
J. Functional Programming 7 (5): 451–485, September 1997. Printed in the United Kingdom

c© 1997 Cambridge University Press

451

A functional description of

TEX’s formula layout

REINHOLD HECKMANN and REINHARD WILHELM
Fachbereich Informatik, Universität des Saarlandes

Saarbrücken, Germany

(e-mail: {heckmann,wilhelm}@cs.uni-sb.de)

Abstract

While the quality of the results of TEX’s mathematical formula layout algorithm is convincing,
its original description is hard to understand since it is presented as an imperative program
with complex control flow and destructive manipulations of the data structures representing
formulae. In this paper, we present a re-implementation of TEX’s formula layout algorithm in
the functional language SML, thereby providing a more readable description of the algorithm,
extracted from the monolithical TEX system.

Capsule Review

The TEX typesetting system basically consists of two parts: a macro language and certain
basic typesetting capabilities, such as placing boxes next to each other, either vertically or
horizontally. However, the real documentation for the typesetting capabilities is the TEXbook

and the TEX source code.
This paper is truly welcome. The basic typesetting functions used by TEX should become

more clear and should be reachable from a decent declarative language, thereby allowing
documents to be typeset or generated in a declarative manner.

As ideas are better and better understood, they are expressed in a more and more declarative
manner. The work done in this paper shows how this can be done for a very useful algorithm
written in a very unreadable form. This sort of work should be done for other algorithms
that are commonly used.

Work of the kind done in this paper allows one to perceive the need for more general
means for laying out two-dimensional diagrams, with aesthetic or other constraints defining
the actual placement of atomic components to form more complex diagrams.

1 Introduction

The mathematical formula layout algorithm used by D. E. Knuth’s TEX typesetting

system generates remarkably good output. However, any attempt to understand

the reasons for this success leads to deep frustration. The algorithm is informally

described in Appendix G of the TEXbook (Knuth, 1986a) using English prose

with some formal fragments. While this description provides a useful and welcome

overview, the details are not completely correct. A complete and exact description of

the whole TEX implementation is presented in TEX: The Program (Knuth, 1986b).

https://doi.org/10.1017/S0956796897002840 Published online by Cambridge University Press

452 R. Heckmann and R. Wilhelm

It contains the full source code of the TEX system, structured into logical units, well

commented, and documented by cross references. Nevertheless, anyone who wishes

to gain a full understanding of TEX’s algorithms from these descriptions must invest

great efforts. The reason is that both the documented source code and the informal

description are typical examples of imperative programs, involving complex control

flow (including goto’s) and complicated manipulations of the various data structures.

In particular, the usage of global variables obscures the interdependencies between

the subtasks. It is by no means obvious where certain information is produced,

where it is changed, and where it is consumed.

In this paper, we present a new implementation of TEX’s formula layout using the

functional language SML (Paulson, 1991). The purpose of this re-implementation

effort is twofold: first, it provides a novel and hopefully more understandable

description of TEX’s formula layout algorithm. This description was developed

as part of a textbook (Wilhelm and Heckmann, 1996) on document processing.

Second, it extracts this particular subtask of TEX from the monolithically designed

TEX system, leading to the possibility to study it independently and to potentially

use it in systems other than TEX. Some remarks on status and availability of the

implementation are contained in section 2.1 and in the conclusion (section 7).

The main task of the formula layout algorithm consists in translating formula

terms (a kind of abstract syntax for formulae) into box terms, which describe the

sizes and relative positions of the formula constituents in the final layout. Knuth’s

original data structure for formula terms was designed to achieve space and time

efficiency. In our opinion, it is misconceived from a more logical point of view, as

it mixes semantic concepts with details concerning spacing. Hence, we propose a

new data structure for formula terms with a clean and simple design. This change

does not cause harm since formula terms do not occur in other subtasks of TEX.

In contrast, box terms are produced by nearly all subtasks of TEX. Thus, we tried

to mimic the structure of Knuth’s original box terms as close as possible in our

SML code in order to keep a well-defined interface with other subtasks of the TEX

system, each of which might be re-implemented in the future.

