the time it takes to reach a consensus, 

is frequently non-trivial. Committees often spend days in debating even 

relatively unimportant issues. Our mechanism attempts to substitute a mechani- 

cal process for the tugging and hauling of the political arena, thus drasti- 

cally reducing the time costs of group decision making. In our procedure, 

people express their preferences by expending artificial influence points. These 

are essentially costless to create and spend. Hence time and other real resources 

are saved. 

Incentives for participation. When faced with a complicated decision 

problem, people will frequently have to spend significant amounts of time 

and effort to assess their own preferences accurately. In the model we des- 

cribe, if there are many participants, any one of them can have only a smatl 

influence on the outcome. The question then is: Will the participants find 

it worthwhile to assess their preferences carefully and respond accurately? 

This problem exists in all types of collective decision making and voting, 

but it is likely to become more serious as the participants are supposed to 

provide more complicated information. 

In situations where public goods decisions are made directly by thousands 

or millions of voters, the problem might well be a serious one. For decisions 

made by a smaller group or by an elected assembly, the situation is probably 

different. In the case of an elected assembly, the participants are specifi- 

cally assigned the task of assessing their own and their constituents’ prefer- 

ences, and we can hope that this job will not be taken lightly. 

The likelihood that people will abstain or be less than careful in com- 

. puting their responses, will depend on how important the issues are. That is, 

this likelihood depends on how strongly they feel about the issues described
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by the model compared to the effort involved in assessing the preferences. 

This fact tends to mitigate the problem; when inaccurate: reporting results 

jn an outcome which is not.a true Pareto optimum, the difference will 

usually be of little consequence to anyone. 

‘ 

The assumption of fixed tax schemes. Since the objective of our study 

is so clearly normative, one can ask why we have imposed the condition that 

financing mechanisms and tax schemes be fixed for any possible public goods 

decision (see condition (ii) in the Introduction) . The condition describes 

reality, but an aspect of reality that should perhaps: be changed. 

If the condition is remoyed, it is 5 possible | to construct procedures whose 

outcomes are unconstrained Pareto optima and which otherwise have the same 

desirable properties as our procedure. 65 Proponents of systems which rely 

on monetary transfers to obtain correct reporting of. preferences would point 

out that we, by imposing this condition, have deprived ourselves of the 

possibility of achieving true Pareto optimality. If the condition is removed, 

a procedure can be constructed which leads to an outcome preferred by every- 

body to the outcome of our procedure. This alternative procedure can aiso 

be adapted to various distributional objectives; hence distributional argu- 

ments cannot be used to defénd our position. 

We will respond with arguments of two types. First, we believe that 

the tradition that taxes shall not depend on how people vote. is thoroughly 

established in modern democracies, and proposals to change this rule are not 

Tikely to be taken seriously. In particular, undertaking such a ‘change 

would mean abolishing the secret ballot.°° If one wants to contribute to 

the improvement of practical decision making, proposals which violate such 

fundamental traditions will simply not be helpful.” 

Second, we believe that these traditions have a sound, substantive 

justification, based on fundamental notions of equity.. By saying this we
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imply that there are relevant factors not captured by our model. Hence a 

Pareto improvement, in the sense of the model, is not necessarily an improve- 

ment for everybody when al] factors are considered. In response to this, 

we may be challenged to extend the model and incorporate these "other fac- 

tors." At least in the short run, this is not a practical option. One has 

to make an informal tradeoff between factors captured by the mode! and non- 

formalized ones. Having made this ‘tradeoff, we conclude that 

tax systems, in many important cases, should be independent of individual 

votes, as assumed in this paper. 

Allotment of influence points. In Section 6, we discussed the inter- 

pretation of the endowments of influence points. Here we address the issue 

of how this allocation may be determined. 

oA First we should emphasize that nothing requires the numbers A N pe 

to be public knowledge. If desirable, these numbers can be kept secret 

from everybody but the central authori ty administering the decision 

“making. 6 

The endowments can be assigned by a deterministic procedure based on 

precise and "objective" criteria, or the influence points can be allotted 

at the discretion of an.authorized leader or committee. In both cases, the 

basis for the allocation is supposed to be distributional objectives or moral 

claims on influence. Presumably, such criteria are exogenously given and 

cannot be changed by the individuals’ own actions, at Jeast not in the short run. 

The objective can, for example, be to maintain the status quo. That is, 

assume that certain decisions have traditionally been made by some informal 

procedure, but it is decided to introduce a mechanism of the type described 

in this paper. For example, the purpose of this can be to save time and other
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decision-making costs. Presumably, one would not want this change to increase 

some individuals' influence at the expense of others; hence the allocation of 

influence points should reflect, as accurately as possible, the prevailing 

distribution of power. 

As an alternative, the allocation can be based on criteria which can be 

influenced by the participants. That is, the influence points may, in whole 

or in part, be used to reward certain types of action. Again, the endowments 

can be determined by objective criteria or discretionary decisions. (To con- 

tinue using university departments as an example, we could imagine professors 

receiving influence points on the basis of teaching load, or on the dean's 

discretionary evaluation of the quality of their work.) Casual observation 

suggests that in many organizations, the members! influence is partly deter- 

mined by their contributions to the provision of public goods. New questions 

will arise if the influence points are allocated in this way; they will not 

be discussed here but may be the subject of future investigations .°° 

- General principles for allocations of influence points can hardly be 

given. An appropriate procedure will -have to be worked out in any specific 

situation where our mechanism might be implemented. But we suspect that the 

introduction of a formalized procedure like the one presented in this paper 

will often lead to increased use of formal rules and objective criteria else- 

where in the system. In most cases, it seems unlikely that somebody will be 

given the authority to allot influence points in a discretionary way. 

Especially in connection with legislative decisions and other cases in which 

people feel that fundamental rights and important interests are at stake, we 

believe that discretionary allocation of influence will not be accepted. 

A great legislative leader, it is often asserted, can "test the waters,” 

formulate a package of legislation which represents a workable compromise, 

and then use a variety of persuasive means to have the package accepted by 

the legislature (or at least by the jeader's own party). In terms of our
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model, the leader's role can be interpreted in two different ways: First, 

the leader can be viewed simply as an agent who computes the outcome. The 

participants’ relative influence is given, though not in a formalized manner. 

The leader's job is to assess people's power and preferences, and then seek 

out the "center of gravity" for the forces which pull in different directions. 

(The leader's own preferences may or may not be among these forces.) Second, 

the leader may also be the one who dispenses influence and decides upon the 

power of the representatives. 

If the decision making is formalized, the first of these roles will be 

taken over by the procedure. One could imagine, however, that legislative 

leaders essentially keep their position as “power brokers" and continue to per- 

form the second function: In much the same way as they used to hand out committee 

assignments, in our model they would allocate endowments of influence points.on a 

discretionary basis. But we do not believe that most legislators, or their 

constituents, would accept such a process. Acceptance seems equally unlikely 

whether the leader's allocations are kept secret or made public. If our 

mechanism were put into effect, it would become more difficult to base differ- 

entials in power on discretion or nonobjective criteria, such as force of 

personality or strength of one's political network. We would predict, there- 

fore, that legislators would get equal endowments of influence points, or that 

endowments would depend on observable criteria such as the size of the 

electorates, support in the most recent election, seniority, etc. To what 

extent such a development is desirable is a matter for commentators on and 

students of the political process to debate.
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8. Concluding Remarks 

Find a mechanism that assures the provision of an efficient bundle of 

public goods, when people's preferences are unknown to the authority which 

administers the decisions. This challenge, together with the constraint 

that the financing mechanism be externally imposed, was the motivation for 

this paper. We have shown that the challenge can be met, provided that 

individuals have convex preferences for possible public goods bundles and 

that individuals act in an uncoordinated, self-interested manner. 

To recapitulate, the procedure works through a kind of weighted voting. 

Each participant has an exogenously given endowment of “influence points." 

The individual allots these points among the various goods, and uses them 

to "vote" for an increase or a decrease in the supply of each good. But 

influence points do not produce votes for movement on a linear basis; as a 

person spends more points on one good, the marginal value of an additional 

point decreases. Specifically, votes equal the square root of the number 

of points expended. This decreasing "productivity" of the influence points 

induces the participants to spread out their allocations, in a way which 

reveals their relative strength of preferences for changes in the provision 

of the different goods. 

If the votes cast in favor of increasing the supply of each public good 

exactly balance the ones cast in the opposite direction, an equilibrium is 

achieved. The equilibrium is the outcome of the procedure; it represents 

an efficient bundle of public goods, as well as having other desirable proper- 

ties which are detailed in Sections 3 and 4.
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The distributional aspects of the outcome are determined by the endow- 

ments of influence points. By varying these endowments, the mechanism can 

be adapted to different sets of distributional objectives; see Proposition 3 

and Section 6. 

Problems exist in connection with the actual computation of an equili- 

brium, problems that parallel those that arise in relation to competitive 

markets for private goods. Computational issues are addressed in Section 5, 

in which we also present an algorithm which seems to be successful in dealing 

with a fairly general class of individual preferences. 

The selection of public goods is an important assignment of governments. 

Decisions about public goods are also made by a variety of non-governmental 

entities; we have earlier used university departments as an example, but 

many others could be listed. The procedure by which such decisions are made 

is important for the substance of the decision and hence for the well-being 

of society or of the group involved. Traditional decision-making mechanisms 

have obvious shortcomings: Either they fail to take adequate account of the 

strength of people's preferences, or they render themselves vulnerable to 

strategic behavior. OQur procedure tries to deal with both these problems. 

We recognize that theoretical results like the ones presented in this 

paper only represent a first step. There is a long way to go before mechanisms 

of this type can become parts of procedures for real-life decision making. 

Still, the ultimate objective is practical applications; we hope that in 

time our work will contribute to improved decision making for a variety of 

organizations and polities.
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‘in the Lindahl solution, the public good is provided up to the point 

where marginal cost equals the sum of the participants' marginal valuations. 

The total cost is then divided among the participants in proportion to their 

marginal valuations at the chosen level. 

