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The putative effectiveness of working memory (WM) training at enhancing cognitive and academic
skills is still ardently debated. Several researchers have claimed that WM training fosters not only
skills such as visuospatial WM and short-term memory (STM), but also abilities outside the domain
of WM, such as fluid intelligence and mathematics. Other researchers, while acknowledging the
positive effect of WM training on WM-related cognitive skills, are much more pessimistic about the
ability of WM training to improve other cognitive and academic skills. In other words, the idea that
far-transfer—that is, the generalization of a set of skills across two domains only loosely related to
each other—may take place in WM training is still controversial. In this meta-analysis, the authors
focused on the effects of WM training on cognitive and academic skills (e.g., fluid intelligence,
attention/inhibition, mathematics, and literacy) in typically developing (TD) children (aged 3 to 16).
Whereas WM training exerted a significant effect on cognitive skills related to WM training (ḡ �
0.46), little evidence was found regarding far-transfer effects (ḡ � 0.12). Moreover, the size of the
effects was inversely related to the quality of the design (i.e., random allocation to the groups and
presence of an active control group). Results suggest that WM training is ineffective at enhancing
TD children’s cognitive or academic skills and that, when positive effects are observed, they are
modest at best. Thus, in line with other types of training, far-transfer rarely occurs and its effects are
minimal.
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Transfer of learning occurs when a set of skills acquired in a
particular domain generalizes to other domains. The occurrence of
transfer is either a tacit assumption or a deliberate objective of
most educational interventions: any learned skills are meant to be
applied beyond the learning context (Perkins & Salomon, 1994).
For example, one’s ability in analytic geometry is supposed to
generalize to calculus.

According to Thorndike and Woodworth’s (1901) common
element theory, transfer is a function of the extent to which two
tasks share common features and cognitive elements. In accor-
dance with this hypothesis, while near-transfer (i.e., the transfer
of skills between strictly related domains; e.g., analytic geom-
etry and calculus) takes place frequently, far-transfer (i.e., the

transfer occurring between source and target domains weakly
related to each other; e.g., Latin and mathematics) has rarely
been observed (Donovan, Bransford, & Pellegrino, 1999). Ex-
amples of failed far-transfer include teaching the computer
language LOGO to improve children’s reasoning skills (De
Corte & Verschaffel, 1986; Gurtner, Gex, Gobet, Nunez, &
Restchitzki, 1990) and, as reported in a recent meta-analysis
(Sala & Gobet, 2016), teaching chess to improve children’s
cognitive and academic skills.

The training investigated in those studies was highly specific
(learning a programming language and chess, respectively).
However, it is possible that boosting a domain-general cogni-
tive mechanism is an effective way to improve other cognitive
and real-life skills, such as academic achievement. This as-
sumption is the key principle underlying the research on work-
ing memory (WM) training.

WM Training

WM is the cognitive system used to store and manipulate the
information necessary to carry out cognitive tasks (Baddeley,
1992). Measures of WM capacity, such as the number of items
WM can store and the ability to keep information in active
memory during interfering tasks, correlate positively with fluid
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intelligence (Engle, Tuholski, Laughlin, & Conway, 1999) and
measures of cognitive control such as the Stroop task (Kane &
Engle, 2003), the go/no-go task (Redick, Calvo, Gay, & Engle,
2011), and the dichotic-listening task (Conway, Cowan, &
Bunting, 2001). In addition, WM capacity is related to academic
skills such as reading comprehension (Conway & Engle, 1996)
and mathematical ability (Peng, Namkung, Barnes, & Sun,
2016). WM also seems to play a fundamental role in cognitive
development. Deficits in WM capacity in children are associ-
ated with reading difficulties (Swanson, 2006), mathematical
disorders (Passolunghi, 2006), attention-deficit/hyperactivity
disorder (ADHD; Klingberg et al., 2005), and language impair-
ment (Archibald & Gathercole, 2006).

Several hypotheses have linked WM to intelligence and ac-
ademic achievement. It has been proposed that WM and fluid
intelligence share a common capacity constraint (Halford,
Cowan, & Andrews, 2007). The amount of information (e.g.,
the number of items) that can be handled in WM is limited.
Consequently, the number of interrelationships among elements
that can be held and manipulated by WM in a reasoning task
(e.g., Raven’s progressive matrices) is bounded. If such limits
are alleviated by training, then an improvement in fluid intel-
ligence might occur (Au et al., 2015; Jaeggi, Buschkuehl,
Jonides, & Perrig, 2008). Crucially, such an improvement is
supposed to generalize to subject areas such as mathematics or
literacy, because fluid intelligence is a key predictor of aca-
demic achievement (Deary, Strand, Smith, & Fernandes, 2007;
Rohde & Thompson, 2007). Another related hypothesis con-
cerns the role of attentional control processes in both WM and
fluid intelligence (Gray, Chabris, & Braver, 2003). Chein and
Morrison (2010), for example, have suggested that WM training
induces positive effects on measures of cognitive control (e.g.,
Go/no-go, Stroop task), which, in turn, boosts performance in
other tasks outside the domain of WM. Finally, it has been
hypothesized that WM training is especially beneficial for
individuals with low WM capacity (e.g., children with ADHD
or other learning disabilities). The idea is simple. If one’s
learning difficulties stem from reduced WM capacity, then
training that specific skill might help to improve academic
performance. The common assumption underlying these three
hypotheses is that WM training boosts domain-general mecha-
nisms (WM capacity, cognitive control, and attention), and
hence enhances many other cognitive and academic skills.

However, in spite of a vast amount of research, no definite
conclusion on the putative effectiveness of WM training at
boosting cognitive skills and academic achievement has been
reached yet. There is substantial agreement about the existence
of near-transfer effects due to WM training—such as improve-
ments in measures of verbal and nonverbal WM and short-term
memory (STM). However, although several reviews of the
available experimental evidence have upheld the idea that WM
training is a valuable cognitive enhancement tool (Au et al.,
2015; Au, Buschkuehl, Duncan, & Jaeggi, 2016; Klingberg,
2010; Morrison & Chein, 2011), others have challenged the
hypothesis according to which WM training effects substan-
tially transfer to other cognitive skills outside the domain of
WM (Dougherty, Hamovitz, & Tidwell, 2016; Melby-Lervåg &
Hulme, 2013, 2016; Melby-Lervåg, Redick, & Hulme, 2016;
Redick, Shipstead, Wiemers, Melby-Lervåg, & Hulme, 2015;

Schwaighofer, Fischer, & Buhner, 2015; Shipstead, Redick, &
Engle, 2010, 2012).

