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I. INTRODUCTION 

1. 

Problems of economic policy may be grouped in two broad classes 
which may be loosely described as those involving choice of the value 
of a “parameter” within a given system of economic institutions and 
those involving choice among institutions. Familiar examples of problems 
of the first type include choice of tax rates, rates of government expendi- 
tures, and size of the money supply. Examples of the second type include 
the design of “new” economic systems, such as were embodied in the 
Yugoslavian economic reform of 1968, or the choice of economic institu 
tions confronting a developing country, as well as more limited problems, 
such as design of regulatory mechanisms, or structuring of the system of 
financial institutions, such as is embodied in the Federal Reserve Act of 
1933. 

In order to analyze and compare alternative economic systems so as 
to permit more enlightened choice among them, we seek to identify those 
properties of such systems on which choice should turn and to study 
their counterparts in a formal model. Among such properties are those 
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relating to the information processing required by a system.l Experience 
suggests that lack of attention to this aspect of institutional design, 
perhaps as a consequence of lack of applicable theory, results in designs 
whose performance is often quite different from what was intended or 
anticipated.2 Questions relating to informational properties of economic 
systems have a long history in economic thought, although it is only 
recently that formal study of them has been undertaken. While there is 
an elaborate body of theory applicable to the first type of policy problem 
at least within the framework of the competitive model, the growing 
body of theory applicable to the second type of problem is relatively 
new and substantially less elaborated than is the theory of the competitive 
modeh3 

1 Other important classes of properties are, among others, (1) those relating to the 
incentives experienced by economic agents and (2) those relating to authority relations 
among them. Both incentives and authority relations are closely related to and, in a 
sense, dependent upon informational properties. Analytical convenience is served by 
separating these problems. 

Z For example, the federal government can recover “excess profits” on defense 
contracts under the so-called Renegotiation Act. That Act provides that several factors 
be considered in determining a “proper” level of profit-factors including such things 
as an unusual degree of technical expertise, or of efficiency, and value to the national 
defense, among others. In order to evaluate these factors, the administering authority 
(the Renegotiation Board) would have to investigate the technical details of production 
and costs to determine whether or not the tim was operating on a technical frontier 
and where that frontier was in relation to the technical possibilities of other firms. The 
Board would also need to study the characteristics of the product in relation to its 
uses and compare them with alternatives actually or potentially available. Leaving 
aside questions of incentives to conceal or misrepresent data and the investigative 
burdens imposed by such activities, it is in itself a substantial burden to receive the 
information implied by factors mentioned in the Act and to analyze it so as to determine 
an allowable profit. Some administratively feasible procedure must perforce be used; 
if the budget of the Board is not large enough to provide for a staff adequate to the 
assigned task, then a feasible task will likely be substituted. The result is probably 
that the policy under which profits are actually recovered is different from that visualized 
by the Congress when it wrote the legislation. In an extreme case, informational burdens 
of administration could make the policy as administered random with respect to the 
factors provided in the act! Many other examples to the same point could be given. 

s It is also considerably more abstract. This feature of the theory is a consequence 
of its aims and problems. To analyze, compare, or choose among alternative economic 
systems, it is necessary to have a framework in which those alternative systems can be 
represented in the language of theory. This stands in relation to the first type of theory 
as a calculus-of-variations problem does to a calculus problem. In the case of a problem 
of calculus-e.g., a minimization problem-the problem is to find a value of a real 
variable which minimizes a given function on some set, while a calculus-of-variations 
problem can be one in which the problem is to find a function which minimizes a given 
functional on some class of functions. In each case it is necessary to include formally 
the range of alternatives to be considered. In one case that range is the real continuum, 
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Without attempting a full historical summary, it may be noted that 
Hayek [S, pp. 209-2121 gave great weight to informational considerations 
in the context of the debate over the feasibility of central planning (see 
also [14, p. 151). Hayek [5, pp. 209-2121 distinguished between the problem 
of characterizing optimal resource allocations and the problem of pro- 
cessing the relevant information by means of some economic mechanism 
so as to find (at least a reasonable approximation to) an optimal resource 
allocation. As Hayek saw the problem, economic information is naturahy 
initially dispersed among economic agents (e.g., the manager of a firm 
knows his own production set but not that of any other firm, nor does he 
know the preferences of consumers) and, in order to arrive at ~o~tirnaI~y) 
coordinated actions, this information must somehow be communicated 
among agents. Hayek saw the economic system (in part) as a mechanism 
for communicating and processing information. Some methods for 
achieving that optimal coordination were regarded by him as infeasible 
-e.g., transfer of all relevant data to a central planning board, which 
then solves the resulting optimization problem and transmits i~st~uc~i~~s 
to each agent about the actions he is to take. While several types of 
information processing may be seen to be involved, the task of com- 
municating all the necessary information was regarded by Hay& to 
sufficient by itself to render central planning infeasible. Hayek 
stressed the advantages of the competitive pricing mechanism as an 
“efficient” way of performing the tasks of communication and information 
processing necessary to achieve optimal coordination (at least for a 
certain class of economic evironments) [5, p. 211; 7, p 5241. While his 
detailed discussion dealt almost exclusively with the competitive model 
as against one of a centrally planned economy, Hayek recognized the 
possibility of rational design of the institutional framework and the 

ossibihty of new economic institutions (“new” in the broader sense of 
“hitherto not conceived” as well as ‘“other than those historically 
observed”) [5, p. 221. 

More recently, Hurwicz undertook a more formal study of this range 
of questions [8, 91. He saw that progress in the study of his kind of 
question would be aided by a more general forrn~~ati~~ of informative 
processing and communication, one which allows ex~l~~~t~y for new 
economic systems and which consequently does not formally restrict the 
possible alternatives so as to permit identification of efficiency with the 

but in the other it is a more abstract class of functions. The necessity to encompass 
several alternative economic institutions, rather than just different “parameter values” 
within one given system of institutions, similarly requires a step up in the ievel of 
generality and hence abstraction of the theory. 

642/S/2-5 
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competitive market mechanism and infeasibility with central planning. 
He approached the problem by giving an explicit, though abstract, 
formalization for an economic system, a formalization which permits 
inclusion of both the competitive mechanism and central planning as 
particular elements in a class of systems which includes others as well. 

Hurwicz’s formulation, though originally published in 1960, may be 
sufficiently unfamiliar as to call for a brief summary. Hurwicz used the 
term “environment” to refer to those elements of the economic situation 
which are given to the economy-namely, the commodity space, the set 
of agents, their admissible consumption sets, preferences, production 
sets, and initial endowments. A resource allocation mechanism or adjust- 
ment process “computes” resource allocations, taking environments as 
its inputs. The resource allocations arrived at by a mechanism can be 
evaluated by using the usual notions of efficiency or Pareto-optimality. 
Hence, one may consider the set of environments for which a given mecha- 
nism is sure to calculate all optimal allocations and only those. Hurwicz 
called this the class of environments for which the mechanism is Pareto 
satisfactory. The initial distribution of knowledge about the environment 
is characterized by the assumption that individual agents know those 
characteristics of the environment naturally associated with them (in the 
absence of externalities); i.e., each individual is assumed to know his 
own consumption and production set, preferences, and initial endowment. 
Knowledge so dispersed is not in general capable of yielding optimally 
coordinated action. Hence, communication in some form is necessary. 
The economic system is seen, in an admittedly simplified view, as con- 
sisting of a communication process in which agents exchange formal 
messages in an iterative fashion, followed by a decision process and, 
finally, a translation of decisions into real actions. Hurwicz formalized 
the communication process by means of “language” and “response 
functions,” specifying how each agent arrives at the messages to be 
emitted at each stage of the iterative exchange of messages. After the 
process of communication terminates, decisions are determined on the 
basis of the state of information at the final stage of communication. Such 
a formalized economic system he called an adjustment process. Hurwicz 
distinguished two classes of processes-one a subclass of the other-the 
so-called abstract adjustment processes, in which the language used for 
messages could be arbitrarily specified, and the concrete processes, which 
are restricted to using messages consisting of sets of proposed production 
and exchange activities (with decisions determined by consensus). With 
reference to the concrete adjustment processes, Hurwicz gave a formal 
definition of informational decentralization, a definition which formalized 
essential elements of the earlier discussion. That definition has two parts: 
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The first, referring to the intitial dispersion of information, (fo~rna~~zed 
as a property of response functions) is called ‘“privacy”; the second part, 
also a property of response functions, refers to the messages use 
agents. The effect of the second part of his definition is to restric 
messages of an informationally decentralized concrete adjustment process 
to sets of commodity space vectors. Thus, after due provision for the 
initial dispersion of information, the concept of informational decentral- 
ization turns on a property of the space of messages, a property we may 
loosely call the “size” of the messages. in the case of a Euclidean com- 
modity space, informational decentralization restricts messages to sets of 
vectors whose dimension is that of the commodity space. Because informa- 
tion is initially assumed to be dispersed and hence all additional informa- 
tion acquired by an agent must be communicated to him via the formal 
message process, restriction of the “size” or mformation-carrying capacity 
of messages can serve as an indirect way of restricting the kind as well as 
the amount of information exchanged. Thus, for example, a production 
set not describable by a small number of real parameters cannot in general 
be communicated by using a commodity space vector as the message4 The 
concept of informational decentralization, which classifies (concrete) 
adjustment grocesses into two classes consisting of the ~~forrnat~o~a~ly 
decentraiized ones and all the others, permits posing the problem of 
trade-off between desirable informational properties of adjustment 
processes and other performance characteristics, such as the inclusiveness 
of the class of environments for which optimal coorSdination by the pr 
can be guaranteed. This trade-off is the same sort as was encounter 
the renegotiation of contracts mentioned above-namely, a trade- 
between desired performance and informational feasibility. The same ki 
of comparison has been considered, although more i plicitly, by others. 
A debate between Wellicz ]k6] and Davis and Whinston 141 turne 
the comparison of communication requirements imposed by va 
alternative proposed mechanisms for finding o timai resource allocations 
in the presence of externalities. While no formal concept of information 
was given, such notions are implicit in the discussion. One element of the 
discussion involved the necessity of transmitting to one of the agents 
information about the production function of another, which is a matter 
covered by the concept of privacy; another turned on counting the number 
of variables whose values must be transmitted, which is a matter of “‘size” 
of messages. 

