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Abstract

The paper examines the communication requirements of social choice rules when the (sincere) agents

privately know their preferences. It shows that for a large class of choice rules, any minimally informative

way to verify that a given alternative is in the choice rule is by verifying a “budget equilibrium”, i.e., that

the alternative is optimal to each agent within a “budget set” given to him. Therefore, any communication

mechanism realizing the choice rule must find a supporting budget equilibrium. We characterize the class of

choice rules that have this property. Furthermore, for any rule from the class, we characterize the minimally

informative messages (budget equilibria) verifying it. This characterization is used to identify the amount

of communication needed to realize a choice rule, measured with the number of transmitted bits or real

variables. Applications include efficiency in convex economies, exact or approximate surplus maximization

in combinatorial auctions, the core in indivisible-good economies, and stable many-to-one matchings.
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1. Introduction

This paper considers the problem of finding allocations that satisfy certain social goals when

economic agents have private information regarding their preferences. This problem has re-

ceived renewed interest in the literature on “market design”—in particular, in two-sided matching

(e.g., [44]) and combinatorial auctions (e.g., [5]). The goals of market design include exact or
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approximate efficiency, voluntary participation, stability to group deviations, and some notions of

fairness. A key theme in the literature is that incentives alone do not determine the choice of the

mechanism. Indeed, if incentive compatibility were the only concern, it could be ensured with a

direct revelation mechanism. However, full revelation of agents’ preferences is often impractical,

for several reasons. First, sometimes full revelation would require a prohibitive amount of com-

munication: for example, in a combinatorial auction, a bidder would have to communicate his

valuations for all possible bundles of objects, and the number of such bundles grows exponentially

with the number of objects. Second, agents may have an “evaluation cost” of learning their own

preferences. Finally, agents may desire to keep some preference information private (e.g., because

they are worried about possible abuse of this information by the designer or other agents in future

interactions).

For all these reasons, the “market design” literature has proposed a variety of mechanisms that

achieve the desired goals without fully revealing agents’ preferences. This raises the question:

What is the minimal information that must be elicited by the designer in order to achieve the goals

(even if agents are sincere)?

The problem of communication in economic mechanisms was first discussed by Hayek [19],

who called attention to the “problem of the utilization of knowledge that is not given to anyone in

its totality,” when “practically every individual... possesses unique information of which beneficial

use might be made.” Hayek argued that “we cannot expect that this problem will be solved by

first communicating all this knowledge to a central board which, after integrating all knowledge,

issues its orders.” Instead, “the ultimate decisions must be left to the people who are familiar

with the... particular circumstances of time and place.” At the same time, the decisions must be

guided by prices, which summarize the information needed “to co-ordinate the separate actions

of different people.” While Hayek did not discuss allocation mechanisms other than the price

mechanism and central planning (full revelation), he noted that “nobody has yet succeeded in

designing an alternative system” that would fully utilize individual knowledge.

While price mechanisms have received extensive scrutiny since Hayek, existing research has

failed to answer the following questions:

(1) Is it ever necessary to find some supporting prices in order to achieve social goals?

(2) For which preference domains is it necessary to find supporting prices?

(3) For which social goals is it necessary to find supporting prices?

(4) What kind of prices verify a given social goal on a given preference domain while revealing

the minimal necessary information?

Economists have often justified the use of price mechanisms with the Fundamental Theo-

rems of Welfare Economics. However, these theorems fail to address even question (1). In-

deed, the First Welfare Theorem says that supporting prices are sufficient to verify Pareto ef-

ficiency, but does not establish their necessity. The Second Welfare Theorem only says that

supporting prices can be constructed for a given Pareto efficient allocation once all the infor-

mation about the economy is available. However, once all the information is available, the de-

sired allocation can be imposed directly, without using prices. The theorems have nothing to

say about possible efficient nonprice mechanisms in an economy with distributed knowledge of

preferences.

Similarly, economists have emphasized the interpretation of prices as the dual variables (La-

grange multipliers) for an optimization program. (Just as the Second Welfare Theorem, this inter-

pretation is based on the Separating Hyperplane Theorem.) However, there are many optimization

algorithms that do not use dual variables and do not find their equilibrium values (e.g., the simplex
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method and the ellipsoid method for linear programs [27]). Thus, question (1) cannot be answered

in the affirmative based on purely computational considerations.

A better understanding of the role of prices is offered by the economic literature on the “infor-

mational efficiency” of price equilibrium. In contrast to all the previously mentioned approaches,

the literature followed Hayek’s insight in emphasizing that the allocation mechanism must operate

in an economy with decentralized knowledge of preferences. The seminal papers of Hurwicz [20]

and Mount and Reiter [38] showed that in convex exchange economies in which preference infor-

mation is decentralized, the Walrasian price mechanism uses the least-dimensional message space

among all Pareto efficient verification mechanisms satisfying a continuity restriction. Jordan [24]

strengthened this result by showing that the Walrasian mechanism is a unique individually rational

mechanism with this property. These results were later extended to convex economies with public

goods and externalities [46,52].While providing an important inspiration for the present paper, this

literature still comes short of answering questions (1)–(4). Indeed, it does not answer (1), because

it focuses on dimensionally minimal continuous mechanisms, and does not rule out the possi-

bility that either discontinuous or slightly more complex continuous mechanisms could achieve

efficiency without revealing supporting prices. It does not answer (2), because it only considers

settings in which agents have convex preferences over divisible allocations. 1 In fact, the typical

continuity restriction in the literature rules out the communication of discrete allocations, and so

makes it inapplicable to most market design settings. The literature does not answer (3), because it

restricts attention to the goal of Pareto efficiency.As noted by Nisan and Segal [40, Subsection 7.2],

this restriction may overstate the hardness of the problem, because in some settings (notably that of

Calsamiglia [4]) permitting a very small inefficiency allows a dramatic reduction in the communi-

cation cost. In other settings (such as matching without side transfers), efficiency may be achieved

trivially, and the designer may be interested in other objectives, such as voluntary participation, sta-

bility to group deviations, or some notions of fairness. The literature does not answer (4), because

of its ad hoc focus on linear-price equilibria, which fail to exist in many important social choice

problems. 2

The present paper answers questions (1)–(4). It examines communication protocols realiz-

ing a social choice rule when the (sincere) agents privately know their preferences. A general

communication protocol can be viewed as a multi-stage (extensive-form) message game. How-

ever, a simple lower bound on this problem is offered by an omniscient oracle’s problem of

verifying the desirability of an alternative. This problem is known as the “verification problem”

in the informational efficiency literature and as the “nondeterministic problem” in computer

science.

In one special class of verification protocols, the oracle proposes an alternative and gives each

agent a budget set—a subset of social alternatives (which could in general be delineated by

personalized and nonlinear prices). Each agent is asked to verify that the proposed alternative is

optimal to him within his budget set. A choice rule can be verified with such a “budget protocol”

1 Calsamiglia [4] considered the communication burden with nonconvex preferences over divisible goods, but failed

to note the role of prices in this setting.
2 Another related result is obtained by Parkes [41]. He considers the combinatorial auction problem with quasilinear

preferences and shows the necessity of revealing supporting prices by those communication languages that reveal so-called

“outcome-independent” information and implement surplus-maximizing allocations. This result still does not answer

questions (1)–(4), because it considers a restricted set of communication mechanisms, a specific allocation setting, and

only the goal of surplus maximization. Parkes’s proof uses the duality theory for optimization problems, and thus could

not be easily extended to social choice rules that cannot be described as solutions to a maximization problem (including

the Pareto rule in the presence of wealth effects).
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if and only if it is monotonic (in the sense of Maskin [33]). This result generalizes the classical

welfare theorems, by characterizing the choice rules which can be verified with price mechanisms.

However, just like the classical welfare theorems, this result does not preclude the possibility that

the same choice rule could be realized with a completely different mechanism, that does not reveal

price information and perhaps requires much less communication.

Thus, we proceed to characterize the choice rules for which price revelation is necessary, i.e.,

those satisfying the Budget Equilibrium Revelation Property (BERP): any protocol verifying the

choice rule must reveal enough information to construct supporting budget sets verifying the rule.

We show that the choice rules satisfying BERP are characterized by the property of intersection

monotonicity, which is a strengthening of monotonicity, and which is satisfied by such important

rules as Pareto, approximate Pareto, the core, stable matching, and no-envy rules. For all these

choice rules, any verification protocol (and therefore any communication) must reveal supporting

budget sets.

What appears striking about this result is that even in a social choice problem with sincere

agents, as long as preference information is decentralized, a minimally informative verification

mechanism asks the agents to pursue their individual objectives independently within their budget

sets. Our intuition for this result is that intersection monotonicity postulates certain congruence

between the agents’ individual preferences and the social goals. Given this congruence, as sug-

gested by Hayek [19], communication can be minimized by giving agents some freedom to utilize

their individual knowledge, while coordinating their choices by a careful design of budget sets.

This brings us to question (3): how to design supporting budget sets to verify a given choice

rule in a minimally informative way (in a partial informativeness order). A key observation here

is that if an agent is offered a larger budget set, the fact that the proposed alternative is optimal

to him within this set reveals more information about his preferences. On the one hand, the

agents’ budget sets must be large enough so as to verify that the proposed alternative is in the

choice rule. On the other hand, supporting budget sets that are too large reveal more information

about preferences than necessary for the verification. We propose an algorithm that constructs

the minimally informative budget equilibria verifying that a given alternative is desirable. (When

there are many equally informative budget equilibria, we select among them the ones with the

largest budget sets.) Under BERP, such budget equilibria exhaust all the minimally informative

verifying messages. Application of the algorithm to several well-known social choice problems

yields the following characterizations:

• The minimally informative messages verifying Pareto efficiency in an exchange economy with

smooth convex preferences are equivalent to Walrasian equilibria, in which the budget sets are

delineated by linear and anonymous prices.

• The minimally informative messages verifying Pareto efficiency in a social choice problem with

numeraire are equivalent to the valuation equilibria of Mas-Colell [31], in which the budget

sets are delineated by nonlinear personalized prices whose sum across agents is independent

of the public decision.

• The minimally informative messages verifying the approximation of Pareto efficiency in a

social choice problem with numeraire within some � > 0 (as measured by the compensating

variation in terms of numeraire) are equivalent to �-valuation equilibria, in which the sum of

the nonlinear personalized prices across agents for any off-equilibrium public decision exceeds

by � that for the equilibrium decision.

• The minimally informative messages verifying Pareto efficiency and individual rationality

on the universal preference domain are equivalent to partitional equilibria, in which the
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agents’ budget sets include the status-quo alternative and partition all the other off-equilibrium

alternatives.

• The minimally informative messages verifying the stability of a many-to-one two-sided match-

ing are equivalent to match-partitional equilibria, in which each off-equilibrium match is

allocated to either partner’s budget set (but not both).

While these results are interesting in themselves, their practical importance stems from their

application to identifying the communication cost of the relevant choice rule. In this paper, we

focus on the traditional measures of communication cost as the number of announced bits as

in the discrete “communication complexity” literature surveyed by Kushilevitz and Nisan [29],

or as the number of announced real variables as in the economic literature on “dimension of

message spaces.” While these two literatures have examined the communication costs of a number

of important problems, the present paper offers a new systematic approach to analyzing the

communication costs for a large and important class of problems. The new approach is based

on the economic idea that it is necessary to discover supporting prices, and on an algorithm for

constructing the form of prices (more generally, budget sets) that must be discovered to solve

a given problem. Formally, the communication cost of intersection-monotonic choice rules is

identified as that of finding a minimally informative verifying budget equilibrium, and the space

of such equilibria is characterized for any given choice rule.

Calculation of the communication cost is complicated by the fact that a verification protocol

need not use all minimally informative verifying budget equilibria, since it only needs to verify

one desirable alternative in a given state rather than all of them. For example, in a convex exchange

economy, we can realize Pareto efficiency using only those Walrasian budget sets that contain an

(arbitrarily fixed) endowment allocation, which reduces the dimensionality of the message space.

In general, the nondeterministic communication cost of an intersection-monotonic choice rule F is

determined by a minimal collection E of minimally informative budget equilibria verifying F that

ensures the existence of an equilibrium from E . Namely, the communication cost of F is exactly

that of communicating an equilibrium from E , which requires dim E real variables for continuous

communication, or log2 |E | bits for discrete communication. This number also bounds below the

cost of deterministic communication, i.e., finding a desirable alternative. (While in some settings

there exists a known deterministic communication protocol coming close to achieving this lower

bound, the general problem of identifying the deterministic communication cost of a social choice

rule appears to be much harder and is not tackled here.)

We illustrate the general approach by identifying (or bounding) the communication cost of

several well-known social choice problems. In some of these problems, the communication costs

have been previously identified, and so we are merely re-deriving the existing results in a more

elegant and systematic way. These include the problems of Pareto efficiency in convex economies

(where the communication cost was obtained by [20,38]) and in quasilinear settings (where

the cost was by obtained by [40]). 3 In other problems, such as Pareto efficient individually

rational allocations in economies with indivisible goods and stable many-to-one matchings, the

communication costs have not been known, and so our results are completely new.

