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By MIGUEL A. COSTA-GOMES AND VINCENT P. CRAWFORD* 

This paper reports an experiment that elicits subjects' initial responses to 16 
dominance-solvable two-person guessing games. The structure is publicly an- 
nounced except for varying payoff parameters, to which subjects are given free 
access. Varying the parameters allows very strong separation of the behavior 
implied by leading decision rules. Subjects' decisions and searches show that most 
subjects understood the games and sought to maximize payoffs, but many had 
simplified models of others' decisions that led to systematic deviations from equi- 
librium. The predictable component of their deviations is well explained by a 
structural nonequilibrium model of initial responses based on level-k thinking. (JEL 
C72, C92, D83) 

...professional investment may be likened to 
those newspaper competitions in which the com- 
petitors have to pick out the six prettiest faces 
from a hundred photographs, the prize being 
awarded to the competitor whose choice most 
nearly corresponds to the average preferences of 
the competitors as a whole; so that each compet- 
itor has to pick, not those faces which he himself 
finds prettiest, but those which he thinks likeliest to 
catch the fancy of the other competitors, all of 
whom are looking at the problem from the same 
point of view. It is not a case of choosing those 
which, to the best of one'sjudgment, are really the 
prettiest, nor even those which average opinion 
genuinely thinks the prettiest. We have reached 
the third degree where we devote our intelligences 
to anticipating what average opinion expects the 

average opinion to be. And there are some, I 
believe, who practice the fourth, fifth, and higher 
degrees. 

-John Maynard Keynes 
The General Theory of Employment, 

Interest, and Money 

Most applications of game theory assume 
equilibrium even in predicting initial responses 
to games played without clear precedents. There 
is substantial experimental evidence, however, 
that initial responses often deviate systemati- 
cally from equilibrium, especially when the rea- 
soning that leads to it is not straightforward. 
This evidence also suggests that a structural 
model in which some players follow certain 
kinds of boundedly rational decision rules, in 
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lieu of equilibrium, can outpredict equilibrium 
in applications involving initial responses. 

Modeling initial responses more accurately 
promises several benefits. It can establish the 
robustness of the conclusions of equilibrium 
analyses in games where boundedly rational 
rules mimic equilibrium. It can challenge the 
conclusions of applications to games where 
equilibrium is implausible without learning, and 
can resolve empirical puzzles by explaining the 

systematic deviations from equilibrium such 
games often evoke. More generally, it can yield 
insights into cognition that elucidate many other 
aspects of strategic behavior. A leading exam- 
ple is learning, where assumptions about cogni- 
tion determine which analogies between current 
and previous games players recognize, and also 
sharply distinguish reinforcement from beliefs- 
based and more sophisticated rules, thereby in- 

fluencing implications for convergence and 

equilibrium selection. 
The potential for improving on equilibrium 

models of initial responses is vividly illustrated 

by the "guessing" or "beauty contest" experi- 
ments of Rosemarie Nagel (1995) and Teck- 
Hua Ho, Colin F. Camerer, and Keith Weigelt 
(1998; "HCW"), inspired by Keynes's analogy 
quoted in our epigraph. In their games, n sub- 
jects (n = 15-18 in Nagel, n = 3 or 7 in HCW) 
made simultaneous guesses between lower and 

upper limits (0 and 100 in Nagel, 0 and 100 or 
100 and 200 in HCW). The subject who guessed 
closest to a target (p = 1/2, 2, or 4/3 in Nagel; 

p = 0.7, 0.9, 1.1, or 1.3 in HCW) times the 

group average guess won a prize. There were 
several treatments, each with identical targets 
and limits for all players and games. The struc- 
tures were publicly announced to justify com- 
paring the results with predictions based on 
complete information. 

Although Nagel's and HCW's subjects 
played a game repeatedly, their first-round 

guesses can be viewed as initial responses to the 

game as if played in isolation if they treated 
their own influences on future guesses as neg- 
ligible, which is plausible for all but HCW's 

three-subject groups. With complete informa- 
tion, in all but one treatment the game is dom- 
inance-solvable in a finite (limits 100 and 200) 
or infinite (limits 0 and 100) number of rounds, 
with a unique equilibrium in which all players 

guess their lower (upper) limit when p < 1 (p > 
1). As a result, equilibrium predictions depend 
only on rationality, in the decision-theoretic 
sense, and beliefs based on iterated knowledge 
of rationality. 

Yet Nagel's subjects never made equilibrium 
guesses initially, and HCW's rarely did so. 
Most initial guesses respected from zero to three 
rounds of iterated dominance, in games where 
three to an infinite number are needed to reach 

equilibrium (Nagel, fig. 1; HCW, figs. 2A-H 
and 3A-B). Nagel's and HCW's data resemble 
neither "equilibrium plus noise" nor "equilib- 
rium taking noise into account" as in quantal 
response equilibrium ("QRE"; Richard Mc- 
Kelvey and Thomas Palfrey, 1995). Their data 
do suggest that subjects' deviations from equi- 
librium have a coherent structure. In Nagel's 
games, for example, the distributions of guesses 
have spikes that track 50pk for k = 1, 2, 3 across 
the different targets p in her treatments (Nagel, 
fig. 1). Like the spectrograph peaks that fore- 
shadow the existence of chemical elements, 
these spikes are evidence of a partly determin- 
istic structure, one that is discrete and individ- 

ually heterogeneous. 
Similarly structured initial responses have 

been found in matrix games by Dale O. Stahl 
and Paul W. Wilson (1994, 1995; "SW"), Costa- 
Gomes, Crawford, and Bruno Broseta (1998, 
2001; "CGCB"), and Costa-Gomes and Georg 
Weizsaicker (2003); in other normal-form games 
by Camerer, Ho, and Juin-Kuan Chong (2004; 
"CHC"); and in extensive-form bargaining 
games by Camerer, Eric J. Johnson, Talia 
Rymon, and Shankar Sen (1993, 2002; "CJ"). 
As in the guessing games, subjects usually 
make undominated decisions; but they rely 
less often on dominance for others (T. Randolph 
Beard and Richard Beil, 1994), and reliance on 
iterated dominance seldom goes beyond three 
rounds. 

The main difficulty in analyzing the data 
from such experiments is identifying subjects' 
decision rules, or types, within the enormous set 
of possibilities. The studies above assume that 
each subject's decisions follow one of a small 
set of a priori plausible types, with error, and 
estimate which type best fits each subject's de- 
cisions econometrically. Leading types include 

L1 (Level 1), which best responds to a uniform 
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prior over its partner's decisions; L2 (or L3), 
which best responds to Li (L2); Dl (Dominance 
1), which does one round of deletion of domi- 
nated decisions and best responds to a uniform 

prior over its partner's remaining decisions; D2, 
which does two rounds of iterated deletion and 

best responds to a uniform prior over the re- 

maining decisions; Equilibrium, which makes 
its equilibrium decision; and Sophisticated, 
which best responds to the distribution of other 

subjects' responses, and is included to test 
whether any subject has a prior understanding 
of others' decisions that transcends the other 

simple rules. 
Like Equilibrium, Lk and Dk types are ratio- 

nal, with perfect models of the game, and gen- 
eral in that they are applicable to any game. 
They are usually defined, as we shall do here, to 

satisfy subsidiary assumptions of self-interest 
and risk-neutrality. Thus, their only essential 

departure from Equilibrium is replacing its per- 
fect model of others' decisions with a simple 
nonequilibrium model.' Lk's and Dk-1 's guesses 
both survive k rounds of iterated elimination of 
dominated decisions, and so in two-person 
games are k-rationalizable (B. Douglas Bern- 
heim, 1984). These types mimic equilibrium in 

games that are dominance-solvable in small 
numbers of rounds, but deviate systematically 
in some more complex games, where their de- 
cisions can differ significantly, especially for 
the low values of k that are empirically plausi- 
ble. Dk types are closer to how theorists analyze 
games, and Nagel's results are often taken as 
evidence of explicit finitely iterated dominance. 
But Lk types have larger estimated frequencies 

and predominate in applications (Crawford, 
2003; CHC; and Crawford and Nagore Iriberri, 
2005a,b). 

Successful applications depend on correctly 
specifying the structure of initial responses, but 

previous experiments leave considerable room 
for doubt on this issue. Previous designs-in 
which each subject repeatedly plays a single 
game with a large strategy space, as in Nagel 
and HCW, or a series of different games with 
small strategy spaces, as in SW and CGCB- 

only weakly separate the types included in the 
specification from each other and nearby types. 
Nagel's and HCW's games with p < 1 and 
limits 0 and 100 are an extreme example, where 
Lk's guesses [(0 + 100)/2]pk and Dk - l's 

guesses ([0 + 100pk' 1]/2)p both track the 
spikes at 50pk. The freedom to specify the pos- 
sible types also raises doubts about omitted 
types and overfitting via accidental correlations 
with included but irrelevant types. Thus, SW's, 
CHC's, and CGCB's high estimated numbers of 

L1 and L2 subjects might be no more than 

proxies for altruistic, spiteful, risk-averse, or 
confused Dk or Equilibrium subjects; or other, 
entirely different omitted types.2 

Our experiment resolves many of these 
doubts by eliciting subjects' responses to a se- 
ries of 16 guessing games designed for this 
purpose, and using a novel specification test to 
detect omitted types or overfitting. Like previ- 
ous designs, ours suppresses learning and 
repeated-game effects to justify an analysis of 

subjects' guesses as initial responses, game by 
game. Unlike Nagel's and HCW's games, ours 
have only two players, who make simultaneous 
guesses within limits. Each player has a lower 
limit (100 or 300), an upper limit (500 or 900), 
and a target (0.5, 0.7, 1.3, or 1.5). A player's 
payoff is higher, the closer his guess is to his 

' Compare Reinhard Selten (1998): "Basic concepts in 

game theory are often circular in the sense that they are 

based on definitions by implicit properties.... Boundedly 
rational strategic reasoning seems to avoid circular con- 

cepts. It directly results in a procedure by which a problem 
solution is found." Lk makes precise predictions without 

closing the loop as equilibrium does by anchoring its beliefs 
in a uniform prior and adjusting them by iterating best 

responses. Dk does so by invoking a uniform prior after 

finitely iterated deletion of dominated decisions. Keynes's 
wording in our epigraph connotes Lk's finite iteration of 
best responses, anchored by true preferences rather than 
uniform priors, as is natural in a beauty contest. The infor- 
mal literature on deception also features finite iteration of 
best responses, anchored by truthfulness or credulity (Craw- 
ford, 2003, p. 139). 

2 For example, SW (1994) found large numbers of L1 and 
L2 subjects in an econometric analysis that did not include 
SW's (1995) Worldly type, which best responds to an esti- 
mated mixture of a noisy Li and a noiseless Equilibrium; 
but SW's (1995) data analysis from a closely related exper- 
iment almost completely rejected L2 in favor of Worldly. 
Our specification analysis suggests that SW's rejection of 
L2 may have been incorrect (Section IID). 
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target times his partner's guess.3 The resulting 
games are asymmetric and, with complete in- 
formation, dominance-solvable in from 3 to 52 
rounds, with essentially unique equilibria deter- 
mined by players' lower (upper) limits when the 

product of targets is less (greater) than one. 
Within this structure, which is publicly an- 
nounced, the targets and limits vary indepen- 
dently across players and games, with targets 
either both less than one, both greater than one, 
or mixed. The targets and limits are normally 
hidden, but subjects can search for them, game 
by game, through a computer interface. Low 
search costs then make the structure effectively 
public knowledge. Varying the targets and lim- 
its makes it impossible for subjects to recall 
them from previous games and so makes mon- 
itoring information search a powerful additional 
tool for studying cognition. 

In our design, a subject's sequence of guesses 
yields a strategic "fingerprint" that often reveals 
his type with great clarity. Of the 88 subjects in 
our main treatments, 43 made guesses that com- 

ply exactly (within 0.5) with one of our type's 
guesses in from 7 to 16 of the games (20 L1, 12 
L2, 3 L3, and 8 Equilibrium; Figures 1-4, p. 
1747-1749). These compliance levels are far 

higher than could plausibly occur by chance, 
given how strongly types' guesses are separated 
(Figure 5, p. 1750) and that guesses could take 
from 200 to 800 different rounded values in 

each game. Because our types specify precise, 
well-separated guess sequences in a very large 
space, these subjects' guesses allow one intu- 
itively to "accept" the hypothesis that they fol- 
lowed their apparent types, and so rule out 
alternative interpretations of their behavior. In 

particular, because the accepted Lk and Equilib- 
rium types build in risk-neutral, self-interested 

rationality and perfect models of the game, the 
deviations from equilibrium of the 35 subjects 
whose apparent types are Lk can be confidently 
attributed to nonequilibrium beliefs rather than 
irrationality, risk aversion, altruism, spite, or 
confusion.4 By contrast, with SW's or CGCB's 
coarse strategy spaces, even a perfect fit does 
not distinguish a subject's apparent type from 
nearby omitted types; and in Nagel's and 
HCW's designs, with each subject playing a 
single game, the ambiguity is even more severe. 

Our other 45 subjects' fingerprints are less 
clear. But for all but 14 of them, violations of 

simple dominance were comparatively rare 
(less than 20 percent, versus 38 percent for 
random guesses), suggesting that their behavior 
was coherent, even though less well described 
by our types. We study all 88 subjects' behavior 
in more detail via a maximum likelihood error- 
rate analysis, following SW and CGCB. We 
assume each subject's behavior in the 16 games 
is determined, with error, by one of the leading 
types listed above. Estimates based on guesses 
strongly reaffirm our type identifications for the 
43 subjects whose fingerprints are clear, and 
assign several more subjects each to Li, L2, and 
Equilibrium, plus a few to Di and Sophisticated 
(Tables 1 and 7 on pages 1741 and 1758). 

For these 45 subjects, our econometric type 
estimates suffer from the same ambiguity of 
interpretation as the estimates in previous anal- 
yses. To learn whether any subjects' guesses 
could be better explained by types omitted from 
our specification, or whether any estimated 
types are artifacts of accidental correlations 
with irrelevant included types, we conduct a 
new specification test that compares the likeli- 
hood of our estimated types, subject by subject, 
with those of estimates based on 88 pseudotypes, 
each constructed from one of our subject's 
guesses in the 16 games. This test reaffirms 
most of our identifications of L1, L2, or Equi- 
librium subjects, but calls into question all but 
one each of our identifications of L3, DI, or 

3A subject's guess is not required to be between his 
limits, but guesses outside his limits are automatically ad- 
justed up to the lower or down to the upper limit as neces- 

sary; and payoffs are determined by players' adjusted 
guesses (Section IB). Two-person guessing games allow us 
to focus on the central game-theoretic problem of predicting 
the decisions of others who view themselves as a nonneg- 
ligible part of one's own environment. Brit Grosskopf and 

Nagel (2001) report experiments with a different class of 

two-person guessing games, in which all subjects have the 
same limits and targets, the targets are less than one, and 

subjects are rewarded for guessing closer to a target times 
the pair's average guess. Guessing the lower limit is a 
weakly dominant strategy in their games, which therefore 
do not fully address the issue of predicting others' decisions. 

