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Study 1 investigated whether the strength of correlation between latent variables representing
working memory capacity (WMC) and fluid intelligence (Gf) depends on the time allowed to
work on an intelligence test. When the half recommended time was given to fulfill two Gf tests,
WMC and Gf were statistically indistinguishable, indicating that working memory and fluid
intelligence are fully isomorphic constructs. However, when virtually no time limit was applied,
WMC explained only 38% of variance in Gf. Further analyses suggested that only the latter testing
conditions allowed low-capacity participants for relational learning during test taking, which
allowed them to reduce their distance to high-capacity people. Study 2 corroborated the
moderate value of WM–Gf correlation in untimed intelligence testing with a larger number of Gf
and WM tasks, as well as showed that the indices of learning in a novel test of relation discovery
predict significant amount of Gf variance. In sum, the research suggests that fluid reasoning can be
differently related toWMC depending on the time pressure during Gf testing, and it also indicates
that learning abstract relational representations may be an important component of unspeeded
intelligence, but barely takes place during speeded testing.
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1. Introduction

For more than a century (Binet, 1903; Galton, 1883;
Spearman, 1904), the nature of general intelligence (g factor),
the theoretical construct reflecting vast interindividual variabil-
ity but high intraindividual consistency in coping with diverse
cognitive tasks, has been one of the central research problems of
psychology and neuroscience. Its importance is highlighted by
the fact that g has been found to strongly predict educational,
professional, and personal success (or lack of it) in everyday life
(e.g., Deary & Der, 2005; Gottfredson, 1997; Sternberg, 1996).
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A crucial finding in research on the structure of human
intellect (e.g., Cattell, 1971; Colom, Rebollo, Palacios, Juan-
Espinosa, & Kyllonen, 2004; Gustaffson, 1984; Süß, Oberauer,
Wittmann, Wilhelm, & Schulze, 2002) is that g factor seems
to rely to a great extent on fluid intelligence (Gf factor, also
referred to as fluid ability, reasoning ability, or fluid reasoning).
Gf reflects the ability to use abstract relational reasoning in order
to solve novel problems, in which prior experience and learned
knowledge are of little use. Great efforts have been devoted to
the identification of the neuronal and cognitive mechanisms
which determine scores on Gf tests, including the well-known
Raven's Advanced ProgressiveMatrices test (Raven, 1962; Raven
for short). Apart from fulfilling the scientific goal of explaining
the nature of human intelligence, such a finding could also
provide researchers with methods for increasing fluid ability
(Jaeggi et al., 2010; Klingberg, 2010), which would be espe-
cially desirable for the compensation of cognitive deficits in
some groups of people, like thementally deteriorated (Holmes,
Gathercole, & Dunning, 2009) or ADHD children (Klingberg,
Forssberg, & Westerberg, 2002) as well as healthy aging per-
sons (Schmiedek, Lövdén, & Lindenberger, 2010).
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So far, the most important conclusion drawn from the
research on the neurocognitive basis of fluid intelligence shows
that the capacity of working memory (WM) is its strongest
predictor. WM denotes processes and mechanisms responsible
for the active maintenance and transformation of information
crucial for the current goal/task/operation, occurring within a
time scale of several seconds (Baddeley, 2007). WM is usually
assessed with tasks requiring the encoding, storage, and recall
or recognition of stimuli. WM capacity (WMC) has been op-
erationalized as the direct number of items that a person can
reproduce (Engle & Kane, 2004), or the indirectly estimated
number of items that one is presumed to keep inWM (Rouder,
Morey, Morey, & Cowan, 2011). The most surprising finding
concerningWMC is the fact that, most probably, humanWM is
able to reliably store in parallel only a few items at best. Average
capacity has been estimated to be four items (Luck & Vogel,
1997), and it seems to vary in people from two to six items
(Cowan, 2001). Early studies assumed that proper estimation of
WMC has to require some form of concurrent processing (i.e.,
complex span tasks; Engle & Kane, 2004), but recently it has
been suggested that tasks without any processing component
(i.e., simple span or short-term memory tasks; STM tasks) are
also excellentmeasures ofWMCaswell as good predictors of Gf
(e.g., Colom, Abad, Quiroga, Shih, & Flores-Mendoza, 2008;
Cowan, Fristoe, Elliott, Brunner, & Saults, 2006; Oberauer, 2005;
Unsworth & Engle, 2007). Due to the possibility of significant
measurement errors and task-specific variance reflected by
WM scores, WMC is usually not derived from a singleWM task,
but instead is assessed on the basis of scores from several WM
tasks. The strength of correlation between Gf and WMC is
usually estimated on the latent variable level, with the use of
confirmatory factor analysis (CFA) and/or structural equation
modeling (SEM).

1.1. The strength of the Gf–WM relation and its explanations

Many studies have investigated the precise strength of the
relation between Gf and WMC. The results of most of these
studies indicate that both constructs are at least moderately
correlated, with rs usually falling in the .30–.80 range (e.g.,
Ackerman, Beier, & Boyle, 2005; Buehner, Krumm, Ziegler, &
Pluecken, 2006; Conway, Cowan, Bunting, Therriault, &
Minkoff, 2002; Engle, Tuholski, Laughlin, & Conway, 1999;
Friedman et al., 2006; Kane et al., 2004; Kaufman, DeYoung,
Gray, Brown, & Mackintosh, 2009; Shelton, Elliott, Matthews,
Hill, & Gouvier, 2010; Unsworth, 2010; Unsworth, Brewer, &
Spillers, 2009; Unsworth, Spillers, & Brewer, 2010; Unsworth,
Miller et al., 2009).

The lower-levelmechanisms underlying the variance shared
by the Gf and WMC latent variables have been hotly debated.
One of the proposals suggested that both variables can be
explained by the differences in mental speed, for example
assessed with simple perceptual-motor tasks involving stimuli
comparison (for reviews see Jensen, 2006; Sheppard & Vernon,
2008). Such an explanation seems to be valid with regard to Gf
tests administered under severe time constraints, in which the
speed of mental operations may determine if a participant is
able to attempt all Gf test items or not (Wilhelm & Schultze,
2002), and so the strong intercorrelation of Gf and mental
speed can simply be attributed to the shared method variance.
However, mental speed indices also seem to correlate with
scores on unspeeded (i.e., power) tests (Jensen, 2006). Another
explanation for the WM–Gf link pertains to the sheer storage
capacity of the active and highly accessible memory buffer
(called primary memory or the focus of attention). Individual
Gf level has been related to the number of elements (Colom et
al., 2008; Cowan et al., 2006), the number of temporary bind-
ings among elements (Oberauer, Süß, Wilhelm, & Sander,
2007), or the number of variables within a relation describing
elements (Halford, Cowan, & Andrews, 2007) that such a buffer
can simultaneously maintain and/or process. Evidence for the
contribution to the WMC and Gf of both mental speed and
storage capacity is vast, but their estimates are often inter-
correlated (e.g., Ackerman, Beier, & Boyle, 2002; Conway et al.,
2002; Süß et al., 2002).

Consequently, it is currently disputedwhich of these factors
is a genuine predictor of Gf and which is not. Some theorists
(e.g., Jensen, 1998; Salthouse, 1996) proposed that mental
speed determines storage capacity, because representations in
WM quickly decay, and the faster these representations can be
processed before falling below a retrieval threshold, the more
of them can be recalled, bound, or related. However, such
theories assume that decay in memory really exists, while
many studies question the role of decay in forgetting (e.g.,
Lewandowsky & Oberauer, 2009; Saito &Miyake, 2004). More-
over, the variables reflecting capacity usually correlated with
Gf more strongly than the variables reflecting speed (e.g.,
Colom et al., 2008; Conway et al., 2002; Kaufman et al., 2009;
Martínez et al., 2011). So, Wilhelm and Oberauer (2006)
argued that storage capacity determines psychometric speed,
because tasks that measure speed require active storage of
stimulus–response (S–R) bindings, and as storage capacity is
very limited, the low-capacity persons often lose the required
S–R bindings from their buffer, therefore requiring additional
time to restore these bindings, and so leading to prolonged
response latencies, especially when bindings are arbitrary.

The debate is far from being settled, and the relations
between speed and capacity may be even more complex (see
Rypma & Prabhakaran, 2009) than in the views presented
above. Moreover, there could be another factor that de-
termines both speed and capacity. For example, one proposal
pertains to attention control (Engle & Kane, 2004; Vogel,
McCollough, & Machizawa, 2005), which consists of focusing
attention on task-relevant information while blocking dis-
traction and interference. Effective control may be crucial not
only for storage capacity, as only relevant elements/bindings/
relations are maintained in the active buffer (so available
capacity is used optimally), but also for processing speed, as
irrelevant elements do not capture attention (so no time
needs to be wasted for overriding the capture).

Furthermore, if the strength of correlation between WMC
and Gf really amounts to a value that falls between r = .30
and r = .80, then the underlying factor, regardless of what it
really is, will explain only part of the variance shared by both
these constructs (probably half of it; see metaanalysis done
by Kane, Hambrick, & Conway, 2005). Thus, an interesting
question concerns the other part of this variance, which is
unexplained by WMC. What factor could be related to fluid
intelligence above and beyond WMC? One alternative is that
more intelligent people possessmore efficient learning abilities.
Indeed, recent research has found that associative learning
contributes to Gf independently from WMC (Kaufman et al.,
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2009; Tamez, Myerson, & Hale, 2008; Williams & Pearlberg,
2006), though the amount of variance accounted for by learning
is not so impressive (e.g., 10% in Kaufman et al.'s study).