4 Certain additional restrictions are needed to avoid anomalies arising from the fact 
that arbitrary amounts of information can be encoded in a single real number. This 
matter is dealt with below (see the example following Lemma IO). 
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We are interested in analyzing the communication processes of a wide 
class of mechanisms. Once we admit administrative mechanisms, messages 
can become quite abstract (as observation of the nature and variety of 
bureaucratic forms and memoranda suggests) and not directly related 
to the commodity space. Hence, it is desirable to have a concept of 
informational size and a formulation of privacy applicable to message 
spaces which are capable of representing the kinds of messages actually 
used. Something considerably more abstract than Euclidean space is 
clearly necessary. We have chosen to consider general topological spaces. 
It is also desirable to have a concept of informational size of messages 
and of privacy which provides a basis for classifying processes into more 
than the two classes “informationally decentralized” or “not informa- 
tionally decentralized” and hence could serve as the basis for a notion of 
the degree of informational decentralization. This is also a property of 
the concepts introduced here. 

Hayek’s insight into the informational virtues of the competitive 
process is perhaps a natural one for economists to have. It is of interest 
to establish whether the competitive process is in some sense an “informa- 
tionally best” process. Hurwicz has posed a problem of this kind and 
has shown that there is no other process which preserves privacy and 
achieves optimal coordination for the same class of environments as the 
competitive process and which uses a Euclidean message space of lower 
dimension than the competitive process. We also study a form of this 
question, asking whether there is a process using a message space of 
smaller informational size (without the restriction to Euclidean spaces) 
which achieves optimal coordination for the same class of environments 
as does the competitive process. The answer is, roughly, “No.” 

In addition to the informal considerations just discussed, examples 
arising in the formal study of resource allocation processes (formalized 
economic organizations) suggest the existence of a “trade-off” between 
environmental coverage (the class of environments for which a given 
process achieves a desired performance standard) and the informational 
requirements of the process. One such example is afforded by the com- 
parison between the greed process and the quasicompetitive process 
given by Hurwicz [8], which reveals that the extension of Pareto-satis- 
factory performance for all convex environments, achieved by the quasi- 
competitive process, to the same performance for the class of all decom- 
posable environments, achieved by the greed process, comes at the “cost” 
of requiring more complex messages. The greed process uses preference 
sets as messages, while the quasicompetitive process uses convex cones 
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with vertex at the origin. A second example, also due to Hurwicz [lo], 
shows that, in order to achieve Pareto-satisfactory performance for a case 
involving an externality, either messages of higher Euclidean dimension 
must be used or an inadmissable coding process involving a Peano-type 
curve, must be used. 

In these examples the informational requirements of a process are 
discussed in terms of the messages used, as we have already remarked. In 
the one case the dimension of the message space is considered, and in the 
other a more subtle notion of “size,” related to a comparison of the 
collection of all possible preference sets with the collection of all convex 
cones with vertex at the origin, seems to be involved. F~rtherrn~r~~ 
Hurwicz [lo] has restated the concept of informational decentralization 
originally given in [8] so that it is given explicitly in terms of the dimension 
of the space of messages used (together with a “privacy” req~irerne~t~~ 
Motivated by such interest in the “size” of the space of messages used by 
a resource allocation process, we introduce a concept of the ~~orrnati~~al 
size of a topological space (Definition 9 in Section II). With this concept, 
and with the formal representation of a resource allocation process given 
below (Definitions 1 and 3 in Section II), we can approach the study of 
the trade-off between environmental coverage and informational size oft 
message space. We do this somewhat indirectly by looking for the message 
space of minimal informational size sufficient for a process to achieve 
a specified performance. Put somewhat figuratively, to find a message 
space of minimal iitiormational size sufficient for a specified performance 
is to find a point on the efficiency frontier in a space in which the axes 
are “performance” and “informational size.” This e 
of course, the set characterizing the possible trade-o 
direction are only partial. For the case in which the space of environments, 
the space of actions, and the message space are topological spaces, we 
find the message space of minimal informational size for processes which 
do not necessarily preserve privacy [Lemma 10 in Section II]. But for 
privacy-preserving processes, at this level of generality we lind only 
rather obvious bounds on the informational size of the message space. 

However, specializing somewhat, we study one portion of the efficiency 
frontier alluded to above in some detail in Section III, where we study 
pure exchange economies with a finite number of agents and commodities. 
We show there that any resource allocation process capable of achieving 
Pareto-satisfactory performance for a class of e~v~rQ~rnents with Cobb- 
Douglas utility functions and whose message corres~~~denc~ is upper 
semicontinuous must use a message space whose informational size is at 
least that of the message space used by the competitive process (Theo- 
rem 31, Section III). We show further that this result also holds for any 
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class of environments which includes the Cobb-Douglas utility function 
[Corollary 34, Section III]. This means that the Cobb-Douglas case is 
merely a device of analysis and is not a restriction of the results. If the 
requirement of upper semicontinuity of the message correspondence is 
dropped and only privacy is required, then as the example following 
Corollary 34 shows, the message space of the competitive process is not 
of minimal informational size. It remains true, even without upper semi- 
continuity, that any Pareto-satisfactory process which preserves privacy 
and uses a Hausdorff message space has a message space which is locally 
at least as large informationally as that of the competitive process 
[Theorem 35, Section III]. Since the message space of the competitive 
process is Euclidean, it has a dimension. Two results relate the dimension 
of the message space of a process to that of the competitive process. First, 
in the presence of the upper semicontinuity condition, if a process is 
Pareto satisfactory for the class of Cobb-Douglas environments and uses 
a separable metric message space, then its dimension is at least that of 
the competitive message space [Corollary 32, Section III]. Second, 
without upper semicontinuity, if a process is Pareto satisfactory for the 
class of Cobb-Douglas environments and is privacy preserving and its 
message space is Euclidean, then its dimension is at least that of the 
competitive message space [Corollary 36, Section III]. This result has 
been obtained independently and in a different way by Hurwicz [l I]. 

Finally, we note that the concept of informational size of a space 
applies to finite sets with the discrete topology. In that case, informational 
size corresponds to the number of elements in the space (see the Remark 
following Lemma 15). 

II. PROCESSES, PRIVACY AND INFORMATIONAL SIZE 

1. Processes and Privacy 

We suppose that the set of agents is (l,..., n} and let Xi denote the space 
of possible characteristics of agent i (e.g., his admissible consumption 
set, preferences, technology, etc.). The space X = X1 x *** x X” = ny=, xi 
is the space of the possible economic environments. In writing X as a 
product of the Xi’s we are considering the class of decomposable environ- 
ments [8].5 We further suppose that there is a space 2, whose elements 

5 It is possible to interpret Xi as the space in which agent i’s direct information about 
the environment is contained, where the environment is an element of a different space. 
Under certain assumptions about the relationship of the distribution of information 
among agents to the true environment, the analysis given below applies without 
alteration. 