Concerning the algorithm itself, we also tried to catch exactly TEX’s behaviour,

but still we cannot definitively claim that our algorithm is the ‘same’ as Knuth’s

original algorithm. The change in the structure of formula terms and the switch to

the functional paradigm causes big changes in the structure of the code and the

temporal order of operations. On the other hand, we claim that for equivalent input

formulae, the resulting box terms are equivalent, apart from certain round-off errors

(Knuth uses a sophisticated self-defined arithmetic, while we use SML’s standard

arithmetic functions). Our claim is confirmed by practical tests: after programming

a translator from box terms to .dvi code (the standard output from TEX), we can

print the results of our formula layout program and verify that they are visually

indistinguishable from the results of TEX.

In section 2, the overall view of formula layout is presented, together with

some details that influence the typesetting: the styles of formulae and subformulae

(section 2.2), style parameters (2.3), and character dimensions (2.4). Knuth’s account

of these things is very concrete. In contrast, we present an abstract interface that

https://doi.org/10.1017/S0956796897002840 Published online by Cambridge University Press

A functional description of TEX’s formula layout 453

hides the details of font table organization, and makes clear how the information is

used.

Section 3 presents the output of the layout algorithm, box terms, and section 4

the input, formula terms. In section 5, a set of specialized functions is presented

that translate subformulae of various kinds into box terms. Section 6 treats the

translation of whole formulae, including the introduction of implicit spaces between

adjacent entities of certain kinds.

A fair estimation of our achievements is contained in the conclusion (section 7).

Of course, our functional solution is not simpler than the problem admits: Formula

layout is an inherently difficult problem, not in terms of computational, but of

algorithmic complexity. There are many different kinds of mathematical formulae,

whose layout is governed by tradition and aesthetics. Algorithms for formula layout

must distinguish many cases and pay attention to many little details.

In the presentation of our implementation, we do not list the SML program in

its natural ordering. SML programs must be written in a bottom-up style because

everything must be defined prior to its usage. For some of the description in a paper

like this, a top-down approach is more suitable. To save space, we do not present the

arrangement of the code into signatures and structures; every type specification is

in fact part of a signature, while every function definition is part of some structure.

2 Overview of formula layout

2.1 Complete processing of formulae

In TEX, a formula is entered using a formula description language, which is a

sublanguage of TEX’s input language. The formula
∑n

i=1 i = n(n+1)
2

, for instance, is

described by the expression

$\sum_{i=1}^n i = {n (n+1) \over 2}$.

Formulae are processed as follows:

1. The string representing the formula is read and parsed into a formula term,

which essentially corresponds to the logical structure of the formula, but

additionally contains some spacing information.

2. The formula term is recursively translated into a box term, which describes

exactly the layout of the formula.

3. The box term corresponding to the formula becomes a subterm of the box

term for the page where the formula occurs.

4. The box terms for the pages of the document are translated into the .dvi lan-

guage and written to some file. The .dvi-file essentially consists of commands

where to print which symbols.

Before any formula is processed, a preprocessing step reads information about

the size of characters, the thickness of fraction strokes, etc. This information comes

from .tfm files, which exist for every combination of font and type size.

This paper is only concerned with point 2. The actual SML implementation also

contains the preprocessing step, addresses point 3 in a trivial manner (the whole

https://doi.org/10.1017/S0956796897002840 Published online by Cambridge University Press

454 R. Heckmann and R. Wilhelm

page is a sequence of formulae), and performs step 4 completely in order to obtain

a visible output. It does not (yet) address point 1, i.e. formulae must be entered as

formula terms in SML notation.

2.2 Formula styles

Formulae may appear in two different contexts: as inline formulae, e.g.
∑n

i=1 i =
n(n+1)

2
, within a line of text, and as displayed formulae in a line of their own, e.g.

n
∑

i=1

i =
n(n + 1)

2
.

As one can see, the layouts of inline and displayed formulae are quite different. In

our example, this concerns the positions of the limits of the sum and the sizes of the

sum symbol and of the parts of the fraction. These properties are influenced by the

layout style (Knuth, 1986a, p. 140). Displayed formulae are typeset in display style

D, while text style T is used for inline formulae. There are two further styles, which

apply to certain subformulae: script style S for ‘scripts’ (superscripts and subscripts)

and other subformulae with small typesetting, and script script style SS for scripts

of scripts and other subformulae with tiny typesetting.