Another possibility worth considering is that fluid intelli-
gence tests require not only reasoning, but also divergent
problem solving, including phenomena like insight, and involv-
ing proper strategic control. For example, in two studies
(Davidson, 1995; Paulewicz, Chuderski, & Nęcka, 2007), tests
including insight problems (i.e., ones that have trivial solutions,
though not available to participants at first glance) yielded r =
.65 correlation with Raven. Specifically, the link between
problem solving and reasoning may be supported by selective
attention, because the need to effectively select a subset of
elements from the whole scene (e.g., a figural matrix, a de-
scription of a problem) seems to be a key factor influencing the
difficulty of both items in reasoning tests (Primi, 2001) and
insight problems (Davidson, 1995). So, successful elimination of
irrelevant information, leading to better abstraction, may ex-
plain a substantial part of variance in fluid intelligence (Garlick
& Sejnowski, 2006),which cannot be accounted for byWM.Also
Carpenter, Just, and Shell (1990) argued that strategic control
over processing, responsible for the setting andmanagement of
processing goals as well as backtracking from wrong ones,
which can be only partially substituted for by increased storage
capacity, is the crucial factor determining high scores onGf tests.

Finally, also factors beyond the cognitive domain may be
responsible for some variance in fluid intelligence. For example,
though correlations between intelligence and nonpathological
personality traits are usually insignificant, some data indicate
that a weak link between fluid ability and neuroticism does
exist (e.g., Unsworth, Brewer, & Spillers, 2009; Unsworth,
Miller, et al., 2009), and that state anxiety has a negative impact
on performance in reasoning tests (e.g., Marjorie & Revelle,
1985).

1.2. Isomorphism between Gf and WM?

However, what if we do not really need to seek any factors
underlying fluid intelligence above and beyond WM, because
Gf and WM are isomorphic (Kyllonen, 2002)? Some results
regarding the Gf–WMC link presented independently by
Colom and his collaborators (Colom, Abad, Rebollo, & Shih,
2005, Colom et al., 2004; Martínez et al., 2011) and by
Oberauer, Süß, Wilhelm, and Wittman (2008) suggest that
this may be the case. In two studies (Colom et al., 2004;
Martínez et al., 2011), using the standard STM tasks, Colom's
team reported estimates of WMC–Gf correlation equaling
one; the remaining study (Colom et al., 2005) showed a
slightly lower but still extremely high estimate (r = .89).
Oberauer et al. (2008), using very simple WM tasks that
required the detection of certain relations among either items
maintained in memory or perceptually available stimuli (e.g.,
identifying whether three rhyming words appeared in a row,
column, or diagonal line of the three-by-three matrix of
words), also found a correlation close to one (r = .94). A
metaanalysis of a larger sample of studies on WM and Gf led
Oberauer et al. (2007) to conclude that at least 75% of Gf
variance is shared with WMC. So, little room would be left for
any Gf contributor other than WM.

The aforementioned research on Gf–WM link yields a very
interesting question: why, in some studies, did Gf and WMC
seem to be (almost) isomorphic constructs, while in other
studies these constructs were only moderately related? Un-
fortunately, providing an exhaustive answer to this question by
reviewing all the aforementioned studies on the strength of Gf–
WM relation does not seem possible, as these studies sub-
stantially differed in applied WM tasks, administered Gf tests,
the presence or not of someothermeasures (e.g., mental speed,
attention, long-termmemory tests, etc.), as well as in sizes and
characteristics of examined samples. Moreover, those studies
differed in the structure of links between WM and Gf latent
variables. In some cases, the WM variable was directly
correlated with Gf (e.g., Conway et al., Engle et al., 1999;
Martínez et al., 2011; Oberauer et al., 2008), while in other
cases the former was linked with the general intelligence,
which was loaded not only by Gf but also by other ability
constructs like verbal and crystallized intelligence (Colomet al.,
2005), or evenWMandGf loaded the same “g” variable (Colom
et al., 2004). Nevertheless, when looking for variables respon-
sible for the amount of variance shared between Gf and WMC,
it can be noticed that all studies which showed Gf–WM
isomorphism used some time constraints. Results obtained in
Colom's (personal communication) labwere based on standard
administration times (e.g., 40 min for Raven), which usually
constitute moderate time constraints. Oberauer et al. (2008)
used reasoning tests from the Berlin Intelligence Structure
(BIS) model, which can be treated as a severely timed test,
including 45 tasks in total (15 — in the reasoning parcel), with
the average limit of a few minutes per task (see Wilhelm &
Schultze, 2002). So, it seems that a certain level of time pres-
sure during intelligence testing can positively moderate the
strength of the WMC–Gf link.

However, while at least two studies that applied power
testing (Conway et al., 2002; Engle et al., 1999), and another one
(Kaufman et al., 2009) which involved a weak time constraint
(45 min in Raven), yielded relatively low estimates of Gf–WMC
link (i.e., rs in range .34 to .60), several other studies applied
severe time constraints, but did not yield strong correlations
between WM and Gf latent variables (e.g., Kane et al., 2004;
Unsworth, 2010; Unsworth, Brewer, & Spillers, 2009; Unsworth,
Miller et al., 2009; Unsworth, Spillers, & Brewer, 2010). Because
of differences among existing studies with regard to both WM
and Gf test loading respective latent variables, as well as due to
the aforementioned incompatibility of models' structure from
study to study, comparing correlations between latent variables
in the function of time allowed for Gf testing does not seem
possible, unfortunately, and a more constrained comparison is
necessary. In order to evaluate the influence of time on the
estimated relation between WM and Gf, while minimizing the
impact of all other variables, I decided to compare only those
studies that applied Raven (probably the most widely used Gf
test) and STM/complex span tasks, and I focused solely on
psychometric studies using healthy adult samples, excluding
studies which had a different goal than relating Gf (or g) toWM
(e.g., focused on ability training), orwhich examined children or
elderly or patient samples. Finally, I compared only studies
published not earlier than in year 1999 (i.e., starting from the
seminal study by Engle et al., 1999), because at that time
common methods of WM testing seem to become properly
developed. I also tried to restrictmyself only to studies that used
at least three different measures of WM, but the surprisingly
scarce number of studies which applied untimed Raven (i.e.,
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four in total)mademe to include two studies that used only one
measure of WMC (however, a highly reliable one). For each
study, I estimated the mean zero-order correlation between
Raven and WM scores used in that study.

The final choice included 26 studies, which seems to
constitute quite a representative sample. All these studies
were divided into three sets: “highly speeded” Raven admin-
istration (30 min or less allowed for all 36 Raven items, or a
proportional time when only a subset of items were applied;
the total of 55 correlations and N = 2253), “moderately
speeded” administration (40 min allowed, that is, as in the
test's manual; 41 correlations, N = 1847), and “unspeeded”
administration (at least 45 min allowed; 11 correlations, N =
553). Table 1 presents sample sizes, administration times,
types ofWM tasks used (i.e., either STMorWMC tasks or both),
and mean correlation coefficients between Raven and WM
tasks for each study. The (grand) mean correlation in highly
speeded studieswas r = .395, inmoderately speeded studies it
equaled r = .316, while in unspeeded set it was r = .263.
Though the analyzed studies did not report standard errors for
observed correlations, assuming that the error value estimated
in the present Study 1 (N = 890, SE = .031) well approxi-
mates an error of the correlation in each data set, then the
WM–Gf correlation in the highly speeded set was significantly
stronger in comparison to the moderately speeded set,
t(4098) = 2.54, p = .005, and also the correlation in the latter
set was significantly stronger than in the unspeeded set,
t(2398) = 1.71, p = .044. So, as I expected, increasing the
Table 1
Studies included in the metaanalysis of the strength of the WM–Raven correlation.

Study Sample size Minutes allowed

Highly speeded testing
Broadway & Engle, 2010 (dep. cond.) 151 10
Broadway & Engle, 2010 (ind. cond.) 143 10
Fukuda, Vogel, Mayr, & Awh, 2010 79 30
Kane et al., 2004 236 10
Mackintosh & Bennett, 2003 138 30
Shelton, Elliott, Hill, Calamia, & Gouvier, 2009 174 15
Shipstead, Redick, Hicks, & Engle, 2012 (set A) 505 10
Shipstead et al., 2012 (set B) 170 10
Unsworth, Brewer, & Spillers, 2009 173 10
Unsworth, Redick, Lakey, & Young, 2010 138 5
Unsworth, 2010 165 10
Unsworth, Spillers, & Brewer, 2010 181 10

Moderately speeded testing
Ackerman et al., 2002 135 45
Burgess, Gray, Conway, & Braver, 2011 102 40
Colom et al., 2008 289 20
Dang, Braeken, Ferrer, & Liu, 2012 368 40
Martens & Johnson, 2009 97 40
Martínez & Colom, 2009 265 20
Martínez et al., 2011 185 20
Schweizer & Moosbrugger, 2004 120 40
Shelton et al., 2010 172 40
Wilhelm & Schultze, 2002 114 20

Unspeeded testing
Conway et al., 2002 120 unlimit.
Engle et al., 1999 133 unlimit.
Kaufman et al., 2009 169 45
Mrazek et al., 2012 131 20

Note. WM = working memory tasks, STM = short-term memory tasks, OSPAN = o
independent condition.
time pressure of Raven's administration seems to increase the
zero-order correlations between Gf and WM scores. However,
the analysis of studies being so diverse may constitute only an
imperfect cue about the importance of time allowed for
intelligence testing, and the comparison of zero-order correla-
tions can say nothing about an isomorphism between Gf and
WM. So, more data, coming from fully comparable studies, and
allowing for calculating correlations between the WM and Gf
latent variables, was very needed.