To interpret the practical significance of the results, we can think of a problem as “hard” if its

communication cost is of the same order of magnitude as full revelation of agents’ preferences,

3 Nisan and Segal [40] also report a result on the necessity to reveal prices in order to verify surplus maximization in

a quasilinear economy. However, [40] does not consider social choice problems with other goals or preference domains,

nor does it construct minimally informative verifying price equilibria for the problem it does consider.
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and “easy” if it much lower. We show that some problems are “hard” in this sense—in particu-

lar, efficient of even approximately efficient combinatorial allocations, and efficient individually

rational allocations in economies of indivisible goods. At the same time, some problems prove

“easy”—in particular, Pareto efficiency in convex exchange economies, and stability in many-to-

one matchings. The “easiness” of nondeterministic communication in these problems stems from

the fact that the space of minimally informative verifying budget equilibria proves to be much

smaller than the preference domain. In the stable matching problem, we find that deterministic

communication is also “easy” when preferences are substitutable: the Gale–Shapley deferred

acceptance algorithm finds a stable matching using only slightly more communication than that

necessary for verification, and exponentially less than full revelation of preferences.

2. Social choice and communication

2.1. The social choice problem

Let N be a finite set of agents, and X be a set of social alternatives. (With a slight abuse of

notation, the same letter will denote a set and its cardinality when this causes no confusion.) Let

P denote the set of all preference relations over set X. 4 For any preference relation R ∈ P and

any alternative x ∈ X, it is convenient to define the relation’s lower contour set at x, L (x, R) =

{y ∈ X : xRy} .

Each agent i’s preference relation is assumed to be his privately observed type, and the set of

his possible types is denoted by Ri ⊂ P . 5 A state is a preference profile R = (R1, . . . , RN ) ∈

R1 × · · · × RN ≡ R, where R is the state space, also called preference domain. The goal is

to realize a choice rule, which is a correspondence F : R։X. For every state R ∈ R, the rule

specifies the set F (R) of “desirable” alternatives in this state.

2.2. Communication

We now describe the communication procedures solving the social choice problem, using the

notation and terminology introduced by Hurwicz [20] and Mount and Reiter [38], as well as in

the communication complexity literature [29].

It is well known that the communication cost can be reduced by letting agents send messages

sequentially rather than simultaneously. For example, if we want to find a Pareto efficient alter-

native, agents need not report their preferences between alternatives x and y if it is clear from

the preceding messages that y is dominated by z for all of them. Therefore, we must consider

multi-round communication protocols.

In the language of game theory, a multi-round communication protocol specifies an extensive-

form message game and each agent’s strategy in this game (complete message plan contingent

on his type and the observed history). Instead of payoffs, the game assigns alternatives to termi-

nal nodes (and so is more properly called a “mechanism” ). Agents are assumed to follow the

prescribed strategies (but see Section 9 for a discussion of incentive compatibility). Such commu-

nication protocols are known in computer science as “deterministic,” because the message sent by

an agent at a given information set is fully determined by his type and the preceding messages. A

4 A preference relation R over set X is a binary relation over X, with xRy interpreted as “x is weakly preferred to y.” It

is common to restrict attention to preference relations that are rational, i.e., complete and transitive. Rationality will play

no role in the general analysis, but it will be assumed in all the applications.
5 Thus, we focus on “private-value” environments. It would be interesting to extend the analysis to “interdependent-

value” environments, in which an agent’s preferences may depend on other agents’ private information.
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protocol realizes choice rule F if in every state R it achieves a terminal node to which an alternative

from F (R) is assigned. 6

Characterizing all deterministic communication protocols is a tall order. Analysis is drastically

simplified by generalizing the notion of communication to allow what is called “nondeterministic

communication” in computer science and “the verification scenario” in economics: imagine an

omniscient oracle who knows the true state R and consequently the desirable alternatives. However,

he needs to prove to an ignorant outsider that alternative x ∈ F(R) is indeed desirable. He does

this by publicly announcing a message m ∈ M . Each agent i either accepts or rejects the message,

doing this on the basis of his own type Ri . The acceptance of message m by all agents must prove

to the outsider that alternative x is desirable. 7

While nondeterministic communication is patently unrealistic, it is considered for the following

reasons:

1. Any deterministic communication protocol can be represented as nondeterministic by letting

all the messages be sent by the oracle instead of the agents, and having each agent accept

the message sequence if and only if all the messages sent in his stead are consistent with

his strategy given his type. The oracle’s message space M is thus identified with the set of

the protocol’s possible message sequences (terminal nodes). Therefore, any statement about

nondeterministic protocols will apply to deterministic protocols as a particular case (this is

explained more thoroughly in [29, Chapter 2]).

2. A famous economic example of nondeterministic communication is Walrasian equilibrium.

The role of the oracle is played by the “Walrasian auctioneer,” who announces the equilibrium

prices and allocations. Each agent accepts the announcement if and only if his announced

allocation constitutes his optimal choice from the budget set given by the announced prices. A

generalization of this nondeterministic communication is described in the next section.

3. A nondeterministic protocol realizing choice rule F may be viewed as a steady state of an

iterative deterministic protocol realizing or approximating F. At each stage of the iteration, a

message m ∈ M is announced, and each agent reports a direction in which the message should

be adjusted to become “more acceptable” to him. Examples of such adjustment processes

include “tatonnement” for finding Walrasian equilibria, “deferred acceptance algorithms” for

finding stable matchings, and ascending-bid auctions for finding efficient combinatorial allo-

cations.

Formally, nondeterministic communication can be defined as follows:

Definition 1. A (nondeterministic communication) protocol is a triple � = 〈M, �, h〉, where

• M is the message space,

• � : R։M is the message correspondence satisfying Privacy Preservation:

�(R) =
⋂

i∈N

�i(Ri) ∀R ∈ R, where �i : Ri։M ∀i ∈ N,

• h : M։X is the outcome correspondence.

6 Note that only nonempty-valued choice rules can be realized. Nonempty-valuedness could be ensured by thinking of

states R ∈ R in which F (R) = ∅ as “illegal,” and allowing any alternative in such states (i.e., redefining F (R) = X).
7 This communication is called “nondeterministic” in computer science because the oracle has to “guess” a message

that is acceptable to all agents (and there may be more than one such message in a given state).
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�-1(m3)

Fig. 1. Nondeterministic communication.

� realizes choice rule F if ∅ 
= h(�(R)) ⊂ F(R) ∀R ∈ R. 8

� fully realizes F if h(�(R)) = F(R) ∀R ∈ R.

Privacy Preservation captures the fact that each agent does not observe other agents’ types, thus

the set of messages acceptable to him is a function �i(Ri) of his own type Ri only. 9 Realization

means the set of alternatives generated by the protocol’s acceptable messages in state R is a

nonempty subset of the set of desirable alternatives F (R), while full realization means that it is

exactly F (R). We are ultimately interested in realization, but the concept of full realization will

allow comparisons with some existing literature.

Definition 2. Message m ∈ M in protocol � = 〈M, �, h〉 verifies alternative x ∈ X in choice

rule F if �−1(m) ⊂ F−1 (x). (� and F will be omitted when clear from the context.)

If we are interested in whether a given message correspondence � can be used to realize choice

rule F, without loss we can define the outcome correspondence h (m) to be the set of alternatives

verified by message m. Then realization means that, in any state R, some alternative is verified by

an acceptable message, while full realization means that any alternative in F (R) is verified by

some acceptable message.

The above concepts have a graphical illustration, discussed in [29], and depicted in Fig. 1.

Namely, each �−1(m) is the subset of the state space R on which message m ∈ M is acceptable.

Privacy Preservation requires each such subset to be a product set �−1
1 (m) × · · · × �−1

N (m)—a

“rectangle” in the computer science parlance. Message m verifies alternative x if the corresponding

rectangle �−1(m) is contained in the set F−1 (x) on which x is desirable—in the computer science

parlance, the rectangle is “monochromatic”. Realization requires that the whole state space be

covered by monochromatic rectangles, while full realization requires that each set F−1 (x) for

x ∈ X be exactly covered by some set of rectangles.

8 We use the standard notation for the image of a set: h(A) = ∪m∈A h (m) [1, p. 3].
9 This is an established term in the economic literature on “informational efficiency,” but it differs from the

layman’s concept of “privacy” in that it places no constraints on the revelation of information in the course of

communication.
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2.3. Communication costs and informativeness order

As mentioned in the introduction, there could be many different measures of communication

costs: the number of bits or real numbers transmitted, the agents’ costs of evaluating their pref-

erences, or their loss of privacy. Here we offer a new way to measure the informativeness of

communication, which is only a partial rather than complete ordering, but which proves useful

for estimating many different scalar measures of communication cost:

Definition 3. Message m ∈ M in protocol 〈M, �, h〉 is less informative than (or is verified by)

message m̃ ∈ M̃ in protocol
〈
M̃, �̃, h̃

〉
if �̃−1 (m̃) ⊂ �−1 (m). Messages m and m̃ are equivalent

if they are equally informative, i.e., �−1 (m) = �̃−1 (m̃). Message m is a minimally informative

message verifying alternative x ∈ X if it verifies x, and any less informative message verifying x

is equivalent to m.

In words, message m is less informative than message m̃ if m is accepted in a larger set of

states than m̃. In the graphical interpretation, this means that the “rectangle” on which message

m is accepted includes the “rectangle” on which message m̃ is accepted. Also, m is a minimally

informative message verifying x if it corresponds to a maximal “rectangle” contained in the set

F−1 (x) of states in which x is desirable.

We will examine how a given choice rule can be realized using messages that are less infor-

mative, and possibly minimally informative. Intuitively, this will show what information must be

revealed in order to realize a given social choice rule F. In turn, this will allow to measure the

minimal communication cost needed to realize F. Namely, we can restrict attention to protocols

that use only minimally informative verifying messages, without increasing the communication

cost. To give one example, if the communication cost of a protocol is defined as the worst-case

number of bits it transmits (as in the communication complexity literature), then it can be calcu-

lated as the binary logarithm of the size of its message space M (see Section 6 for more detail).

Thus, starting with a protocol realizing choice rule F and replacing one message in it with a

less informative message that still verifies the same alternative would produce another protocol

realizing F, with the same size of message space, and therefore the same communication cost.

(But this replacement could also allow us to eliminate some of the messages while still covering

the state space with the corresponding “rectangles.”) Therefore, when looking for the cheapest

nondeterministic protocol realizing F, without loss one can restrict attention to protocols using

only minimally informative verifying messages. The same observation will apply to many other

measures of communication costs.

3. Budget equilibria and their revelation

Consider a special class of nondeterministic protocols, in which the oracle’s message consists of

a proposed alternative x ∈ X and a budget set Bi ⊂ X for each agent i. Each agent i ∈ N accepts

message (B1, . . . , BN , x) if and only if there is no alternative in his budget set Bi that he strictly

prefers to the proposed alternative x. (B1, . . . , BN , x) is a budget equilibrium in state R ∈ R

if it is accepted by all agents in this state. 10 Formally, the budget equilibrium correspondence

10 A number of related concepts have been suggested, including “social equilibrium” [7], “social situations” [13],

“effectivity functions” [37], “effectivity forms” [36], “opportunity equilibrium” [25], “attainable sets” [9], and “interactive

choice sets” [48]. However, all these papers have motivated the concept by incentive compatibility, rather than deriving

it from communication among sincere agents (see Section 9 for a more detailed comparison).



350 I. Segal / Journal of Economic Theory 136 (2007) 341 –378

E : R։2XN × X is described as

E (R) =
{
(B, x) ∈ 2XN × X : Bi ⊂ L (x, Ri) ∀i ∈ N

}
.

E satisfies Privacy Preservation because each agent’s acceptance depends only on his own pref-

erences.

The oracle’s message space M in a budget protocol is a collection of budget equilibria that

he is allowed to announce, and the outcome correspondence simply implements the proposed

alternative:

Definition 4. Protocol 〈M, �, h〉 is a budget protocol if M ⊂ 2XN × X, � (R) = E (R) ∩ M

∀R ∈ R, and h (B, x) = {x} ∀ (B, x) ∈ M .

The informativeness of a budget equilibrium message depends on how large the agents’ budget

sets are. Formally, consider:

Definition 5. For two budget equilibria (B, x) ,
(
B ′, x′

)
∈ 2XN × X,

(
B ′, x′

)
is larger than

(B, x) if x = x′ and Bi ⊂ B ′
i ∀i ∈ N .

It is clear that if budget equilibrium
(
B ′, x′

)
is larger than budget equilibrium (B, x), then(

B ′, x′
)

is more informative than (B, x), and so is more likely to verify alternative x. 11

Which choice rules can be realized by a budget protocol? Classical Welfare Theorems say

that any Pareto efficient allocation in a convex exchange economy can be verified with a budget

equilibrium (specifically, a Walrasian equilibrium). The theorems have been extended to some

“nonclassical” social choice problems. 12 These results can be generalized as follows:

Definition 6 (Maskin [33]). Choice rule F is monotonic if ∀R ∈ R, ∀x ∈ F (R), and ∀R′ ∈ R

such that L (x, Ri) ⊂ L
(
x, R′

i

)
∀i ∈ N , we have x ∈ F

(
R′

)
.