See, for example, Samuelson (1954), where the incentive problem is also 

discussed. 

3The procedure which asks people to list their preferences but does not 

pay any attention to their answers, provides a trivial example; it generates 

no incentive for incorrect reporting. Non-trivial examples can also be 

constructed. In a somewhat different context, this is done by Zeckhauser 

(1973); see page 943. There the outcomes are lotteries over a finite set of 

alternatives. Procedures are constructed for which the unique best response 

is to report one's preferences correctly, but the resulting outcome is not 

Pareto-optimal.
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+See note 59 below. 

Ssuch procedures are reviewed in Groves (1979). We discuss the issue 

further in Section 7; see note 65 and accompanying text. 

SF or further discussion of "mechanism-constrained Pareto optimality," 

see Zeckhauser and Weinstein (1974), Section 3. 

™ more satisfactory solution concept would have involved dominant 

strategies. This, however, is too much to ask for; see further discussion 

in Section 5. 

Sue shall later introduce assumptions which imply that only interior 

points of the feasible set can be chosen; hence we need the condition that 

the interior be non-empty. Note that when a set is convex and has a non- 

empty interior, every point in the set is the limit of points from its 

interior. 

"This is not to say that there cannot be uncertainty concerning the 

public goods. Each potential decision X may in itself be a risky prospect. 

This will cause no problems as Tong as the individual can rank these pi 5 

and the ranking can be represented by a function Vs as described in the text. 

(For an example where such uncertainty clearly exists, let one public good 

be "expenditure on air pollution control." There is uncertainty both about 

the effectiveness of expenditures in reducing pollution, and about the ulti- 

mate effects of any given pollution Jevel.) The assumption does rule out 

randomized decisions. That is, we will not allow the government's decision 

to be a probability distribution over public goods bundles, with the final 

outcome to be chosen subsequently by a lottery.
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Othe construction of such valuation functions and their properties 

are discussed by Zeckhauser and Weinstein (1974); see, in particular, their 

Section 4. 

Me must not include in x So many aSpects of the tax system that the 

set of technically feasible decisions has dimension less than K and there- 

fore has an empty interior. In particular, total government expenditure 

should not be explicitly included as a coordinate. 

lt¢ total resources are fixed, we can include the wealth of each per- 

son but one in x; see the previous note. 

again, the vector x which describes a decision must be chosen in such 

a way that the feasible set has a non-empty interior. For example, if the 

decision essentially consists in dividing fixed resources among a number of 

activities, K must be one less than the number of activities. 

the issue is discussed after Proposition 4 in Section 4; see, in par- 

ticular, note 40. Even in the cases where (1) and (2) are used, we do not 

claim that they represent the weakest possible conditions, but we will not 

go into the question of whether they can be relaxed. In the more general 

model mentioned in connection with note 8 where the set of possible decisions 

is compact and convex, the condition corresponding to (1) and (2) would 

require that at any point on the boundary of the feasible set, the gradient 

of V5 points inwards. 

S60 Zeckhauser and Weinstein (1974) for a more thorough discusston. 

166 defer the question of what to do if y does not equal x, so that 

x is not an equilibrium. At the moment we are concerned with the properties 

of the equilibrium concept; the existence of equilibria and ways to find 

them will be addressed later.
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one can ask whether f has to be the same function for all i and k; 

we comment on that question in note 31 below. 

18 concavity of the functions Fi implies that the set {(uy 5+. sUy) | there 

exists an x such that Wi SV, Fue) for i = 1,...,N} is convex. A standard 

application of the "supporting hyperplane theorem" proves the statement in 

the text. 

9 consider, for example, the characterization given in Samuelson (1954), 

Since the cost of providing the public goods is incorporated into the func- 

tions Vas marginal valuations must sum to 0 in our case, rather than summing 

to the marginal production cost for the public good. Other differences 

arise because we do not consider private goods and do not allow mone- 

tary transfers (except through the predetermined tax system). The weights 

Ayres ady play a role similar to Samuelson's social welfare function. Speci- 

fically, ay corresponds to the derivative of the social welfare function with 

respect to. i's utility, calculated at the final allocation. 

201% is sufficient that the two sides of (9) be proportional. That is, 
avs 

(4} and (8) will coincide if b:, = oA. —!, for all i and k and a fixed 
ik j Oxy 

number o > 0. But since the choice of the numbers ay is not unique, this 

formulation is no more general than (9). 

21 formation about absolute marginal valuation in the form of, for 

example, willingness-to-pay, is not necessary for mechanism-constrained 

Pareto optimality. In our model, it is not even meaningful to ask for such 

information. 

22 the latter assumption does not represent any real restriction, since 

a corner solution will lead to violation of (9); see the example below in the 

text.
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2319 prove (11), we form the Lagrangean expression of (5) and (10), 

with hz as the multiplier for the constraint (5). Setting the derivative 

with respect to as, equal to 0 and rearranging terms, we get (11). Note 

that o;, is the derivative of the function lasgl- 

24 he important point is not that the price is 1 but that the price 

system for any good is linear. The problems described below can be avoided 

neither by choosing a price different from 1, nor by letting the price 

depend on i and k. 

ease rictly speaking, the issue is not the distance between the tenta- 

tive decision x and the maximum of Va> but the distance from this maximum 

to 2) that is, to the decision which would have been made if i did not 

participate. If the numbers Ayseee oAy are relatively small, or if other 

people's responses more or less cancel each other out, these distances are 

approximately equal. In any case, the difficulty outlined in the text wil] 

exist. In formal terms, the difficulty is that the maximization problem 

given by (5) and (10) has a corner solution. In particular, (11) does not 

apply. 

26 rhis assumes that the marginal valuation is not 0. 

27 the assumption that marginal valuation is positive, is made only to 

simplify notation. Marginal valuation cannot really be constant, since Vs 

is strictly concave. But the assumption is a reasonable approximation, since 

the range over which person i can control the decision is likely to be small. 

28 re is not necessary to assume that the marginal valuation for each 

good is different from 0. As we shall see in the next section, the argument 

applies unless y is the maximum of Vi> that is, unless all marginal valuations 

are 0.



-58- 

298 formal proof is given in Appendix A. 

this argument is correct only when K > 3; see Appendix A. 

Nshis also answers the question in note 17: We can let f be different 

for different i, but there is no reason to do so, since we can vary A, 

instead. Choosing different f for different k would, of course, violate (14). 

320 should note that the problem discussed here, to reconcile individual 

self-interested behavior with a social objective (in our case Pareto optimality), 

is related to another problem about which there is a considerable literature: 

Suppose an expert has information about the probability distribution for some 

future event. The expert is asked to provide probability estimates, but 

cannot be forced to do so truthfully. How should the expert be rewarded, 

as a function of the estimate and the final outcome, so that giving the 

honest estimates is an individually rational action? This problem has 

several solutions, one of which (called the “spherical scoring system") 

strongly resembles the solution to our problem. See, for example, Shuford 

et al. (1966) and Winkler (1969). 

33the public goods space can be of any of the types mentioned in 

Section 2. For one thing, it is possible that the public goods are non- 

monetary in nature or that no taxes are involved; in this case the functions 

V5 represent direct preferences for public goods. Moreover, it is possible 

that the complete model includes private and public goods, as well as a pre- 

determined tax system; then Vy is derived from the tax scheme and i's prefer- 

ences for both classes of goods. If we assume a linear tax system, the 

given v, can be derived from preferences for private and public goods which 

satisfy all the standard assumptions of economic theory, but these preferences 

do not have a simple mathematical form.
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34h is assumed here that ¥ is a feasible Solution. In order for equa- tion (20) to apply if y lies on the boundary of the Feasible set, we must assume that Vy is defined, differentiable and concave (and that it represents person j's Preferences } Somewhat beyond this boundary. To be precise, ve must be defined and have these Properties on an Open set which contains the set of feasible points. Together with condition (1), this implies that a 

infeasible "decision." Note that conditions (1) and (2) for (20) to apply. 
are not necessary 

5 : In Section 5, we shail discuss other forms of Strategic behavior. There the number of Participants may make a difference, 
3650, for example, Debrey (1959) , page 26, 

7 
3 In the more general model, where the set of feasible decisions is com- 

33The proof of Proposition 2 depends, however, on the assumption made
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401 deally, we would want a procedure which does not depend on (1) and 
(2). The desired procedure would coincide with the one constructed in this 
Paper on the interior of the feasible set. Moreover, it would allow Pareto- 
optimal points on the boundary to be obtained as equilibria for appropriately 
chosen distributions of influence. We have not succeeded in constructing 
such a procedure; straightforward attempts fail to satisfy either Proposition 
1 or Proposition 2. 

4Ih9 construct an example, we use the type of preferences described in 

the last part of Section 3. That is, person i has optimal point xf) and v, 

is defined by v(x) = 4|x + x, Assume that there are three 

individuals with equal influence and two public goods. Then there will: be 
a unique equilibrium. If the three optimal points form a triangle in which 
one angle is greater than or equal to 120°, the equilibrium will fall at the 
corner of this obtuse angle. Now suppose that xO) = (1,4), xl?) = (3,1) 

and x{3) = (6,1). The angle at x!) exceeds 120°, and x(2) is the equili- . 
brium. If individual 1 reports preferences with optimal point y) = 

(3.5, 1.5), then yo) Will be the equilibrium. The distance from x) to 
y) is smaller than the distance from x) to x2), hence the incorrect 
reporting has been advantageous. (Reporting y) is not person 1's optimal 
response, it is just one way of doing better than telling the truth.) This 

example is robust to small perturbations of the data, 

* this iS a conjecture based on experience from related problems; it 
is not a theorem we have proved. To make the statement precise, one can 
assume that people's preferences are drawn from a given probability distribu. 
tion. For any N and any given distribution of influence, there wil] then be
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a well-defined probability that the preferences are such that somebody can 

gain by misrepresentation. The claim is that this probability goes to 0 

when N goes to infinity, provided that the distributions of influence for 

the different N are chosen such that everybody's relative influence goes to 

O when N increases. (This includes the possibility that influence is equal 

for every N.) If one person's share of the total influence remains large, 

there is no reason to expect the probability to vanish as N goes to infinity; 

this case can be considered the equivalent of monopoly. 