4 For these subjects, our design is also an antidote to 
Jbrgen W. Weibull's (2004) argument that rejections of 
equilibrium in experiments that do not independently mea- 
sure preferences are "usually premature." 
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TABLE 1-SUMMARY OF BASELINE AND OB SUBJECTS' ESTIMATED TYPE DISTRIBUTIONS 

Econometric from 

Apparent Econometric Econometric from Econometric from guesses and 
from from guesses, guesses, with search, with 

Type guesses guesses excluding random specification test specification test 

L1 20 43 37 27 29 
L2 12 20 20 17 14 
L3 3 3 3 1 1 
Dl 0 5 3 1 0 
D2 0 0 0 0 0 

Eq. 8 14 13 11 10 

Soph. O 3 2 1 1 
Unclassified 45 0 10 30 33 

Note: The far-right-hand column includes 17 OB subjects classified by their econometric-from-guesses type estimates. 

Sophisticated subjects (Table 1). It also sup- 
ports our a priori specification of possible types 
by giving no indication of significant numbers 
of SW's Worldly type or any other type omitted 
from our specification. 

Information search adds another dimension 
to our econometric analysis." Following CGCB, 
we link search to guesses by taking a procedural 
view of decision-making, in which a subject's 
type determines his search and guess, possibly 
with error. Each of our types is naturally asso- 
ciated with algorithms that process information 
about targets and limits into decisions. We use 
those algorithms as models of subjects' cogni- 
tion, making conservative assumptions about 
how it is related to search that allow a tractable 

characterization of types' search implications. 
The types then provide a kind of basis for the 
enormous space of possible guesses and 
searches, imposing enough structure to make it 
meaningful to ask if they are related in a coher- 
ent way. 

Our design separates types' search implica- 
tions much more strongly than previous de- 
signs, while making them almost independent 
of the game. This allows some subjects' types to 
be read from their searches alone (on-line Ap- 
pendix E; CGC); but most subjects' searches 
less clearly identify their types. We therefore 

generalize our error-rate analysis to reestimate 

subjects' types using search as well as guesses. 
Taking both into account, 55 of 88 subjects are 

reliably identified as one of our types, 45 of 
them non-Equilibrium (Table 1). This analysis 
reaffirms the absence of significant numbers of 
types other than Li, L2, Equilibrium, or hybrids 
of L3 and/or Equilibrium. These results are con- 
sistent with previous analyses, but significantly 
refine and sharpen them. 

Thus, to the extent that our subjects' devia- 
tions from equilibrium can be predicted, they 
appear to be based almost entirely on level-k 
thinking. Given the definitions of level-k types, 
our results strongly affirm subjects' rationality 
and ability to comprehend games and reason 
about others' responses to them. Although they 
challenge the use of equilibrium as a universal 
model of initial responses to games, the sim- 
plicity of the alternative nonequilibrium model 
they suggest should help to allay the common 
fear that if equilibrium is not assumed, "any- 
thing can happen." 

I. Experimental Design 

To test theories of strategic behavior, an ex- 
perimental design must identify clearly the 

games to which subjects are responding. This is 

usually done by having a "large" subject popu- 
lation repeatedly play a given stage game, with 
new partners each period to suppress repeated- 
game effects, viewing the results as responses 
to the stage game. Such designs allow subjects 
to learn the structure from experience, which 
reduces noise; but they make it difficult to 

5A companion paper, Costa-Gomes and Crawford 
(2007; "CGC"), will analyze our subjects' search behavior 

in more detail, studying the relations between cognition, 
search, and guesses. 
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TABLE 2-OVERALL STRUCTURE OF THE EXPERIMENTAL DESIGN 

Session Date Location Subjects 

B1 1/31/2002 UCSD 13 
B2 4/19/2002 (a.m.) UCSD 20 
B3 4/19/2002 (p.m.) UCSD 17 
B4 5/24/2002 (a.m.) UCSD 21 

OB1 5/24/2002 (p.m.) UCSD 17 
R/TS1 2/1/2002 UCSD 13: 4 Li, 5 L2, 4 Equilibrium 
R/TS2 5/20/2002 (a.m.) UCSD 5 Equilibrium 
R/TS3 5/20/2002 (p.m.) UCSD 8 Dl 

R/TS4 5/23/2002 UCSD 11: 3 Li, 4 L2, 3 DI, 1 Equilibrium 

R/TS5 4/25/2003 York 10 L3 

R/TS6 4/30/2003 York 11: 2 L3, 9 D2 

R/TS7 5/1/2003 York 11: 3 L2, 2 L3, 1 DI, 2 D2, 3 Equilibrium 
R/TS8 5/6/2003 York 8: 3 DI, 2 D2, 3 Equilibrium 
R/TS9 5/9/2003 York 12: 1 L2, 1 L3, 3 DI, 1 D2, 6 Equilibrium 
R/TS10 5/14/2003 York 12: 2 L2, 5 DI, 1 D2, 4 Equilibrium 
R/TS11 5/21/2003 York 10: 3 Li, 4 L2, 3 Di 
R/TS 12 5/23/2003 York 5 L1 
R/TS13 5/28/2003 York 8: 4 Li, 4 L2 
R/TS14 5/30/2003 York 12: 3 Li, 2 L2, 2 L3, 2 DI, 3 D2 

R/TS15 6/10/2003 York 12: 3 Li, 2 L2, 1 L3, 2 DI, 1 D2, 3 Equilibrium 

disentangle learning from cognition, because 
even unsophisticated learning may converge to 
equilibrium in the stage game. Our design, by 
contrast, seeks to study cognition in its purest 
form by eliciting subjects' initial responses to 
16 different games, with new partners each pe- 
riod and no feedback to suppress repeated-game 
effects, experience-based learning, and experi- 
mentation. This section describes the overall 

structure of our design, the games, and how they 
are presented. 

A. Overall Structure 

Our sessions were run at the University of Cal- 
ifornia, San Diego (UCSD) Economics Experi- 
mental and Computational Laboratory (EEXCL) 
or the University of York Centre for Experimen- 
tal Economics (EXEC). Subjects were recruited 
from undergraduate and graduate students, with 

completely new subjects for each session.6 Ta- 

ble 2 summarizes the overall structure of our 

experiment, which included four Baseline ses- 
sions, B l-B4, with a total of 71 UCSD subjects; 
one Open Boxes session, OB1, with 17 UCSD 

subjects; and 15 Robot/Trained Subjects ses- 
sions, R/TS1-R/TS15, with a total of 148 sub- 

jects, 37 UCSD and 111 York. 
All treatments used the same 16 games, pre- 

sented in the same randomized order (Table 3). 
The games consist of eight pairs that are symmet- 
ric across player roles, so that subjects can be 
paired without dividing them into subgroups. One 
pair consists of two symmetric games. 

We first describe the Baseline and then ex- 

plain how our other treatments differed. After 
the instructions and an understanding test, 
groups of 13 to 21 subjects were randomly 
paired to play the 16 games, with new partners 
each period.7 Subjects received no feedback 

6 On-line Appendix A gives instructions and Appendix B 
describes our pilots and how they influenced the design. To 
reduce noise, we sought subjects in quantitative courses; but 
to avoid subjects with theoretical preconceptions, we ex- 
cluded graduate students in economics, political science, 
cognitive science, or psychology, and disqualified subjects 
who revealed that they had participated in game experi- 

ments or (except for a few who had been briefly exposed in 
an undergraduate course) studied game theory. We allowed 

roughly four nonfaculty university community members. 

7 Some pairings among the 13 subjects in session B 1 
were repeated once, in a game unknown to them. The games 
took subjects 1 to 3 minutes each. Adding 1/2 to 2 hours for 
checking in, seating, instructions, and screening yielded 
sessions of 2¼4 to 23/4 hours, near our estimate of the limit 
of subjects' endurance for a task of this difficulty. 

This content downloaded from 195.34.79.54 on Wed, 25 Jun 2014 01:27:27 AM
All use subject to JSTOR Terms and Conditions



VOL. 96 NO. 5 COSTA-GOMES AND CRAWFORD: COGNITION AND BEHAVIOR 1743 

TABLE 3-STRATEGIC STRUCTURES OF THE GAMES 

Order Rounds of Pattern of Dominance 

Game ij played Targets Equilibrium dominance dominance at both ends 

1. a23pl 6 Low Low 4 A No 

2. 3pla2 15 Low Low 3 A No 
3. ply2 14 Low Low 3 A Yes 

4. y2p1 10 Low Low 2 A No 
5. y483 9 High High 2 S No 
6. 83y4 2 High High 3 S Yes 
7. 8383 12 High High 5 S No 
8. 8383 3 High High 5 S No 

9. 31a4 16 Mixed Low 9 S/A No 
10. a43pl 11 Mixed Low 10 S/A No 
11. 8233 4 Mixed Low 17 S/A No 
12. 3382 13 Mixed Low 18 S/A No 
13. y2P34 8 Mixed High 22 A No 
14. 34y2 1 Mixed High 23 A Yes 
15. a2a4 7 Mixed High 52 S/A No 
16. a4a2 5 Mixed High 51 S/A No 

Notes: Game identifiers: limits a for 100 and 500, 3 for 100 and 900, y for 300 and 500, or 8 for 300 and 900; targets 1 for 

0.5, 2 for 0.7, 3 for 1.3, 4 for 1.5. Low targets are <1; high targets are >1; mixed targets are one <1, one >1. High 
equilibrium is determined by players' upper limits; low equilibrium is determined by players' lower limits. Rounds of 
dominance refers to the number player i needs to identify his equilibrium guess. Alternating dominance (A) occurs first for 
one player, then the other, then the first, etc.; simultaneous dominance (S) occurs for both players at once; and simultaneous 
then alternating dominance (S/A) is simultaneous in the first round and then alternating. Dominance at both ends refers to 
whether guesses are eliminated near both of a player's limits. 

during play and could proceed independently at 
their own pace, but were not allowed to change 
their guesses once confirmed. Although these 
features suppress experience-based learning, in- 

trospective learning may still occur. Tests reveal 
no significant difference, however, between 
subjects' pooled guesses in the symmetric game 
when played third and twelfth in the sequence, 
suggesting that the effects of introspective 
learning were limited (on-line Appendices C 
and D).8 Accordingly, we analyze subjects' 
guesses as initial responses to each game, with- 
out considering order of play. 

To control subjects' preferences, they were 

paid for their game payoffs as follows. After the 
session, each subject returned in private and 
was shown his own and his partners' guesses 
and his point earnings in each game. He then 
drew five game numbers randomly and was paid 

$0.04 per point for his payoffs in those games.9 
With possible payoffs of 0 to 300 points per 
game, this yielded payments from $0 to $60, 
averaging about $33. Including the $8 fee for 
showing up at least five minutes early (which 
almost all subjects received) or the $3 fee for 
showing up on time, this made Baseline (OB) 
subjects' average total earnings $41.21 ($40.68). 
Subjects never interacted directly, and their 
identities were kept confidential. 

The structure of the environment, except the 
games' targets and limits, was publicly an- 
nounced via instructions on subjects' handouts 
and computer screens. During the session, sub- 
jects had free access, game by game, to their 
own and their partners' targets and limits via a 
MouseLab interface (Figure 6, p. 1753). This 
made the games' structures effectively public 

8 Even so, our analysis of clusters (on-line Appendix F) 

suggests introspective learning by two of our 88 Baseline 
and OB subjects, who appear to have switched from LI to 
L2 after the first few games. 

' It is theoretically possible to control risk preferences 
using the binary lottery procedure, in which a subject's 
payoff is his probability of winning a given monetary prize. 
We avoid this complication because payment directly in 

money usually yields similar results, and risk preferences do 
not affect iterated dominance or pure-strategy equilibrium. 
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knowledge, and so we compare the data with 

predictions that assume complete information.10 
Subjects were taught the mechanics of look- 

ing up targets and limits and entering guesses, 
but not information-search strategies. The in- 
structions took care to avoid suggesting partic- 
ular guesses or decision rules. Subjects were 
given ample opportunity for questions, and 
were then required to pass an Understanding 
Test to continue. Subjects who failed were dis- 
missed, and the remaining subjects were told 
that all subjects remaining had passed."11 Before 
playing the 16 games, subjects were also re- 

quired to participate in four unpaid practice 
rounds, after which they were publicly shown 
the frequencies of subjects' practice-round 
guesses in their session and told how they could 
use them to evaluate the consequences of their 
own practice-round guesses.12 After playing the 
16 games, subjects were asked to fill out a 
debriefing questionnaire, in which they were 
asked how they decided what information to 
search for and which guesses to make. 

Our OB treatment addresses the concern that 

making subjects look up the targets and limits 

might distort their responses, reducing compa- 
rability between our results and those from 
more conventional designs. The OB treatment is 
identical to the Baseline, except that the games 
are presented with the targets and limits con- 
tinually visible, in "open boxes." We find in- 
significant differences between Baseline and 
OB subjects' guesses (on-line Appendix C).13 

Accordingly, we pool the data from the Base- 
line and OB treatments, except when search is 
involved. 

Our R/TS treatments address the concern 
that we might fail to recognize an empirically 
important decision rule simply because of 
subjects' cognitive limitations or unfamiliar- 
ity with the setting. For example, a subject 
who regularly uses equilibrium logic to make 
strategic decisions in the field, but has trouble 
applying it in our abstract decision problems, 
might not show up as an Equilibrium subject. 
Our R/TS treatments are identical to the Base- 

line, except that each subject plays against a 
"robot" (framed as "the computer") and the 
computer plays according to a prespecified 
decision rule. The subject is given the stan- 
dard Baseline instructions and is informed of 
the computer's rule, trained to identify the 
guesses it yields in our games, and motivated 
by being paid for the game payoffs deter- 
mined by his own guesses against the com- 
puter' s. There are six different kinds of R/TS 
treatment, in each of which a subject is 
trained and motivated to follow one of our 

leading types: Li, L2, L3, DI, D2, or Equi- 
librium. In an L2 R/TS treatment, for in- 
stance, a subject is informed that the 
computer makes L1 guesses (as in L2's be- 
liefs) and is trained to identify them. In an 
Equilibrium R/TS treatment, a subject is in- 
formed that the computer makes Equilibrium 
guesses and is trained to identify them.'4 To 

1o The possible values of the targets and limits were 
not revealed, in order to strengthen subjects' incentives 
to look up the ones they thought relevant to their guesses. 
Even so, free access still makes the structures public 
knowledge. 