THE INFORMATIONAL SIZE OF MESSAGE SPACES 149 

are interpreted as joint actions, and a function ,f: X+ Z. e interpret J 
as designating the actionf(x) in 2 which is to be taken when the environ- 
ment is x E X. We shall refer to f as a performance standard 01~ choice 
function. To clarify further the interpretation ofS, consider the set of ah 
actions z E Z which are Pareto-optimal for an environment x E X. Because 
this is in general a set consisting of actions not Pareto comparable, it does 
not in itself define a unique (up to a Pareto-indifferent set) action to be 
chosen. Yet a resource allocation process should be required to determine 
an essentially unique action. (A weaker form of such a requirement, 
called essential single-valuedness, is imposed by Hurwicz in [s].) Any 
process which determines a unique action for each environment thereby 
defines a choice function. Thus, a choice function 3s a specification of the 
performance of an allocation process. In Section III we consider Pareto- 
satisfactory choice functions on the class of convex decomposable environ- 
ments. In this section we shall require only that the Xi (hence X) and Z 
be topological spaces and that the choice functions f satisfy certain 
regularity conditions. 

We consider resource allocation processes in which each agent knows 
directly his own component xi E Xi of the environment x = (xl,..., J?), 
and in which any further information is acquired by ~ornrn~~~cat~o~ 
among agents. Gommunication takes place by iterative exchange of 
formal messages until a stationary message is reached. At that stage a 
joint action is determined on the basis of the stationary sage only. 
We are interested in the “size” of the message space nee to realize 
a given choice function. We shall study the space of s 
Since the space in which iteration of messages takes 
include the stationary messages, we thereby obtain a er bound on the 
“‘size” of the message space. 

In what follows, if X and Y are topological spaces; then by a corre- 
spondence from X to Y we shall mean a subset TC X x Y such that the 
projection of r to X covers X. That is, for each x E X, the subset of Y 
which corresponds to x is nonempty. If I’ is a correspondence, then, 
x E X, I’(x) = prr[(x x Y) n I’]. In what follows, unless otherwise sta 
when we say function we shall mean continuousfkvtion. 

DEFINITION I. Suppose that X, M, and Z are topological spaces, and 
suppose that f: X + Z is a function. A pair which consists of a corre- 
spondence p: X -+ M and a function 5 M --z Z is said to be ~ornpati~~e 
withfif and only if for each x E X,pis constant on.p(x) and has valuej(x). 
Thus, if u E p(x), then J”(U) = f(x). We shall say that M has sz@cient 
information for the functionf if there is a pair (JL,~) such that 11~: X -+ M, 
f A4 + Z, (p, f”) is compatible with f, and TV is a locally sliced corre- 



170 MOUNT AND REITER 

spondence (see Definition 6 below). We shall say then that (p,f) realizesf. 
We call the pair (p,f) a resource allocation process (briefly, a process) 
with message space M and choice function f6 

The assumption that X is a product of spaces Xi already formalizes 
the notion that each agent knows directly only his own component of the 
environment. As was noted above, the communication process must 
preserve the privacy of direct knowledge by requiring that all information 
acquired by an agent about components of the environment other than 
his own must come via formal messages. Another way of putting this is 
that messages emitted by an agent can depend directly only on his own 
component of the environment and not on others of which he can have 
no direct knowledge. We formalize this by means of a subclass of corre- 
spondences which preserve privacy. (Hurwicz introduced this term in [6]). 

DEFINITION 2. Suppose that Xl,..., X” is a set of topological spaces, 
and suppose that M is a topological space. A correspondence 
p: X1 x ... x X” -+ M is said to be a coordinate correspondence if and 
only if there are correspondences pi: Xi --+ M such that for each 
(xl,..., xn> E x1 x .. . x P, p(xl,. .., xn) = pl(xl) n .-. n j&P). 

DEFINITION 3. Let X = a:=, Xi, let M and 2 be topological spaces, 
and let (j+ f”), where I*: X -+ M and J: M -+ 2, be a resource allocation 
process (with message space M and choice function f”). We say that (p,p) 
preserves privacy if and only if p is a coordinate correspondence. 

We may interpret the correspondences pi: Xi -+ M as strategies of 
communication. Thus m E pLi(xi) means that the joint message (proposal) m 
is acceptable to agent i when his environmental component is xi, if the 
other agents also agree to m. 

The relationship of this model of an allocation process to that of 
Hurwicz [8] is made clear in Lemma 4 below. Let X = l-I:=, Xi be the 
space of environments. In Hurwicz’s formulation, the message space M 
is a product. We may write M(“) = l-I:=, Mi. He defines response func- 
tions, such that 

f ‘(m,l,..., mtn; xi) = m:,, , i = l,..., n 

represents the iteration of messages and 

gi(ml ,..., mn; xi) = f i(ml ,..., m”; xi) - mi = 0, i=l n ,-**, 

6 The performance standard f:X + 2 can be regarded as the choice function of a 
process (~,3) with M = X and p as the identity on X. 
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characterizes the equilibrium message complex when the environment is 
x = (xl,..., x~). That fi depends on x only through xi expresses the 
property of privacy. We may call (gl,..., g”) = (O,..., 0) the equilibrium 
equations of the process. 

Let %i be the set of message complexes ii? = (I%,..., FE”) satisfying 
gyml,..., EP; xi) = 0 (i = l,..., n). Then the function CJJ: G -+ Z is the 
oecfcovrze function, and the pair (f, cp) is a Murwicz resource allocation 
process. 

LEMMA 4. Let X = ny=, Xi and let M = APJ. 

(a) Let gi(ml ,..., mn; xi) = 0 (i = I,..., n) be the equilibrium equations 
of a Hurwicz resource allocation process with equilibrium message space &?. 
(Note that the functions gi are not necessarily continuous.) There is a 
coordinate correspondence p: X + &?, with coordinates pi: Xi + iii; such 
that GE m satisfies the equilibrium equation g$(%P,..., En; x”) = 0 
(i = I , ~. , n) if and only if 6i E nL, ,&xi). 

(b) Let p: nz=, Xi + R be a coordinate correspondence with coordi- 
nates pi . There exist (characteristic) functions gi: M x Xi + (0, I) such 
that %i E fly=, pi(xi) {f and only ifgi(E; xi) = 0 for i = I,..., n. 

Proof. The proof is immediate from Definition 2, for &xi) = 
((ml ,..., m”) E R / gi(ml ,..., mn; xi) = 0). 

We see from Definition 2 that a coordinate correspondence is a corre- 
spondence with a prescribed decomposition. We now give necessary and 
suffkient conditions that a correspondence be a coordinate correspond- 
ence. 

NOTATION. If x = (x1,..., x,) and y = (.v~ ,..., y,) are elements of 
MI x ..* x M, , we shall denote by x @$ y the element (yl ,“.., yjPl ) 3~~ ) 
Y&l ?.~.> YTJ.  

LEMMA 5. Suppose that Xl,..., X”, and M are topological spaces, and 
suppose that p = X1 x ... x X” -+ M is a correspondence. A necessary 
and su$cient condition (which we shall cat2 the “crossing condition”) 
that p be a coordinate correspondence is that for each pair of points 
x = (xl ,..., xJ and xi = (x,~ ,..., xn’) in X1 x ..* x Xn and each infeger 
1 <i<n. 

Proof. First suppose that p is a coordinate correspondence. 
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Then 

P(X) n /4x’> 

= &d n - P&> n f4.G) n . .. n pn(xn’) 

= b-6) n +. . n ~~-dx~-~) n pi(xil) n ~~+dx~+J n ... n ~xJ 

n Mx,‘) n ... n ~~-dx;-d n i-44 n P~+~(x;+J n - n ~~(x,‘)l 
= p(x’ oi X) n (X & x’). 

