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A meta-analysis was undertaken to reexamine near- and far-transfer effects following

working-memory training and to consider potential moderators more systematically. Forty-

seven studies with 65 group comparisons were included in the meta-analysis. Results showed

near-transfer effects to short-term and working-memory skills that were sustained at follow-

up with effect sizes ranging from g D 0.37 to g D 0.72 for immediate transfer and g D 0.22

to g D 0.78 for long-term transfer. Far-transfer effects to other cognitive skills were small,

limited to nonverbal (g D 0.14) and verbal (g D 0.16) ability and not sustained at follow-up.

Several moderators (e.g., duration of training sessions, supervision during training) had an

influence on transfer effects, including far-transfer effects. We present principles for how

best to improve working memory through training in the narrow-task paradigm and

conjecture how best to improve basic cognitive functions in complex activity contexts.

In the past decade, interest among researchers and practi-

tioners in working memory (WM) training has surged. The

reason for this increased interest is that the idea of improv-

ing WM is typically associated with the idea that WM train-

ing effects might generalize to other cognitive functions.

The results of a recent meta-analysis, however, cast doubt

on the basic assumption that WM training produces transfer

to other measures such as fluid intelligence (Melby-Lerva
�
g

& Hulme, 2013). Only 23 studies were included in Melby-

Lerva
�
g and Hulme’s meta-analysis, but many more studies

that examine transfer effects of WM training have been

published since that meta-analysis. In addition, from an

educational perspective it seemed strange that training con-

ditions—or, more generally, the learning environment—

were not considered systematically as moderators of trans-

fer effects. Important from a theoretical perspective are to

what extent and under which conditions training of a basic

cognitive function such as WM would also lead to improve-

ments in other cognitive functions (e.g., fluid intelligence).

Of similar importance is the question of whether these

improvements of other cognitive functions are practically

relevant—for example, whether successful WM training

would lead to better mathematical abilities. In this article,

we present a meta-analysis that includes recently published

studies and focuses on several potential moderators of

transfer effects that have not been systematically investi-

gated—most important are the training conditions. Before

presenting our analysis, we explain how WM is conceptual-

ized and how it is considered to influence performance in

complex cognitive tasks. We also review the existing litera-

ture about the rationales behind WM training.

CONCEPTUALIZATION OF WM

WM has been conceptualized as “a limited capacity system,

which temporarily maintains and stores information [and]

supports human thought processes by providing an interface

between perception, long-term memory and action” (Bad-

deley, 2003, p. 829). Short-term memory (STM) involves

only the temporary storage of information (Shipstead,

Redick, & Engle, 2012), whereas WM additionally requires

the manipulation of information. Several models of WM

exist (e.g., Baddeley, Allen, & Hitch, 2011; Cowan, 1995;

Unsworth & Engle, 2007a). Although different terms are

used within the various conceptualizations of WM, they

share some commonalities. Most important, the majority of
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WM researchers assume a limited capacity system and an

attentional control component. These components conse-

quently play a role in most tasks that measure working

memory capacity (WMC).

Consistent with the distinction between STM and WM,

Redick, Broadway, et al. (2012) differentiated between sim-

ple span tasks, such as digit span and Corsi Blocks, and

complex span tasks, such as operation and symmetry span.

Simple span tasks measure only the capacity of a short-term

storage system, whereas complex span tasks also involve the

processing of information, and therefore seem appropriate to

assess WMC (Redick, Broadway, et al., 2012). For instance,

in the automated operation span task, a mathematical opera-

tion is presented at first and the participant has to decide

whether the result presented is right or wrong. Subsequently,

a letter is presented, and after a variable number of opera-

tion-letter pairs, the participant has to remember the letters

in their original order (Unsworth, Heitz, Schrock, & Engle,

2005). Unsworth and Engle (2007b) argued that “simple and

complex span tasks largely measure the same basic subcom-

ponent processes (e.g., rehearsal, maintenance, updating,

controlled search) but differ in the extent to which these pro-

cesses operate in a particular task” (p. 1038). The distinction

between simple and complex span tasks made by Redick,

Broadway, et al. (2012), however, is useful for separating

measures of STM and WM. As Shipstead, Redick, and

Engle (2010) noted, simple span tasks that exceed the limit

of STM through lists that are longer than the capacity of

STM require WM components. Therefore, Shipstead et al.

(2010) suggested that complex span tasks are predictive of

higher cognitive abilities, even with short lists, because they

involve the processing component from the beginning of the

task. Several training studies have differentiated between

tasks measuring the verbal and visuospatial modalities of

STM and WM using material with information stored in one

of the two respective storages. Simple span tasks and com-

plex span tasks differ in the material used in the tasks and

capture different modalities of STM or WM, that is, verbal

or visuospatial modality.

Besides the question of what distinguishes STM from

WM, the nature of individual differences in WMC has been

intensively investigated. Differences in WMC measured

with complex span tasks reflect differences in executive

attention (Kane, Conway, Hambrick, & Engle, 2007). Exec-

utive attention “reflects the ability to temporarily maintain

goal-relevant information in primary memory and to

retrieve information from secondary memory” (Redick,

Broadway, et al., 2012). Primary memory can be seen as a

capacity-limited system in which information could be held

through continuous allocation of attention. Secondary

memory, in contrast, refers to a larger, long-term system in

which information lost from primary memory can be

retrieved by means of a controlled, cue-dependent search.

The assignment of cues selected for search and the way

they are combined for search also require attention.

Following this conceptualization, differences in WMC are

related to differences in the active maintenance of informa-

tion through continuous allocation of attention and retrieval

of relevant information in the presence of interference

through other stimuli (Unsworth & Engle, 2007a). Accord-

ing to this logic, domain-general differences in attention

capabilities are important for the explanation of WMC dif-

ferences. This conceptualization can be found in most WM

training studies (Melby-Lerva
�
g & Hulme, 2013). Thus, a

higher WMC seems to be associated with better attention

capabilities. Differences in these capabilities can, in turn,

be related to differences in learning outcomes. Indeed, a

large body of research examines the correlates of WMC

and other cognitive abilities.

RELEVANCE OF WM FOR COMPLEX
COGNITIVE TASKS

Attention capabilities seem to be important for the explana-

tion of differences in WMC. Thus, unsurprisingly, differen-

ces in WMC are considered to be related to differences in

performance in several basic attention tasks (Unsworth &

Engle, 2007a). Differences in WMC have also been associ-

ated with a variety of higher cognitive achievements, such

as mathematical abilities (Gathercole, Pickering, Knight, &

Stegmann, 2004), reading comprehension (Daneman &

Merikle, 1996), and chemistry performance (Tsaparlis,

2005). WMC has been found to be associated with problem

solving (B€uhner, Kr€oner, & Ziegler, 2008), multitasking

(B€uhner, K€onig, Pick, & Krumm, 2006), and knowledge

acquisition from hypermedia materials similar to Wikipedia

(Banas & Sanchez, 2012). In addition, a strong association

between WMC and fluid intelligence has been demon-

strated repeatedly (e.g., Engle, Tuholski, Laughlin, & Con-

way, 1999; Oberauer, S€uß, Wilhelm, & Wittmann, 2008;

Redick, Unsworth, Kelly, & Engle, 2012).

TRAINING OF WM

Several studies on WM training have addressed the ques-

tion of whether cognitive training can improve intellectual

abilities and therefore may lead to transfer effects for other

than the trained tasks. Considering the causes for differen-

ces in WMC, as mentioned in the preceding section, WM

training should result in better executive attention. The

improvement in the domain-general attention capability

should lead to performance improvements in tasks meant to

determine the capacity of WM (i.e., how many elements

can be held in WM at a time) as well as tasks measuring

other cognitive abilities that require executive attention

(e.g., Raven’s matrices; see Melby-Lerva
�
g & Hulme,

2013). Improvements in WMC tasks and other types of

tasks are referred to as near-transfer effects and far-transfer
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effects, respectively. In the present review, near-transfer

effects include improvements in tasks that require short-

term and working-memory components; far-transfer effects

include any improvements attributable to WM training on

tasks that require abilities beyond short-term and working-

memory components (e.g., tasks that require mathematical

abilities; an example is the arithmetic test used in the study

by Van der Molen, Van Luit, Van der Molen, Klugkist, &

Jongmans, 2010, which requires applying arithmetic opera-

tions such as addition, multiplication, or division).

Morrison and Chein (2011) stated that so-called core

training is more suited than strategy training to reach far-

transfer effects. Strategy training includes effective proce-

dures to support encoding, retention, and/or recall from

WM. In contrast, core training aims to limit the use of

domain-specific strategies, to minimize automation, and to

use tasks that are adaptive and typically demand frequent

updating (Morrison & Chein, 2011). The difficulty levels of

adaptive tasks continuously adjust to the performance of

participants (Jaeggi, Studer-Luethi, et al., 2010).

The tasks used in WM training programs usually include

maintaining and processing very simple stimuli from a nar-

row domain (e.g., blue squares, single digits) that can be

considered to be relatively independent of prior knowledge

in other domains. Thus, the trained tasks share only superfi-

cial commonalities (e.g., maintaining simple stimuli). A

typical task used in core training is the dual n-back task. In

this task, participants see a series of blue squares, each pre-

sented at one of eight different locations on a screen. The

participants have to indicate when the position of a blue

square matches the blue square presented n stimuli before.

Spoken letters are presented simultaneously with the blue

squares, and participants also have to indicate when a spo-

ken letter matches a letter presented n stimuli before (Chooi

& Thompson, 2012). Although stimuli used in the trained

tasks are from a narrow domain, the idea of WM training

interventions typically is that these tasks should improve a

domain-general WM mechanism such as executive atten-

tion, which should be important for other cognitive abilities

(e.g., mathematical abilities), and ultimately should affect

solving problems and making decisions in completely

different and much more complex domains.

Regarding the effectiveness of WM training, some opti-

mistic perspectives have been offered. Klingberg (2010)

concluded on the basis of selected studies that “WM train-

ing can induce improvements in performance in nontrained

tasks that rely on WM and control of attention” (p. 322).

Based on some recently published studies with children,

Titz and Karbach (2014) argued that WM training can be

beneficial for academic abilities, specifically those for lan-

guage; reading; and, to a smaller extent, mathematics. Sev-

eral published WM training studies demonstrate near- as

well as far-transfer effects. For example, Brehmer, Wester-

berg, and B€ackman (2012) observed near-transfer effects to

verbal and visual short-term memory. Alloway, Bibile, and

Lau (2013) reported near-transfer effects to verbal and

visuospatial WM, for example; Various authors showed

far-transfer effects, inter alia, regarding mathematical rea-

soning (e.g., Holmes, Gathercole, & Dunning, 2009), read-

ing comprehension (e.g., Chein & Morrison, 2010), and

fluid intelligence (e.g., Jaeggi, Buschkuehl, Jonides, & Per-

rig, 2008; Jau�sovec & Jau�sovec, 2012).
However, other studies have raised several concerns

about WM training (Melby-Lerva
�
g & Hulme, 2013; Morri-

son & Chein, 2011; Shipstead et al., 2012). Morrison and

Chein’s (2011) review argued that there is a lack of control

with respect to effort/expectancy effects (e.g., better results

of experimental groups due to the learners’ expectations of

improvement) on outcome measures. Morrison and Chein

noted that these and similar effects are not controlled by

using adequate measures, such as self-reports and measures

of motivation and commitment. To control for expectancy

effects, Shipstead et al. (2012) suggested the inclusion of a

control group that receives training that does not tax WM

but is still adaptive, similar to the typical WM training

tasks. Another limitation concerns the measurement of

transfer effects. Morrison and Chein (2011) stressed that

training paradigms, as well as tasks used for the assessment

of transfer effects, are highly variable. These authors also

raised concerns about the demonstration of transfer effects

using tasks that capture only one aspect of the construct

(e.g., matrix reasoning as an aspect of fluid intelligence in

the studies by Jaeggi et al., 2008, and Jaeggi, Studer-Lue-

thi, et al., 2010). Shipstead et al. (2012) stated that the abil-

ities of interest should be measured with several

instruments. Furthermore, near-transfer effects to WM

components are often demonstrated with tasks that measure

STM. More valid WM tasks, such as complex span tasks,

have not been used consistently. Some studies failed to

show a transfer to complex span tasks, and near-transfer

effects might be attributed to task-specific overlaps between

trained and transfer tasks (Shipstead et al., 2012). Even

when transfer to complex span tasks has been demonstrated

and can be traced back to improved executive attention, the

specific mechanisms leading to it are not yet well under-

stood (Morrison & Chein, 2011; Titz & Karbach, 2014;

Von Bastian & Oberauer, 2014).