" 
The dismissal rates (including a few voluntary with- 

drawals) were 20 percent for Baseline subjects, 11 percent 
for OB subjects, and 20 percent overall for R/TS subjects. 

12 The practice rounds used two player-symmetric pairs 
of games, in an order that made their symmetries nonsalient, 
so that the guess frequencies could be generated within each 
session. The variation in frequencies across sessions appears 
to have had a negligible effect on subjects' behavior in the 
16 games. The practice games had a balanced mix of struc- 
tures, with different targets and limits than in the 16 games, 
to avoid implicitly suggesting guesses. 

13 There are, nonetheless, hints that OB subjects made 

high numbers of types' exact guesses less often: OB sub- 

jects made up 19 percent of the subject pool, but only 11 

percent of those who made 14 to 16 exact guesses and 7 

percent of those who made 10 to 13. Possibly our design, 
which makes models of others easy to express as functions 
of the targets and limits, more strongly encourages Baseline 
than OB subjects to substitute such models for less struc- 
tured strategic thinking. 

14 Equilibrium subjects were taught each of the three 
main ways to identify equilibrium guesses: direct checking 
for pure-strategy equilibrium, best-response dynamics, and 
iterated dominance. The R/TS treatments also replace the 
Baseline's practice rounds with a second Understanding 
Test of how to identify the assigned type's guesses. Subjects 
were paid an extra $5, or e2.50, for passing this test, and 
those who failed were dismissed. York R/TS subjects were 

paid early and on-time show-up fees of e2 and e1, but only 
e0.02 rather than $0.04 per point, 70 percent of the UCSD 
rates. The average total earnings figures were $45.22, 
$62.03, $51.74, and $50.93 for UCSD R/TS L1, L2, DI, and 

Equilibrium subjects who finished the experiment, and 
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the extent that Equilibrium R/TS subjects 
make their own equilibrium guesses, there is 
reason for confidence that our Baseline sub- 

jects' failures to make equilibrium guesses 
are due not to cognitive limitations or the 
unfamiliar setting, but to nonequilibrium beliefs 
or other factors (possibly including lack of train- 

ing). 
CGC's (2007) analysis of our R/TS data 

confirms that a large majority of subjects can 

identify the guesses of any of our leading 
types, including Equilibrium, when they are 
trained and motivated to do so. However, Lk 

types appear to be cognitively far less difficult 
than Equilibrium, and Equilibrium appears 
less difficult than Dk types. These differences 
are probably part of the reason Lk types pre- 
dominate among Baseline subjects' nonequi- 
librium responses. 

B. Two-Person Guessing Games 

Our guessing games have two players, i and j 
(for "not i"), who make simultaneous guesses, 
x' and xJ. Each player i has a lower limit, a', 
and an upper limit, b', but players are not 

required to guess between their limits; 
guesses outside the limits are automatically 
adjusted up to the lower limit or down to the 

upper limit. Player i's adjusted guess, yi 
R(a', b'; x') x" if x'e[a', b'], y' - a' if xi < 

a', or y' b' if x'> b'. Each player i also has 
a target, p', and his payoff is higher, the 
closer his adjusted guess is to his target times 
his partner's adjusted guess. Writing e' 

- R(a', b'; x') - p'R(aj, bj; x')l for the dis- 
tance between player i's adjusted guess and 
his target times player j's adjusted guess, 
player i's point payoff, s', is given by: 

(1) s' max{0, 200 - ei} 

+ max{0, 100 - e'i/10}. 

With or without adjustment, the payoff func- 
tion in (1) is quasiconcave in player i's guess for 

any given distribution of player j's guess; and 
without adjustment the payoff function is sym- 
metric about e' = 0.15 The relationship between 

a player's guess and point payoff is not one to 
one because guesses that lead to the same ad- 

justed guess yield the same outcome. We deal 
with this ambiguity by using a player's adjusted 
guess as a proxy for all guesses that yield it, and 
we call a prediction essentially unique if it im- 

plies a unique adjusted guess.16 
We vary the targets and limits independently 

across players and games within this class of 

games to make the design as informative as 

possible, given the need for a balanced mix of 

strategic structures with no obvious patterns. 
Table 3 summarizes our games, ordered in a 

way that emphasizes their structural relation- 

ships; it also lists the randomized order in which 

subjects played the games. We identify a play- 
er's lower and upper limits by: a for 100 and 
500, P3 for 100 and 900, y for 300 and 500, and 

8 for 300 and 900; and a player's target by: 1 for 
0.5; 2 for 0.7; 3 for 1.3; and 4 for 1.5. The 
combination 31py2, for example, identifies the 

game in which player i has limits 100 and 900 
and target 0.5, and player j has limits 300 and 
500 and target 0.7. 

The games in our design are dominance- 
solvable in 3 to 52 rounds. Observation 1 

e23.00, e29.76, e28.50, e27.08, e24.12, and e27.65 (with 
the pound averaging $1.63) for York R/TS Li, L2, L3, DI, 
D2, and Equilibrium subjects who finished the experiment. 

15 Thus, unlike in Nagel's and HCW's games, a player's 
guess determines a continuous payoff rather than whether 
he wins an all-or-nothing prize, as a function of his partner's 
guess rather than a group average. Like Nagel's and HCW's 

games, ours limit the effects of altruism, spite, and risk 
aversion. The point payoff function is not concave in player 
i's guess because the weight on e' in the second term is 
smaller in absolute value than in the first term; this strength- 
ens payoff incentives near i's best response while keeping 
them positive elsewhere, despite a lower bound of 0 on a 

game's payoff. In exceptional cases like game a4/31 (Ta- 
ble 3), it is theoretically possible for a player to guess more 
than 1,000 units from his target times the other's guess, in 
the flat part of his payoff function. 

16 This ambiguity could be eliminated by requiring play- 
ers to guess between their limits. We do not do so because 
automatic adjustment enhances the separation of types' 
search implications. With quasiconcave payoffs, a subject 
can enter the ideal guess that would be optimal given his 

beliefs, ignoring his limits, and know without checking his 
limits that his adjusted guess will be optimal; our instruc- 
tions explain this, and most subjects understood it (CGC). 
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characterizes their equilibria, assuming com- 
plete information.17 If, as in our design, players' 
limits and targets are positive and p'p' # 1, their 
equilibrium adjusted guesses are determined by 
their lower limits when p'p' < 1, or their upper 
limits when ppi > 1. (The equilibrium correspon- 
dence is discontinuous when p'p' = 1, in which 
case there are multiple equilibria.) In game 'y234, 
for instance, the product of targets is 0.7 x 1.5 = 
1.05 > 1, player i's equilibrium guess is at his 

upper limit 500, and player j's is at his best re- 

sponse to 500 of 750, below his upper limit. In 

game 6233, the product of targets is 0.7 X 1.3 = 
0.91 < 1, player i's equilibrium guess is at his 
lower limit 300, and player j's is at his best re- 
sponse to 300 of 390, above his lower limit. 

OBSERVATION 1: Unless ppJ = 1, each 
guessing game in the class above has an essen- 
tially unique equilibrium, in pure strategies, 
with adjusted guesses as follows: 

If p'p' < 1, 

(a) y' R(a', b'; x') = a' if p'a' a', and y' = 

min{p'aj, b'} if p'aj > a'; and 
(b) yJ 

' 
R(aj, b; x') = a' ifpJa' 0 aJ, and y' = 

min { pJa, bJ } if pJa' > aJ. 

Further, although i's ideal guess is p'y' and j's 
is pJy', when p'pj < 1, i can enter p'aJ, orj can 
enter pJa', in lieu of his ideal guess, and still be 
sure that his adjusted guess will be optimal. 

If pp > 1, 

(c) y' R(a', b'; x') = b' if p'bJ b', and y' = 

max { a', p'bJ } if p'bJ < b'; and 
(d) yJ - R(aj, bJ; x') - bJ if pJb' bJ, and y' 

max { aJ, pJb'} if p'b' < b'. 

Further, although i's ideal guess is p'y' and 
j's is p'y', when p'p' > 1, i can enter p'bJ, or 

j can enter p'b', in lieu of his ideal guess, and 
still be sure that his adjusted guess will be 
optimal. 

Observation 1 can be verified by direct 

checking or by noting that if, say, p'pJ < 1, 
iterating best responses drives adjusted guesses 
down until one player's adjusted guess hits his 
lower limit and the other's is at or above his 
lower limit. We give a formal proof in on-line 
Appendix H, where the details play an impor- 
tant role in our analysis of Equilibrium's infor- 
mation search implications. 

Table 3 summarizes the games' structural rela- 
tionships, which add greatly to the power of our 

design. For instance, the only important difference 
between the games y2/34 (game 13 in Figures 
1-5) and 6233 (game 11) is whether the product 
of targets is greater or less than one. Observation 
1 shows that Equilibrium responds strongly to this 
subtle difference, but low-level Lk or Dk types, 
whose guesses vary continuously with the targets, 
respond much less. Further, games with mixed 
targets (games 9 to 16 in Figures 1-5) are espe- 
cially well suited to separating types' guesses, and 
help us diagnose the causes of some subjects' 
deviations from equilibrium (Section IIA). Fi- 

nally, moving some of Equilibrium and other 
types' guesses away from the limits and the other 
structural variations in Table 3 stress-test types' 
predictions, and with our games' large strategy 
spaces, allow us to "reverse-engineer" some devi- 
ations and thereby distinguish cognitive errors 
from "random" behavior (on-line Appendix F). 
For example, Figure 7 (p. 1754) shows the pattern 
of iterated dominance and how it converges to 
equilibrium in game y463, where the product of 

targets is 1.5 X 1.3 > 1, player i's equilibrium 
guess is at his upper limit 500, and player j's 
equilibrium guess is at his best response to 500 of 
650 (below his upper limit). Here, dominance for 
player j occurs initially at both his limits, which 
stress-tests Equilibrium and Dk types. None of 
these features is shared by the games of Nagel, 
HCW, SW, or CGCB. 

17 Guesses are in equilibrium if each player's guess maxi- 
mizes his expected payoff, given the other player's. A player's 
guess dominates (is dominated by) another of his guesses if it 

yields a strictly higher (lower) payoff for each of the other 

player's possible guesses. A player's guess is iteratively un- 
dominated if it survives iterated elimination of dominated 

guesses. A round of iterated dominance eliminates all dominated 
guesses for both players. A game is dominance-solvable (in k 

rounds) if each player has a unique iteratively undominated 

adjusted guess (identifiable in k rounds of iterated dominance). 
Those iteratively undominated adjusted guesses are players' 

unique equilibrium adjusted guesses. We distinguish the num- 

bers of rounds players need to identify their own iteratively 
undominated adjusted guesses; the number of rounds in which 
the game is dominance-solvable is the higher of these numbers. 
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FIGURE 1. "FINGERPRINTS" OF 20 APPARENT LI SUBJECTS 

Notes: Only deviations from Ll 's guesses are shown. Of these subjects' 320 guesses, 216 (68 
percent) were exact Li guesses. 
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FIGURE 2. "FINGERPRINTS" OF 12 APPARENT L2 SUBJECTS 

Notes: Only deviations from L2's guesses are shown. Of these subjects' 192 guesses, 138 (72 
percent) were exact L2 guesses. 

Observation 2 simplifies the characterization of 

types' adjusted guesses. It shows that for guessing 
games in the class, a player's best responses to 
uniform beliefs on an interval like those in the 
definitions of types Li, DI, and D2, and indirectly 
L2 and L3, equal his target times the midpoint of 
the interval, adjusted if necessary to lie within his 
limits. This certainty-equivalence result is inde- 
pendent of risk preferences, but it depends on 

symmetry and uniform beliefs.'8 

OBSERVATION 2: Suppose the point payoff 
function of a guessing game in the class is a 
symmetric, continuous, almost everywhere dif- 
ferentiable function s(x - pz) that is weakly 
decreasing in |x - pz , where x is a player's 
guess; p is his target; and z, his partner's guess, 
is a random variable uniformly distributed on 
[a,b]. Then, for any player with a continuous, 

18 Observation 2 shows that in our games, Lk guesses are 

k-point-rationalizable (Bernheim, 1984), but it also shows 

that our design is not well-suited to distinguishing k-point- 
rationalizable types from those that are k-rationalizable in 
the usual sense, which allows nondeterministic beliefs. 
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FIGURE 4. "FINGERPRINTS" OF EIGHT APPARENT EQUILIBRIUM SUBJECTS 

Notes: Only deviations from Equilibrium's guesses are shown. Of these subjects' 128 guesses, 
69 (54 percent) were exact Equilibrium guesses. 

almost everywhere differentiable von Neumann- 

Morgenstern utility function 
u(.) 

that values 
only money (risk-neutral, risk-averse, or risk- 

loving), his expected-utility maximizing choice 
is x* = pE(z) = p(a + b)/2, and his expected- 
utility maximizing choice s.t. x E [c, d] is R(c, d; 
p(a + b)/2). 

PROOF: 
We show that x* = p(a + b)/2 solves 

maxx fa 
u(s(x - pt)) dz (ignoring the posi- 

tive factor [1/(b - a)]). The integral in the 
maximand is differentiable because u(s(x - 

pt)) is continuous. Its derivative with respect 
to x, evaluated at x*, is (ignoring points of 
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FIGURE 5. SEPARATION OF TYPES' PREDICTED GUESSES ACROSS GAMES 

nondifferentiability), 
(a + b)/2 

(2) J u'(s(x* - pz))s'(x* - pz) dz 

Ia 

+ u'(s(x* - pz))s'(x* - pz) dz = 0, 
(a+ b)/2 

where the equality holds for x* = p(a + b)/2 by 
symmetry. Because u(-) is increasing and 

s(.) 
is 

weakly decreasing in Ix - pzl, raising x above x* 
lowers the derivative below 0, and lowering x 
below x* raises it above 0; thus, the integral in the 
maximand is quasiconcave in x. Because x* = 

p(a + b)/2 satisfies the first-order condition for 

maximizing the integral, x* is optimal, ignoring 
the constraint x E [c, d], and R(c, d; p(a + b)/2) 
is optimal, respecting the constraint. 