1.3. Goals of the present study

The main goal of the present study was thus to
demonstrate that WM and Gf (a) could be isomorphic
constructs when speeded Gf tests were applied, while both
these constructs (b) would share relatively little variance if the
same but unspeeded intelligence tests were used. More
specifically, I aimed to treat the strength of correlation between
latent variables representing Gf and WM as a dependent
variable, and to test if an increase in the amount of time
allowed for solving intelligence tests could decrease that
correlation from the expected perfect link in the case of
speeded testing, thus replicating the close-to-one correlations
observed by Colom et al. (2004, 2005), Martínez et al. (2011)
and Oberauer et al. (2007, 2008), to only amoderate link when
power testing will be applied. In order to achieve this goal, I
examined three relatively large samples of participants (eachN
was around 300), with two Gf tests applied in one of three
No. of tested items Type(s) of tasks No. of tasks Mean r value

18 STM, WM 4 .54
18 STM, WM 4 .49
36 STM 3 .44
18 STM, WM 12 .37
35 STM 3 .36
36 WM 3 .33
18 STM, WM 7 .45
18 STM, WM 7 .47
18 WM 3 .26
12 WM 3 .51
18 WM 3 .32
18 WM 3 .20

48 STM, WM 7 .32
36 WM 4 .41
18 STM, WM 4 .33
36 WM 6 .16
36 WM 4 .34
18 WM 3 .28
18 STM, WM 6 .25
36 WM 2 .33
36 WM 2 .21
18 WM 3 .42

60 WM 3 .24
60 STM, WM 6 .27
36 OSPAN 1 .30
12 OSPAN 1 .24

peration span task, unlim. = unlimited time, dep./ind. cond. = dependent/
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possible time constraint conditions: (a) half the test's recom-
mended administration times, (b) their recommended admin-
istration times, and (c) virtually no time constraint (i.e., 1 h
allowed for each test). I assessed WMC with two WM tasks
applied in the same manner in all tested conditions.

Previous research comparing speeded and unspeeded ad-
ministrations of intelligence tests suggested which results
may be expected in the cases of speeded versus unspeeded
testing. Firstly, the data indicates that participants solve most
of the test items they can solve at all in the first 20 min of
testing, and mean scores on speeded tests are close to scores
on unspeeded tests (Hamel & Schmittmann, 2006; Heron &
Chown, 1967; Salthouse, 1993). Secondly, the former scores
nicely predict the latter, being similarly reliable (Hamel &
Schmittmann, 2006; Wilhelm & Schultze, 2002). In contrast
to these observations, speeded versus unspeeded tests yield
different patterns of errors, and the constructs of “speeded
intelligence” and “unspeeded intelligence” can be easily dif-
ferentiated (Partchev & De Boeck, 2012). This result suggests
that though timed and untimed tests can show similar re-
liability, they may have different construct validity, and so
they may yield different relations to other cognitive abilities,
including WMC.

2. Study 1

2.1. Method

The most important decision regarding the design of the
present study dealt with WM measurement. For practical
reasons, due to the large sample to be examined, I had to
choose a small number of tasks from a broad pool of existing
computerizedWM tests. I decided to use one visual recognition
memory (STM) task, which required participants to maintain a
pattern of items in memory and to compare one of the items
with a probe, and to apply one relation monitoring task, which
did not require any memorization but involved the integration
of relations among perceptually available stimuli. Each task
involved letter stimuli, in order to reject any possibility that the
relation betweenWMC andGf tests could arise due to the use of
the similar material as figural stimuli included in Gf tests. Both
WM tasks yielded significant correlations with Gf as well as
they seemed to be especially simple and to have relatively clear
theoretical interpretations pertaining to the sheer capacity of
the active buffer of WM (e.g., Chuderski, Taraday, Nęcka, &
Smoleń, 2012; Cowan et al., 2006; Oberauer et al., 2008; Rouder
et al., 2011). Indeed, with computational simulations, it was
demonstrated (Chuderski, Andrelczyk, & Smoleń, 2013) that
the number of bindings maintained by the model of each task
allows for the exact replication of a distribution of scores which
had been observed in human participants. Finally, those STM
tests andmonitoring tasks yielded almost perfect WM–Gf links
in previous studies (Colom et al., 2005, 2004; Martínez et al.,
2011; Oberauer et al., 2008).

No controversy regarded the choice of fluid intelligence
tests. The first test applied was Raven, which is a hallmark
test of Gf. The second tool that I used, a Figural Analogies Test
(Analogies; Orzechowski & Chuderski, 2007), was especially
designed in order to precisely match scores on Raven: it also
contains 36 figural items and yields a mean score and SD
comparable to those observed in Raven. Both tests were
applied in paper-and-pencil versions in order to rule out any
interpretation of the WM–Gf link pertaining to the shared
(i.e., computerized) method of testing.

2.1.1. Participants and procedure
A total of 1377 people participated in the fluid intelligence

tests (855 women, M age = 22.9 years, SD age = 4.2 years,
range 15–46). Most of them were recruited via publicly ac-
cessible social networking websites, in order to obtain a wide
range of intellectual abilities (i.e., it was not a student sample).
The testing took place in the professional laboratory of The
Institute of Psychology, JagiellonianUniversity, Krakow, Poland,
except for an examination of 170 participants, which took part
in another laboratory, in Lodz, Poland. For participation, each
person received the equivalent of 5 to 10 EUR (depending on
the experiment, see below) in Polish zloty. Each person filled a
written consent to participation and was informed that she or
he could stop and leave the laboratory at will. Soft drinks and
sweets were available to participants for the whole duration of
the study. DuringWM testing, participants were provided with
headphones in order to block any distraction.

Participants were assigned to three groups, depending on
the time allowed. The highly speeded group,which had 20 min
to solve Raven and 15 min towork on Analogies, contained 410
participants. The moderately speeded group, which had
40 min to complete Raven and 30 min for Analogies, contained
494 participants. The unspeeded group,whichwas allowed 1 h
towork on each test, contained the remaining 473 participants.
These samples were used to analyze the reliability of the Gf
tests and for the manipulation check. A subset of 890 par-
ticipants were tested also for WMC (298 in the highly speeded
group, 289 in the moderate speed group, and 303 in the
unspeeded group). These latter samples were used for the
calculation of CFA models.

Because of the large number of participants examined and
the practical problems related to that number (e.g., recruit-
ment, financing), the measurements reported below were
administered during several experiments that were related to
other research projects, involved additional tasks, and had
distinct research aims. These experiments have been reported
elsewhere (Chuderski & Nęcka, 2010, 2012; Chuderski &
Stettner, 2013; Chuderski et al., 2012). However, no data
presented in this paper has been previously published.
Moreover, in all experiments which included the WM mea-
surement, a standardized procedure was used to apply the two
WM tasks and two Gf tests. In each experiment, a few (from
three to five, depending on the experiment) computerized
tasks unrelated to the present studywere applied first, then the
STMand relationmonitoring taskswere applied (in this order).
The whole computerized session lasted from 1 to 2 h, de-
pending on the number of tasks involved. After a short break,
Raven was administered, followed by Analogies.

2.1.2. Administered tests

2.1.2.1. Visual recognition memory task. I used a modified
so-called change detection paradigm (Luck & Vogel, 1997;
Rouder et al., 2011). Each of the 90 trials of the task consisted
of a virtual, four by four array filled with a few stimuli (i.e.,
only some cells in the array were filled). The stimuli were ten
Greek symbols (e.g., α, β, χ, and so on), each approximately
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2 × 2 cm in size. The number of stimuli within the array
varied from five to seven items. The array was presented for
the time equal to the number of its items multiplied by
400 ms, and then followed by a black square mask of the
same size as the array, presented for 1.2 s. In a random 50% of
trials, the second array was identical to the first one, while in
the remaining trials both arrays differed by exactly one item
at one position. If they differed, then the new item was
highlighted by a square red border. If they were identical, a
random item was highlighted. The task was to press one of
two response keys depending on whether the highlighted
item differed or not in two arrays. The second array was
shown until a response was given or 4 s elapsed. The trials
were self-paced.

The score on this task is the estimated sheer capacity of the
active buffer of WM (Cowan, 2001; Rouder et al., 2011), based
on the proportion of hits (H, correct responses for arrays with
one item changed) and the proportion of false alarms (FA,
incorrect responses for unchanged arrays). The capacity of the
buffer is estimated to be k items (out of N items of a memory
load), on the assumption that a participant produces a correct
hit or avoids a false alarm only if a cued item is transferred to
his or her buffer (with the k/N chance). If a non-transferred
item is cued, then a participant is assumed to be guessing the
answer. In consequence, the following formula evaluates the
score on the task for eachN: k = N × (H − FA). The total score
on this task was the mean from the values of k in the three N
conditions (i.e., 5–7).

