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Short-term adaptive cognitive training based on the n-back task is reported to increase scores on
individual ability tests, but the key question ofwhether such increases generalize to the intelligence
construct is not clear. Here we evaluate fluid/abstract intelligence (Gf), crystallized/verbal
intelligence (Gc), working memory capacity (WMC), and attention control (ATT) using diverse
measures, with equivalent versions, for estimating any changes at the construct level after training.
Beginning with a sample of 169 participants, two groups of twenty-eight women each were
selected and matched for their general cognitive ability scores and demographic variables. Under
strict supervision in the laboratory, the training group completed an intensive adaptive training
program based on the n-back task (visual, auditory, and dual versions) across twenty-four sessions
distributed over twelve weeks. Results showed that this group had the expected systematic
improvements in n-back performance over time; this performance systematically correlated across
sessionswith Gf, Gc, andWMC, but notwith ATT. However, themain finding showedno significant
changes in the assessed psychological constructs for the training group as compared with the
control group. Nevertheless, post-hoc analyses suggested that specific tests and tasks tapping
visuospatial processing might be sensitive to training.
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1. Introduction

General intelligence (g) is defined by a broad ability for
reasoning, solving problems, and efficient learning (Gottfredson
et al., 1997). Hunt (1995, 2011) underscores the distinction
between fluid intelligence (Gf) and crystallized intelligence
(Gc), although these two broad abilities are related with g
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(Carroll, 1993, 2003;McGrew, 2009). Gc involves the intelligent
use of culturally rooted knowledge and skills (such as language
or math), whereas Gf requires abilities for solving novel and
abstract problems (Cattell, 1987). These latter abilities are the
main target of cognitive training programs.

It has been repeatedly demonstrated that tests' scores can be
increased (Neisser et al., 1996; Nisbett et al., 2012) but, is it
possible to improve cognitive ability? (Colom et al., 2010).
For obtaining convincing evidence, the training tools must
be substantially different to usual tests of cognitive ability.
Test specific skills can be improved by increased familiarity
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(te Nijenhuis, van Vianen, & van der Flier, 2007) but this is
hardly interesting. There are reports showing improvements in
intelligence, as assessed by standard tests, after training
information processing skills. Thus, for instance, Posner and
Rothbart (2007) trained children on a visual attention task
based on the management of conflict. The trained children
scored higher than a control group on a standard intelligence
battery. Also studying children, Irwing, Hamza, Khaleefa, and
Lynn (2008) reported large improvements in the Raven
Progressive Matrices Test in a group trained for several months
with the abacus (requiring the reliable preservation of interme-
diate calculations in working memory) when compared with a
non-trained group. Jaušovec and Jaušovec (2012) reported a
positive effect in the RAPM test afterworkingmemory training;
the change from the pretest to the posttest assessment was
equivalent to thirteen IQ points (d = .88) for their training
group, whereas it was null for an active control group. Digit
span scores were also substantially higher for the training
group (d = 0.81) than for the control group (d = 0.25). The
study by von Bastian and Oberauer (2013) concluded that
general reasoning ability can be improved byworkingmemory
training (self-administered at home). The positive effect was
also observed six months after ending the training program.
Further, training of specific working memory processes (stor-
age and processing, relational integration, or supervision) led to
transfer in specific cognitive factors.

Jaeggi, Buschkuehl, Jonides, and Perrig (2008) reported that
training in a challenging adaptive dual n-back task (tapping a
mixture of executive updating, working memory, and attention
skills) was related to better performance on a fluid intelligence
test compared to a passive control group. These results were
repeated in further studies: (a) training on the single n-back task
(either visual or verbal) showed similar positive effects over
performance on fluid intelligence tests (Jaeggi, Buschkuehl, Shah,
& Jonides, in press; Jaeggi et al., 2010) and (b) similar findings
were observed in a sample of children (Jaeggi, Buschkuehl,
Jonides, & Shah, 2011). However, the conclusion that n-back
training improves fluid intelligence is controversial. For instance,
Moody (2009) argued that improvements on the specific fluid
measure considered by Jaeggi et al. (2008) could be explained by
the strict time limit imposed for solving the less difficult items.
In his view, no challengewasmade over the participants' Gf, and,
therefore, observed changes may be fully explained by a speed
factor. From a broader perspective, Shipstead, Redick, and Engle
(2012) argued that these short-term training studies fail to really
increase abilities required by the working memory processing
system. In their view, published studies (1) generally rely on
single measures for measuring predicted intelligence changes
after training and (2) administer invalid measures of working
memory capacity. These authors note that awide variety of tasks
measuring the constructs of interest must be systematically
administered in order to avoid critiques related to task specificity
issues.

A study by Chooi and Thompson (2012) was aimed at over-
coming some of the reservations enumerated by Shipstead et al.
(2012) and used several measures of intelligence (crystallized-
verbal, spatial, and speed) for estimating changes after training
on the dual n-back task modeled from Jaeggi et al. (2008).
Working memory was measured by a single task (operation
span). They failed to find any effect of training on either
intelligence or working memory. Passive and active controls
were considered along with the training group, using two time
lengths (8 and 20 days) resulting in very small sample sizes for
the six analyzed groups (from9 to 23 participants). Importantly,
the n-back performance level achieved by the trained partici-
pants in the 20-day training period was well below the one
attained by the Jaeggi et al.'s sample.

Redick et al. (2012) reported a similar study. Fluid (six tests)
intelligence and crystallized (two tests) intelligence, along with
working memory (two tasks), multitasking (three tasks), and
processing speed (two tasks) were the measured constructs.
Training (N = 24), active (N = 29), and passive (N = 20)
control groups were analyzed. Very short versions of the
considered psychological tests were administered before,
during, and after the training stage. This study failed to find
any difference among the three groups, consistent with Chooi
and Thompson (2012). Surprisingly, Redick et al. failed to find
any practice effect across their three evaluations. Again, n-back
performance level achieved by the trained participants was
almost identical to the attained in Chooi and Thompson and
well below the reported by Jaeggi et al. (2008, 2010).

Recently, Stephenson and Halpern (2013) replicated the
Jaeggi et al.'s (2008, 2010) main findings. However, significant
gains were observed in two out of four fluid intelligence tests
(RAPM and BETA-Matrix Reasoning). Thus, for instance, after
the adaptive training program based on the dual n-back (N =
28) gainswere equivalent to (a) 13.3 IQ points (d = 0.89) in the
BETA-Matrix Reasoning (b) 9.9 IQ points (d = 0.66) in the
RAPM, (c) 8.4 IQ points (d = 0.56) in the WASI-Matrix
Reasoning, and (d) 5.2 IQ points (d = 0.35) in the Culture-Fair
Intelligence Test.