In deriving our types' implications, we as- 
sume that each player maximizes the expected 
utility of his total money payment over the 16 

games. Each type then implies an essentially 
unique adjusted guess in each game, which 
maximizes its expected payoff given beliefs 
based on some model of others' decisions.19 

The key to the derivations is a type's ideal 
guess, the one that would be optimal given its 
beliefs, ignoring its limits. A type's ideal 

guess determines its adjusted guess in a game 
via the adjustment function R(a', b'; x') 
min{ b, max{a/, x'} }. We estimate Sophisti- 
cated's ideal guesses as risk-neutral best re- 
sponses to the pooled distribution of Baseline 
and OB subjects' adjusted guesses, game by 
game, rounded to the nearest integer for sim- 
plicity.20 Equilibrium's ideal guesses follow 
immediately from Observation 1, and Ll's, 

19 A type's adjusted guesses are all that matters about its 
choices, and all that our types determine. Because a player' s 
total payment is proportional to his point payoffs in five 

randomly chosen games, a first-order stochastic dominance 

argument shows that when guesses have known conse- 

quences, the player must maximize his point payoff in any 
given game. When guesses have uncertain consequences, 
risk preferences are potentially relevant. But Observation 1 
shows that our games have essentially unique equilibria in 

pure strategies, so risk preferences do not affect Equilibrium 
adjusted guesses. And Observation 2 shows that best re- 

sponses to uniform beliefs are certainty-equivalent, so risk 
preferences do not affect Li, D1, or D2 adjusted guesses, or 
the best responses that define L2 or L3 adjusted guesses. For 

Sophisticated adjusted guesses, which may best respond 
to nonuniform beliefs and so are not covered by Observa- 

tion 2, we must assume that players are risk-neutral to 
justify the statement in the text. Even so, Sophisticated 
adjusted guesses are only generically unique because their 
beliefs allow ties in optimal guesses. 

20 Because we also rounded subjects' guesses to the 
nearest integer, and few subjects made exact Sophisticated 
guesses, this does not lead to misclassification. 
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TABLE 4-TYPES' IDEAL GUESSES AND RELEVANT LOOK-UPS 

Type Ideal guess Relevant look-ups 

L1 p'[aj + bj]/2 {[a', bj], p'} {[4, 6], 2} 
L2 piR(a', bJ; p'[ai + bi]/2) {([ai, bi], p'), a', b', p'} - {([1, 3], 5), 4, 6, 2} 
L3 p'R(aJ, bj; pJR(a', b'; p'[aj bi]/2)) {([a, bj], p'), a', b', p'} [ {([4, 6], 2), 1, 3, 5} 
Dl pi(max{aj, pai'} 

+ min{p'b', bj})/2 {(a', [pJ', a']), (bj, [pj, b']), p'} { (4, [5, 1]), (6, [5, 3]), 2} 
D2 p'[max{ max{aJ, pJa'}, p'max{a', p'aj} } { (a', [pi, aj]), (b', [p', bj]), (aj, [pj, a']), (bj, [pj, b']), p-, p'} 

+ min{pjmin{p'b', b'}, min{pjb, b'} }]/2 [ (1, [2, 4]), (3, [2, 6]), (4, [5, 1]), (6, [5, 3]), 5, 2} 
Eq. {a' if p'aJ a' or min{pi'a, b'} if p'aj > a')} if {[p', p'], aj)} {[2, 5], 4)} if pip' < 1 or {[pi, p'], b-} 

pi'p < 1 or {b' if pb'J 2 b' or max{a', pib')} if [ [2, 5], 6)} if p'pi > 1 

p'bJ < b'} if p'p > 1 

Soph. [no closed-form expression; Sophisticated's {(a', [pi, aj]), (b', [p', bj']), (a', [p', a']), (bj, [p', b']), p', p'} 
search implications are the same as D2's] { (1, [2, 4]), (3, [2, 6]), (4, [5, 1]), (6, [5, 3]), 5, 2)} 

Notes: The most basic operations are represented by the innermost look-ups, grouped within square brackets; these can appear 
in any order, but may not be separated by other look-ups. Other operations are represented by look-ups grouped within 

parentheses or curly brackets; these can appear in any order, and may be separated by other look-ups. Equilibrium's minimal 
search implications are derived not directly from Equilibrium's ideal guesses, but from p'a' when p'pJ < 1 and 

p'b 
when 

pp'i > 1 via Observation 1 (see on-line Appendix H). 

TABLE 5-TYPES' ADJUSTED GUESSES AND GUESSES THAT SURVIVE ITERATED DOMINANCE 

Player i's guess for type Range of iteratively undominated guesses 

Game L1 L2 L3 Dl D2 Eq. Soph. 1 round 2 rounds 3 rounds 4 rounds 

1. a2pl 350 105 122.5 122.5 122.5 100 122 100, 500 100, 175 100, 175 100, 100 
2. pla2 150 175 100 150 100 100 132 100,250 100,250 100,100 100,100 
3. p0ly2 200 175 150 200 150 150 162 150,250 150,250 150,150 150,150 
4. 72f1 350 300 300 300 300 300 300 300,500 300,300 300,300 300,300 
5. y483 500 500 500 500 500 500 500 450,500 500,500 500,500 500,500 
6. 83y4 520 650 650 617.5 650 650 650 390, 650 585, 650 650, 650 650, 650 
7. 8383 780 900 900 838.5 900 900 900 390,900 507,900 659.1,900 856.8, 900 
8. 8383 780 900 900 838.5 900 900 900 390,900 507,900 659.1, 900 856.8, 900 
9. pla4 150 250 112.5 162.5 131.25 100 187 100,250 100,250 100,187.5 100,187.5 

10. a4fl 500 225 375 262.5 262.5 150 300 150,500 150,375 150,375 150,281.27 
11. 8233 350 546 318.5 451.5 423.15 300 420 300,630 300,630 300,573.3 300,573.3 
12. (382 780 455 709.8 604.5 604.5 390 695 390,900 390,819 390,819 390,745.29 
13. y2P4 350 420 367.5 420 420 500 420 300,500 315,500 315,500 330.75, 500 
14. f472 600 525 630 600 611.25 750 630 450,750 450,750 472.5,750 472.5, 750 
15. a2a4 210 315 220.5 227.5 227.5 350 262 100,350 105,350 105,350 110.25, 350 
16. a4a2 450 315 472.5 337.5 341.25 500 375 150, 500 150, 500 157.5, 500 157.5, 500 

L2's, L3's, Dl's, and D2's follow immedi- 

ately from Observation 2. 
The left-hand side of Table 4 lists the general 

formulas for types' ideal guesses as functions of 
the targets and limits. Table 5 lists types' ad- 

justed guesses and the guesses that survive one 
to four rounds of iterated dominance in each 

game. Figure 5 summarizes the separation of 

types' adjusted guesses in the 16 games. No two 

types are separated in fewer than eight games; 
the number of games in which two given types 
are separated averages 11 2/3 out of 16 (73 per- 

cent), which is hard to improve upon within a 
simple overall structure like ours; and L2 and 

D1 are separated in 13 games, much more 
strongly than in any previous experiment (on- 
line Appendix G). 

The right-hand side of Table 4 lists types' min- 
imal implications for information search, which 
are used in Section IIE's econometric analysis, 
in general notation and in the box numbers in 
which searches are recorded. Our derivation of 
these implications in on-line Appendix H and 
CGC (2007) is based on a procedural view of 
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decision-making in which the algorithms that 
can be used to process payoff information into a 
type's guesses determine its searches as well. 
Types' minimal search implications are based 
on their ideal guesses, because (with our qua- 
siconcave payoffs) a subject can enter his ideal 
guess and know that his adjusted guess will be 
optimal without checking his own limits. As 
suggested by our R/TS treatments and CJ's and 
CGCB's experiments, we assume that subjects 
perform the most basic operations needed to 
identify the ideal guess one at a time via adja- 
cent (consecutive in the sequence) look-ups, in 
any order, remembering their results, and oth- 
erwise relying on repeated look-ups rather than 
memory. Basic operations will then be repre- 
sented by adjacent look-up pairs that can appear 
in any order, but cannot be separated by other 
look-ups. Other operations will be represented 
by the associated look-ups, in any order, possi- 
bly separated by other look-ups. We call a 
minimal look-up sequence that satisfies these 

requirements for a type the type's relevant 
look-ups. 

We close this subsection by discussing the 

strength of our subjects' incentives to follow 
particular types. Given the enormous set of 
possible types in our design, we approach this 
issue by estimating how costly it would be for 
a subject of a given type, with its beliefs, to 
behave according to a different type if he still 
had the given type's beliefs. By this standard, 
Equilibrium, L2, and L3 subjects all have 
strong incentives to make their type's guesses 
(on-line Appendix G). Equilibrium's ex- 
pected earnings would be $46.05 in our 16 
games if its partners made equilibrium 
guesses, $12.05 more than its earnings would 
be with L3 guesses, and even more than its 
earnings would be with our other types' 
guesses. The analogous earnings differences 
for L2 and L3 are $10.25 and $6.90. But our 
other leading types have weaker incentives: 
analogous differences of $1.29 for D2, $1.22 
for L1, $0.85 for DI, and $0.46 for Sophisti- 
cated.21 

C. Using MouseLab to Present Guessing 
Games 

The games were displayed on subjects' 
screens via a computer interface called Mouse- 
Lab.22 To suppress framing effects, a subject 
was called "You" and his partner was called 
"S/He," etc. A subject could look up a payoff 
parameter by using his mouse to move the cur- 
sor into its box and left-clicking; in Figure 6 the 
subject has opened the box that gives his own 
("Your") lower limit, 100. Before he could open 
another box or enter his guess, he had to close the 
box by right-clicking; a box could be closed after 
the cursor had been moved out of it. Thus, both 

opening and closing a box required a conscious 
choice. Subjects were not allowed to write during 
the main part of the experiment. A subject could 
enter and confirm his guess by moving the cursor 
into the box labeled "Keyboard Input," clicking, 
typing the guess, and then moving the cursor into 
the box at the bottom of the screen and clicking. A 
subject could move on to the next game only after 
confirming his guess; after an intermediate screen, 
the cursor returned to the top-center. MouseLab 
automatically records subjects' look-up sequences, 
look-up durations, and guesses. 

II. Analysis of Subjects' Guesses and 
Information Searches 

This section analyzes subjects' guesses and 
information searches, starting with those of our 
subjects whose types are apparent from guesses 
alone, and continuing with all subjects' compli- 
ance with iterated dominance and equilibrium, 
an econometric analysis of subjects' guesses 
and specification test, and an econometric anal- 
ysis of their guesses and information search.23 

21 Among our types, only L1 and Equilibrium are not 

fairly close substitutes for Sophisticated, given its beliefs. 

22 MouseLab was developed to study individual decisions 
(John Payne et al., 1993, Appendix; and http://www.cebiz. 
org/mouselab.htm). CJ pioneered the use of MouseLab in 

games by studying backward induction in alternating-offers 
bargaining games in which subjects could look up the sizes of 
the "pies" in each period. CGCB used MouseLab to study 
matrix games in which subjects could look up their own and 
their partners' payoffs. 

23 On-line Appendix D graphs the aggregate game-by- 
game frequency distributions of subjects' adjusted guesses. 
Appendix E gives the complete data on subjects' guesses and 
the orders (but not durations) of their look-up sequences. 
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Keyboard Input: 
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Enter this box and click a mouse button when Hou are ready. 

FIGURE 6. SCREEN SHOT OF THE MOUSELAB DISPLAY 

Table 1 summarizes each phase's conclusions 
regarding the numbers of subjects of each esti- 
mated type, and Tables 7A and 7B summarize 
the results subject by subject. 

A. Subjects Whose Types Are Apparent from 
Guesses Alone 

Figures 1-4 graph the actual against predicted 
adjusted guesses of the 43 subjects whose types 
are apparent from guesses alone, with games or- 
dered to emphasize structural relationships, as in 
Table 3. Figures 1 to 3 graph 20 apparent L1i 
subjects, 12 apparent L2 subjects, and 3 apparent 
L3 subjects, each with Equilibrium guesses for 
comparison; and Figure 4 graphs 8 apparent Equi- 
librium subjects, with L3 guesses for comparison. 
Only deviations from subjects' apparent types are 
shown; the 20 L1 subjects in Figure 1, for exam- 
ple, who made a total of 320 guesses in 16 games, 
deviated from L1 guesses a total of 104 times, 
each identified by the subject's mark. 

Section IIC's econometric analysis con- 
firms that in likelihood-based type inferences, 
subjects' rates of exact (within 0.5) compli- 
ance with types' guesses are far more impor- 

tant than the magnitudes of their deviations. 
Thus, the most important message of Figures 
1 to 4 is that these 43 subjects' rates of exact 
compliance were very high, despite our large 
strategy spaces. A second message is that 
these subjects' guesses usually varied only 
slightly across the two symmetric games, 7 
and 8, suggesting that the effects of introspec- 
tive learning were limited. 

There are systematic differences between 
subjects' responses to games with (9-16, right 
sides of Figures 1-4) and without (1-8) mixed 
targets: Apparent L2, L3, and Equilibrium sub- 
jects all deviate from their types' predictions 
much more often in games with mixed targets. 
This is surprising, because L2 and L3 guesses 
are determined by simple formulas in which a 
subject's own and his partner's targets play 
similar roles (Table 4) and all of the standard 
methods for identifying Equilibrium decisions 
(direct checking, best-response dynamics, and 
iterated dominance) work equally well with 
and without mixed targets. Apparent L1 sub- 
jects, whose ideal guesses do not depend on 
their partner's target, making the distinction 
between games with and without mixed targets 
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Flayer i P i=1.5 Eq. Guess 

R(1) R(2) 

450 500 300 

Eq. Guess 

R(3) R(1) 

900 

Playerj p=1.3 

R(1) R(2) 

300 390 585 650 

FIGURE 7. ITERATED DOMINANCE AND EQUILIBRIUM IN GAME y483 

Note: R(k) is the set of guesses eliminated in round k of iterated dominance. 

irrelevant, do not deviate more often in games 
with mixed targets.24 

The details of apparent Equilibrium and L3 

subjects' guesses deepen the puzzle. Our 8 ap- 
parent Equilibrium subjects' 44 deviations from 
Equilibrium when it is separated from L3 (out of 
a possible 72 = 9 games X 8 subjects), are all 
in the direction of (and sometimes beyond) L3 
guesses. And our apparent L3 subjects' devia- 
tions from L3 when it is separated from Equi- 
librium are usually in the direction of 
Equilibrium and often coincide with it-even in 

game 1, our only such game without mixed 

targets. Thus, many of these subjects appear to 
be using hybrid rules that blend Equilibrium 
(especially in games without mixed targets) 
with L3. This illustrates the potential empirical 
importance of the subtlety of identifying equi- 
librium decisions in our games. 