Besides mechanisms leading to transfer, the conditions

of training that might have an influence on training out-

comes have not been considered much (Von Bastian &

Oberauer, 2014). Klingberg (2010) emphasized that the

roles of variables such as duration and spacing of training

to yield transfer and long-term improvements are not yet

well understood. In addition, factors related to the time con-

figuration of training (e.g., duration of single training ses-

sions, frequency of training per week, and time interval

between single sessions) have not yet been systematically

considered. For example, with regard to the training inter-

val, distributed learning was reported to be more effective

than massed learning (e.g., Bloom & Shuell, 1981).
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Concerning WM-training, Penner et al. (2012) found an

advantage of distributed training (two times a week for 8

weeks) compared to massed training (four times a week for

4 weeks). Given a large number of WM training studies, it

remains unclear whether the training interval has a moder-

ating influence on transfer effects following WM training.

An investigation of the mentioned variables related to the

time configuration of training could help with a better

understanding how attention capabilities related to WMC

should be challenged over time to optimize transfer effects.

Concerning the training itself, a need exists to investigate

the influence of the modality (verbal, visuospatial, or both)

of the trained tasks on these effects (Titz & Karbach,

2014). Studies differ in terms of the identification of the

modalities that lead to higher transfer effects, which would

help in designing optimal training tasks. From a theoretical

perspective, of interest is the extent to which transfer

effects are moderated through verbal, visuospatial, or both

modalities.

Melby-Lerva
�
g and Hulme (2013) investigated transfer

effects of WM training and some moderators of these

effects. These authors conducted a meta-analysis on the

basis of 23 studies and 30 group comparisons to examine

near- and far-transfer effects of WM training. They found

short-term effects of WM training on verbal and visuospa-

tial WM and limited evidence for sustained effects on

visuospatial WM at follow-up. In particular, the effect size

for the immediate transfer effect to verbal WM was 0.79,

and the effect size for the short-term transfer effect to

visuospatial WM was 0.52. The effect size for the long-

term transfer effect to visuospatial WM was 0.41. Melby-

Lerva
�
g and Hulme found small immediate transfer effects

to attention (measured with the Stroop task) and nonverbal

ability but found no transfer effects to verbal ability, arith-

metic, and word decoding. They reported significant hetero-

geneity among studies for immediate and sustained transfer

effects to verbal WM. Studies also varied significantly with

respect to immediate transfer effects to visuospatial WM

and nonverbal ability.

Melby-Lerva
�
g and Hulme (2013) investigated the fol-

lowing moderators: age (younger children, older children,

young adults, older adults), training dose (total duration of

training), design type (randomized or nonrandomized tri-

als), type of control group (active or passive), learner status

(participants with or without learning disabilities), and

intervention type (kind of training program). Age was a sig-

nificant moderator of the transfer effects to verbal WM,

with larger gains in verbal WM in younger children com-

pared to older children. Melby-Lerva
�
g and Hulme noted

that it is possible that WM training is more effective in

early years when brain plasticity is particularly high. How-

ever, older adults might profit relatively more from WM

training because WMC declines with age (Salthouse, Pink,

& Tucker-Drob, 2008). Therefore, it seems possible that

differences between age groups level out when considering

a larger age span than in the analysis of Melby-Lerva
�
g and

Hulme. Concerning intervention type, the effect sizes of

one of several commercial training programs on visuospa-

tial WM were higher than those of noncommercial pro-

grams, whereas there was no difference between the

commercial programs. Of interest, the type of control group

turned out to be a moderator for transfer effects to nonver-

bal ability, with larger gains of training on nonverbal ability

for passive versus active control groups. The authors stated

that there is probably no systematic heterogeneity among

studies on measures of far transfer that could be explained

by moderator variables. They concluded that the idea of

WM training and hence attaining improvements on other

cognitive abilities in children and healthy adults is, at the

least, doubtful.

The remaining question is whether the conclusions

drawn by Melby-Lerva
�
g and Hulme (2013) are still appro-

priate against the background of several recently published

studies. Further potential WM training conditions are likely

to have an influence on transfer effects of WM training, but

they have not yet been systematically considered. Age as a

potential moderator might have an influence on transfer

effects due to differences in WMC across the life span (see

previous paragraph). With respect to the trained task, in

addition to the trained modality, feedback on the results

varies greatly among studies. In some studies, the partici-

pants were provided with information only on the correct-

ness of their answers—that is, mere knowledge of the

results (e.g., Heinzel et al., 2014; Van der Molen et al.,

2010). In other studies, participants also received more

elaborate feedback, such as about individual improvement

(Alloway et al., 2013; Egeland, Aarlien, & Saunes, 2013).

The consideration of feedback on the trained tasks seems to

be important because the type of feedback might be differ-

entially effective for learning and transfer (Hattie & Tim-

perley, 2007). If participants receive motivating feedback,

they might focus their attention more on the trained task

and thus yield larger training gains.

Other variables concern the training process from the

beginning to the end of the training. An obviously impor-

tant variable might be supervision—that is, whether the

activities of the participants in the training were monitored

and guided by someone else. In some studies, experiment-

ers or other persons such as parents monitored the partici-

pants as to whether they were training properly (e.g.,

Borella, Carretti, Riboldi, & De Beni, 2010; Holmes &

Gathercole, 2013). Thus, participants might focus their

attention more strongly on the trained tasks. In other stud-

ies, experimenters were present without monitoring or

intervening while the participants were training (e.g., Horo-

witz-Kraus & Breznitz, 2009; Salminen, Strobach, & Schu-

bert, 2012). The mere presence of other persons has been

shown to have a detrimental effect on task performance in

complex tasks (for a review, see Aiello & Douthitt, 2001).

One of the areas of interest in the present analysis is
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therefore to investigate the effects of supervision, meaning

that someone present during the training also monitors and

ensures that the participants follow the training instruction

properly.

Another process variable that needs consideration is

instructional support (i.e., whether participants receive

additional explanations and help during the training). In

some studies, participants received instructions on how to

perform the training tasks only at the beginning of the train-

ing (e.g., Jaeggi et al., 2008; Thorell, Lindqvist, Bergman

Nutley, Bohlin, & Klingberg, 2009), whereas in other stud-

ies, participants received additional instructions about the

trained tasks during the training (e.g., Heinzel et al., 2014;

Jau�sovec & Jau�sovec, 2012). Instructional support in the

form of worked examples is supposed to be effective when

prior knowledge is low (e.g., Kalyuga, 2007). With respect

to WM training, participants do not know how to perform a

task properly at the beginning of the training. Additional

instructions could help participants to properly work on the

training tasks without having to invest attentional resources

for understanding the task. Thus, the effectiveness of the

training could be improved. We included instructional sup-

port as a moderator variable to examine whether it has an

impact on transfer of training effects.

A further variable that has not yet been considered sys-

tematically is the location of the training. Most of the WM

training studies took place in a laboratory, but in some stud-

ies, participants trained elsewhere, such as at home

(Brehmer et al., 2011; Brehmer et al., 2012). Plausibly, the

laboratory offers fewer sources of interference and side-

tracking than other places, and participants could focus on

the trained task. The location of the training was included

as a moderator in the present study to investigate whether

training in or outside the laboratory has a different influence

on training outcomes.

These training conditions might explain substantial

amounts of variability in the effect of training studies.

Thus, identifying moderators among training conditions

might contribute to improved training designs for optimized

outcomes.

In summary, although analyses on the effectiveness of

WM training as a tool to enhance cognitive functions exist

(Klingberg, 2010; Titz & Karbach, 2014), there are several

shortcomings in the prior research. The studies included in

the meta-analysis of Melby-Lerva
�
g and Hulme (2013) were

collected until November 5, 2011. Since then, several new

published studies have presented new empirical evidence,

which raises the question of whether the overall conclusion

of transfer effects of WM training in prior studies are still

valid. Moreover, Melby-Lerva
�
g and Hulme did not con-

sider the influence of several training conditions on training

outcomes and transfer. It is plausible that the specific condi-

tions under which WM training takes place substantially

moderate training effectiveness and transfer. However, the

effects of the modality of the trained tasks, supervision,

location, and other training conditions have not yet been

systematically investigated. The present meta-analysis

therefore focuses on training conditions as further potential

moderators. Uncovering the influence of certain training

conditions on transfer effects could be helpful to optimize

training in order to yield practically relevant transfer effects

(e.g., to school-relevant skills). If certain forms of single

moderators yield higher transfer effects than others (e.g.,

supervised training is better than training in the mere pres-

ence of other persons), the effectiveness of WM training

could be improved.

THE CURRENT REVIEW

Research Questions and Hypotheses

We derived our research questions and hypotheses regard-

ing transfer effects of WM training and some moderators

based on the results of the meta-analysis of Melby-Lerva
�
g

and Hulme (2013). In addition, we differentiated between

near-transfer effects to STM and WM. As stated previously,

STM and WM tasks differ only in the extent to which the

same basic subcomponent processes, such as rehearsal and

updating, are involved (Unsworth & Engle, 2007b). The

improvement of these subcomponent processes through

WM training could result in improvements in tasks measur-

ing WM and STM. We therefore suppose that if there are

transfer effects to WM, then there will also be transfer

effects to STM, and vice versa. We formulated the follow-

ing research question and hypotheses regarding transfer

effects of WM training.

RQ1: Which near- and far-transfer effects follow WM

training?

Our expectations concerning the first research question

are related to the results of the meta-analysis of Melby-

Lerva
�
g and Hulme (2013). In their analysis, WM training

yielded short-term transfer effects on verbal and visuospa-

tial WM and long-term transfer effects on visuospatial WM

at follow-up. Accordingly, we expect near-transfer effects

of WM training to STM and WM components (verbal and

visuospatial domain) at posttest (Hypothesis 1.1), no trans-

fer to STM and WM components in the verbal domain at

follow-up (Hypothesis 1.2), and a transfer to STM and WM

components in the visuospatial domain at follow-up

(Hypothesis 1.3). Regarding far-transfer effects, small

immediate transfer effects to inhibition (labelled as atten-

tion) and nonverbal ability, but no other far-transfer effects,

were found (Melby-Lerva
�
g & Hulme, 2013). We therefore

expect a small immediate far-transfer effect to nonverbal

ability that is not sustained at follow-up (Hypothesis 1.4),

and no transfer effects to verbal ability, word decoding, and

mathematical abilities (Hypothesis 1.5).
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Notably, inhibition (the ability to inhibit prepotent

responses) was not included in our analyses for several rea-

sons, which we describe later, in the section on coding of

transfer measures. The second research question is related

to potential moderators of transfer effects following WM

training.

RQ2: Which training conditions have a moderating influ-

ence on transfer effects following WM training?

Melby-Lerva
�
g and Hulme (2013) found that age was a

moderator of transfer effects to verbal WM, and training

dose (total duration of training) was not a moderator of any

transfer effect. Thus, we assume that age is a moderator of

transfer effects to verbal WM with younger participants

having larger training improvements compared to older par-

ticipants (Hypothesis 2.1), and training dose (total duration

of training) is not a moderator of transfer effects following

WM training (Hypothesis 2.2). In addition, we considered a

variety of other potential moderators of transfer effects.

One group of these moderators is related to the time config-

uration of WM trainings. In studies showing transfer effects

of WM training (e.g., Alloway et al., 2013; Chein & Morri-

son, 2010), participants trained for certain amounts of time

in single training sessions and for several days a week. We

hypothesize that WM needs to be challenged for a longer

period in single training sessions and for several days a

week to yield transfer effects. Thus, we assume that the

duration of a single training session is a moderator of trans-

fer effects following WM training. Specifically, we expect

that the longer the duration of a single training session, the

larger the effect size (Hypothesis 2.3). Because more fre-

quent training should lead to higher gains from training, we

assume that the frequency of training per week is a modera-

tor of transfer effects following WM training. We hypothe-

size that the more training sessions per week, the larger the

effect size (Hypothesis 2.4). Based on research about the

benefits of distributed learning (e.g., Bloom & Shuell,

1981) and distributed WM training (Penner et al., 2012),

we expected that the training interval is a moderator of

transfer effects following WM training. The training inter-

val was 1 or 2 days in most of the training studies. We

hypothesize that a training interval of 2 days leads to a

larger effect size than a training interval of 1 day (Hypothe-

sis 2.5).

Furthermore, we tested hypotheses regarding the charac-

teristics of training conditions and the implementation of

training. As Titz and Karbach (2014) noted, the influence

of the trained modality on transfer effects needs to be inves-

tigated. Of theoretical interest is the extent to which the

trained modality moderates transfer effects in order to

determine whether one specific or both modalities of WM

need to be trained to yield optimal transfer effects. We

assume that the trained modality is a moderator of transfer

effects following WM training. Because transfer measures

of verbal STM and WM tax different modalities than visuo-

spatial STM and WM, we assume that transfer effects to

verbal STM and WM are larger for interventions in which

participants trained with tasks measuring verbal WM. Anal-

ogously, transfer effects to visuospatial STM and WM

should be higher for interventions in which participants

trained with tasks measuring visuospatial WM. Far-transfer

measures differ in the extent to which specific components

of WM are taxed. Therefore, we have no directed hypothe-

sis regarding the moderating influence of the trained modal-

ity on the variability among effect sizes for far-transfer

measures (Hypothesis 2.6).