Conversely, suppose that p: X1 x ... x X’” ---f A4 is a correspondence 
which satisfies the condition (*). If y E Xi and x E X1 x a.1 x Xn, then 
set 1.4~1 = U xE.J?X,..XXn p Xl ,.a-, xi-1 , ( y, xifl ,..., x,); thus p<(y) is the 
union of all the values of p at the points of X1 x ... x X”, which have 
ith coordinate y. Thus, if we set v = (vl ,..., u,), then 

-[ u - 
Z,Y~XIX...XX” 

= 
Iz ,.U. xx” & O1 (u O2 4) n AX O2 Y)] n ,t [v Au oi 41, 

where the last equality orie derives from an application of (*). Thus, 
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n the other hand, pi(ui) > P(U); thus, pl(v,) r! *.. A pL,(zl,) Z p(o). This 
completes the proof. 

Given a space of environments X = j-J:=, Xi, a space of actions Z, 
and a choice function f: X + Z, with the desired actions specified for 
each possible environment, there always exists a privacy-preserving 
allocation process (p,j) realizing f. Take A4 = X and ~~(9) = 
((y”,..., y”) E X / yi = xi} for i = l,.,., n. Then I~,~=, ~~(9) = (x). Finaily, 
take f = jI The question then arises whether there is a privacy-preserving 
process realizing f with a “smaller” message space. And, more ambitiously, 
what is the “smallest” message space M such that there is a privacy- 
preserving process realizing f with the message space M? 

In order to pose such questions precisely, a concept of the informational 
size of a space is needed. Hurwicz [lo, II] has posed similar questions, 
using the dimension of Euclidean spaces as a ‘“measure” of size. The 
intuitive basis of this concept is the notion that more resources (or 
difficulties of communication) are involved in using two- 
rather than one-dimensional messages, for example. Whatever the merit 

f this concept of informational size, it is not available for spaces which 
o not have dimension. Furthermore, it does not seem to be the appro- 

priate concept for finite sets. In Section I .2 we study the informationad 
size of topological spaces. 

We will introduce a concept of the informational size of a topological 
space. For this purpose, we need certain concepts of regularity. 

DEFINITION 0. Suppose the X and Y are topological spaces. If 
p: X- Y is a correspondence from X to Y> then we shall say that p is 
locally sliced if the following condition is satisfied: 

For each p E X, there exists an open set U(p) -which contains p and a 
function s: U(p) + Y such that, for each zk E U(p), S(U) E p.(u). 

The function s will be called a Iocal slice or slice of p. 

EFINITIQN 7. If X and Y are topological spaces, t 
tion f: X-t Y is said to be IocaIly sectioned if %he correspondence f-” 
from Y to X is locally sliced. 

LEMMA 8. Suppose that X and Y are topological” spaces. An onto 
function f: X -+ Y is locally sectioned if and only if for each p E Y there 
exists an open set U(p) which contains p and a function s,: U(p) + X such 
that,for each u E U(p), f 0 sp(u) = u. 
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Proof. Suppose that f is locally sectioned. Then f-l is locally sliced 
by definition. Assume p E Y. Thus there exists an open set U(p), which 
contains p, and a function s,: U(p) --+ X such that s,(u) ~f-l(~) for each 
u E U(p). Thus f 0 s,(u) = U. The converse is clear. 

In order to make these definitions a bit clearer, we give the reader 
two examples. First, let G denote the topological space which is the 
graph in R x R of the function f given by f(x) = x for x < 1 and 
f(x) = x + 1 for 1 < x. Let p denote the function from G to R x 0 
(where R is the reals), which carries (x, JJ) to (x, 0). The topological 
space G is mapped continuously and one to one onto the x axis (the 
reals). However it is clear that, although the point (LO) is in the image of 
p, there is no local section to G. Next consider the correspondence from 
R to G which carries x to (x, x) if x < 1 or to (x, x + 1) if x 2 1. This 
correspondence is clearly not sliced. 

For a more interesting example, let C denote the complex numbers 
and let X denote the subset of C x C satisfying the equation y2 = x. 
Let p denote the projection from X to C x 0 which carries (x, y) to x. 
In the neighborhood of (0,O) the map p is not locally sectioned. To see 
this, note that if such a section exists then there is a function s from C 
to the set of (x, JJ) such that y2 - x = 0. However, it is classical (see [13], 
for example) that there is no continuous square root in the neighborhood 
of 0. On the other hand, if we consider the space X - ((0, 0)) and 
the space C - (0) with the same projection p, then p is clearly 
locally sectioned-indeed, at any nonzero point we can construct an 
analytic cross section by use of the Taylor series of z/x. We can build 
a correspondence which is not locally sliced in this case, as we did 
before. 

DEFINITION 9. Suppose that X and Y are topological spaces. We shall 
say that Y has as much information as X if and only if there exists a locally 
sectioned function from Y to X. We shall say that Y has strictly more 
information than X if Y has as much information as X but X does not have 
as much information as Y. 

With this definition it follows that R x R (where R is the real numbers) 
has strictly more information than R. To see this, note that the function 
which projects R x R onto its first factor is a locally sectioned function. 
Therefore, R x R has as much information as R. On the other hand, if 
R were to have as much information as R x R, then there would have 
to be a function p: R -+ R x R which is onto and locally sectioned. 
Suppose that x E R x R. There would have to be a function s: U + R 
for an open set U containing x such that p 0 s = Id,. Thus U would be 
homeomorphic to a subset of R (that is, homeomorphic to the image 
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of s). It follows that one could embed a two-dimensional disk in a one- 
dimensional space. However, this is impossible. 

As we mentioned above, we are interested in the message space of 
minimal informational size sufficient for a given function. If we do not 
restrict the processes considered to those which preserve privacy, it is 
intuitively clear that the minimal message space should be that consisting 
of the values of the given function; i.e., the least information one could 
expect to be sufficient to compute the value of a functionfis the value of 
f itself. Indeed, a concept of informational size which did not have this as 
an implication would be suspect. As we shall see below (in the example 
following Lemma 13), if a privacy-preserving process is required, then 
the size of the minimal message space sufficient for a given function f is 
generally larger than the image off. 

The next lemma characterizes the message space of minimal size when 
the message correspondence is not required to preserve privacy. 

LEMMA 10. If f: X + Z is a locally sectioned onto function and $ 
has suj‘kient information for f, then A4 has as much i~f~r~latio?~ QS Z. 

Proof. Because M has sufficient information !for ft there exists a pair 
(p, f”) which realizes f, such that p: X + M and j? M --t 25. Because S is 
an onto function and (p, f”) realizes f, it follows that f” also maps onto Z. 
To prove our assertion, it will suffice to show that the function f”is locally 
sectioned. Thus suppose that p E Z. There is an (open set V(p) in Z and 
a function s,: U(p) -+ X such that f 0 s, = Id,(,) . Thus there exists an 
open set V in X which contains f(p) and a function 7: V 
for each I’ E V, T(V) E p(v). The set I/n Im(s,) is open in 
Im(s,) denotes the image under s, of its domain. Then s 
is open in U(p), and hence U’ = !;I[ V n Im(s,)j is open in 27. Further, 
set < = 7 0 s,: U’ ---f M. Then f o t(u) = ,“” o T 0 s~(u> = J”~(s~(u))] I= 
g 0 s,(u) = U. This completes the proof. 

One may ask whether the condition that the correspondence p be 
locally sliced is actually required for the definition of information su 
ciency. It is easy to see that, if we drop the condition, then the Peano 
function arises as a pathological possibility. Consider the space R x 
(where R is the set of reals) and the identity function Z from R x W to 
R x R. Let ‘in: R + R x R denote the space-filling Peano curve. Let 
p: R s R---f R denote the correspondence r-l. Then the function 
7~: R - R i< R together with p realizes Z, since rr 0 p = I. Thus, if we 
were to remove the local slice condition in the definition of sufficiency of 
information, the pathological situation that R is sufficient for the identity 
function I: R x R ---) R x R would result. 
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We now extend the concept of a space having sufficient information for 
a function to that of a space having sufficient information for a class of 
functions. 

One technique of proof which we shall use involves the consideration 
of a restricted class of environments, in order to achieve a lower bound 
for the information required for a process. In order to justify this proce- 
dure, it is necessary to consider only those processes whose relevant 
properties are inherited under restriction to subspaces (see, for example, 
Corollary 34 where this line of argument is used). 

DEFINITION 11. (i) Let Xi (i = l,..., n) be topological spaces and 
let f: nI=, Xi + Z be a function. We say that a space M has minimal 
information for f relative to a class of allocation processes having a property 
B if and only if there exists a process with property 9 and message 
space M which realizes f, such that, if N is a space for which there exists 
an allocation process with property P which has message space N and 
which realizes f, then N has as much information as M. 