B. Subjects' Compliance with Iterated 
Dominance and Equilibrium 

Table 6 reports Baseline and OB subjects' 
compliance with 1 or more, 2 or more, 3 or 
more, and 4 or more rounds of iterated domi- 

nance-equivalently, levels of k-rationalizabil- 

ity-and exact compliance with Equilibrium, 

overall and game by game, with random com- 
pliance as a benchmark.25 Subjects make un- 
dominated guesses at a rate well above random 
in each of the 13 games in which subject i has 
any dominated guesses, with an overall rate of 
90 percent, typical for initial responses and far 
higher than random (62 percent). Only 14 sub- 

jects make undominated guesses in less than 80 
percent of the games, which suggests that the 
behavior of a large majority of our subjects was 
coherent. Compliance with iterated dominance 
is almost always higher than random when this 
is possible, and usually far higher. It varies 
widely across games, but with no clear effect of 
structure beyond what determines random com- 
pliance. Compliance with Equilibrium is lower 
in games with mixed targets but otherwise 
shows no clear effect of structure. Because our 

games with mixed targets coincide with those 
with many rounds of iterated dominance, in this 
respect our results correspond to those for 
CGCB's (2001, Table II) matrix games. 

C. Econometric Analysis of Baseline and OB 
Subjects' Guesses 

Although 43 of our 88 Baseline and OB sub- 

jects' types are apparent from their guesses, the 

remaining 45 subjects' types are not immedi- 

ately clear. In this subsection we estimate all 88 

subjects' types econometrically, via a maximum 
24 There are no clear patterns in the magnitudes of de- 

viations or other aspects of the games' structures. Only one 
of our 29 Equilibrium R/TS subjects came close to the 

apparent Equilibrium subjects' patterns in the Baseline; the 
rest made just as many exact guesses with as without mixed 

targets (Appendix E; CGC, 2007). 

25 The differences between Baseline and OB subjects are 

unimportant here. On-line Appendix G's tables give the 

analogous results for types other than Equilibrium. 
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TABLE 6-BASELINE AND OB SUBJECTS' AGGREGATE COMPLIANCE WITH ITERATED DOMINANCE AND Equilibrium 

Game Respects 1 or Respects 2 or Respects 3 or Respects 4 or 
(# rounds of more rounds more rounds more rounds more rounds Equilibrium 
dominance) of dominance of dominance of dominance of dominance exact compliance 

All games 90 (62) 75 (41) 53 (34) 40 (26) 18 (0) 

1. a23pl (4) 100 (100) 34 (19) 34(19) 13 (0) 13(0) 
2. l/31a2 (3) 78 (19) 78 (19) 16(0) -(-) 16 (0) 
3. p3172 (3) 73 (13) 73 (13) 10(0-)-(-) 10(0) 
4. y2p31 (2) 100 (100) 44 (0) - (-) - (-) 44 (0) 
5. 7483 (2) 81(25) 69 (0) - (-) - (-) 69 (0) 
6. 633y4 (3) 88 (43) 35(11) 26 (0) -(-) 26 (0) 
7. 6383 (5) 97 (85) 91(66) 70 (40) 26 (7) 24 (0) 
8. 8383 (5) 95 (85) 94 (66) 68 (40) 20 (7) 20 (0) 
9. 31pa4 (9) 70(19) 70(19) 34(11) 34(11) 5(0) 

10. a43pl (10) 100 (88) 56 (56) 56 (56) 31(33) 3 (0) 
11. 8233 (17) 86 (55) 86 (55) 81 (46) 81 (46) 5 (0) 
12. f332 (18) 97 (64) 92 (54) 92 (54) 69 (44) 1(0) 
13. y234 (22) 100 (100) 97 (93) 97 (93) 94 (85) 20 (0) 
14. 34y2 (23) 88 (38) 88 (38) 84 (35) 84 (35) 8 (0) 
15. a2a4 (52) 90(63) 90(61) 90(61) 90(60) 11(0) 
16. ca4a2 (51) 98 (88) 98 (88) 94 (86) 94 (86) 6 (0) 

Notes: Compliance percentages are rounded to the nearest integer, with random compliance percentages in parentheses. 
Guesses that respect k or more rounds of dominance are k-rationalizable. 

likelihood error-rate analysis of their guesses. 
Our goals are to summarize the implications of 
the data in a comprehensible way, to assess the 
strength of the evidence in favor of our types, 
and to identify those subjects whose guesses are 
not well explained by our types and guide the 
search for better explanations of their behavior. 

We assume that each subject's behavior is 
determined, possibly with error, by a single 
type, which determines his guesses and searches 
in all games. The types we allow were chosen a 
priori from general principles of strategic deci- 
sion-making that have played important roles in 
the literature, with the goal of specifying a set 
large and diverse enough to do justice to the 
heterogeneity of subjects' behaviors but small 
enough to avoid overfitting. We include Li, L2, 
L3, DI, D2, and Equilibrium as defined in the 
Introduction, and add CGCB's Sophisticated to 
test whether any subjects have a prior under- 

standing of others' decisions that transcends 
these simple rules. In theory, Sophisticated best 

responds to the probability distributions of its 

partners' decisions; but those distributions are 

part of a behavioral game theory that is not yet 
fully developed. We therefore operationalize 
Sophisticated using the best available predic- 

tions of those distributions in our setting: the 
population frequencies of our own subjects' 
guesses.26 

Indextypes k = 1,..., K andgamesg = 1,..., 
G. In game g, denote subject i's lower and upper 
limits ai and 

bg, 
his unadjusted and adjusted 

guess 
xg 

and 
Rg(xg) 

- min {b, max{ag, x,}), and 

26 An ad hoc type could perfectly mimic a subject's 
decision history, but would have no explanatory power. It is 
hard to dispense with a priori specification because the 
space of possible types is enormous and the leading types 
have no simple, unifying structure. Further, there are mul- 

tiple rationales for any given history of guesses, but we link 
guesses and search via a procedural model whose implica- 
tions depend not only on what guesses a type implies, but 
also on why. Our L1 corresponds to SW's Level 1 or 
CGCB's Nai've, and is related to Level 1 or Step 1 in Nagel, 
HCW, and CHC. Our L2 (L3) corresponds to CGCB's L2 
(L3), and is related to L2 (L3) in SW, Nagel, HCW, and 
CHC. Earlier work suggests that types beyond L3 or D2 are 

empirically unimportant, and there is no evidence of them in 
our data. We also omit three types CGCB found empirically 
unimportant: Pessimistic (maximin), Optimistic (maximax), 
and Altruistic. Pessimistic and Optimistic do not distinguish 
clearly among guesses in our games; and we judged the 
effects of own guesses on others' payoffs too weak and 
nonsalient for Altruistic to be plausible. 
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type k's adjusted guess 4. Writexi - (x0,...,xG) 
and R'(x1) 

i 
(Rj(x),..., R 

(xi). We analyze the data subject by subject.27 
Interpreting a pattern of deviations from types' 
guesses requires an error structure. We assume 
that, conditional on a subject's type, his errors 
are independent across games. Because our sub- 
jects so often made types' exact guesses, we use 
a simple "spike-logit" error structure in which, 
in each game, a subject has a given probability 
of making his type's guess exactly, and other- 
wise makes guesses that follow a logistic dis- 
tribution over the rest of the interval between 
his limits. Thus, in game g a type-k subject 
makes a guess that leads to type k's adjusted 
guess tk within 0.5 with probability 1 - e; but 
with probability eE [0, 1], his error rate, his 

adjusted guess has error density dk(R (x ), A) 
with precision A.28 

In describing how payoffs affect the error 
density, for simplicity we assume that subjects 
are risk-neutral. Let y be subject i's partner's 
adjusted guess and 

S,(Rg(xg), 
y) be i's own 

expected monetary payoff in game g, where the 
expectation is taken only over the random se- 
lection of games that subject i is paid for. All of 
our types best respond to some beliefs; let the 
density f k(y) represent type k's beliefs. Subject 
i's expected payoff in game g for type k's be- 
liefs can then be written: 

1000 

(3) S(R (x )) 000S, 

(Rg(xi,), y)fg(y) 

dy. 

"0 

Let Uk [tk - 0.5, tk + 0.5] n [ai, 
bg], 

the 
set of subject i's possible adjusted guesses in 
game g that are within 0.5 of type k's adjusted 
guess tg, and let V"=k [ag, bi ]/Uk the comple- 

ment of Uk relative to 
[ag, bi]. The density 

dk(Rig(x), 
Ak) then satisfies 

exp[)Sg(Rg(x 
))] (4) 

dg(Rg(xg), 
A) p 

exp[AS (z)] dz 

for R 
(xg) 

E V',k, and 0 elsewhere. 

The precision A is inversely related to the 
dispersion of a subject's erroneous guesses: as 
A - o they approach a noiseless best response 
to his type's beliefs, and as A 

-- 
0 they ap- 

proach uniform randomness between his limits, 
excluding exact guesses. For a given value of A, 
the dispersion declines with the strength of pay- 
off incentives, evaluated for the type's beliefs. 

Because unadjusted guesses that lead to the 
same adjusted guess yield the same payoffs, the 
error structure treats them as equivalent, and the 
likelihood can be expressed entirely in terms of 
a subject's adjusted guesses. For subject i, let 
Nik be the set of games g for which 

Ri(x 
) E 

Vrk, and nik be the number of games in 
N', 

so 

that the number of games for which 
R,(xi) 

E 
Uk is G - nik. For a type-k subject i in game g, 
the probability of observing an adjusted guess 

Ri(xi) E Uk s (1 - e), the probability of 

observing an adjusted guess 
Rg(xg) 

E V'k is e, 
and the conditional density of an adjusted guess 
in V~k is then 

dk(Rg(xg), 
Ah) as in (4).29 Because 

errors are independent across games, the density 
of a sample with adjusted guesses R'(x') 

(RI(Xl) 
..., R (xi)) for a type-k subject i is: 

(5) dk(Ri(xi), e, A) 

(1 - e)(G-nik) 'nik 

dg(Rg(xg), 
A), 

gE Nik 

where products with no terms (if nik = 0 or G) 
are taken to equal 1. Letting p (p" ..., pK) 
denote the vector of prior type probabilities, 

27 CGCB (2001) used an aggregate mixture model that 

imposed stronger restrictions on subjects' type distributions, 
and studied cognition at the individual level by conditioning 
on individual histories. CGCB (1998) estimated subject by 
subject using the same dataset, with similar results. Esti- 

mating subject by subject seems better suited to studying 
cognition and more robust to misspecification; but the re- 
sults are unlikely to differ much from a mixture model. 

28 In our design, entered guesses are restricted to the 
interval [0, 1000], which includes all possible limits. There 
is no need to allow the error rate and precision to depend on 

type, because all three are estimated jointly. 

29 The conditional density could be allowed to extend to 
Uig as well as Vi.k, but our specification is simpler, and 
approximately equivalent given the near-constancy of pay- 
offs within the narrow interval of exact guesses Uf,. 
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weighting by pk, summing over k, and taking 
logarithms, yields subject i's log-likelihood: 

(6) L'(p, e, AhJRi(x')) 

K 

- In 1 pkdk(R'(x'), e, A) . 
k= 1 

It is clear from (6) that the maximum likeli- 
hood estimate of p sets pk = 1 for the (generi- 
cally unique) k that yields the highest dk(Ri(xi), 

e, A)), given the estimated e and h. The maxi- 
mum likelihood estimate of e can be shown 
from (5) to be nik/G, the sample frequency with 
which subject i's adjusted guesses fall in V/k. 
The maximum likelihood estimate of A is the 

standard logit precision, restricted to guesses 
in 

Vk. 
The maximum likelihood estimate of subject 

i's type maximizes the logarithm of (5) over k, 
given the estimated e and h. When nik is be- 
tween 0 and G, the maximand is 

(7) In dk(Ri(x'), 8, h) - (G - nik)ln(G - n'k) 

+ nikln(nik) + E In di(R (x ), A) 
gENk 

- G In G. 

When nik = 0, the maximand reduces to 0; 
and when nik = G, the maximand reduces to the 
sum over g on the right-hand side of (7). 

The likelihood takes the separation of 
types' guesses across games into account, fa- 
voring a type only to the extent that it ex- 
plains a subject's guesses better than other 
types. It treats a guess as stronger evidence 
for a type the closer it is to the type's guess, 
because the payoff function is quasiconcave 
and the logit term increases with payoff; and 
it treats a guess that exactly matches a type's 
guess as the strongest possible evidence for 
the type, discontinuously stronger than one 
that is close but not within 0.5. If n"i is near 
0 for only one k, that k is usually the esti- 
mated type. If nik is nearly the same for all k, 
the estimated type is mainly determined by 
the logit term; and if nik is near G for all k, the 

type estimate is close to the estimate from a 
standard logit model. 

Table 1 (column 3) reports the aggregate fre- 
quencies of subjects' type estimates based on (7). 
Table 7A reports each Baseline or OB subject's 
number of dominated guesses and the estimates of 
his type k, precision A, and number of exact type-k 
guesses (= 16(1 - e), where e is the error rate), 
with subjects ordered by type, in decreasing order 
of likelihood within type. The joint restriction e 
1 and A = 0, which approximates a completely 
random model of guesses, cannot be rejected at 
the 5-percent (and 1-percent) level for 10 subjects 
(6 estimated Li, 2 DI, 1 Equilibrium, and 1 So- 
phisticated, with type indicators superscripted t in 
Table 7A); Table 1 (column 4) reports the aggre- 
gate type frequencies excluding these subjects as 
"unclassified." 

Likelihood ratio tests reject the hypothesis e 
1, which approximates a standard logit model, at 
the 5-percent (1-percent) level for all but 7 (2) of 
our 88 subjects (110 and 213 at the 1-percent 
level, plus 109, 113, 212, 421, and 515 at the 
5-percent level), so the spike in our specification is 
necessary.30 The hypothesis h = 0 is rejected at 
the 1-percent (5-percent) level for the 21 (34) 
subjects whose estimates are superscripted ** (*) 
in Table 7A, so the logit model's payoff-sensitive 
errors significantly improve the fit over a spike- 
uniform model such as CGCB's for only about a 
third of our subjects. This suggests that many of 
our subjects' deviations are due to cognitive errors 
rather than insufficient motivation or lack of ef- 

fort; and this view is reinforced by on-line Appen- 
dix F's analysis of clusters. 

