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Abstract

The correlation between a measure of working memory capacity (WMC) (Operation Span) and a measure

of fluid abilities (Raven Advanced Progressive Matrices) was examined. Specifically, performance on Raven

problems was decomposed by difficulty, memory load, and rule type. The results suggest that the relation

between Operation Span and Raven is fairly constant across levels of difficulty, memory load, and rule type.

Thus, it appears something other than the number of things that can be held memory is important for the

shared variance between these two tasks. The results are discussed in terms of the importance of attention

control as a possible link between working memory capacity and fluid abilities.
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A large body of evidence has accumulated over the last decade supporting a substantial relationship

between working memory capacity (WMC) and general fluid intelligence (gF; Ackerman, Beier, &

Boyle, 2002; Conway, Cowan, Bunting, Therriault, & Minkoff, 2002; Engle, Tuholski, Laughlin, &

Conway, 1999; Kyllonen & Christal, 1990). The exact cause of this relationship, however, remains a

mystery. The goal of the present study was to better determine the relationship between these two

constructs by attempting to identify what variables are important for the relationship. In this regard, we

utilized a post-hoc decomposition of the Raven Advanced Progressive Matrices (Raven; Raven, Raven,
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& Court, 1998) and examined the relation between these decomposed variables with Operation Span

(Ospan; Turner & Engle, 1989).
1. Working memory capacity and fluid abilities

Although we realize that no task is a pure reflection of the construct of interest, we examined

the relation between Ospan and Raven for several reasons. Across several studies, the correlation

between working memory (WM) span measures, such as reading and counting span, with Raven is

typically around 0.30 (Conway et al., 2002; Engle et al., 1999; Kane et al., 2004). In these same

studies, Ospan tends to correlate with Raven at about 0.34 (i.e., 12% shared variance).

Furthermore, factor analyses demonstrate that Ospan loads highly on a WM factor and Raven

loads highly on a gF factor, with the path coefficient between the two hovering around 0.60

(Conway et al., 2002; Engle et al., 1999; Kane et al., 2004). Thus, although a moderate first order

correlation exists between the two measures, a substantial amount of variance seems to be shared

between the two constructs. We hoped to shed light on this shared variance by examining what

variables are important for the relationship between putative measures of each construct (i.e., Ospan

and Raven).

With this goal in mind, several different research strategies can be used. One strategy is to

manipulate a theoretically important aspect of one of the tasks (e.g., the difficulty of processing on

the WM span task) and see how that manipulation affects the correlation between the two. Finding

that equating participants on the processing component does not affect the correlation between WM

span and higher-order cognition would suggest that processing efficiency does not account for the

shared variance (Conway & Engle, 1996).

Another strategy that has become popular in determining the relationship between WMC and gF

is the use of CFA and SEM techniques. Here, a set of latent variables are defined by a set of tasks

thought to reflect those constructs. After the latent variables are defined, several theoretically

plausible models are tested to see which model best fits the data. Here, researchers can test the role

of short-term memory in the WM–gF relationship (Engle et al., 1999) or test for the possible role of

processing speed in the relationship (e.g., Ackerman et al., 2002).

A third strategy, and the one employed in the current paper, is to examine the simple correlation

between two tasks by examining different aspects of performance on one of the tasks and seeing how the

correlation changes. For instance, Salthouse (1993, Experiment 1) examined the correlation between

each item on Raven with both age and WMC. Salthouse (1993) found that the correlation between

solution accuracy for each problem and a composite measure of WM was fairly constant across all

problems. The same pattern of results held true for the correlations involving age. However, once the

WM composite was partialled out of the analysis, the age correlations dropped to near zero. These

findings are striking, particularly in light of the fact that Raven problems are arranged systematically

such that the easiest items (highest average solution accuracy) are presented first and the most difficult

items (lowest average solution accuracy) are presented last. Based on this evidence, it would seem that

item variation in terms of difficulty is not a major factor in the WM-Raven correlation. Although,

Salthouse (2000) has subsequently found that more difficult items do share some unique variance with

age. In this study, Salthouse grouped items into quartiles based on solution accuracy and examined the

effects of each quartile after controlling for the earlier quartiles. Each successive quartile accounted for a
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small, but significant portion of the variance with age. These studies suggest that item variation in

difficulty contributes little to individual differences in WMC and age and that some other factor accounts

for most of the variance.