With respect to the training process, supervised training

(e.g., monitoring whether participants train properly) could

be beneficial for transfer effects. In contrast, research has

repeatedly shown the detrimental effects of the mere presence

of other persons on task performance in complex tasks (Aiello

& Douthitt, 2001). Hence, we expect the transfer effects for

supervised training to be larger than for training without the

presence of other persons and training in the mere presence of

other persons. Transfer effects for training without the pres-

ence of other persons are higher than for training in the mere

presence of other persons (Hypothesis 2.7).

Training studies also differed with respect to instructional

support. Worked examples, as one form of instructional sup-

port, have been shown to be effective when prior knowledge

is low (e.g., Kalyuga, 2007). In WM training studies, partici-

pants initially do not know how to properly work on a task.

The participants could work more properly on the trained

task if explanations were given in addition to the instructions

at the beginning of the training because no attentional

resources have to be invested for finding out how the task

has to be approached. Consequently, we assume that instruc-

tional support is a moderator of transfer effects following

WM training. Transfer effects for training with additional

instructional support beyond the explanations at the begin-

ning of the training are greater than for training without these

additional explanations (Hypothesis 2.8).

Feedback is another process variable that might have an

influence on transfer effects following WM training. Differ-

ent types of feedback have different effects on learning and

transfer (Hattie & Timperley, 2007). In the context of WM

training, motivating feedback could stimulate participants

to be more attentive to the trained task and thus lead to

higher gains from training. We hypothesize that training

with feedback beyond mere knowledge of the results yields

larger effect sizes than training that includes mere knowl-

edge of the results only (Hypothesis 2.9).

Working memory training has been conducted in differ-

ent places. Participants training in the laboratory with few

sources of distraction might focus their attention on the

trained task better than participants training in other places.

Hence we expect that transfer effects of training in the labo-

ratory are larger than transfer effects of training in school or

at home (Hypothesis 2.10).
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In addition to the hypotheses addressing the characteris-

tics of training conditions and the implementation of WM

training, we formulated hypotheses to check methodologi-

cal quality characteristics of the studies. These hypotheses

were based on the results of the meta-analysis by Melby-

Lerva
�
g and Hulme (2013). We hypothesize that interven-

tion type (i.e., the kind of training program) is a moderator

of transfer effects to visuospatial WM (Hypothesis 2.11).

We also assume that type of control group is a moderator of

transfer effects of WM training to nonverbal ability. The

mean effect on nonverbal ability for the comparison of

training groups with passive control groups is larger than

for the comparison of training groups with active control

groups (Hypothesis 2.12).

METHOD

Literature Search and Inclusion Criteria

We searched for studies of WM training published from

1981 to December 2013 through the electronic databases

PsycINFO, PsycARTICLES, ERIC, and Medline. Key

words were “working-memory training,” which was used

as a string in a general search (i.e., without restrictions,

e.g., to subject headings). In addition, we scanned reference

lists of articles related to WM training and asked the

authors of the included studies to provide other (unpub-

lished) references, if possible. Results of the databases

yielded 579 records after duplicates were removed.

Together with articles from other sources (e.g., reviews,

author requests), we found about 600 records.

We applied the same inclusion criteria used by Melby-

Lerva
�
g and Hulme (2013) to make our analysis comparable

concerning this matter and to be able to include the studies

analyzed by those authors. Subsequently, the requirements

of the studies to be included are listed here:

1. Studies must be randomized controlled trials or

quasi-experiments with a treatment and either an

active or passive control group tested at pre- and

posttest.

2. The treatment group had to receive an intervention

for at least 2 weeks based on an adaptive computer-

ized program that aimed to train working memory

skills (verbal, visuospatial, or both).

3. Participants could be of any language background

and learner status, but studies of adults more than

75 years of age were excluded.

4. The studies must provide data so that an effect size

can be computed for the transfer measures (Melby-

Lerva
�
g & Hulme, 2013).

Regarding the fourth point, we asked the authors of the

studies to provide information for the effect size calculation

if the corresponding data were not reported in their articles.

The current analysis includes 47 studies with 65 group

comparisons from journals. Twenty-three of these studies

with 30 group comparisons were adopted from the analysis

of Melby-Lerva
�
g and Hulme (2013). Two limitations in

their meta-analysis concern the studies by Schmiedek,

L€ovd�en, and Lindenberger (2010) and Klingberg, For-

ssberg, and Westerberg (2002). In the study by Schmiedek

et al., participants were trained on tasks taxing WM, but

also perceptual speed and episodic memory; in the study by

Klingberg et al. (2002), participants trained their WM and

in addition practiced a mixture of a reaction time and inhi-

bition task. Because our focus was primarily on WM train-

ing and we wanted our analysis to be comparable to the one

conducted by Melby-Lerva
�
g and Hulme, we ran our analy-

sis with and without the studies by Schmiedek et al. and

Klingberg et al. (2002). The exclusion of these two studies

affected near-transfer effects to verbal and visuospatial

STM and WM, as well as far-transfer effects to nonverbal

and verbal ability.

Coding of Transfer Measures

Table 1 shows the constructs for which transfer effects

were analyzed with explanations of the coded measures and

examples of tests to measure them. Supplementary

Table S2 (online only) shows the transfer effects for each

study with the respective transfer measures.

We coded measures for STM and WM (verbal and

visuospatial), nonverbal and verbal ability, word decoding,

and mathematical abilities. As noted previously, Redick,

Broadway, et al. (2012) distinguished STM tasks that

require only the temporary storage of information from

WM tasks that also involve a processing component.

Although Melby-Lerva
�
g and Hulme (2013) proposed to

consider this distinction in the coding of measures, they

actually did not consistently implement their plan. In fact,

many authors of WM training studies measured transfer to

WM by using STM tasks (see also Shipstead et al., 2012).

For example, Melby-Lerva
�
g and Hulme coded visuospatial

STM measures, such as the span-board task (Klingberg

et al., 2005) and the grid task (Nutley et al., 2011), as meas-

ures of visuospatial WM. In the grid task, which is an adap-

tation of the Corsi Blocks task, participants are asked to

remember a series of dots presented on a grid in serial order

(Alloway, Gathercole, & Pickering, 2006). Thus, the grid

and Corsi Blocks tasks have a storage component only and

are hence examples of STM tasks in our conceptualization.

Besides the suggestions of Redick, Broadway, et al. (2012)

for a separation between STM and WM, other studies

acknowledged that such simple span measures with visuo-

spatial material are measures of visuospatial STM (e.g.,

Alloway et al., 2006; Miyake, Friedman, Rettinger, Shah,

& Hegarty, 2001). We consequently coded simple span

measures with visuospatial material (e.g., the grid task) as

measures of visuospatial STM and measures with an
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additional processing component (e.g., the shape recall test

used by Alloway et al., 2013) as measures of visuospatial

WM.

Differentiating between measures of verbal STM and

verbal WM led to a coding procedure that was slightly

more complex than the procedure used in the earlier meta-

analysis. Melby-Lerva
�
g and Hulme (2013) coded backward

digit span in the studies of Borella et al. (2010) and Van

der Molen et al. (2010; together with listening recall, a

complex span task) as measures of verbal WM. In the digit

span task, participants have to recall a series of spoken dig-

its in the same (forward) or reverse (backward) condition

order presented (Alloway et al., 2006). The findings of the

study by St Clair-Thompson (2010) suggested that back-

ward digit span is a measure of (verbal) WM for children

and (verbal) STM for adults, which is in line with other

research (e.g., Colom, Abad, Rebollo, & Chun Shih, 2005;

St Clair-Thompson & Allen, 2013). We therefore coded

backward digit recall as a measure of (verbal) WM in chil-

dren and as a measure of verbal STM in adults. Simple

span measures such as forward digit span and word recall

(as used, e.g., in the study by Dunning, Holmes, & Gather-

cole, 2013) were coded as measures of verbal STM; com-

plex span tasks or measures with an additional processing

component, such as reading span (as used, e.g., in the study

by Richmond, Morrison, Chein, & Olson, 2011), were

coded as measures of verbal WM independent of age. For

example, Redick, Broadway, et al. (2012) showed that the

additional processing component in the reading span task

involves deciding whether a sentence is right or wrong in

between memorizing single letters.

Melby-Lerva
�
g and Hulme (2013) used the values of an

n-back task reported in the study by Jaeggi, Studer-Luethi,

et al. (2010) to assess transfer to verbal working memory.

In the n-back task used by Jaeggi, Studer-Luethi, et al.

(2010), participants have to indicate when a presented

visual stimulus matches a visual stimulus shown n trials

prior. In contrast to Melby-Lerva
�
g and Hulme, we used the

operation span task to assess transfer to verbal working

memory because the concurrent validity of the n-back task

as a measure of working memory is not yet commonly

accepted (for an overview, see Jaeggi, Buschkuehl, Perrig,

& Meier, 2010). In contrast to the n-back task, the operation

span task has been shown to be a reliable and valid measure

of working memory capacity (Redick, Broadway, et al.,

2012).

Coding of far-transfer measures was identical to the pro-

cedure in the meta-analysis by Melby-Lerva
�
g and Hulme

(2013) except for the ability to inhibit prepotent responses

(inhibition; Miyake et al., 2000). Inhibition was labeled as

attention and measured with the Stroop task in the meta-

analysis. In incongruent trials of the Stroop task, partici-

pants have to name the ink color of a word describing a dif-

ferent color (Melby-Lerva
�
g & Hulme, 2013). Deviating

from Melby-Lerva
�
g and Hulme, we did not include inhibi-

tion in our analyses for a number of reasons. The operation

span task as a complex span task is similar to the reading

span task with respect to its structure and has been shown

to be most strongly related to updating (Miyake et al.,

2000). Concordantly, Krumm et al. (2009) argued that inhi-

bition could not be separated from complex span tasks.

Friedman, Miyake, Robinson, and Hewitt (2011) showed,

TABLE 1

Constructs for Which Transfer Effects Were Analyzed With Explanations of Coded Measures and Examples of Tests

Construct Explanation of Coded Measures Examples of Tests (Study Authors)

Verbal STM Tasks using material with verbal information that have to be stored

in STM

Digit recall forward (St Clair-Thompson et al., 2010),

word span test (Nutley et al., 2011)

Visuospatial STM Tasks using material with visuospatial information that have to be

stored in STM

Span-board task (Klingberg et al., 2005); grid task

(Lilienthal et al., 2013); Corsi blocks task (Hubacher

et al., 2013)

Verbal WM Tasks using material with verbal information that have to be stored

and processed in WM

Listening recall (van der Molen et al., 2010); reading

span (Richmond et al., 2011)

Visuospatial WM Tasks using material with visuospatial information that have to be

stored and processed in WM

Shape recall test (Alloway et al., 2006); symmetry span

(Redick et al., 2013)

Nonverbal ability Measures that predominantly require solving problems without

verbal information in the tasks

Raven (Chein & Morrison, 2010); Culture Fair Test,

scale 3 (Borella et al., 2010)

Verbal ability Tests that mainly require verbal information in the tasks for solving

problems

Composite score of the subtests similarities and

vocabulary from the Wechsler Abbreviated Scale of

Intelligence (Dunning et al., 2013); Regensburger

Word Fluency Test (Penner et al., 2012)

Word decoding Coded measures involve speed and quality of word and nonword

reading, but not reading comprehension (such tests were coded

as measures of verbal ability)

Average of word decoding speed and quality of coding

from the test battery LOGOS (Egeland et al., 2013);

nelson denny reading rate (Thompson et al., 2013)

Mathematical abilities Tests that require solving mathematical problems (e.g., applying

arithmetic operations)

Arithmetic test (Van der Molen et al., 2010), national

Standard Assessment Test (Holmes et al., 2013)

Note. STMD short-term memory; WM D working memory.
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on the basis of structural equation models, that there was

evidence for one common factor of updating, shifting, and

inhibition (for an overview, see Miyake & Friedman,

2012). After controlling for this common factor, there was

no unique variance left for inhibition. Inhibition could

therefore already be assessed to a high degree with complex

span tasks. Furthermore, inhibition itself is recognized as a

multidimensional construct (Krumm et al., 2009; Nigg,

2000) because several inhibitory skills may exist (Friedman

& Miyake, 2004; Hedden & Yoon, 2006). Following this

argumentation, we did not include the Stroop task as a mea-

sure of attention, although Melby-Lerva
�
g and Hulme did.