‘Stat is, suppose that a procedure with these properties is given and 

that corresponding dominant strategies are chosen. Then we can construct 

another procedure for which telling the truth is always a dominant strategy, 

such that the two procedures give the same outcome for any set of indi- 

vidual preferences, provided that everybody uses the dominant strategies 

mentioned. See Dasgupta, Hammond, and Maskin (1979), Theorem 4.1.1. In 

practical applications, there may be reasons for choosing other strategy 

sets than the set of possible valuation functions; for example, other 

strategy sets may reduce the amount of information individuals wil] have to 

transmit to the central authority. But on the theoretical level, if the 

solution concept is dominant strategies, there is no reason to consider other 

sets of strategies. 

44 fundamental result in this area is the one proved by Gibbard (1973). 

For a similar result in a model more closely related to ours, see Green and 

Laffont (1977), Theorem 7. 

451 there is only one public good, our assumptions imply that prefer- 

ences are "single peaked." Then weighted majority vote is non-dictatorial 

and satisfies the conditions-mentioned in the text, provided the weights
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are such that ties never occur. (In this case, the procedure presented in 

this paper is just a complicated way of implementing weighted majority voting.) 

For K > 2, the impossibility result obtains. If preferences are restricted 

to the type described in note 41, the same is true for K > 3. (The proof of 

this is quite complicated.) But with K = 2 and preferences restricted this 

way, issue by issue weighted majority vote is non-dictatorial and satisfies 

the other conditions. {Again it is assumed that the weights are such that 

ties are impossible; this holds, for example, if weights are equal and N is 

odd.) 

46 problems arise as soon as people try to gain by misrepresenting 

their preferences, even if they actually are hurt by their actions. When- 

ever somebody reports preferences incorrectly, there is no way the proce-~ 

dure can guarantee Pareto optimality. Even if we succeed in constructing 

a procedure in which advantageous misrepresentation is demonstrably 

impossible, there is a danger that people will not believe this and will try 

to "outsmart" the system. (This problem persists even if the procedure admits 

dominant strategies, as in the discussion above of the "ideal" solution. } 

*Texperiments have been carried out in connection with a procedure related 

to ours, namely the one presented by Groves and Ledyard (1977, 1978). 

The results seem encouraging; see Smith (1975), as cited by Groves and 
Ledyard (1977), footnote 2. We find this experience significant, because of 

certain similarities between our procedure and the one of Groves and Ledyard: 

The solution concept is of the same nature in the two models; in both places 

the solution is a Nash equilibrium. Also, there is a resemblance between the
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formulas defining the two procedures, in both cases they are based on quadra- 

tic functions. As far as we can see, however, neither of the procedures can 

be obtained as a special case of the other. The models differ in the 

following ways: Groves and Ledyard consider private as well as public goods. 

They allow monetary transfers, that is, people's taxes may depend on how they 

vote. Such transfers are ruled out in our model. An equilibrium in their 

model is Pareto optimal in the strict sense; we achieve optimality subject 

to the imposed institutional constraints. 

4B5n Hylland and Zeckhauser (1979), we discuss the same issue for a 

somewhat different model. See pp. 307-308, where we consider the difference 

between cases with small and large numbers of participants. 

49 : : : : : . : : To be precise, the information contained in a function v; is equiva- 

lent to that of a countably infinite set of real numbers. For example, the 

function can be specified by giving its values on all rational points; this 

is enough since the function is assumed to be continuous. 

0 
Examples of such classes are the set of quadratic functions (which 

includes, but is more general than, the class discussed in note 41), and 

the class of "constant elasticity of substitution" valuation functions, see 

below in the text. 

‘There do ».however, exist procedures which can be used to compute 

equilibria and which always work, but these are not of the simple iterative 

form; see Scarf (1973). \ 

52 For a review see, for example, Quirk and Saposnik (1968), Chapter 5.
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3the procedure jis described in detail in Appendix B. 

this step is necessary, since it is possible (and indeed quite likely) 

that some x) is an equilibrium, in which case the procedure described by 

(b) - (d) is unlikely to converge. 

5 One might suspect that such an argument could be made about any pro- 

cedure, and that it is therefore essentially void. This is not the case. 

The point is that the mechanism responds positively to everybody's action 

at each stage, and this is necessary for the argument to apply. Suppose 

that we tried to speed up convergence by using a second-order procedure. 

That is, we would measure people's responses at two points and extrapolate 

from these data to a point where the responses sum to zero; this point will 

be the next approximation to the equilibrium. Such a procedure will react 

negatively to some of the responses and thus provide an obvious incentive 

to misrepresent one's preferences. 

56 presumably, examples for which the mechanism does not converge can 

be constructed by analogy from similar examples concerning competitive 

markets for private goods. See Quirk and Saposnik (1968), Section 5.8, and 

Scarf (1960). 

s7the functional form given here is a strictly increasing transformation 

of a production function with constant elasticity of substitution; the trans- 

formation is chosen so as to make Va strictly concave. 

Boe Appendix B for a more detailed account of the results. 

tp this respect, our procedure contrasts with procedures based on 

majority vote. In discussing this, we assume, for simplicity, that N is 

odd. We say that x is a multi-dimensional median if any proposal to change
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one number X while keeping the others fixed, will be voted down. Formally, 

this means that # {i|v;(x) > v;(y)} > N/2 whenever x and y differ on exactly 

one coordinate. This is a natural equilibrium concept for majority vote, 

and concavity of the functions Vs implies that a mul ti-dimensional median 

always exists. (A stronger concept is obtained by requiring that x get a 

majority over any y # x. Equilibria in this sense will generally not exist.) 

At the median, if a proposal is made to change one coordinate of x, self- 

interested individuals will vote according to their true preferences. Hence 

we have a Nash equilibrium result, corresponding to Proposition 1. For K = 2, 

the multi-dimensional median is Pareto optimal; for K > 3, examples can be 

found in which this is not true. For details, see Zeckhauser and Weinstein 

(1974), Section 7.2. For the case K = 2, that paper contains an incorrect 

claim. It is asserted that an extra assumption, called first-order prefer- 

ential independence, is necessary to prove that the median is Pareto optimal. 

In fact, Pareto optimality can be proved without using this condition. The 

example used to support the claim (Figure D on page 663), violates the rest 

of the assumptions; it uses preferences which are inconsistent with concave 

valuation functions. 

60The computation method need not be invariant under changes of scale in 

Ayo+++oAy. It is theoretically possible that we could construct a procedure 

in which all equilibria can be obtained by varying the scale of these numbers, 

but we doubt that a workable procedure of this type exists. 

1 . . . Again, we ignore the theoretical possibility outlined in the previous 

note.
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oe consider, for example, preferences of the type described in note 41. 

In this case, multiple equilibria can only occur if the optimal points of 

all individuals with positive influence lie on a straight line. When K > 2 

and N > 3, this is essentially impossible. 

S3ngain, an analogy can be drawn with the theory of the competitive 

market. See, for example, the discussion in Quirk and Saposnik (1968), 

Sections 3.7 and 5.6. 

Ot or example, empirical studies are needed in order to construct a 

method for computing equilibria; see Section 5. 

65, review of such procedures ts given in Groves (1979), Section 5. In 

particular, we refer to the seminal works of Groves and Ledyard (1977, 1978). 

In their procedure, everybody's taxes are allowed to depend on everybody's 

reported preferences. Unconstrained Pareto optimality can be achieved even 

if we require that individual its taxes do not depend directly on i's own 

reported preferences, but only on the outcome and on the preferences reported 

by other people. Such a procedure is constructed by Walker; see description 

in Groves (1979}, page 236, 

66 rndividual ballots need not be made public, but they would have to be 

signed and made available to the tax collector. 

87 this argument applies to decisions made by direct vote by the citizens. 

For decisions made by elected legislative bodies, the reference to the secret 

ballot is irrelevant, but still we believe that few will accept a tax system 

which lets the constituents! taxes depend directly on how their representative



-67- 

and other legislators vote. We do not deny that situations may exist in which 

it is perfectly acceptable that taxes depend on people's votes; our claim js 

that the opposite is normally the case. 

68 r¢ might appear that individual i must know Ags this number does not, 

however, convey any information to somebody who does not know A for any 

i # i. In any case, person i could be instructed to assume A; = 1; the cen- 

tral mechanism can rescale b; , appropriately. 

69rn particular, a discussion of whether the procedure guarantees Pareto 

optimality and non-strategic behavior would have to take account of the 

activity for which rewards are given and people's preferences concerning 

this activity.
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SUMMARY OF APPENDICES 

Appendix A 

We prove that the procedure constructed in Sections 3 and 4 essentially 

is the only solution to the problem posed there. Two results are proved, 

corresponding to the two ways of describing the procedure. If people are 

asked to submit their "votes for movement" directly (as described in Section 

4), the uniqueness result holds when there are at least two public goods. 

In the formulation where “influence points" are used (see Section 3), the 

square-root function represents the only solution provided that K > 3. 

Appendix B 

We report in detail on the computational experiments mentioned in 

Section 5. The class of preferences which is used in the examples is des- 

cribed and the algorithm is presented. The examples consist of some "typical 

cases ," as well as a number of cases where the parameters are randomly 

generated according to specified probability distributions. When a fairly 

high degree of accuracy is required, the latter cases needed, on the average, 

17 iterations to reach an equilibrium. (Each iteration asks for individual 

responses twice.) In more than half of the cases, one person's optimal point 

is an equilibrium and no iteration is needed. If these cases are excluded, 

the average number of iterations is 37.
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APPENDIX A 

In this appendix, we prove that the square-root formula presented in 

Section 3 is essentially the only solution to the problem posed there. The 

appendix is not self-contained; it relies on concepts and notation developed 

in Sections 3 and 4. Since we now consider the responses of only one indi- 

vidual, we can simplify notation by dropping the index which refers to indi- 

viduals; hence we write, for example, a = (ay see esp o-+e28y) instead of 

a= (agqee se sdgy sree sdgy)- 

Direct Choice of the b-vector 

As pointed out in Section 4, the function f and the numbers a, are used 

in Section 3 only to facilitate intuitive understanding; they play no essential 

role in the formal model. Hence we start by considering the case in which 

the individual chooses a vector b = (by s++ by) directly. This vector shall 

be chosen from a given set which will be denoted S. This set represents the 

"rules of the game," and our task is to specify the set S. 