D. Specification Test and Analysis 

As explained in the introduction, our a pri- 
ori specification might omit empirically rele- 
vant types and/or include irrelevant ones, and 
this leaves some room for doubt regarding our 
45 subjects whose types are not apparent from 
their guesses. To learn whether any of their 

30 
We report these tests only as a simple way to gauge 

the strength of the evidence provided by our data. Their 
standard justifications are unavailable, here and below, be- 
cause the null hypotheses involve boundary parameter val- 
ues. We approximated the test for e = 1 using a 
nonboundary value of e just below one. 
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TABLE 7A-SUBJECT-BY-SUBJECT GUESSES-ONLY AND SEARCH-ONLY ECONOMETRIC TYPE ESTIMATES AND RESULTS OF 

SPECIFICATION TEST 

Guesses only Search only 

ID Dom. In L k Exact A In L k 5 M 

513 0 0.00 L1 16 - - - - - 

118 0 -9.62 Li 15 1.85 -7.41 Lle 0.88 0.06 
101 1 -10.27 L1 15 0.55 -9.94 

Lie* 
0.69 0.31 

104 0 -16.63 Li 14 2.20* -3.74 Lle 0.00 0.94 
413 0 -17.81 L1 14 0.88 -6.03 LI, 0.13 0.88 
207 0 -17.96 Li 14 0.42 0.00 Lle 1.00 0.00 
216 1 -25.41 L1 13 1.06 -11.25 L3e 0.75 0.19 
402 0 -30.93 L1 12 5.65* -9.00 Lle 0.00 0.75 
418 0 -42.23 Li 10 21.22** -7.41 L2e 0.88 0.06 
301 1 -45.84 LID 10 0.00 -3.74 

Lle 
0.06 0.94 

508 0 -46.19 LID 10 2.05 - - - - 

308 3 -47.34 L1 10 0.00 -9.63 L3e 0.81 0.13 
102 4 -47.63 L1 10 0.00 -9.63 L2e 0.81 0.06 
415 1 -53.64 L1 9 0.88 -16.38 Die 0.31 0.50 
504 1 -56.97 L1 8 1.68** - - - - 

208 6 -61.62 L1 8 0.00 -3.74 Li, 0.06 0.94 
318 0 -62.61 L1 7 3.18* -3.74 Llet 0.00 0.94 
512 0 -63.33 L1 7 1.56 - - - - 

502 1 -64.55 L1 7 1.01 - - - - 

516 1 -64.93 L1c 7 1.10" - - - - 

409 0 -73.59 LIE 4 9.90** -10.59 Ll, 0.00 0.38 
106 0 -75.82 Li 5 1.19" -7.72 Eqe 0.00 0.19 
305 3 -79.89 L1 5 0.37 -6.03 Lle 0.88 0.13 
411 1 -80.58 L1 4 1.45** 0.00 L3e 1.00 0.00 
509 1 -81.81 L1 4 0.86 - - - - 

203 4 - 83.90 L1 4 0.00 -9.94 Eqe 0.00 0.31 
505 4 -84.13 L1 4 0.43 - - - - 

317 3 -86.58 L1 3 0.92* -3.74 Lie 0.94 0.06 
416 1 -86.74 L1t 1 4.48** -3.74 

LIle 
0.00 0.94 

217 3 - 87.12 L1 3 0.68 -10.59 Lle 0.00 0.38 
219 3 -87.32 L1i 3 0.89* -7.72 L1i, 0.00 0.81 
501 1 -87.93 LIt 0 4.38** - - - 

410 3 -89.18 L1 2 1.53"* -7.72 Liet 0.00 0.19 
510 5 -89.60 L1 3 0.00 - - - - 

420 2 -89.68 Li1 2 1.25** -3.74 Eq, 0.00 0.06 
408 2 -89.71 L1i+ 2 1.09" -6.03 Lle 0.00 0.88 
201 3 -90.26 L1i+ 2 1.21** -3.74 

Llei 
0.00 0.94 

105 2 -90.58 L1i 2 1.29** -9.00 
Eqe 

0.25 0.75 
103 3 -90.61 L1i 2 1.12* -6.03 Lle 0.00 0.13 
213 2 -95.57 LIt 0 1.19" -3.74 L2e 0.94 0.00 
515 4 -95.68 LIt ' 1 0.60 - - - - 

113 5 -96.61 LIt 1 0.07 -9.63 L3eit 0.81 0.06 
109 8 -97.31 LIt+ 1 0.00 - - - - 

309 0 0.00 L2 16 - -9.94 
L2et* 

0.69 0.00 
405 0 0.00 L2 16 - - 13.30 L3e 0.69 0.13 
206 0 -10.07 L2 15 0.79 -7.41 L2e 0.88 0.06 
209 0 -25.51 L2 13 0.96 -9.00 LIe 0.00 0.75 
108 0 -25.88 L2 13 0.45 0.00 L2et 1.00 0.00 
214 2 -35.30 L2 11 2.73** -3.74 LIe 0.00 0.94 
307 1 -38.88 L2 11 1.04* -7.72 Eqe 0.00 0.19 
218 0 -40.54 L2 11 0.60 -7.72 LIe, 0.00 0.81 
422 2 -55.79 L2 9 0.22 0.00 Li, 0.00 1.00 
316 1 -58.43 L2 8 0.73 -10.97 

Eqe* 
0.00 0.44 

407 0 -60.98 L2c 8 0.44 -6.03 L2et 0.88 0.13 
306 2 -68.48 L2 7 0.18 -3.74 Li, 0.00 0.06 
412 0 -69.43 L2 6 1.05"* 0.00 L2e* 1.00 0.00 
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TABLE 7A-Continued. 

Guesses only Search only 

ID Dom. In L k Exact A In L k (H 5M 

205 0 -72.81 L2 6 0.01 0.00 Lie 0.00 1.00 
220 1 -72.96 L2 6 0.32 0.00 Lie 0.00 1.00 
403 0 -73.60 L2 6 0.50 -6.03 Eql* 0.00 0.13 
517 0 -73.70 L2 5 0.98** - - - 

503 3 -88.21 L2 3 0.00 - - 

414 4 -89.00 L2 2 0.78* -7.72 Lie 0.00 0.19 
110 3 -92.51 L2 2 0.00 -9.00 Li1 0.00 0.75 

210 0 -51.13 L3B 9 0.92* -10.59 Li e 0.00 0.38 

302 0 -61.46 L3B 7 1.11** -6.03 Eqe 0.00 0.13 
507 0 -63.23 L3 7 0.94** - - - 

313 0 -79.12 DIE 3 2.68** -6.03 Lle* 0.00 0.88 

312 0 - 80.45 DIt 1 5.85** - 3.74 
L2e* 

0.94 0.06 
204 2 - 84.86 DIE 3 1.22** 0.00 Lie* 0.00 1.00 

115 1 -86.10 Dl 2 1.74** -9.94 
Eqe 

0.00 0.31 
401 2 -91.99 Dit+ 0 1.58** -6.03 Eq, 0.00 0.13 

310 0 -41.69 Eq 11 0.00 -9.94 L1t 0.00 0.31 
315 0 -41.80 Eq 11 0.00 0.00 L3e* 1.00 0.00 

404 1 -54.69 Eq 9 0.03 -9.00 
Eqe* 

0.00 0.75 

303 0 -59.93 Eq 8 0.41 -3.74 
Eqe* 

0.00 0.06 
417 0 -60.52 EqA 8 0.30 -10.97 Lie 0.00 0.44 
202 0 -60.78 EqA 8 0.10 -9.94 Eqe 0.00 0.31 
518 0 -66.38 Eq 7 0.61 - - - - 

112 2 -66.39 Eq 7 0.00 -16.64 L2e 0.25 0.25 
215 0 -73.85 Eq 6 0.55 -3.74 Le1, 0.00 0.06 
314 5 -78.06 Eq 5 0.52 -9.94 Eqe 0.00 0.69 
211 3 -79.14 Eq 5 0.00 -7.72 Eqe 0.00 0.19 
514 8 -85.98 Eq 4 0.00 - - - - 

406 2 -86.73 Eq 3 0.59 -6.03 L1 0.00 0.13 
212 5 -96.62 Eq+ 1 0.00 -6.03 L1e 0.00 0.88 
506 0 -82.10 So 3 1.26** - - - - 

304 5 -93.29 So+ 2 0.25 0.00 Eqe 0.00 1.00 
421 4 -96.78 Sot 1 0.31 -10.59 Eqe 0.00 0.38 

Notes: A guesses-only type identifier superscripted t means the subject's estimated type was not significantly better than a random 
model of guesses (A = 0, e a 1) at the 5-percent (or 1-percent) level. A guesses-only type identifier superscripted + means the 
estimated type had lower likelihood than 12 or more pseudotypes, more than expected at random. A guesses-only type identifier 

superscripted A, B, C, D, or E indicates membership in a cluster. A guesses-only type identifier in bold indicates that the subject 
is classified as that type in Table 1, column 5, by the criteria stated in the text. An estimated A superscripted ** (*) means that A = 

0 is rejected at the 1-percent (5-percent) level. A type-style identifier subscripted el indicates that both styles have equal likelihoods 
and G. A search-only type-style identifier subscripted $ indicates that there are alternatives with different types and/or 

c: 
L1 for 

subjects 101 and 404; L2e and L3e for 318 and 204; L3, for 416 and 201; L2t for 113; L1e and L3ge for 309; Lie and L3e for 108; 

L, for 316, 407, 403, and 315; Lle, L3e, and Eqe for 412 and 312; L1 , D2et, and Soe for 313; and DIe for 303. No search estimates 
are reported for subject 109, who had zero search compliance in eight or more games for every type. 

guesses could be better explained by omitted 

types, or whether any of their type estimates 
are due to accidental correlations with in- 

cluded irrelevant types, we conduct a new 

specification test. 
To understand the logic of the test, imagine 

that we had estimated subjects' types as be- 
fore, but using a specification that omitted an 

empirically relevant type, say L2. Then, the 
patterns of guesses across games of subjects 
whose behavior is best described by L2 would 
tend to resemble one another more than any 
included type. We search for such clusters of 
subjects by reestimating Section IIC's model, 
subject by subject, with the original list of 

possible types augmented by 88 pseudotypes, 

This content downloaded from 195.34.79.54 on Wed, 25 Jun 2014 01:27:27 AM
All use subject to JSTOR Terms and Conditions



1760 THE AMERICAN ECONOMIC REVIEW DECEMBER 2006 

TABLE 7B-SUBJECT-BY-SUBJECT GUESSES-AND-SEARCH ECONOMETRIC TYPE ESTIMATES 

Guesses and search 

ID In L, In L, In L, k exact A ,H 5M 

513 - - - - - - - 

118 -17.03 -9.62 -7.41 Lle 15 1.85 0.88 0.06 
101 -20.21 -10.27 -9.94 Lle** 15 0.55 0.69 0.31 
104 -20.37 -16.63 -3.74 LIe 14 2.20 0.00 0.94 
413 -23.84 -17.81 -6.03 Li1 14 0.88 0.13 0.88 
207 -17.96 -17.96 0.00 LIe 14 0.42 1.00 0.00 
216 -38.69 -25.41 -13.29 LIe 13 1.06 0.31 0.63 
402 -39.93 - 30.93 -9.00 Lie 12 5.65 0.00 0.75 
418 -52.16 -42.23 -9.94 Lle 10 21.22 0.00 0.69 
301 -49.58 -45.84 -3.74 LleD 10 0.00 0.06 0.94 
508 - - - - - - - - 

308 -60.65 -47.34 -13.30 Llet 10 0.00 0.19 0.69 
102 -57.57 -47.63 -9.94 Lle 10 0.00 0.00 0.69 
415 -107.28 -90.90 -16.38 DIe+ 2 0.76 0.31 0.50 
504 - - - - - - - - 

208 -65.37 -61.62 -3.74 Lli 8 0.00 0.06 0.94 
318 -66.36 -62.61 -3.74 Lie 7 3.18 0.00 0.94 
512 - - - - - - - - 

502 - - - - - - - - 

516 - - - - - - - - 

409 - 84.18 -73.59 -10.59 L11E 4 9.90 0.00 0.38 
106 -85.75 -75.82 -9.94 Lilt 5 1.19 0.00 0.31 
305 -85.92 -79.89 -6.03 Lle 5 0.37 0.88 0.13 
411 -86.61 -80.58 -6.03 Lie 4 1.45 0.13 0.88 
509 - - - - - - - - 

203 -94.49 -83.90 -10.59 Lie 4 0.00 0.00 0.63 
505 - - - - - - - - 

317 -90.32 -86.58 -3.74 Lie 3 0.92 0.94 0.06 
416 -90.48 -86.74 -3.74 Lie 1 4.48 0.00 0.94 
217 -97.71 -87.12 -10.59 LIe 3 0.68 0.00 0.38 
219 -95.04 -87.32 -7.72 L1e 3 0.89 0.00 0.81 
501 - - - - - - - - 

410 -96.90 -89.18 -7.72 Liei 2 1.53 0.00 0.19 
510 - - - - - - - - 

420 -94.26 -90.52 -3.74 Eq, 3 0.19 0.00 0.06 
408 -95.74 -89.71 -6.03 L1,e 2 1.09 0.00 0.88 
201 -94.00 -90.26 -3.74 Lle 2 1.21 0.00 0.94 
105 -102.56 -93.56 -9.00 Eqe+ 2 0.11 0.25 0.75 
103 -96.63 -90.61 -6.03 L1e, 2 1.12 0.00 0.13 
213 -100.34 -96.60 -3.74 L2e 0 0.62 0.94 0.00 
515 - - - - - - - - 

113 -108.49 -98.86 -9.63 L3et 4 0.00 0.81 0.06 
109 - - - - - - - - 

309 -9.94 0.00 -9.94 L2e, 16 0.00 0.69 0.00 
405 - 14.40 0.00 -14.40 L2, 16 0.00 0.63 0.25 
206 -17.49 -10.07 -7.41 L2, 15 0.79 0.88 0.06 
209 -35.45 -25.51 -9.94 L21 13 0.96 0.69 0.31 
108 -25.88 -25.88 0.00 L2, 13 0.45 1.00 0.00 
214 -41.33 -35.30 -6.03 L2, 11 2.73 0.88 0.13 
307 -48.51 -38.88 -9.63 L21 11 1.04 0.81 0.13 
218 -53.84 -40.54 -13.30 L21 11 0.60 0.69 0.19 
422 -61.82 -55.79 -6.03 L2, 9 0.22 0.88 0.13 
316 -72.26 -58.43 -13.84 L21 8 0.73 0.06 0.38 
407 -67.00 -60.98 -6.03 L2ec 8 0.44 0.88 0. 1 3 
306 -75.68 -71.94 -3.74 Lli 6 0.71 0.00 0.06 
412 -69.43 -69.43 0.00 L2e 6 1.05 1.00 0.00 
205 -75.80 -75.80 0.00 Lle 4 3.27 0.00 1.00 
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TABLE 7B.-Continued. 