The coded measures of word decoding involve speed and

quality of word and nonword reading but not reading com-

prehension (such tests were coded as measures of verbal

ability). One exception regarding reading comprehension

as an aspect of verbal ability occurred in the study by Dun-

ning et al. (2013). A composite score for verbal IQ was pre-

ferred over the measure of reading comprehension. The

composite score was chosen because it is assumed to have

more weight in the assessment of verbal ability than a sin-

gle score. We coded measures of mathematical abilities and

didn’t choose the term “arithmetic” used by Melby-Lerva
�
g

and Hulme, because we also wanted to cover other aspects

of mathematical abilities measured by tests in some studies

(e.g., the comparison of numbers in the study by Karbach,

Strobach, & Schubert, 2014). However, most of the mathe-

matical tests used in the included studies do cover arithme-

tic skills (e.g., addition, division).

Coding of Moderators

Table 2 shows the moderators included in the analyses. At

first, we included the significant moderators (age, interven-

tion type, and type of control group) in the analysis of

Melby-Lerva
�
g and Hulme (2013), but we then made the

following modifications. Sample age was not normally dis-

tributed, but the common logarithm of age was. We there-

fore included the common logarithm of age rather than age

itself in the moderator analysis to minimize a loss of infor-

mation associated with the categorization of continuous

moderators applied by Melby-Lerva
�
g and Hulme. Although

training dose was not a significant moderator in the meta-

analysis by Melby-Lerva
�
g and Hulme, we included this var-

iable in our analysis because it is an important factor with

substantial variation among the studies and was included in

a dichotomized form in Melby-Lerva
�
g and Hulme. We

included training dose as a continuous moderator to get

more detailed information about its influence on transfer

effects following WM training. However, because training

dose was not normally distributed, we included the com-

mon logarithm of training dose (which was normally dis-

tributed) in our moderator analysis.

Type of control group (active vs. passive) was consid-

ered as a moderator that is under the control of the experi-

menter only. This moderator was included to check

whether the size of the effect of an intervention depends on

the comparison of the intervention group with the type of

control group. The type of control group was a significant

moderator in the analysis by Melby-Lerva
�
g and Hulme

(2013). If there were an active and a passive control group

in a study, we compared the training group with both con-

trol groups. This is in contrast to Melby-Lerva
�
g and Hulme,

who included comparisons of the active control and the

training group with the passive control group. One excep-

tion is the study by Alloway et al. (2013), for which we

included the active control group as a second treatment

group because it involved adaptive WM training, only with

a lower frequency. This second treatment group and the first

treatment group (high-frequency WM training) were each

compared with the passive control group. Active control

groups received training that didn’t tax WM or was not

TABLE 2

Moderator Variables Included in the Analyses

Moderator Description Coding

Age Sample age (in years) Common logarithm of age

Training dose Total amount of training (in hours) Continuous moderator

Session duration Duration of single training sessions (in minutes) Continuous moderator

Frequency of training per week No. of training sessions per week (in days) 1 day, 3 days, 4–6 days

Training interval Time interval between single sessions (in days;

excluding weekends)

1 or 2 days

Modality Trained modality of WM Verbal or visuospatial domain or both domains

Supervision If training is monitored by a person (e.g., experimenter)

or if a person is just present or if no person is present

Supervision vs. mere presence vs. no presence

Instructional support Additional instructional support beyond the

explanations at the beginning or not

Instructional support or not

Feedback If feedback beyond mere knowledge of results was

provided or not

Elaborated feedback or not

Location Location of training Training in laboratory vs. training in school vs. training

at home

Note. WMD working memory.
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adaptive (constant difficulty), and therefore most probably

was not intended to train WM. We chose a comparison dif-

ferent from that of Melby-Lerva
�
g and Hulme because we

did not want to include active control groups without an

adaptive WM training as training groups (see inclusion cri-

teria). Although comparing several treatment groups with

one common control group has its problems, we chose this

procedure to get information that could be lost with other

procedures (see Wecker & Fischer, 2014, for a similar

approach).

Other moderators included in the current analysis were

as follows:

1. Session duration. This is the duration of single train-

ing sessions.

2. Frequency of training per week. We didn’t always get

exact information about the number of days partici-

pants trained per week (e.g., one or two training ses-

sions per week) and therefore formed three

categories for the frequency of training per week (1

or 2 days, 3 days, 4–6 days).

3. Training interval. This is the time interval between sin-

gle sessions. Most of the training had intervals of 1 or

2 days, so we dichotomized this variable into a training

interval of 1 day versus a training interval of 2 days.

The influence of these variables was examined to get

detailed information about the role of time configuration on

transfer effects of WM training.

The following moderators were chosen to investigate the

influence of variables that are characteristic of training

paradigms and the implementation of training: (a) modality,

(b) supervision, (c) instructional support, (d) feedback: The

feedback provided in the different studies occurred after

completing a trial within a task, at the end of a training day,

weekly, or after completion of the entire training. Feedback

provided at the end of the whole training was not included

in our analysis. Participants received feedback about the

correctness of their answers in most of the training para-

digms included in our analysis, so we were interested in the

effects of feedback beyond the mere knowledge of results

(or feedback about the task; see Hattie & Timperley, 2007).

(e) Location.

Effect Size Calculations

We calculated Hedges’s g with bias correction (Hedges &

Olkin, 1985) as effect size for each measure. We used g

because for small sample sizes it provides a somewhat bet-

ter effect size estimate than does Cohen’s d. The reason is

that in the calculation of g, variances are pooled by using

n–1, whereas in the calculation of Cohen’s d, variances are

pooled by using n (Grissom & Kim, 2005). To control for

differences between treatment and control groups at pretest,

we computed the difference between the gain scores from

pre- to posttest (immediate transfer effects) and from pre-

test to follow-up test (long-term transfer effects), and used

this difference as the numerator in the calculation of Hedge-

s’s g. The pooled standard deviation of the standard devia-

tions of the particular training and control groups at pretest

was used as the denominator of Hedges’s g. Morris (2008)

favored this kind of calculation for Hedges’s g in Pretest-

Posttest-Control Group Designs. Melby-Lerva
�
g and Hulme

(2013) obtained their effect size estimates similarly, except

that they used the average of the standard deviations of the

particular training and control groups in the denominator of

Hedges’s g. This difference sometimes led to slightly dif-

ferent results (e.g., 1.10 for the effect size in the verbal

WM in contrast to 1.09 by Melby-Lerva
�
g & Hulme in the

study by Thorell et al., 2009).

The control of differences between treatment and control

groups at pretest may produce significant, positive effect

sizes even when the treatment group shows no improve-

ment but the control group deteriorates, as was the case for

the transfer effect to nonverbal ability in the study by Harri-

son et al. (2013). In a similar vein, a significant negative

effect could result when the control group improves and the

treatment group deteriorates, which was the case for the

transfer effects to verbal STM and nonverbal ability in the

study by Richmond et al. (2011). We therefore ran the anal-

yses for nonverbal ability and verbal STM with and without

the effect sizes of Harrison et al. (2013) and Richmond

et al. (2011), respectively. If studies contained more meas-

ures of a construct, we averaged the means and standard

deviations for the calculation of an effect size. This proce-

dure was also reported by Melby-Lerva
�
g and Hulme

(2013).

Large differences in effect sizes occurred when different

outcome measures were used for the calculations. For

example, Melby-Lerva
�
g and Hulme (2013) used the letter

memory task as a measure of verbal WM in the study by

Dahlin, Nyberg, B€ackman, and Stigsdotter Neely (2008).

However, this task was one of the trained tasks in the study

by Dahlin, Nyberg, et al., and we wanted to assess transfer

to verbal WM with complex span tasks such as the compu-

tation span also used in this study. This resulted in a large

difference between effect sizes (see Supplementary

Table S2 [online only] for effect sizes in our analysis).

The studies were coded by the first author of this article,

and all effect sizes were double-coded by a trained research

assistant. If the results differed, they were recalculated by the

first author. Afterward, the intraclass correlation of the inter-

rater reliability was 1. The first author also coded and double-

coded the moderators. Moderators of 33 group comparisons

were then again coded by a trained research assistant. Inter-

rater reliability for the categorical moderator variables was

calculated by using Cohen’s kappa and was 1 with an agree-

ment rate of 100%. Interrater reliability for the continuous

moderator variables was calculated by using intraclass corre-

lation and was 1 with an agreement rate of 100%.
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Random-Effects Models

Similar to Melby-Lerva
�
g and Hulme (2013), we chose a

random-effects model to test the overall effect size for sig-

nificance. The overall effect itself was computed by weight-

ing the effect sizes of the individual studies with the inverse

variance weight (Lipsey & Wilson, 2001). Random-effects

models are currently favored for meta-analysis (Schmidt &

Hunter, 2003); fixed-effects models do not seem advisable,

especially when effect sizes vary among studies (Overton,

1998). The selection of a random-effects model for our

analysis implies that the included effect sizes differ from

the mean of the population due to sampling error and a ran-

dom variance component. Generally, random-effects mod-

els are more conservative than fixed-effects models (Lipsey

& Wilson, 2001). The analyses were conducted in SPSS

and used the meta-analysis macros developed by Wilson

(2005).

Procedure

We tested our hypotheses about transfer effects of WM by

examining whether the mean effect size for each transfer

measure differed significantly from zero. To check for sig-

nificant heterogeneity in effect sizes among studies, we cal-

culated the Q-statistic for each transfer measure (Hedges &

Olkin, 1985). In addition, we calculated I2, which informs

about the degree of heterogeneity, or how much of the total

variance in effect sizes can be assigned to true variance

among studies (Huedo-Medina, Sanchez-Meca, Martin-

Martinez, & Botella, 2006). If the Q-statistic was signifi-

cant, moderator analyses were conducted to explain the het-

erogeneity among studies.

We used mixed-effects models based on the method of

moments for all analyses of the moderators. Mixed-effects

models imply that a certain proportion of variance among

studies can be explained through a moderator variable, but

a significant variance among studies remains (Lipsey &

Wilson, 2001). We chose a mixed-effects model because

we assumed that single moderators can explain a certain

proportion, but not all, of the variance among studies. Cate-

gorical moderators were analyzed by using special analyses

of variance (ANOVAs) for meta-analyses, also called ana-

logs to the one-way ANOVA (Lipsey & Wilson, 2001). If

significant group differences existed between the categories

of a moderator with several categories, an ANOVA for

each pairwise comparison was run with a Bonferroni cor-

rection of the significance level alpha to control for multiple

testing.

We examined the influence of continuous moderators on

effect sizes by using weighted meta-regression analyses. In

these analyses, we used the effect size weighted with the

inverse variance as the dependent variable (Lipsey &

Wilson, 2001).We ran moderator analyses for each single

moderator, but we were unable to apply multiple meta-

regressions that included all moderators to get information

about the influence of one moderator controlling for the

other moderators due to missing data for single moderators.

This led to large decreases in sample sizes when all moder-

ators were included in the analyses. The missing data con-

cerned categorical moderators. We did not apply

imputation techniques because currently no convincing pro-

cedures to handle missing categorical predictors in meta-

analysis are available (Pigott, 2012, p. 88). We were able,

however, to run multiple regression analyses with modera-

tors, which were found to be significant in single regression

analyses.

We created forest plots to visualize the heterogeneity of

effect sizes with their confidence intervals (Walker, Her-

nandez, & Kattan, 2008) and to identify outliers. The

impact of the outliers was examined via sensitivity analy-

ses, in which the mean effect sizes were estimated after out-

liers had been removed.

To check for publication bias, we created funnel plots

for each transfer effect. In these funnel plots, we plotted the

respective effect size on the x-axis and a measure of preci-

sion (standard error) on the y-axis. The interpretation of a

funnel plot is subjective, so we applied a slightly modified

version of the Egger’s test (Egger, Davey Smith, Schneider,

& Minder, 1997; Sterne & Egger, 2005). In the original

Egger’s test, the effect size divided by its standard error is

predicted by the inverse of the standard error. When the y-

intercept differs significantly from zero, bias is indicated

(Egger et al., 1997; Rothstein, 2008). When the effect size

is predicted by the standard error in a weighted regression,

the slope is the analog to the y-intercept in the original

Egger’s test (Rothstein, 2008). We used the effect size

divided by its variance as a criterion and the standard error

as a predictor (Sterne & Egger, 2005) in order to conduct

the Egger’s test with a (weighted) meta-regression by using

the macro by Wilson (2005). In addition, we conducted a

trim-and-fill analysis (Duval & Tweedie, 2000a, 2000b) for

random-effects models when the funnel plot and Egger’s

test indicated a potential publication bias. In the trim-and-

fill method (Duval & Tweedie, 2000a, 2000b), the number

of missing studies to make the funnel plot symmetric is esti-

mated via different estimators. One of these estimators is

L0, which has been shown to be more robust than the other

estimators (Talebi, 2013). We consequently used L0for our

trim-and-fill analysis.