Theorem 1. A choice rule F is fully realized by a budget protocol if and only if it is monotonic. 13

Proof. That F is fully realized with a budget protocol means that ∀R ∈ R ∀x ∈ F (R) ∃B ∈

2XN such that (a) (B, x) ∈ E (R), i.e., Bi ⊂ L (x, Ri) ∀i ∈ N , and (b) (B, x) verifies x, i.e.,

E−1 (B, x) ⊂ F−1 (x) Since a larger budget equilibrium is more informative and so more likely

to verify x, this is equivalent to checking that the largest budget equilibrium (B, x) satisfying

(a), which has Bi = L (x, Ri) ∀i ∈ N , verifies x. This is in turn equivalent to the monotoni-

city of F. �

Theorem 1 is not novel: analogous results are stated in [53, Theorem 2], [13, Theorem 10.1.2],

[36, Theorem 1], and [25]. The key deficiency of Theorem 1 is that, just like the classical Welfare

Theorems, it does not say anything about nonbudget protocols realizing choice rule F, which could

possibly reveal less information and have lower communication costs than any budget protocol

11 For example, when Bi = {x} for all i, budget equilibrium (B, x) is uninformative and does not verify x, unless it is

always selected by the choice rule.
12 Including the Pareto rule in public-good economies [35] and general economies with numeraire [31,2,3], and stable

many-to-one matching problems with and without transfers [28,18].
13 This implies that F is realized by a budget protocol if and only if has a nonempty-valued monotonic subcorrespondence.
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Fig. 2. Budget equilibrium revelation property.

realizing F. We remedy this deficiency by characterizing choice rules that satisfy the following

property:

Definition 7. Choice rule F satisfies the Budget Equilibrium Revelation Property (BERP) if for

any message verifying an alternative x ∈ X in F there exists a less informative budget equilibrium

(B, x) that verifies that x is in F.

BERP is illustrated in Fig. 2. When applied to messages m that fully reveal a state R (i.e.,

�−1 (m) = {R}, which would be represented by a single point in Fig. 2), BERP says that for anyx ∈

F (R) we can construct a budget equilibrium (B, x) in state R that verifies x. Thus, BERP implies

the classical welfare theorems, and so by Theorem 1 it implies the monotonicity F . However,

BERP is stronger, since it requires a budget equilibrium verifying x to be constructed without

knowing the exact state, upon observing any communication verifying x. This strengthening

indeed eliminates some monotonic choice rules, as the following examples demonstrate:

Example 1. Let N = 1, X = {x, y, z}, and R = P . Take the choice rule

F (R1) =

{
{x, y, z} if xR1y or xR1z,

{y, z} otherwise
∀R1 ∈ P.

It is easy to see that F is monotonic, hence by Theorem 1 it can be fully realized with a budget

protocol. Namely, note that y and z are verified with any budget set, while in all states R1 in which

x ∈ F (R1), it can be verified with the budget equilibrium
(
L

(
x,R1

)
, x

)
. More generally, budget

equilibrium (B1, x) verifies x if and only if B1\ {x} 
= ∅.

Now consider the communication protocol in which agent 1 announces “yes” if L (x, R1) 
=

{x}, in which case x is implemented, and announces“no” otherwise, in which case y is implemented.

Message “yes” verifies x, but does not reveal any other alternative in L (x, R1), thus it does not

reveal a budget equilibrium (B1, x) that would verify x. Therefore, F does not satisfy BERP.

Example 2. Let N = 1, let X =
{
x ∈ R

K
+ :

∑
k xk = 1

}
represent the set of lotteries over a finite

set K, and let R be the set of von Neumann–Morgenstern preferences relations over the lotteries.
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That is, R = {R (u) : u ∈ R
K
+ }, where preference relation R (u) is described by xR (u) y if and

only if
∑

k xkuk �
∑

k ykuk . Then any social choice rule F that selects only strict lotteries x (i.e.,

those with xk > 0 for all k ∈ K) is trivially monotonic. (Indeed, if x is a strict lottery and R,R′

are two von Neumann–Morgenstern preference relations such that L (x, R) ⊂ L
(
x, R′

)
, then we

must have R′ = R.) On the other hand, F is not intersection-monotonic if for some strict lottery x,

the set
{
u ∈ R

K
+ : x ∈ F (R (u))

}
is not a convex cone. Indeed, if u

′′
= �u + �′u′ with �, �′ �0,

then L (x, R (u)) ∩ L
(
x, R

(
u′

))
⊂ L

(
x, R

(
u

′′
))

, and so for an intersection-monotonic F,

x ∈ F (R (u)) ∩ F
(
R

(
u′

))
must imply that x ∈ F

(
R

(
u

′′
))

.

The choice rules that do satisfy BERP are characterized as follows:

Definition 8. Choice rule F is Intersection-Monotonic (IM) if ∀R̃ = R̃1 × · · · × R̃N ⊂ R,

∀x ∈ ∩
R∈R̃

F (R), and ∀R′ ∈ R such that ∩
Ri∈R̃i

L (x, Ri) ⊂ L
(
x, R′

i

)
∀i ∈ N we have

x ∈ F
(
R′

)
. 14

Theorem 2. Choice rule F satisfies BERP if and only if it is Intersection-Monotonic.

Proof. Observe that for any R̃ ⊂ R, R̃ = �−1 (m) for some message m ∈ M in some protocol

� = 〈M, �, h〉 if and only if R̃ is a product set. Thus, that F satisfies BERP means that ∀R̃ =

R̃1 × · · · × R̃N ⊂ R ∀x ∈ ∩
R∈R̃

F (R) ∃B ∈ 2XN such that (a) R̃ ⊂ E−1 (B, x), i.e., Bi ⊂

L (x, Ri) ∀i ∈ N ∀Ri ∈ R̃i and (b) (B, x) verifies x, i.e., E−1 (B, x) ⊂ F−1 (x). Since a larger

budget equilibrium is more informative and so more likely to verify x, this is equivalent to checking

that the largest budget equilibrium (B, x) satisfying (a), which has Bi = ∩
Ri∈R̃i

L (x, Ri)∀i ∈ N ,

verifies x. This is in turn equivalent to the intersection monotonicity of F. �

To see directly that IM is a strengthening of monotonicity, take R̃ = {R} in the definition.

Note also that IM is fairly easy to verify: just as with monotonicity, it suffices to check changes in

one agent i’s preferences holding all other agents’ preferences fixed (i.e., letting R̃j =
{
R′

j

}
for

j 
= i)—the full definition would then follow by iterating over agents. Thus, Theorem 2 offers a

simple way to check whether a given choice rule satisfies BERP, i.e., whether the revelation of

prices is necessary for realizing it. We proceed to identify a large and economically important

class of choice rules which indeed have this property.

4. A class of intersection-monotonic choice rules

Definition 9. Choice rule F is a coalitionally unblocked (CU) choice rule if there exists a blocking

correspondence � : X × 2N։X for which

F (R) =

{
x ∈ X : � (x, S) ⊂

⋃

i∈S

L (x, Ri) ∀S ⊂ N

}
∀R ∈ R.

14 A property with the same name is defined by Miyagawa [36], but he intersects the lower contour sets of different

agents, and uses the property for an apparently different purpose. IM is also related to Sjostrom’s [50] Condition W, but

the latter is much stronger in that it allows to construct supporting budget sets verifying alternative x using no information

other than the desirability of x. Therefore, Condition W allows F to be fully realized with a “proposed action” protocol

(Ishikida and Marschak [23]), which announces only the alternative to be implemented, and does not announce any

supporting budget sets. This condition is not satisfied in any of the applications considered in Section 7.
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In words, a CU choice rule is described by specifying for any coalition S ⊂ N and any candidate

alternative x ∈ X a “blocking set” � (x, S) ⊂ X—the set of alternatives that S can use to block x.

Alternative x is “unblocked” by coalition S if it is weakly Pareto efficient for its members within

its blocking set � (x, S), i.e., if it is not possible to make all members of S strictly better off within

� (x, S). 15 x ∈ F (R) if it is unblocked by all coalitions. 16 Note that a CU choice rule defined

on any preference domain is extendable to the universal preference domain R = PN using the

same blocking correspondence.

Now we describe several important examples of CU choice rules. Note that according to Defi-

nition 9, the empty coalition S = ∅ will block in any state, hence F can only include alternatives

in the set X̄ = {x ∈ X : � (x, ∅) = ∅}, which we interpret as the set of feasible alternatives. 17

With this notation, a CU choice rule will include those feasible alternatives that are not blocked

by nonempty coalitions.

• The Pareto rule: � (x, S) = X̄ if S = N , ∅ if S /∈ {N, ∅}. That is, the grand coalition can block

any alternative with any feasible alternative, and no other nonempty coalition has any blocking

power. 18

• The approximate Pareto rule: Let � (x, S) = X� if S = N , ∅ if S /∈ {N, ∅}, where X� ⊂ X̄

is interpreted as the set of alternatives that waste a given amount � > 0 of resources. In

words, a feasible alternative x is desirable if it is impossible to make everyone strictly bet-

ter off while wasting amount � of resources. Thus, � is the “compensating variation” mea-

sure of inefficiency—the amount of resources that could be extracted from the agents while

compensating all of them for the change. There are many ways to define X� in an economy

with multiple divisible goods. For example, letting X� consist of allocations that waste pro-

portion � of the economy’s aggregate endowment results in F choosing allocations whose

“coefficient of resource utilization” [6] is at least 1 − �. Alternatively, if X� consists of allo-

cations that waste amount � of a specific good—“numeraire,” and if preferences are quasilin-

ear in numeraire, then F chooses allocations that achieve within � of the maximum possible

surplus.

• The core: For all S 
= ∅, � (x, S) = ε (S)—the “effectivity set” of coalition S. Pareto ef-

ficiency is imposed by letting ε (N) = X̄. Individual rationality (i.e., voluntary participa-

tion) is imposed by letting ε ({i}) = {x0} for all i ∈ N , where x0 ∈ X is the “status-

quo” alternative. Specification of effectivity sets for intermediate coalitions reflects the coali-

15 We use weak Pareto efficiency because the strong Pareto rule is not even monotonic, let alone IM. Note, however, that

the weak and strong Pareto criteria coincide for preferences that are strictly monotonic and nonsatiated in some divisible

economic good.
16 Such choice rules are also known as “respecting group rights,” with y ∈ � (x, S) interpreted as the “one-way right”

of coalition S to replace alternative x with alternative y [17, Section 5]. The “rights” literature, initiated by Sen [47],

is concerned with the problem that individual and group rights may be incompatible with each other on the universal

preference domain, i.e., that “group rights-respecting” choice rules may be empty-valued. In the applications considered

in Section 7, the preference domains and coalitional rights will be defined to ensure nonempty-valuedness.
17 For example, the empty coalition may be responsible for the satisfaction of resource constraints. We permit X to be

larger than X̄ to allow budget sets that include infeasible allocations, as they may in the Walrasian protocol. If X consisted

only of feasible allocations in a convex exchange economy, the Walrasian choice rule would not be monotonic [21], hence

it could not be fully realized with a budget protocol.
18 If any preference Ri ∈ Ri of agent i has a maximal alternative in the feasible set X̄, the Pareto rule could be realized

simply by letting the agent choose this alternative. To rule out this dictatorial solution, the literature on the communication

requirements of the Pareto rule has either considered settings in which the feasible set is noncompact, or introduced

additional restrictions on the alternatives.
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tions’ powers. For example, the majority voting (Condorcet) choice rule is described by

ε (S) = X̄ if |S| �N/2, ∅ otherwise. In an exchange economy, ε (S) is usually defined by

allowing the members of S to reallocate resources among each other. We can also define

the approximate core (quasi-core, epsilon-core) of an exchange economy, by letting ε (S)

consist of allocations that destroy at least amount �S > 0 of resources available to the

coalition. 19

In the above examples the blocking sets � (x, S) did not depend on the candidate alternative x,

but in other examples this dependence is important:

• Stable network: Let X = 2N×N —i.e., an alternative x ∈ X is a binary relation on X (a list of

ordered pairs of agents). (i, j) ∈ x is interpreted as the directed link from agent i ∈ N to agent

j ∈ N in network x ∈ X. The blocking sets are described by

� (x, S) = {y ∈ X : y\ (S × N) = x\ (S × N)} .

In words, members of coalition S can change only their outgoing links. A stable match-

ing problem (such as the one studied by Roth and Sotomayor [44]) obtains as particular

case by defining the matching relation as the symmetric part of x (i.e., a match is a bidi-

rectional link). The blocking sets described above allow a coalition to break matches with

outsiders but not create new matches with them, which corresponds to the concept of setwise

stability [51].

• The envy-free rule: Let X = X1×· · ·×XN , where xi ∈ Xi is interpreted as agent i’s component

of the allocation. Let

� (x, {i}) =
{
y ∈ X :

(
yi, yj , y−i−j

)
=

(
xj , xi, x−i−j

)
, j ∈ N

}
∀i ∈ N,

� (x, S) = ∅ for |S| > 1.

In words, any individual agent can block an alternative by “trading places” with another agent.

We can also define the approximate envy-free (or bounded-envy) rule [30], by letting � (x, {i})

consist of allocations in which agent i pays a numeraire penalty � > 0 for trading places with

another agent.

• Any combination of the above goals: For any family {Fk}k∈K of CU rules, the intersec-

tion rule, given by F (R) = ∩k∈K F (R), is also CU. Indeed, it is described by the block-

ing correspondence � (x, S) = ∪k∈K�k (x, S), where �k is the blocking correspondence

describing Fk .

Lemma 1. Any CU choice rule is IM.