In TEX, there are four more styles, D′, T′, S′, and SS′, which are called cramped styles.

They apply to subformulae that are placed under something else, e.g. denominators.

In cramped styles, superscripts are less raised than in the corresponding uncramped

styles. Analyzing the usage of the eight TEX styles, it turns out that they may be

regarded as pairs of a main style and a Boolean value ‘cramped’ where the two

components are independently calculated and used. Thus we decided to separate

them completely, and define

datatype style = D | T | S | SS.

2.3 Style parameters

Every style has its own rules where to place scripts, numerators, denominators,

etc. These rules are given by style parameters read from the .tfm files during the

preprocessing phase. In TEX, these style parameters are accessed via the style size,

which is identical for D and T. In many cases, two different style parameters are used

for the same purpose, one for style D, and the other one for the remaining styles.

Our preprocessing, however, produces slightly more high level style parameters that

depend on the style directly. The conversion from styles to style sizes and the

distinction between D and the remaining styles is done internally.

Hence, nearly all style parameters are given by functions of type style → dist,

where dist is the type used for horizontal and vertical distances and lengths. As

in TEX, dist is an integer type where a dist value of 1 corresponds to 2−16 pt.

Here, ‘pt’ is the abbreviation of ‘point’, a traditional unit of measure for printers

and compositors in English-speaking countries. In TEX, one inch equals exactly

72.27 pt.

https://doi.org/10.1017/S0956796897002840 Published online by Cambridge University Press

A functional description of TEX’s formula layout 455

In this overview, we present a few important style parameters only. The remaining

ones are introduced when needed. For example, the parameters pertaining to the

positions of subscripts are only explained when the typesetting of subscripts is

presented.

Style parameter xHeight provides the height of the letter x in the current style.

Parameter MathUnit yields the size of a ‘mathematical unit’, which by TEX’s defi-

nition is one eighteenth of the width of the letter M in the current font. Parameter

RuleThickness contains the thickness of fraction strokes and of over- and under-

lines, as in x + y. In TEX’s layout algorithm (and in our re-implementation), it is

also used to control spacing; an abuse that makes it impossible to change the rule

thickness separately from the spacing.

Parameter AxisHeight contains the vertical distance from the axis to the baseline.

The latter is the line where most of the letters and all digits sit on, while the former

is the line where to put fraction strokes (consider, for instance, 1 + 2
3
; the baseline is

at the bottom of the digit 1). The axis also plays some role outside of fractions. In

a well-designed mathematical font, many symbols are placed symmetrically to the

axis (consider plus and equal in 1 + 2
3

= 5
3
).

Apart from the style parameters, the layout is influenced by some constants that

do not depend on the style. While their role in layout is similar to that of the style

parameters, they have a completely different origin: they are not read from the

.tfm files, but explicitly specified in the code. A sample constant is scriptSpace

of type dist, which specifies an additional white space of 0.5 pt to be inserted after

superscripts and subscripts.

2.4 Characters and character dimensions

The main result of the preprocessing phase is the information about the dimensions

of every single character. Before we present how this information is provided to the

remainder of the program, we have to consider how characters are coded internally.

Consider, say, the formula xx, which is entered as x^x. In the formula description,

there is no difference between the two occurrences of x. This is still the case in the

formula term obtained by parsing the description: Both occurrences correspond to

the same subterm, which is a pair consisting of a font family (‘math italic’ in our

example) and a character code (120 in our case). After typesetting, however, the

two occurrences of x are different in size; the font family has been replaced by a

concrete font that is different for the two occurrences. The choice of some concrete

font from a font family of course depends on the style, T for the first occurrence of

x and S for the second.

The preprocessing phase of our algorithm provides the types that are needed for

these encodings: family for font families, fontNr for font numbers that refer to

actual fonts, and charCode for character codes. It also provides the function

fontNumber: style -> family -> fontNr

for the style-dependent selection of a concrete font from a font family.

https://doi.org/10.1017/S0956796897002840 Published online by Cambridge University Press

456 R. Heckmann and R. Wilhelm

The .tfm files contain four basic size parameters for each character in every font.