Concerning the handling of missing data, we chose the

same procedure as Melby-Lerva
�
g and Hulme (2013). Stud-

ies were included in all analyses for which enough data

were available.

RESULTS

Supplementary Tables S1 and S2 (online only) summarize

information about the studies included in the meta-analysis
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(e.g., sample characteristics and effect sizes for pretest–

posttest as well as pretest–follow-up test differences in

gains). As can be seen from these tables, the data from the

included studies differ largely regarding sample character-

istics and transfer effects.

Near- and Far-Transfer Effects Following Training
of WM (RQ1)

To explore which transfer effects follow WM training

(RQ1), we ran meta-analyses for each near- and far-transfer

effect. Table 3 provides the main information for these

analyses.

Verbal STM. Figure 1 shows forest plots for 32 imme-

diate and nine long-term (delayed) transfer effect sizes.

After the removal of outliers, the mean effect size ranged

from g D 0.25, 95% CI (confidence interval) [0.11, 0.39],

to g D 0.42, 95% CI [0.25, 0.58]. The mean effect size of g

was 0.42 when the effect size of the study by Richmond

et al. (2011) was excluded. The funnel plot and Egger’s test

indicated no publication bias. Thus, in line with Hypothesis

1.1, there was an immediate transfer effect of WM training

to verbal STM.

We conducted follow-up testing an average of 8.11

months after the posttest. After the removal of outliers, the

mean effect size ranged from g D 0.15, 95% CI [¡0.07,

0.36], to g D 0.27, 95% CI [0.05, 0.47]. The funnel plot and

Egger’s test indicated no publication bias. Thus, in contrast

to Hypothesis 1.2, there was a sustained transfer effect of

WM training to verbal STM at follow-up.

Visuospatial STM. Figure 2 shows forest plots for 25

immediate and seven long-term (delayed) transfer effect

sizes. Removal of the effect size of the study by Klingberg

et al. (2002), because participants in that study were trained

with a mixture of a reaction time task and inhibition task in

addition to a WM task, resulted in a moderate to large

mean effect, g D 0.70, 95% CI [0.50, 0.91]. After the

removal of outliers, the mean effect size ranged from g D
0.61, 95% CI [0.43, 0.80], to g D 0.76, 95% CI [0.55, 0.97].

The funnel plot and Egger’s test indicated no publication

bias. Thus, in line with Hypothesis 1.1, there was an imme-

diate transfer effect of WM training to visuospatial STM

We conducted follow-up testing an average of 4.86

months after the posttest. After the removal of outliers, the

mean effect size ranged from g D 0.63, 95% CI [0.22,

1.03], to g D 0.91, 95% CI [0.47, 1.35]. The funnel plot and

Egger’s test indicated no publication bias. Thus, in line

with Hypothesis 1.3, there was a sustained transfer effect of

WM training to visuospatial STM.

Verbal WM. Figure 3 shows forest plots for 42 imme-

diate and 11 long-term (delayed) transfer effect sizes.

Removal of the effect sizes of the studies by Klingberg

et al. (2002) and Schmiedek et al. (2010) resulted in a small

to moderate mean effect, g D 0.58, 95% CI [0.34, 0.82], p

< .001. Effect sizes varied significantly among studies, Q

(39) D 242.20, p < .001, I2 D 83.90%. After the removal of

outliers, the mean effect size ranged from g D 0.30, 95% CI

[0.14, 0.46], to g D 0.62, 95% CI [0.39, 0.85]. The funnel

plot indicated a slight potential bias with missing studies on

the left side of the mean. Egger’s test also indicated a publi-

cation bias, b D 2.50, 95% CI [0.67, 4.32], p < .01. A trim-

and-fill analysis found no indication of missing studies;

hence, no study was imputed. Thus, in line with Hypothesis

1.1, there was an immediate transfer effect of WM training

to verbal WM.

We conducted follow-up testing an average of 8.36

months after the posttest. After removal of outliers, the

mean effect size ranged from g D 0.16, 95% CI [¡0.12,

TABLE 3

Near- and Far-Transfer Effects Following WM Training

95% CI

Transfer Effect

No. of

Effect Sizes (k) Effect Size g LL UL I2a Q-Statistic

Verbal STM (short-term/long-term) 32/9 0.37***/0.22* 0.19/0.02 0.56/0.42 66.81% 93.40***/4.57

Visuospatial STM (short-term/long-term) 25/7 0.72***/0.78*** 0.56/0.33 0.92/1.23 64.82%/76.64% 68.20***/25.68***

Verbal WM (short-term/long-term) 42/11 0.55***/0.35* 0.33/0.17 0.78/0.68 83.73%/66.98% 252.00***/20.29***

Visuospatial WM (short-term/long-term) 19/6 0.63***/0.41* 0.35/0.00 0.90/0.81 79.47%/61.87% 87.69***/13.11*

Nonverbal ability (short-term/long-term) 45/11 0.14*/0.02 0.01/¡0.17 0.27/0.20 53.90% 95.44***/10.14

Verbal ability (short-term/long-term) 29/5 0.16**/0.26 0.05/¡0.33 0.27/0.86 65.84% 30.69/11.71*

Word decoding (short-term/long-term) 14/5 0.08/0.21 ¡0.06/¡0.21 ¡0.22/0.45 8.85/3.52

Mathematical abilities (short-term/long-term) 15/8 0.09/0.08 ¡0.09/¡0.12 0.27/0.28 49.65% 27.81*/3.22

Note. STMD short-term memory; WM D working memory; CI D confidence interval; LL D lower limit; ULD upper limit.
aI2 was calculated only if the Q-statistic was significant.

*p< .05. **p < .01. ***p < .001.
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0.47], to g D 0.44, 95% CI [0.14, 0.75]. The funnel plot and

Egger’s test indicated no publication bias. Thus, in contrast

to Hypothesis 1.2, there was a sustained transfer effect of

WM training to verbal WM.

Visuospatial WM. Figure 4 shows forest plots for 19

immediate and six long-term (delayed) transfer effect sizes.

After removal of the effect sizes of the study by Schmiedek

et al. (2010), the effect was still moderate to large, g D
0.69, 95% CI [0.37, 1.00], p < .001. Effect sizes varied sig-

nificantly among studies, Q(16) D 80.48, p < .001, I2 D
81.46%. After removal of the one outlier, the mean effect

size was g D 0.49, 95% CI [0.30, 0.67]. The funnel plot

indicated a potential bias with missing studies on the left

side of the mean. Egger’s test also indicated a publication

bias, b D 7.26, 95% CI [4.70, 9.83], p < .001. After

removal of the single outlier, however, the funnel plot and

Egger’s test indicated no publication bias. Therefore, no

studies were imputed by trim-and-fill analysis. Thus, in line

with Hypothesis 1.1, there was an immediate transfer effect

of WM training to visuospatial WM.

We conducted follow-up testing an average of 6.83

months after the posttest. After the removal of the single

outlier, the mean effect size was g D 0.21, 95% CI [¡0.04,

0.47]. The funnel plot indicated a potential bias with miss-

ing studies on the left side of the mean. Egger’s test also

indicated a publication bias, b D 7.06, 95% CI [0.87,

13.26]. p < .05. After removal of the single outlier, how-

ever, the funnel plot and Egger’s test indicated no publica-

tion bias. Therefore, no studies were imputed. Thus, in line

with Hypothesis 1.3, the transfer effect of WM training on

visuospatial WM was sustained.

Nonverbal ability. Figure 5 shows forest plots for 45

immediate and 11 long-term (delayed) transfer effect sizes.

Effect sizes varied significantly among studies, Q(44) D
95.44, p < .001, I2 D 53.90%. After removal of the effect

sizes of the studies by Klingberg et al. (2002) and Schmie-

dek et al. (2010), there was a nonsignificant small effect, g

D 0.01, 95% CI [¡0.03, 0.23], p D .13. Effect sizes varied

significantly among studies, Q(41) D 79.97, p < .001, I2 D
48.73%. The additional exclusion of the effect sizes of the

studies by Harrison et al. (2013) and Richmond et al.

(2011) resulted in a small effect, g D 0.12, 95% CI [0.01,

0.22], p < .05. After removal of outliers, the mean effect

size ranged from g D 0.08, 95% CI [¡0.04, 0.20], to g D
0.17, 95% CI [0.06, 0.28]. After removal of outliers and the

effect sizes of the studies by Klingberg et al. (2002) and

Schmiedek et al. (2010), there was a nonsignificant small

mean effect, g D 0.08, 95% CI [¡0.01, 0.18], p D .08. The

funnel plot and Egger’s test indicated no publication bias.

Thus, in line with Hypothesis 1.4, there was a small imme-

diate transfer effect of WM training to nonverbal ability.

We conducted follow-up testing an average of 6.54

months after the posttest. After removal of outliers, the

mean effect size was g D ¡0.12, 95% CI [¡0.32, 0.09].

The funnel plot and Egger’s test indicated no publication

bias. Thus, in line with Hypothesis 1.4, there was no sus-

tained transfer effect of WM training to nonverbal ability.

Verbal ability. Figure 6 shows forest plots for 29

immediate and five long-term (delayed) transfer effect sizes.

After the removal of the effect sizes of the study by Schmie-

dek et al. (2010), there was a small effect, g D 0.18, 95% CI

[0.06, 0.31], p < .05. Effect sizes did not vary significantly

among studies, Q(26) D 29.77, p D .28. After removal of

outliers, the mean effect size ranged from g D 0.09, 95% CI

[¡0.02, 0.19], to g D 0.20, 95% CI [0.08, 0.31]. The funnel

plot indicated a potential bias with missing studies on the

FIGURE 1 Forest plots for immediate (upper panel) and delayed (lower

panel) transfer effects to verbal STM. Note. Points and horizontal lines

show effect sizes (Hedges’s g) and confidence intervals, respectively. The

diamond displays the overall effect and its confidence interval (width of

the diamond).
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left side of the mean. Egger’s test also indicated a publica-

tion bias, b D ¡0.13, 95% CI [¡0.24, ¡0.01], p < .05.

After a trim-and-fill analysis imputed one study, the adjusted

mean effect size was g D 0.14, 95% CI [0.04, 0.25],

p < .05. Thus, in contrast to Hypothesis 1.5, there was an

immediate transfer effect of WM training to verbal ability.

We conducted follow-up testing an average of 12.8

months after the posttest. Effect sizes varied significantly

FIGURE 3 Forest plots for immediate (left panel) and delayed (right panel) transfer effects to verbal WM. Note. Points and horizontal lines show effect sizes

(Hedges’s g) and confidence intervals, respectively. The diamond displays the overall effect and its confidence interval (width of the diamond).

FIGURE 2 Forest plots for immediate (left panel) and delayed (right panel) transfer effects to visuospatial STM. Note. Points and horizontal lines show

effect sizes (Hedges’s g) and confidence intervals, respectively. The diamond displays the overall effect and its confidence interval (width of the diamond).
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among studies, Q(4) D 11.71, p < .05, I2 D 65.84%. After

removal of the one outlier, the mean effect size was

g D ¡0.06, 95% CI [¡0.44, 0.32]. The funnel plot and

Egger’s test indicated no publication bias. Thus, in line

with Hypothesis 1.5, there was no sustained transfer effect

of WM training to verbal ability.

Word decoding. Figure 7 shows forest plots for 14

immediate and five long-term (delayed) transfer effect sizes.

After removal of outliers, the mean effect size ranged from

g D 0.04, 95% CI [¡0.11, 0.19], to g D 0.09, 95% CI

[¡0.05, 0.24]. The funnel plot and Egger’s test indicated no

publication bias. Thus, in line with Hypothesis 1.5, there

FIGURE 5 Forest plots for immediate (left panel) and delayed (right panel) transfer effects to nonverbal ability. Note. Points and horizontal lines show

effect sizes (Hedges’s g) and confidence intervals, respectively. The diamond displays the overall effect and its confidence interval (width of the diamond).

FIGURE 4 Forest plots for immediate (left panel) and delayed (right panel) transfer effects to visuospatial WM. Note. Points and horizontal lines show

effect sizes (Hedges’s g) and confidence intervals, respectively. The diamond displays the overall effect and its confidence interval (width of the diamond).
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was no immediate transfer effect of WM training to word

decoding.

We conducted follow-up testing an average of 6.2 months

after the posttest. After the removal of the one outlier, the

mean effect size was g D 0.09, 95% CI [¡0.18, 0.36]. The

funnel plot and Egger’s test indicated no publication bias.

Thus, in line with Hypothesis 1.5, there was no sustained

transfer effect of WM training to word decoding.