The theoretical framework for the present study is based on
the available evidence demonstrating a very high correlation
between intelligence and working memory at the latent
variable level (Colom, Rebollo, Palacios, Juan-Espinosa, &
Kyllonen, 2004; Oberauer, Schulze, Wilhelm, & Süb, 2005). The
comprehensive study by Martínez et al. (2011) is a recent
example considering twenty-four measures tapping eight
intelligence and cognitive factors (three measures for each
factor): fluid-abstract intelligence, crystallized-verbal intelli-
gence, and spatial intelligence, along with short-term memory,
working memory capacity, executive updating, attention, and
processing speed. Their main findings support the view that
fluid intelligence can be largely identified with basic short-term
storage processes tapped by working memory tasks and
executive updating. This was seen as quite consistent with
neuroimaging results showing that fluid intelligence shares
relevant brain structural (Colom, Jung, & Haier, 2007) and
functional (Gray, Chabris, & Braver, 2003) correlates with
working memory capacity. The large correlation between
intelligence and working memory at the latent variable level
suggests that they share substantial capacity limitations based
on the amount of information that can be reliably kept active in
the short-term, both within the working memory system or
during the reasoning processes required on intelligence tests
(Colom, Abad, Quiroga, Shih, & Flores-Mendoza, 2008; Colom,
Rebollo, Abad, & Shih, 2006; Halford, Cowan, & Andrews, 2007).

The proper testing of the prediction that improvements
in the working memory system (short-term storage and
executive updating) through adaptive cognitive training will
promote increments in fluid intelligence, mainly because their
common limitations for the reliable temporary storage of the
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relevant information will be boosted, requires straightforward
analyses going well beyond the level of specific measures, as
underscored by Shipstead et al. (2012). For that purpose, here
we administered several diverse intelligence and cognitive
measures (threemeasures for each psychological factor) before
and after completing a challenging cognitive training program
based on the adaptive n-back dual task firstly proposed by
Jaeggi et al. (2008).

The main prediction is that if adaptive working memory
training promotes skills relevant for the reliable temporary
storage of relevant information, then fluid intelligence and
working memory scores will be higher for the trained than for
the control group at the posttest evaluation. Further, (a) these
higher scores must be systematically observed for all Gf and
WMC specific tests and tasks, and (b) crystallized intelligence
and attention controlwill not be sensitive to training. Both fluid
intelligence and working memory require the reliable pre-
servation of the relevant information in the short-term, as
demonstrated by the seminal study by Carpenter, Just, and
Shell (1990). This is not the case for crystallized intelligence
and attention control, because Gc requires the recovery of the
relevant information from long-term memory and attention
control does not requires any short-term storage.

2. Method

2.1. Participants

One hundred and sixty nine psychology undergraduates
completed a battery of twelve intelligence tests and cognitive
tasks measuring fluid-abstract intelligence, crystallized-verbal
intelligence, working memory capacity, and attention control.
After computing a general index from the six intelligence tests,
two groups of twenty-eight femaleswere recruited for the study.
They were paid for their participation.1 Members of each group
were carefully matched for their general intelligence index, so
they were perfectly overlapped and represented a wide range of
scores. All participants were right handed, as assessed by the
Edinburgh Test (Oldfield, 1971). They also completed a set of
questions asking for medical or psychiatric disorders, as well as
substance intake. The recruitment process followed the Helsinki
guidelines (World Medical Association, 2008) and the local
ethics committee approved the study. Descriptive statistics for
the demographic variables and performance on the cognitive
measures for the two groups of participants (training and
control) can be seen in Appendix A (Table A.1).

2.2. Basic design

The collective psychological assessment for the pretest stage
was done from September 19 to October 14, 2011. Participants
were assessed in groups not greater than twenty-five. The data
obtained for the complete group (N = 169) were analyzed for
recruiting the training (N = 28) and control (N = 28) groups
based on the general index computed from the measures of
fluid intelligence and crystallized intelligence (Table A.1). The
adaptive cognitive training program began in November 14,
2011, remained active until February 17, 2012, and lasted for
1 200 € if assigned to the training group and 100 € if assigned to the
control group.
twelve weeks (with a break fromDecember 24, 2011 to January
9, 2012). The psychological assessment for the posttest was
done individually from February 20 to March 09 (intelligence
tests) and from March 12 to March 30 (cognitive tasks), 2012.

2.3. Psychological constructs

Intelligence and cognitive constructs were assessed by three
measures each. As noted above, fluid intelligence (Gf) requires
abstract problem solving abilities, whereas crystallized intelli-
gence (Gc) involves the mental manipulation of cultural
knowledge. Gf was measured by screening versions (odd
numbered items and even numbered items for the pretest and
posttest evaluations, respectively) of the Raven Advanced
Progressive Matrices Test (RAPM), the abstract reasoning
subtest from the Differential Aptitude Test (DAT-AR), and the
inductive reasoning subtest from the Primary Mental Abilities
Battery (PMA-R). Gc was measured by screening versions (odd
numbered items and even numbered items for the pretest and
posttest evaluations, respectively) of the verbal reasoning
subtest from the DAT (DAT-VR), the numerical reasoning
subtest from the DAT (DAT-NR), and the vocabulary subtest
from the PMA (PMA-V). Gf and Gcweremeasured by tests with
(PMA subtests) and without (RAPM and DAT subtests) highly
speeded constraints. Working memory capacity requires the
simultaneous processing and storage of varied amounts of
information. WMC was measured by the reading span, the
computation span, and the dot matrix tasks. Finally, attention
control was tapped by cognitive tasks based on the quick
management of conflict: verbal (vowel–consonant) and nu-
merical (odd–even) flanker tasks, along with the spatial (right–
left) Simon task. The working memory capacity and attention
control tasks were the same for the pretest and the posttest
sessions. A detailed description of these intelligence tests and
cognitive tasks can be found in Appendix A (Table A.2). Fig. 1
shows examples of the intelligence and cognitive tasks.