Proof. Suppose in negation that a CU choice rule F described by blocking correspondence �

is not IM, i.e., ∃R̃ = R̃1 × · · · × R̃N ⊂ R ∃R′ ∈ R ∃x ∈ X such that (a) x ∈ F (R)

∀R ∈ R̃, (b) ∩
Ri∈R̃i

L (x, Ri) ⊂ L
(
x, R′

i

)
∀i ∈ N , but (c) x /∈ F

(
R′

)
. (c) means that ∃S ⊂

N ∃y ∈ � (x, S) such that y /∈ L
(
x, R′

i

)
∀i ∈ S. By (b), this implies that ∀i ∈ S ∃R∗

i ∈

R̃i : y /∈ L
(
x, R∗

i

)
. Choosing such R∗

i ∈ R̃i for all i ∈ S and arbitrary R∗
i ∈ R̃i for all

19 In particular, [49] requires the destruction of amount �S of numeraire, [26] requires the destruction of amount �S of

each good, and [34, Subsection 3.3] requires the destruction of share �S of a given commodity bundle.
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Fig. 3. Intersection-monotonicity of coalitionally unblocked rules.

i ∈ N\S, we obtain R∗ ∈ R̃ such that � (x, S) � ∪i∈S L
(
x, R∗

i

)
, and therefore x /∈ F (R∗),

contradicting (a). �

To illustrate the proof of Lemma 1, take a CU choice rule F, and suppose that for two dif-

ferent preferences R1, R
′
1 of agent 1 and some preference profile R−1 of other agents, we have

x ∈ F (R1, R−1) and x ∈ F
(
R′

1, R−1

)
. This means that in each state, x is Pareto efficient for each

coalition within its blocking set. For example, the situation for coalition {1, 2} is illustrated in

Fig. 3, in which the box represents the coalition’s blocking set � (x, {1, 2}), agent 1’s prefer-

ences are increasing in the top-right direction, and agent 2’s preferences are increasing in the

bottom-down direction (as in the traditional Edgeworth box). The Pareto efficiency of x for coali-

tion {1, 2} within the box in states (R1, R−1) and
(
R′

1, R−1

)
means that the indifference curves

representing R1 and R′
1 passing through x both lie above the indifference curve representing R2

passing through x. Now take a third preference R
′′

1 for agent 1 such that L (x, R1) ∩ L
(
x, R′

1

)
⊂

L
(
x, R

′′

1

)
. In Fig. 3 this means that the indifference curve representing R

′′

1 passing through x lies

above the lower envelope of the curves representing R1 and R′
1. But this implies that the curve

representing R
′′

1 still lies above that representing R2, and therefore in state
(
R

′′

1, R−1

)
, x remains

Pareto efficient for coalition {1, 2} within its blocking set. Since the same argument works for all

coalitions, we see that x remains unblocked in state
(
R

′′

1, R−1

)
, hence x ∈ F

(
R

′′

1, R−1

)
. Iter-

ating the argument by sequentially changing the preferences of agents 2, 3, etc., we can see that

F is IM.

The converse to Lemma 1 is not true:

Example 3. Let N = 2, X = {x, y, z}, and R = P2. Take the choice rule

F (R) =

{
{x, y, z} if xR1y or xR2z

{y, z} otherwise
∀R ∈ P

2.

It is easy to verify that F is IM. On the other hand, if F were a CU choice rule described by

blocking correspondence �, we would have y, z /∈ � (x, S) ∀S ⊂ N (since x ∈ F (R) in the states
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Fig. 4. Venn diagram for choice rules.

R in which the agents i = 1, 2 share a strict preference ordering yRixRiz or zRixRiy), but then

we would have x ∈ F (R) ∀R ∈ P2, which is not true.

A Venn diagram for choice rules summarizing the above results is drawn in Fig. 4. 20

5. Minimally informative verifying equilibria

We next address the question of which supporting budget equilibria must be revealed to verify

a given choice rule. We do it by characterizing the minimally informative messages verifying a

given choice rule, which, under BERP, are all equivalent to budget equilibrium messages. Recall

that a budget equilibrium is more informative the larger its budget sets are, thus the minimally

verifying informative budget equilibria must have large enough budget sets to verify the choice

rule, but not any larger.

First we justify the focus on minimally informative verifying messages by showing that any

message m verifying alternative x verifies a minimally informative message m̃ verifying x. When

the state space R is finite, m̃ can be constructed by starting with m and finding progressively

strictly less informative messages verifying x while this is possible (the procedure terminates

since the number of possible nonequivalent messages is finite). For an infinite state space, we

20 An alternative way to understand this classification of choice rules is by describing them with boolean formulas

(as proposed by Rubinstein [45]). Namely, we can describe a rule F by giving, for each x ∈ X, a boolean formula to

calculate the truth value of x ∈ F (R) from the truth values of the atoms {yRiz}i∈N;y,z∈X that describe the preference

profile. It can then be seen that F is monotonic if and only if the formula can be taken to depend only on the atoms

in {xRiy}i∈N;y∈X and to be monotone in these atoms. Any such formula can be written in a “Monotone Conjunctive

Normal Form” (MCNF), i.e., as a conjunction of disjunctions of individual atoms. F is IM if and only it we can use an

MCNF in which no disjunctive clause contains two atoms xRiy and xRiz with the same i but y 
= z (which is violated

by Example 1). F is CU if and only if we can use an MCNF in which no disjunctive clause contains two atoms xRiy and

xRj z with y 
= z for some i, j (which is violated by Example 3).
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Fig. 5. Agent 1-wise stretching.

need a different algorithm to construct m̃. We propose such an algorithm and use it to characterize

minimally informative messages verifying a given choice rule. 21

It is notationally convenient to identify each message with its content by focusing on direct

protocols 〈M, �, h〉, in which M ⊂ 2R and �−1 (m) = m for all m ∈ M . A direct message is a

message in a direct protocol, and by Privacy Preservation it must be a product set m1×· · ·×mN ⊂

R1×· · ·×RN . Direct message m is more informative than direct message m̃ if and only if m ⊂ m̃.

Direct message m verifies alternative x if m ⊂ F−1 (x).

Definition 10. For i ∈ N , x ∈ X, the agent i-wise x-stretch of a direct message m ⊂ R is the

direct message

⋃

m′
i⊂Ri :m

′
i×m−i⊂F−1(x)

m′
i × m−i .

For an illustration with N = 2 agents, consider Fig. 5, where direct message m′ is the agent

1-wise x-stretch of direct message m.

Lemma 2. (a) Any direct message 22 m ∈ 2R\ {∅} verifying alternative x verifies a minimally in-

formative message verifying x, which can be constructed by sequentially agent i-wise x-stretching

message m, for i = 1, . . . , N .

(b) A direct message m ∈ 2R\ {∅} is a minimally informative message verifying alternative x

if and only if it is invariant to any agent-wise x-stretching.

21 The same approach to constructing minimally informative messages is independently proposed by Hurwicz and Reiter

[22], who call it the “rectangle method”. However, our application of the algorithm to the special case of intersection-

monotonic choice rules allows to restrict attention to budget equilibrium messages, and interpret the stretching of such

messages as the shrinking of the agents’ budget set.
22 The most informative direct message m = ∅ is never accepted and so it is not useful for realization.
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Proof. (a) Let m0 = m, and for each i = 1, . . . , N , let message mi be the agent i-wise x-stretch

of message mi−1. Note that mi = mN
1 × · · · × mN

i × mi+1 × · · · × mN for all i ∈ N .

By construction, mi ⊂ F−1 (x) for any i = 0, . . . , N . This in turn implies that by construction,

mi ⊃ mi−1 for all i ∈ N , and therefore mN ⊃ m0 = m, i.e., m verifies mN .

Suppose now that mN ⊂ m̂1 × · · · × m̂N ⊂ F−1 (x). Then for any i ∈ N ,

m̂i × mi−1
−i ⊂ m̂i × mN

−i ⊂ m̂ ⊂ F−1 (x) ,

and therefore by construction, mN
i = mi

i ⊃ m̂i . Hence, mN = m̂, and therefore mN is a minimally

informative message verifying x.

(b) “Only if” holds by the definition of a minimally informative message. “If” follows from

part (a), since sequential agent-wise x stretching of m yields m itself. �

Under BERP, any minimally informative message verifying x verifies, and is thus equivalent

to, a budget equilibrium message verifying x. We would like to characterize the verifying bud-

get equilibria that are minimally informative. First note that different budget equilibria may be

informationally equivalent. For example, in exchange economies with monotone preferences, a

Walrasian budget equilibrium, in which the budget sets are half-spaces, is equivalent to the one in

which the half-spaces are replaced with their boundary hyperplanes (i.e., waste is not allowed).

It is convenient to focus on the largest equivalent budget equilibria 23 :

Lemma 3. The largest budget equilibrium
(
B̂, x

)
equivalent to a given budget equilibrium (B, x)

exists and has the budget sets

B̂i =
⋂

Ri∈Ri :Bi⊂L(x,Ri )

L (x, Ri) ∀i ∈ N.

Proof. Budget equilibrium
(
B̂, x

)
satisfies the following two properties by construction: (i) it is

less informative than budget equilibrium (B, x), and (ii) it is larger than any budget equilibrium(
B ′, x

)
(B ′ ∈ 2XN ) that is equivalent to (B, x). (ii) implies that

(
B̂, x

)
is more informative than

(B, x), which, together with (i), implies that
(
B̂, x

)
is equivalent to (B, x). Then (ii) implies the

statement of the lemma. �

Lemma 3 allows us to focus on the largest equivalent budget equilibria, which we do from

now on. The lemma also implies some useful properties of such budget equilibria in specific

settings. In particular, when all feasible lower contour sets satisfy a property that is invariant to set

intersections, the largest equivalent budget sets must also satisfy this property. Examples of such

properties include: (i) free disposal of some good when preferences are monotone in this good,

(ii) closedness in some good when preferences are continuous in this good, (iii) budget sets take

the “private” form Bi = B̃i × X−i when the alternative space is X = X1 × · · · XN and agent i’s

preferences over allocations (x1, . . . , xN ) ∈ X depend only on his own allocation xi .

23 One reason for this focus is that, as shown below, such an equilibrium always exists (in contrast to, say, a smallest

equivalent budget equilibrium). One might also argue on normative grounds for giving agents as much freedom as possible

while sustaining the socially desirable alternative.
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For realizing an intersection-monotonic choice rule, Lemmas 2 and 3 together with BERP

allow to restrict attention to the largest budget equilibria that are minimally informative verifying

messages. The lemmas also allow to characterize such budget equilibria: namely, by BERP, in

agent-wise stretching we can restrict attention to the largest equivalent budget equilibria verifying

a given alternative x. Then agent-wise stretching corresponds to shrinking the agent’s budget

set by intersecting all of his lower contour sets for which x is still verified given the revealed

information about the other agents’preferences. Formalizing this intuition yields a characterization

of minimally informative verifying budget equilibria. To simplify the characterization, we assume

that the choice rule is extendable to an IM rule on the universal domain PN , which allows us to

write any budget set as L (x, Ri) for some Ri ∈ PN (the assumption is true, in particular, for CU

choice rules).

Theorem 3. Suppose that F is an intersection-monotonic choice rule defined on PN , and the

preference domain is R ⊂ PN . Then

(a) Budget equilibrium (B, x) ∈ 2XN × X is a largest minimally informative budget equilibrium

verifying alternative x ∈ X if and only if for some R ∈ PN ,

Bi = L (x, Ri) =
⋂

R′
i∈Ri :x∈F(R′

i ,R−i)

L
(
x, R′

i

)
∀i ∈ N. (1)

(b) If (1) holds for R ∈ R, then (B, x) is a unique largest equivalent budget equilibrium verifying

alternative x in state R.

Proof. (a)A largest equivalent budget equilibrium (B, x) must have x ∈ Bi ∀i ∈ N , hence we can

write (B, x) = (L (x, R1) , . . . , L (x, RN ) , x) for some R ∈ PN . Lemma 3 and the intersection

monotonicity of F on PN imply that any largest equivalent budget equilibrium of this form that

verifies x must have x ∈ F (R) (and by monotonicity of F, any such budget equilibrium with

x ∈ F (R) verifies x). Thus, we can restrict attention to such budget equilibrium messages. By

the same token, in agent i-wise stretching of such a message, we can restrict attention to budget

equilibria
(
L

(
x, R̃i

)
, B−i, x

)
for R̃i ∈ P such that x ∈ F

(
R̃i, R−i

)
. Thus, the stretching

includes all preferences R′
i ∈ Ri such that x ∈ F

(
R̃i, R−i

)
for some R̃i ∈ P satisfying

L
(
x, R̃i

)
⊂ L

(
x, R′

i

)
, which by the monotonicity of F is equivalent to x ∈ F

(
R′

i, R−i

)
. By

Lemma 3, (B, x) is a largest equivalent equilibrium invariant to such stretching if and only if (1)

holds.

(b) As noted in the proof of part (a), any largest equivalent budget equilibrium verifying x

takes the form
(
L

(
x, R′

1

)
, . . . , L

(
x, R′

N

)
, x

)
for some R′ ∈ PN such that x ∈ F

(
R′

)
. If it

is an equilibrium in state R, then L
(
x, R′

i

)
⊂ L (x, Ri) for all i. By monotonicity of F, this

implies x ∈ F
(
R′

i, R−i

)
for each i. But then by (1) we have L (x, Ri) ⊂ L

(
x, R′

i

)
, and therefore

L (x, Ri) = L
(
x, R′

i

)
. �

In words, Theorem 3(a) establishes that the largest minimally informative budget equilibria are

those in which each agent’s budget set is the intersection of all his feasible lower contour sets for

which x is desirable given the information about the others’ preferences. Furthermore, Theorem

3(b) says that if the budget sets in such an equilibrium happen to coincide with the lower contour
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sets in some feasible state R, then it is a unique (up to equivalence) budget equilibrium verifying

alternative x in state R.