2.1.2.2. Relation monitoring task. I used a slightly modified,
no-memory version of the monitoring task introduced by
Oberauer et al. (2008). The task consisted of the presentation
of 80 patterns. Each pattern consisted of a three by three
array of two-letter syllables (each approx. 3.0 × 2.5 cm in
size). Each syllable was composed of a capital consonant and
one of four vowels (A, E, O, or U). Two subsequent arrays
differed by exactly one syllable. A participant's goal was to
detect if three syllables ending with the same vowel were
located in one row, column, or diagonal line (i.e., this was a
simpler version of a “rhyming” task). As many as 20 patterns
matched this simple relation. Responses given when stimuli
did not form such a relation were interpreted as false alarm
errors. In order to minimize the influence of either processing
speed or visual search efficiency, I allowed 250% more time
(5 s) for each trial than the time allowed in Oberauer et al.'s
(2008) original study (2 s). The score on this task was the
number of correct responses for the specified relation minus
one third of the false alarm errors (as three times more
non-target patterns occurred than target patterns).

2.1.2.3. Raven's Advanced Progressive Matrices. The test (Raven,
Court, & Raven, 1983) consists of 36 items that include a
three-by-three matrix of figural patterns which is missing the
bottom-right pattern, and eight response options which are
the patterns that can potentially match a missing one. The
participant's task is to discover the rules that govern the
distribution of patterns (see Carpenter et al., 1990) and to
apply them to response options in order to choose the one and
only right pattern. Responses were recorded on an answer
form. The total number of correctly answered items was the
score on this test.
2.1.2.4. Figural Analogy Test. This test includes 36 figural
analogies in the form ‘A is to B as C is to X’, where A, B, and C
are the types of relatively simple patterns of figures, A is related
to B according to two, three, four, or five latent rules (e.g.,
symmetry, rotation, change in size, color, thickness, number of
objects, etc.), and X is an empty space. The task is to choose one
figure from a choice of four which relates to figure C, as B
relates to A. Responseswere recorded on an answer form. As in
Raven, the total number of correct answers was taken as the
score.

2.1.3. Calculation and evaluation of confirmatory factor analysis
(CFA) models

For CFA computations, I used Statistica software (version
9) with maximum-likelihood estimation. For each group, I
calculated a simple model which correlated the Gf latent
variable, loaded by the scores on two intelligence tests, with
the WMC latent variable, loaded by the scores on two WM
tasks. The goodness of fit of CFA models was evaluated with
two measures: Bentler's comparative fit index (CFI), and the
root mean square of approximation (RMSEA). I adopted the
following criteria of a good fit of models: CFI should be higher
than .95 and RMSEA should not surpass the value of .08.
Because large samples were used (i.e., larger than 200), in
estimating an absolute fit of a model, I did not consider χ2

statistic, which underestimates fits in such a case. Neverthe-
less, the increase in χ2 was used for comparing the relative
fits of nested models. I expected that all three models would
fit well. The main aimwas to compare correlation coefficients
between the latent variables in the three models.

2.2. Results

2.2.1. Descriptive statistics
Table 2 presents descriptive statistics and reliabilities for

the WM tasks, and for the Gf tests in each group. All variables
approximated the normal distribution. Reliabilities of all
scores were high.

2.2.2. Manipulation check
In the total sample, the effect of time allowed for fulfilling

the Gf tests (i.e., the effect of the time pressure) on Gf scores
was significant in both Raven, F(2, 1374) = 30.24, p b .001,
η2 = .04, and Analogies, F(2, 1374) = 99.04, p b .001, η2 =
.13. Planned comparisons revealed that the moderately
speeded group scored substantially higher than the highly
speeded group, in both Raven, Δ = 3.38, F(1, 1374) = 60.47,
p b .001, and Analogies, Δ = 5.32, F(1, 1374) = 168.23,
p b .001. However, the unspeeded group scored on Raven
slightly but significantly lower than the moderately speeded
group, Δ = −1.47, F(1, 1374) = 12.96, p b .001 (no signif-
icant difference in the Analogies score pertained to both
these groups, Δ = −0.51, p = .197). As an additional time
should allow participants to attempt more test items, this
result was surprising. A closer inspection of data indicated
that a subsample of 170 participants in the unspeeded group,
who were tested in another city (all of them were not tested
with WM tasks), was solely responsible for such an un-
expected decrease in Raven scores, for unknown reasons (but
possibly due to a lower socioeconomical status of the city
from which those people came). Therefore, I re-ran ANOVA



Table 2
Descriptive statistics and reliabilities for all measures in Study 1.

Measure M SD Range Skew Kurtosis Reliability

Short-term memory task 3.20 1.18 0.00–5.89 −0.40 −0.37 .86
Relation monitoring task 0.81 .15 0.00–1.00 −1.43 2.96 .86
Raven 20-min version 18.95 5.63 2.00–32.00 −0.57 0.06 .84
Raven 40-min version 22.23 6.05 5.00–36.00 −0.46 −0.01 .85
Raven 60-min version 20.76 7.12 2.00–36.00 −0.35 −0.31 .89
Analogies 15-min version 18.38 5.26 3.00–32.00 −0.09 −0.14 .77
Analogies 30-min version 23.70 6.16 2.00–36.00 −0.52 −0.04 .83
Analogies 60-min version 23.19 6.81 3.00–36.00 −0.54 −0.25 .86

Note. N = 890 for the short-term memory and relation monitoring tasks. In the cases of Raven and Analogies, N = 410 for the 20/15 min versions, N = 494 for
the 40/30 min versions, and N = 473 for the 60 min versions. Reliability = Cronbach's alpha.
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using the data set that excluded those participants from the
unspeeded group. In result, the unspeeded group did not
significantly differ in Raven in comparison to the moderately
speeded group (M = 22.78 vs. M = 22.23, respectively),
p = .207, while in Analogies the unspeeded group scored
significantly higher than the moderately speeded group
(M = 25.03 vs. M = 23.70, respectively), F(1, 1204) =
10.14, p = .001.

Next, I looked for test items which mostly suffered from
imposing the time pressure. I aggregated scores on particular
test items into four bins, representing the first, second, third,
and last set of nine items, separately for each test. The 3
(group) × 4 (bin) ANOVA yielded a significant interactive
effect in Raven, F(6, 4122) = 25.92, p b .001, η2 = .04, as
well as in Analogies, F(6, 4122) = 61.35, p b .001, η2 = .08.
The accuracy of solving consecutive items of each test in
relation to allowed time is presented in Fig. 1. When com-
paring the speeded group with the two other groups, this
figure clearly indicates that, under time pressure, accuracy
decreased mostly in the late, most difficult items, while
accuracy in the early, easiest items suffered less or even did
not change at all. In the first halves of both Gf tests (averaged),
the mean difference in accuracy between the highly and
moderately speeded groups and the unspeeded groupwas only
Δ = 0.66 (3.7%), while in the second halves of the tests, the
same difference equaled as much as Δ = 3.17 (17.6%).
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Fig. 1. The accuracy for each problem in Set II of the Raven Advanced Progressiv
(Panel b), in the speeded (gray solid line), the medium speed (black dashed line),
2.2.3. Correlations and CFA models
Table 3 presents correlations between all measures for

each group. Statistical control over age (with the use of
partial correlations) barely changed this pattern of correla-
tions: each correlation coefficient varied by no more than
Δr = .04. As all groups fulfilled theWM tasks under the same
conditions, obviously no significant difference in the WM
tasks' correlation between groups was observed (all ps > .06,
two-tailed t tests). Correlations between the Gf tests in all
groups were also comparable and no significant difference
was found between them (all ps > .10, two-tailed t tests).
The two latter observations indicate that in each group both
WM and Gf latent variables should represent similar amounts
of variance shared by the WM tasks and the Gf tests, res-
pectively. Mean correlations between WM task scores and Gf
test scores were r = .38, r = 40, and r = .29, for the highly
speeded, moderately speeded, and unspeeded groups, re-
spectively. These data suggest that the correlation between
both latent variables may decrease in the case of the latter
group. That observation was tested by CFA analysis.

In each calculated model (one for each group), all pre-
sented in Fig. 2, the loadings of observed variables on latent
variables (all highly significant) were comparable. All models
fitted the data very well: N = 298, df = 1, CFI = 1.0,
RMSEA = .00, in the highly speeded group, N = 289, df =
1, CFI = .994, RMSEA = .076, in the moderate speed group,
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Table 3
Correlation matrix for all scores in Study 1.

Measure 1 2 3 5 7

1. Short-term memory –

2. Relation monitoring .32 –

3. Raven 20 min .42 .39 –

4. Analogies 20 min .38 .32 .59
5. Raven 40 min .38 .41 –

6. Analogies 30 min .43 .37 .67
7. Raven 60 min .31 .34 –

8. Analogies 60 min .23 .29 .61

Note. N = 890 for the correlation of the short-term memory and relation monitoring tasks. In the cases of correlations between WM tasks and Gf tests and
between Gf tests, which were used in CFA computations, N = 298 for the speeded group, N = 289 for the medium group, and N = 303 for the unspeeded group.
All correlations were significant at least at p b .05.
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and N = 303, df = 1, CFI = 1.0, RMSEA = .00, in the
unspeeded group. Most importantly for the aims of the
present study, the CFAs indicated that the Gf–WMC correla-
tion, as estimated on the latent variable level, was signifi-
cantly stronger in the highly speeded group (r = 1.0) than in
the moderate speed group (r = .83), Δ = .17, t(590) =2.40,
p = .017 (a two-tailed test), and it was significantly stronger
in the moderate speed group than in the unspeeded group
(r = .62), Δ = .21, t(585) = 2.88, p = .004 (a two-tailed
test). In the case of the highly speeded group, WMC
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explained all the variance in fluid intelligence. On the con-
trary, in the case of the unspeeded group,WMC accounted for
only 38% of Gf variance. Such a difference was not dependent
on the use of latent variables and the maximum-likelihood
estimation, because when I tested Pearson correlations
(corrected for attenuation) between mean z scores on two
Gf tests andmean z scores on twoWM tasks, respectively, the
difference between the highly speeded (r = .65) and un-
speeded (r = .46) groups was still highly significant, Δ = .19,
t(599) = 3.76, p b .001 (a two-tailed test). Of course, those
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latter correlations weremuchweaker than the respective links
derived from CFA, because of the commonly-known differ-
ences between both estimation methods.