However, Carpenter, Just, and Shell (1990) argued that item difficulty is an important aspect of

performance. These authors performed a thorough item analysis of Raven Progressive Matrices and

found that an item’s difficulty level (as evidenced by its error rate) was due to the number of rule

btokensQ that were needed to complete a given problem. Working memory, they argued, is important for

maintaining the rule tokens. Specifically, Carpenter et al. argued that the most difficult problems are

those that place a heavy burden on WM resources. A problem that requires two rules, or two

instantiations of the same rule, should be more difficult than a problem requiring only one rule token.

Indeed, based on a classification of the number of rule tokens required for each problem, Carpenter et al.

showed that the most difficult problems (again, as evidenced by item error rate) also tended to require the

most rule tokens. Therefore, the authors suggested that the amount of information that can be maintained

in WM would be an important indicator of reasoning ability.

In order to test this hypothesis, Carpenter et al. constructed two computer simulation models:

FAIRAVEN and BETTERAVEN. The authors’ suggested that the two models only differed in the fact

that BETTERAVEN was better at abstract relations and could hold a larger set of goals in WM. The

simulations demonstrated that FAIRAVEN could only solve the first half of the test and hence could only

solve the easiest problems, whereas BETTERAVEN solved nearly all of the problems. Accordingly, the

authors argued that bOne of the main distinctions between higher scoring subjects and lower scoring

subjects was the ability of the better subjects to successfully generate and manage their problem-solving

goals in working memoryQ (p. 428). Based on this, it would seem that what is critical for performance on

Raven as well as for the shared variance between Raven and measures of WMC is the number of items

that can be held in working memory. In our first two analyses, we attempt to shed light on this

hypothesis by examining item variations in both difficulty and the number of rule tokens.

Not only can item variations in difficulty and the number of relations, or rule tokens, be examined in

this post-hoc manner, but so can other important aspects of performance such as differences in error

patterns attributable to differences in rule utilization. Carpenter et al. (1990) identified five different rule

types that are involved in solving Raven problems. The five classified rule types, ordered in terms of

complexity, are: (1) constant in a row, in which an aspect of the figure stays the same across a row, but

changes down a column; (2) quantitative pairwise progression, in which there is a quantitative increment

in the figure in adjacent cells; (3) figure addition/subtraction, where parts of the figures are either added

or subtracted from one another; (4) distribution of three, in which three categorical attributes of a figure

(e.g., all circles) occur within each row; and (5) distribution of two, just like distribution of three except

that only two values are distributed throughout a row. By examining the error patterns on these different

types of rules, Carpenter et al. (1990) found that most subjects made the most errors on problems

involving either distribution of three or two rules. As noted previously, Carpenter et al. (1990) argued

that difficult items are difficult because these items require a large number of items to be held in working

memory and because these items require more difficult rules.

In a recent post-hoc analysis, Babcock (2002) investigated age related differences on Raven by

examining the types of rules required to solve each problem as classified by Carpenter et al. (1990).

Babcock (2002) studied whether this rule classification was important to age differences on Raven. That

is, are performance differences between older and younger adults restricted to problems requiring a

certain type of rule, which upon identification could shed light on the possible mechanisms responsible
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for such age differences? However, Babcock found that relatively few subjects attempted problems

requiring more complex rules (i.e., distribution of two and three) and thus these problems could not be

analyzed. Babcock (2002), also found that high and low ability groups (as determined by their Raven

score) differed in their error patterns on problems requiring different rule types. In interpreting these

results, Babcock suggested that a possible explanation for the results lay in terms of differential working

memory capacities. Specifically, Babcock suggested that older and younger adults may differ in the

overall amount of processing resources available to them and thus age differences on Raven are due to

quantitative rather than qualitative differences. Once again, this line of reasoning implies that the reason

WM measures correlate with Raven is due to the amount of things that can be held in memory.