Guesses and search 

ID In L, In L, In L, k exact A ,H (M 
220 -76.70 -72.96 -3.74 L2e 6 0.32 0.94 0.06 
403 - 86.91 - 80.88 -6.03 Eq1+ 4 0.84 0.00 0.13 
517 - - - - - - - - 

503 - - - - - - - - 

414 -102.56 -92.62 -9.94 Eqe 2 0.36 0.00 0.31 
110 - 107.03 -98.03 -9.00 LlJ+ 0 0.56 0.00 0.75 
210 -68.44 -51.13 -17.32 L3eB 9 0.92 0.38 0.25 
302 -71.14 -65.12 -6.03 

EqeB 
7 1.11 0.00 0.13 

507 - - - - - - - - 

313 -90.93 -84.90 -6.03 L1i, ttE 3 3.28 0.00 0.88 
312 - 84.74 - 81.00 -3.74 L2e 1 1.37 0.94 0.06 
204 -88.47 -88.47 0.00 Lie+ E 3 1.59 0.00 1.00 
115 - 107.99 -98.05 -9.94 Eqe 0 0.39 0.00 0.31 
401 -104.35 -98.32 -6.03 Eq1+ 0 0.32 0.00 0.13 
310 -56.84 -41.69 -15.15 Eq,1 11 0.00 0.13 0.31 
315 -50.80 -41.80 -9.00 Eqe 11 0.00 0.00 0.75 
404 -63.69 -54.69 -9.00 Eq, 9 0.03 0.00 0.75 
303 -63.68 -59.93 -3.74 Eqe 8 0.41 0.00 0.06 
417 -73.80 -60.52 -13.29 EqeA 8 0.30 0.31 0.63 
202 -70.72 -60.78 -9.94 EqeA 8 0.10 0.00 0.31 
518 - - - - - - - - 

112 -106.23 -89.60 -16.64 L2e+ 3 0.00 0.25 0.25 
215 -81.57 -73.85 -7.72 

Eqe 
6 0.55 0.00 0.19 

314 - 87.99 -78.06 -9.94 Eq, 5 0.52 0.00 0.69 
211 -86.86 -79.14 -7.72 Eq~ 5 0.00 0.00 0.19 
514 - - - - - - - - 

406 -99.17 -86.73 -12.44 
Eql 

3 0.59 0.06 0.25 
212 - 104.34 -96.62 -7.72 Eqe 1 0.00 0.00 0.81 
506 - - - - - - - - 

304 -97.31 -97.31 0.00 
Eqe+ 

1 0.00 0.00 1.00 
421 -109.34 -98.38 -10.97 L1,+ O 0.43 0.00 0.56 

Notes: A guesses-and-search type identifier superscripted + means the estimated type had lower likelihood than 12 or 
more pseudotypes, more than expected at random. A guesses-and-search type identifier superscripted A, B, C, D, or E 
indicates membership in a cluster. A guesses-and-search type identifier in bold indicates that the subject is classified as 
that type in Table 1, column 6, by the criteria stated in the text. An estimated A superscripted ** (*) means that A = 

0 is rejected at the 1-percent (5-percent) level. In L,, In L,, and In L, refer to total, guesses-only, and search-only 
likelihoods. In L, refers to total guesses-and-search likelihood. A type-style identifier subscripted el indicates that both 

styles have equal likelihoods and 5,. A guesses-and-search type-style identifier subscripted 14 indicates that there are 
alternatives with different (c: Lli for subjects 101 and 313. No search estimates are reported for subject 109, who had 
zero search compliance in eight or more games for every type. 

one constructed from each of our subject's 
guesses in the 16 games.31 We then compare 
the likelihood of each subject's original type 

estimate with the likelihoods of the 87 other 

subjects' pseudotypes. Define a cluster as a 
group of two or more subjects such that: (a) 

31 We are grateful to Jerry Hausman for suggesting the 
idea of this test. We allow spike-logit errors for pseudotypes 
to avoid biasing the tests against them. The logit term's 

dependence on expected payoffs means that to define a 

pseudotype's error density we must infer beliefs, because 

pseudotypes do not come with built-in models of others. We 

do this as simply as possible, by assuming that the 

pseudotypes' guesses are best responses and inferring point 
beliefs, game by game, from their subjects' guesses. For a 
dominated guess, or a guess at a limit that is a best response 
to multiple beliefs, we infer the beliefs that bring the 

pseudotype's guess closest to maximizing payoff. 
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each subject's original estimated type has 
smaller likelihood than the pseudotypes of all 
other subjects in the group; and (b) all sub- 
jects in the group make "sufficiently similar" 

guesses.32 Finding such a cluster should lead 
us to diagnose an omitted type, and studying 
the common elements of its subjects' guesses 
may help to reveal its decision rule. Con- 
versely, not finding a cluster suggests that 
there are no empirically important omitted 
types.33 

Similarly, we can diagnose overfitting via 
accidental correlations with included irrelevant 

types if a subject's estimated type performs no 
better than random against the pseudotypes 
other than his own. For a pseudotype to have 
higher likelihood than the subject's estimated 

type, it must come first among our seven pos- 
sible types, plus itself. If the likelihoods of the 
subject's estimated type and of our types and 
pseudotypes are approximately independent and 
identically distributed (i.i.d.), this has probabil- 
ity approximately I/s. We therefore diagnose 
overfitting if a subject's estimated type does not 
have higher likelihood than all but at most 87/ 
8 - 11 of the pseudotypes. 

Appendix F on-line summarizes the results of 
our search for clusters, identifying five, involv- 

ing 11 subjects, indicated in Table 7A (and 7B) 
by superscript cluster labels A, B, C, D, and E 
on their type identifiers. Table 7A (and 7B) also 
identify 15 subjects whose estimated types have 

lower likelihoods than 12 or more pseudotypes, 
indicated in the tables by superscripts + on their 
type identifiers. Table 1 (column 5) reports the 
aggregate type frequencies excluding these 26 
subjects, and 4 others previously excluded, as 
"unclassified." Each of the remaining 58 sub- 
jects' estimated types, in bold with no super- 
scripts in Table 7A: (a) does better at the 
1-percent level than a random model of guesses 
within our specification; (b) has a higher likeli- 
hood than all but at most a random number of 

pseudotypes; and (c) is not a member of any 
cluster. 

Despite the differences between our games 
and those in previous studies, our type classifi- 
cation is close to those of Nagel, HCW, CGCB, 
and SW. There are two main differences. We 
find more Equilibrium subjects than all previous 
studies except SW's. And we find no significant 
numbers of types other than L1, L2, Equilib- 
rium, and L3/Equilibrium hybrids, in contrast to 
SW's (1995) classification of many subjects as 
Worldly, almost to the exclusion of L2. 

Our analysis also sheds light on the specifi- 
cation of level-k models. We stress that the 
issue here is how best to describe subjects' 
decision rules empirically, not how an analyst 
would model other subjects' behavior. However 
tempting it may be to assume that subjects use 
sophisticated econometric specifications, it might 
not be the best way to describe their behavior. 

Our Lk best responds to a noiseless Lk-1, 
while SW define it as best responding to an Lk-1 
with decision noise-as in QRE, but with non- 
equilibrium beliefs. (The issue here is not 
whether subjects' own decisions are noisy, but 
whether the deterministic part of their own de- 
cisions responds to others' decision noise.) 
SW's and CHC's definition of L1 as a best 

response to uniform beliefs is identical to ours. 
SW's Worldly best responds to an estimated 
mixture of L1 and a noiseless Equilibrium; and 
CHC's Lk best responds to an estimated mixture 
of noiseless Lk-1 and lower-level Lk types. Our 
results favor our Lk definition over SW's Lk 
with regard to decision noise, and suggest that 
SW's Worldly is misspecified. SW's L2 best 
responds to a noisy L1, which depending on the 
noise parameter ranges from LO (uniform ran- 
dom) to our noiseless Li. By a kind of "median- 
voter" result, our not-everywhere-differentiable 

32 Not requiring significantly higher likelihood in (a) 
avoids ruling out cluster candidates because their 

pseudotypes offer only slight improvements in fit; few of 
the comparisons are very close. The "sufficiently similar" in 
(b) could be made more precise, but it is more informative 
to consider possible clusters on a case-by-case basis (on-line 
Appendix F). Although the logic of our definition allows 
overlapping but nonnested clusters, that problem does not 
arise here. 

33 The qualification "empirically important" is necessary 
because there may be subjects who follow rules that differ 
from our types but are unique in our dataset. Such subjects 
are unlikely to repay the cost of constructing theories of 
their behavior, and it seems difficult to test for them. Our 
test makes the search for omitted types manageable within 
the enormous space of possible types, while avoiding judg- 
ment calls about possible types by focusing on patterns of 
guesses like those subjects actually made. Our notion of 

cluster is similar in spirit to notions that have been proposed 
elsewhere, but it imposes much more structure, in a way that 
seems appropriate here. 
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payoff function (Section IB) makes it optimal to 
best respond to the median type in the popula- 
tion as if it were the only type.34 Thus, in our 

games, Worldly ignores Equilibrium when its 

frequency is less than 0.5-as in all published 
estimates-and is then equivalent to SW's 
noisy L2. Because our payoff function is quasi- 
concave, SW's L2 and Worldly guesses between 
our L1 and L2-strictly except for extreme pa- 
rameter values. Yet only one of our 88 subjects 
made guesses between our Li and L2 in as 
many as 10 games, one in 9, and 2 in 8, while 43 
made exact guesses for our Ll, L2, L3, or Equi- 
librium in 7 or more games (on-line Appendix 
E).35 

Our results are inconclusive with regard to 
our Lk definition versus CHC's definition of Lk 

types as best responses to estimated Poisson 
mixtures of noiseless lower-level Lk types. Be- 
cause CHC's mixture parameter depends on 
others' behavior, which subjects do not observe, 
their definition implicitly assumes that subjects 
have prior understandings of it; similar assump- 
tions are implicit in SW's definitions of L2 and 
Worldly. CGCB (2001, sect. 3.A) argued that 
the Sophisticated type tests for such prior un- 
derstandings more cleanly, without imposing 
structural restrictions, than types that depend on 
estimated parameters like CHC's Lk or SW's 
Worldly. More evidence on this would be use- 
ful, but in our games CHC's L2 and L3 both 
make the same guesses as our L2.36 Thus, our 

results do not discriminate between CHC's and 
our Lk definitions. 

E. Econometric Analysis of Baseline Subjects' 
Guesses and Information Searches 

In this section, we generalize Section IIC's 
model of guesses to obtain an error-rate model 
of guesses and information searches, and use it 
to reestimate Baseline subjects' types. The 
model follows Section IIC's model, avoiding 
unnecessary differences in the treatment of 
guesses and search. Our main goals are to sum- 
marize the implications of the search data and to 
assess the extent to which monitoring search 
modifies the view of behavior suggested by 
subjects' guesses. 

The assumptions about how cognition drives 
information search and decisions that underlie 
our econometric analysis are supported by the 
search behavior of our Baseline subjects whose 
types are apparent from their guesses, and of 
our R/TS subjects (on-line Appendix E). The 
main new issue is measuring compliance with 
types' search implications, which we propose to 
define as the density of the type's relevant look- 
ups (Table 4) in the look-up sequence. 

Two aspects of the look-up data (on-line Ap- 
pendix E) are important here. First, many sub- 
jects (e.g., 202 and 210) usually start with 
"123456" or some variation, and many end with 
an optional "13," checking their own limits 
even if their type does not require it (e.g., 101 
and 206). We do not filter out these patterns 
because subjects may use the information they 
yield, and the choice of how to filter would 
involve hidden degrees of freedom. 

Second, subjects' look-up patterns are heter- 
ogeneous in timing: many Baseline subjects 
whose types are apparent from their guesses 
usually look first at their type's relevant se- 
quence and then either make irrelevant look-ups 
or stop (e.g., 108, 118, and 206). A smaller 
number consistently make irrelevant look-ups 
first, and look at the relevant sequence only near 

34 The derivative of our payoff function to the left 

(respectively, right) of its peak is positive (negative), and 
the two are equal in magnitude. Thus, the sign of the 

expected derivative is determined by the median type in 
the distribution. 

35 On average, random guesses would fall in the range in 
4.14 games. The three subjects with eight or nine guesses 
(115, 501, and 506) gave no useful information in their 

questionnaires, but the subject with 10 (517) stated a home- 
made rule inconsistent with Worldly: "I took the midpt of 

my bound times his/her target, avg'd that with his/her 

midpt, then mult'd that number by my target, and finally 
avg'd that result with my midpt." The prevalence of OB 

subjects in this group may seem significant, but there were 
no OB subjects among the five subjects with seven guesses 
in the range. 

36 CHC's L2 best responds to a mixture of LO and L1 in 
the proportions 1:r, which for 7 > (<) 1 puts more weight 
on L1 (LO). By the "median-voter" result above, CHC's L2 
best responds to Li alone if 7 > 1, or LO alone if 7 < 1. 

They argue that -r 1.5 in most applications, in which case 
their L2 is confounded with our L2. Their L3, which best 

responds to a mixture of LO, Li, and L2 in proportions 
1:r:ir/2, is also confounded with our L2 when 7 1.5. 
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the end (e.g., 413). Others repeat the relevant 
sequence over and over (e.g., 101). Thus, one 
can identify three styles, "early," "late," and 
"often"; but "often" subjects are almost always 
well described as either "early" or "late." We 
filter out this heterogeneity using a binary nui- 
sance parameter called style, which is assumed 
constant across games and modifies type in a 
way that affects only search implications. We 
take each subject to have style s = e for "early" 
or s = 1 for "late." For a given game, subject, 
type, and style, we define search compliance as 
the density of relevant look-ups early or late in 
the sequence. If s = e, we start at the beginning 
and continue until we obtain a complete rele- 
vant sequence. If we never obtain such a se- 

quence, compliance is 0. Otherwise compliance 
is the ratio of the length of the relevant sequence 
to the number of look-ups that first yields a 

complete sequence. If, for instance, the relevant 

sequence has length six, and the first complete 
sequence is obtained after eight look-ups, then 

compliance is 0.75. The definition of search 

compliance is identical if s = 1, but starting 
from the end of the sequence. Compliance for a 

given type is thus a number from 0 to 1, com- 

parable across styles, games, and subjects.37 
To reduce the need for structural restrictions, 

we discretize search compliance as follows.38 
For each game, subject, type, and style, we sort 

compliance into three categories: CH -- [0.667, 
1.00], C, [0.333, 0.667], and CL - [0, 
0.333], indexed by c = H, M, L. We call com- 

pliance c for type k and style s type-k style-s 
compliance c, or just compliance c when the 

type and style are clear from the context. All 

products over c are taken over the values H, M, 
and L. 