As the WM–Gf correlation coefficient was relatively high
in the moderately speeded group, I also tested whether fixing
it to one will yield a comparable fit of the resulting model, in
comparison to the original model. The new model fitted
acceptably, N = 289, df = 2, CFI = .982, RMSEA = .093, but
the results of comparison between the models suggested that
it fitted marginally worse than the original model, Δχ2 =
4.66, Δdf = 1, p = .031. So, it seems that the most plausible
estimate of the “true” strength of the WM–Gf correlation in
moderately speeded Gf testing is definitely very high, though
probably it does not reach unity.

2.2.4. Additional analyses
One possible explanation for the observed difference in the

strength of theWMC–Gf correlationmay be due to the fact that
the drop in accuracy in the highly speeded group was mostly
seen in the second parts (i.e., 18 late items) of both Raven and
Analogies. As the second half of each test was more difficult
than the first, they might have required other types of
processes or resources. For instance, the easier items might
have relied on the effectivemanipulation of matrix elements in
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direct recomposition of these elements, but additionally they
might have involved some longer lasting processes above and
beyond WM. Because in the highly speeded group, the
participants rarely succeeded to solve the late items, their
total scores reflected scores on easier items to a greater extent
than the total scores in the unspeeded group, and due to that
fact the respective correlation with WMC might have been
stronger in the former case. In the latter group, the total score
might have reflected a compound of scores related to WM and
scores related to someother facultymeasuredby the late items,
whichmight have decreased the respective correlation. I tested
this possibility by calculating CFA models including two latent
variables reflectingGf, one loadedby scores from18 early items
in each test, and the other loaded by scores from 18 late items.
The three models (all CFIs > .959) are presented in Fig. 3. No
difference between the coefficients of correlations between
WMC and the variables representing the first and second
halves of Gf tests in respective groups exceeds Δr = .10, and
none was significant. Thus, there is little support for a
hypothesis predicting that either taking or leaving the late
items of intelligence tests can result in either weaker or
stronger links between WMC and Gf. The correlation between
WMC and the scores on early itemswas influenced by the time
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pressure in a comparable way as was the correlation between
WMC and the scores on late items.

So, what other factor could be responsible for such a huge
increase in WM–Gf correlation strength, relating to both
halves of each Gf test, in the effect of time pressure? One
plausible hypothesis can be derived from the aforementioned
research suggesting that effective learning is an important
component of fluid intelligence. Participants who are able to
use their experience of coping with previous test items to
enhance their discovery of relations in subsequent items will
be judged more psychometrically intelligent than those who
cannot learn. However, how does time pressure influence
such learning during intelligence testing?

One study, which could provide important insights related
to the above questionwas done by Lerch, Gonzalez, and Lebiere
(1999). They reported data which indicate that time pressure
present during a real-time dynamic decision making task
(requiring the control of a virtual water distribution system)
impaired learning of the task. It was shown that people scoring
low in Raven learned the task effectively only if time pressure
was eliminated, while high ability people could learn the task
regardless of whether time pressurewas applied or not, though
under no time pressure conditions the former learnedmore than
did the latter. According to Lerch et al., learning requires spare
cognitive resources. Under time pressure, low-resource partici-
pants have to devote all their resources to coping with the task,
and this blocks their learning capability. High-resource partici-
pants are able to perform the speeded task and simultaneously
learn it. However, when no pressure is present, low-resource
persons can interleave processing and learning, and as they start
from a lower level of performance than the high-resource ones,
theymay benefitmore from learning than the latter people, who
have already approached ceiling. The reported study included
only a small sample of 33 people and did not allow for decisive
conclusions.However, because Lerch et al.'s decisionmaking task
was a spatial one and it required the induction of abstract rules
from events on the computer screen, it seems that the pre-
dictions from this task might be also valid for my study.

Because in the present study I always applied Raven before
Analogies, and the latter was designed to provide a score close
to Raven's score, I was able to analyze the difference in both
scores in relation to the tests' administration time. Such a
differencewas treated as the index of learning,1 indicating how
much participants had benefited from copingwith Ravenwhen
fulfilling Analogies. If the resource-dependent learning hypoth-
esis is right, then under time pressure, low-WMCpeople should
be unable to significantly increase their scores on Analogies
(compared to Raven). However, when time pressure is reduced,
learning ability may become unrelated to WMC (as both low-
and high-WMC people will have spare resources to learn), and
because of ceiling effects, high-WMC participants might now
not be able to learn as much as low-WMC participants. The
latter, due to discovered knowledge, may override their WM
limitations and catch up with more capacious people. Thus,
when time pressure is high,Gf scoreswill bemostly determined
by the amount of WM resources that can be devoted to the
processing of relations. On the contrary, under low pressure
1 I fully acknowledge that it is a simplification, as most probably scores on
some late items of Raven's test could already reflect some amount of
learning from the early items.
conditions, WM may determine only part of Gf variance, while
the WM-unrelated learning effects would account for some
other part of this variance.

I tested this prediction by comparing participants belong-
ing to the 33 and 66 percentiles of a mean from z scores on
both WM tasks (referred to as WMC-low and WMC-high
groups; for examples of using a similar method see Kane &
Engle, 2003; Unsworth & Engle, 2007). Due to the large
sample, around 100 participants could be included in each
group × each time condition. I submitted both these factors
(i.e., the two groups and three conditions) to ANOVA in the
index of learning. In the unspeeded condition, the mean gain
in score equaled Δ = 2.18 (SD = 0.37). In the moderately
speeded condition, the learning effect was also significant
(Δ = 1.69, SD = .36), while in the highly speeded condition,
there was no learning effect (Δ = − .16, SD = .39). The
interaction of group and time pressure factors was signifi-
cant, F(2, 595) = 3.63, p = .027, η2 = .01 (see Fig. 4), and
indicated that the WM groups significantly differed in the
index of learning, F(1, 595) = 13.62, p b .001, only in the
unspeeded condition. In this case, WMC-low participants
increased their score by Δ = 3.52 on average (SD = 0.51),
while WMC-high did it by only Δ = 0.83 (SD = 0.52). The
differences in the index of learning between the WM groups
in the highly and moderately speeded conditions were not
significant, p = .182 and p = .958, respectively. So, contrary
to Lerch et al.'s (1999) results, under time pressure exerted in
this study, highly capacious people could not learn from test
to test similarly as could not low capacious ones.
2.3. Discussion

The most important result of the Study 1 consists of the
observation that in one group of participants, who were
allowed only half the recommended administration time for
each Gf test, WM and Gf were found to be isomorphic, namely
Fig. 4. The index of learning, computed as the mean difference in scores
between the Raven APM and Figural Analogy Tests, for participants from both
33 (low WMC people) and 66 (high WMC people) percentiles of WMC
distribution, in the speeded, medium speed, and unspeeded groups, respec-
tively. Vertical bars represent 95% confidence intervals.
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there was no amount of variance in Gf above and beyond the
variance explained by WMC. So, WMC was the sole determi-
nant of scores on highly speeded tests. The former factor was
also able to explain the major part of variance in scores on
moderately speeded tests, that is, tests applied in their re-
commended time. Importantly, both those results were ob-
tained even though I measured Gf with paper-and-pencil
figural tests, while WMC was assessed with computerized
letter tasks. In contrast, in the group of participants for whom
Gf administration timewas barely limited,WMC accounted for
only 38% of variance in Gf, and so the Gf–WMC relation was
far from being isomorphic. Interestingly, the reliability of Gf
tests was only slightly influenced by the induced time
pressure, compared to the reliability estimates in the unspeeded
condition.

Althoughmy time limit manipulations primarily influenced
scores on the more difficult Gf test items, this manipulation
altered the strength of correlation betweenWMC and both the
easy and difficult items in a similar way. Thus, the substantial
difference in the amount of variance shared by WMC and Gf,
related to time pressure, cannot be explained away in terms of
the bare number of test items that had been attempted/solved
by participants. Most probably, under no time pressure, the
scores on aGf test are determined not only byWMC, but also by
other factors not directly pertaining to WM.

However, one limitation of the present study regards the
fact that due to the large sample, only two Gf tests were used.
One could argue that Gf operationalized in such a way may
have low criterion validity, and when measured with a larger
battery of tests it could yield a different pattern of relations
withWM. However, I used Raven, which is probably the most
central test to fluid intelligence (see Snow, Kyllonen, &
Marshalek, 1984), and has been most widely used in diverse
types of studies on intelligence. Another test that was used
showed internal reliability comparable to Raven and strongly
correlated with it (r equaled .69 in the whole sample). So, it
seems that the obtained results can easily be generalized on a
more broadly defined construct of fluid intelligence.