Intuitively, intersection monotonicity implies that alternative x is desirable when it is high

enough in the agents’ preference rankings. Then (1) means that x is so low in the preference

rankings that any further drop in any agent’s preferences would render it undesirable. In other

words, (1) describes the “boundary” of the states in which x is desirable, and this boundary

describes a trade-off between the ranking of x in different agents’ preferences. In any state R

satisfying (1), there is a unique (up to equivalence) budget equilibrium verifying x, whose budget

sets are the agents’ lower contour sets at R. By BERP, this budget equilibrium must be a unique

(up to equivalence) minimally informative message verifying x in state R.

Finally, observe that if (1) holds in state R ∈ R, then it also holds when the domain R is

replaced with a smaller domain R̃ ⊂ R such that R ∈ R̃. Thus, (B, x) remains a unique largest

equivalent budget equilibrium verifying alternative x in state R on domain R̃. This observation

can be used to identify some minimally informative budget equilibria on a reduced domain.

6. Implications for the communication cost

This section discusses the implications of our characterization of minimally informative mes-

sages for the communication cost of intersection-monotonic choice rules. The (deterministic/

nondeterministic) communication cost of a choice rule is defined as the minimal communication

cost of a (deterministic/nondeterministic) protocol realizing it. In this paper, we focus on the tra-

ditional measures of communication cost as the length of the realized message sequence, i.e., the

number of messages sent in the course of the protocol. Since this number may differ across states,

here we focus on the “worst-case” communication cost—the maximum length of the message se-

quence over all states. For this measure to be interesting, the amount of information conveyed with

each message must be bounded, so that all messages are encoded with “elementary” messages.

The computer science literature on “communication complexity” [29] considers discrete com-

munication, and elementary messages that are binary, i.e., convey a bit of information. 24 The

nondeterministic communication cost is then the number of bits needed to encode the oracle’s

message from set M, which is log2 |M|. In the economic literature on continuous communica-

tion, the elementary messages are real-valued. The nondeterministic communication cost is then

identified with the number of real numbers needed to encode the oracle’s message from space

M, i.e., the dimension of M. The discrete and continuous cases have some similarities and some

differences, so we discuss them in turn.

6.1. Discrete communication

Starting with any protocol realizing F, we can replace any message verifying alternative x with

a less informative minimally informative message verifying x. Doing such replacement for all

messages, we obtain a new protocol realizing F using the same number of message, but which

uses only minimally informative verifying messages. Thus, in minimizing the communication

cost, we can restrict attention to protocols that use minimally informative verifying messages,

which are exactly the budget equilibrium messages characterized in Theorem 3(a).

24 This is just a normalization, because an elementary message from any other finite set (alphabet) could be recoded

with a fixed number of bits.
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This observation allows us to bound above the nondeterministic communication cost of F by

counting all the budget equilibria of the form (1) and taking the binary logarithm. However, we

are more interested in having a lower bound on the nondeterministic communication cost of F,

which would then also serve as a lower bound on the deterministic cost of F . Such a lower bound

can be obtained using Theorem 3(b), which says that any budget equilibrium of the form (1)

for some state R ∈ R and alternative x ∈ F (R) is indispensable for verifying alternative x in

state R. However, realization (as opposed to full realization) only requires to verify one desirable

alternative in any state R. Thus, F may be realized using only a subset the budget equilibria of the

form (1).

Nevertheless, in applications considered below, the nondeterministic communication cost of

realization is shown to be not much smaller than that of full realization. In some applications, a

good lower bound on the nondeterministic cost of realization is obtained by counting only the

budget equilibria of the form (1) with states R ∈ R in which F (R) is single-valued (and so by

Theorem 3(b), each such budget equilibrium is indispensable for realization). In other applications,

in which single-valuedness of F (R) cannot be ensured, the following technique proves useful:

say that Rf ⊂ R is a k-degree fooling set for choice rule F if at most k distinct states from

Rf can share a message verifying an alternative in F. Then the cardinality of the message space

in any protocol realizing F is bounded below by
∣∣Rf

∣∣ /k, and the communication cost of F is

bounded below by the binary logarithm of this number. 25 This paper’s results allow to show that

Rf is a k-degree fooling set by showing that at most k distinct states from Rf can share a budget

equilibrium of the form (1).

6.2. Continuous communication

The study of continuous communication requires a metric �R on the state space R. Following a

suggestion of Debreu [8], we use the Hausdorff metric on the agents’ preference relations derived

from a given metric �X on the underlying alternative space X. 26

We would like to define the continuous communication cost as the (worst-case) number of

real-valued elementary messages sent in the course of the protocol. We also want to allow finite-

valued messages, e.g., to announce discrete allocations, but not count such messages towards the

communication cost. In the nondeterministic case, we can identify the communication cost with

the dimension of the oracle’s message space M.

A well-known problem in measuring continuous communication is the possibility of “smug-

gling” multi-dimensional information in a one-dimensional message space (e.g., using the inverse

Peano function). Note, however that with such smuggling, an arbitrarily small error in the message

could yield a large error in its meaning. This suggests that smuggling is prevented when the topol-

ogy on the message space must be based on their meaning rather than chosen ad hoc. Thus, we

define the distance between two messages m and m′ in protocol � = 〈M, �, h〉 as the Hausdorff

25 This is known as the “rectangle-counting” method in the computer science literature [29]. In the case of k = 1, Rf is

simply called a “fooling set” in the computer science literature, and “a set with the uniqueness property” in the economic

literature.
26 Formally, �R

(
R, R′

)
= maxi∈N max

{
dR

(
Ri , R

′
i

)
, dR

(
R′

i
, Ri

)}
,

with dR

(
Ri , R

′
i

)
= supx,y∈X:xRiy

infx′,y′∈X:x′R′
i
y′

[
�X

(
x, x′

)
+ �X

(
y, y′

)]
, where �X is the given metric on X.
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distance between the events �−1 (m) and �−1
(
m′

)
in which they occur. Formally,

�M

(
m, m′

)
= max

{
dM

(
�−1 (m) , �−1

(
m′

))
, dM

(
�−1

(
m′

)
, �−1 (m)

)}
where

dM (A, B) = sup
R∈A

inf
R

′
∈B

�R

(
R, R′

)
for A, B ⊂ R.

Given this metric �M , we use the Hausdorff dimension of M (e.g., [11]) as the measure of

continuous communication cost. 27 , 28 With this definition of dim M , if messages are coded with

d real numbers with a coding whose inverse is Lipschitz continuous (so that small errors in the

transmission of the code do not result in large distortion of the state), then we must use d � dim M

real variables [11, Exercise 6.1.9(1)].Also, if M is metrically equivalent to a set in R
d that contains

an open set, we must have d = dim M [11, Exercise 6.2.6]. Thus, the proposed dimensionality

measure of M is the relevant measure of communication cost if the communication must be robust

to using a channel that is subject to small errors, due either to analog noise or to discretization

(“quantization” ). 29

Thus defined continuous communication cost can be bounded above using a fooling set tech-

nique:

Definition 11. Rf ⊂ R is a fooling set for choice rule F if ∃C > 0 such that ∀R, R′ ∈ Rf and

any direct message m verifying any alternative in state R we have

inf
R

′′
∈m

�R

(
R

′′
, R′

)
�C�R

(
R, R′

)
.

This definition strengthens the (1-degree) fooling set defined in the previous subsection. (The

two definitions coincide when the state space R is finite, since we can then take C =
minR,R′∈R:R′ 
=R �R(R,R′)

maxR,R′∈R
�R(R,R′)

> 0.)

Lemma 4. If Rf is a fooling set for choice rule F, then the continuous communication cost of F

is at least dim Rf .

Proof. Take any protocol � = 〈M, �, h〉, and any selection � from the message correspondence

� on domain Rf . We must have ∀R, R′ ∈ Rf ,

�M

(
� (R) , �

(
R′

))
� inf

R
′′
∈�(R)

�R

(
R

′′
, R′

)
�C�R

(
R, R′

)
,

27 Alternatively, we could use other metric dimension measures of M, such as the box dimension or the packing index.

In most practical cases, the different dimensions would coincide, provided that M is bounded.
28 This definition of the continuous communication burden stands in contrast to the existing economic literature on

message space dimension, in which the message space comes endowed with a Hausdorff topology, its dimension is defined

in a topological way, and a “regularity” restriction is imposed on the communication protocol to prevent dimension

smuggling. The typical regularity restriction is that the message correspondence � be “locally threaded”—i.e., have a

continuous selection on a neighborhood of any point [38]. This restriction rules out a priori some useful communication

protocols: for example, in problems with continuous preferences and discrete (e.g., combinatorial) allocations, it prevents

the communication of discrete allocations (any selection from � is discontinuous at a point at which the optimal discrete

allocation switches).
29 A formal result about robust discretization is stated in [40, Proposition 4].
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where the first inequality is by definition of metric �M as the Hausdorff metric, and the second

inequality is because � (R) verifies an alternative in state R and the definition of a fooling set.

Therefore, � : Rf → M has a Lipschitz continuous inverse, hence dim M � dim Rf [11, Exercise

6.1.9(1)]. �

Note that it suffices to check Definition 11 only for minimally informative verifying messages

m, since for them the inequality is the least likely to hold. Thus, just as for discrete communication,

characterization (1) of minimally informative verifying messages (budget equilibria) facilitates

the calculation of the continuous communication cost for intersection-monotonic choice rules.

7. Applications

7.1. Pareto efficiency in convex economies

Consider smooth convex exchange economies, in which the alternatives represent the consump-

tion of L divisible goods by the N agents, hence X = R
NL
+ . Each agent i’s preference domain

consists of the convex preferences described by differentiable utility functions of his own con-

sumption xi ∈ R
L
+ with a nonnegative nonzero gradient everywhere. The feasible set consists of

allocations of a given aggregate endowment x̄ ∈ R
L
++: X̄ =

{
x ∈ X :

∑
i xi = x̄

}
. Recall that

the Pareto rule is described by

F (R) =
{
x ∈ X̄ : X̄ ⊂ ∪i∈N L (x, Ri)

}
∀R ∈ R.

We use the stretching algorithm described in Section 5 to derive minimally informative messages

verifying the Pareto efficiency of an allocation x ∈ X̄ with x ≫ 0. 30 The derivation can be

illustrated in the standard Edgeworth box depicted in Fig. 6. Start with a state R in which x is

Pareto efficient, which means that agent 1’s indifference curve passing through x is below agent 2’s

indifference curve passing through x. Note that given smoothness, the two curves must be tangent

at x, and let p denote the agents’ common marginal rate of substitution at x. Now, for agent 1-wise

stretching, we shrink agent 1’s lower contour set as much as possible while preserving the Pareto

efficiency of x and keeping agent 1’s preferences convex. This shrinking is illustrated with the

left-down arrows in the Figure. The furthest we can shrink agent 1’s lower contour set is to that

of linear preferences—a hyperspace with gradient p. This yields a Walrasian budget set for agent

1 described by the commodity price vector p. Next, for agent 2-wise stretching, we shrink agent

2’s lower contour set as illustrated with the right-up arrows, yielding for him a Walrasian budget

set with the same commodity price vector p. Thus the stretching algorithm yields a Walrasian

equilibrium. Furthermore, any Walrasian equilibrium is invariant to stretching—i.e., satisfies (1).

A formalization of this argument yields 31

30 We restrict attention to x ≫ 0 to avoid the problem of nonexistence of supporting Walrasian prices [32, Figure

16.D.2].
31 If nonsmooth preferences are allowed, the Walrasian equilibria still satisfy (1), but other minimally informative

messages verifying Pareto efficiency emerge. For example, let N = L = 2 and x̄ = (2, 2), and consider the budget

equilibrium (B1, B2, x) with x = (1, 1, 1, 1), B1 = {x ∈ X : min {x11, x12} �1}, and B2 = {x ∈ X : x21, x22 �1} .

This is a budget equilibrium in state R ∈ R if and only if L (x, R1) = B1. This is a minimally informative message

verifying the Pareto efficiency of x, but it is not equivalent to a Walrasian equilibrium.
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Fig. 6. The stretching algorithm in convex economies.

Proposition 1. A message is a minimally informative message verifying the Pareto efficiency of

allocation x ∈ X̄ with x ≫ 0 in a smooth convex exchange economy if and only it is equivalent

to a Walrasian equilibrium supporting x, i.e., a budget equilibrium (B, x) with

Bi = {y ∈ X : p · yi �p · xi} ∀i ∈ N (2)

for some price vector p ∈ R
L
+ such that ‖p‖ = 1. Any such equilibrium is a unique Walrasian

equilibrium supporting allocation x in any state in which it is an equilibrium. 32

Proof. (B, x) verifies the Pareto efficiency of x if and only if the normalized gradients of all

agents’ utility functions at x in all states in E−1 (B, x) equal some p ∈ R
L
+. By Lemmas 2 and

3, (B, x) is a largest minimally informative budget equilibrium verifying x if and only if for each

i ∈ N , Bi is the intersection of all lower contour sets at x of agent i’s utility functions with gradient

p at x. This means that Bi is given by (2). Furthermore, in any state in which such (B, x) is an

equilibrium, the normalized gradients of all agents’ utilities at x equal p, which implies that in

this state (B, x) is a unique Walrasian equilibrium supporting x. �

The proposition implies that the minimal message space required for verifying any Pareto

efficient allocation in any convex economy is the space of Walrasian equilibria. Since a feasible

allocation x ∈ X̄ is described with (N − 1) L real variables, and a normalized price vector p is

described with L − 1 real variables, the space of Walrasian equilibria has dimension (L − 1) +

(N − 1) L = NL − 1.