2.4. Cognitive training schedule

The framework for the cognitive training program followed
the guidelines reported by Jaeggi et al. (2008) but it was
re-programmed for Visual Basic (2008 Version). Nevertheless,
there were some differences: (a) the training began with four
sessions (weeks 1 and 2) with a visual adaptive n-back version
and four sessions (weeks 3 and 4) with an auditory adaptive
n-back version before facing the sixteen sessions of the adaptive
n-back dual program (weeks 5 to 12), and (b)while the training
program is usually completed in one month, here we extended
the training period to threemonths (12 weeks). Therewere two
training sessions per week lasting around 30 min each and they
took place under strict supervision in the laboratory. Partici-
pants worked within individual cabins and the experimenter
was always available for attending any request theymight have.
Data were analyzed every week for checking their progress at
both the individual and the group level. Participants received
systematic feedback regarding their performance. Further-
more, every two weeks, participants completed a motivation
questionnaire asking for their (a) involvementwith the task, (b)
perceived difficulty level, (c) perceived challenging of the task
levels, and (d) expectations for future achievement. At the end
of the training period, participants were asked with respect to



Fig. 1. Examples of intelligence items and cognitive tasks. Left panel shows example items for fluid intelligence (Gf) — Raven Advanced Progressive Matrices Test
(RAPM), abstract reasoning (DAT-AR), and inductive reasoning (PMA-R), and crystallized intelligence (Gc) — verbal reasoning (DAT-VR), vocabulary (PMA-V),
and numerical reasoning (DAT-NR). Right panel depicts examples for working memory capacity (reading span, computation span, and dot matrix) and attention
control (vowel–consonant, odd–even, and right–left).
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their general evaluation of the program. Using a rating scale
from0 to 10, average valueswere (a) 8.1 (range 8.0 to 8.2 across
sessions), (b) 7.9 (range 7.4 to 8.5 across sessions), (c) 8.0
(range 7.8 to 8.2 across sessions), and (d) 7 (range 6.5 to 7.7
across sessions).

The control group was passive. After the recruitment
process, members of this no-contact control group were invited
to follow their normal life as university students. As reasoned in
some of our previous research reports addressing the potential
effect of cognitive training, and according to the main theo-
retical framework, we were not interested in comparing
different types of training, but in the comparison between a
specific cognitive training and doing nothing beyond regular
life. The difference between passive vs. active controls is
relevant when two different treatments are compared. If the
issue is to compare participants doing physical exercise vs. not
doing any exercise, it is uninteresting to compare jogging and
body building, for example. Here, we are not contrasting the
effect of theoretically different training programs, but training
vs. not training (Colom et al., 2012; Martínez et al., in press).
Further, (a) Chooi and Thompson (2012) and Redick et al.
(2012) failed to find any difference between their active and
passive control groups using a closely similar approach, and (b)
the meta-analysis published by Klauer and Phye (2008) did not
observe any difference between no-contact and placebo groups.

2.5. Analyses

First, the achieved average n-back level was computed for
all visual, auditory, and dual training sessions. In addition,
correlations between intelligence/cognitive pretest scores
and individual differences in achieved n-back level across
sessions were computed.

Second, pretest and posttest scores on the two intelli-
gence factors (Gf and Gc) and the six intelligence tests were
transformed using item response theory (IRT) for equating
their level of difficulty, making them strictly comparable for
the training and control groups. These IRT calculations were
obtained from independent samples, as explained in full
detail in Appendix A.3. Shortly, we followed three steps:
(1) calibrating odd and even items in the same sample (for
obtaining IRT odd and even item parameters using the same
metric), (2) with item parameters fixed to those obtained in
the previous phase, we applied IRTPRO separately to the odd
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test and the even test, obtaining two conversion tables (one for
the odd part and one for the even part). Each conversion table
indicated what θ corresponds to each sum score in this part.
The same prior distribution for θ (m = 0; s = 1)was assumed
when computing the conversion table, and (3) conversion
tables were applied to the training and control groups for
obtaining IRT scores from sum scores.

We applied IRT because: (a) IRT provides better scaling
of individual differences relative to the raw score metric
(Embretson & Reise, 2000; Reise & Haviland, 2005). Classic
test theory assumes linear relationship between true and
observed test scores, and also, that precision is equal across
the ability range. IRT scaling takes into account non-linear
relationships between traits and observed scores, and the
known fact that the standard error differs across trait levels;
(b)when different forms are applied in pretest and the posttest
sessions, as in our case, IRT is an ideal tool for adjusting
differences in difficulty and precision of the administered
forms. Unlike classic testmodels, IRT can concurrently separate
both the effect of examinee's ability and item characteristics
(e.g., difficulty); (c) IRT has additional advantages for facilitat-
ing scores interpretation in terms of probability of successfully
solve one specific task for one specific score.

Finally, the training and control groupswere compared at the
constructs and at the measures levels. The main goal here is the
analysis at the construct level, but constructs are not homoge-
neous and, therefore, results at the measures level also deserve
inspection. Standardized changes were computed after the
following formula: (posttest − pretest) / SDpretest. These stan-
dardized changes were submitted to analyses of covariance
(ANCOVA) where the group was the independent variable, the
construct/measure was the dependent variable, and the covar-
iatewas the score at the pretest for the corresponding variable. A
p level of .05 (one-tailed) was considered for testing the results
(Jaeggi et al., 2008). Note that a post-hoc power analysis
(G*Power; Faul, Erdfelder, Lang, & Buchner, 2007) indicated
that we had sufficient power to detect a significant Group
(between-subjects) × Session (within-subjects) interaction, if it
was present in the transfer data. The power to detect a large
(f = .40) or medium (f =.25) effect was N .99, based on the
sample size and the use of the within-subjects correlation of
r = .84 (whichwas the largest correlation among the repeated
measures across all 12 transfer tasks). We also re-ran the
power analyses using the smallest correlation among repeated
measures of r = .14 (Verbal Flankers). In this case, the power
to detect a large or medium effect was N .80. For ANCOVA
analyses, the power was .84 for detecting a large effect size
(f = .40) and .45 for a medium (f = .25) effect size.

3. Results

Fig. 2 depicts results for the average n-back levels achieved
by the training group across the visual, auditory, and dual
sessions. Large improvementswere found for the three versions.
Indeed, the achieved final average level for the dual version
(5.13) was almost identical to that reported by Jaeggi et al.
(2008). These levels ranged from 3–4 to 9–10 back. Following
Chooi and Thompson (2012), we also obtained the percentage
of improvement for each condition (average achieved level in
the last session minus average level in the first session). The
result was divided by the level achieved in last session and
multiplied by 100. For the visual condition the improvement
was 41%, for the auditory condition it was 39%, and for the dual
condition it was 53%.

We also computed the correlation between pretest intelli-
gence/cognitive factors and achieved n-back levels across
the full range of training sessions (Appendix A.4 (Fig. A.4)).
Interestingly, (a) the correlations for fluid intelligence, crystal-
lized intelligence, and working memory capacity were
systematically statistically significant (above .40), whereas
for attention control they were not significant across sessions,
and (b) it is noteworthy that the correlation between fluid
intelligence and achieved n-back level on the dual version
increased across sessions, but this is not the case for crystallized
intelligence and working memory capacity.