A relatively more serious limitation may be connected
with my use of only two WM tasks. Especially, it may be
argued that if more WM tasks were used, then WMC would
be tapped more comprehensively, and the correlation in the
unspeeded condition could also approach one. However, in
previous studies both tasks which I used appeared especially
effective in the measurement of individual differences in
WMC, highly correlated with Gf, and had thorough theoret-
ical justification (e.g., Cowan et al., 2006; Oberauer et al.,
2008). Moreover, similar results regarding speeded (i.e., the
Raven and single WM task correlations reaching about r = .4)
versus unspeeded (the Raven and single WM task correlations
falling below r = .3) intelligence testing were found in the
presented metaanalysis of existing studies, which relied on
greater numbers of WM tasks (though no study directly
compared the timed and untimed conditions). Finally, the
lower Gf–WM correlation was observed solely in the
unspeeded condition, while the WM latent variable based
on only two tasks was able to explain the whole/major part
of Gf variance in the highly/moderately speeded conditions.
So, it seems that the WM latent variable based on only two
WM tasks nevertheless validly captured most of the WM
construct.
The second important observation provided by Study 1
consists of the identification of a factor which seems to
contribute to Gf above and beyond the contribution of WM: it
is the ability to learn from testing experience and to transfer
learned skills/knowledge to consecutive test items. In the
unspeeded condition, when Raven's score was taken as a
baseline, participants having low WMC increased their mean
score on Analogies by as much as 3.5 correctly solved items,
while high-WMC participants only added to Raven's score
less than 1 item on average. The former result – an increase of
almost 18% from Raven to Analogies – constitutes a con-
siderable performance improvement of less capacious par-
ticipants, as compared to the highly speeded condition which
yielded no significant difference between scores on Raven
and Analogies (i.e., little learning). The fact that, surprisingly,
low-WMC persons were able to learn better than high-WMC
ones might have resulted from that less capacious partici-
pants started from lower levels of performance and due to
the steep rise of the learning curve at this point they quickly
gained a few additional items on the basis of their experience
of coping with Raven, while more capacious persons, who
had already approached their ceilings, could not increase
their scores due to learning by that much.

However, the hypothesis assuming the important contribu-
tion of learning to Gf surely needs more data, as in Study 1 the
level of processing on matrix items and the ability to learn
relational knowledge were confounded (they both were esti-
mated on the basis of the scores from Gf tests). Ideally, the latter
factor should be measured by dedicated tests of relational
learning, other than Gf tests, and then used to predict Gf.

The next studywas designedwith the goal to overcome the
above mentioned limitations of Study 1, with regard to
unspeeded intelligence testing. Firstly, three figural tests of
intelligence were used, instead of two. Secondly, eachWM task
(i.e., the monitoring task and the STM task) was used in two
versions, resulting in four tasks in total. Finally, I introduced a
novel test of relation (i.e., relational concept) discovery, which
consisted of two structurally isomorphic parts (but differing in
the involved stimuli and the imposed difficulty), applied in the
fixed order, so as an index of relational learning could be
computed (i.e., the difference in performance in the part
applied as the second one in comparison to the part applied as
the first).
3. Study 2

This study was a part of a larger project, which consisted of
seventeen computerized tasks, including four complex span
tasks, two Stroop tasks, three antisaccade task, three n-back
tasks, and the stop signal task, all related to other research goals
and thus not reported in this paper, as well as the STM tasks
and relation monitoring tests described below. The computer-
ized session lasted about 4 h (including proper breaks), and the
two reportedmonitoring tasks were presented as a third and a
fourth task in a row, while the STM tasks were test numbers
eleven and fifteen in a row. Four ability tests, which are
reported below, were administered in a separate session on the
same day, which also lasted 4 h. The order of tests was the
following: relational discovery test, computerized analogy test,
Raven, and paper-and-pencil Analogies.
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3.1. Method

3.1.1. Participants and procedure
A total of 243 people participated (142 women, M age =

24.3 years, SD age = 5.0, range 18–45 years). All of them
were recruited via publicly accessible social networking web-
sites, and tested in the laboratory of The Institute of Psychology,
Jagiellonian University, Krakow, Poland. For participation, each
person received the equivalent of 15 EUR in Polish zloty. The
same testing conditions applied as in Study 1. In the final
sample, data from six people were discarded because of their
failure to provide even one elaborate description in the relation
discovery test. Also, another 79 participants (50 women, M
age = 24.7 years, SD age = 5.4, range 19–41 years) were
tested only with the second part of the relation discovery test
(it was preceded by five computerized tasks, neither reported
here). These participants constituted a control group used in
the analysis of whether the transfer of relational knowledge
from the first to the second part of the relation discovery test
indeed took place.

3.1.2. Administered tests

3.1.2.1. Visual recognition memory task. I used the same task as
in Study 1, with three modifications. Firstly, apart from the
letter version of the task, the digit version was used, which
included digits 0–9 as stimuli, each approximately 2 × 2 cm
in size. Secondly, the number of stimuli within the array in
each version of the task could count five, seven, or nine items.
Finally, the array was presented for the time equal to the
number of its items multiplied by 300 ms, instead of 400 ms
applied in Study 1. All other details of the recognition me-
mory task were the same as in Study 1.

3.1.2.2. Relation monitoring task. The same task was used as in
Study 1,with three exceptions. Onewas that the critical relation
(i.e., to find three strings ending with identical symbols) now
could appear only in either rows or columns (i.e., diagonal lines
were excluded). Secondly, I used also the number version of the
task, with three-digit numbers as stimuli. Thirdly, each task
consisted of the presentation of 40 patterns, 20 containing the
relation, and another 20 lacking it. Thus, the score on each task
was the number of correct responses for the specified relation
minus a total of false alarm errors. All other details of the
relation monitoring task were the same as in Study 1.

3.1.2.3. Raven's Advanced Progressive Matrices. The same version
of the test was used as in Study 1. One hour was allowed for
fulfilling the test.

3.1.2.4. Figural Analogy Test. The same version of the test was
used as in Study 1. Forty fiveminuteswere allowed for fulfilling
the test, as previous studies indicated that it appeared to be the
sufficient time for the majority of participants.

3.1.2.5. Computerized Figural Analogy Test. This test is a com-
puterized and substantially modified version of the paper-
and-pencil Figural Analogy Test. The test includes 48 figural
analogies in the form ‘A is to B as C is to X’, where A, B, and C are
the types of relatively complex patterns of figures, each including
either 5 or 8 figures (depending on the test item). In each item, A
is related to B according to two to eight latent rules (rotation,
change in location, color, thickness, filling, etc.), and X has to be
selected by clickingwith amouse on one out of seven alternative
answer patterns. The one and only pattern should be chosen
which relates to pattern C, as B relates to A. After two training
items, the participantswere allowed up to 4 min for solving each
test item. The total number of correct answers was taken as the
score.

3.1.2.6. The test of discovery of relations. The DREL (Discovery
of RELations) paper-and-pencil test consists of two, letter
and digit, parts. Each part includes 15 items. Each item
consists of six four-symbol strings, which are governed by a
to-be-discovered relation, and another three strings, which
form counterexamples for that relation, that is, the discov-
ered relation must exclude all three counterexamples. A
participant is required to write down a concise and abstract
description of a relation that matches six positive exemplar
strings. The counterexamples are introduced in order to
prevent describing too general relations (e.g., all strings
consist of four symbols). In each part of the test, there are five
binary, five ternary, and five quaternary relations, and item
positions for each complexity level with regard to the
beginning of the test are balanced. Each part of the test is
preceded by a detailed instruction, which explains the way
in which relations should describe example strings, while
excluding counterexamples, and which presents two sample
unitary relations.

In the first part of the test, symbols in each string are two
different letters, and a relation governs the place of each
letter relative to some number of remaining letters in a
string. An example of a binary-relation item requires the
discovery of a relation the same two letters in the middle are
different from the same two letters on the extremes:

Binary relations require pairwise comparisons of two
symbols. There is only one mental model corresponding to
binary relations (in the case of this example: abba).

An instance of ternary relation is one and only letter
different from three other identical letters is always placed in
the middle (it requires the simultaneous relating of three
symbols, and the corresponding models are: aaba and abaa):

In the most difficult, quaternary-relation items, all four
symbols have to be related in one step. An example relation is
the first letter is different from the second one or the third one or



Table 4
Descriptive statistics and reliabilities for all measures in Study 2.

Measure M SD Range Skew Kurtosis Reliability

Letter STM task 2.48 1.41 −1.33–6.40 −0.04 −0.14 .73
Digit STM task 4.65 1.43 −0.63–7.00 −1.10 1.11 .83
Letter monitoring task 0.76 0.19 −0.10–1.00 −1.64 3.57 .75
Number monitoring task 0.75 0.20 −0.05–1.00 −1.40 2.23 .74
Learning index — comp. 2 1.73 5.49 −9.00–13.00 0.10 −0.95 .87
Learning index — comp. 3 & 4 0.73 1.90 −4.00–5.50 −0.21 −0.31 .88
Raven 22.02 6.56 4.00–35.00 −0.45 −0.13 .88
Paper-and-pencil analogies 22.32 6.48 6.00–35.00 −0.25 −0.75 .86
Computerized analogies 22.06 11.73 1.00–48.00 0.42 −0.86 .93

Note. N = 237. STM = short-term memory, comp. = complexity. Reliability = Cronbach's alpha.

256 A. Chuderski / Intelligence 41 (2013) 244–262
both, and the third letter is different from the fourth one (three
corresponding models: aaba, abab, and abba):

The only difference between the first and the second part
of the test is that symbols are digits, and relations pertain to
their evenness or oddness. However, the abstract structure of
the relations of corresponding items in both tests is identical.
For example, the digit version of the aforementioned binary
relation would be: two digits in the middle are both odd or both
even, and in the former case two extreme digits are even, while
in the latter case two extreme digits are odd. This part is more
difficult, as the crucial feature (evenness/oddness) is not
linked to the appearance of a symbol, while the crucial fea-
ture of the letter part (identity/difference) is.