WM Training in Children

Children represent an important population on which to test
the ability of WM training to boost cognitive and academic
skills. During childhood, cognitive ability and academic skills
are still at the beginning of their development, and, thus,
cognitive training is likely to be more efficient than in adult-
hood. In agreement with this idea, research into expertise has
clearly established that the likelihood of far-transfer is inversely
related to the level of expertise in a discipline, which needs
several years to acquire (Ericsson & Charness, 1994; Gobet,
2015). That is, WM training is more likely to improve, for
example, a child’s basic arithmetic abilities than an undergrad-
uate student’s skill in solving differential equations. In fact,
although the skill to develop is quite general and based to some
extent on cognitive ability in the former case, it depends to a
large extent on domain-specific knowledge in the latter case.
Thus, from a theoretical point of view, children are an ideal
population to test the occurrence of transfer.

Several recent reviews have addressed the issue of the puta-
tive benefits of WM training in children, without reaching any
agreement. According to Klingberg (2010), WM training can be
used as an effective remediating intervention. By contrast,
Rapport, Orban, Kofler, and Friedman’s (2013) meta-analysis
reported little or no evidence of amelioration in academic
achievement in children with ADHD after WM training. In line
with Rapport et al.’s (2013) results, Redick et al.’s (2015)
review showed that WM training did not provide any benefit to
academic performance in children with ADHD (e.g., Chacko et
al., 2014) and poor WM (e.g., Ang, Lee, Cheam, Poon, & Koh,
2015), or in typical developing children (e.g., Rode, Robson,
Purviance, Geary, & Mayr, 2014).

Evaluating the effects of WM training on children with no
learning disability has substantial practical and theoretical impli-
cations. If a brief training can improve overall cognitive ability and
academic achievement, the impact of such an intervention on
educational practices and policies would be profound. Any posi-
tive effect of WM training would provide an advantage for a vast
cohort of individuals, not just for a relatively small subsample
(children with ADHD or children with poor WM). However, it is
yet to be established whether increasing WM capacity in typically
developing (TD) children with no WM impairment can enhance
academic achievement and cognitive abilities outside the domain
of WM. The aim of the present study is to quantitatively evaluate
the available evidence via meta-analysis.

The Present Meta-Analysis

The present meta-analysis focuses on the putative effective-
ness of WM training at enhancing cognitive and academic skills
in TD children. Although several previous meta-analyses (e.g.,
Melby-Lervåg & Hulme, 2013; Melby-Lervåg et al., 2016;
Schwaighofer et al., 2015) included studies dealing with the
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putative benefits of WM training in TD children, no meta-
analysis has yet been specifically devoted to this issue.1

The main purpose of this meta-analysis is to estimate the overall
effect sizes obtained with WM training with respect to near-
transfer (i.e., WM-related outcomes) and far-transfer (i.e., out-
comes outside the domain of WM). Also, we aimed to test the
possible effects of several moderators, with particular attention to
far-transfer measures (e.g., fluid intelligence, cognitive control,
and academic achievement measures). Therefore, the meta-
analysis followed five steps. First, to estimate the presence or
absence of near-transfer and far-transfer at the end of the inter-
vention, we calculated the overall standardized difference between
WM training groups and control groups on (a) near-transfer mea-
sures (e.g., visuospatial WM, STM) and (b) measures related to
abilities outside the domain of WM (e.g., fluid intelligence, cog-
nitive control, mathematics).

Second, we carried out a moderator analysis. As noted in
previous meta-analyses (e.g., Melby-Lervåg & Hulme, 2013;
Schwaighofer et al., 2015), two methodological features may be
a major source of variability between intervention studies—
random assignment to groups and the presence of an active
control group to control for potential confounding effects (e.g.,
differences at baseline level between experimental and control
groups, Hawthorne effect). The absence of these features may
result in an inflation of the positive effects of the training due
to confounds such as differences at baseline level, self-selection
of the treated sample, and placebos. Therefore, we evaluated the
potential moderating effects of the type of control group (active
or passive control group) and the presence of randomization for
the assignment to the groups. We also investigated the potential
moderating effects of the age of the participants and the total
duration of the training. Third, we focused on the far-transfer
effects and investigated whether WM training is more (or less)
successful in boosting particular academic/cognitive skills.
Fourth, we performed publication bias analyses. Finally, we
calculated the follow-up overall effect sizes for near- and far-
transfer measures.

Method

Literature Search

In accordance with the PRISMA statement (Moher, Liberati,
Tetzlaff, & Altman & the PRISMA Group, 2009), a systematic
search strategy was used to find the pertinent studies. Using
several combinations of the terms working memory, training,
cognitive, intervention, and children, we searched Scopus,
ERIC, Psyc-Info, ProQuest Dissertation & Theses, and Google
Scholar databases to identify all the potentially relevant studies.
Also, earlier narrative reviews were examined, reference lists
were scanned, and we e-mailed scholars in the field (n � 13)
requesting unpublished studies and inaccessible data.

Inclusion/Exclusion Criteria

The studies were included according to the following six criteria:

1. The design of the study included an intervention aimed to
train WM skills (e.g., verbal WM, visuospatial WM);
correlational and ex-post facto studies were excluded.

2. The study presented a comparison between a treated
group and at least one control group.

3. During the study, a measure of academic or cognitive
skill other than WM was collected; importantly, to assess
a genuine near-transfer effect, all the measures of perfor-
mance in the trained WM intervention task were ex-
cluded.