These parameters are read by the preprocessing phase and made available via the

following functions:

charHeight, charDepth, charWidth, charItalic:

fontNr * charCode -> dist.

The height of a character is the distance from its top end to the baseline, e.g. ‘a’ and

‘g’ have the same height, and ‘f’ is bigger. The depth is the distance from the baseline

to the bottom end; e.g. ‘a’ has depth 0, whereas ‘g’ has positive depth. The width is

the horizontal size as it is used in the composition of ordinary text. It does not take

into account a possible extension of the upper right part of the character. This extra

extension, i.e. the difference between the overall horizontal extension and the given

width of the character, is the italic correction provided by function charItalic. It

becomes visible in cases where both superscripts and subscripts are attached to a

character; in f1
1 , for instance, the horizontal distance between the two scripts is the

amount of the italic correction of the letter f.

It is a particularly painful subtask of formula layout to decide whether the italic

correction should be added to the width of a particular occurrence of a character.

In the original TEX program, this issue is complicated by the habit of taking

advantage of the destructive nature of imperative programming, by subtracting

some corrections that were added in earlier stages of the layout process. In our

SML program, an added correction will never be removed again.

The .tfm files contain another kind of information which is made available by

larger: fontNr * charCode -> charCode.

For some characters, a larger version is available in the same font. In this case, the

code of this larger version is returned, while the code is unchanged otherwise.

Internally, all character information is stored in vectors to guarantee efficient

access.

2.5 Top level layout functions

Recall that formulae may appear in two contexts: inline and displayed. Therefore,

we define two different functions for the translation from formula terms to box

terms:

inlineFormula, displayFormula: mlist -> hlist

where mlist (mathematical list) is the type of formula terms (section 4.2), and hlist

(horizontal list) is the type of box terms (section 3.4).

Of course, the two functions are closely related; we implement them by a more

general function that will also be used for the recursive translation of subformulae.

This function will of course depend on the style and the Boolean crampedness. Apart

from the style, there is another difference between inline and displayed formulae:

inline formulae may be broken across lines, while display formulae may not. Hence,

inline formulae must be equipped with penalty information telling the line breaking

https://doi.org/10.1017/S0956796897002840 Published online by Cambridge University Press

A functional description of TEX’s formula layout 457

Fig. 1. Box with height h, depth d and width w.

algorithm where to break. On the other hand, penalties need not be inserted into

displayed formulae. Thus, the more general function has a second Boolean argument,

which indicates whether penalties should be inserted.

val MListToHList: style -> bool -> bool -> mlist -> hlist

val displayFormula = MListToHList D false false

val inlineFormula = MListToHList T false true

Before we describe the implementation of MListToHList, we must present the

data structures for formula terms (mlist) and box terms (hlist).

3 The target representation: box terms

The main task of formula layout is the translation of formula terms into box terms.

In sections 3.1–3.3, we describe these box terms informally, on a semantical level.

The actual TEX and SML implementations follow in the remaining subsections. In

particular, section 3.4 contains the necessary type definitions, and 3.5 the compu-

tation of the dimensions of box terms. The remaining two subsections describe a

selection of basic functions to build or manipulate boxes.

3.1 Boxes and their dimensions

A box is a rectangle whose edges are parallel to the page edges. Each box comes

with a horizontal baseline and a reference point that is situated at the point where

the baseline meets the left margin of the box. The reference point is used to position

the box within its context. For the outside world, a box is characterized by three size

parameters (of type dist): height h, depth d, and width w. The height is the vertical

distance from the top margin to the baseline, the depth is the vertical distance from

the baseline to the bottom margin, and the width is the horizontal distance from the

left to the right margin (see figure 1).