Results for the changes observed from the pretest to the
posttest assessments will be firstly presented at the construct
level. Nevertheless, changes at the test levelwill be also analyzed
for providing a detailed picture of participants' performance. As
noted above, the analysis at the construct level is themain goal of
the present study, but constructs are heterogeneous and
therefore the inspection of results for their specific measures
may provide relevant knowledge.

3.1. Changes at the construct level

Fig. 3 depicts results for the considered constructs. Note that
IRT transformationswere the input data for fluid intelligence and
crystallized intelligence (Appendix A.3). Fluid intelligence (Gf)
increased for both groups from the pretest to the posttest; the
effect size (d) was 0.81 for the training group and 0.46 for the
control group. Crystallized intelligence (Gc) did not change from
the pretest to the posttest in both groups; the effect size (d) was
−0.03 for the training group and 0.07 for the control group.
Working memory increased for both groups from the pretest to
the posttest; the effect size (d) was 0.54 for the training group
and 0.41 for the control group. Finally, attention control
improvements for both groups from the pretest to the posttest
were small; the effect size (d)was 0.26 for the training group and
0.12 for the control group.

Fig. 4 depicts the computed standardized changes for the
results shown in Fig. 3. There are no significant differences
between the training and control groups for any construct
(except for fluid intelligence at a trend level, p = .06). Therefore,
the noted improvements of the training group in the adaptive
n-back program (Fig. 2) does not influence changes in the
assessed constructs.

3.2. Changes at the measures level

The standardized changes computed for the complete set of
measures are represented in Fig. 5 (left panel for the intelligence
tests and right panel for the cognitive tasks).

There were no significant differences between the training
and control groups on the measures of fluid intelligence,
although for the RAPM it was at a trend level (p = .06). The
training group showed a greater change for the DAT-AR,
although the difference between groups was not significant.
There was a large change for both groups in the highly speeded
Gf test (PMA-R) amounting to 1 SD.

With respect to crystallized intelligence measures, the
changes for the training and control groups were all small. In



Fig. 2. Average n-back level achieved (Y-axis) by the training group (N = 28) across the visual, auditory, and dual sessions. S = session.

Fig. 3. Scores in the pretest and posttest sessions for the training (N = 28) and control (N = 28) groups at the construct level. The values are recovered from
Table A.1. Values for fluid intelligence and crystallized intelligence are derived from the IRT transformations (Appendix A.3).
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addition, the difference between groups on the observed
standardized changes was not statistically significant.

The findings for working memory measures were interest-
ing. Firstly, there was a significant difference for the reading
span task between the training and control groups (p = .01)
favoring the former. Secondly, the difference for the dot matrix
task was also significant (p = .04) and it again favored the
training group. Thirdly, the difference in the computation span
task was not significant. Therefore, two out of three working
memory measures showed statistically significant changes
favorable to the training group.

Finally, two out of three attention control measures revealed
non-significant results. The changeswere generally small for the
training and control groups in the three attention control
measures. However, the difference for the spatial Simon task
was significant and it favored the training group (p = .01).
4. Discussion

The main finding is that the large improvements in the
challenging adaptive cognitive training program based on the
n-back task (Fig. 2) do not evoke greater changes than those
observed for a passive control group in fluid-abstract intelli-
gence and crystallized intelligence, or in working memory
capacity and attention control at the construct level. This
happens even when average n-back performance across the
training sessions shows significant correlations with crystal-
lized intelligence, working memory capacity, and especially,
fluid intelligence. This result conflicts with previous reports
supporting a positive effect of this short-term adaptive
cognitive training over fluid intelligence performance (Jaeggi
et al., 2008, 2010, 2011, in press; Stephenson & Halpern, 2013).
Fig. 4. Standardized change [posttest − pretest / SD at the pretest] of the trainin
intelligence, Gc = crystallized intelligence, WMC = working memory capacity, ATT
.043, [Gc] F(1,53) = .267; p = .30; η2 = .005, [WMC] F(1,53) = 1.088; p = .15; η
At the construct level, the findings reported here seem to be
consistent with Chooi and Thompson's (2012) and Redick et
al.'s (2012). Chooi and Thompson (2012) assessed intelligence
changes from the pretest to the posttest after training on the
adaptive n-back dual task measuring the constructs of verbal
intelligence, perceptual intelligence, and mental rotation,
taking the VPR model as a frame of reference (Johnson &
Bouchard, 2005). However, this study found decreased scores
at the posttest for verbal intelligence and perceptual intelli-
gence in the three tested groups (training, active control, and
passive control). For mental rotation, there were increments
for both control groups and hardly any change for the training
group. No changes were found for the RAPM test (Gf), the Mill
Hill test (Gc), and the operation span task (working memory)
across the three groups. Note that scores for the active and
passive control groups were almost identical for the assessed
psychological constructs, which contradicts Shipstead et al.'s
(2012) reservations with respect to the use of passive control
groups within this research context (see further discussions).

Redick et al. (2012) achieved similar conclusions. As
discussed above, this study assessed fluid intelligence, crystal-
lized intelligence, working memory, multitasking, and process-
ing speed. They failed to find any difference at the constructs or
at the measures levels among their trained, active, and passive
control groups. Further, contrary to what was found here,
Redick et al. (2012) report a lack of significant correlations
between average n-back performance and the measured
psychological constructs. Together with the low average
n-back performance achieved by their trained participants,
reservations can be raised regarding the straight comparison of
their findings and those observed in the present study.

We suggest that the studies by Chooi and Thompson (2012)
and Redick et al. (2012) may suffer measurement problems. It
g and control groups in the assessed psychological constructs (Gf = fluid
= attention control). ANCOVA results: [Gf] F(1,53) = 2.380; p = .06; η2 =
2 = .020, [ATT] F(1,53) = 1.429; p = .12; η2 = .026.