4. The participants in the study were aged 3 to 16.

5. The participants in the study were TD children without
any specific learning disability (e.g., ADHD) or border-
line cognitive ability (e.g., low IQ, poor WM capacity).2

6. The data presented in the study (or provided by the
author) were sufficient to calculate an effect size.

To identify studies meeting these criteria, we searched for
relevant published and unpublished articles through April 1, 2016.
We found 25 studies, conducted from 2007 to 2016, that met all
the inclusion criteria. These studies included 26 independent sam-
ples and 104 effect sizes (30 for WM-related measures, see
Table 1; 74 for non-WM-related measures, see Table 2), with a
total of 1,601 participants. Finally, a subsample of the included
studies (n � 6) reported follow-up effects. A total of 30 follow-up
effect sizes were computed (six for WM-related measures, see
Table 3; 24 for non-WM-related measures, see Table 4), with a
total of 249 participants.3 The entire procedure is summarized in
Figure 1.

Moderators

We selected five potential moderators:

1. Random allocation (dichotomous variable): Whether the
participants were randomly allocated to the groups.

2. Type of control group (active or passive; dichotomous
variable): Whether the WM training-treated group was
compared to another activity.

3. Duration of training (continuous variable): The total time
of training in hours.

4. Age (continuous variable): The mean age (in years) of the
participants; when the mean age was not provided (n �
3) we used either the median age (n � 1) or an age

1 Weicker, Villringer, and Thöne-Otto’s (2016) meta-analysis reported
several overall effect sizes regarding the effect of WM training on TD
children’s cognitive abilities such as fluid intelligence and processing
speed. However, the total sample included only nine studies.

2 In Shavelson, Yuan, Alonzo, Klingberg, and Andersson (2008), eight
participants (out of 37) had ADHD or learning difficulties. Because sep-
arate results were not available, we calculated the effect sizes considering
the whole sample of 37 participants.

3 In Söderqvist and Bergman Nutley (2015), no posttest assessment was
administered immediately after the training, but only 24 months later.
Thus, we included the effect sizes extracted from this study in both the
main models and the follow-up models.
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estimation based on the school grade (n � 2; e.g., third
graders � 9-year-olds).

5. Domain (categorical variable): This variable, which was
inserted only in the far-transfer model, includes literacy/
word decoding, mathematics, science, fluid intelligence,
crystallized intelligence, and cognitive control.4

The two authors coded each effect size for moderator variables
independently. There was no disagreement with respect to random
allocation, type of control group, and age. Regarding the moder-
ator duration of training, 87% agreement was obtained. For the
moderator Domain, the Cohen’s kappa was � � .95. The authors
resolved every discrepancy.

Effect Size

The standardized means difference (Cohen’s d) was calculated
with the following formula:

d � (Mg�e � Mg�c) ⁄ SDpooled�pre (1)

where SDpooled-pre is the pooled standard deviation of the two
pretest standard deviations, and Mg-e and Mg-c are the gain of the
experimental group and the control group, respectively (Schmidt &
Hunter, 2015).5 The follow-up effect sizes were calculated by
using the standardized difference between the follow-up and the
pretest measures.

Finally, the Comprehensive Meta-Analysis (Version 3.0; Bio-
stat, Englewood, NJ) software package was used for correcting the
effect sizes for upward bias (Hedges’ g; Hedges & Olkin, 1985),
computing the overall effect sizes (ḡs), and conducting statistical
analyses.

Statistical Dependence of the Samples

The effect sizes were calculated for each relevant measure
reported in the studies (Schmidt & Hunter, 2015). When several
subscales of a test were used to measure the same construct
(e.g., block recall and digit recall as measures of WM), the
measures were averaged, following Schmidt and Hunter’s
(2015) recommendation. Also, when the study presented a
comparison between the treatment group and two control
groups (passive and active), two effect sizes— one for each
comparison with experimental and control groups—were cal-
culated. As this procedure violates the principle of statistical
independence of the samples, Cheung and Chan’s (2004)
method was applied to all the meta-analytic models. This

4 These broad categories were built by aggregating different outcomes
related to a particular domain (e.g., go/no-go task and Stroop task under the
category of cognitive control). For all the details about the reviewed
studies, see Supplemental Tables S1.1 to S1.4 in the supplemental material
available online.

5 When only the t-statistics were available, the t-values were converted
into Cohen’s ds (Lee, 2014; Witt, 2011).

Table 1
Studies and Moderators of the 30 Near-Transfer Effect Sizes Included in the Meta-Analysis

Study Age
Duration of

training
Random

allocation
Type of

control group

Bergman Nutley et al. (2011) - M1 4.27 6.25 Yes Active
Bergman Nutley et al. (2011) - M2 4.27 6.25 Yes Active
Henry, Messer, & Nash (2014) 7.00 3.00 Yes Active
Karbach, Strobach, & Schubert (2015) 8.30 9.33 Yes Active
Kroesbergen, van ’t Noordende, & Kolkman (2014) - M1 5.87 4.00 Yes Passive
Kroesbergen, van ’t Noordende, & Kolkman (2014) - M2 5.87 4.00 Yes Passive
Kuhn & Holling (2014) - S1 9.00 5.00 Yes Passive
Kuhn & Holling (2014) - S2 9.00 5.00 Yes Active
Kun (2007) - S1 - M1 12.84 8.00 Yes Active
Kun (2007) - S1 - M2 12.84 8.00 Yes Active
Kun (2007) - S2 - M1 13.52 14.58 Yes Active
Kun (2007) - S2 - M2 13.52 14.58 Yes Active
Kun (2007) - S2 - M3 13.52 14.58 Yes Active
Lee (2014) 9.00 3.00 Yes Active
Lindsay (2012) 5.49 3.00 Yes Active
Passolunghi & Costa (2016) - S1 - M1 5.44 10.00 Yes Active
Passolunghi & Costa (2016) - S1 - M2 5.44 10.00 Yes Active
Passolunghi & Costa (2016) - S2 - M1 5.42 10.00 Yes Passive
Passolunghi & Costa (2016) - S2 - M2 5.42 10.00 Yes Passive
Pugin et al. (2014) - M1 13.00 8.05 No Passive
Pugin et al. (2014) - M2 13.00 8.05 No Passive
Rode, Robson, Purviance, Geary, & Mayr (2014) 9.00 7.14 Yes Passive
Shavelson et al. (2008) - M1 13.50 14.58 Yes Active
Shavelson et al. (2008) - M2 13.50 14.58 Yes Active
St Clair-Thompson, Stevens, Huth, & Bolder (2010) 6.83 6.00 No Passive
Studer-Luethi, Bauer, & Perrig (2016) - S1 8.25 4.50 Yes Active
Studer-Luethi, Bauer, & Perrig (2016) - S2 8.25 4.50 Yes Passive
Thorell, Lindqvist, Bergman, Bohlin, & Klingberg (2009) - S1 4.67 6.25 No Active
Thorell, Lindqvist, Bergman, Bohlin, & Klingberg (2009) - S2 4.67 6.25 No Passive
Witt (2011) 9.68 7.50 No Passive
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Table 2
Studies and Moderators of the 74 Far-Transfer Effect Sizes Included In The Meta-Analysis