1.1. Rationale for the present study

The purpose of the present study was to examine the role of individual differences in working

memory capacity and fluid intelligence. Specifically, our aim was to examine the hypothesis that the

shared variance between working memory span measures and measures of fluid intelligence is due to the

number of goals and sub-results that can be held in working memory (Carpenter et al., 1990; Verguts &

De Boeck, 2002). Indeed, Verguts and De Boeck (2002) noted that bPersons with a large WM capacity

can store more partial results, and, hence, will have a higher probability of solving an item. Therefore,

WM capacity and Raven performance are positively correlatedQ (p. 38). This line of reasoning suggests

that the correlation between solution accuracy and a measure of working memory capacity should

increase as the number of rules, goals, and/or sub-results on a given problem increases (given that there

is enough systematic variability present). That is, items with low memory loads will not exceed even the

capacity of low WM span participants and thus most individuals should get these problems right and

there should be little systematic variability present. However, as memory load increases so will item

discriminability and thus the item-WM span correlations will increase. It is also possible that the pattern

of results will resemble those of Salthouse (1993) suggesting that the correlation between working

memory span and fluid abilities is rather constant across different types of problems. With this goal in

mind, we examined item variations in difficulty, memory load, and rule type in order to better understand

the shared variance between these two measures.
2. Method

2.1. Participants

A total of 160 participants were recruited from the subject-pool at Georgia Institute of Technology and

from the Atlanta, GA community through newspaper advertisements. Participants were between the ages

of 18 and 35 and received either course credit or monetary compensation for their participation. Each

participant was tested individually in a laboratory session lasting approximately 1 h.

2.2. Materials and procedure

After signing informed consent, participants completed Ospan (Turner & Engle, 1989) and then

Raven Advanced Progressive Matrices, Set II (Raven et al., 1998).
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2.2.1. Operation Span

Ospan has demonstrated good reliability and validity (Conway et al., 2002; Engle et al., 1999; Klein

& Fiss, 1999). Specifically, previous research has demonstrated that Ospan has good test–retest

reliability (e.g., 0.88; Klein & Fiss, 1999) as well as good internal consistency with estimates ranging

from 0.61 to 0.83 (Conway et al., 2002; Engle et al., 1999; Klein & Fiss, 1999). Furthermore, as noted

previously, the validity of Ospan has been demonstrated in several contexts by showing that it correlates

well with other measures of WMC and predicts performance on a number of higher-order cognitive tasks

(Conway et al., 2002; Engle et al., 1999).

The Ospan requires participants to solve a series of math operations while trying to remember a set of

unrelated words. Participants see one math operation word string at a time, centered on a computer

monitor. For each trial, they read aloud and solve the math problem and then read aloud the word.

Immediately after the participant reads the word, the next operation-word string is presented. The

operation-word strings are presented in sets of two to five items. Following each complete set the

participant recalls the words in the order presented. For example, a three-item set might be,

IS(8/2)�1=1? bear

IS(6*1)+2=8? drill

IS(10*2)�5=15? job

???

The question marks cue participants to write down the words in the correct order. Three trials of each

set size are presented, with the order of set size varying randomly, so that participants cannot predict the

number of items. A participant’s Ospan score is calculated by adding up the number of items in perfectly

recalled trials. For example, a participant who correctly recalled two sets of two-item trials and one set of

three-item trials would have a score of seven. Additionally, in order to ensure that participants are not

trading off between solving the operations and remembering the words, an 85% accuracy criterion on the

math operations is required for all participants.

2.2.2. Raven Advanced Progressive Matrices

As noted previously, Raven is a paper-and-pencil measure of abstract reasoning. The test consists of

36 individual items presented in ascending order of difficulty (i.e., the easiest item is presented first and

the hardest item is presented last). Each item consists of a display of 3�3 matrices of geometric patterns

with the bottom right pattern missing. The task for the participant is to select among eight alternatives,

the one that correctly completes the overall series of patterns. Participants were allotted 30 min to

complete as many items as possible. A participantTs score is the total number of correct solutions.
3. Results

As noted in the introduction, the goal of the present investigation was to better understand which

aspects of performance on the Raven are important for the association with working memory capacity

and in particular, with performance on Ospan. Therefore, here, we present three sets of separate analyses,

each examining a different aspect of Raven performance. The first two sets of analyses are based on

correct item responses and concern item variations in difficulty and number of rule relations. For these