Fig. 5. Standardized change [posttest − pretest / SD at the pretest] of the training and control groups in the administered measures organized by tapped construct: Gf = fluid intelligence (RAPM = Raven Advanced
Progressive Matrices Test, DAT-AR = abstract reasoning, PMA-R = inductive reasoning); Gc = crystallized intelligence (DAT-VR = verbal reasoning, DAT-NR = numerical reasoning, PMA-V = vocabulary); WMC =
working memory capacity; ATT = attention control (verbal ATT = vowel–consonant, numerical ATT = odd–even, spatial ATT = right–left). ANCOVA results: [RAPM] F(1,53) = 2.340; p = .06; η2 = .042, [DAT-AR]
F(1,53) = .468; p = .25; η2 = .009, [PMA-R] F(1,53) = .304; p = .29; η2 = .006, [DAT-VR] F(1,53) = 1.162; p = .14; η2 = .021, [DAT-NR] F(1,53) = .538; p = .23; η2 = .010, [PMA-V] F(1,53) = .133; p = .36; η2 =
.002, [Reading span] F(1,53) = 5.067; p = .01; η2 = .087, [Computation span] F(1,53) = .976; p = .16; η2 = .018, [Dot matrix] F(1,53) = 2.854; p = .04; η2 = .051, [V-ATT] F(1,53) = .039; p = .44; η2 = .001, [N-ATT]
F(1,53) = .019; p = .44; η2 = .000, [S-ATT] F(1,53) = 6.257; p = .007; η2 = .106.
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is really surprising to see no changes at all across three
measurement time points (Redick et al., 2012) or even worse
performance after training (Chooi & Thompson, 2012; Redick
et al., 2012). As noted by Jaeggi et al. (in press), splitting
standard tests in half or thirds might reduce reliability and
validity which, in turn, may lead to a loose in sensitivity.

Re-test or practice effects are well-known and largely
documented. Back in 1930s, Anastasi (1934) published a
seminal study showing gains ranging from d = 0.2 to d = 1.1
by the mere effect of practice. Reeve and Lam (2005) reported
practice effects ranging from d = 0 to d = .85. Colom et al.
(2010) found changes ranging from d = 0 to d = 0.73. This is
what Jensen (1998) concludes with respect to these re-test or
practice effects: “when the same test, or an equivalent or
parallel form of the test, is administered to persons on two
separate occasions, there is usually an increase in scores, called a
‘practice effect’. Typically, the initial gain amounts to about three
to six points on the IQ scale” (pages 314–315). Failing to find
this expected practice effect seems odd. Nevertheless, perhaps
the set of items administered in their re-test sessionsweremore
difficult than those administered in the pretest sessions. This is
suggested by Chooi and Thompson (page 537) with respect to
their verbal fluency and perceptual speed tests, but it is unlikely
applicable to the Redick et al. (2012) study because participants
were re-tested on two occasions.

A close look at the findings reported in the present study
reveals several noteworthy issues. First, the standardized
change in fluid intelligence for the training group is almost
twice as big as that observed for the control group (Figs. 3
and 4). As reported, the computed analysis of covariance
approached the fixed level for statistical significance. The
inspection of the specific measures of fluid intelligence is also
revealing (Fig. 5). The screening versions of the RAPM test were
administered with a very liberal time limit, so the reservation
raised by Moody (2009) in this regard seems inappropriate for
the present study. The change for the training groupwas greater
than for the control group (again significant at a trend level). The
training group also showed a greater change in the screening
version of the abstract reasoning (AR) subtest from the DAT
battery (also administered with a liberal time limit). For the
highly speeded inductive reasoning (R) subtest from the PMA,
both groups showed a large (and identical) change from the
pretest to the posttest.

Second, Shipstead et al. (2012) raised reasonable doubts
regarding the use of passive control groups in these cognitive
training studies. However, the results reported herewith respect
to crystallized intelligence suggest that the type of factors
enumerated by these researchers (Hawthorne effect, etc.) were
not operative in the present study. The standardized changes for
the control group in the Gc construct and in their specific
measures are parallel to those that were observed for the
training group. This is also consistent with the results reported
by Chooi and Thompson (2012) and Redick et al. (2012) as
discussed above. Note finally that these types of factors aremuch
less relevant than generally assumed (Adair, Sharpe, & Huynh,
1989; Kompier, 2006; Wickstrom & Bendix, 2000).

Third, Jaeggi et al. (2008) failed to find changes in aworking
memory measure (reading span) after the application of the
cognitive training on the adaptive dual n-back (although,
interestingly, they found significant changes for digit span, a
pure short-term memory measure). The same lack of change
was noted by Chooi and Thompson (2012) and by Jaeggi et al.
(2010) for the operation span task, as well as by Redick et al.
(2012) for the symmetry and running span tasks. Here, we
have shown that at the construct level, the standardized
improvement is almost the same for the training and control
groups. However, two out of three working memory measures
showed statistically significant differences between groups.
Dot matrix and reading span improvements were substantially
higher for the training group than for the control group. This
result is reversed for the computation span task. Note that this
task parallels the operation span task and our results are
consistent with those found by Jaeggi et al. (2010) for their
passive control group. Averaging the two types of results in the
present study produces a null difference at the construct level
for working memory capacity, which reinforces the caution
note regarding construct heterogeneity.

Finally, for attention control the general findings were
similar to those found for crystallized intelligence: there was a
very small standardized change for both groups at the construct
level and this also was observed for the specific attention
measures. The exceptionwas for spatial attention, for which the
training group showed a standardized change significantly
different to the change observed for the control group.

Taken together, the results for the twelve measures admin-
istered at the pretest and posttest sessions suggest that the
cognitive intervention used here may enhance visuospatial
processing (also consistent with Jaeggi et al., in press). The
visuospatial fluid measures (RAPM and abstract reasoning —

DAT-AR), along with spatial working memory (dot matrix), and
spatial attention control (Simon task) showed the greatest
difference between the training and control groups (Fig. 5)
favoring the former. This observation is reinforced by the
negative results for the crystallized-verbal measures, computa-
tion span (working memory), and the verbal and numerical
attention control tasks. The reading span task seems like an
exception to this general pattern. However, it should be noted
that there is a clear spatial requirement for thisworkingmemory
task (see Appendix A.2): participants must recall the displayed
letters (secondary task) according to their ‘position’ in the
alphabet ignoring their serial order in the sequence. Further, the
auditory n-back condition was based on the updating of the set
of letters and thismight have some positive specific impact here.

The meta-analysis reported by Melby-Lervåg and Hulme
(2012) supports the positive result for these visuospatial
processing skills. These researchers analyzed twenty-three
studies finding reliable short-term and specific increments in
working memory skills after cognitive training. Note also that
the meta-analyses published by Hindin and Zelinski (2012)
andUttal et al. (2013) found small/mediumpositive effect sizes
for cognitive training in terms of improvement in non-trained
domains. Results reported by Rudebeck, Bor, Ormond, O'Reilly,
and Lee (2012) and von Bastian and Oberauer (2013) are also
consistent with the findings reported here.