When S is given, the self-interested individual solves the following 

problem: 

(Al) Choose b to maximize v(z +b), subject tobe S , 

where v is the continuously differentiable and strictly concave valuation 

function, and z is a fixed vector, representing the decision which would have 

been made if this individual had not taken part. 

We must assume that (Al) always has a solution; otherwise, the whole 

discussion will not make much sense. One way to guarantee this, is to 

require that S be compact. An explicit assumption of this type is not
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necessary; see comments after the statement of Proposition Al. We will 

assume that S is convex. This assumption will simplify the argument but 

is not essential; we discuss it after we have proved the proposition. 

If b* is a solution to (Al), let x = z + b* be the final outcome and 

define c = (Cy +++ sCy) by 

(A2) = ov for k = 1y..s5Kk. 

Then consider the problem: 

K 
(A3) Choose b to maximize } byc, , subject tobeS. 

k=] 

We shall show that b* is also a solution to this problem: If it is not, 
Kone 

there exists a b** « S such that J (b, - bye, > 0. By convexity, 
k=1 

b* + A(b*¥* - b¥) © S for 0< A <1. The definition of c implies that 

v(z + b® + A(b** - b*)) > v(z + b*) for sufficiently smal] A > 0; hence b* 

does not solve (Al), and the claim is proved. Conversely, if b* « S is not 

a solution to (Al), and x and ¢ are defined as above, then.b* does not solve 

(A3). This is easily proved by using the fact that v is concave. 

Therefore, we can concentrate on maximization problems of the type (A3). 

Qur objective is to choose $ such that the self-interested individual will 

choose a vector b which is parallel to c; see equation (9) in Section 3. 

This must be true for any c which can occur. But it is easy to see that c 

can be any K-dimensional vector. Now it is clear what we want to prove. 

Proposition Al: Let K > 2 be an integer, and Tet S be a convex 

subset of the K-dimensional Euclidean space. Assume that for any 

K-dimensional vector c, there exists a b* which is a solution to 

(A3) and which satisfies



(A4) b*¥ = ac, 

for some number a > 0. (The number may depend on c.) 

Then there exists a number A > 0 such that 

(AS) S = th = (byseee by) | } of < A}. 
k=l 

It is apart of the premise that (A3) always has a solution of the spe- 

cial type described by (A4). Hence it is implicitly assumed that S is such 

that (A3) has a solution for any c, and no explicit assumption is necessary 

to assure this. 

The proposition is not true for K = 1. Then any set of the form 

Se [-B, Bol, where By and Bo are positive numbers, satisfies the premise. 

But if By # Bos the conclusion does not hold, 

By applying standard techniques for solving constrained maximization 

problems, we can prove that a set S given by (A5) will satisfy the premise 

of the proposition, that is, the converse of Proposition Al holds. 

For a given c, the problem (A3) may have many solutions. The premise 

only requires that at least one of these be parallel toc. Let 0 denote 

the zero vector (0,...,0). For c = 0, it is clear that only b* = 0 can 

satisfy (A4), but a can have any positive value. As a first step towards 

proving the proposition, we shall show that for c # 0, the number a of (A4) 

is unique. Then b* is also unique. 

Suppose that this claim is false. Then there exist vectors c, b* and 

b**, and positive numbers a and a', such that both b* and b** are elements 

of S and are solutions to (A3), c #0, b¥ =ac, b*¥* = atc anda #a'. With- 

out loss of generality, we can assume a > a‘. Then
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K gy K K Ky = 2 2 ek Cc. = ai yey < 0 1 = J bc, » 

contradicting the assumption that b** is a solution to (A3). The claim is 

proved. 

Hence we can define a function OC] s+. sly) whose value is the a of 

(A4). This is defined when c.# 0 for at least one k, and a(C] +++ Cy) >0 

whenever it is defined. The optimal value of (A3) is equal to 

(A6) acy see sey) (cf tot cf) 

Now let a K-dimensional vector d # 0 be given, and let be S$ be a vector 

which solves (A3) and satisfies (A4) when d is substituted for c. Then we 

will have be = (dy 52-4 sdy) ey for all _k. This b can be tried as a solution 

to the original (A3), the value of which then becomes 

a(dy s+ ++ sdy) (ey dy +... + Cydy) : 

This can obviously not give a value of (A3) which exceeds the optimal value 

given by (A6). Hence 

2 {A7) O(Cy 5.06 Cy) (C4 toi. t cy) > Ady see sdy)(cqdy toot cyd) 

By interchanging the roles of cy and des we also get 

(A8 ) a(d d,)(d2 +... + d2) > ale cy)(cydy + v2. + Cydy) prrseeded (dy +... KP ZAC reese) (Cyd) +... yay). 

Now we fix the numbers cy for k = 2,...,K such that cy # 0 for at least 

one k > 2. Then a can be viewed as a function of one variable; that is, 

a(C] » +++ sey) = a(c,}. We set C, = ¢, d) =-¢ + © for some « > 0, and dy = Cy
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K 
for k = 2,...,K. For simplicity, we write C= ) cfs then C is fixed and 

k=2 

strictly positive. Now (A7) and (A8) give 

(A9) a(c)(c” + C) > alc + e)(cle +e) +6) 

and 

(A10) ale + e)((c +e)? + C) > alc)(cle +c) + c) 

This implies 

  

/ C cte (All) a(cte) Zac € < a(c) - a(cte) < a(cte) clcteyit © 

For a moment, we restrict our attention to positive values of c. Let 

a closed interval [c,¢c] be given, where 0 < ¢ <1<¢<, From (All), we 

conclude that a is strictly decreasing for c > 0; hence it is bounded by 

a{c) on [c,c]. The expression (cte)/[c(cte)+C] is also bounded, when c and 

€ are such that c < c and cte < C. This implies that a is continuous on {c,¢]. 

We shall now prove that if a(€) is given, (All) uniquely determines a. 

To be precise, let 8 be a function which is defined and strictly positive 

on [c,c], assume that (All) holds with ® substituted for a for all c and 

e with c < ¢ < cte < C, and assume o(¢) = 8(C). Then we shall prove that 

a{c) = B(c) for all ce [c,¢]. By an argument used above, we can conclude 

that 8 is continuous and strictly decreasing. Suppose that a(c) > B(c) 

for some c « [c,c]. (The situation is symmetrical; hence the case 

a{c) < 8(c) is treated similarly.) From earlier remarks, including the 

assumption that 6 is strictly positive, we can conclude that the function 

a(c)/B(c} is continuous and has a maximum on fc,c]. Let the maximum be
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attained at c*. The maximum must exceed 1, and since a(¢) = B(c) >.0, 

a(c*) > a(¢) and B(c*) > B(C), we can find a number n ‘such that 

) afespeat > n> ASL > 
By using the right-hand inequality in (Al]) for a and the left-hand 

inequality for 8, we get 

(A13) a{c) - a(cte) a(cte) | (che) (c24C) 
B(c) - Blcte) — B{cte) c(c(cte) + C) , 

for all c and « > 0 where c and cte belong to [c,c]. The last term in 

the right-hand side of (A13) exceeds 1 and is bounded by (cte)/c < 1 + e/c. 

Hence this term tends to 1 as © tends to 0, uniformly inc. By combining 

this with (Al2) and the definition of. c*, we can find &, > 0 such that, when- 

ever O0< € < Eqs 

a(c) - a(cte) (14) B(c) = ectey <7 

Now we choose an increasing sequence of numbers cf) fm) (tt) 

where (0) = c%, o(M) = C, and (im) - o(m-1) < £& for m= 1,...,M. For 

each m, {AT4) implies 

afe™M) - afc) < n(acel™)) ~ acely) 

Adding this for m= 1,...,M, gives 

a(c*) - o(€) < n(@(c*) - g(c)) , 

which contradicts (Al2). This completes the proof that a(c) = B(c) for 

all c e [c,¢].
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Now we must find a function B which satisfies (All) and has B(c) > 0 

for c > 0. We can do this by using the fact that the converse of the proposi- 

tion is true. Let S be given by (A5) and let B= VA. For c #0, it is 

easily seen that the unique solution to (A3) is b* given by 
* 

dy = C,B/ vert... FC p. The corresponding number o of (A4) is equal to: 

  (A15) a(c) = —8 
Ve*4E 

Earlier arguments prove that the premise of the proposition implies (All). 

Hence we can conclude that the function 8 given by (Al5) satisfies (All). 

This holds for any B > 0. (The claim that @ satisfies (All) could also 

have been proved directly, by straightforward but tedious algebra.) 

The function 8 is positive for c > 0, and by choosing B appropriately, 

J we get a(c) = B(¢). By the uniqueness result proved above, a(c) = 6(c) for 

all ce [c,¢]. In particular, this holds for c = 1, which implies 

B= a(l}Vi4+C, That is, B does not depend on c or G. For any c > 0, we can 

choose ¢ and € such that c< c < ¢;_ therefore, a(c) = B(c) for all c > 0 

with B as specified above. 

We can now return to (All) and consider the function a for negative 

values of the variable. Here (All) implies that a is a strictly increasing 

function. An argument similar to the one used above proves that a(c) = @(c) 

for c < 0, when 8 is given by (AIS), with B = a(-1)-14C, 

Since a is monotone for c > 0 and for c < 0, the limits Tim, a(c) and 
c>0 

lim_a(c) exist. In (A9) and (Al10) we let c = 0 and let © go to 0 from above, 
c>0 

The equations then imply a(0) = lim, o(c). By setting « = -c and letting c 
c0 

tend to 0 from below, we similarly get a(0) = lim_ a(c). Then we can conclude 
c>0
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that the number B in (AI15) is the same for c > 0 and forc <0. Hence 

a(c) = 8(c) for all c, where 8 is given by (A15), with a fixed number B > 0. 