(ii) We shall call a process &,J) with message space M and which 
has property B a 9 process if, for any subspaces Yi of Xi (i = l,..., n), 
the restriction of (p,J) to ny=, Yi with message space M also has 
property 9:. 

DEFINITION 12. Suppose that F is a nonempty set of functions from 
a topological space X to a topological space Z. We shall say that M has 
su$fkient information for the family F if M has sufficient information for 
eachfEF. 

We next establish the analog of Lemma 10 for a class of functions. 

LEMMA 13. Suppose that F is a nonempty set of functions from a 
topological space X to a topological space Z. Suppose further that there 
exists a topological space M and a function y: M -+ Z such that for each 
f E F there exists a correspondence P f: X + M such that the pair (,uf , y) 
realizes f. Suppose also that the following condition is satisfied: 

If p E Z, there exists a function f E F and an open set V C X such that f (V) 
is a neighborhood of p and f as a function from V to f(V) is locally 
sectioned. 

Then M has as much information as Z. 

Proof. We shall show that the function y: M + Z is locally sectioned. 
There exists an open set U(p) which contains p and a function f E F such 
that f carries an open set in M onto U, (f -l(lJ(p))) A V, where f (v) is an 
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open set in X which covers a neighborhood of pi Because S has a local 
section, there exists a function sf: U + X such that f 0 sf = IdU ~ The 
correspondence pf has a slice on a neighborhood of s,(p). Suppose that 
u‘f is such a slice of ,u~. Then the function gf c si is a slice of the corre- 
spondence v-l. 

From Lemma 10, we see that the informational size of the minimal 
message space of a process (p,p) realizing3 X- 2, but not necessarily 
preserving privacy, is the same as the informational size of the image off 
in Z. Imposing the further condition that the process preserve privacy- 
i.e., that p be a coordinate correspondence-will in general require a 
message space of larger informational size, somewhere “between” the 
image off and the informational size of X. 

The following example illustrates this increase in informational size. 
It also shows that the increase in generality provided by not reqjuiring 
the message space to be a product space is significant, since in this example 
the message space of minimal informational size for a coordinate corre- 
spondence is not a product inside X. 

TABLE 1 

2 a b 

1 a a 

x2 

/ 
x-1 

1 2 

EXAMPLE 1. Let X1 = X2 = { 1,2), and supposefi x’ x X2 + (a, b) = Z 
is given by Table I. The correspondence v: X1 x X2 + Z, which has the 

minimal message space, is given by a table identical to Table I, andpfor 
this correspondence is the identity on 2. 

E-lowever v is not a coordinate correspondence because it fails to satisfy 
the crossing condition of Lemma 5. 

TABLE II 

2 iy P 

1 cx Y  

2 
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Let p1 = X1 ---f {ol, /3, r> = M be given by ~~(1) = (u.> and p,(2) = {fl, ~1, 
and let p2: X2 + M be given by ~~(1) = {ol, p} and ~~(2) = (01, ,f?>. Then 
pL1 n pZ is given by Table II. Taking J such that f”(a) = f”(r) = a and 
f”(a) = b, we see that (p,f) realizes f with message space M = (cr, p, r>. 
Note that M is informationally larger than 2 and that M is not a product 
inside X1 x X2. 

We will find the following simple result useful in Section III. 

'LEMMA 14. Suppose ny=, Xi, Z, and M are topological spaces, and 
supposef: ny=, Xi + Z is a continuous function. 

Suppose that Yi is a subspace ofXi (i = I,..., n) and assume that M has 
minimal information for the restriction off to &=, Yi among 9 processes. 
If there exists a 9’ process such that M has suficient information for f on 
I-j,“=, Xi, then M has minimal information for f on I-I,“=, xi. 

Proof. Note that, if (v,fl) is a pair which realizes f, then the corre- 
spondence v *, which is the restriction of v to the subspace I-I;=, Yi, is a 
coordinate correspondence from JJy=, Yi to M, which with jrealizes f. 

LEMMA 15. Let X1 ,..., X”, W, and V be topological spaces, let 

P=Plx . .. x pFLn: JJF=, Xi + W be a coordinate correspondence on 
nyB, Xi, and let h: W + V be a homeomorphism of W to V. 

Then, 

where 

hop1 x -.. x h o pn(~l ,..., x,) = h(&,)) n - n hQ-4-4) 

is a coordinate correspondence on V. 
Furthermore, iff is a function on nr==, Xi to Z and? W--f Z is such that 

(p, f) realizesf, then the function j 0 h-l: V -+ Z together with the coordinate 
correspondence h 0 p ‘realizes f. 

Proof. The correspondence h 0 p is a coordinate correspondence if 
and only if it satisfies the crossing condition of Lemma 5; i.e., for all 
x = (x1 )...) x,) and y = (ul ,..., yn) in l-I:=, Xi, 

h 0 14x1 ,..., GJ n h 0 P(Y, ,..., Y+J 

= h 0 14x1, . . . . xi-1 , yi , xi+1 ,... , xn> n h 0 j-4 ~1 ,..., ~3-1, xi , yi+l ,..., ~2. 
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Equivalently, 

h 0 ~~64 n . ..nho~..(x,)nh~~~(~~)n...nhO~~,(~,) 

= h 0 h4xl) n ... n h Opj(yj) n ...nh~~~(~,)nho~~(y~)n... 

nho~~~(x~)n-..nhoii~,(y,) 

or 

Since h is a one-to-one function, this condition is satisfied if and only if p 
satisfies the crossing condition. Since p is a coordinate correspondence, 
so is h 0 jk 

Since h is a homeomorphism, h-l is a function and hence so is jo h-l. 
This function is compatible with h 0 p., since v, zi’ E h 0 ~(x, y) if and only 
if h-l(v) E ,u(x, y) and h-l(u’) E ~(x, y). Since f is compatible witb pc? 
j(h-l(vj) = f(h-l(d)) if h-l(u) E ~(x, y) and h-l(v’) E ~(x, y). Hence, 
v, v’ E h 0 p(x, y) =+- Jo h-l(v) = f”o h-+I’). 

Finally, (h 0 p, f” 0 h-l) realizes f, since 

which realizes f. 

Remark. As we have noted at the end of Section III, the concept of 
dimension is inappropriate for a study of the size of finite sets. However, 
the concept of informational size of this chapter applies to finite sets. We 
note first that the concept of information introduced in Section II applies 
to discrete topological spaces and functions between them. Indeed, if we 
suppose that X is a topological space with the discrete topology, then a 
topological space X has as much information as Y if and only if the 
cardinality of Y is less than or equal to the cardinality of X and Y has 
the discrete topology. 

In order to see this, note that, if Y has the discrete topology and the 
cardinality of Y is no larger than the cardinal&y of X, then it is obvious 
that X has as much information as Y. Conversely, assume X has as much 
information as Y. Then there is a continuous function f from X onto Y 
which is locally sectioned. Because f is onto, the cardinality of X is at 
least as great as that of Y. Next, if p E Y, then there is an open neigh- 

orhood U of p and a continuous function s: U --j. X such that So s is the 
identity on U. Thus U is homeomorphic to a subspace of X. Because X 
is discrete, U must have the discrete topology and, in particular, p is an 
open set. 

442/8/z-6 
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Finally, note that an immediate consequence of the previous discussion 
is that, if E1 ,..., E, is a finite collection of sets where each E, (LX = l,..., n) 
has the discrete topology and iff: El x ... x En + 2 is a function onto 
a discrete topological space 2, then there exists a message space X which 
has minimal information among all message spaces sufficient for J: 
Furthermore, X has the discrete topology. 

III. MINIMALITY OF THE COMPETITIVE MESSAGE SPACE 

The objective of this section is to show that every message space suffi- 
cient for the class of Pareto-satisfactory allocation processes on convex 
environments and satisfying certain regularity conditions is at least as 
large (informationally) as the competitive message space. Pareto satis- 
factoriness of an allocation process involves three properties: namely, 
(1) nonwastefulness, (2) unbiasedness, and (3) essential single-valuedness 
[Hurwicz, 81. Hurwicz describes the performance of an allocation process 
by a correspondence associating a set of outcomes with each possible 
environment and applies the criterion of Pareto satisfactoriness to that 
correspondence. We shall strengthen these criteria to state that (a) the 
outcomes associated with an environment are Pareto optimal for that 
environment, (b) every allocation that is Pareto optimal for a given 
environment is a possible outcome after some suitable redistribution of 
the initial endowments, and (c), if more than one outcome is associated 
with an environment, then all such outcomes are Pareto indifferent.7 

We shall consider a subclass E of the class of all convex environments 
-namely, those in which utility functions are Cobb-Douglas. On this 
subclass of environments we consider the correspondence that associates 
with each environment the set of all allocations which are Pareto optimal 
in that environment. (We might have considered instead the class of 
Pareto-optimal allocations at least as preferred by everyone to his initial 
endowment.) We next consider all functions which are (continuous) 
selections from this correspondence. There is at least one such selection, 
since the function which selects the (unique) competitive equilibrium for 
each environment is continuous (using the topology for environments 
introduced below). 