Mathematical abilities. Figure 8 shows forest plots

for 15 immediate and eight long-term (delayed) transfer

effect sizes. After removal of outliers, the mean effect size

FIGURE 6 Forest plots for immediate (left panel) and delayed (right panel) transfer effects to verbal ability. Note. Points and horizontal lines show effect

sizes (Hedges’s g) and confidence intervals, respectively. The diamond displays the overall effect and its confidence interval (width of the diamond).

FIGURE 7 Forest plots for immediate (left panel) and delayed (right panel) transfer effects to word decoding. Note. Points and horizontal lines show effect

sizes (Hedges’s g) and confidence intervals, respectively. The diamond displays the overall effect and its confidence interval (width of the diamond).
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ranged from g D 0.04, 95% CI [¡0.11, 0.20], to g D 0.13,

95% CI [¡0.03, 0.30]. Funnel plot and Egger’s test indi-

cated no publication bias. Thus, in line with Hypothesis

1.5, there was no immediate transfer effect of WM training

to mathematical abilities.

We conducted follow-up testing an average of 6.13

months after the posttest. After removal of outliers, the

mean effect size ranged from g D 0.05, 95% CI [¡0.15,

0.26], to g D 0.11, 95% CI [¡0.10, 0.32]. The funnel plot

and Egger’s test indicated no publication bias. Thus, in line

with Hypothesis 1.5, there was no sustained transfer effect

of WM training to mathematical abilities.

Moderators of Transfer Effects Following Training
of WM (RQ2)

To explore which training conditions have an influ-

ence on transfer effects following WM training (RQ2),

we conducted moderator analyses for immediate transfer

effects to verbal STM and verbal WM, immediate trans-

fer effects to visuospatial STM and visuospatial WM,

and immediate transfer effects to nonverbal ability and

mathematical abilities. There were not enough studies to

perform moderator analyses for the other transfer effects

with a significant Q-statistic. The investigated modera-

tors and the explained variance in heterogeneity between

effect sizes for near- and far-transfer effects are shown

in Table 4. This is followed by more detailed analyses

of each moderator in the order of our initial hypotheses.

We classify the effect sizes shown in Table 4 with

respect to significance and effect size conventions for h2

and R2. For h2, the conventions are .01 (small effect),

.06 (medium effect), and .14 (large effect). For R2, the

conventions are .01 (small effect), .06 (medium effect),

and .15 (large effect) (Murphy & Myors, 2004). These

conventions were considered in addition to the signifi-

cance of results because effect sizes could not be signifi-

cant due to insufficient statistical power.

Age. In contrast to Hypothesis 2.1, age was not a sig-

nificant moderator of any transfer effect. The values of

effect sizes (R2) were small and close to zero.

Training dose (total duration of training). To estab-

lish conservative hypothesis testing, we applied an alpha

level of .20 to make it easier to reject the hypothesis. As

can be seen in Table 4, contrary to Hypothesis 2.2, training

dose explained variability in transfer effects to visuospatial

STM (b D .55, p < .01, k D 25, R2 D .30; large effect). The

residual variance was not significant (p D .41). Training

with a higher training dose (indicated by its common loga-

rithm) yielded a larger mean effect size on visuospatial

STM than training with a lower common logarithm of train-

ing dose. The common logarithm of training dose was not a

significant moderator of transfer effects to visuospatial

STM controlling for intervention type and two dummy-

coded variables for location.

Session duration. As Table 4 shows, session duration

explained variability in transfer effects to verbal STM. Ses-

sion duration was the only significant moderator of transfer

effects of WM training to verbal STM (b D .32, p < .05, k

FIGURE 8 Forest plots for immediate (left panel) and delayed (right panel) transfer effects to mathematical abilities. Note. Points and horizontal lines show

effect sizes (Hedges’s g) and confidence intervals, respectively. The diamond displays the overall effect and its confidence interval (width of the diamond).
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D 32, R2 D .10; medium effect). Training with longer single

training sessions yielded a larger mean effect size than

training with shorter single training sessions. The residual

variance was not significant (p D .17). Contrary to Hypoth-

esis 2.3, session duration was not a significant moderator of

other transfer effects of WM training. The values of effect

sizes (R2) were small to medium for transfer effects on

which session duration had no significant influence.

Frequency of training per week. Contrary to

Hypothesis 2.4, frequency of training per week was not a

significant moderator of any transfer effect. The values of

effect sizes (h2) were small to medium.

Training interval. Contrary to Hypothesis 2.5, the

training interval was not a significant moderator of any

transfer effect. The values of effect sizes (h2) were small to

medium.

Modality. Contrary to Hypothesis 2.6, the trained

modality was not a significant moderator of any transfer

effect following WM training. However, the values of

effect sizes (h2) were small to large.

Supervision. As Table 4 shows, supervision

explained variability in transfer effects to verbal and visuo-

spatial WM. Supervision was a significant moderator of

transfer effects to verbal WM, Q(2) D 9.53, p < .01. Eta-

squared was large (.17). The residual variance was not sig-

nificant (p D .20). Pairwise comparisons showed that super-

vised training yielded a larger mean effect size than

training in the mere presence of other persons, Q(1) D 7.75,

p < .01. In the multiple regression with intervention type,

supervision, and location as predictors of transfer effects to

verbal WM, training in the mere presence of other persons

yielded smaller effects compared to training without the

presence of other persons (reference category; b D –.35, p

< .05).

Supervision was the only significant moderator for trans-

fer effects to visuospatial WM, Q(2) D 6.53, p < .05. Eta-

squared was large (.16). The residual variance was signifi-

cant (p < .01). Pairwise comparisons showed that the mean

effect size for supervised training was significantly larger

than the mean effect size for training in the mere presence

of other persons at an alpha level of .05, Q(1) D 4.66, p D
.03. However, the difference between these two groups was

not significant after Bonferroni correction of the alpha level

(corrected alpha of .017). Thus, Hypothesis 2.7 was partly

supported by the data. The values of effect sizes (h2) were

small to medium for transfer effects on which supervision

had no significant influence.

Instructional support. Contrary to Hypothesis 2.8,

instructional support was not a significant moderator of any

transfer effect. The values of effect sizes (h2) were small to

medium.

Feedback. In contrast to Hypothesis 2.9, feedback

was not a significant moderator of any transfer effect. The

values of effect sizes (h2) were small to large.

Location. We assumed that transfer effects of training

in the laboratory should be larger than transfer effects of

training at school or at home (Hypothesis 2.10). Location

was a significant moderator of transfer effects to visuospa-

tial STM, Q(2) D 6.93, p < .05. Eta-squared was large

(.24). The residual variance was not significant (p D .37).

Pairwise comparisons showed that training at home yielded

a larger mean effect size than training at school, Q(1) D
6.16, p D .013. In the multiple regression with intervention

type, supervision, and location as predictors of transfer

effects to visuospatial STM, no dummy-coded variable for

TABLE 4

Effect Sizes h2 and R2 for Moderators of Near- and Far-Transfer Effects

Verbal STM Visuospatial STM Verbal WM Visuospatial WM Nonverbal Ability Mathematical Abilities

Age .00 .00 .04 .00 .01 .00

Training dose .01 .30** .01 .00 .00 .05

Session duration .10* .05 .01 .04 .07 .03

Frequency of training per week .04 .00 .04 .06 .10 .11

Training interval .02 — .11 .00 .09 —

Modality .02 .01 .01 .03 .11 .15

Supervision .06 .17 .17** .16* .01 .06

Instructional support .01 .11 .01 .02 .00 .00

Feedback .00 .05 .00 .00 .02 .11

Location .08 .24* .19** .04 .20** —

Note. Effect size h was calculated for categorical moderators, effect size R2 was calculated for continuous moderators. Significant values are printed in

bold. Dashes indicate that a moderator analysis was not possible due to insufficient data. STM D short-term memory; WM D working memory.

*p< .05. **p < .01.
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location was a significant moderator once other predictors

were controlled for.

Location was also a significant moderator of transfer

effects to verbal WM, Q(2) D 12.14, p < .01. Eta-squared

was large (.19). The residual variance was significant (p <

.05). Pairwise comparisons showed that training in school

yielded a larger mean effect size than training in the labora-

tory, Q(1) D 13.40, p < .001. In the multiple regression

with intervention type, supervision, and location as predic-

tors of transfer effects to verbal WM, no dummy-coded var-

iable for location was a significant moderator after

controlling for the other predictors.

In addition, location was a significant moderator of

transfer effects to nonverbal ability, Q(2) D 10.04, p < .01.

Eta-squared was large (.20). The residual variance was not

significant (p D .31), however. Pairwise comparisons

showed that training in the laboratory yielded a larger mean

effect size than training at school, Q(1) D 8.13, p < .01, as

well as at home, Q(1) D 6.43, p D .01. In the multiple

regression with intervention type and location as predictors

of transfer effects to nonverbal ability, location was not a

significant moderator after controlling for intervention type.

In summary, location was a significant moderator of sev-

eral transfer effects, namely, visuospatial STM, verbal

WM, and nonverbal ability. The pattern of influence of

location on transfer effects was inconsistent for these con-

structs. Training in the laboratory was better than training

at school and training at home only for transfer effects to

nonverbal ability; therefore, our hypothesis received only

partial evidence. The values of effect sizes (h2) were small

to medium for transfer measures on which location had no

significant influence.

Hypotheses Addressing the Study Quality
Characteristics

Intervention type. Intervention type was a significant

moderator for transfer effects to visuospatial STM, Q(1) D
9.68, p< .01. Eta-squared was large (.28). The residual var-

iance was not significant (p D .33), that is, after considering

intervention type as a moderator of transfer effects to visuo-

spatial STM, no significant variability in effect sizes among

studies remained. Cogmed training as a commercial pro-

gram stood out because it yielded a larger mean effect size

than noncommercial training programs.

Intervention type was also a significant moderator of

transfer effects to verbal WM, Q(3) D 10.58, p < .05. Eta-

squared was large (.18). The residual variance was not sig-

nificant (p D .11). Pairwise comparisons showed that

Cogmed training yielded a larger mean effect size on verbal

WM than n-back training, Q(1) D 15.02, p < .001. Jungle

memory as a commercial training program yielded a larger

mean effect size than n-back training only without Bonfer-

roni correction, Q(1) D 5.94, p D .015.

Intervention type was also a significant moderator for

transfer effects to nonverbal ability, Q(2) D 6.44, p < .05.

Eta-squared was medium (.12). The residual variance was

not significant (p D .23). Pairwise comparisons showed that

Cogmed training yielded a smaller mean effect size than n-

back training, Q(1) D 8.02, p < .01. Contrary to Hypothesis

2.11, intervention type was not a significant moderator of

transfer effects of WM training to visuospatial WM.

Type of control group. We assumed that the mean

effect on nonverbal ability for the comparison of training

groups with passive control groups is larger than for the

comparison of training groups with active control groups

(Hypothesis 2.12). As can be seen in Table 4, type of con-

trol group explained variability in transfer effects to mathe-

matical abilities. Type of control group was the only

significant moderator for transfer effects to mathematical

abilities, Q(1) D 4.58, p < .05. Eta-squared was large (.24),

and the residual variance was not significant (p D .32). The

mean effect size for comparisons of training groups with

passive control groups was significantly larger than the

mean effect size for comparisons of training groups with

active control groups. Contrary to Hypothesis 2.12, type of

control group was not a significant moderator of transfer

effects of WM training to nonverbal ability. Because type

of control group was a significant moderator for transfer

effects only on mathematical abilities, and no other moder-

ator explained variability in these transfer effects, type of

control group could not be considered in multiple regres-

sion analyses for other moderators.

DISCUSSION

The results of our meta-analysis show that WM training

yields both immediate and sustained near-transfer effects

to both STM and WM components. We found small imme-

diate far-transfer effects to nonverbal and verbal ability, but

they are not sustainable. Training dose, session duration,

supervision, and location are significant characteristics of

the learning environments moderating transfer effects.

The results of our analyses clearly indicate that WMC is

plastic and that WM training indeed taps into this potential.

However, the core idea of WM training is to improve a

domain-general attention capability that is also crucial for

other cognitive abilities beyond WMC. This meta-analysis

did not show sustained far-transfer effects of WM training

to educationally relevant aspects such as verbal or mathe-

matical abilities. Therefore the claim that WM training has

practical benefits for learning or, more generally, education

is not supported by the findings of this meta-analysis.

If this is a valid interpretation of the findings obtained in

the field, there is a straightforward conclusion: We should

bury all hopes that learning and education can be improved

by boosting some general-purpose basic cognitive functions
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and redirect our resources for educational research and

practice to more promising fields. We believe, however,

that this would be premature. The findings could instead be

interpreted as implicating that we have not even started to

seriously design and vary the training conditions or, put

more generally, the learning environment.

The remainder of this discussion therefore has two parts.