We return to regarding a as a function of K variables. We have proved 

the following: For fixed but arbitrary numbers Corse slys at least one of 

which is non-zero, and for all c i 

(A16) (Cy s-++ Cy) = ——8.___ ; 
vey tl. Ft cK 

where B can depend on Coseee sly. Of course, the entire argument can be 

carried through with the k'th coordinate playing the role the first coordin- 

ate played in the argument above. That is, for fixed numbers Cy sere sly yoy iys 

++ aC which are not all 0 and for all c,, (A16) holds. Here B can depend Ke 

on k and Cyaeee sly psCpgr sees aye It remains to be proved that B is, in 

fact, the same number in all cases. 

For any c # 0, the B for which (Al6) holds is unique. In particular, 

in order for (A16) to be true for (1,...,1), we must have B = o(1,...,)+K. 

We fix B at this value. Now let any c # 0 be given, and choose k such that 

cy #0. We shall move from (1,...,1) to c in K steps. First we change the 

k'th coordinate from 1 to Cpe Then we make similar changes in the other 

coordinates, changing one of them at a time in an arbitrary order. Each step 

is of the type described above; therefore, the truth of (Al6) is preserved. 

Hence (A16) holds for all c # 0 with the fixed B = a(1,...,1)*“K. 

Now we let A = Bo Choose any vector & = eyo aCy) with Euclidean 

2 norm (or length) equal to B, that is, assume J) cy = A. Then (Cy 5644 sy) =], 
k=1 

and the vector b* of (A4) is equal to c. Since b* is a solution to (A3), it
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belongs to S. This proves that S contains all K-dimensional vectors with 

norm equai to B. If b has norm less than B, there exists a c such that 

[cil = B and b = Ac with O<A< 1. (If b = 0, any vector c with norm equal 

to B can be used;-otherwise, c is unique.) Then c « S and -c € S by earlier 

arguments. Moreover, b = ((14A)/2)*c + ((1-A)/2)*(-c); therefore, be S$ 

by convexity of S. Now we have proved that the set on the right-hand side 

of (A5) is a subset of S. If (A5) does not hold, there exists ab ¢ S with 

K 

y bf = A' >A. Let c= b, and try b as a solution to (A3). Then the value 
k=] 

of (A3) becomes A', and the optimal value must be at least A'. From (A6) and 

(A16), we conclude that the optimal value of (A3) for this c is BYA® = YAAT < A‘, 

This contradiction proves (A5) and Proposition Al. 

As pointed out earlier, in the premise of the proposition we only assume 

that (A3) for any c has a solution which satisfies (A4). When (A5) is proved, 

however, we can conclude that (A4) gives the unique solution to (A3), provided 

that c # 0. 

The assumption that S is convex, is used only in the last part of the 

proof. Without this assumption, everything which was said about the function 

a will still hold. Moreover, we can prove that S contains all K-dimensional 

vectors with norm equal to B, and no vectors with larger norm. Without con- 

vexity, we cannot uniquely characterize S, since we do not know which vectors 

b with 0 < |{b|| < B belong to S. (We know that 0 © S, since (A4) must hold 

for c= 0.) But these vectors are really irrelevant for the problem, there- 

fore, the convexity assumption is not essential.
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Choice of the a-vector 

Then we return to the procedure as described in Section 3. As before, 

we will consider maximization problems of the form (A3); the essential equiva- 

lence of (Al) and (A3) is demonstrated above. 

A function f is given. In the present version of the model, f repre- 

sents the “rules of the game," and the purpose of the discussion is to des- 

cribe f. The self-interested individual solves the following problem, which 

corresponds to (A3): 

K K 
(A17) Choose a to maximize ey) oe subject to eye! <1. 

Here cy is given by (A2); therefore, c can be any k-dimensional vector. The 
K 

constraint in (A17) could have been written } |a,| <A for an arbitrary 
k=] 

positive number A, We have restricted ourselves to the case A = 1 in order 

to simplify notation; nothing of substance would change if we used a fixed 

but arbitrary A> 0. 

We want to prove that f must be of the form given in Section 3. If 

K = 2, this is not true; many other functions satisfy the conditions. This 

issue is discussed below; here we assume K > 3. 

Suppose that f is given, and define another function f* by interchanging 

the values of F(ap) and f(-a9) for a given a) #0. That is, f* is given by 

f*(aq) = f(-a9), f*(-a9) = flag), and f*(a) = f(a) when Jal # Jag]. For any 

c, (Al7) will have essentially the same solution when f is used and when f* 

is substituted for f. Therefore, we can only hope to prove uniqueness of f 

if such interchanges are ruled out. To this end, we will assume f(-a) < f(a) 

for all a> 0. Note that we do not assume f(a) > 0 for a > 0 or f(a) < 0 for
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a <Q, but these statements follow from the conclusions obtained below. 

The assumption does not in any essential way restrict the class of possible 

functions f; for any f, the statement can be made true by interchanging the 

values of f(a) and f(-a) for every a which initially violates the assumption. 

As we have seen, these operations do not change anything. 

PropositionA2: Let K > 3 be an integer, and let f be a real-valued 

function defined on [-1,1]. Suppose that for all ae (0,1), 

(A18) f(-a) < f(a). 

Moreover, assume that for any vector c = (Cy aoe oy)» there exists 

an a* which is a solution to (A17) and which satisfies 

* 

(A19) Fay) = ac, for k = 1,...,K; 

for some number a > 0. (The number o may depend on c.) 

Then there exists a number B > 0 such that 

BYa for O<a<1] 

(A20) f(a) 

~-By-a for -1<a<0. 

The converse of Proposition A2 can easily be proved: Let f be given 

by (A20). For any c # 0, the solution to {A17) is unique and satisfies (A19). 

For c = 0, there exists a solution to (A17) which satisfies (Al19), namely 

a* = 0. 

To prove the proposition, we define a set S of K-dimensional vectors by 

K 
S$ = {blthere exists an a = (a,,...,a,) such that J} fa,| <1 b a= (ay K ek 

and by = Flay) for k = 1,...,K}.
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The premise of Proposition A2 now implies the premise of Proposition Al, 

except that S need not be convex. Hence we can use everything from the 

proof of Proposition Al which does not depend on convexity of S. In par- 

ticular, for any c # 0 the number o of (A19) is unique. Hence a can be 

viewed as a function of c, and this function is given by (Al6), where B is 

a positive number. We shall prove that (A20) holds for the number B 

obtained from (A16). 

To simplify notation, however, we will assume B = 1. Only trivial 

modifications are needed in the proof below in-order to allow an arbitrary 

B>0O. 

For any c #0, if a* is a solution to (Al7) which satisfies (A19), we 

must have 

c 
(A21) f(a) = for ke eK. 

Cy +i... t cy 

The optimal value of (A17) is 

Kx 
(A22) ay Mek = vert Fee 

From now on and until otherwise stated, we shall only consider vectors 

c which satisfy Cy > 0 for k = 1,...,K. For any such vector there exists, 

by assumption, a vector a* which solves (A17) and satisfies (A19). There 
* 

is no loss of generality in assuming ay > 0 for all k. This follows from 
* 

k 
* 

the value of (A17) can be increased by substituting the positive number ay 

* 
(A18) by the following argument: Suppose that a, <0. If fay) < F(-a,), 

* for ay contradicting the assumption that a* solves (A17). If f(a,) = F(-a,), 
* * 

we can substitute ~ay for ay without changing anything of interest; in
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* * 

particular, fay) remains unchanged. By (A18), Fay) > F(-a,) is impossible. 
* 

We will assume that all solution vectors a* are chosen so that a >0 

for all k. Hence we will only consider the values of f on the interval 

* 

ke 

We shall construct a function g, defined on (0,17), which is a kind of 

[0,1]. Moreover, (A21) implies 0 < fla.) < 1 for all possible a 
— k — 

inverse of f. For any ce (0,1), let c, =e and find positive numbers 

Coseas Sy such that cf ti.. + cf = 1. Then find a solution a* to (A17) and 

(A19), and define 

* 

g(c) = a). 

We have assumed ay > 0, and the constraint in (A17) requires lay <1. Hence 

0 < g{c) < 1. For a given c, there are many possible choices of Cosees skys and 

for what we know so far, the solution to (A17) and (A19) need not be unique 

for given Cy seen oly. We arbitrarily pick one admissible set of values for 

each c3 hence g is well defined on (0,1). From (A21) we get 

(A23) f(g(c)) = (ay) = =e b-— = c. 
cy to.e FC 

This is the sense in which g is an inverse of f. According to what we have 

proved so far, we may have g(f(a)) # a for some ac (0,1), in which case g 

is not really an inverse of f; this possibility will, however, be ruled out 

later. 

Let c ¢ (0,1) and a be given, and assume 0 < a < g(c) and f(a) > c. 

If a is substituted for a; in the solution to (A17) which defines g(c), 

then the constraint of (Al7) will still hold, but the criterion will increase 

* 

since cy > 0 and f(a) > c = f(a,). This contradicts the assumption that a*
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is a solution, and for all c « (0,1) and all a we have 

(A24) 0 < a < g(c) => fla) < ¢ 

Then let 0< c<d< 1. We cannot have g(c) = g{d); that would contradict 

(A23) and the assumption that f is a single-valued function. Moreover, 

g(c) > g(d) contradicts (A24). (Substitute g(d) for a, and use (A23).) 

Hence g(c) < g(d), that is,.g. is a strictly increasing function on (0,1). 

Therefore, g can have at most a countable number of points of discontinuity. 

2 2 pores slg be given and assume cy +... + cy = 1, 

Moreover, let an integer k with 1 < k < K be given and suppose that g is 

Let positive numbers c 

* * 
continuous at c,. Finally, let a seees@y be a solution to (A17) and (A19)._ 

Under these assumptions, we can prove 

Eo
 

a
t
 Ww = g(cy), and the constraint in (Al7) is binding; that is, 

(A25) 
* 

toot ay = 1. a 

* 
Therefore, in this case at least, the k'th coordinate ay of the solution is 

* 
unique. To prove the first statement, observe that (A21) implies Flay) = Cy. 