Each of these dimensions may be negative. To understand what this means, we

must clarify the meaning of ‘distance from A to B’. Each page is equipped with a

Cartesian coordinate system, whose x-axis points to the right as usual, while the

y-axis points downward. These directions were chosen to follow the flow of text for

https://doi.org/10.1017/S0956796897002840 Published online by Cambridge University Press

458 R. Heckmann and R. Wilhelm

Fig. 2. A horizontal combination of three boxes.

scripts commonly used by European languages. Using these coordinates, we may

define:

• Horizontal distance from A to B = x-coordinate of B – x-coordinate of A

• Vertical distance from A to B = y-coordinate of B – y-coordinate of A

Most boxes have positive width, which means that their left margin is to the left of

their right margin. Boxes with negative width may, for instance, arise from negative

horizontal spaces. They have the property that their left margin (which carries the

reference point) is to the right of their right margin, which might appear surprising.

Nevertheless, this does correspond to their unusual physical properties: they really

do have negative width, which would be impossible for any concrete physical body.

Height and depth are positive if the baseline lies within the shape of the box, i.e.

below the top margin and above the bottom margin. The height is negative if the

baseline is above the top margin, and the depth is negative if it is below the bottom

margin.

It is important to note that a box on its own does not have an absolute position

on the page. The position of a box is only fixed relative to the reference point of

a superbox once the superbox has been formed. Accordingly, every box fixes the

positions of its subboxes relative to its own reference point. In fact, it is difficult in

TEX to fix anything to a particular point on the page.

3.2 Horizontal combination of boxes

Boxes can be combined to form larger boxes either horizontally or vertically. In a

standard horizontal combination of a list of boxes, the constituents are placed next

to each other from left to right so that their baselines appear on the same horizontal

line, and the right margin of each box is aligned with the left margin of the next box.

The reference point of the combination is that of the leftmost constituent. Figure 2

shows a horizontal combination of three boxes. The baseline of the combined box

is the bold line through the middle of the box. The small gaps between any two

neighbouring boxes, as well as between the subboxes and the surrounding box, were

introduced to enhance the readability of the figure. In reality, the three subboxes

https://doi.org/10.1017/S0956796897002840 Published online by Cambridge University Press

A functional description of TEX’s formula layout 459

Fig. 3. Two examples for vertical combinations.

touch each other and sit tightly within the surrounding box. Hence the (natural)

width of the combined box is the sum of the widths of the constituents.

There are two modifications of this standard procedure. First, the surrounding

box may be given a width different from its natural width. This is done by stretching

or shrinking glue, i.e. white space whose width admits some variability. The main

application is the adjustment of lines of text to a common width where the glue

components are the interword spaces. As we shall see, there are some applications

of this principle in formula layout as well.

The second modification consists in the possibility to vertically shift some boxes

in the horizontal list. The amount of shift is added to the y-coordinate, and as the

y-axis points downward, a positive amount means a downward shift. Note that there

is some redundancy here: a box in a horizontal list may be shifted downward by an

amount s using the method just described, or by simply adding s to the depth and

subtracting s from the height. In the original TEX algorithm, both methods occur.

We also use both methods, depending on when exactly the shift is performed: when

the subbox is constructed (modify height and depth), or when the horizontal list is

formed.

3.3 Vertical combination of boxes

A list of boxes may also be combined vertically. In a standard vertical combination,

the boxes are placed in a vertical row from top to bottom so that their left margins

are aligned, and the bottom margin of each box is aligned with the top margin of its

successor. There is no canonical choice for the reference point of the surrounding

box. Later, we shall meet cases where it is the reference point of the topmost box,

of the box at the bottom, or of some box in between. In figure 3, we present two

examples. As in the previous figure, the small gaps only exist for better visibility.

In analogy to the case of horizontal combination, there are two modifications

of the standard procedure. The first is stretching / shrinking to a predefined height,

which does not occur in formula layout. The second is the possibility to shift some

boxes to the right by a given amount, which might be negative. In contrast to the

situation in horizontal lists, the right shift cannot be replaced by some manipulation

of the box dimensions.

https://doi.org/10.1017/S0956796897002840 Published online by Cambridge University Press

460 R. Heckmann and R. Wilhelm

3.4 Implementation of the box types

In the actual TEX implementation, the entities that were called boxes in the above

informal description are known as nodes. There are several kinds of elementary

nodes, the most prominent being character nodes, kern nodes (white space of fixed

size), and glue nodes (variably sized white space). Kern nodes and glue nodes have a

so-called width, which is their real width in a horizontal list, or the height in a vertical

list. Compound nodes are called boxes; besides a description of their content (a list

of nodes), they consist of an indicator telling whether the list is horizontal or vertical,

fields containing the three dimensions, a field for the shift amount which applies to

them, and some further information. Remember that the interpretation of the shift

amount depends on whether the box is placed in a horizontal or a vertical list.