We shall also require that the selections have the property that, if an 
“initial point” is Pareto optimal, the process stays there. 

’ This is a strengthening of Hurwicz’s condition of essential single-valuedness in that 
he requires only that all outcomes associated with an equilibrium message be Pareto 
indifferent. We use the stronger requirement in keeping with our insistence that the 
process have a unique solution in each environment. 
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We shall show that for the set E of Cobb- ouglas e~v~r5~rne~~s a 
lower bound for the informational size of message spaces can be estab- 
lished, and then by applying Lemma 13 suitably it follows that the same 
lower bound applies to any class of environments containing E. 

We consider a class of exchange economies with I commodities and it 
consumers. Let the commodity space be Rz and let the admissible con- 
sumption set of each consumer be RI+, the nonnegative orthant of 
S = {p E R’ / CE=lpi = 1 for pi > 0 and i = l...., I], and note that S’ is 
homeomorphic to P1 = (p eR1-l ; for pi > 0 and i = I,..., I - i, 
gl:pi < l}. A consumer i E {I,.. ., n> is characterized by a pair (18. I@), 
where ui E Ui is his utility function and wi E R1- is his resource endow- 
ment. We take 

R:R’-iRlu(x)=~x~foru,>Osndl;=1,...;il. 
3=1 

WewriteF= 7Px R1andE=E1 x .‘. x E”. 
Let p: S x Ei --f R1 be the excess demand function of consumer i. 

Thus, e(p, ei) is the excess demand of consumer i when his utility is II, 
his endowment is wi, and the price vector is p. 

We shall now introduce a topology on Ui x R”; for x t 
j I x 1 j= maxj / Xj j, and for U, U’ in Ui let d(u, u’) = maxj / uj - c+’ I, 
where U(X) = J& xgj and U’(X) = nj xy’.* We give Ei the product topology 
and let E have the product topology of the I?. 

It seems worthwhile to remark that this topoiogy is finer than the 
Hausdorff metric topology on sets. 

I[t is well known that for this class of environments the excess demand 
function p: S x Ei + R1 is a continuous function on S x I? and, for 
each ei E I?, e(., ei) is differentiable. 

z3NITIQN 16. For e E E, (p, y) E S X RnL k3 a competitive e~%i~~bri~rn 
for e, where p is a competitive equilibrium price for e and y is a ~~~~~~~~~?~~~~ 
e~~~~ib~~~rn trade for e, if 

(1) Cy=, &p, ei) = 0 and 

(2) p 0 fi(p, ei) = p . yi = 0 for i = I,..., n. 

For e E E, a competitive equilibrium exists and is unique; if 9 is the 
etitive price for e, then pj > 0 and j = I,..., I iI, p. 225 and Theo- 

rem 6, p. 2221. 
Let 9: E--i’ Rnz be the correspondence that associates with each e E E 

a d is the distance function on Ui. 
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the set of all allocations x = (xl,..., x”) E Rnz such that x is Pareto optimal 
for e. 

Let Dui(xi) denote the normalized derivative of ui evaluated at xi by 
using the normalization xi=1 Duii(xi) = 1. Thus, 

Dui: RLf -+S. 

It is well known that necessary and suthcient conditions that x be 
Pareto optimal for e-i.e., x E S(e)-are 

(1) xi E Rz+ for i = l,..., n, 

(2) Cy=, xi = CL, wi, and 

(3) there exists p E S such that Dui(xi) = p for i = l,..., n; 

i.e., x is a redistribution of the initial endowment which is individually 
admissible, such that there is a “mutual tangency” of all utility functions 
at the respective xi. 

Writing yi = xi - +vi (i = l,..., n), we may state the same condition in 
terms of trades: 

(1’) yi E Rz for i = l,..., n, 

(2’) C%, yi = 0, and 

(3’) there exists p ES such that Dui( yi + I@) = p for i = I,..., n. 

LEMMA 17. The correspondence L?: E + Rnl+ is upper semicontinuous 

on E. 

Proof. Let {ej} denote a sequence of environments converging to e, 
and let xj E Rnz, xj E SZ(eJ, such that xj + x. We must show that x E Q(e). 
Note that ej + e if and only if, for ej = ((uji, w~~)),~ e = ((d, wi)), 
uji --f ui, and wji + wi for i = I,..., n. By the definition of convergence 
of utility functions, uji + z.& if and only if Duj”(z”) --f Dui(zi) for all 
2 E R1+ (i = l,..., n). 

Now, xj E Q(e) if and only if 

(1) xji E R2+ for i = l,..., n, 

(2) there exists p ES such that Duj”(xt) = pi for i = I,..., n, and 

(3) gt, Xji = x;=, wji. 

Now, xj -+ x implies xii -+ xi for i = I,..., n, and by convergence of 
uji + ZJ~ it follows that Duj”(xj”) + Dui(xi) for i = l,..., n; i.e., 
pj -+ Dd(xi) = p for i = l,..., n. 

9 We shall sometimes use the notation “<(ui, w”))” for “((d, w’), (u”, v?),..., (un, w?).” 
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Furthermore, xji + xi, wji --j wi, and CL1 xii = cTC1 u’ji for,j = l,... 7 n 
imply Cy=, xi = Cy=, wi. Hence, x E Q(e). 

DEFINITION 18. By a nonwa.s+tejiil performance function on E we shali 
mean a continuous selection w  from 92 satisfying the condition that, it 
e = ((~8, wi)> is such that w  E Q(e), then w(e) = UT. An allocation process 
that realizes a nonwasteful performance function is also called non- 
wasteful on E. 

DEFXNITION 19. A function p: E + E is a redistribution if p(((u”, wi)>) =I 
((ui, Wi)) and Cr=, iP = Cr=, wi. A redistribution p may be written as 
product IdUi x ,&i(ui, wi) = (~8, w  i $- zi) with parameter z = (zl,..., zn) E &?, 
where CFZ1 zi = 0. 

We shall write p,(e) = (IdUi x pZi) x ... x (IdU, x &)(ei,..., en) = 
((3, )$‘i + zi)), where ei = (~8, wi). 

DEFINITION 20. A performance function Eli is called unbiased (and any 
allocation process compatible with that performance function is called 
unbiased) if, given e E E and any point x E Q(e), there exists a redistribu- 
tion p such that w  0 p(e) = x. 

An allocation process that realizes a nonwasteful unbiased performance 
function on E is Pareto satisfactory on E.la 

DEFINITION 21. We define J% E--f RnL by 

.!Q(e) = ((y’,..., y”) E RnE j y = x - w, for x E G(e), where e = ((~3, ~4))). 

Let ~;1 denote the continuous selection from B corresponding to w; i.e,, 

where 

G(e) = w(e) - w3 

e = ((12, wi)>. 

We note that, if w  is the performance map of a Pareto-satisfactory 
process and if z = w(Z) - W, where 2 is a given element of E and p: E 4 E, 
such that p,(e) = ((ui, wi + zi)), then &p(Z)) = 0. 

DEFINITION 22. Let f: E + Rk be the function associated with each 
e E E, the unique competitive equilibrium trade for e. 

lo A selection from Q is automatically nonwasteful. A nonwastefui performance 
function is (strongly) essentially single-valued on E, since strict concavity of utility 
functions implies that the relevant Pareto-indifference classes are points. 
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Note that we may take k = (n - I)(1 - I), because for each i the 
demand function has only I - 1 independent components, since 

and the equations y” = -Cylir .$l(p, e”) leave only n - 1 independent 
excess demands of consumers. 

The following is well known: 

LEMMA 23. The function f is a continuous function on E. 

Proof. The function f is an upper semicontinuous correspondence 
on E. For e E E, competitive equilibrium is unique. It follows that f is 
a function, and hence it is a continuous function. 

LEMMA 24. The function f is a locally sectioned function. 