The study by Stephenson and Halpern (2013) deserves a
special comment. As noted at the Introduction section, Jaeggi
et al.'s (2008, 2010) main findings were replicated by these
researchers. Nevertheless, significant improvements in fluid
intelligence tests were observed after the visuospatial short-
term memory (STM) training program (in addition to those
observed for the dual n-back training program). This led to the
conclusion that “STM training had an effect because the STM
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training enhanced the shared short-term storage component
that influences Gf. The constructs STM, WMC, executive
functioning, attention, and Gf do have a common factor:
short-termstorage capacity. Perhaps,what the cognitive training
is truly doing is expanding participants' limited capacity that all
of the constructs have in common” (page 354). This nicely fits
the main theoretical background framing the present study,
namely, both fluid intelligence and working memory capacity
require the reliable preservation of the relevant information in
the short-term (Colom et al., 2006, 2008; Martínez et al., 2011).
If adaptive working memory/short-term memory training
promotes skills relevant for the reliable temporary storage of
relevant information, then fluid intelligence and working
memory capacity scores will be higher for a trained than for a
control group. Indeed, (a) the recent report by Jaeggi et al.
(in press) suggests that executive updating processes may
support the relationships among these constructs and (b)
Martínez et al. (2011) demonstrated a near-perfect corre-
lation, at the latent variable level, among short-term
Table A.1
Descriptive statistics for the demographic variables and performance on the cogniti
Item Response Theory scores. SD = standard deviation.

Training group (N = 28)

Mean IRT-mean SD

Age 18.04 0.9
General intelligence 101.00 16.4

Pretest
Gf 31.89 100.13 7.09

RAPM 11.82 100.88 2.65
DAT-AR 11.32 98.77 3.53
PMA-R 8.75 100.65 3.00

Gc 38.25 100.24 8.81
DAT-VR 13.14 101.85 3.42
DAT-NR 7.32 96.68 3.01
PMA-V 17.79 102.04 4.13

Working memory 245.04 26.67
Reading span 128.50 14.58
Computation span 63.50 14.54
Dot matrix 53.04 4.60

Attention 43.33 24.65
Verbal 59.00 36.80
Numerical 37.39 37.92
Spatial 33.61 48.37

Posttest
Gf 37.25 111.45 6.23

RAPM 11.79 104.34 2.27
DAT_AR 13.64 106.39 3.30
PMA_R 11.82 116.25 2.21

Gc 35.68 99.84 6.22
DAT-VR 12.32 98.31 2.74
DAT-NR 8.82 100.39 2.68
PMA-V 14.54 100.91 2.76

Working memory 258.93 24.59
Reading span 132.82 10.51
Computation span 67.46 14.04
Dot matrix 58.64 5.14

Attention 38.08 15.22
Verbal 50.43 22.87
Numerical 36.50 35.91
Spatial 27.32 20.79

Appendix A

A1.
memory, executive updating, working memory, and fluid
intelligence.

In closing, the main conclusion is that the short-term
challenging adaptive cognitive training based on the n-back
task does not increase performance in fluid intelligence at the
construct level. Nevertheless, post-hoc analyses done at the
measures level suggest further research to determine if the
administered cognitive training may enhance visuospatial
processing skills.

Acknowledgments

This research was supported by Grant PSI2010-20364
(Ministerio de Ciencia e Innovación, Spain). FJR is also
supported by BES-2011-043527 (Ministerio de Ciencia
e Innovación, Spain). KM is also supported by
AP2008-00433 (Ministerio de Educación, Spain). MB
was funded by grant “Alianza 4 Universidades” program
(A4U-4-2011).
ve measures for the two groups of participants (training and control). IRT =

Control group (N = 28)

IRT-SD Mean IRT-mean SD IRT-SD

18.2 1.2
101.00 16.00

14.37 31.93 99.87 7.67 15.87
14.04 11.54 99.12 2.97 16.11
14.67 11.86 101.23 3.62 15.49
15.61 8.54 99.35 2.78 14.63
16.54 37.71 99.76 7.55 13.59
16.26 12.39 98.15 3.01 13.67
15.40 8.61 103.32 2.78 14.09
15.33 16.71 97.96 4.02 14.65

231.32 35.12
119.36 21.02
60.04 17.08
51.93 7.42
47.29 22.54
57.71 40.39
47.54 36.26
36.61 38.45

13.45 35.46 107.55 8.26 17.48
12.27 10.64 98.33 3.25 17.82
14.27 13.36 105.42 4.00 17.05
13.20 11.46 114.03 2.32 13.37
12.51 36.00 100.81 7.42 14.74
12.87 12.57 99.69 3.47 16.28
13.79 9.18 102.28 3.07 15.72
12.27 14.25 99.94 3.87 16.92

245.14 31.60
121.07 19.96
68.21 14.54
55.86 6.92
44.68 21.31
49.21 19.27
41.29 36.41
43.54 28.26
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A.2
Table A.2

Detailed description of intelligence tests and cognitive tasks administered in the present study.

Tests/tasks Description

Fluid-abstract intelligence (Gf) evaluates the achieved complexity level in problems at which previous knowledge is useless.
RAPM The RAPM comprises a matrix figure with three rows and three columns. Among eight possible alternatives

the one completing the 3 × 3 matrix figure must be chosen. The screening version comprising odd items
only was administered in the pretest, whereas the even items were administered in the posttest.

DAT-AR DAT-AR is a series test based on abstract figures. Successive figures follow a given rule, so the one continuing
the series must be chosen from several alternatives. The screening version comprising odd items only was
administered in the pretest, whereas the even items were administered in the posttest.

PMA-R PMA-R comprises letter series items. The rule (or rules) underlying a given sequence must be extracted for
selecting the correct alternative. The screening version comprising odd items only was administered in the
pretest, whereas the even items were administered in the posttest.

Crystallized-verbal intelligence (Gc) is supported by ability to solve academic subjects such as reading and math.
DAT-VR DAT-VR is based on sentences stated like an analogy. The first and last words from the sentence are missing,

and a pair of words completing the sentence must be selected. The screening version comprising odd items
only was administered in the pretest, whereas the even items were administered in the posttest.

DAT-NR DAT-NR consists of quantitative reasoning problems. The screening version comprising odd items only was
administered in the pretest, whereas the even items were administered in the posttest.

PMA-V PMA-V is a synonym test based on the meaning of words that must be evaluated against a given model word.
The screening version comprising odd items only was administered in the pretest, whereas the even items
were administered in the posttest.

Working memory capacity (WMC) captures the ability for temporarily store varied amounts of information while solving a concurrent processing
requirement (the score for the WMC tasks is the number of hits in the verification and recalling tasks).
Reading span In the reading span task, participants verify if a set of sentences sequentially displayed make or make no sense.

Each display includes a sentence and a to-be remembered capital letter. Sentences are 10–15 words long. At the
end of a given set, participants recall, according to their position in the alphabet and irrespective of their serial
order, each letter from the set. Set sizes range from 3 to 7 sentence/letter pairs per trial, for a total of 12 trials
(5 levels × 3 trials = 15 trials total). Difficulty levels were randomly presented.