In our SML implementation, we basically copied this data structure. For obvious

reasons, we renamed the ‘width’ of kern and glue nodes into size. The only more

serious change is the decision to extract the shift field from a box. The logical reason

is that the shift is not an intrinsic property of a box, but something that is applied

to it by its context. The pragmatic reason is that the shift is usually unknown when

the box is built, so that some dummy value must be assigned to the shift field in the

box itself to be changed to the proper value at some later stage. While possible in

principle, such a procedure is unelegant and inappropriate in a functional setting.

The data type node has the following cases:

Char of fontNr * charCode

A character node where the character is specified by its code and a font number.

Kern of dist

A kern, i.e. white space, of a given size.

Glue of glueSpec

A glue, i.e. white space of variable size. Type glueSpec is a record with a field

size for the natural size of the glue, and fields that specify its stretchability and

shrinkability.

Rule of dim

A rule, i.e. a black rectangle, with given dimensions. Type dim is a record type

with fields height, depth, and width of type dist.

The dimensions of a rule in TEX may be running, i.e. undefined and to be

determined by the context. We do not use running dimensions because they add

algorithmic and logical complexity, and the dimensions of rules in formula layout

are known at construction time, and cannot be changed later on.

Penalty of penalty

A penalty node, i.e. potential point of line breaking, with a description of the

adequacy of a line break at this point.

Box of dist * box

A box together with the amount of shift applied to it. Type box is the following

record type:

{kind: boxkind, width: dist, depth: dist, height: dist,

content: node list, glueParam: glueParam}

https://doi.org/10.1017/S0956796897002840 Published online by Cambridge University Press

A functional description of TEX’s formula layout 461

where boxkind is HBox or VBox. The glueParam field indicates how glue nodes in

the content node list must be modified so that the sum of the horizontal (HBox)

or vertical (VBox) sizes of the components equals the given size of the box. The

most important value of type glueParam is natural which means that every piece

of glue gets its natural size.

In our system, the dimensions of a box are uniquely determined by its kind,

its content list, and its glueParam field. Thus, the addition of explicit dimen-

sions is merely a matter of efficiency. In original TEX, this is not true since

Knuth often omits Kern nodes at the very end of the content list. While this

saves some space, it leads to logical and algorithmic difficulties in certain situa-

tions.

Some operations apply to horizontal or vertical node lists without difference,

while others are specific for one direction. To be able to express this at least in their

type specification, we define

type hlist = node list; type vlist = node list

Unfortunately, the type checker cannot enforce these distinctions, but we did not

want to complicate things further by introducing constructors for the two kinds of

lists. The type checker does enforce the distinction between boxes, nodes, and node

lists, a difference that sometimes seems to be inappropriate.

Note that the original TEX implementation does not distinguish between nodes

and node lists; type node contains a field next for chaining, and both nodes and

node lists show up as entities of type ‘pointer to node’.

Most rules have depth zero, most boxes are not shifted, and sometimes, we must

construct a horizontal list from a single box. Hence, it proved to be useful to

introduce the following abbreviations:

fun rule h w = Rule {height = h, depth = zero, width = w}

fun Box0 b = Box (zero, b) (* creates node with zero shift *)

fun HL b = [Box0 b] (* creates hor. list from box *)

We admit that this data structure is not optimal and clumsy in parts, but it is

close to the original TEX implementation, and a thorough refinement should only

be done after experiences have been collected from considering more subtasks of

TEX than just formula layout.