However, realizing Pareto efficiency only requires to verify one efficient allocation in each

state. In fact it is possible to realize the Pareto rule without any communication, e.g., by giving all

the aggregate endowment to agent 1. To rule this out, we restrict attention to allocations satisfying

a “subsistence” requirement that ‖x‖ �	, for a given 	 < 1
N

minl x̄l .
33 Note that the subsistence

32 Note that the last statement is stronger than that in Theorem 3(b): in this particular setting, the minimally informative

messages verifying x partition F−1 (x).
33 The “informational efficiency” literature only ruled out the corners of the feasible set X, but we need to rule out

neighboring allocations as well, because we do not impose any “regularity” restriction on protocols and use a metric

measure of dimensionality. Intuitively, if only the corners of X were ruled out, Pareto efficiency could still be approximated

arbitrarily closely without any communication, by giving nearly all the aggregate endowment x to one agent.
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Pareto rule can be realized by fixing an “endowment allocation” 
 ∈ X̄ with 
� (	, . . . , 	) and

announcing a Walrasian equilibrium (B, x) such that 
 ∋ Bi for all i, which exists in any convex

economy [32, Section 17.BB]. Since such equilibria satisfy the additional “budget constraints”∑
l pl
il =

∑
l pixil for all i, they can be communicated using (L − 1) + (N − 1) (L − 1) =

N (L − 1) real numbers.

It is in fact impossible to realize subsistence Pareto efficiency using less communication. This

can be shown using the fooling set consisting of the Cobb–Douglas economies, in which each

agent i’s preferences are described by a utility function of the form ui (xi) =
∏

l x
�il

il with the

normalization
∑

l �il = 1. Indeed, all subsistence Pareto efficient allocations in a Cobb–Douglas

economy with parameters � ≫ 0 are interior, and the first-order equilibrium conditions imply that

no two distinct Cobb–Douglas economies share a Walrasian equilibrium sustaining an interior

allocation. 34 Therefore, we must use a subspace of Walrasian equilibria whose dimension is at

least that of Cobb–Douglas economies, which is N (L − 1):

Corollary 1. The nondeterministic communication cost of subsistence Pareto efficiency in the

convex exchange economy is exactly N (L − 1) real numbers, and it is achieved by the Walrasian

equilibrium protocol with a fixed endowment.

This result was first obtained by the “informational efficiency” literature [20,38]. Unlike this

literature, we have derived it from the purely set-theoretic Proposition 1, which does not require

any topological restrictions on communication or any scalar measure of the communication cost.

7.2. Pareto efficiency in economies with numeraire

Consider economies with numeraire, in which the set of alternatives takes over the form X =

K × R
N , where K is a finite set of (nonmonetary) allocations, and R

N describes the transfers

of numeraire (money) to the agents. Each agent i’s preference domain Ri consists of preference

relations over (k, t) ∈ X that are (i) independent of other agents’ transfers t−i , (ii) continuous

and strictly increasing in his own transfer ti , and (iii) allow compensation— i.e., for any x ∈ X

and any k ∈ K there exists t ∈ R
N such that (k, t) is indifferent to x. The feasible set takes the

form X̄ =
{
(k, t) ∈ X :

∑
i ti = 0

}
, i.e., requires a balanced budget. We consider the problem of

finding a Pareto efficient allocation within X̄.

An important subclass of preference relations satisfying (i)–(iii) consists of quasilinear pref-

erences, which are described by utility functions of the form ui (k, t) = vi (k) + ti . For such

preferences, Pareto efficiency is equivalent to maximizing the total surplus
∑

i vi (k) .

We use the stretching algorithm of Section 5 to derive minimally informative messages verifying

Pareto efficiency. We illustrate this algorithm in an Edgeworth box depicted in Fig. 7, in which

the vertical dimension represents allocations of numeraire between the agents, and the horizontal

dimension represents the nonmonetary allocations k ∈ K (arranged in no particular order). Start

with a state R in which x is Pareto efficient, which means that the indifference curve of agent

1 passing through x is above the indifference curve of agent 2 passing through x. For agent 1-

wise stretching, shrink the lower contour set of agent 1 as much as possible while preserving the

Pareto efficiency of x (as illustrated with the downward arrows in the figure). The furthest we

34 Furthermore, we can also show that Definition 11 holds: the minimal distance between a Cobb–Douglas economy

with parameters � and any economy that shares a subsistence Walrasian equilibrium with the Cobb–Douglas economy

with parameters �′ is at least C
∥∥� − �′

∥∥, provided that �, �′ � (�, .., �) for a fixed � > 0.
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Fig. 7. The stretching algorithm with nonconvexities and numeraire.

can shrink it is until agent 2’s indifference curve (unlike in the previous subsection, there is no

convexity restriction to hold us back). Once this shrinking is completed, agent 2–wise stretching is

impossible—agent 2’s lower contour set cannot be shrunk without violating the Pareto efficiency

of x. The obtained budget sets for the two agents can be delineated by general nonlinear and

personalized prices pi (k) (i = 1, 2, k ∈ K), specifying the cost of allocation k to agent i in terms

of numeraire. The fact that the two budget sets’ boundaries coincide means that the sum of the

prices, p1 (k)+p2 (k), must be the same for all allocations k ∈ K . The budget equilibria described

in this way are the only budget equilibria that are invariant to the budget-shrinking procedure, i.e.,

satisfy (1). The argument extends to any number of agents, yielding the following result:

Proposition 2. A message is a minimally informative message verifying the Pareto efficiency of

allocation x = (k, t) ∈ X̄ in an economy with numeraire if and only if it is equivalent to a

valuation equilibrium supporting x, i.e., a budget equilibrium (B, x) in which for each i ∈ N ,

Bi =
{(

k′, t ′
)

∈ X : pi

(
k′

)
+ t ′i �pi (k) + ti

}
for some pi ∈ R

K , (3)

and such that

∑

i

pi

(
k′

)
=

∑

i

pi (k) for all k′ ∈ K. (4)

Any such equilibrium is a unique valuation equilibrium supporting allocation x in the states R in

which L (x, Ri) = Bi for all i.

Proof. Observe first that for each agent i and any Bi ⊂ X, Bi = L (x, Ri) for some Ri ∈ R if

and only if Bi takes the form (3). (For the “if” part, take preference relation Ri described by the

quasilinear utility function pi

(
k′

)
+ ti ; for the “only if” part, take pi

(
k′

)
for each k′ ∈ K such that(

k′, −pi

(
k′

))
is indifferent to x in Ri .) Since this form is preserved under set intersection, any

budget equilibrium (B, x) satisfying (1) must have budget sets of this form (allowing, possibly,

for pi(k) = +∞ for k′ 
= k). Furthermore, x ∈ F (R) if and only if it is impossible to extract

numeraire while making all agents equally well off, i.e.,

∑

i

pi

(
k′

)
�

∑

i

pi (k) for all k′ ∈ K.
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(In particular, this implies that pi(k) < +∞ ∀k′ 
= k ∀i ∈ N .) (1) means that the prices pi

(
k′

)

for all k′ ∈ K\ {k} are maximized subject to the inequality, which yields condition (4). Theorems

2 and 3 imply the proposition. �

The term “valuation equilibrium” was coined by Mas-Colell [31]; such equilibria were also

studied by Bikhchandani and Mamer [2] and Bikhchandani and Ostroy [3]. These papers have

established classical welfare theorems for such equilibria: an allocation is Pareto efficient if and

only if it is supported by a valuation equilibrium. The contribution of Proposition 2 lies is in

showing that valuation equilibria constitute the minimal information that must be revealed in

order to verify the Pareto efficiency of an allocation.

Proposition 2 implies that the minimal message space required for verifying any efficient

allocation in any economy with numeraire is the space of valuation equilibria. Normalizing the

prices, e.g., so that
∑

k pi (k) = 0 for each agent i, we can announce a price vector satisfying (4)

using (N − 1) (K − 1) real numbers. In addition, K − 1 real numbers are needed to announce a

transfer vector t adding up to zero (a discrete allocation k is zero-dimensional).

For realizing Pareto efficiency, we only need to verify one efficient allocation in each state,

and so need not use all valuation equilibria. However, it turns out that all the possible normalized

valuation prices satisfying (4) must still be used, even if we restrict attention to the domain of

quasilinear preferences. Indeed, consider diagonal economies, in which the agents have quasi-

linear utility functions ui (k, t) = pi (k) + ti with p ∈ R
NK satisfying (4). In such an economy,

all allocations x ∈ X̄ are surplus-maximizing, but by the second part of Proposition 2, in the

valuation equilibrium supporting any such allocation the agents’ budget sets must be described by

prices p. Thus, no two distinct diagonal economies share a valuation equilibrium, and so diagonal

economies form a fooling set. 35 Therefore, realizing Pareto efficiency with quasilinear prefer-

ences requires the announcement of an (N − 1) (K − 1) dimensional price vector. This amount of

communication in fact allows a deterministic surplus-maximizing protocol, in which the first N−1

agents announce their normalized utilities and then the last agent chooses a surplus-maximizing

allocation. Thus we have:

Corollary 2. The communication cost (both deterministic and nondeterministic) of Pareto effi-

ciency in a quasilinear economy is (N − 1) (K − 1) real numbers.

One class of quasilinear allocation problems with numeraire that has received a lot of attention

recently is the “combinatorial allocation problem,” in which there is a set L of objects to be

allocated among the agents, thus K = NL, and the preference domain includes those quasilinear

preferences in which each agent i cares only about his own consumption bundle k−1 (i) and his

preference is monotonic in this bundle (in the set inclusion order). Consider the particular case

of N = 2, and note that for any normalized price vector p ∈ R
NK satisfying (4) such that p1 (k)

is nondecreasing in k−1 (1), we also have that p2 (k) is nondecreasing in k−1 (2). In the state in

which the agents’ preferences are described by utility functions ui (k, t) = pi (k) + ti (i = 1, 2)

for such prices, all allocations x ∈ X̄ are surplus-maximizing by (4), but the normalized price

vector in any valuation equilibrium must coincide with p by the second part of Proposition 2.

Thus, any normalized monotonic price vector for an agent must be announced by an efficient

protocol, which implies:

35 Formally, to apply Lemma 4, we need diagonal economies to satisfy the stronger Definition 11 of a fooling set, which

is shown in [40, Proposition 2].
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Corollary 3. The continuous communication cost (both deterministic and nondeterministic) of

efficient combinatorial allocation of L objects between two agents is 2L − 1.

To see that the deterministic communication cost coincides with the nondeterministic cost,

consider the communication protocol in which agent 1 announces its utility function and then

agent 2 chooses an efficient allocation. Corollary 3 is obtained by Nisan and Segal [40], who also

examine the potential communication savings when agents’ combinatorial valuations are a priori

restricted to lie in certain important classes.

7.3. Approximate Pareto efficiency in economies with numeraire

Recall that the approximate Pareto rule is defined by

F (R) =
{
x ∈ X̄ : X� ⊂ ∪i∈N L (x, Ri)

}
∀R ∈ R,

where X� ⊂ X̄ denotes the set of alternatives in which at least amount � > 0 of resources is

wasted. We consider the domain R with numeraire defined in the previous subsection, and let X�

be the set of alternatives that waste at least amount � of numeraire: X� =
{
(k, t) :

∑
i ti � − �

}
.

Proposition 3. A message is a minimally informative message verifying �-approximate Pareto

efficiency of allocation x = (k, t) ∈ X̄ in an economy with numeraire if and only if it is equivalent

to a �-valuation equilibrium supporting x, i.e., a budget equilibrium (B, x) with budget sets

described by (3) with the price vector p ∈ R
NK satisfying

∑

i

pi

(
k′

)
=

∑

i

pi (k) + � for all k′ ∈ K\ {k} . (5)

Any such equilibrium is a unique �-valuation equilibrium in the states R in which L (x, Ri) = Bi

for all i.

Proof. Recall from the proof of Proposition 2 that for each agent i and any Bi ⊂ X, Bi = L (x, Ri)

for some Ri ∈ R if and only if Bi takes the form (3), which implies that any budget equilibrium

satisfying (1) takes this form (allowing, possibly, for pi(k) = +∞ for k′ 
= k). x ∈ F (R) if and

only if it is impossible to extract more than amount � of the numeraire while making all agents

equally well off, i.e.,

∑

i

pi

(
k′

)
�

∑

i

pi (k) + � for all k′ ∈ K.

(In particular, this implies that pi(k) < +∞ ∀k′ 
= k ∀i ∈ N .) (1) means that the prices pi

(
k′

)

for all k′ ∈ K\ {k} are maximized subject to the inequality, which yields condition (5). Theorems

2 and 3 imply the proposition. �

We now focus on the domain of quasilinear preferences, for which F (R) is the set of alternatives

that approximate the maximum surplus in state R within �. Furthermore, we restrict attention to

bounded utility functions: ui (k) ∈ [0, 1] for all k ∈ K , i ∈ N . Then letting one agent choose an

allocation to maximize his own utility approximates the maximum surplus within � = N − 1; we

examine the communication cost of improving the approximation to some � < N−1. Observe that
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any approximation � > 0 can be achieved with finite communication in which agents announce

their utilities discretized to multiples of a sufficiently small ε > 0. Thus, the communication cost

of approximation should be measured with the number of bits.