The scoring on the test depended on the abstractness of
given descriptions. One point was scored if a described relation
was correct and properly abstract (as in the examples), no
matter what exact formulation was used by participants. Half
point was scored if a description was correct, but it was not
abstract enough, instead it was composed of particular sub-
categories of strings (usually corresponding to possible models).
No score was given for incorrect descriptions, no matter if they
excluded valid instances of strings or included counterexamples.
The dependent variables were the differences in the total scores
Table 5
Correlation matrix for all scores in Study 2.

Measure 1 2 3

1. Letter STM task –

2. Digit STM task .41 –

3. Letter monitoring task .38 .42 –

4. Number monitoring task .27 .33 .52
5. Learning index — comp. 2 .17 .23 .33
6. Learning index — comp. 3 & 4 .13 .20 .26
7. Raven .28 .39 .46
8. Paper-and-pencil analogies .21 .23 .36
9. Computerized analogies .19 .15 .30

Note. N = 237. STM = short-term memory, comp. = complexity. All correlations w
(in range 0 to 5) for each level of relational complexity, between
the second and first part of the test (i.e., indices of how well
people could apply the relational structures discovered in the
letter strings to themore abstract number items). A half an hour
was allowed for each part of the DREL test.

3.2. Results

3.2.1. Descriptive statistics
Table 4 presents descriptive statistics and reliabilities for the

WM tasks, the Gf tests, and the indices derived from the DREL
test. Scores in this latter test significantly decreased with an
increasing relational complexity (M2 = 3.75, M3 =1.74, and
M4 = 1.20), F(2, 472) = 1523.80, p b .001, η2 =.87. Because
the results on quaternary relations approached floor, in order to
increase the psychometric parameters of the DREL learning
indices, the indices from ternary and quaternary items were
aggregated into onemeasure. As the check of whether relational
learning really tookplace in theDREL, I compared themean score
on the number subtest with the respective mean score in a
control group, who could not learn from the letter version. The
control group scored M = 1.34 per condition, comparing to
M = 1.77 in the present data, that is, as expected, there was a
highly significant learning effect resulting from the previous
experience with the letter part of DREL, t(314) = 3.46, p b .001.

3.2.2. Correlations and SEM models
Table 5 presents correlations between all measures. Having

obtained two indices of relational learning, I could now compute
the latent variable reflecting learning. I estimated a path model
(SEM), which included two exogenous latent variables, one
representing WMC, loaded by scores on four WM tasks, and the
4 5 6 7 8

–

.33 –

.22 .64 –

.41 .45 .25 –

.35 .36 .20 .65 –

.23 .40 .26 .49 .49

ere significant at least at p b .05.
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other reflecting the effectiveness of relational learning in the
DREL test. Both these variables predicted the Gf endogenous
variable thatwas loaded by scores on three intelligence tests. The
model had a very good fit, N = 237, df = 24, CFI = .985,
RMSEA = .04, and is presented in Fig. 5. The two observations
from Study 1 were fully replicated with this improved method.
Firstly, the WM variable was not a perfect predictor of Gf,
yielding a correlation of (only) r = .55, even though four
different measures of WMC were used. Secondly, the relational
d1
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Fig. 6. The path model relating the working memory capacity latent variable
to the relational learning and fluid intelligence variables, whose disturbance
terms are intercorrelated. The latent variables are represented by ovals;
small ovals marked “d1” and “d2” stand for respective disturbance terms.
Values between ovals represent path coefficients between latent variables.
Respective 95% confidence intervals are shown in brackets.
learning variable was a significant predictor of Gf, explaining
about eight percent of variance in Gf.

The relational learning variable moderately and positively
correlated with WM variable (r = .48). However, even when
the former variable was calculated as an endogenous one
(i.e., WM predicted both Gf and relational learning), the
amounts of variance unexplained by WM (i.e., the distur-
bance terms) correlated significantly, r = .23, suggesting
that relational learning predicts independently from WM at
least 5.3% of Gf variance. In such a model, presented in Fig. 6,
the WM–Gf path coefficient equaled r = .67.

In the final analysis, I tested whether calculating the model
shown in Fig. 6with the use of only pairs of tasks that were also
applied in Study 1 (i.e., the letter WM tasks as well as Raven
and Analogies) would in any way change the strengths of links
between latent variables. The resulting, much simpler model
had the perfect fit, N = 237, df = 6, CFI = 1.0, RMSEA = .00,
and its WM–Gf (Δr = − .03) and WM-learning (Δr = − .02)
path coefficients were virtually the same as in the original
model, as was the link between Gf and DREL disturbance terms
(Δr = 0). Moreover, in order to confirm that the moderate
value of WM–Gf correlation does not depend on a particular
choice ofWM tasks, in themodel shown in Fig. 6 , I substituted
the original WM measures with four scores on, unreported in
this paper, complex span tasks (Conway et al., 2005), which
required the encoding of letter, number, spatial, and figural
stimuli, respectively, intermixed with some simple processing
(decisional) task, for later recall. Each task had reliability of no
less than α = .85. I observed virtually the same WM–Gf path
coefficient as in the original model (r = .68; Δr = .01).

3.3. Discussion

Study 2 successfully replicated the results found in the
unspeeded group of Study 1. Again, under no time pressure
during intelligence testing, WM appeared to be only a



258 A. Chuderski / Intelligence 41 (2013) 244–262
moderate predictor of fluid intelligence, explaining about one
third of its variance. Also, relational learning, operationalized as
a relative increase in the efficiency of processing of number
relations due to the earlier coping with the letter relations
(note: not as an absolute score on that test, which of course
would be another measure of Gf), independently contributed
to the additional amount of Gf variance. Importantly, as the
DREL test used in Study 2 relied solely on the alpha-numeric
stimuli, the variance shared between relational learning and Gf
cannot be attributed to the use of the same material in both
learning and Gf tests.

Methodological concerns pertaining to whether theWM–Gf
correlation coefficients, estimated in the moderately speeded
and the unspeeded conditions of the present research, could be
negatively affected by the use of only pairs of (Gf andWM) tasks
can be fully overruled, as neither the increase in the number of
tasks nor using more complex tasks were able to affect the
observed strength of the WM–Gf link in the unspeeded con-
dition. Moreover, although it must be noted that the WM tasks,
which were used in Studies 1 and 2, involved spatial orga-
nization of (letter and number) stimuli, it is very unlikely that
such their feature contributed to the perfect correlation bet-
ween Gf and WMC, because (a) spatial relations need not be
directly remembered, and (b) the WM–Gf correlation in the
unspeeded group was, anyway, far from perfect. On the other
hand, a moderate correlation in untimed testing cannot be
explained in terms of unreliable measurements of Gf or WMC,
because (a) reliability of all applied tasks was high, and (b) the
induction of the perfect correlation in the speeded condition
was successful.

4. General discussion

4.1. Summary of results

This research examined whether the WMC and Gf latent
variables, as estimated by the CFAmethod, (a) can be perfectly
correlated when Gf is assessed with the highly speeded tests,
and (b) are only moderately related when the unspeeded Gf
tests are used. Both these expectations have been fully con-
firmed, shedding some new light on the issue of the “true”
relationship between WM and fluid intelligence, and sug-
gesting that fluid reasoning can be differently related to WMC
depending on time pressure during Gf testing. Furthermore, as
untimed intelligence testing resulted in a large amount of
variance that could not be explained by WM, I identified
another source of several percents of variance in fluid intel-
ligence: the ability to learn relational representations.

4.2. Implications for fluid intelligence research

The main implication of the presented research pertains to
the fact that although timepressure barely disrupts the internal
and external reliability of the fluid intelligence measures, it
substantially impacts their construct validity. Simply, fluid
intelligence tests administered under severe time pressure
versus those applied under no pressure seem to measure not
the same things (for a similar conclusion see also Partchev &De
Boeck, 2012). During strictly timed intelligence testing, par-
ticipants seem to be forced to represent and transform in WM
the representations of complete relations reflected by test
items, which is a process which relies heavily on the cognitive
resources available “here and now”, namely on the available
capacity. In such cases, there is probably no time to implement
more complex and long-lasting processes. On the contrary, in
untimed intelligence testing, the process of reasoning can be
more iterative (see Kubose, Holyoak, & Hummel, 2002),
meaning that it can be divided into a larger number of steps
that operate on parts of the eventual relational representation.
In such cases, mental faculties beyondWM can be employed in
order to supplement the cognitive processing fulfilled by WM.
Such processes may involve learning (as advocated in the
present paper) as well as other mechanisms leading to better
abstraction and more effective problem-solving strategies
(Carpenter et al., 1990; Davidson, 1995; Garlick & Sejnowski,
2006). Most importantly, due to these faculties, low-WMC
participants may be able to compensate for their capacity
limitations. In consequence, in unspeeded conditions, only a
moderate correlation between Gf and WMC can be observed.