Study Age
Duration of

training
Random

allocation
Type of

control group Domain

Bergman Nutley et al. (2011) 4.27 6.25 Yes Active Fluid intelligence
Henry, Messer, & Nash (2014) - M1 7.00 3.00 Yes Active Literacy/WD
Henry, Messer, & Nash (2014) - M2 7.00 3.00 Yes Active Mathematics
Horvat (2014) not given not given No Passive Fluid intelligence
Jaeggi, Buschkuehl, Jonides, & Shah (2011) - M1 8.98 5.00 No Active Fluid intelligence
Jaeggi, Buschkuehl, Jonides, & Shah (2011) - M2 8.98 5.00 No Active Fluid intelligence
Karbach, Strobach, & Schubert (2015) - M1 8.30 9.33 Yes Active Literacy/WD
Karbach, Strobach, & Schubert (2015) - M2 8.30 9.33 Yes Active Mathematics
Karbach, Strobach, & Schubert (2015) - M3 8.30 9.33 Yes Active Cognitive control
Karbach, Strobach, & Schubert (2015) - M4 8.30 9.33 Yes Active Cognitive control
Kroesbergen, van ’t Noordende, & Kolkman (2014) - M1 5.87 4.00 Yes Passive Cognitive control
Kroesbergen, van ’t Noordende, & Kolkman (2014) - M2 5.87 4.00 Yes Passive Mathematics
Kuhn & Holling (2014) - S1 9.00 5.00 Yes Passive Mathematics
Kuhn & Holling (2014) - S2 9.00 5.00 Yes Active Mathematics
Kun (2007) - S1 - M1 12.84 8.00 Yes Active Fluid intelligence
Kun (2007) - S1 - M2 12.84 8.00 Yes Active Science
Kun (2007) - S2 - M2 13.52 14.58 Yes Active Science
Lee (2014) - M1 9.00 3.00 Yes Active Literacy/WD
Lee (2014) - M2 9.00 3.00 Yes Active Literacy/WD
Lindsay (2012) - M1 5.49 3.00 Yes Active Literacy/WD
Lindsay (2012) - M2 5.49 3.00 Yes Active Literacy/WD
Loosli, Buschkuehl, Perrig, & Jaeggi (2012) - M1 9.50 2.00 No Passive Fluid intelligence
Loosli, Buschkuehl, Perrig, & Jaeggi (2012) - M2 9.50 2.00 No Passive Literacy/WD
Mansur-Alves & Flores-Mendoza (2015) - M1 11.17 13.33 Yes Passive Fluid intelligence
Mansur-Alves & Flores-Mendoza (2015) - M2 11.17 13.33 Yes Passive Fluid intelligence
Mansur-Alves, Flores-Mendoza, & Tierra-Criollo (2013) - M1 9.19 10.00 Yes Active Fluid intelligence
Mansur-Alves, Flores-Mendoza, & Tierra-Criollo (2013) - M2 9.19 10.00 Yes Active Fluid intelligence
Mansur-Alves, Flores-Mendoza, & Tierra-Criollo (2013) - M3 9.19 10.00 Yes Active Crystallized intelligence
Mansur-Alves, Flores-Mendoza, & Tierra-Criollo (2013) - M4 9.19 10.00 Yes Active Literacy/WD
Mansur-Alves, Flores-Mendoza, & Tierra-Criollo (2013) - M5 9.19 10.00 Yes Active Mathematics
Mansur-Alves, Flores-Mendoza, & Tierra-Criollo (2013) - M6 9.19 10.00 Yes Active Literacy/WD
Nevo & Breznitz (2014) - M1 8.50 4.80 Yes Active Literacy/WD
Nevo & Breznitz (2014) - M2 8.50 4.80 Yes Active Literacy/WD
Passolunghi & Costa (2016) - S1 5.44 10.00 Yes Active Mathematics
Passolunghi & Costa (2016) - S2 5.42 10.00 Yes Passive Mathematics
Pugin et al. (2014) - M1 13.00 8.05 No Passive Fluid intelligence
Pugin et al. (2014) - M2 13.00 8.05 No Passive Cognitive control
Pugin et al. (2014) - M3 13.00 8.05 No Passive Cognitive control
Pugin et al. (2014) - M4 13.00 8.05 No Passive Cognitive control
Rode, Robson, Purviance, Geary, & Mayr (2014) - M1 9.00 7.14 Yes Passive Mathematics
Rode, Robson, Purviance, Geary, & Mayr (2014) - M2 9.00 7.14 Yes Passive Mathematics
Rode, Robson, Purviance, Geary, & Mayr (2014) - M3 9.00 7.14 Yes Passive Literacy/WD
Rode, Robson, Purviance, Geary, & Mayr (2014) - M4 9.00 7.14 Yes Passive Literacy/WD
Shavelson et al. (2008) 13.50 14.58 Yes Active Fluid intelligence
Söderqvist & Bergman Nutley (2015) - M1 9.85 not given No Passive Literacy/WD
Söderqvist & Bergman Nutley (2015) - M2 9.85 not given No Passive Mathematics
St Clair-Thompson, Stevens, Huth, & Bolder (2010) - M1 6.83 6.00 No Passive Literacy/WD
St Clair-Thompson, Stevens, Huth, & Bolder (2010) - M2 6.83 6.00 No Passive Mathematics
St Clair-Thompson, Stevens, Huth, & Bolder (2010) - M3 6.83 6.00 No Passive Mathematics
St Clair-Thompson, Stevens, Huth, & Bolder (2010) - M4 6.83 6.00 No Passive Mathematics
Studer-Luethi, Bauer, & Perrig (2016) - S1- M1 8.25 4.50 Yes Active Literacy/WD
Studer-Luethi, Bauer, & Perrig (2016) - S1- M2 8.25 4.50 Yes Active Mathematics
Studer-Luethi, Bauer, & Perrig (2016) - S1- M3 8.25 4.50 Yes Active Crystallized intelligence
Studer-Luethi, Bauer, & Perrig (2016) - S1- M4 8.25 4.50 Yes Active Fluid intelligence
Studer-Luethi, Bauer, & Perrig (2016) - S1- M5 8.25 4.50 Yes Active Cognitive control
Studer-Luethi, Bauer, & Perrig (2016) - S2- M1 8.25 4.50 Yes Passive Literacy/WD
Studer-Luethi, Bauer, & Perrig (2016) - S2- M2 8.25 4.50 Yes Passive Mathematics
Studer-Luethi, Bauer, & Perrig (2016) - S2- M3 8.25 4.50 Yes Passive Crystallized intelligence
Studer-Luethi, Bauer, & Perrig (2016) - S2- M4 8.25 4.50 Yes Passive Fluid intelligence
Studer-Luethi, Bauer, & Perrig (2016) - S2- M5 8.25 4.50 Yes Passive Cognitive control
Thorell, Lindqvist, Bergman, Bohlin, & Klingberg (2009) - S1 - M1 4.67 6.25 No Active Cognitive control
Thorell, Lindqvist, Bergman, Bohlin, & Klingberg (2009) - S1 - M2 4.67 6.25 No Active Cognitive control