We bound below the number of �-valuation equilibria needed to ensure equilibrium existence

on the subset R̃ of states in which for all k ∈ K , ui (k) ∈ {0, 1} for all i, and
∑

i ui (k) = 1.

Observe that
∣∣R̃

∣∣ = NK , since the value 1 for any allocation k ∈ K can be assigned to any of

the N agents. Now consider how many states from R̃ can share a given �-valuation equilibrium

(B, (k, t)) described by a price vector p ∈ R
NK . We can assign value 1 for the proposed allocation

k to one of the N agents. In all states in which (B, (k, t)) is an equilibrium, for any allocation

k′ 
= k, each agent i’s utility must satisfy

ui

(
k′

)
��i

(
k, k′

)
≡ ui (k) + pi

(
k′

)
− pi (k) .

On the other hand, (5) implies that in any state from R̃,

∑

i

�i

(
k, k′

)
=

∑

i

ui (k) + � = 1 + � < N.

Therefore, for some agent i we must have �i

(
k, k′

)
< 1, and so this agent cannot have value 1 for

allocation k′. Thus, we are left with at most N − 1 possibilities to assign value 1 for allocation k′

among the other agents. Since this holds for any k′ 
= k, a given �-valuation equilibrium can be an

equilibrium in at most N (N − 1)K−1 states from R̃, i.e., R̃ is a N (N − 1)K−1-degree fooling

set, as defined in Section 6. Thus, we need to use at least

∣∣∣R̃
∣∣∣

N(N−1)K−1 = (1 + 1/ (N − 1))K−1

such equilibria to ensure equilibrium existence on R̃, and the communication cost of F is bounded

below by the binary logarithm of this number:

Corollary 4. When agents have quasilinear utilities in [0,1], the communication cost of approx-

imating the maximum surplus within � < N − 1 (i.e., achieving a better approximation than by

letting one agent choose an allocation) is at least (K − 1) log2 (1 + 1/ (N − 1)) bits.

The corollary reproves Nisan’s [39] Theorem 2 on the communication complexity of the “ap-

proximate disjointness problem” using BERP. It can also be used to prove Nisan and Segal’s [40]

result on the communication cost of approximately efficient combinatorial auctions. Namely,

they construct a “large” subset K of allocations such that the agents can have arbitrary utilities in

[0,1] for allocations from K, and in looking for approximately efficient allocations we can restrict

attention to those from K. (The allocations from K correspond to partitions of objects with the

“pairwise intersection” property.) Corollary 4 implies that achieving a better approximation than

giving all objects to one agent requires communication proportional to |K|, which proves to be

exponential in the number of objects.

7.4. Individually rational Pareto efficiency with universal preferences and in discrete economies

Let us require individual rationality along with Pareto efficiency, with x0 ∈ X being the status-

quo alternative. Formally, F is defined by

F (R) =
{
x ∈ X : x0 ∈ L (x, Ri) ∀i ∈ N, X = ∪i∈N L (x, Ri)

}
∀R ∈ R.
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Let X be a finite set, which ensures that this choice rule is nonempty-valued (e.g., it includes agent

1’s preferred alternative from those that are individually rational for the other agents). Consider

first the universal domain:

Proposition 4. A message is a minimally informative message verifying the Individually Ratio-

nality and Pareto efficiency of alternative x ∈ X on the universal domain R = P
N if and only if it

is equivalent to a partitional equilibrium supporting x, i.e., a budget equilibrium (B, x) in which

x, x0 ∈ Bi for all i ∈ N , and (B1, . . . , BN ) forms a partition of X\
{
x, x0

}
. Furthermore, any

such equilibrium is a unique partitional equilibrium supporting alternative x in any state R ∈ PN

in which L (x, Ri) = Bi for all i ∈ N .

Proof. (1) means that for each i ∈ N ,

Bi =
⋂

R′
i∈P :x∈F(R′

i ,R−i)

L
(
x, R′

i

)
=

⋂

Y⊂X:x,x0∈Y,x0∈Bj ∀j∈N\{i},Y∪(∪j∈N\{i} Bj )=X

Y.

This implies thatx, x0 ∈ Bi ∀i ∈ N , and then holds if and onlyBi =
{
x, x0

}
∪

(
X\

{
∪j∈N\{i} Bj

})

∀i ∈ N , i.e., (B, x) is a partitional equilibrium. Theorems 2 and 3 imply the proposition. �

Proposition 4 implies that the minimal message space required for verifying any Pareto efficient

IR alternative with universal preferences is the space of partitional equilibria. Realization of the

choice rule requires verifying only one desirable alternative in each state, which in principle may

not require all possible partitional equilibria. However, for every partitional equilibrium (B, x) we

can find a state R ∈ PN in which L (x, Ri) = Bi for all i, and x is a unique desirable alternative.

In this state, the status-quo alternative x0 (if different from x) is the next-best alternative to x

in each agent’s preference ranking. This ensures that the only alternatives that are individually

rational for all agents in state R are x and x0, and Pareto efficiency dictates that F (R) = {x}. The

second part of Proposition 4 then implies that (B, x) is a unique partitional equilibrium in state

R. Hence, all partitional equilibria must be used for realizing the choice rule.

There are NX−1 partitional equilibria with x = x0 (each of the alternatives in X\
{
x0

}
can be

allocated to any of the N agents’ budget sets), and NX−2 such equilibria for any given x 
= x0

(each of the alternatives in X\
{
x, x0

}
can be allocated to any budget set). Adding up, we obtain

NX−1 + (X − 1) NX−2 partitional budget equilibria. Taking the binary logarithm, we obtained

the number of bits that must be communicated:

Corollary 5. The nondeterministic communication cost of the individually rational Pareto rule

on the universal preference domain is exactly (X − 2) log2 N + log2 (N + X − 1) bits.

When X is large, this cost is asymptotically proportional to X, which is exponentially larger than

that of simply naming an alternative (which takes log2 X bits). In fact, the cost is comparable to

that of full revelation of an agent’s preferences, which is asymptotically equivalent to log2 X! ∼

X log2 X bits as X → ∞. 36

One setting where the alternative space X is naturally large is the exchange economy with L

indivisible goods, in which X = NL (note that unlike in the combinatorial allocation problem

36 Since there are X! strict preference orderings of X elements, by Stirling’s formula, it takes log2 X! ∼ X log2 X bits

to communicate such an ordering as X → ∞. That allowing indifference does not raise the asymptotic communication

burden follows from the approximation in [14].
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described in Section 7.2, there is no divisible “numeraire” good). Suppose that each agent’s

preferences depend only on his own consumption of goods and are monotonic in it. While we

no longer have a universal preference domain, we can focus on the case where N = 2, and on

the subset X̃ ⊂ X of alternatives that give L/2 objects to each agent. If the status-quo allocation

x0 ∈ X̃, and if the agents’ preferences are restricted to be such that they always strictly prefer

to consume a larger number of objects, then all individually rational allocations must also lie in

X̃. Furthermore, the restriction still allows the agents to have arbitrary preferences over X̃. Thus,

we can restrict attention to the problem on the set X̃ with universal preferences, and Corollary 5

yields:

Corollary 6. The communication cost of verifying an individually rational Pareto efficient al-

location in an indivisible-good exchange economy with two agents and L objects is at least

X̃ − 1 =
(

L
L/2

)
− 1 bits.

Thus, the communication cost is exponential in the number of objects. 37

7.5. Stable many-to-one matching

Let the set N of agents be partitioned into the set F of firms and the set W of workers.A two-sided

matching between firms and workers is described by a binary relation x ⊂ F × W . With a slight

abuse of notation, we also let x represent the correspondence x : N։N defined by

x (i) = {j ∈ N : (i, j) ∈ x or (j, i) ∈ x} for i ∈ N.

We restrict attention to many-to-one matching problems, in which a worker cannot match with

more than one firm, and so the set of alternatives is

X = {x ⊂ F × W : |x (w)| �1 ∀w ∈ W } .

We focus on matching problems without externalities, i.e., those in which each agent i’s preferences

depend only on the set x (i) of his matching partners.

The stable matching rule is a CU rule that is described with the following blocking sets:

� (x, S) = {y ∈ X : y\ (S × S) ⊂ x\ (S × S)} ∀S ⊂ N, ∀x ∈ X.

In words, a coalition cannot create new matches involving outsiders, but can break any match and

can create any match between its members. 38 This stable matching problem is studied by Roth

and Sotomayor [44].

Proposition 5. A message is a minimally informative message verifying the stability of a many-

to-one matching x if and only if it is equivalent to a match-partitional equilibrium supporting x,

37 The setting can also be reinterpreted as bilateral bargaining over L binary attributes, where it is known that, other

things equal, agent 1 prefers value 1 and agent 2 prefer value 0 for any attribute, but otherwise the agents can have arbitrary

preferences over attribute profiles. The corollary implies that finding a Pareto efficient and individually rational attribute

profile requires exponential communication in the number of attributes.
38 We might also prevent a coalition from breaking matches between outsiders, but this is irrelevant when externalities

in preferences are ruled out.
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i.e., a budget equilibrium (B, x) satisfying

Bf = {y ∈ X : y (f ) ⊂ 
 (f )} ∀f ∈ F,

Bw = {y ∈ X : y (w) ⊂ � (w)} ∀w ∈ W,

for some �, 
 ⊂ F × W such that � ∩ 
 = x and � ∪ 
 = F × W . Furthermore, any such

equilibrium is a unique match-partitional equilibrium supporting matching x in any state R ∈ R

in which L (x, Ri) = Bi for all i ∈ N .

Proof. For any agent i ∈ N , Bi = L (x, Ri) for some Ri ∈ Ri if and only if

Bi = {y ∈ X : y (i) ∈ �i}

for some �i ⊂ 2W for i ∈ F or �i ⊂ 2F for i ∈ W . Since this form is preserved under

set intersection, any budget equilibrium (B, x) satisfying (1) must take this form. Furthermore,

x ∈ F (R) if and only if

(i) each worker w ∈ W prefers x to being unmatched, and

(ii) each firm f ∈ F prefers x to matching with any subset consisting of some workers who

strictly prefer f to their equilibrium match and some of those already matched with f.

(i) means that ∅ ∈ �w for each worker w ∈ W . Since the worker can match with at most one firm,

and the set of his possible matching partners in Bw is � (w) ≡ {f ∈ F : {f } ∈ �w}, Bw is not

affected by redefining �w = 2�(w). This allows to write the workers’ budget sets in the desired

form for some relation � ⊂ F × W . Then (ii) means that for each firm f ∈ F ,

2(W\�(f ))∪x(f ) ⊂ �f .

(1) means that each budget set Bi is the smallest possible given B−i such that the above

inclusion holds. For i ∈ F (firms), this means that �i = 2
(i) for 
 (i) = x (i) ∪ (W\� (i)),

thus the firm’s budget sets take the desired form for the relation 
 ⊂ F × W such that 
 and �

partition (F × W) \x. This also ensures the minimality of the budget set Bi of any worker i ∈ W

given B−i . Theorems 2 and 3 imply the proposition. �

Intuitively, since a worker’s preferences depend only on his matching partner, his (largest

equivalent) budget sets can be described in terms of the available firms. On the other hand, since a

firm has preferences over groups of workers, its (largest equivalent) budget sets can be described

in terms of such available groups. A budget equilibrium with such budget sets verifies stability if

and only if each firm f’s budget set includes all groups consisting of all the subsets workers who do

not have f in their budget sets and some of those currently employed by f. Indeed, this ensures that

no deviation can make firm f and all of its new employees strictly better off. Finally, minimally

informative budget equilibria have the minimal budget sets necessary for verification; this means

that each firm f’s budget set must include exactly all the subsets of f’s current employees and those

workers who do not have f in their budget set. Thus, in a minimally informative budget equilibrium,

the firms’ budget sets are implied by the workers’ budget sets, and they can be described by listing

individual workers that are available to the firm rather than groups of workers.

The fact that combinatorial budget sets for firms need not be used brings about an exponential

reduction in the communication cost. Indeed, the workers’ budget sets are described by a relation

� ⊂ F × W , which is communicated with at most FW bits, the equilibrium matching x is

communicated with W log2 (F + 1) bits, and the firms’ budget sets are implied. Thus, the cost of

verifying a many-to-one stable matching is O (FW) as F, W → ∞. This is exponentially smaller
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than that of full revelation of a firm’s preferences over subsets of workers, which asymptotically

takes log2

(
2W !

)
∼ W · 2W bits as W → ∞ (see footnote 36).

For realizing the choice rule, we only need to verify one stable matching in each state, and need

not use all match-partitional equilibria. However, we can show that “almost” all such equilibria

need to be used, and so the nondeterministic communication cost of stability is asymptotically

FW bits. This is true even if the preference domain is restricted to include only preferences that

are strict and one-to-one, i.e., each firm prefers being unmatched to matching with more than

one worker. With such preferences, we can restrict attention to one-to-one matchings x, in which

|x (i)| �1 for all i ∈ N . We show that with such preferences, the uniqueness of a stable matching

can be ensured by adding one agent on each side:

Lemma 5. In the one-to-one matching problem with strict preferences, for any stable matching

x in any state R, we can add a firm f ∗ and a worker w∗ and complete the preferences in a way

consistent with R so that x ∪ {(f ∗, w∗)} is the unique stable matching.