Computation span The computation span task includes a verification task and a recall task. 6 s are allowed to see the math
equation without a time limit for verifying its accuracy. The displayed solution, irrespective of its accuracy, must
be serially remembered at the end of a given set. Each math equation includes two operations using digits from
1 to 10. The solutions are always single-digit numbers. Trials range from three to seven equations/solutions
(5 levels × 3 trials each = 15 trials total). Difficulty levels were randomly presented.

Dot matrix In the dot matrix task, a matrix equation must be verified and a dot location displayed in a five × five grid must
be retained. The matrix equation is presented during a maximum of 4.5 s for adding or subtracting simple line
drawings. Once the response is given, the grid comprising the to-be remembered dot is displayed for 1.5 s.
After a given set of equation–grid pairs, the grid spaces that contained dots must be recalled clicking with the
mouse on an empty grid. Trials increase in size from three to five equations and dots (3 levels × 3 trials =
9 trials total). Difficulty levels were randomly presented.

Attention is a cognitive function for focusing available mental resources and here we consider the control of automatic responses (inhibition).
[The compatibility effect (reaction time for the incompatible trials minus reaction time for the compatible trials) was the dependent measure].
Attention control Attention control is measured here by means of verbal and quantitative versions of the flanker task and a version

of the Simon task. The verbal and quantitative tasks require deciding, as fast as possible, if the letter/digit presented
in the center of a set of three letters/digits is vowel/odd or consonant/even. The target (e.g. vowel/odd) can be
surrounded by compatible (e.g. vowel/odd) or incompatible (e.g. consonant/even) letters/digits. The spatial
task requires deciding if an arrow (horizontally depicted) points to the left or to the right of a fixation point. The
target arrow pointing to a given direction (e.g. to the left) can be presented at the left (e.g. compatible) or at the
right (e.g. incompatible) of the fixation point. There are a total of 32 practice trials and 80 experimental trials.
Half of the trials are compatible and they are randomly presented across the entire session.

Note: Four out of six intelligence tests were applied without severe time constraints. For the RAPM, there was more than 1 min per item (20 min for 18 items).
For DAT-AR, DAT-NR and DAT-VR, there were approximately 30 s per item (10 min for 20 items). For the speeded tests (PMA-R and PMA-V), there were between
5 and 12 s per item (PMA-R: 3 min for 15 items and PMA-V: 2 min for 25 items).
A.3. Application of item response theory (IRT) for equating the
difficulty levels of pretest and posttest measures of intelligence

A.3.1. Rationale
Analyzing raw or composite scores, we observed that for

some tests (especially crystallized measures) performance
decreased in the posttest. We reasoned that this unexpected
trend may result from differences in the difficulty level of the
administered items in the pretest (odd items) and posttest (even
items) sessions. Further, we thought that some positive changes
may be attributed to these differences in difficulty. We checked
and confirmed this possibility analyzing several comparable
samples that completed the full versions of the tests adminis-
tered in the present study. Results are shown in Table A.3.1.

Mean differences between the odd and even items were
significant (p b 0.001 for all the tests, excluding the DAT-VR)
which implies that pretest (odd) and posttest (even) scores
must not be directly compared. For fixing this problem we
applied an item response theory (IRT) scoring procedure. In
item response theory, the ability (called θ) is estimated as the
trait that maximizes the likelihood of the response pattern.
As a result, IRTmodelsmayproduce pretest and posttest θ scores
that are more independent of the particular set of administered
items (invariance property; Hambleton & Swaminathan, 1985).



Table A.3.1
Mean (SD) and statistical test for differences between scores in odd and even items.

N Odd Even t(gl); p α Coefficient

Odd Even Total

Gc
DAT-VR 416 13.25 (3.29) 13.12 (3.05) t(415) = 1.03; p = .302 .703 .634 .802
DAT-NR 195 9.03 (3.40) 9.77 (3.49) t(194) = −4.95; p b .001 .704 .755 .852
PMA-V 325 16.35 (3.47) 13.49 (2.75) t(324) = 22.91; p b .001 .782 .655 .847

Gf
RAPM 327 11.98 (2.83) 11.28 (2.80) t(326) = 5.49; p b .001 .654 .660 .795
DAT-AR 327 12.87 (2.80) 13.43 (3.70) t(326) = −4.11; p b .001 .765 .775 .871
PMA-R 327 9.34 (2.63) 9.64 (2.64) t(326) = −3.94; p b .001 .725 .776 .868

Fig. A.3.1. Probability of scoring k (k: 0, 1, 2 and 3) for the RAPM first odd
parcel (sum of correct responses to the items 1, 13, and 25).
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One typical example of IRT scoring is a computerized adaptive
test, in which although each examinee receive a different set of
items (fitted in difficulty to their observed performance) θ scores
are estimated in the same metric.

Here, we applied item response theory to parcel scores
instead of doing so for the specific items. Analyses revealed that
the factorial structure for the items was bidimensional due to
time constraints (the last item in the test loaded in a second
factor that may be interpreted as a “speed factor”). Application
of item response theory requires unidimensionality. However,
Reckase, Ackerman, and Carlson (1988)have shown that sets of
items that measure the same composite of abilities may meet
the unidimensionality assumption. In our case, item parcels
were constructed tomeasure the same composite of power and
speed abilities. Then, parcels were treated as unidimensional
polytomous items in the analysis. One additional advantage of
item parceling is that the number of variables is reduced.

A.3.2. Method

A.3.2.1. Calibration samples. For applying IRT scoring to the data
obtained in the present study, four independent samples were
analyzed for item parameter calibration (N = 416, for cali-
brating the DAT-VR; N = 195 for DAT-NR; N = 327 for RAPM,
DAT-AR, and PMA-R; N = 325 for PMA-V). The analyzed
sampleswere strictly comparable (university undergraduates).

A.3.2.2. Item parceling. As noted above, specific items were
grouped in parcels. Odd and even items were parceled
separately. These parcels balance power and speed in the
same way. For example, for the DAT-NR test, the 20 odd items
were sequentially assigned to the four five-item parcels (1st
odd item to the first facet, 2nd odd item to the second facet, 3th
odd item to the third facet, 4th odd item to the fourth facet, 5th
odd item to the first facet, and so on). Thus, resulting parcels
are “unidimensional” (although the measured factor will be a
balanced composite of power and speed). The numbers of
five-item parcels were: 10 (PMA-V), 8 (DAT-VR, DAT-NR and
DAT-AR), and 6 (PMA-R). For the RAPM, 12 three-item parcels
were constructed.