Table 1

Means, standard deviations, minimum, maximum and correlation for Ospan and Raven

Variable Mean Standard

Deviation

Min Max 1 2

1. Ospan 13.25 6.58 2 39 –

2. Raven 18.93 7.30 0 32 0.335 –
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two aspects, we utilized correlation and regression analyses. The last analysis is based on error responses

and concerns the different types of rules induced on each problem. For this last aspect, we utilized

analysis of variance (ANOVA) methods. Table 1 provides descriptive statistics for both Ospan and

Raven. Additionally, the correlation between Ospan and Raven was approximately 0.34, which is similar

to correlations previously reported in the literature (e.g., Conway et al., 2002; Engle et al., 1999; Kane et

al., 2004).1

3.1. Item variations in difficulty

Our first set of analyses concerns item variations in difficulty. Recall that a common account of the

correlation between WMC measures and Raven is attributed to differential ability to solve difficult items

that tax working memory. Thus, as problems increase in difficulty, so does the demand on working

memory. Note that this is a common account of the correlation between these two measures and, thus,

although we do not necessarily endorse this hypothesis, we wished to test the veracity of it. By this

rationale, then, we should see the point-biserial correlation between a measure of working memory

capacity and solution accuracy increase as difficulty increases. Note, that this hypothesis is based on the

assumption that there is systematic variability present on the most difficult items. The Raven is constructed

such that difficulty increases as problem number increases and as can be seen in Fig. 1, that was the case

with these data, namely, proportion correct decreased sharply from early to late items. Therefore, if WMC

is more important with greater difficulty (given that there is sufficient systematic variability in

performance on an item), plotting the point-biserial correlations between WMC and solution accuracy by

problem number should reveal an increase in the correlations that mirrors the function in Fig. 1.

However, as shown in Fig. 2, the correlations between solution accuracy for each item and Ospan,

although fluctuating widely, does not appear to increase in any systematic manner as difficulty increases.

Indeed, the correlation between Ospan and accuracy on the first problem was as high as with problem 24

(i.e., problem 1 r=0.26, problem 24 r=0.26). These results are strikingly similar to those of Salthouse

(1993) who showed roughly the same pattern of correlations between solution accuracy and a WM

composite. Both sets of results suggest that there is not a clear relationship between item variations in

difficulty on Raven and measures of WM.

Following the lead of Salthouse (2000), we computed quartiles based on the solution accuracy for

each Raven problem. The first quartile (quartile 1) represents the nine easiest problems while the last

quartile (quartile 4) represents the nine hardest problems (according to accuracy rates). Descriptive

statistics for the quartiles and Ospan are presented in Table 2. Performance values for the quartiles are

based on proportion correct. Also shown in Table 2 are the correlations between the quartiles and Ospan.
1
Note that this correlation is nearly identical to a correlation from a much larger sample of participants from our lab who were tested under

the exact same testing conditions (e.g., r(1042)=0.349).



Fig. 1. Mean proportion correct for individual Raven problems. Error bars represent one standard error of the mean.
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What is particularly notable about the correlations is that across quartiles 1–3, the correlations are very

similar (i.e., approximately 0.30). However, quartile 4, which represents the hardest problems shows a

non-significant correlation with Ospan. Although there seems to be adequate variability for quartile 4,

this low correlation is probably due to the fact that not as many subjects attempted these problems.

Indeed, 80% of participants attempted the first 27 problems, but only 47% of participants finished the

test. Thus, only quartiles 1–3 should be interpreted. With this in mind, the results demonstrate that the
Fig. 2. Point-biserial correlations of solution accuracy with Operation Span for individual Raven problems.



Table 2

Means and standard deviations for accuracy by quartiles and correlations with Ospan

Variable Mean Standard

Deviation

1 2 3 4 5

1. Ospan – – –

2. Quartile 1 .83 .21 .324** –

3. Quartile 2 .69 .28 .294** .774** –

4. Quartile 3 .44 .30 .331** .571** .718** –

5. Quartile 4 .18 .20 .079 .262** .354** .439** –

** pb.01.
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correlation between solution accuracy and Ospan does not increase as difficulty increases but instead

remains fairly constant across increasing levels of difficulty.