Two further conclusions follow from the above. Firstly,many
recent studies which aimed to estimate the strength of rela-
tionship between intelligence and the effectiveness of various
elementary cognitive functions supported by WM (e.g., recog-
nition or recall, relational integration, executive functions, etc.),
applied strictly timed intelligence testing. For instance, several
such studies applied half Raven's items in 10 min (e.g., Kane et
al., 2004; Unsworth, Brewer, & Spillers, 2009; Unsworth, Redick,
Lakey, & Young, 2010; Unsworth & Spillers, 2010), or even
required solving twelve its items in 5 min (Unsworth, Miller et
al., 2009), used the time-constrained Berlin Intelligence Scale
(e.g., Oberauer et al., 2008; Schmiedek, Hildebrandt, Lövdén,
Wilhelm, & Lindenberger, 2009; Schmiedek, Oberauer, Wilhelm,
Süß, & Wittmann, 2007; Süß et al., 2002), or included other Gf
tests administered under extreme time pressure (Buehner et al.,
2006; Unsworth, 2010; Unsworth, Spillers, & Brewer, 2010). My
results suggest that these studies might have overestimated the
strength of the relationships examined, in comparison to the
strength which would be observed when standard administra-
tion of intelligence measures was applied. Gf tests administered
under strict time constraints might have primarily captured the
capacity of WM-based processing, so such tests – as well as
elementary cognitive tasks – might have tapped processes so
mutually similar that substantial correlations might have arisen
just by definition.

Secondly, an analogous problem concerns some famed
research on fluid intelligence training. Jaeggi and collaborators
(Jaeggi, Buschkuehl, Jonides, & Perrig, 2008; Jaeggi et al., 2010)
trained participants on versions of an n-back task, for a few
weeks, until participants' scores on that task were greatly
enhanced. Crucially, participants also demonstrated increased
scores on Gf tests, as compared to pre-testing. On the contrary,
no transfer from the n-back related to the complex span task
(Jaeggi et al., 2010). So, the authors concluded that their
training method selectively increased Gf. The most serious
problemrelated to that research (as noticed byMoody, 2009) is
the fact that the Gf tests were applied under extreme time
constraints (10–11 min for 18 Raven's items, and 10–16 min
for 29 BOMAT items, depending on the study). Also Schmiedek
et al. (2010) observed a generalized transfer fromWM tasks to
a battery of ten fluid reasoning tests, but as in the Jaeggi studies,
the latter tests were highly speeded. In the light of my results,
Gf tests administered in such a way should be treated as not
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muchmore thanWM tests. So, it is no surprise that training on
one WM test helped participants to solve another such test.
Any conclusions assuming that a Gf itself was increased by
these training methods do not seem to be warranted.

In line with the above interpretation, Colom et al. (2010)
tested participants who were trained on either WM or speed/
attention tasks, with Gf tests administered in the standardway.
The authors found no selective effect of WM training on
intelligence. Gf test scores were higher due to both WM and
speed/attention training for unknown reasons, but probably at
least in part due to learning how to deal with the battery of Gf
measures during the pre-test. Moreover, in Chein andMorrison
(2010), virtually no effect of training on the performance on
unspeeded Raven was found, though strong training effects
pertained to reading comprehension and cognitive control. It
seems that firm conclusions about the possibility of increasing
Gf withWM training can only be made if the selective effect of
WM training (i.e., one compared to null effect in a control
group trained on some other, low WM-demanding tasks) is
observed in untimed Gf tests.

The important effect of administration time on the WM–Gf
link seems at first glance to be inconsistent with studies which
showed that mental (processing) speed, closely related to
neuronal efficiency (Jensen, 1998), is a substantially worse
predictor of intelligence than are WM tasks imposing loads on
capacity and/or control mechanisms (e.g., Colom et al., 2008;
Conway et al., 2002; Kaufman et al., 2009; Martínez et al.,
2011). A straightforward interpretation of this effect might
assume thatWMscores dependon speed (see Salthouse, 1996),
and that in speeded intelligence testing these scores so strongly
predictedGf because speedwas also responsible for thenumber
of attempted Gf test items, while in unspeeded testing par-
ticipants were able to attempt all items, and their scores
depended on other factors than speed. Of course, such an inter-
pretation cannot be ruled out by the present study (as pro-
cessing speed was not measured), but it seems unlikely. Firstly,
recent neurophysiological research strongly indicates that the
pattern of predictive power of neuronal efficiency (measured
with various imaging techniques) with regard to higher-order
cognition is very complex, and in contributing to cognitive
abilities processing speed interacts with various factors, like
available capacity, task complexity, and adopted strategies (for
reviews see Toffanin, Johnson, de Jong, &Martens, 2007; Rypma
& Prabhakaran, 2009). Secondly, it was also shown that those
abilities are most strongly predicted not by themean latency of
processing, but by the latency of longest trials (“the worst
performance rule”; Coyle, 2003), which is the fact interpreted in
terms of control (but not speed) of processing (e.g., in terms of
time required to recover fromerrors or interference). Finally, no
influential model of human reasoning assumes that the accu-
racy of that process primarily depends on parameters reflecting
speed (e.g., Carpenter et al., 1990; Goodwin & Johnson-Laird,
2011; Halford, Wilson, & Phillips, 2010; Hummel & Holyoak,
2003; Kemp & Tenenbaum, 2009; Rasmussen & Eliasmith,
2011). So, the view that even in highly speeded intelligence
testing participants who solvedmore items did so because they
simply were faster does not seem to be sufficiently supported
by existing literature.

The results regarding the unspeeded condition imply that
even though, for the last twenty years, the search for the
cognitive basis of fluid intelligence has been (maybe, toomuch)
focused on underlying WM processes, the story is not that
simple (see also Burgess, Braver, & Gray, 2006; Kane et al., 2005;
Kaufman et al., 2009). WM, which indeed fully determined Gf
scores on my speeded tests, cannot be the only explanation of
individual differences in unspeeded fluid reasoning. My results
indicate that fluid intelligence seems to be a more complex
phenomenon than – although very important for fluid process-
ing – the operation of WM, and other factors may account for a
substantial amount of variance in Gf. Fruitful directions in the
identification of such factors should cover psychometric studies
of the relations between Gf tests applied in less strict time
conditions andmeasures of candidate abilities, as well as formal
analyses of the nature of fluid reasoning process and its crucial
components, like problem-solving strategies (Carpenter et al.,
1990), adaptive coding (Duncan, 2001; Garlick, 2002), selective
attention and abstraction (Davidson, 1995; Garlick & Sejnowski,
2006; Primi, 2001), and mutual dynamical interactions among
diverse abilities (van der Maas et al., 2006).

4.3. The possible role of relational learning in fluid intelligence

Taking into account the fact that reasoning inGf test consists
of processing abstract relations, my results suggest that a par-
ticular kind of learning which is above and beyond associative
learning, namely relational learning, may be an especially plau-
sible explanation of somepart of Gf variance that is unexplained
by WMC. According to influential approaches to relational
learning, including the LISA theory of analogymaking (Doumas,
Hummel, & Sandhofer, 2008; Hummel & Holyoak, 2003), and
the structured statistical (Bayesian) approaches to inductive
reasoning (Kemp & Jern, 2009; Kemp & Tenenbaum, 2009),
such learning consists of schema induction. A schema is created
by transforming specific examples of relations (e.g., in Raven,
“in each row, triangles from the top and middle row are
juxtaposed to produce respective triangles in the bottom row”)
into a general structural representation (e.g., “any figures in a
bottom row canbe juxtapositions of any respective figures from
top and middle rows”), defining relational roles (e.g., either
“being a result of juxtaposition” or “being a part of juxtaposi-
tion”) that can be fulfilled by any objects. For example, both two
squares producing a rectangle and two rectangles producing a
square will constitute the same relation of juxtaposition,
though in one case the same figure is being juxtaposed, while
in the other case it constitutes a result of juxtaposition.

Most probably, people who can better learn how to induce
relational representations governingmatrices or analogieswhen
working on a Gf test, and can better discover how to use them in
order to enhance detection, transformation, and application of
rules governing future test items, will score higher on that and
similar tests and thus will be judged more psychometrically
intelligent than people who cannot construct and use relational
knowledge of such a kind (Halford et al., 2010). As people most
probably start to learn from the first test items they attempt
(with a possible exception in the case of highly speeded
intelligence testing), relational learning seems to be an inherent
component of the measurement of fluid intelligence.

4.4. Final remarks

This study has drawn psychology nearer to the resolution of
the hotly debated problem of whether fluid intelligence and
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working memory are (almost) isomorphic constructs or,
alternatively, whether the latter is only a moderate predictor
of the former, while other substantial cognitive predictors of Gf
can be identified. The most original result of the present study
shows that either case is true, depending on the methodolog-
ical decision regarding how to estimate Gf. Imposing extreme
time pressure during intelligence testing makes participants
rely mostly on the capacity of their WM, while allowing them
more time for coping with Gf tests greatly reduces the con-
tribution of WM to Gf, and makes room for other factors to
explain the mechanisms underlying Gf. Thus, my study may
yield important implications for future research on the nature
of fluid intelligence.

In particular, the study suggests that each researcher has to
face a dilemma: whether intelligence should be measured with
speeded tests, or with power tests. The former testing method
will measure the ability to cope with complexity in a dynamic
environment, thus having a high real-world validity, as the
technological and informational pressure of theworld increases
rapidly, but itmay underestimate peoplewho regardless of their
limited capacity would work out good solutions in less dynamic
environments. The latter method will give a more comprehen-
sive account of reasoning ability, including the contribution of
intellectual faculties that lay beyond WM, and seem to be
complementary to it, but it could also include a lot of noise (e.g.,
learned task-dependent strategies) negatively influencing the
evaluation of future effectiveness of an individual in demanding,
timed, and completely novel tasks. The former method will
surely be more and more predictive in the cases in which new
informational technologies are being coped with, but the latter
method seems to provide a richer understanding of what
intelligent behavior in various situations really is.
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