Prooj?1 Let j7 E R(n-l)(z-l), jj = f(Z) for some 2 E E, and for e > 0 let 
W(J) be an e-neighborhood of 7 in R (n-1)(z-1). Then we may assume that 
R(p) = ny=;’ N(yi) when N(yi) are E neighborhoods of jP in Rz-l. 

Let 

and write C,“=, Gji = /P for i = l,..., n. Then 

Q(p; 2”) = (y Pkiiigi) (p&-l olji - wji, 
k=l 

where pi = 0, j = l,..., I - 1, and i = l,..., n, which, for some p E Iz--l, 
satisfies 

vji = &.Q, ei) = (x pkNkigt/ij (&pi)-1 - @ji for i = I,..., n - 1. 

Let yi E N(yi) and write yi = p + 6, where 6 E R2-l and 1 6 / < E. Then 
set 

I1 This proof establishes a stronger property than that asserted in Lemma 24-- 
namely, that there is a local inverse for f through any point d such that f (Z) = 9. 
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and solve for a+: 

cxji = [ yji + iTji]( &p) ( c prc,ij-l = olji + c$ 
k=l 

Hence for ei = (JJj Xp”, i?), &p, ei) = yi for i = 1 ,,I., n - B . Taking 
y,i = -(Cji: pjyji) PC’ for i = I,..., n - 1 and taking en to satisfy 
&p, en) = Cyl. e(p, ei), we see thatf(e) = (yl,... y”-I). Set s$ y” - ei 
for i = I:..., n - 1 and set ~(yl,..., yn-l) = en. Then the fun&&n ‘) - 

is clearly continuous, since for each component i, ~2 is continuous in 6, 
for fixed p, yi, 3. 1 

It foIlows from Lemma 10 that Y =f(E) is i~format~ona~~y minimal 
for correspondences realizingf. 

We introduce a coordinate correspondence p and a function j such that 
(Jo, f”) realizes f. 

DEFINITION 25. Let 

EL1 x ..- x ,un: El x ... x E” -+ W, 

where for k = l,..., n; 

pk(ek) = j(p, yl,..., y”) E S X Rncl-i) j y$ = fjk(p, ek) - yjk = 

and 

\ &I 

ifk 

j= 1 )...) I - 1, 

1 (P, YIY, y”) E s x lwL-l’ / yjk = &.“(p, ek> k = I,..., ?n; 

z1yj7. = 0, j = I,..., I - ?..I 

Taking account of the condition Cy=, yi = 0 and of the budget constraints 
p . yi = 0, i = l,..., n, we see that the values of p = fly’, pi are in a 
subspace ofS x Y of dimension n(Z - 1). Since S has Euclidean dimension 
I - 1, Y has dimension (n - I)(Z - I), equal to that of the image off- 

For e E E the equations xi &I, e”) = 0 have a unique solution. Hence 
p(e) consists of a single point for each e E E, i.e., y is a function. 
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We define f-: S x Y-+ Rfiz by 

LEMMA 26. The correspondence p is a locally sectioned continuous 
function. 

Proof. We have already noted that p is a function. That it is continuous 
in ((pi, wi)) follows from the fact that the demand functions are continuous 
in the parameters ~8, I.#. We show next that p is locally sectioned. 

Let (p, y) ES x R(n-l)(C-l), and let e E E, e = (&, I@)) such that 
p(e) = {(p, y)}. Hence xi = yi + wi > 0. Then there exists E > 0 such 

- - 
that for U,(p, y) an open set containing (p, y), if p, y E U,(p, y) then 
xi =1 wi + yi > 0. 

First, define 

yLi = - (z&JF),l, i = l,..., 72 - 1, 

and let Zi = (yi, 7:). Then p -3 = 0 for i = l,..., n - 1. Further let 
2” = -C&r 3, so that xi=, Ei = 0. Now the equations 

(cq/cxli)(~~i/x;) = ( j?j/pl) j = l,..., I, i = l,..., n 

can be solved for each i for the I - 1 ratios aji/aIi, determining 

Eji/ali = (j&/j&) . (Tii/Xli) j = 2 ,..., 1; i = l,..., n. (27) 

- A normalization (e.g. 01~ i = p1 ; or C,“=, sji = 1) suffices to determine ~3 
uniquely. 

This construction serves to define a function t(,,,): S x R(n--l)(z-l) -+ E. 
Note that t(,,,)(jF, j) = (2, w) where e = ((zk, wi)), 2 = (ui, wi) with Ui 
determined by the oli given in equation (27). 

The function t(,,,) is continuous at (p, 7). Let (p(k), y(k)) be a (non- 
- - 

constant) sequence converging to (p, y). Then, since wi is constant inde- 
pendently of (p(k), y(k)), and since u(k) is determined by 

cxji(k) pdk) (YjiW + WY - = p,o * tyli(k) + wli) 
a,“(k) 

j = 2,. . . , Z, i = 1,. . ., n 

(together with a normalization), it follows that ui(k) -+ 3. (Note that 
PI(;)+~O; (y:(k) + wli) f 0.) 

9.Y is a continuous local inverse for p. 

LEMMA 28. Let w: E + R”” be a Pareto-satisfactory performance map. 
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Then o can be written as the compositiolz of a redistribution pz , depending 
on e and w(e), with the fixed function f. 

Proof. Let e E E and w(e) = x. Since w is Pareto-satisfactory, x E Q(e) 
and for p given by z = x - w, pZ(Z) = ((9, ($ + z)):) for 2 E E. Note 
that w@,(e)) = x, and w@,(e)) = 0. But f(pz(e)) = 0 since there exists 
p E S such that D3(d + zi) = p for i = I ,... ~ n and yi = 0, for i = 1, . . . . n 
satisfies p * yi = 0 and xi”=, yi = 0. Hence, for all e E E, 

All that this amounts to is the observation that, for environments in 
the class E, every Pareto optimum is a competitive equilibrium for some 
suitable initial endowment. 

Let e E E and w(e) = x. Then it follows from C&J,(~)) = f@%(e)), that 
W =/on a subset G = {e E E j e of-l(O)] = {e = ((~8, IV”)) E E ! w E Q(e)>. 

LEMMA 29. Suppose that j E Y and suppose that ps p E S such that 
j # p. (I) there exists elements 2, e’ in E such that .f (2) = f(C) = ,p and 
p(e) = (j?, j) # (p=, j) = ,u@) and (2) y - i e an d = e are elements 0fE such tkzt 
p(Z) = (p, 7) # (3, j) = p(Z) then, (3)f(C gj Z) # ji.12 

ProoJ Lemma 26 shows that we may choose elements Z and d in E 
such that ~(2) = (3, J) and ,~(e’) = (p, j7)>- In order that (j$ j) = ~(2) one 
must have that Cr=, jji = 0 and LW(yi + Wi) = j?, i = I,..., YE. Similarly 
,L@) = (j, jj) implies that Cy=, ui = 0 and Ei(yi + 3) = j5, i = l,..., n. 
Now suppose that j(Z oi c?) = j7. Then there exists p ES satisfying the 
conditions cy=, Wi = 0, &j(j!j + 3) = p and JW(F f ?9) = p f5’rar 

i # j. But Duj(Jj + 3) = j5 and DI?($ + Eyi) = ij. Thus it follows that 
p = p # j5 = p which is a contradiction. Hence f(E Q Z) # j7. 

LEMMA 30. Suppose that v: E + X is a privacy preserving correspon- 
dence and that with the function g: X ---f I’, the pair (v, g) realizes f on E. 
If e and Z are elements of E such that p(e) f ,u(Z), then v(e) 17 v(Z) = o _ 

ProoJp. Suppose p(e) = (p, y) and p(Z) = (p, j)* p(e) # ~(5) implies 
either y # j or p # p. If y # j,. then g(v(e)) = J(e) f f(Z) = g(v(Z)), 
since both (p, p) and (v, g) realize f on E. Hence v(e) n v(Z) = o ~ So we 
may suppose y = 7 and p # p. Note that v(e) r\ u(Z) # o implies 
g(v(e)) = g(v(Z)). Since v is a coordinate correspondent (preserves 
privacy) v satisfies the crossing condition, i.e., g(v(e C& 2)) = g(v@))- 

I8 The idea in this Lemma is similar to an argument first made by 
later also by Starrett [I5], in connection with certain examples. 
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by Lemma 29, 2) if e and Z are elements of E such that f(e) = f(g) = j 
and p(e) f ~(2) then for j E (l,..., n>f(e Oj 2) #f(Z). The hypothesis 
that (v, g) realizesfon E implies g(v(e @&Z)) = f(e @Jj i?) #f(Z) = g(v(Z)). 
Hence g(v(e oj 2)) # g(v(?)), which is a contradiction. 