(table continues)

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

5NEAR- AND FAR-TRANSFER EFFECTS OF WM TRAINING



method reduces the weight of dependent samples in the analysis
by estimating an adjusted (i.e., smaller) N (for a list of the
adjusted Ns, see Supplemental Tables S2.1 to S2.13 in the
online supplemental material). Because the method of Cheung
and Chan (2004) cannot be used for partially dependent sam-
ples,6 we ran our analyses as if the comparisons between
experimental samples and two different control groups were
statistically independent. As shown by Bijmolt and Pieters
(2001) and Tracz, Elmore, and Pohlmann (1992), the violation
of statistical independence has little or no effect on means,
standard deviations, and confidence intervals. Thus, the entire
procedure is a reliable way to deal with the statistical depen-
dence of part of the samples.

Results

Near-Transfer Effects

The random-effects meta-analytic overall effect size was ḡ �
0.46, 95% confidence interval (CI) [0.35; 0.57], k � 30, p � .001.
The forest plot is shown in Figure 2. The degree of heterogeneity
between effect sizes was close to zero, I2 � 7.94.7

Moderator Analyses

Age was marginally significant, Z(1) � �1.80, b � �0.03, p �
.072. None of the other three moderators were significant: random
allocation, Z(1) � �0.58, b � �0.08, p � .562; type of control
group, Z(1) � �0.31, b � �0.04, p � .760; and duration of
training, Z(1) � 0.42, b � 0.01, p � .678.

Publication Bias Analysis

To test whether our analysis was affected by publication bias,
we examined a funnel plot representing the relation between
effect sizes and standard errors. The contour-enhanced funnel
plot (Peters, Sutton, Jones, Abrams, & Rushton, 2008) is shown
in Figure 3.

The symmetry of the funnel plot around the meta-analytic
mean was tested by Egger’s regression test (Egger, Davey
Smith, Schneider, & Minder, 1997). The test showed no evi-

dence of publication bias (p � .217). In addition, the trim-and-
fill analysis (Duval & Tweedie, 2000) estimated no weaker-
than-average missing study (left of the mean). Finally, a
p-curve analysis was run with all the p values � .05 related to
positive effect sizes (Simonsohn, Nelson, & Simmons, 2014).
The results showed evidential values (i.e., no evidence of
publication bias), Z(9) � �3.39, p � .003 (see Figure 4).

Far-Transfer Effects

The random-effects meta-analytic overall effect size was ḡ �
0.12, 95% CI [0.06; 0.18], k � 74, p � .001. The forest plot is
shown in Figure 5. The degree of heterogeneity between effect
sizes was I2 � 0.00.

Moderators Analysis

Random allocation was a significant moderator, Z(1) � �2.76,
b � �0.20, p � .006. The overall effect sizes in randomized and
nonrandomized samples were ḡ � 0.07, 95% CI [0.00; 0.14],
k � 50, p � .046, and ḡ � 0.27, 95% CI [0.15; 0.39], k � 24,
p � .001, respectively. Type of control group was marginally
significant, Z(1) � �1.83, b � �0.12, p � .067. The overall
effect sizes when WM training was compared to active and
passive control groups were ḡ � 0.05, 95% CI [�0.05; 0.15],
k � 40, p � .311, and ḡ � 0.18, 95% CI [0.09; 0.26], k � 34,
p � .001, respectively. Also, the overall effect size in random-
ized samples with active control groups was ḡ � 0.03, CI
[�0.07; 0.14], k � 34, p � .521. Finally, duration of training
was marginally significant, Z(1) � �1.81, b � �0.02, p �

6 In addition, in three studies, a few participants did not take part in all
the tests (i.e., attrition). In these cases, we used the mean number of
participants as the number to be adjusted.

7 The I2 statistic refers to the percentage of between-study variance due
to true heterogeneity and not to random error (Higgins, Thompson, Deeks,
& Altman, 2003).