3.2. Item variations in memory load

The previous set of analyses suggested that the correlation between Raven and Ospan remains fairly

constant across levels of difficulty. According to Carpenter et al. (1990), variations in item difficulty are

one of the main determinants of performance differences between individuals. Specifically, Carpenter et

al. argued that difficult items are difficult because they tax working memory more than easier items. In

particular, the authors argued that difficulty increased because the number of rules and rule relations

within a given problem increased. Thus, those who perform well on Raven would be those who have

larger working memory capacities. Recall, that as a test of this claim, Carpenter et al. (1990) devised two

computer simulation models: one of which could solve the first half of the test (FAIRAVEN) and one

that could solve practically all items on the test (BETTERAVEN). The second model differed from the

first primarily in terms of its ability to hold a larger number of goals in memory.

Using the logic of Carpenter et al., problems that BETTERRAVEN can solve should discriminate

individuals better than problems that FAIRAVEN can and thus BETTERAVEN should correlate better

with Ospan than FAIRAVEN. That is, as the number of relations increases, so should the correlation

with a WMC measure. Therefore, based on the classification provided by Carpenter et al. (1990), we

made two composites, one consisting of the problems that both FAIRAVEN and BETTERAVEN

could solve and the other based on only those problems that BETTERAVEN could solve. The

correlations suggest that those problems that could be solved by both models actually correlated better

with Ospan than problems that only BETTERAVEN could solve (i.e., r Both=0.36**, r

BETTERAVEN only=0.16*). Note two things about these correlations that could hinder interpretation:

(1) as noted previously only 47% of participants finished the test and thus the low correlation for

BETTERAVEN could be due to the low number of participants who attempted these problems and (2)

it is possible that there is not enough variability present for BETTERAVEN and hence the correlation

will be low. In regards to the first point, we performed the same analysis but only with those 76

participants who completed the test and thus attempted these problems.2 The same pattern of
2
One reviewer was concerned that only high working memory capacity individuals would finish the test. However, of those participants

classified as high working memory (one standard deviation above the mean on Ospan), only 25% of them actually finished the test, whereas 71%

of those classified as low working memory (one standard deviation below the mean on Ospan) finished the test. This results in somewhat lower

scores for these 76 individuals on the two measures as compared the full sample (i.e. M Ospan=11.12, S.D.=5.90; M Raven=17.50, S.D.=7.59).



Table 3

Means and standard deviations for accuracy by tokens and correlations with Ospan

Variable Mean Standard

Deviation

1 2 3 4 5

1. Ospan – – –

2. Token 1 .72 .34 .342** –

3. Token 2 .66 .22 .276** .640** –

4. Token 3 .32 .32 .245** .440** .533** –

5. Token 4 .25 .25 .113 .317** .507** .490** –

** pb.01.
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correlations emerged (i.e., r Both=0.31**, r BETTERAVEN only=0.16). Thus, the low correlation does

not seem to be due to the fact that only a few participants attempted the last problems. In terms of the

second point there does seem to be adequate variability for both composites. Looking only at those 76

participants who attempted the test the standard deviation for Both=0.24 and the standard deviation for

BETTERAVEN=0.22. Furthermore, there is some systematic variability present for both because the

correlation between the two is 0.67.3 Thus, the low correlation between Ospan and BETTERAVEN

seems to reliable and thus it would seem that what is important for the correlation between Ospan and

Raven is due to variability in primarily the fist half of the test.

As a more sensitive test of the hypothesis that item variations in memory load are important for the

WM measure-Raven correlation, we grouped items based on the number of brule tokensQ and examined

the correlations with these variables and Ospan. Items were grouped based on the appendix provided by

Carpenter et al. (1990). Those items with only one rule token were grouped together and formed token 1,

while items with two tokens made up token 2 and so on up to problems with five tokens. However, only

one problem was classified as having five rule tokens by Carpenter et al. and hence was not analyzed in

the current data set. Once again, we would expect that as memory load increased so would the

correlation with Ospan (as long as there is enough systematic variability present). That is, if the number

of things that can be held in memory is what is important for the relationship between Ospan and Raven,

then we should see that problems with highest number of rule tokens correlates the best with Ospan.

However, as shown in Table 3, the correlation between the number of tokens and Ospan actually

decreased as the number of rule tokens increased. The correlation went from a significant 0.34 for token

1 to a non-significant 0.11 for token 4 (Table 3).