* 
* If a < g(cy), continuity of g can be used to find c < c, such that g(c) > ay. 

This contradicts (A24), with a, substituted for a. If ay > g(c,)s we can 

t
e
 
+
 

find c > c, such that g(c) < a). Then (A23) gives f(g(c)) > fay). If we 

substitute g(c) for ays the constraint of (A17} still holds, and the value 

of the criterion is increased. This contradicts the assumptions that 
* * ~ * 

Apres sy is a solution and proves that a, = g(c,). Finally, suppose that 
* * 

a, te. + ay * l-e, with e > 0. There exists ac > Cy such that
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* 
* g(e,) < g{c) < g(c,) tesa, +e. Again, g(c) can be substituted for aes 

to increase the value of (A17) without violating the constraint. This con- 
tradiction proves the last part of (A25). 

The next step is to prove that g is continuous on (0,1). If this is 
wrong, find ac withO<c.<Jat which g is not continuous, and define 
a’ = Vim g(c') and a" = lim g(c'). These one-sided limits exist - + c'+c csc 

since g is strictly increasing. For the same reason, a' < g(c) < a", with 
at least one inequality strict because g is discontinuous atc. Let 

€ =a" - a's; thene > 0. Now we shall choose Cy ares sly such that Cy = c, 

2 Cy = Cy for k = 4,...,K, and of Foo. t cy = 1. This can be done in 7 

uncountably many ways. In particular, we can choose Cy anywhere in the 

interval (0, 1-c*}, For each such value of Cos there is exactly one value 
of C3 which satisfies the conditions, and C3 chosen this way is a strictly 
decreasing function of Co. Since g has at most a countable number of dis- 
continuities, the set of values of 7) for which g is discontinuous at 7) 
or C3 or both, is countable. Hence there exist possible values of Cy and 
C3 such that g is continuous at both Co and Cy. Fix Co and C3 at these 
values; then we have also fixed Cp = Cg for k = 4,...,K, Choose 

6 > 0 such that Co-8 < Cy < Coté implies gle) -~ 6/2< g(co) < (co) + €/2, 

We also choose & so small that Co~d > 0 and (cp#8)? + cf + o..t cf <1. 
' t 

. For each Cy with Co~6 < Cy < Co, there exists exactly one cy > €) such 

'2 '2 2 2. . that cy + Co + Cat... + cy * 1. There are uncountably many possible 
! 

t 
i) choices of Cos and different values of Cy lead to different cy. Hence we 

! can argue in the same way as we did above, to conclude that Cy can be 
t l chosen such that g is continuous at cy and Cy. Now solve the problem (A17)
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t 
: and (A19) for the vector (cy, Cos Cas wees Cy). Equation (A25) applies for 

all k = 1,...,K, and we get g(cy) + g(cy) + g(c3) taut g{cy) = 1. 
a . 

Similarly, for each Cy with fy < Cy < Cord, there exists a Cy with 

, et ct a ok anv hoose c, such that 0< Cy < cy and cy + Co” + C3 tii. t cy = 1. We can choose co 

u i 

g is continuous at c, and Cy» and (A25) gives g(cy) + g(co) + g(c3) Fo. 

+ g(cy) = 1. Hence g(c,) + Cn) = g(cy) + g(co). By the choice of 6, 

Ig(cy) - g(cy)| <e€. Since cy < c, < c), we have g(c,) <a‘ and g(c)) > a", 

and hence g(cy) - g(c,) >. This is a contradiction, and we have proved 

that g is continuous on (0,1). Note that this argument requires K > 3, 

Let a = a g(c); this is well defined and ag > 0. Assume that 

ag > Q. Now we choose the positive numbers Cy sree sly such that Cy = Cos 

Cy = Cg for k = 4,...,K, and cf to. t cf = 1. For any sufficiently sma] 

C3, there exists a cy for which this holds. Then (A25) applies and gives 

g(cy) tot g(cy) = 2g(c1) + (K-2)g(c5) = 1. We let C3 tend to 0; then 

Cy will tend to 1/¥2. Continuity of g at 1/v2 and the definition of ay 

give 2g(1/v2) + (K-2)ap = 1. The assumption aq > O now gives g(1//2) < 1/2. 

Since g is continuous, we can find c' > 1/¥2 such that g(c') < 1/2. We 

define a = g(c'), and (A23) gives f(a) = c' > 1/Y%. Consider the numbers 

Ayers sys where a, = a =a and a= 0 for k = 3,...,K. Then 

[aj] +... + lay] <1, and when the numbers Cya+++9Cy are chosen as described 

above, the value of (Al7) becomes cf (az) tot CyF (ay) = 2cqc' + (K-2)cF(0). 

When €, tends to 0 and c, tends to 1/v2, this expression tends to 2(1/v¥2)e' > 1,
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Hence there exists C,..--sCy with cf t+... a = 1, such that (Al17) has 

a solution in which the value of the criterion exceeds 1. This contradicts 

(A22). Therefore, ag > 0 is impossible, and we have Tim, g(c) = 0. 

: c+0 

For any positive integer M with 2 <M < K, we shall prove the 

following: 

Let Cy acre sly be positive numbers such that cf tou. + cA =. 

(A26) 
Then g(c,) +... F g( cy) = 1, 

To prove this, choose numbers fF) cpl for all positive j, such that: 

(a) For all j and all k= 1,..-4k, cf) > 0, 

(b) For all j, (cf5))? +... 4 (od)? = 1. 

(c) For k= 1,....M, lim of) = Gy. 

jr~ 

(d) For k = NAl,...4K, Tim cfd) = 0. 
je 

For any j,  (A25) implies that g(clJ)) +... 4 g(cld)) = 1, 

Then (A26) follows from continuity of g and the fact that lim, g(c) = 0. 
c>+0 

We can let M= 2 in (A26). By letting c, tend to 1 and cy tend to 0, 

in such a way that 2 + 2 = 1, we get lim. g(c) + lim g(c) = 1. Hence 
1 2 - + 

cl c>0 

lim, g(c) = 1. Since g is also continuous and strictly increasing, we can 

col 

now conclude that for each a e (0,1) there exists a unique c © (0,7) such 

that g(c) = a. Then (A23) gives f(a) = c. Therefore, f on (0,1) and g on 

(0,1) are inverse functions. From what we have proved about g, we can then 

conclude that f is continuous and strictly increasing. Moreover, 

0 < f(a) < 1 for ae (0,1).
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An inverse of (A26) can now be established. For any positive integer 

M with 2<M < K, we have: 

(aor) Let Ay seve ody be positive numbers such that a 1. 

Then (f(a,))? +... + (Flay))® = 1. 

To prove this, Tet Ay sere say be given, and define, for k = 1,...,M, 

F(a,) 
(A28) cy 

(Fla))° +... + (Flay)? 

Then c, > 0 and cf tiwt cf = 1, and (A26) implies g(cy) tout g(cy) =, 

If the denominator in (A28) is less than 1, c, > F{ap) for k = 1,...5M, 

which implies g(c,) > g(f(a,)) = ay and contradicts the assumption 

ap tee. + ay = 1. If the denominator is greater than 1, a similar con- 

tradiction follows. Hence we must have (F(a)? +... 4 (#(ay))* =1, 

which gives the conclusion of (A27). 

By applying (A27) with M = 2 and ay = a = 1/2, we get f(1/2) = 1/v2, 

More generally, we shall prove that f(a) = Ya whenever a = isd for some tL 

positive integers i and j with i < 2. The proof is by induction on j, 

and the case j = 1 has already been covered. Assume that the statement 

holds for a given j and all possible i, and let a = 42s for integer i. 

First suppose 0 < a < 1/2, that is, 0< i < 29. Define i! = 29 - i and 

at = 4'/2), Thenatata'ls 1, and (A27) implies
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(F(a))? + (#(a))? + (#(a'))? = 1. The induction hypothesis gives 

f(a') = Va", hence this implies f(a) = va. If a= isos*l satisfies I 

1/2 < a< 1, we have just shown that f(1-a) = /l-a. An application of 

(A27) with M = 2 proves that f(a) = Ya. The only remaining case is a = 1/2; 

which has been taken care of above. This concludes the induction step. 

Note that (A27) is used only for M = 2 and M = 3; hence the proof works 

for any K > 3. 

The square-root function and the function f are both continuous on 

(0,1). They are equal on all points of the form 2s, which form a dense 

subset of (0,1). Hence (A20) holds for ae (0,1) 

If f(0) > O, we can choose c such that 0 < c < f(0) and let a = 0. 

Then g(c) > a, and we have a contradiction to (A24), Hence f(0) < 0. 

We now drop the assumption that ¢ satisfies c > 0 for all k. Choose 

any number cy with -1 < cy < 0, and let Coser + sly be positive numbers such 

that cy +... + cg = 1. Find a solution a* to (AI7) which satisfies (A19). 
By an argument used above, (A18) can be used to prove that there is no loss 

< 0 and ay > 0 for k = 2,...,K. Clearly we have: 

a
 

of generality in assuming a 

* * 

(A29) [a, | Fu. t la, | < ] 

Moreover, (A21) gives: 

* 

(A30) F(a) = Cy : for k=1,...5K. 

* 

Since f(0) < 0, we must then have a, > 0 for k = 2,...,. Then (A29) implies 
* 

that no a, has absolute value 1; therefore, 0 < ay <1 for k> 2. We know
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* 

the function f on (0,1), and (A30) implies a = cf for k > 2. The constraint 

(A29) must be binding; otherwise, the value of (A17) could be increased by 
. . * * * * 2 2 2 

increasing a). Therefore, la, | =] - Ay m cee 7 AY F 1 - Co ~ ses ~ Cy Ce 

* 

We have assumed ay < 0; hence (A30) gives f(a,) # Cy = ~v-ar. As we vary 

* 

Cy in (-1,0), ay takes on all values in (-1,0). Thus we have proved (A20) 

for ae (-1,0). 