Table 2 (continued)

Study Age
Duration of

training
Random

allocation
Type of

control group Domain

Thorell, Lindqvist, Bergman, Bohlin, & Klingberg (2009) - S1 - M3 4.67 6.25 No Active Fluid intelligence
Thorell, Lindqvist, Bergman, Bohlin, & Klingberg (2009) - S1 - M4 4.67 6.25 No Active Cognitive control
Thorell, Lindqvist, Bergman, Bohlin, & Klingberg (2009) - S2 - M1 4.67 6.25 No Passive Cognitive control
Thorell, Lindqvist, Bergman, Bohlin, & Klingberg (2009) - S2 - M2 4.67 6.25 No Passive Cognitive control
Thorell, Lindqvist, Bergman, Bohlin, & Klingberg (2009) - S2 - M3 4.67 6.25 No Passive Fluid intelligence
Thorell, Lindqvist, Bergman, Bohlin, & Klingberg (2009) - S2 - M4 4.67 6.25 No Passive Cognitive control
Wang, Zhou, & Shah (2014) - S1 10.50 6.67 Yes Active Fluid intelligence
Wang, Zhou, & Shah (2014) - S2 10.50 6.67 Yes Active Fluid intelligence
Wang, Zhou, & Shah (2014) - S3 10.50 6.67 Yes Active Fluid intelligence
Wang, Zhou, & Shah (2014) - S4 10.50 6.67 Yes Active Fluid intelligence
Witt (2011) 9.68 7.50 No Passive Mathematics
Zhao, Wang, Liu, & Zhou (2011) 9.76 not given Yes Passive Fluid intelligence

Note. WD � word decoding.
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.070. No other moderator was significant: age, Z(1) � �1.60,
b � �0.03, p � .110; and domain, p � .703.

Additional Meta-Analytic Models

We calculated the random-effects meta-analytic overall ef-
fect sizes of each of the six domains. The only significant
overall effect size was ḡ � 0.20, 95% CI [0.03; 0.36], k � 17,
p � .018, for mathematics. To test the robustness of the result,
we ran two moderator analyses for this domain. Random allo-
cation was a significant moderator, Z(1) � �2.01, b � �0.35,
p � .045. The overall effect sizes in randomized and nonran-
domized samples were ḡ � 0.10, 95% CI [�0.05; 0.25], k � 12,
p � .193, and ḡ � 0.49, 95% CI [0.11; 0.88], k � 5, p � .012,
respectively. Type of control group was significant, Z(1) �
�2.41, b � �0.43, p � .016. The overall effect sizes when WM
training was compared to active and passive control groups

were ḡ � �0.11, 95% CI [�0.38; 0.16], k � 6, p � .426, and
ḡ � 0.31, 95% CI [0.13; 0.49], k � 11, p � .001, respectively.

Literacy/WD overall effect size was marginally significant,
ḡ � 0.11, 95% CI [�0.00; 0.22], k � 17, p � .055. None of the
other overall effect sizes was significant: ḡ � 0.11, 95% CI
[�0.02; 0.24], k � 21, p � .101 for fluid intelligence; ḡ � 0.09,
95% CI [�0.08; 0.26], k � 14, p � .302 for cognitive control;
ḡ � – 0.02, 95% CI [�0.75; 0.71], k � 3, p � .956 for
crystallized intelligence; and ḡ � �0.20, 95% CI [�0.65; 0.25],
k � 2, p � .386 for science.

Publication Bias Analysis

The contour-enhanced funnel plot of the main model (k � 74) is
shown in Figure 6.

Egger’s regression test showed no evidence of publication
bias (p � .511). In addition, the trim-and-fill analysis estimated

Table 3
Studies and Moderators of the 6 Near-Transfer Follow-Up Effect Sizes Included in the
Meta-Analysis

Study Age
Duration of

training
Random

allocation
Type of

control group

Henry, Messer, & Nash (2014) 7.00 3.00 Yes Active
Karbach, Strobach, & Schubert (2015) 8.30 9.33 Yes Active
Pugin et al. (2014) - M1 13.00 8.05 No Passive
Pugin et al. (2014) - M2 13.00 8.05 No Passive
Studer-Luethi, Bauer, & Perrig (2016) - S1 8.25 4.50 Yes Active
Studer-Luethi, Bauer, & Perrig (2016) - S2 8.25 4.50 Yes Passive

Table 4
Studies and Moderators of the 24 Far-Transfer Follow-Up Effect Sizes Included in the Meta-Analysis

Study Age
Duration of

training
Random

allocation
Type of

control group Domain

Henry, Messer, & Nash (2014) - M1 7.00 3.00 Yes Active Literacy/WD
Henry, Messer, & Nash (2014) - M2 7.00 3.00 Yes Active Mathematics
Jaeggi, Buschkuehl, Jonides, & Shah (2011) - M1 8.98 5.00 No Active Fluid intelligence
Jaeggi, Buschkuehl, Jonides, & Shah (2011) - M2 8.98 5.00 No Active Fluid intelligence
Karbach, Strobach, & Schubert (2015) - M1 8.30 9.33 Yes Active Literacy/WD
Karbach, Strobach, & Schubert (2015) - M2 8.30 9.33 Yes Active Mathematics
Karbach, Strobach, & Schubert (2015) - M3 8.30 9.33 Yes Active Cognitive control
Karbach, Strobach, & Schubert (2015) - M4 8.30 9.33 Yes Active Cognitive control
Pugin et al. (2014) - M1 13.00 10.00 No Passive Fluid intelligence
Pugin et al. (2014) - M2 13.00 10.00 No Passive Cognitive control
Pugin et al. (2014) - M3 13.00 8.05 No Passive Cognitive control
Pugin et al. (2014) - M4 13.00 8.05 No Passive Cognitive control
Söderqvist & Bergman Nutley (2015) - M1 9.85 not given No Passive Literacy/WD
Söderqvist & Bergman Nutley (2015) - M2 9.85 not given No Passive Mathematics
Studer-Luethi, Bauer, & Perrig (2016) - S1- M1 8.25 4.50 Yes Active Literacy/WD
Studer-Luethi, Bauer, & Perrig (2016) - S1- M2 8.25 4.50 Yes Active Mathematics
Studer-Luethi, Bauer, & Perrig (2016) - S1- M3 8.25 4.50 Yes Active Crystallized intelligence
Studer-Luethi, Bauer, & Perrig (2016) - S1- M4 8.25 4.50 Yes Active Fluid intelligence
Studer-Luethi, Bauer, & Perrig (2016) - S1- M5 8.25 4.50 Yes Active Cognitive control
Studer-Luethi, Bauer, & Perrig (2016) - S2- M1 8.25 4.50 Yes Passive Literacy/WD
Studer-Luethi, Bauer, & Perrig (2016) - S2- M2 8.25 4.50 Yes Passive Mathematics
Studer-Luethi, Bauer, & Perrig (2016) - S2- M3 8.25 4.50 Yes Passive Crystallized intelligence
Studer-Luethi, Bauer, & Perrig (2016) - S2- M4 8.25 4.50 Yes Passive Fluid intelligence
Studer-Luethi, Bauer, & Perrig (2016) - S2- M5 8.25 4.50 Yes Passive Cognitive control