However, once again, we must be cautious in interpreting this result because although 80% of

participants attempted problems with 1–3 rule tokens, fewer participants attempted problems making up

token 4. Therefore, as before, we examined the correlation between token 4 and Ospan only for those

subjects who finished the test. The resulting correlation was 0.14. Additionally, there does seem to be

some systematic variability for these problems because the average correlation between the tokens 1–3

with token 4 was 0.52.

Thus, the results suggest that problems with only one rule token are more important for the

relationship with Ospan than problems with higher memory loads. Indeed, as shown in Table 4, entering

all four token types into a simultaneous regression reveals the fact that only problems with one rule

token predict unique variance in Ospan (i.e., 4%). This would suggest that, of the roughly 13% of
3
The same pattern of results was found when examining data from the full sample of participants.



Table 4

Simultaneous regression predicting Ospan

Variable B t sr2 R2 F

Token 1 0.260 2.63** 0.04

Token 2 0.080 0.723 0.003

Token 4 0.122 1.30 0.009

Token 5 �0.070 �0.765 0.003 0.133 5.94**

** pb0.01.
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variance shared between Ospan and Raven, problems with only one rule token uniquely predict 30% of

that variance and 70% of the variance is shared by all rule tokens. Similar to the analysis of difficulty, it

seems that the easiest and lowest memory load problems account for a large amount of both shared and

unique variance with Ospan (Table 4).

3.3. Error responses as a function of rule type

The final set of analyses concerned the extent to which subjects rated high, medium, or low on the

Operation Span differed on problems requiring different rules. As classified by Carpenter et al. (1990),

there are five basic types of rules ordered in terms of complexity (see previous discussion). One might

suspect that the different span groups perform similarly on problems requiring certain rules, while

performance diverges on rules of another type. If for instance, high and low WM spans differ on

problems requiring distribution of two, but not on problems requiring pair-wise progression, we would

be able to make some inference about the underlying differences between the span groups.

Participants were classified as being either a high, medium, or low span based on their performance

on Ospan. Those participants scoring one standard deviation above the mean were deemed high spans,

whereas those scoring one standard deviation below the mean were considered low spans. All other

participants were considered mid spans. This resulted in 28 low spans with a mean Ospan score of 5.25

(S.D.=1.67, range 2–7), 108 mid spans with a mean Ospan score of 12.81 (S.D.=3.44, range 8–19), and

24 high spans with a mean Ospan score of 24.54 (S.D.=5.52, range 20–39). Only problems that were

attempted and incorrect were considered to see if the span groups differed in error rate for each of the

different types of rules.

As shown in Fig. 3, the results suggest that low spans seem to make more errors than do either mid or

high spans. Additionally, the proportion of errors is greater for some rules than for others. Specifically, it

seems that rules involving either distribution of two or three have a higher proportion of errors than the

other rule types. Crucially, however, the proportion of errors for the different rule types is not a function

of WM span. Thus, the span groups do not differ on one rule type more than another.

These impressions were confirmed by a 3 (span)�5 (rule type) repeated measures ANOVAwith rule

type as the within subjects variable. The ANOVA yielded reliable main effects of both span,

F(2,157)=11.16, pb0.01, partial g2=0.13, and rule type, F(4,628)=39.75, pb0.01, partial g2=0.20. Post-
hoc Bonferroni corrected contrasts revealed that low spans had a higher proportion of errors (M=0.55,

S.E.=0.04) than both mid and high spans (pb0.01). High and mid spans did not differ in proportion

errors (M=0.29, S.E.=0.05 and M=0.33, S.E.=0.02, respectively). Additionally, Bonferroni corrected

contrasts in terms of rule type indicated that the proportion of errors was significantly different for all

rule types (pb0.01) except for constant and add/subtract rules, which did not differ from one another.