We are now in a position to answer the question posed at the end of 
Section 2.7. We shall show that any privacy preserving message corre- 
spondence which “computes” the competitive equilibrium has a message 
space which is at least as large as that of the competitive process. 

THEOREM 31. Let v: E ----f X be a locally sliced upper semicontinuous 
coordinate correspondence and g: X + Y a function such that (v, g) realizes 
f on E. Then X has as much information as S x Y. 

Proof. To show that X has as much information as S x Y it s&ices 
to find a locally sectioned map of X onto S x Y. We shall show that 
g, = TV o v-l: X -+ S x Y is such a map, where v-‘(x) = {e E E 1 x E v(e)>. 
We show first that y is a function. To this end, we show that, for x E X, if 
e and e’ belong to v-r(x) then p(e) = p(e’). To see this, suppose that 
p(e) # p(e’). Since e and e’ belong to v-l(x), g(v(e)) = g(v(e’)) = g(x). 
Since (v, g) realizesf, f(e) = g(v(e)) = g(v(e’)) = f(e’) = y. By Lemma 30 
if e and e’ belong to f-‘(y) and p(e) # p(e’), then v(e) n v(e) = 0. But 
x E v(e) n v(e’) which is a contradiction. Hence p(e) i ,u(e’) is false, i.e., 

p(e) = &‘>. 
Thus, p is constant on the sets v-l(x), for x E X. Since p is a function 

so is p 0 v-l. 
It follows from the upper semicontinuity of v that the correspondence 

v-l is upper semicontinuous. (The graph of v-l is the same as that of v; 
and a correspondence is upper semicontinuous if and only if its graph is 
closed.) Regarded as a correspondence, p is upper semicontinuous, since 
it is a continuous function. The composition of two upper semicontinuous 
correspondences is upper semicontinuous. Since the composition p 0 v-l 
is a function, it is therefore continuous. [2, Theorems in Chapter VI, 
pp. 109-l 1 I]. 

The function y is onto S x Y, since v-l is onto E and p is onto S x Y. 
We now show that y is locally sectioned. Let (p, y) ES x Y and let 

U be an open neighborhood of (p, y) in S x Y such that t(,,g): U + E 
is a local section of FL. 

Since v is a locally sliced correspondence, given e E E there exists an 
open set El which contains e, and a continuous function v: H + X such 
that v(e) E v(B) for Z E H. 

Given H, by continuity of t(,,,) , there exists an open subset V C U such 
that t(,,,)(V) C H. The function Y = v 0 t: V -+ X is a local section for v, 
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since it is continuous and satisfies Y 0 y = fd, . The last equahty is 
established as follows: 

Let (p, j) E V and let z = lc,,,)(p, j). 

Then z,(P) e v(C) or Z E &(v(Z)). Hence !P 0 q(p, j7) = ~(2) = (p, j)- 
Thus,Yop=IdV. 

COROLLARY 32. Under the hypotheses of Theorem 31 bind Z$ X is a 
separable metric space, then the dimension of X is at least that of S x Y. 

EFINUION 33. Let g denote the property: “the message corres 
dence is upper semicontinuous.” 

An allocation process which has property .P is a P-process in the sense 
of Definition 11, since upper semi-continuity of a correspondence is 
preserved under restriction to a subspace. 

COROLLARY 34. Let & = nF=, &i be a class o~~e~~~ro~rne~ts co~tai~i~g 
E such that f: E+ Y is the restriction off *: d--f I'. If (v*, f*> is a 
P-process which realizes f * on 8 with message space MS then M has as 
much i~~ormatio~ as S x Y. 

Proof. By Lemma 14, the restriction of (v*,J”*) to E is a 9’-process 
realizing S on E with message space M, which has less information than 
S x Y, contradicting the conclusion of Theorem 3 I I 

We note that, as is well-known, the message space S x Y of the com- 
petitive process has sufficient information forfon a large class of convex 
environments. It can also be shown that the competitive e~n~l~br~~rn 
correspondence p is upper semi-continuous on that class of convex 
environments. 

If in Theorem 31 the hypothesis of upper semi-continuity of the message 
correspondence is removed, then the conclusion. of Theorem 31 no longer 
follows. The following example shows this: 

EXAMPLE. In this example 1 = IZ = 2; hence S is the simplex in 

homeomorphic to the open unit interval I in R. Let C be the unit circle 
in I?, and suppose p E C. The set C\(p) is homeomorphic to I. Hence 
there is a function h, not necessarily continuous on all of C, from C to R 
which is the above homeomorphism of C\,(p) to I and carries g to 
h(p) = 3/2. Using the mapping h x Idy: C x Y+ I x Y5 the corre- 
spondence 

v=(hxId,)-lojLL:E+Cx Y 
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is a privacy-preserving correspondence from E onto C x Y. Moreover, 
v is locally sectioned because except for the point p, v is the inverse of a 
homeomorphism; that is, h x Id, is the required section. The pair 
consisting of v and rry , the projection of C x Y onto Y, realizes f on E. 
However, C x Y has less information than I x Y, since there is no 
locally-sectioned, continuous function from C x Y onto I x Y. 

However, without upper semi-continuity of the message correspondence, 
Zocal comparison of the informational size of message spaces sufficient for 
fis possible. 

THEOREM 35. Let v: E -+ X be a locally-sliced, coordinate corre- 
spondence and g: X + Y a function such that (v, g) realizes f on E. Let X 
be a Hausdorflspace. Then a subset of X is locally homeomorphic to S x Y. 

Proof. Given a point (p, y) E S x Y we shall construct an open set U 
containing (p, y) and a function h: U -+ X such that U and h(V) are 
homeomorphic. 

Given (p, y), since TV has a local section there exists an open set U* 
containing (p, y) and a function t: U + E such that ,u 0 t = IdU . Hence t 
is l-1 on U to t(U). Let e = t(p, y). Since v is a locally-sliced corre- 
spondence, given e E E there is an open set H containing e and a function 
~1: H-+ X such that u(t?) E v(F) for all Z E H. 

Since t is continuous and S x Y Euclidean there is a compact neigh- 
borhood U C U such that t(U) C H. We now show that v is l-l on t(U). 

If 2 and Z are distinct points of t(U), then ~(2) # &), since t is l-l 
from U to t(D) and p is the inverse of t on t(U). It follows from Lemma 30 
that v(Z) n v(Z) = ia. Since v is a selection from v, it follows that 
v(E) # v(Z). 

Now, the function h = v 0 t: B -+ X is 1-l and continuous on U‘, since 
it is the composition of two l-l and continuous functions. Since B is 
compact and S x Y and X are Hausdorff, it follows that h(U) is compact. 
Hence, h is a homeomorphism between i7 and h(D) C X [5, Theorem 
p. 1411. 

COROLLARY 36.13 Let X satisfy the hypotheses of Theorem 35. If, in 
addition, X is Euclidean, then the dimension of X is at least that of S x Y. 

Proof. By Theorem 35 there is a subset of X homeomorphic to a set 
with interior in S x Y. The dimension of X is thus at least that of S x Y. 

I3 The result that no Euclidean message space whose dimension is less than that of the 
competitive message space is sufficient for a Pareto-satisfactory process on the class of 
convex environments has also been obtained independently by Hurwicz [7]. 
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According to Theorem 35 any privacy preserving process which ‘6com- 
putes” competitive equilibria on the class E (and hence on any class of 
environments including E) must use a message space which has locally at 
least as much information as S x Y. Corollary 36 states that if the message 
space of such a privacy preserving process is Euclidean, then its dimension 
is at feast that of the message space of the competitive process. If in 
addition to preserving privacy, the message correspondence is upper 
semicontinuous, then according to Theorem 31 the message space has 
(globally as well as locally) as much information as S x Y. Finally, as 
Corollary 32 states, if the message correspondence is privacy preserving 
and upper semicontinuous and if the message space is a separable metric 
space, then its dimension is at least that of S x Y. 

The comparison of the spaces S x Y and E captures at Ieast an aspect 
of the insight expressed by Hayek of the degree to which the competitive 
process summarizes information. All of the i~format~o~ about environ- 
ments relevant for optimal coordination is contained in messages in 
S x Y. Any other process whose performance on E is ~a~eto-satisfactory 
must use a message space whose informational size is at least that of S x Y. 
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