In the first, we derive principles on conditions for improv-

ing specific WM aspects through training in what we call

the narrow task paradigm. In the second, more speculative

part, we suggest ways to considerably expand the theoreti-

cal framework of WM training by taking research on com-

plex learning and transfer into account. These

considerations lead us to some hypotheses for embedding

WM training into complex activity contexts.

Principles for Effective WM Training in the Narrow
Task Paradigm

The findings of this meta-analysis can be condensed to

the following principles (also shown in Table 5).

We use the term “narrow task paradigm” for contexts

that are intended to train only one specific basic cognitive

function in an isolated task. We try to integrate the meta-

analytic findings with earlier theorizing and study results in

a series of eight principles.

1. Specificity Principle: WM training in the narrow
task paradigm is effective with respect to the specifi-
cally trained WM component. This first principle is

mainly based on the fact that we found only near-trans-

fer effects to STM and WM components but hardly any

far-transfer effects. With regard to the observed near-

transfer effects, differences in near-transfer effects

between the present analysis and the analysis by Melby-

Lerva
�
g and Hulme (2013) could be explained by the dif-

ferentiation of transfer effects to STM and WM and the

larger number of studies included in our analysis. Due

to the larger sample sizes in our analysis, transfer

effects are more precisely estimated than in the analysis

by Melby-Lerva
�
g and Hulme. Transfer effects for verbal

STM and WM were different, which can be explained

by task-specific overlap between the trained WM tasks

and near-transfer WM tasks (see also Harrison et al.,

2013). It seems that visuospatial STM and WM showed

larger transfer effects than verbal STM and WM. We

can only speculate about explanations of this effect. It

might be that in the daily routine we deal more with

verbal information than with visuospatial information.

Thus, the verbal system might be more trained already,

and thus be harder to improve, which results in lower

transfer effects. Further studies are needed to provide a

better understanding of this result.

2. Age Independence Principle: The effects of nar-
row task paradigm WM training are not dependent on
age (at least for the age range 4–71 years). In con-

trast to the earlier meta-analysis by Melby-Lerva
�
g and

Hulme (2013), age was not found to be a significant moder-

ator of any of the transfer effects in our meta-analysis in the

range of 4 to 71 years. In contrast to the analysis by these

authors, we did not categorize age but used the common

logarithm of age in our analysis, therefore minimizing a

loss of information associated with the categorization of

continuous moderators. Melby-Lerva
�
g and Hulme noted

that it is possible that WM training is more effective in

early years when brain plasticity is particularly high.

TABLE 5

Principles for Effective WM Training in the Narrow Task Paradigm

Principle No. Principle Name Principle Formulation

(1) Specificity Principle WM training in the narrow task paradigm is effective with respect to the specifically

trained WM component.

(2) Age Independence Principle The effects of narrow task paradigmWM training are not dependent on age (at least for

the age range 4–71 years).

(3) The Longer-the-Better Principle WM training effects in the narrow task paradigm increase with duration of single training

sessions (at least in the range 6–60 min) and the total duration of the training.

(4) Knowledge-of Results Principle In narrow task paradigmWM training, simple and immediate feedback on knowledge of

results works as well as elaborated feedback.

(5) Strategy Prevention Principle If narrow task paradigm WM training is adaptive to prevent the development or use of

strategies to solve specific tasks, transfer effects will be larger compared to training that

aims at or allows for the development or use of strategies to solve a task.

(6) Ineffective Instruction Principle In narrow task paradigmWM training, additional instructional support beyond

explanations at the beginning of the training is neither effective for the trained task nor

for transfer of the effects to other tasks

(7) Supervision Principle Effects of narrow task paradigmWM training are larger, if additionally present persons

provide supervision and monitoring instead of just being in the same room.

(8) Multimodality Principle Bimodal WM training will yield larger effects than unimodal WM training.

Note. WM D working memory.
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Because basic cognitive functions such as WMC decline

with age (Salthouse et al., 2008), older adults might profit

relatively more from WM training resulting in a nonsignifi-

cant overall effect of age. As other basic cognitive func-

tions are also subject to an age-dependent decline (e.g.,

Deary et al., 2009), we propose that transfer effects of train-

ing in complex activity contexts are also independent of age

within the range of 4 to 71 years. These assumptions do not

imply that transfer effects outside this age span are depen-

dent on age.

3. The Longer-the-Better Principle: WM training
effects in the narrow task paradigm increase with dura-
tion of single training sessions (at least in the range 6–
60 min) and the total time. Based on our moderator anal-

yses, we assume that basic cognitive functions have to be

trained for a certain amount of time in single training ses-

sions to yield transfer effects. Although the time of single

training sessions had an influence only on the transfer effect

of WM training on verbal STM, the small to medium effects

of session duration on the remaining transfer effects point to

a positive influence of this variable on transfer effects. In a

similar way, the effect sizes of the training dose (i.e., the

total amount of training hours) on transfer effects suggest a

positive influence of this moderator variable, assuming that

the missing significance could be attributed to small sample

sizes and low statistical power. Notably, the minimal dura-

tion of single training sessions and the minimal training dose

to yield transfer effects are not yet clear.

4. Knowledge-of-Results Principle: In narrow task
paradigm WM training, simple and immediate feed-
back on knowledge of results works as well as elabo-
rated feedback. More elaborate forms of feedback thus

cannot increase the WM training effect associated with sim-

ple and immediate feedback. This is consistent with prior

research on feedback in general (Hattie & Timperley,

2007). Simple feedback, especially knowledge of results,

has been reported to be effective for simple tasks and in the

phase of skill automation (Hattie & Timperley, 2007). The

results of the present meta-analysis seem to suggest that

feedback beyond knowledge of results (e.g., process feed-

back) might not have an additional facilitating effect. We

were not able to distinguish among the different types of

feedback that go beyond knowledge of results, however.

We therefore cannot exclude that these types of feedback

have different directions of influence (positive or negative)

on transfer effects of WM training, which meta-analytically

levels out to a nonsignificant effect. Not much is known

about what other kinds of feedback could be of any help in

improving basic cognitive functions. There is a need for pri-

mary studies that test the hypothesis that feedback beyond

knowledge of results might not have an additional facilitat-

ing effect directly by systematically varying different types

of feedback.

5. Strategy Prevention Principle: If narrow task
paradigm WM training is adaptive to prevent the devel-
opment or use of strategies to solve specific tasks,
transfer effects will be larger compared to training that
aims at or allows for the development or use of strate-
gies to solve a task. As Morrison and Chein (2011)

noted, core training that uses tasks that continuously adapt

to the performance of participants is more suited to reach

far-transfer effects. Based on the results of our analysis

(which included only studies with adaptive WM training),

we assume that adaptive training of one specific basic cog-

nitive function is best suited to improve the trained cogni-

tive function.

6. Ineffective Instruction Principle: In narrow task
paradigm WM training, additional instructional support
beyond explanations at the beginning of the training is
effective neither for the trained task nor for transfer of
the effects to other tasks. Our meta-analysis showed

that additional instructions during WM training had no

influence on transfer effects. Training that is not intended

to use strategies to solve a specific task should produce

larger transfer effects (Morrison & Chein, 2011). Therefore,

additional instructions during the training about strategies

to solve the task should not be beneficial. Another explana-

tion would be that instructions at the beginning of the task

are enough to understand the trained tasks. The categories

of instructional support were defined very broadly due to

the large variation among studies regarding the characteris-

tics of these moderators. No information enabling the con-

struction of more elaborate categories was provided in the

study descriptions; for example, qualitatively different

instructional supports were coded with the same numbers

in different studies. The presence of instructional support

was coded if there was an instruction screen presented dur-

ing training before each task as well as whether the experi-

menters answered questions (Lilienthal, Tamez, Shelton,

Myerson, & Hale, 2013); it was also coded if instructions

for the training task were given when participants wanted

to check what they should do (Dahlin, Nyberg, et al.,

2008). Possibly, for participants who have difficulties

understanding a specific task, additional instructional sup-

port could be helpful. We were not able to explore this

complex relationship with our meta-analysis. Therefore, it

is unclear whether some categories of instructional support

(e.g., explanations about how to properly work on the task

when participants do not know what they should do) would

uncover an influence of this variable.

7. Supervision Principle: Effects of narrow task
paradigm WM training are larger, if additionally present
persons provide supervision and monitoring instead of
just being in the same room. The presence of a person

who additionally supervises whether persons are training

properly probably can motivate them to continue activities.
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Supervised training yielded a larger mean effect size than

training in the mere presence of other persons in the case of

verbal and visuospatial WM. This is in line with research

showing detrimental effects of the mere presence of other

persons on task performance in complex tasks (for a review,

see Aiello & Douthitt, 2001). In contrast to the mere pres-

ence of other persons, the presence of persons who addi-

tionally supervised the training might have motivated them

to exert themselves. The values of effect sizes (h2) were

large for transfer effects to both verbal and visuospatial

WM, suggesting an important role of supervision for the

variability of the transfer effects. Supervision may also

have an influence on the variability of other transfer effects.

Insufficient statistical power could be one possible reason

for nonsignificant medium to large effects of supervision

on the variability of some transfer effects (e.g., verbal

STM, mathematical abilities, visuospatial STM). Notably,

it is conceivable that supervision during test phases could

also be beneficial with respect to transfer effects. In addi-

tion, it is unclear whether tests phases were also supervised

when training was supervised. We have no information

regarding these aspects.

8. Multimodality Principle: Bimodal WM training
will yield larger effects than unimodal WM training.
This principle is somewhat more speculative than the

others. The medium to large effect sizes obtained for trans-

fer effects to nonverbal ability and mathematical abilities

indicate that training both modalities of WM could be more

beneficial than training one single modality. Training both

modalities seems to be a more complex activity than train-

ing one modality. Notably, in most of the studies included

in our analysis, both modalities of WM were trained. The

inclusion of more studies in which only one modality of

WM is trained could result in a different interpretation of

the role of the trained modality for transfer effects.

The principles just mentioned are related to improve-

ments of STM and WM components. The likelihood of

transfer of effects from narrow task paradigm WM training

to other activities increases with the similarity of training

and transfer situation with respect to constraints and affor-

dances. Inversely, transfer of effects from narrow task para-

digm WM training to other cognitive functions decreases

with decreasing overlap with respect to situational con-

straints and affordances in training and transfer situations.

As situations requiring verbal and mathematical abilities,

as well as fluid intelligence, have only minor overlap in

task constraints and affordances with narrow task paradigm

WM training tasks, transfer effects are unlikely to occur.

We found no far-transfer effects to word decoding and

mathematical abilities. This is consistent with the results of

Melby-Lerva
�
g and Hulme (2013). No significant transfer

effect to nonverbal ability remained after outliers were

excluded. The immediate transfer effect to verbal ability

was small and not sustained at follow-up. Therefore, we

suggest concluding that isolated WM training programs of

specific basic cognitive functions can improve performance

beyond the specific task but in the confines of the trained

cognitive function (i.e., WM).

Embedding WM Training in Complex Activity Contexts
Assuming that the meta-analytic results are partly due to

the surprisingly small variability of the training conditions,

we are now moving to somewhat more speculative grounds

expressed by the hypotheses shown in Table 6.

We suggest using the term “complex activity contexts”

for contexts in which a coordinated use of several basic

cognitive functions is likely. We do not exclude the possi-

ble benefit of cognitive training in the clinical context (e.g.,

for persons with WM deficits). Impaired cognitive func-

tions could be improved with isolated training of specific

cognitive functions to deal with activities of everyday life,

but for people with normal cognitive functioning, such

training might yield no practically relevant benefits. One

reason for the near-transfer effects in the absence of far-

transfer effects could be the narrow paradigm of WM train-

ing (i.e., training of one specific cognitive function with a

specific task). With respect to the theoretical model of

WMC introduced earlier in this article, executive attention

might have been improved for the specific characteristics of

these narrow task contexts. However, complex cognitive

performance (e.g., academic performance) is likely to

require the interplay of several cognitive functions and

involve working on diverse contents (e.g., mathematical

formula, different types of text).

WM training research is built on the premise that

improvement of basic cognitive functions is not comparable

to conceptual learning or strategy learning because working

on the training tasks in WM studies seems to be widely

independent of knowledge. Obviously, differences between

the two contexts exist. However, does this imply that mech-

anisms of learning transfer would be completely different

with respect to the improvement of basic cognitive func-

tions such as working memory or executive functions

(Andersson, 2010)? Isolated training of specific cognitive

functions in a narrow task context may have constellations

of constraints and affordances for activities that are highly

dissimilar from that in a complex activity context, such as

solving a mathematical problem (Greeno, Smith, & Moore,

1993 ). This dissimilarity might be responsible for the lack

in far-transfer effects.