Note. WD � word decoding.
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no weaker-than-average missing studies (left of the mean).
Finally, we performed a p-curve analysis. Both the full and half
p-curve tests were right skewed with p � .100 (Z(3) � �1.40,
p � .081 and Z(3) � �1.38, p � .084, respectively) suggesting
evidential value (Simonsohn, Simmons, & Nelson, 2015;
Figure 7).8

A trim-and-fill analysis was performed for four additional meta-
analytic models, (fluid intelligence, cognitive control, mathematics,
and literacy/WD models). In the fluid intelligence model, five studies
were filled in, and the point estimate was ḡ � 0.03, 95% CI [�0.09;
0.15]. In the literacy/word decoding model, two studies were filled in,
and the point estimate was ḡ � 0.08, 95% CI [�0.03; 0.19]. No
missing study was found in the other two models. Because of the
scarcity of effect sizes, no publication bias analysis was run for the
science and crystallized intelligence models.

Follow-Up Effects

For near-transfer follow-up effects, the random-effects meta-
analytic overall effect size was ḡ � 0.33, 95% CI [0.00; 0.65], k �
6, p � .049. The degree of heterogeneity between effect sizes was
I2 � 40.50.

For far-transfer follow-up effects, the random-effects meta-
analytic overall effect size was ḡ � 0.09, 95% CI [�0.02; 0.20],
k � 24, p � .122. The degree of heterogeneity between effect sizes
was I2 � 0.00.

8 Because only three values were inputted, the results of this p-curve
analysis might be unreliable. However, it must be kept in mind that the
occurrence of publication bias is quite unlikely when the overall effect size
is close to zero.

Figure 1. Flow diagram of the studies included in the meta-analytic review.
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Moderator Analyses

Because of the small number of effect sizes, no moderator
analysis was run for the near-transfer effects model. (For the same
reason, no publication bias analysis was carried out for this
model.) Regarding the far-transfer effects model, no moderator
was significant.

Publication Bias Analysis

In the far-transfer effect model, Egger’s regression test showed
no evidence of publication bias (p � .345). In addition, the
trim-and-fill analysis estimated no weaker-than-average missing
studies (left of the mean). No p-curve analysis was carried out
because none of the effect sizes in the model reached statistical
significance.

Discussion

The purpose of this meta-analysis was to evaluate the impact of
WM training on TD children’s cognitive and academic skills. The
results showed a clear pattern. Similar to previous meta-analyses
(e.g., Melby-Lervåg & Hulme, 2013; Schwaighofer et al., 2015),
WM training significantly affected WM-related skills (posttest
overall effect size, ḡ � 0.46, p � .001) and remained several
months after the end of training (follow-up overall effect size, ḡ �
0.33, p � .049). However, we found little or no evidence that WM
training enhances fluid intelligence or domain-general processes
such as cognitive control. The same applied to academic abilities
such as literacy or science. Only the mathematics-related overall
effect size was significant, albeit quite modest (ḡ � 0.20, p �
.018). However, methodological issues cast some doubts on the
authenticity of the effect (we will take up this point below). Thus,
the results of the meta-analysis do not support the hypothesis

Figure 2. Forest plot of the near-transfer model. Hedges’ gs (circles) and 95% confidence intervals (lines) are
shown for all the effects entered into the meta-analysis. The diamond at the bottom indicates the meta-
analytically weighted mean ḡ. When studies had multiple samples, the table reports the result of each sample (S1,
S2, etc.) separately. Similarly, when studies used multiple outcome measures, the table reports the result of each
measure (M1, M2, etc.) separately.
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according to which WM training benefits cognitive or academic
abilities in TD children.

Interestingly, WM training seems to produce approximately the
same negligible effects on measures outside the domain of WM
regardless of the age of participants and domain. The significant
(or marginally significant) moderators in the far-transfer main
model (k � 74) were the random allocation of the participants to
the samples, the type of control group, and duration of training.
The overall effect size was much smaller in randomized samples
(ḡ � 0.07, p � .046) than in nonrandomized samples (ḡ � 0.27,
p � .001). This outcome suggests that episodes of self-selection in
the experimental groups or differences at baseline level between

experimental and control groups may have inflated the effect sizes
in samples with no random allocation.9 Analogously, the overall
effect size was smaller when the experimental group was com-
pared to an active control group (ḡ � 0.05, p � .311) than a
passive control group (ḡ � 0.18, p � .001). This finding corrob-
orates the idea that the positive effect sizes reported in some
primary studies are due to placebos as well. Moreover, when only
the effect sizes in randomized samples with active control groups
were considered, the overall effect size was almost null (ḡ � 0.03,
p � .521). Finally, the duration of training seems to be slightly
inversely related to the size of the effects (b � �0.02). This result
is difficult to interpret. However, the null degree of heterogeneity
suggests caution in interpreting these outcomes. In fact, the mod-
erator analyses may have detected effects due to random error
rather than true heterogeneity between-effect sizes (see Footnote
7). In any case, far transfer effects of WM training appear to be
negligible or, at best, modest.