Proof. Let the new agents’ preferences have wRf ∗w∗Rf ∗ {∅} and f Rw∗f ∗Rw∗ {∅} for all f ∈

F, w ∈ W , i.e., each new agent prefers all other partners to the other new agent, which he in

turn prefers to being single. For the old agents, let every firm f ∈ F rank w∗ just below its

current match x (f ), and let every worker w ∈ W rank f ∗ just below his current match x (w).

Such completion of preferences guarantees that matching x∗ = x ∪{(f ∗, w∗)} is stable. We show

that x∗ is a unique stable matching by contradiction: If it were not, then by the Lattice Theorem

[44, Theorem 2.16], either the worker-pessimal stable matching xw or the firm-pessimal stable

matching xf would differ from x∗. For definiteness let xw 
= x∗. By [44, Theorem 2.22], the set

of single agents is the same in xw as in x∗. Therefore, worker w∗ must still be matched in xw, and

since cannot be better off in than in x∗, we must have xw (w∗) = f ∗. But this implies that any

worker w 
= w∗ who is strictly worse off in xw than in x∗ would have a strictly Pareto improving

blocking by matching with firm f ∗. It follows that all workers must be indifferent between xw

and x∗, which implies that xw = x∗, yielding a contradiction. �

By the lemma and the second part of Proposition 5, for any match-partitional budget equilibrium

(B, x) on the first F − 1 firms and W − 1 workers we can construct a state R in which the unique

stable matching coincides with x and the unique supporting match-partitional budget sets coincide

with B for the first F − 1 firms and W − 1 workers (firm F and worker W are matched with

each other and their budget sets only include each other). Letting for definiteness F �W , and

considering an allocation x in which all the firms are matched, we can let the budget set of any

of the first F − 1 firms include any of the first W − 1 workers in addition to its current match

(the workers’ match-partitional budget sets are implied). Since any such budget equilibrium is a

unique match-partitional equilibrium in some state, we have:

Corollary 7. The communication cost of stable one-to-one matching with strict preferences be-

tween W workers and F �W firms is at least (F − 1) (W − 2) bits. The nondeterministic commu-

nication cost of stable many-to-one matching between W workers and F firms on any preference

domain that includes strict one-to-one preferences and guarantees the existence of a stable match-

ing is asymptotically equivalent to FW as F, W → ∞.

Corollary 7 generalizes quadratic lower bounds obtained by Gusfield and Irving [16] for finding

a stable one-to-one matching with F = W using particular querying languages. Specifically, they

only allow queries of the form “which partner has rank r in your preference ranking” or “what
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rank partner i has in your preference ranking” [16, Theorems 1.5.1, 1.5.2]. Allowing general

communication could in general reduce the communication cost, 39 but the corollary establishes

that this is not the case.

The deterministic communication cost, i.e., that of actually of finding a stable matching, can

in principle be substantially higher. However, for the preference domain on which the firms’

preferences are strict and substitutable [44, Definition 6.2], a stable matching exists and can

be found using only somewhat more communication. This can be done with a Gale–Shapley

“deferred acceptance algorithm” [44, Theorems 6.7, 6.8], which takes at most 3FW steps, at each

of which a match is proposed, accepted, or rejected. Since a match is described with at most

log2 (FW) bits, we have a deterministic protocol that communicates at most 3FW log2 (FW)

bits. This only slightly exceeds the verification cost, and is exponentially less than full revelation

of firms’ preferences over combinations of workers. 40

8. Deterministic communication

Of course, any practical protocol must be deterministic: it must find a desirable allocation

without the benefit of an omniscient oracle. Such a protocol in general may need to reveal more

information than needed for verification. In fact, deterministic realization of an IM choice rule

sometimes require exponentially more communication than nondeterministic:

Example 4. Let N = 2 and X = {x ⊂ L : |x| = 2}, for some set L such that |L| = 3m. We

interpret the agents as managers in a firms and L as a set of workers, and allocation x ∈ X

as choosing a pair of workers for a certain task. Manager 1 receives payoff 1 if the workers in

x share a language, and payoff 0 otherwise. Manager 1 knows privately the language spoken

by each worker. Publicly it is only known that each worker speaks one language, there are m

languages spoken by a pair of workers, and m languages spoken by a single worker. Manager 2

receives payoff 1 if x ⊂ y and payoff 0 otherwise, where y ⊂ L is a particular group of 2m + 1

workers known privately to manager 2. The social goal is to give both managers a payoff of 1,

which describes a choice rule that is CU (letting each manager’s blocking set be X) and thus

intersection-monotonic. Note that a socially desirable pair x always exists, and it can be verified

simply by announcing it, which takes 2 log2 L bits. However, the deterministic communication

complexity of finding such a pair is asymptotically proportional to L, which follows from the

problem’s equivalence to the “Pair-Disjointness” problem analyzed in [29, Section 5.2].

However, in some well-known social choice problems the gap between deterministic and non-

deterministic communication costs proves to be small. This is trivially true when even nondeter-

ministic communication proves almost as hard as full revelation (e.g., in the surplus maximizing

combinatorial allocation problem considered in Section 7.2). More interestingly, the gap is also

small in some cases in which much less communication than full revelation suffices. For exam-

ple, in a convex economy with the “gross substitute” property, Walrasian tatonnement converges

quickly to a Walrasian equilibrium, which verifies Pareto efficiency [32, Section 17.H]. Simi-

larly, in the many-to-one matching problem with strict substitutable preferences, a Gale–Shapley

39 In fact, the proving method of [16] cannot be extended to general communication. The proofs in [16] use a “fooling

set” in which all firms have the same and known preferences over workers. On this fooling set, we could use a simple

protocol in which workers sequentially, in the reverse order of their desirability, chose firms from those that remain

available. This protocol finds a stable matching with W steps and communicates at most log2 F bits per step.
40 Even if a firm’s preference relation is known to be strict and substitutable, the communication burden of describing

such a relation is still exponential in W, as shown by Echenique [10, Corollary 5].
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deferred acceptance algorithm converges quickly to a “match-partitional” equilibrium, which ver-

ifies stability [44, Section 6.1]. In both these mechanisms, at each step, the designer offers budget

sets for the agents, and the agents report their optimal choices from their respective budget sets.

If the choices are inconsistent, the designer adjusts the budget sets to be “closer” to being an

equilibrium. A “substitutability” condition on the agents’ preferences allows to construct an ad-

justment process that is monotonic, and therefore converges quickly (enormously faster than full

revelation). Some of the agents in such mechanisms even have the incentives to report truthfully

(e.g., nonatomic agents in Walrasian tatonnement, the proposing agents in a deferred acceptance

algorithm).

9. Relation to incentives

The concept of budget equilibrium has naturally arisen in mechanism design (implementa-

tion) with incentives. Indeed, any mechanism defines a “budget set” for each agent as the set

of outcomes he can attain via possible strategies, and incentive compatibility requires that the

agent not have a strictly preferred outcome within his budget set. With a single agent, this ob-

servation is known as the “Taxation Principle” [15]. In designing mechanisms for Nash imple-

mentation with many agents [33], budget sets can be constructed in a similar manner. Namely,

take a mechanism that describes a strategy space Si for each agent i and an outcome function

g : S1 × · · · × SN → X. A strategy profile s ∈ S1 × · · · × SN is a Nash equilibrium of the

mechanism if and only if g (s) is each agent i’s optimal alternative in his attainable set Bi (s) ={
g

(
s′
i, s−i

)
: s′

i ∈ Si

}
. Thus, the mechanism is equivalent to the budget protocol with the message

space M = {(B1(s), . . . , BN (s) , g (s)) : s ∈ S1 × · · · × SN }. 41 In particular, by this argument,

Theorem 1 implies that any Nash implementable choice rule is monotonic. 42

A key contribution of the present paper relative to the implementation literature is in showing

that incentive considerations are not necessary for the revelation of supporting budget equilibria:

By Theorem 2, if agents have private knowledge of their preferences, supporting budget sets must

be revealed in any mechanism solving an intersection-monotonic social choice problem, even

when agents can be relied upon to be truthful rather than selfish.

We can also make the point that incentives are not sufficient for the revelation of supporting

budget sets when agents have complete information about one another’s preferences. At first

glance, this point appears to contradict the earlier observation that equilibrium strategies in Nash

implementation must reveal supporting budget sets. However, there is no contradiction once

we consider implementation using multi-stage mechanisms, in which equilibrium play does not

reveal the agents’ (contingent) strategies, and therefore need not reveal supporting budget sets. In

particular, any Nash implementable choice rule can be implemented with a two-stage mechanism

in whose equilibrium agents agree on a desirable alternative in the first stage without announcing

any other information, and only in case of a disagreement, the mechanism would proceed to the

41 This observation was made by Williams [53, Theorem 1] and by Dutta et al. [9]. The latter paper focused on Nash

implementation of interior Pareto efficiency in smooth convex economies (considered in Section 7.1), and showed that

for this problem, a supporting Walrasian equilibrium must be revealed, along the lines of the proof of Proposition 1.
42 The converse is not true [33, Example 2], because not every budget protocol can be derived from a game form. For

the same reason, even when a choice rule can be Nash implemented, this may require more communication than realizing

it with a budget protocol. For example, Reichelstein and Reiter [43] examined the increase in communication required to

Nash implement the Walrasian equilibrium choice rule.
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second stage in which supporting budget sets are revealed. 43 Intuitively, when agents know one

another’s preferences, they already know supporting budget sets, and so the sets need not be

communicated in equilibrium.

Finally, observe that just because a communication protocol must reveal supporting budget

sets does not imply that the protocol must be incentive compatible. To be sure, in a budget

protocol, no agent would have an incentive to deviate by proposing another alternative within his

budget set. However, a budget protocol, being nondeterministic, does not specify what alternative

an agent could get by “rejecting” the budget equilibrium announced by the oracle. Incentive

compatibility must instead be examined in the context of deterministic communication. When a

budget equilibrium correspondence is realized with a deterministic protocol, an agent may be able

to manipulate his messages to influence his budget set to his advantage [32, Example 23.B.2]. 44

Thus, in general, the restriction to incentive-compatible protocols increases the communication

cost [42,12].

10. Conclusion

The “market design” literature has examined the attainment of socially desirable allocations

using “price discovery” mechanisms, such as ascending auctions, tatonnement, and deferred

acceptance algorithms. However, this literature has not answered two fundamental questions: (1)

Why and when is the restriction to “price discovery” mechanisms justified? and (2) How should

the “necessary,” or “minimal,” price space for a given problem be constructed? Instead, a few

papers have proposed ad hoc price spaces for specific problems and established fundamental

welfare theorems for them [35,31,2,3,28,18].

The present paper answers both questions by analyzing the minimal information that must be

communicated in order to solve a given social choice problem when the preference information

is distributed among the agents. The analysis answers (1) by characterizing the social choice

problems for which any minimally informative verifying message is a price equilibrium (more

generally “budget equilibrium” ), and answers (2) by constructing the minimally informative veri-

fying price equilibria for any given social choice problem. Thus, the paper provides a justification

for and characterizes the scope of the “market design” approach (as opposed to more general

mechanism design), and characterizes the form of “prices” that must be discovered to solve a

given social choice problem. Contrary to widespread belief, prices are necessary not in order to

incentivize the agents, but in order to aggregate distributed information about their preferences

into a socially desirable decision. The necessity of revealing prices proves to be a useful step for

identifying the communication costs of social choice rules.

To be sure, the paper does not fully solve the general “market design” problem of solving a given

social choice problem with a practical mechanism that is deterministic and incentive-compatible.

43 For example, take the one-stage mechanism proposed by Maskin [33, Theorem 3] to implement any monotonic choice

rule F satisfying a “no veto power” condition with N �3 agents. This mechanism can be converted into the following

two-stage mechanism: In the first stage, agents simultaneously announce an alternative. If they agree on an alternative, it

is implemented, otherwise we move to the second stage, in which each agent announces a state and an integer (without

observing the others’ first-stage messages). The outcome function is the same as in Maskin’s mechanism. Applying

Maskin’s arguments, it is easy to check that the two-stage mechanism still Nash implements F, yet in any equilibrium the

agents agree on an alternative in the first stage.
44 An exception is given by “nonatomic” convex economies, in which individual agents have no influence on the

Walrasian equilibrium prices. Another exception is when an agent’s budget set depends only on other agents’ types, as in

the Vickrey–Groves–Clarke mechanism.
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However, the paper has two important implications for this problem. The first implication is that

in some social choice problems (such as the efficient combinatorial allocation problem), the space

of prices that must be discovered proves to be prohibitively large, and the communication of such

prices proves to be almost as hard as full revelation of preferences. In such cases, the designer of

a practical mechanism must either moderate her goals or restrict attention to a smaller preference

domain. The second implication is for the problems for which the required space of supporting

prices proves to be manageable, and their communication proves much simpler than full revela-

tion. For such problems, the characterization of the price space offers some clues for the design of

practical mechanisms that must find an equilibrium from this space. In some important cases, men-

tioned in Section 8, a price (budget set) adjustment process can be constructed to converge quickly

to a verifying budget equilibrium and to provide agents with the incentives for truthful report-

ing. Identifying more general approaches to constructing deterministic and incentive-compatible

mechanisms solving a given social choice problem with minimal communication is an important

question for further research.
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