People typically acquire complex skills (e.g., reading,

writing) in complex activity contexts. Maybe basic WM

functions could also be fostered in complex activity con-

texts. There is evidence that cognitive functions could be

substantially enhanced in more complex activity contexts

lasting for longer periods. For example, one study showed

that children who were taught according to a curriculum

that includes activities assumed to improve executive func-

tions “showed better [executive functions] than peers
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attending other schools. They performed better in reading

and math and showed more concern for fairness and

justice” (Diamond & Lee, 2011, p. 5). Montessori class-

rooms have only one exemplar of all materials, and children

therefore learn to wait; they also are engaged in instruction

activities (Diamond & Lee, 2011). Such activities address

cognitive basic functions such as working memory, shift-

ing, and inhibition (Miyake et al., 2000). Working memory

is addressed when a student listens to the instructions of

two other students and has to keep the information in mind

for later instruction. The student has to wait until the

respective student has finished his or her instructions (inhi-

bition as a basic cognitive function is addressed) and switch

between the instructions of the two students (shifting as a

basic cognitive function is addressed). In addition, these

activities require coordination or interplay between the

mentioned basic cognitive functions. Another example is

schooling itself, which has been shown to enhance IQ

(Ceci, 1991). Contexts that are more complex than WM

training studies (such as curricula that include activities

assumed to improve basic cognitive functions) address

more cognitive functions and require the interplay of cogni-

tive functions. The complex activities in these contexts

may be more likely to be sufficient to yield transfer effects

to complex cognitive performance.

Adele Diamond (2014) proposed a hypothetical model

of how executive functions can be successfully improved.

According to this model, executive functions such as work-

ing memory benefit most if they are continually challenged.

Interventions are more successful if they also consider other

variables that are related to executive functions. For exam-

ple, in the light of negative consequences of stress and

social isolation on executive functions, interventions should

increase joy and feelings of social inclusion and support

(Diamond, 2014).

Considering this seemingly high potential of embedding

WM training in complex activity, we suggest five some-

what more speculative hypotheses to be tested in future

research.

1. Activity Similarity Hypothesis: The transfer
effects are more pronounced when WM training is
embedded in complex activity contexts as compared to
the narrow task paradigm. The rationale for this hypoth-

esis is that basic cognitive functions can be used in a coordi-

nated way during training, and affordances to use cognitive

functions in coordinated ways are also typical of education-

ally more relevant transfer tasks. The reasoning behind this

principle is that the lack of far transfer from WM training

has one simple main reason: In the restricted action para-

digm, a highly specific training task is targeting one specific

cognitive function, namely, WM. However, academically

relevant tasks do require several cognitive functions. For

example, solving a moderately complex mathematical prob-

lem may require that relevant information to solve such a

problem has to be kept in mind (taxing WM), irrelevant

information has to be inhibited (taxing inhibition) and

switching between aspects of the problem and information

to solve it has to be done (taxing shifting). In addition, these

activities have to be coordinated, requiring an

“orchestration” of the basic cognitive functions involved.

Complex activity contexts such as Montessori and add-ons

to school curricula that are intended to tax several basic cog-

nitive functions improved these functions and yielded trans-

fer effects to academically relevant performance (for an

overview, see Diamond & Lee, 2011).

TABLE 6

Hypotheses for Effective Training of Basic Cognitive Functions in Complex Activity Contexts

Hypothesis No. Hypothesis Name Hypothesis Formulation

(1) Activity Similarity Hypothesis The transfer effects are more pronounced when working

memory training is embedded in complex activity

contexts as compared to the narrow task paradigm

(2) Time and Transfer Hypothesis The training effects in complex activity contexts

increase with training duration of single sessions and

with the total duration of training.

(3) Adaptivity of Complex Learning Environments Hypothesis In complex activity contexts, basic cognitive functions

are enhanced only if they are challenged consistently

(i.e., with increased cognitive function, the task has

to be changed in a way to keep the demands for basic

cognitive functions consistently high).

(4) Cognitive Flexibility Hypothesis Transfer of improved basic cognitive functioning to

other tasks is more likely when two or more contexts

are employed during training.

(5) Detrimental Instruction Hypothesis Instructional support in complex activity contexts

reducing the demands on basic cognitive functions

are detrimental for the improvement of these basic

cognitive functions and hence for the transfer of

effects.
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2. Time and Transfer Hypothesis: The training
effects in complex activity contexts increase with train-
ing duration of single sessions and with the total dura-
tion of training. With respect to complex activity

contexts, we expect that the longer several basic cognitive

functions and their interplay are taxed in these contexts in

single training sessions and in total, the more these cogni-

tive functions and other cognitive abilities and skills will

improve. Complex activity contexts, such as school curric-

ula that have shown to improve executive functions, chal-

lenge these functions throughout the whole day and for a

longer period (for an overview, see Diamond, 2014). As is

the case for WM training in the narrow task paradigm, the

minimal duration of single training sessions and the mini-

mal training dose to yield transfer effects are not yet clear.

3. Adaptivity of Complex Learning Environments
Hypothesis: In complex activity contexts, basic cogni-
tive functions are enhanced only if they are challenged
consistently (i.e., with increased cognitive function, the
task has to be changed in a way to keep the demands
for basic cognitive functions consistently high). We

thus suggest generalizing the according principle for the

narrow task paradigm (see earlier, Principle 5, Strategy Pre-

vention Principle) to the complex activity context.

4. Cognitive Flexibility Hypothesis: Transfer of
improved basic cognitive functioning to other tasks is
more likely when two or more contexts are employed
during training. Established memory research (Tulving &

Thomson, 1973), as well as more recent models on cognitive

flexibility (Spiro, Coulson, Feltovich, & Anderson, 1988)

and transfer of learning (e.g., Gick & Holyoak, 1983), sug-

gests that learning is more likely to transfer when people

have learned in multiple contexts. Although speculative, we

suggest integrating this principle as an alternative to the

transfer theory that was implicit in WM training studies (i.e.,

WM training improves executive attention, which then in

turn is available in a multitude of different cognitive tasks

beyond WM tasks). The latter model received no evidence in

our meta-analytic findings.

5. Detrimental Instruction Hypothesis: Instructional
support in complex activity contexts reducing the
demands on basic cognitive functions are detrimental
for the improvement of these basic cognitive functions
and hence for the transfer of effects. Our meta-analysis

has shown that additional instruction was not helpful in the

narrow task paradigm. A clear introduction of the simple task

at the beginning, simple feedback, together with some exter-

nal monitoring during the training was enough. Of course,

we do not claim that this generalizes to complex activity con-

texts. For these, we have ample empirical evidence that learn-

ing knowledge and skills benefit substantially from

additional instructional guidance, more elaborate feedback,

and increasing self-regulation. However, studies on these

complex learning environments are typically targeted at

learning concepts or strategies of a domain. Researchers

have hardly ever controlled for effects of complex learning

environments on basic cognitive functioning. There might be

a tension between the improvement of basic cognitive func-

tions and facilitating learning of domain knowledge and

skills. For example, additional instruction by scaffolding

aiming at reducing cognitive load might be effective for

learning to engage in mathematical proofs (Kollar et al.,

2014). Through reducing cognitive load, however, there is

probably also a reduced taxing of the basic cognitive func-

tions. With decreasing challenge, basic cognitive functions

might be less likely to improve. Instructional support reduc-

ing the challenge could therefore be detrimental. Notably, if

instructional support is reduced to a level so that learners are

overstrained, they might not be able to properly carry out an

activity or may stop carrying it out. Therefore, basic cogni-

tive functions are probably less challenged.

Limitations of This Meta-Analysis

Some of the limitations of themeta-analysis ofMelby-Lerva
�
g

and Hulme (2013) also apply to our analysis, so they are

briefly mentioned here. One of these problems concerns a

potential publication bias resulting from a predominant num-

ber of published studies in our meta-analysis. We were able

to include only one study (Karbach et al., 2014) that had been

published outside the period of our literature search, even

though we asked many more of the authors of WM training

studies to provide unpublished work. Unpublished studies

and “gray” work might not have found significant transfer

effects of WM training. A publication bias, in that positive

results are more likely to be published, might lead to overesti-

mations of the mean effect sizes. However, slight indications

for a publication bias were found for only three transfer

effects (verbal and visuospatialWM, and verbal ability).

Although we included more studies in our analysis than

did Melby-Lerva
�
g and Hulme (2013), we faced the same

problem concerning the merging of a variety of different

samples—namely, that group sizes were too small to per-

form analyses for separate subgroups.

Another limitation frequently seen in meta-analyses is

the heterogeneity in how outcomes are measured (Walker

et al., 2008). Due to differences in validities and reliabil-

ities of outcome measures, transfer effects could have dif-

ferent degrees of evidence because these differences in

methodological quality criteria are not considered in the

calculation of the mean effect.

As mentioned earlier, a more specific problem of the

current analysis is the calculation of single effect sizes

using differences of gains between the training and control

groups as the numerator in the calculation of Hedges’s g.

This may produce significant effect sizes even when treat-

ment groups showed no improvement but control groups

deteriorated. Also, a significant effect size could result
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when the control group improves and the treatment group

deteriorates. However, these problems occurred for only

two studies and were considered in the meta-analyses

(effect size calculations with and without these studies).

Further limitations concern the single moderators used in

the analysis. As discussed earlier, the categories of instruc-

tional support, feedback, and location were very broadly

defined, allowing for a rough estimate of the influence of

these variables on the variance in effect sizes among studies

with a lack of differentiation (i.e., differentiated categories

for these single moderators). Concerning training location,

the specific conditions within one category of training loca-

tion could differ widely. For training at home, we do not

know important training conditions, such as whether train-

ing took place in a silent or noisy room or with distraction

by a television. In addition, where transfer effects were

assessed could also be relevant. For example, participants

might be more able to focus on the transfer task in the labo-

ratory compared to a classroom in a school, resulting in bet-

ter transfer performance. However, we have hardly any

information on where transfer effects were assessed in the

analyzed studies. The frequency of training per week and

training interval were also very broadly defined. Categori-

zations had to be made for these two variables because not

enough information was available to analyze them as con-

tinuous moderators. In the case of the training interval, we

did not have enough information at our disposal; for exam-

ple, with respect to whether a break of 1 day between two

training sessions also meant that the training was at the

same time each day. Eventually, other potential moderators

can be defined. For example, the influence of motivation on

training outcomes has not yet been considered directly, but

we expect that motivation can be relevant for transfer

effects. Currently, information for the inclusion of this

moderator (values on instruments measuring motivation) is

missing in most of the studies considered in this review.

Directions for Future Research
We suggest that future research could address three

different promising lines of research.

1. Using training as a paradigm for working mem-
ory research. This meta-analysis has shown that general

executive attention that improves with training on one spe-

cific task is likely not the mechanism responsible for

changes in WMC. Rather, these improvements of executive

attention through training seem specific to a cognitive func-

tion (e.g., working memory). A refined training paradigm

could help to investigate the very process of change in

WMC more closely. After all, further establishing that

working memory can be improved by dynamically chang-

ing environmental demands would open up highly interest-

ing perspectives in several fields of cognitively oriented

educational research. Most probably, this will be a

theoretical perspective of orchestrated basic cognitive func-

tions in which WM plays an important role.

2. Research on the moderating role of basic cogni-
tive functioning in different learning environments. It

seems important to further validate the role of basic cogni-

tive functions, such as WM, shifting, or inhibition, in differ-

ent types of learning environments (in the classroom and

beyond). We clearly need more empirical research on the

question under which instructional circumstances learners

with weaker WMC, shifting, or inhibition capabilities are

disadvantaged. For example, students with lower levels of

basic cognitive functioning might be specifically disadvan-

taged in more taxing learning environments based on prob-

lem-solving (Hmelo-Silver, Duncan, & Chinn, 2007). For

these students, learning environments based of direct

instruction or highly scaffolded approaches such as

worked-out examples (Renkl, 2014) might pose fewer prob-

lems. Of interest, although there has been a widely recog-

nized discussion on the role of guidance in learning

environments (Kirschner, Sweller, & Clark, 2006), there

are hardly any systematic approaches to measure basic cog-

nitive functioning (e.g., shifting and inhibition) as modera-

tors of learning in differently guided learning environments.

3. Investigating the effects of different types of
learning environments on basic cognitive function-
ing. It seems not unlikely that, over time, different types

of learning environments might have different effects on

basic cognitive functioning. It seems more promising to

investigate ways to embed training of basic cognitive func-

tions in different types of learning environments or even in

a curriculum. Currently, we have only limited evidence

coming from research on young children that an embedded

training strategy might be effective (Diamond & Lee,

2011). For the development of domain-specific knowledge

and skills in older children and adults, there might well be a

negative relationship between optimally facilitating con-

ceptual and strategic progress in a domain, and further

improving basic cognitive functioning.

SUPPLEMENTAL MATERIAL

Supplemental data for this article can be accessed on the

publisher’s website.
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