We have determined f everywhere except on -1, 0 and 1. By choosing 

c= (1,0,...,0) and c = (-1,0,...,0), we see from (A21) that -1, 0 and 1 

must occur as values of f. Since 0 < /a| < 1 implies 0 < [f(a)| < 1, we 

can conclude that f(-1), f(0) and f(1) must be equal to -1, 0 and 1, not 

necessarily in that order. Assume f(0) = -1, let c = (-1,...,-1), and try 

a= 0 as a solution to (Al7). The constraint is satisfied, and the value 

of (Al7) is K. This contradicts (A22), which implies that the optimal value 

is 7K. We have earlier proved f(0) < 0; hence f(0) = 0. Now f(-1} and f(1) 

must be equal to -] and 1, and (A18) implies f(-1) = -1 and f(1) = 1. Then 

(A20) is proved for all a ¢ [-1,1], and the proof of Proposition A2 is 

complete. 

The Case K = 2 

If K = 2, Proposition A2 does not hold. An example of a function which 

satisfies the premise but not the conclusion is 

(A31) f(a) = sinfFa) , for ae[-1,1]. 

This function satisfies (Al8). It is also continuous and strictly increasing. 

To find the solution to (Al17), let us first assume cy > 0 and Cy > 0, 

* 

7 2 0 and a > 0. On [0,1], the The solution a* will clearly satisfy a
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function f is strictly increasing, differentiable and strictly concave. 

* * 

Then the solution must satisfy a, + a, = 1. Since f'(1} = 0, we can rule 
* * 

out corner solutions, that is, solutions with a, = 1 or ay = 1. Hence we 

can use the first-order conditions, which give 

We have f'{a) = 5 cos(y a) =F sin(= - 

n
a
 

a) = 5 f(1-a)s hence this implies 

w e T * 
c, > Flay) = Cy > f(ay) ; 

from which (A19) follows directly. A straightforward computation gives 

(A32) a = 2 arcsinf ——K—_ 
k ™ 7 2 

4 7% 

for k = 1,2. It is easy to see that (A32) holds for allc #0. Forc = 0, 

a* = 0 is a solution to (Al7). In any case, (Al9) holds, and the premise of 

Proposition A2 is established. 

For c # 0, the number a of (A19) will be of the form (Al6). The set S, 

defined in the beginning of the proof of Proposition A2, will satisfy (A5); 

this corresponds to the fact that Proposition Al is true for K= 2. But f 

is obviously not of the form given by (A20). 

In addition to the increasing and continuously differentiable example 

given by (A31), we can find discontinuous or non-monotone functions which 

satisfy the premise of Proposition A2 when K = 2. For example, let y be any 

number with 0 < y < 1, and define f by:
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= sin( ¥ f(a) sin(ay a) for O<axg 

f(a) e [o, 4) for y<a<i-4F 
v2. 

(A33) 

f(a) = sine a - + 5) for 1-f<asl 

f(a) = ~f(-a) for -l<a<o0. 

If a* solves (A17) for some c#Q, ay and ay cannot lie in the intervals 

(-1 + ¥/2, ~y/2) or (y/2, 1 - y/2). It is not difficult to prove (A19). 

If we set y = 1 in (A33), we are back in (A31). For ¥ < 1, we have 

considerable freedom in defining f on (7/2, 1 - y/2); hence functions f with 

various properties can be constructed. 

If we look at the proof of Proposition A2, the function g can be defined 

and will be strictly increasing even if K = 2, but we are not able to prove 

that it is continuous. (in (A33), with y < 1, g will be discontinuous at 

1/v2, whether or not f is continuous.) Even if g is continuous, the rest 

of the proof breaks down, since (A26) and (A27) can only be established for 

M= 2. In the heuristic proof in Section 3, equation (14) only allows us 

to conclude 

* * * * 
F = 1 

F(a,)f (a,) ~ Fla,)f (a5) > 

‘* * 

when (ays ay) is a solution to (A17) for some (cys Co). (Here we have in 

mind the case where a and a are both positive; similar remarks hold for 

the other cases.) If the constraint in (Al17) is always binding, this implies:



A23 

(A34) f(a)f'(a) = f(l-a)f'(1-a) , 

for all a such that (a, 1-a) can occur as a solution. When f is given by 

(A31), (A34) holds for all a © (0,1). For (A33), the formula holds only 

if 0<a< y/2 or 1 ~ y/2<a< 1. In any case, (A34) does not suffice to 

conclude that f(a)f'(a) is a constant function.
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APPENDIX B 

In this appendix, we report in detail] on the computational experiments 

mentioned in Section 5. 

The Preferences 

In the experiments, we use a class of preferences which is a special 

case of the preferences described in the paper. 

Preferences for alternative public goods vectors are derived from a 

fixed tax system and from preferences over private and public goods. Such 

derived preferences are discussed in Section 2; see also references to 

Zeckhauser and Weinstein (1974). The public goods are measured in terms of 

expenditures. That is, if the bundle x = (Xp 9+ + oXp) is chosen, the amount 

of money spent on the k'th public good js Xs where the currency unit is 

fixed but arbitrary. The total costs of the public goods are divided among 

the participants in fixed shares. We let 84 genote the share paid 

by individual i. These shares must satisfy 2 0, = 1. 

The initial wealth of individual i is denoted R,- If public goods 

bundle x is chosen, the amount of money i can spend on private goods is 

~ K 
(B1) Rig = Re - 8; » Ky 

k=] 

We assume that each individual has preferences over private and public goods 

which can be represented by a "constant elasticity of substitution" utility 

function, Then the induced valuation function for public goods is 

“2; Py “Pp - dy gg Pi ~ i 
(82) GOD = SMG Rig FHM | Foe TKK Ds 

where Rig is given by (B1). Here p, is a parameter which represents the 

elasticity of substitution; we must have 04 > -1 and Ps #0. The parameters
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aap for k = 0,1,...,K must be positive; they represent the weights person 

i puts on private goods and on the various public goods. To be precise, 

the function given by (B1) is a strictly increasing transformation of a 

function with constant elasticity of substitution; the transformation is 

chosen so as to make Vs strictly concave. When 2, tends to 0, Va essentially 

converges to the Cobb-Douglas utility function, given by 

(B3) v, (x) = Gi9 en Keg t Gp) nxt... + Gay &n Xy 

The derivative of v, with respect to the k'th variable, evaluated at x, 

is given by 

& as 
_ 10 ik (84) Sik * 8) BT * aT 

X40 Xx 

This formula applies both for 05 7 0 and ep; = 0. It captures all interesting 

aspects of v;, and we can forget (B2) and (B3). 

For convenience, we shall make some changes in the parameters. We 

define, for i = 1,...,N: 

se 
i o,*1 

R, 
= 

RT 

X. K 
10 Xen = oe = R- Sx 

i0 8, i yey k 

oy 71 

Op = Gaps for k = 1,...,K.
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Then (B4) becomes: 

l/o. Os Os, Io, 
(B5) cep = -[227° 1 4 pik 

Xk 
1 

ik Xig 

In all the examples, we let R, be the same for every i. This is equiva- 

lent to assuming that the tax shares Oy s+ ++ sy are proportional to the indi- 

viduals! initial wealths Ry sees oy The assumption implies that x,9 is also 

equal for ail i. We shall write R and Xo instead of Ri and x, Moreover, 0° 

we let R= 10(K+1); this is not a substantive assumption, but simply the 

choice of a currency unit. 

Under these assumptions, R can be interpreted as the total resources of 

society. Moreover, Xq and XporesoXy represent the resources spent on private 

goods and on the various public goods. Individual i's net endowment of pri- 

vate goods will be 95Xq- 

The optimal decision, from person i‘s point of view, is easily seen to 

be given by: 

(B6) x) = a, ~e for k= 05.0.4Kk. 

m0 “im 

In the examples used below, the numbers Wa gedaz ress say will on the 

average be of the same order of magnitude. This is perhaps not realistic; 

it implies that the typical individual prefers that only a fraction 1/(K+1)} 

of society's resources be spent on private goods. But there is no reason to 

believe that the computational experiments would give different results if 

we used preferences in which more weight were placed on private goods.
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The Procedure 

The distribution of influence can be described by the numbers A,,...,A 
1 N 

or B_,... By, where B. = YA.. We define 1 N i i 

(B7) A, = Max A; , 
0 1<i<N | 

and similarly 

(BS) By = Max B; . 
1<i<N 

When a tentative decision x is announced, person i will react in the 

following way, provided that x is not i's optimal point: The derivatives 

of v, at x are computed by (B5). This gives a vector G&. = (Cyy ores ety 
i): 

Then i's response by, = (bi y2+++ sbiy) is computed as follows: 

(B9) big = rere » for k=Ty..3K. 

Hence b., is a vector which is parallel to Ss, and has length By, as required 

by the arguments in Sections 3 and 4. (Note that the function f and the 

allocation Apporeesdiy of i's influence points do not appear here; in the 

computational examples we can go directly to the votes for movement, given 

by by.) . 

Two additional parameters, denoted n and €, play a role in the procedure. 

The parameter n is used to decide when the step length shall be reduced, 

while € represents the required degree of accuracy; the exact interpretation 

of n and © is given below. 

Now we are ready to present the algorithm. The description of the algorithm 

is divided into five parts:
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Part_1. For each i, let xf) = OA xf) be i's optimal point, 

as given by (B6). This is announced as a tentative decision, and responses 

are received from all individuals but i. With the responses given by (B9), 

we compute 

The point x) is an equilibrium if and only if Na Y] < B,. 

If x) is an equilibrium for at least one i, we stop. Otherwise, we 

go on to Parts 2 - 5, 

Part 1 is included in order to avoid asking person i to react when x) 

is the tentative decision. (This reaction would not be well defined, since 

the denominator Iles || in (B9) is 0.) We have assumed that all x) are differ- 

ent, but the description can easily be modified so as to take account of the 

possibility that several of these points are identical. If it is concluded 

that no x) is an equilibrium, we can safely assume that the iteration 

process of Parts 2 - 5 will never ask for responses which are not well defined. 