In our model, in each game a subject's type 
and style determine his information search 
and guess, each with error. We assume that, 

given type and style, errors in search and 
guesses are independent of each other and 
across games. We describe the joint probabil- 
ity distribution of guesses and search by spec- 
ifying compliance probabilities and guess 
error rates and precisions, given type and 
style.39 Let I be an indicator variable for 
style, with I, = 1 when the subject has style 
s (= e or 1), and 0 otherwise. Given a sub- 

ject's type and style, let c be the probability 
that he has type-k style-s compliance c in any 
given game, where Ic 5e = 1, and let - 

(H, M, ML). As in Section IIC, in each game 
g, a subject i of type k and style s makes an 
adjusted guess in Un with probability 1 - e; 
but with probability e E [0, 1], his adjusted 
guess in 

Vgk 
has conditional density 

dg(Rg(xg), 
A) with precision A, defined as in 

(4). Let M"k be the set of games g for which 

subject 
i has type-k style-s compliance c, let 

Mis (M-Mk Mik Misk), and let mik be the 
number of games in 

Mcs, 
so Ic msk = G. Let Ncs 

be the set of games g for which subject i has both 

type-k style-s compliance c and Ri(xi) E Vk, let 
Nisk- (N, Ni, 

Nisk), let isk be the number of 

games in Nisk, and let nik 
=c 

nisk (for s = e or 
1) be the number of games g for which subject 
i has 

R(xg) 
E V',k. With i.i.d. errors, the density 

of a sample with compliance Misk and Nis'k and 
adjusted guesses R'(x') 

(Rl(x),..., R 
(xG)) 

for a subject i of type k and style s is 

(8) dSk(Misk, Nisk, Ri(xi); E, A, 5) 

" 
[(Ke)misk isk isk 

isk mc ~(1 - 13)me -nc (13)nc 

c 

x dg(Rg,(xg), A) , 
geNvisk 

37 The compliance data are in on-line Appendix H. For 

DI, D2, and Sophisticated, we take the relevant sequence to 
have length 6, the minimum with which one could satisfy 
their requirements, e.g., via "153426" for Dl with require- 
ments {(4, [5, 1]), (6, [5, 3]), 2}, or for D2 or Sophisticated 
with requirements ((1, [2, 4]), (3, [2, 6]), (4, [5, 1]), (6, [5, 

3]), 5, 2}. 
38 Compliance is inherently discrete, but our discretiza- 

tion is coarser than necessary. 

39 A natural generalization would allow search and guess 
errors to be correlated by allowing compliance-contingent 
error rates and precisions, as in CGCB. We dispense with 
this for simplicity. This is a convenient place to correct a 

typographical error in CGCB's equation (4.3), where the 
summation (1) should be a product (1I). 
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where products with no terms are taken to equal 
1. Weighting by Is 

and pk, summing over s and 
k, and taking logarithms yields subject i's log- 
likelihood: 

(9) L(p, s, e, A, (|Misk, Nisk, Ri(xi)) 

-In pk idsk( 
k, 

sk, Ri(xi); e, A, 
) . 

k = 1 s =e,l 

It is clear from (8) and (9) that the maximum 
likelihood estimate ofp sets pk = 1 and 

Is 
= 1 

for the (generically unique) type k and style s with 
the highest dsk(Misk, Nisk, Ri(xi); e, A, 5), given 
the estimated e, A, and 5. The maximum likeli- 
hood estimates of e and 5c, conditional on type 
k and style s, can be shown from (8) to be 
nik/G and mi'skG, the sample frequencies with 
which subject i's adjusted guesses fall in V1k for 
that k and he has compliance c for that k and s. 

The maximum likelihood estimate of A is again 
the logit precision, restricted to guesses in V'k. 

The maximum likelihood estimate of subject 
i's type k maximizes the logarithm of (8) over k 
and s, given the estimated e and h. When nik is 
between 0 and G, substituting the estimated lc, 
e, and h into (8), taking logarithms, using Zc 
misk = G, 

,c 
nisk nik, and 

Uc Nsk = Nik (all 
for s = e or 1), simplifying and collecting terms, 
yields the maximand 

(10) In dsk(Misk s, Ri(xi); e, A, ) 

sk 
c + m 

isk 
- 

k)ln 
J 

- 

8) 

+ 
niskln(e) 

+ C In d(R (x ), A)1 

- (G - nik)ln(G - nik) + nikln(nik) 

+ In d~(Ri(x), A) 
gENik 

+X miskn misk -2G In G 

In dk(R'(xi), e, A) 

S[miskin misk - G In G, 

where In dk(Ri(xi), e, A) is the log-likelihood 
of the guesses-only model defined in (7). 
Thus, search adds an additively separable 
term in search compliance, minus an addi- 
tional term G In G. As in Section IIC's 

model, when nik = 0 or G, In dk(Ri(xi), e, A) 
reduces to the sum over g in the third and fifth 
lines of (10). When nis~k or both 

mck 
and 

nck = 0 for some c (msk nisk by definition), the 
corresponding terms drop out of (8) and their 
analogs are eliminated from (10). 

The model now has six independent param- 
eters per subject: error rate E, precision A, type 
k, style s, and two independent compliance 
probabilities Sc. 

The maximum likelihood esti- 
mates of E, c, 

and A, given k and s, are nik/G, 
mikIG, and the standard logit precision. The 
estimates of k and s maximize the expression in 
(10), given the other estimates. 

Guesses influence these estimates exactly as in 
Section IIC's model, and unless the estimated k 

changes, the estimates of e and A are the same; but 
now the estimated k is influenced by information 
search as well as guesses. The search term in the 
last line of (10) is a convex function of the misk 
This favors k-s combinations for which the misk 

(or the estimated K) are more concentrated on 
particular levels of c, because their search impli- 
cations explain more of the variation in search 
patterns. Note that such combinations are fa- 
vored without regard to whether the levels of c 
on which the mk are concentrated are high or 
low. We avoid such restrictions because levels 
of search compliance are not meaningfully com- 
parable across types, and it would be arbitrary 
to favor a type just because its compliance 
requirements are easier to satisfy. Without 
them, however, the likelihood may favor a type 
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simply because compliance is zero in many or 
all games (zero compliance is independent of 
style). We deal with this as simply as possible, 
by ruling out a priori types for which a subject 
has zero (not just L) compliance in eight or 
more games.40 

The right-hand side of Table 7A and Table 
7B report estimates of Baseline subjects' 
types and styles, error rates, precisions, and 
rates of search compliance, based on search 
only in Table 7A and then on guesses and 
search combined in Table 7B. For the latter, 
we report separate as well as total log-likelihoods, 
to give a better indication of what drives them.41 
Most subjects' type estimates based on guesses 
and search reaffirm the guesses-only estimates.42 
For some subjects, however, the guesses-and- 
search type estimate resolves a tension between 
guesses-only and search-only estimates in favor 
of a type other than the guesses-only estimate. 
In more extreme cases, a subject's guesses-only 
type estimate is excluded because it has 0 search 
compliance in 8 or more games.43 

Table 1 (column 6) reports the aggregate type 
frequencies based on (10). When the guesses- 
and-search type estimate differs from the guess- 
es-only estimate, we favor the former but 

require it to pass the analogs of the guesses-only 
criteria. Under the updated criteria, we can clas- 
sify 43 of our 71 Baseline subjects: 22 Li, 13 
L2, and 8 Equilibrium.44 The search analysis 
allows us to classify two subjects as L1 who 
were previously classified as L2; and to classify 
one previous Li and one previous L2 subject 
whose guesses-only estimates were inconclu- 
sive. It also calls into question the classification 

of four subjects: one each L1 (subject 415), L2, 
DI, and Equilibrium. Each of the 43 Baseline 
subjects now classified, with guesses-and- 
search type identifiers in bold and with no su- 
perscripts (though some have subscripts) in 
Table 7B: (a) does better at the 1-percent level 
than a random model of guesses and search 
within our specification; (b) has a guesses-only 
part of its likelihood higher than the guesses- 
only likelihood for all but at most a random 
number of pseudotypes; and (c) is not a member 
of any cluster.45 

Adding to these Baseline subjects the 12 of 17 
OB subjects (seven Li, 1 L2, 1 L3, two Equilib- 
rium, and one Sophisticated) previously classified, 
with guesses-only type identifiers in bold in Table 
7A, we have a total of 55 of 88 subjects who can 
be classified: 29 L1, 14 L2, 1 L3, 10 Equilibrium, 

40 The cutoff of eight is a conservative response to the 

difficulty of specifying a precise model of search compliance. 
A more standard but more complex approach, in the spirit of 
CGCB's use of their Occurrence assumption in defining search 

compliance, would add a separate category for zero compli- 
ance; estimate a subject's probability, given type and style, of 

having positive compliance; and require it to be sufficiently 
greater than zero. This would have a similar effect. 

41 Ties in the search-only or guesses-and-search type- 
style estimates are not rare, due to our coarse categorization. 
When they occur, we report the tied estimate closest to the 

guesses-only estimate, indicating the others in the notes. 
Most subjects' style estimates are early but there is a size- 
able minority of late estimates, suggesting that without the 

style parameter, our characterization of search compliance 
would distort the implications of some subjects' searches. 

42 This happens in part because the guess part of the 

log-likelihood is nearly six times larger than the search part, 
and so has much more weight in determining the estimates 
based on guesses and search. The difference in weights 
arises because our theory makes sharper predictions about 

guesses than about search, which are far less likely to be 
satisfied by chance. If we tried to put search on a more equal 
footing by making sharper predictions, e.g., requiring more 

precise levels of compliance within a finer categorization, 
our subjects' searches would rarely satisfy types' search 

implications, and the stronger restrictions would cause se- 
vere specification bias. 

43 This group includes subject 415, estimated L1 on 

guesses (with nine exact) but (noisy) Di on guesses and 
search. Subject 415 has nine games with 0 L1 search com- 

pliance due to no adjacent [4, 6]'s or [6, 4]'s (Table 4), but 

his sequences are rich in [4, 2, 6]'s and [6, 2, 4]'s and L1 
search compliance across games is weakly correlated with 
Li guesses (on-line Appendix E). We therefore believe that 
this subject simply violated our assumption that basic op- 
erations are represented by adjacent look-ups (Section IB). 
This group also includes several subjects whose guesses- 
only type estimates we believe were rightly excluded: 115, 
204, and 401, estimated Di based on guesses but Equilib- 
rium or L1 on guesses and search; 112, estimated Equilib- 
rium based on guesses but L2 on guesses and search; and 
304 and 421, estimated Sophisticated based on guesses but 

Equilibrium or LI on guesses and search. 

S44A guesses-and-search type estimate can satisfy the 
classification criteria even if it did not satisfy the guesses- 
only criteria if it does sufficiently better than random in 

explaining search. But a guesses-and-search estimate may 
fail the new criteria because it must have the same or lower 
likelihood for guesses than the guesses-only type estimate. 

45 In (b) we include OB subjects' pseudotypes for compa- 
rability with guesses-only results, so random still means 11. 
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and 1 Sophisticated.46 Going beyond our criteria, 
one might add subject 415 as a probable L1 and 
the four subjects in clusters A and B (on-line 
Appendix F) as likely hybrids of L3 and/or Equi- 
librium. Either way, the search analysis refines 
and sharpens our conclusions, and confirms the 
absence of significant numbers of subjects of 

types other than Li, L2, Equilibrium, or possibly 
hybrids of L3 and/or Equilibrium. For the 28 to 33 
unclassified subjects, our specification analysis 
suggests that it will be difficult to improve upon a 
random model. 

III. Conclusion 

This paper has reported an experiment that 
elicits subjects' initial responses to a series of 
16 two-person guessing games, monitoring their 
searches for hidden payoff information along 
with their guesses. Our design yields strong 
separation of the guesses and searches implied 
by leading decision rules in a very large space 
of possible behaviors. Many subjects' guesses 
yield clear strategic fingerprints, so that their 

types can be read directly from their guesses. 
Other subjects' types can be identified via an 
econometric and specification analysis. The full 

analysis reveals large numbers of Li, L2, Equi- 
librium, and L3 and/or Equilibrium hybrid sub- 

jects, and indicates the absence of significant 
numbers of other types. Thus, to the extent that 
our subjects' deviations from equilibrium can 
be predicted, they appear to be based almost 
entirely on level-k thinking. 

Because our level-k types build in risk-neutral, 
self-interested rationality and perfect models of 
the game, many subjects' systematic deviations 
from equilibrium can be confidently attributed to 

nonequilibrium beliefs rather than irrationality, 
risk aversion, altruism, spite, or confusion. Thus, 
our results affirm subjects' rationality and ability 
to comprehend complex games and reason about 
others' responses to them, while challenging the 
use of equilibrium as the principal model of initial 

responses. They are consistent with the results of 

previous analyses, but significantly refine and 

sharpen them. The surprisingly simple structure of 
the alternative nonequilibrium model they suggest 
should help to allay the common fear that if equi- 
librium is not assumed, "anything can happen." 
Moreover, such models have already been used in 
several applications, including Crawford (2003); 
CHC; and Crawford and Iriberri (2005a,b). 

We close by noting that the cognitive implica- 
tions of our results suggest conclusions about the 
structure of learning rules. Our subjects' compre- 
hension of the games and tendencies toward exact 
best responses to the beliefs implied by simplified 
models of others point clearly away from rein- 
forcement learning and toward beliefs-based mod- 
els like weighted fictitious play or hybrids like 
Camerer and Ho's (1999) experience-weighted 
attraction learning. We plan, in future experi- 
ments, to use information search to discriminate 

among alternative theories of learning, whose 
search implications are often more sharply sepa- 
rated than their implications for decisions. 

46 Other subjects' low levels of compliance with Sophis- 
ticated's search requirements suggest that the identification 
of the one Sophisticated subject, who was a noisy OB 

subject, might not have survived monitoring search. 
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