A.3.2.3. Unidimensionality and local independence. Before apply-
ing the IRT model, unidimensionality and local independence
assumptions were tested. Fit of the unidimensional models was
assessed using the root mean square error of approximation
(RMSEA) and the comparative fit index (CFI). Values close to
.95 for CFI and below .06 for RMSEA indicate a good fit (Hu &
Bentler, 1999). Polychoric correlations were analyzed using
weighted least squares with adjustments for the mean and
variance (WLSMV) estimator in MPLUS 7 (Muthén & Muthén,
2012). We further examined the percentage of variance
explained by the first factor (at least 20% is desirable) and
item loadings (loadings larger than .20 are desirable). The Scree
test was inspected as a complementary tool. For assessing local
dependence between items, the residual correlation matrix
was inspected. High residuals (e.g., larger than 0.2) or high
Modification Indices may indicate a local dependence problem
(Reeve, Hays, Bjorner, et al., 2009).

A.3.2.4. Item response theory calibration. The polytomous graded
response model (Samejima, 1969) was fitted to the data with
the IRTPRO 2.1 program (Cai, du Toit, & Thissen, 2011).
Applying this model assumes that the probability of scoring k
or larger on a parcel, Xj, is an increasing function of θ and
follows the logistic model:

P
�
X j≥kjθ� ¼ 1

1þ exp −aj θ−bjk
� �� �



Table A.3.2
Summed scores to θ scores conversion tables for odd and even parts of the
RAPM.

Odd part conversion table Even part conversion table

Summed score θ Summed score θ

0 −3.528 0 −3.395
1 −3.191 1 −3.040
2 −2.860 2 −2.696
3 −2.539 3 −2.370
4 −2.230 4 −2.062
5 −1.934 5 −1.769
6 −1.648 6 −1.485
7 −1.370 7 −1.207
8 −1.097 8 −0.930
9 −0.826 9 −0.654
10 −0.556 10 −0.378
11 −0.286 11 −0.101
12 −0.013 12 0.183
13 0.265 13 0.477
14 0.553 14 0.787
15 0.858 15 1.119
16 1.189 16 1.479
17 1.555 17 1.880
18 1.967 18 2.280
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where aj is the discrimination parameter and bjk are the
extremity parameters that depends on k (bj1 ≤ bj2 … ≤ bjK − 1,
being K the maximum score). The probability of scoring k is
obtained as a difference:

P
�
X j ¼ k

��θ� ¼ P
�
X j≥k

��θ�−P
�
X j≥kþ 1

��θ�:

Fig. A.3.1 plots the probability of scoring k as function of θ
for the first parcel of the RAPM. The lower the ability, the
larger is the probability of scoring higher in the parcel. In
IRTPRO, maximum marginal likelihood estimation with an
EM algorithm (Bock and Aitkin, 1981) was used to estimate
IRT item and person parameters for unidimensional models.

Goodness of fit of item response models was checked using
the computer macro, IRTFIT (Bjorner, Smith, Stone, & Sun,
2007).We compute G*2 statistics for each item. These statistics
compare expected and observed frequencies of item category
responses for various levels of θ and quantify the differences
between expected and observed responses. Significance levels
are obtained by aMonte Carlo re-sampling procedure (Stone &
Zhang, 2003).
Table A.3.3
Goodness of fit for unidimensional models.

One factor

RMSEA CFI %
variance

Lowest
loading

Gc
DAT-VR .035 .992 26 .411
DAT-NR .058 .992 34 .377
PMA-V .067 .987 44 .516

Gf
RAPM .046 .965 30 .451
DAT-AR .034 .997 36 .674
PMA-R .073 .996 35 .789
A.3.2.5. Summed-score expected a posteriori estimates. Summed
score to θ scores conversion tables were obtained separately for
odd and even parts of each test, using obtained item parameter
estimates. These tables were used to obtain summed-score
expected a posteriori estimates (Cai, Du Toit, & Thissen, 2011; p.
160). One SSEAP estimate score is the expected θ for one
obtained summed-score S [E(θ|S)]. One advantage of these IRT
estimates is that they do not require to know the pattern of
item responses since we only need the summed score to obtain
θ (Thissen & Wainer, 2001).

The conversion table was used to obtain θ estimates for
participants of the present study. One example of conversion
table for the RAPM is shown in Table A.3.2.

Table A.3.2 shows that the same summed score implies a
larger SSEAP θ score (because the even part of the RAPM is
more difficult than the odd part).
A.3.3. Results

A.3.3.1. IRT assumptions: unidimensionality and local indepen-
dence. Goodness of fit indexes for the unidimensional models
are shown in Table A.3.3. Unidimensionality and local
independence was supported for all tests. CFI values were
larger than 0.95 (between 0.965 and 0.997). Likewise, RMSEA
values are lower than 0.06 for four scales (DAT-VR, DAT-NR,
RAPM, and DAT-AR) and lower than 0.08 for the remaining
(PMA-V and PMA-R), suggesting a reasonable fit for the
unidimensional model. Furthermore, the Scree test supported
the one-factor solution and percentages of variance accounted
for by the first factor varied between 26% and 44% depending
on the scale. Finally, examination of the residual correlations
indicated very minor local dependence (residuals were not
greater than 0.15). For DAT-VR, DAT-AR, PMA-R, and RAPM,
only 5% of the residuals were greater than .10.
A.3.3.2. IRT calibration and fit. No itemswere found tomisfit the
GRM(p N 0.01). Range and average probability values for theG*2

statistics are shown in Table A.3.3. Fig. A.3.2 shows the summed
score to θ scores conversion figures for odd and even parts of
each test. As can be seen, the highest correction in the IRT scoring
is carried out for the PMA-V test, but there are non-negligible
corrections forDAT-NRandRAPM. For PMA-V andRAPM, correct
responses are more positively weighted in the (more difficult)
part (even items), whereas for the DAT-NR the correct responses
are more positively weighted in the odd items.
GRM

Residual
N .1

Largest
residual

Range
P (G*2)

Average
p (G*2)

4% − .102 .44–.91 .66
7% − .138 .30–.97 .74
7% − .136 .07–.88 .38

6% − .145 .21–.94 .59
0% .087 .15–.93 .49
0% − .057 .04–.82 .45
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Fig. A.3.2. Summed score to θ scores conversion figures for odd and even parts of each test. In the top panel, from left to right (DAT-VR, DAT-NR and PMA-V). In
the bottom panel, from left to right (RAPM, DAT-AR and PMA-R).

A.4

Fig. A.4. Correlation between pretest intelligence/cognitive factors and achieved n-back levels across the full range of training sessions.
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