Part 2. As a starting point for the iteration process, we choose 

a,x) ix 
(B10) x = i=l 

fi 

i
a
 

W
M
 

j 

Part 3. All individuals are asked to react to the given x. From the 

responses, as given by (B9), we compute: 

I 
3 

= 

(811) d= 
1
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Then we let x’ = x + d and ask people to react to x' as a tentative decision. 

Next d' is computed from the responses, in analogy with (B10). Finally, we 

let x" =x! 4d. 

part 4. If |[d|| < Boe and Id" || < Boe. we stop and declare x" to be a 

sufficiently good approximation to the equilibrium. Otherwise, we go on 

to Part 5. 

Note that the stopping criterion depends on Bos the maximum of By ae++ sBy. 

The iteration process will never stop simply because the numbers Ba oe. By 

(or Ay ose sAy) are small. Of course, if these numbers are small, the norms 

of d and d' will also be small. When the procedure stops by the criterion 

used here, we know that people's responses actually cancel each other out, 

and that this has happened for two consecutive steps in the iteration. 

Part 5. Consider the condition 

(B12) 

Here n is a parameter, which is supposed to have a value slightly Jess than 

1, The left-hand side of (B12) is the cosine of the angle between d and d'. 

If (B12) is satisfied, the increments d and d' point in approximately: 

the same direction. Then we substitute x" for x and return to Part 3 for 

- a new round in the iteration. 

If (B12) is not satisfied, there is reason to believe that we have 

"overshot" the equilibrium, or that we may soon do so. Then we replace 

the number Bs for i = 1,...,N, by Bj /2. (This corresponds to replacing 

A, by A,/4.) Note that this also affects the value of Bg» see equation (B8) . 

Essentially, we have cut the step length in half. We return to Part 3 for
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a mew round in the iteration, with x unchanged. (Hence we discard the 

vectors d, d', x' and x", which were computed a moment ago in Part 3.) 

The Parameters 

In some of the examples we have used, the parameters were randomly 

generated. Here we describe the probability distribution from which the 

values were drawn. 

The randomly chosen parameters are Ay and 5; for i = 1,...,N, and ig 

for i = 1,....N, k = 0,...,K. Al] drawings are independent. (Because of 

rescaling, the numbers A; will not, however, be stochastically independent. ) 

To choose Asse + Ay, we let Risseoy be N independent drawings from a 
* * 

0 Max A, and set 
1<i<n 

uniform distribution on [0,1]. Then we compute A 

>
 it 

* 

Ai/Ag for i= 1,...,N. Hence we always get Ay = 1. 

Concerning Ops the probability shall be 0.5 for each of oO; < 1 and 

o. >1. If 9; < 1, then a, is uniformly distributed on [0.1, 1]. If 

1, then Vo, is uniformly distributed on [0.1, 1]. Q
 Vv 

Each Gap is uniformly distributed on [0, 1]. 

The Results 

We have applied the procedure to a number of typical cases, and to cases 

generated randomly, as described above. In all cases, we use ¢ = 0.001 and 

n= 0.9, 

The interesting result is the number of steps required to reach an 

equilibrium. The “number of steps" given in the tables below, is the number 

of times Part 3 is performed. Part 1 is not counted; therefore, no "steps"
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are needed if some xi) is an equilibrium. Each step requires two rounds 

of responses from the individuals. A step is counted even if (B12) fails, 

s0 that the step does not bring the procedure forwards; responses must be 

obtained in any case. 

The value « = 0.001 represents a very high degree of accuracy. The 

number of steps needed must be viewed in light of this. 

In the tables, we do not give the numbers Chay but instead the point 

x), Note that R is always equal to 10(K+1). When R is given, x) con- 

tains all the information in Wagers says except an unimportant factor of 

scale. 

We first present some "typical" cases. The optimal points are the 

same in all these cases; we only vary A, and Oy. Note that the second and 

the fifth examples are equal except for the scale of the numbers As this 

affects the numbers of steps needed. 

In the randomly generated cases, the average number of steps needed is 

17. In more than half of the cases, a vector x) is an equilibrium and 

no step is needed. If these cases are excluded, the average number of steps 

is 37. 

Some "Typical" Cases 

Equilibrium/number of steps 
  

11.51 8.33 

15         
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x) A, Equilibrium/number of steps 

5 JO |} 5 
11.40 8.27 

10 Hf 5 

8 
15 515 

5 10] 5 

11.43 8.17 
10 1545 

9 
15 515 

5 10] 5 
11.40 8.0] 

10 15 45 
11 

15 5] 5 

5 0) 1 
11.40 8.28 

10 #35] 1 
18 

15 5/1 

5 10 | 0.3 
11.76 9.14 

1 8615 ] 

31 
15 5 | 0.6        
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K = 2, N 

i x) A, o5 Equilibrium/number of steps 

1} 11.94 9.70 | 0.43 | 3.63 
16.99 7.77 

2] 18.41 6.06 | 0.40 | 1.22 
18 

3 | 17.28 10.79 | 1 1.42 

1} 18.89 1.75 | 0.55 | 1.01 3) 

2 6.56 10.87 | 0.74 | 0.77 ~ 
0 

3 | 11.62 7.88 | 1 1.18 

1} 10.18 8.51 | 0.04 | 1.41 (2) 

2 5.90 14.92; 1 0.39 ~ 
0 

3 2.18 5.27 | 0.56 | 0.51 

1] 10.36 6.06 | 0.97 | 1.33 (2) 

2 8.91 8.03 | 1 9.03 ~ 
0 

3 4.17 13.53 | 0.57 | 4.75 

1 9.69 6.74 | 1 0.26 (1) 

2 3.57 12.26 | 0.37 | 1.28 ~ 
0 

3 | 14.03 3.55 | 0.71 | 0.45 

1 3.35 9.92 | 0.82 | 0.46 
11.34 6.86 

2 {| 12.61 1.88 | 0.13 | 2.95 
53 

3 | 24.42 4.74 | 1 1.         
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x) A i Equilibrium/number of steps 

3.85 13.57 | 0.65 -83 

. x) 
7.98 9.59 | 0.86 36 

0 
8.84 9.51} 1 12 

6.89 4,23 | 0.44 1 
x3) 

34,82 4.57 | 0.08 82 
0 

11.50 11.57 | J 25 

4.55 13.30 | 0.83 .99 
11.69 8.79 

12,82 13.70 } 0.62 40 

20 
19.30 0.55 / 1 17 

11.51 17.46 | 0.67 46 
x(3) 

2.24 7.86 | 1 -48 
0 

7.52 13.61 | 0.63 - 68 

10.14 5.17 | 0.87 17 
4.86 15.59 

2.16 17.95 | 1 21 
26 

5.89 16.61 | 0.33 87 

10.21 10.27 | 0.51 41 
10.88 9.90 

13.94 7.38) 1 08 
64 

9.37. 12.18 | 0.32 83 

16.31 3.38 | 0.73 -23 
(2) 

8.38 11.40 | 0.90 - 66 
0 

7.30 10.40] 1 .98       
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K=2,N24 

x) Ay oO; Equilibrium/number of steps 

17.40 8.36 | 0.38 | 2.37 

10.18 9.96 | 0.32 | 0.66 A) 

7.97 3,75 | 0.71 | 0.38 ~ 
0 

10.40 7.82 | 1 0.30 

3.72 11.37 | 0.65 | 0.86 

12.33, 11.07 | 0.81 | 2.90 
10.33 14.26 

13.16 15.57 | 0.90 | 0.23 
94 

9.61 15.24 | 1 0.82 

27.37 0.07 | 1 1.23 

12.36 16.89 | 0.37 | 0.87 A) 

3.22 5.89 | 0.43 | 0.56 ~ 
0 

10.44 3.89 | 0.93 | 1.64 

K = 2, N 

i) A, oy Equilibrium/number of steps 

16.21 11.71 | 0.97 | 3.22 

10.57 5.50 | 1 0.79 
11.08 9.42 

9.95 9.87 | 0.33 | 0.43 
20 

10.45 8.45 | 0.23 | 0.96 

16.03 13.84 ] 0.86 | 1.86 

13.65 15.14} 0.62 | 6.86 

: . 0. : 12.48 9.29 10 | 1.41 3) 

12.80 12.07 | 1 0.48 ~ 
0 

4.80 3.20 | 0.25]; 0.41 

7.91 10.40 | 0.60 | 0.44        
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i x A, 5, Equilibrium/number of steps 

] 5.74 9.13 | 0.55 | 1.70 

2; 11.64 10.94 | 0.74 | 0.81 
x2) 

3°{ 11.20 13.66 | 1 1.50 
0 

4 | 16.48 2.72 | 0.82 | 0.91 

5 6.87 11.82 | 0.08 | 2.19 

1 | 10.90 8.49 | 0.27 | 0.17 

2 | 13.29 4.82 | 0.59 | 1.48 
11.72 4,23 

3 | 13.09 3.26 | 1 1.09 
22 

4 5.79 7.80 | 0.24 | 1.64 

5 0.71 3.43 | 0.85 | 0.61 

1} 24.39 3.56 | 1.00 | 0.71 

2 2.71 10.46 | 0.81 | 0.47 
12.53 9.27 

3 | 11.35 10.07 | 0.68 | 0.71 
34 

4 | 14,27 9.78 | 1 1.89 

5 | 10.40 4.59 | 0.22 | 2,63 

K=4,N=5 

xf) Ay 5; Equilibrium/number of steps 

7.82 15.47 13.94 11.11 | 0.56 | 1.37 

6.69 92 . : 0. 0.5 “oe 
6 mg 4-70 14.61 07 ® 8.07. 12.92 4.80 10.27 

6.44 17.21 6.90 5.16 | 0.05 | 3.92 

23 
4.70 15.13 4.38 10.71 | 0.75 | 1.27 

21.44 2.36 1.32 7.06 | 1 0.98       
 