Fig. 3. Mean proportion of errors as a function of rule type and working memory span. Note: constant=constant in a row,

pairwise=quantitative pairwise progression, Dis3=distribution of three, Dis2=distribution of 2 and Add/Sub=addition/

subtraction. Error bars represent one standard error of the mean.
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Crucially, the span�rule type interaction did not reach significance, F(8,628)=0.953, pN0.20, partial

g2=0.01. Together, the results suggested that, although there are differences between the span groups in

terms of proportion of errors as well as differences between the different rule types, these two factors did

not interact.
4. Discussion

The goal of the present study was to investigate possible determinants of the correlation between

Operation Span and Raven Advanced Progressive Matrices. The results demonstrated that item

variations in difficulty do not account for the shared variance based on the standard view that more

difficult problems are more important for the correlation than easier problems. In fact, the results suggest

that the correlation holds fairly constant across the first three quartiles of difficulty and then drops

substantially for the hardest problems, although, this latter effect is possibly due to the low number of

subjects who actually attempted these problems as well as possibly low systematic variability present for

these problems. Regardless, these results are consistent with the work of Salthouse (1993) who

demonstrated a similar pattern of correlations with a composite measure of working memory capacity

and performance on the Raven, suggesting that the correlation between working memory capacity and

solution accuracy was constant across differing levels of difficulty.

The results also demonstrated that item variations in memory load do not account for the shared

variance between the two tasks. As memory load increased, the correlations between Ospan and solution
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accuracy actually decreased somewhat, resulting in a non-significant correlation for problems with the

largest memory loads. These results are contrary to what would be predicted if the shared variance

between the two tasks was due to differences in the number of items that could be held in memory. By

such a view, one would expect an increase in the correlations. However, the results suggest that, for the

most part, the correlations are fairly constant and do not vary systematically with variations in memory

load. These results are compatible with the work of Verguts and De Boeck (2002, their Experiment 1)

who demonstrated that the correlation between a working memory task and a modified version of Raven

occurred even when all of the items had a low memory load.

Finally, the ANOVA results suggest that item variations in rule type also do not seem to account for

working memory capacity individual differences and performance on the Raven. That is, the results

demonstrated that although low working memory span individuals made more errors overall, and some

rule types resulted inmore errors than others, these two factors did not interact. Thus, individual differences

in working memory capacity did not result in differential performance on certain rules more than others.

It is important to point out that only one measure of working memory capacity was used in the current

study and thus the generalizability of the findings are somewhat suspect. However, we note that the

Operation Span task is a widely used measure of working memory capacity that has been shown to load

highly on a common working memory factor (e.g., Conway et al., 2002; Engle et al., 1999; Kane et al.,

2004), and as noted in the introduction the zero order correlation between Operation Span and Raven is

similar to those of other working memory tasks to Raven. Additionally, the mean Ospan score of 13.25 is

similar to other Ospan scores that have been reported previously (e.g., Engle et al., 1999) and is virtually

identical to the mean Ospan score from a much larger distribution in our laboratory (e.g., M=13.72,

N=2256). Thus, although only one putative measure of working memory capacity was used in the current

study, we feel that the results can be generalized to other working memory span tasks to some degree.

4.1. Working memory capacity and fluid abilities revisited

Taken together, the results of the present study strongly suggest that the number of goals or sub-results

that can be held in memory does not account for the shared variance between working memory span

measures and fluid intelligence. Thus, the results do not support the hypothesis advanced by Carpenter et

al. (1990) that the link between individual differences in working memory capacity and intelligence is due

to differences in the ability to hold a certain number of items in working memory. Note that we are not

arguing that item variations in difficulty and memory load are unimportant in determining performance on

the Raven as suggested by Carpenter et al., but rather we suggest that the reason working memory span

tasks are consistently good predictors of fluid ability is due to something else.

Indeed, we have argued elsewhere (Engle et al., 1999; Heitz, Unsworth, & Engle, in press) that the

shared variance between working memory capacity and fluid abilities is due to the ability to control

attention. This framework suggests that those individuals who score high on a working memory capacity

measure are those individuals who are better able to control attention especially in conditions of

distraction and interference. This notion is similar to the theory of goal neglect and fluid intelligence put

forth by Duncan, Emslie, and Williams (1996).

By our view, it is the central executive component of the working memory system that is important on

both working memory span tasks and tasks of fluid abilities. Other researchers have also suggested that

individual differences in fluid abilities are due to differences in a general control processor (Embretson,

1995;Marshalek, Lohman, & Snow, 1983; Sternberg, 1985). Embretson (1995) examined the roles of both



N. Unsworth, R.W. Engle / Intelligence 33 (2005) 67–81 79
general control processing and working memory capacity on the performance of Raven type problems.