Theoretical and Practical Implications

The present meta-analysis reviewed the studies in which partic-
ipants were TD children. For this reason, the results we reported do
not apply to other populations—such as children with learning
disabilities or adults. Nonetheless, the fact that, in the general
population of children, WM training induces improvements in
WM-related outcomes but not in other types of cognitive and
academic measures suggests some theoretical and practical impli-
cations.

9 In the present case, the difference between groups at baseline level in
some of the dependent variables seems to be the most likely explanation.
In several studies (e.g., Thorell, Lindqvist, Bergman, Bohlin, & Klingberg,
2009), the control groups performed better than the experimental groups at
the pretest. The difference between the groups decreased at the posttest,
suggesting that the positive effect size is probably due to some statistical
artifact (e.g., regression to the mean, ceiling effect).

Figure 3. Contour-enhanced funnel plot of standard errors and effect sizes (Hedges’ gs) in the near-transfer
meta-analysis. The black circles represent the effect sizes included in the meta-analysis. Contour lines are at 1%,
5%, and 10% levels of statistical significance.

Figure 4. p-curve analysis. The blue (continuous) line shows that most of
the significant p values are smaller than .025, suggesting evidential value.
See the online article for the color version of this figure.
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Figure 5. Forest plot of the far-transfer model. Hedges’ gs (circles) and 95% CIs (lines) are shown for all the
effects entered into the meta-analysis. The diamond at the bottom indicates the meta-analytically weighted mean
ḡ. When studies had multiple samples, the table reports the result of each sample (S1, S2, etc.) separately.
Similarly, when studies used multiple outcome measures, the table reports the result of each measure (M1, M2,
etc.) separately.
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To begin with, if far-transfer is more likely to occur in children
than adults when cognitive and academic skills are developing,
then our findings cast serious doubts on the idea that training a
domain-general mechanism such as WM improves fluid intelli-
gence, cognitive control, or academic achievement.10 Second, and
linked to the first point, the lack of an effect of WM training on
fluid intelligence supports the idea that WM and fluid intelligence
are two different constructs (Ackerman, Beier, & Boyle, 2005;
Hornung, Brunner, Reuter, & Martin, 2011; Kane, Hambrick, &
Conway, 2005).

However, it must be noticed that the positive effects in near-
transfer measures might reflect an improvement in WM tasks
performance, rather than a genuine enhancement in WM capacity

(Shipstead et al., 2012). In other words, participants learn how to
do the task without improving their WM capacity. If this is the
case, nothing can be inferred about the relationship between fluid
intelligence (or any other far-transfer measure) and WM capacity.
Moreover, following this line of reasoning, the absence of fluid
intelligence enhancement could be interpreted as a failed improve-
ment in WM capacity after the training (see also the discussion in
Melby-Lervåg & Hulme, 2013). Regrettably, the information pro-
vided in the primary studies is not sufficient to solve the issue.

The fact that the participants showed improvements in a large
variety of tasks different from the WM trained tasks (see Supple-
mental Table S1.1 in the online supplemental material) might
suggest that WM capacity was actually boosted. However, perva-
sive improvement in WM-related measures may stem from ame-
lioration in some general skill at performing WM tasks rather than
an increased WM capacity. Thus, testing whether WM training
enhances WM capacity requires not only a set of multivariate
measures of WM capacity, but also that task-related improvements
occur through a common factor that is measurement invariant
across treatment and control groups (i.e., training effects that are
proportional to the factor loadings in a structural equation model).
If such conditions can be met in a well-powered single study, then
it can be convincingly claimed that WM capacity has been en-
hanced.

Beyond these theoretical aspects, the most obvious practical
implication of our results is that WM training, at the moment,
cannot be recommended as an educational tool. WM training
seems to have little or no effect on far-transfer measures of
cognitive abilities and academic achievement. More generally, this
meta-analysis provides further evidence that the occurrence of
far-transfer is too infrequent to offer solid educational advantages.
For this reason, cognitive and academic enhancement interventions

10 It must be noticed that this argument does not apply to the population
of older adults. In fact, the aim of WM training in the elderly is to slow
down cognitive decline, not to extend developing cognitive abilities. For a
review, see Karbach and Verhaeghen (2014).

Figure 6. Contour-enhanced funnel plot of standard errors and effect sizes (gs) in the far-transfer meta-
analysis. Contour lines are at 1%, 5%, and 10% levels of statistical significance.

Figure 7. p-curve analysis. The blue (continuous) line shows that most of
the significant p values are smaller than .025, suggesting evidential value.
See the online article for the color version of this figure.
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should be as close as possible to the skills that are meant to be
trained.

Limitations of the Present Meta-Analysis

Near-transfer effects seem to remain even a few months after the
end of the training. However, the limited number of studies (n �
4) and effect sizes (k � 6) does not allow to draw any reliable
conclusion about this. The same limitation applies, to a lesser
degree, to the far-transfer follow-up effects (n � 6, k � 24). In this
case, however, the findings are consistent with the immediate
posttest outcomes: modest or null effects in both the measures. In
fact, it is hard to see why negligible effects immediately after
training, such as those reported in this meta-analysis, should be-
come significantly larger several months after the end of training.

Finally, other potential moderators—such as the type of training
program—were not considered in the meta-analytic models be-
cause of the limited number of the effect sizes. However, the small
degree of heterogeneity in both the near- and far-transfer models
discourages us from thinking that other moderators could have
affected the overall results.

Conclusions

The findings of the present meta-analysis do not invite optimism
about the effectiveness of WM training at improving cognitive
skills and academic achievement in TD children. WM training
seems to enhance children’s performance in WM- and STM-
related measures. However, with regard to skills outside the do-
main of WM such as fluid intelligence, cognitive control, mathe-
matics, and literacy, this training seems to have little or no effect.
Consistent with Thorndike and Woodworth’s (1901) common el-
ement theory, our findings show that the occurrence of far-transfer
is, at best, sporadic.
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