Similar to the analyses performed here, Embretson utilized the framework outlined by Carpenter et al.

(1990) to classify problems based on their memory load and then examined how performance was related

to both general control processing and memory load. Instead of examining Raven problems directly,

Embretson developed a test bank of items based on Carpenter et al.’s classification scheme (see also

Embretson, 1998). In order to examine the roles of both working memory capacity and general control

processes, Embretson (1995) argued for the standard view ofworkingmemory capacity; that is, the amount

that can be held in memory. Thus, the need for working memory capacity should vary systematically with

item variations in memory load. For general control processes, however, Embretson argued that this would

be needed equally on all problems and thus would be a constant in terms of item variations. Specifically,

Embretson argued that, bmaintaining an effective solution strategy, depends on control processes, such as

selecting an effective strategy, monitoring solution processes, and allocating resources to processing. Such

processes are postulated to be involved equally on all items within an item typeQ (p. 170). Impressively,

Embretson demonstrated that together, both constructs accounted for 92% of the variance in reasoning,

with general control processes accounting for more variance thanworkingmemory capacity. Based on this,

Embretson suggested that both are important for fluid abilities, but that control processes were more

important.

Our view of workingmemory capacity is similar to that of Embretson’s control process. That is, we have

suggested that individual differences in working memory capacity are really indicative of differences in a

domain-general executive attention component and not indicative of differences in the number of things

that may held in memory. Although, some of the shared variance betweenWM span tasks and measures of

fluid abilities such as Raven is probably due to processes other than executive attention. Furthermore, the

results of the present study are highly compatible with EmbretsonTs notion that the general control process
should be evident equally and equally important across all items. Recall, that we found that the correlation

between a measure of working memory capacity and solution accuracy on the Raven was fairly constant

across item variations in difficulty and memory load. Additionally, examining error responses on the

different types of rules suggested that item variations in rule type were unimportant for the relationship as

well. Together, these results suggest that individual differences in working memory capacity did not vary

systematically with different item variations, but rather were constant across the different types of

problems.

Another possible explanation for the results of the current study is a notion proposed by Verguts and

De Boeck (2002) who suggested that it is not only the ability to hold goals and sub-results for a given

problem during the solution of that problem, but also it is the ability to successfully hold onto the

solution principles of that problem for future use that is important. That is, Verguts and De Boeck

suggested that one reason for the shared variance between working memory capacity measures and

intelligence is the ability to acquire and reuse correct solution strategies across problems of a similar

type. In support of this notion, the authors found that the correlation between working memory capacity

and performance on Raven remained even when all of the items had a low memory load. Furthermore,

the authors argued that evidence obtained by Carlstedt, Gustafsson, and Ullstadius (2000) was consistent

with their view. Specifically, Carlstedt et al. (2000) showed that an intelligence test made up of

homogenous items loaded higher on a general intelligence factor than did a similar test made up of

heterogeneous items. Verguts and De Boeck (2002) argued that subjects were learning the correct

solution strategies and then utilizing them on subsequent problems. Thus, in this view, one reason for the

correlation between working memory capacity and intelligence is differential ability to successfully
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implement learned solution strategies on problems that require similar solution strategies in the future. It

is not the amount that can be held for a given problem, but rather the ability to learn and implement

strategies across problems that is important.

However, it is possible that the reason homogenous reasoning tests load more highly on a g-factor than

heterogeneous tests is because homogenous tests allow for more proactive interference (PI) to build up

during the test and those individuals who are better at combating PI during the test score higher. Thus, the

shared variance between these types of intelligence tests and working memory capacity may be due to the

fact that susceptibility to PI is an important source of individual differences in both. Indeed, there is

abundant evidence suggesting that one aspect of individual differences in working memory capacity is the

ability to effectively combat PI (Hasher&Zacks, 1988; Kane&Engle, 2000; Lustig, Hasher, &May, 2001;

Rosen & Engle, 1998). This same ability has also been suggested as an important factor in intelligence and

cognitive abilities more generally (Dempster, 1991; Dempster & Corkill, 1999). Future research will be

needed to test these two theories of the correlation between working memory and intelligence more

thoroughly.
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