3.5 Dimensions of nodes and node lists

We need functions to compute the dimensions of nodes and node lists. Unfortunately,

the dimensions of a node are context-sensitive; they depend on whether the node

occurs in a horizontal or a vertical list. Thus, there are three functions, width,

height and depth, for nodes in a horizontal list, and four functions, vwidth,

vheight, vdepth and vsize (vheight plus vdepth), for nodes in a vertical list. All

functions have the same type node → dist. Here, we only present the definition of

the two width functions.

https://doi.org/10.1017/S0956796897002840 Published online by Cambridge University Press

462 R. Heckmann and R. Wilhelm

fun width (Char info) = charWidth info

| width (Box (_, {width = w, ...})) = w

| width (Rule {width = w, ...}) = w

| width (Glue {size, ...}) = size

| width (Kern size) = size

| width _ = zero

fun vwidth (Char info) = charWidth info

| vwidth (Box (shift, {width = w, ...})) = shift + w

| vwidth (Rule {width = w, ...}) = w

| vwidth _ = zero

The difference between the two functions lies in the handling of kern and glue sizes

and of box shifts.

From the dimension functions for single nodes, those for node lists are derived.

Three functions deal with horizontal lists, and two with vertical lists. Functions

vlistHeight and vlistDepth are not needed.

hlistWidth, hlistHeight, hlistDepth: hlist -> dist

vlistWidth, vlistVsize: vlist -> dist

They are defined using a common auxiliary function.

fun compute f g nl = f (map g nl)

val hlistWidth = compute sum width

val hlistHeight = compute Max height

val hlistDepth = compute Max depth

val vlistWidth = compute Max vwidth

val vlistVsize = compute sum vsize

The dimensions of a node list are either the sum or the maximum of the corre-

sponding node dimensions. Function Max is defined as fold max 0; hence, Max []

is 0, and Max never yields a negative result. (This behavior is taken over from TEX.)

3.6 Basic functions on box terms

In this subsection, we present several functions on box terms that are needed during

formula layout.

Extension to the right. Often, a white space has to be added to the right of a given

node, e.g. when the italic correction is added to a character. The following function

performs the addition in an intelligent way, transforming a node to a node list.

val extend: dist -> node -> hlist (* extends to the right *)

fun extend dist node =

let val extension = if dist = zero then [] else [Kern dist]

in node :: extension end

https://doi.org/10.1017/S0956796897002840 Published online by Cambridge University Press

A functional description of TEX’s formula layout 463

From node lists to boxes. Next, we define an auxiliary function to produce a box

with given dimensions from a node list.

val makebox: boxkind -> dim -> node list -> box

fun makebox boxkind {height = h, depth = d, width = w} nl =

{kind = boxkind, height = h, depth = d, width = w,

content = nl, glueParam = natural}

The only purpose of this function is to prepare the following two definitions:

val hbox: dim -> hlist -> box (* hbox with given dimensions *)

val vbox: dim -> vlist -> box (* vbox with given dimensions *)

val hbox = makebox HBox; val vbox = makebox VBox

The following function packs a horizontal list into a box with natural dimensions:

val hpackNat: hlist -> box

fun hpackNat nl = hbox {width = hlistWidth nl,

height = hlistHeight nl,

depth = hlistDepth nl} nl

Formula layout does not use this function proper, but an optimized version: if the

given node list consists of a single unshifted box, this box is returned.

val boxList: hlist -> box

fun boxList [Box (0, b)] = b

| boxList nl = hpackNat nl

Centering around the axis. The axis was introduced in section 2.3; it is the line

where fraction strokes sit on. Sometimes, a box must be vertically centered around

the axis. Assuming that the centered box will be part of a horizontal list, the

centering can be performed by adding a suitable shift value.

val axisCenter: style -> box -> node

fun axisCenter st box =

let val axh = AxisHeight st

val h = #height box and d = #depth box

val shift = half (h - d) - axh

in Box (shift, box) end

In the beginning, the baseline of the box coincides with the overall baseline. Variable

axh is bound to the distance from the axis to the baseline in the current style. This

distance is given by style parameter AxisHeight. The total shift performed by this

function can be considered as a shift by s1 = (h − d)/2, followed by a shift by

s2 = −axh. The first shift results in an effective height of h − s1 = (h + d)/2 and

an effective depth of d + s1 = (h + d)/2, i.e. yields a node that is vertically centred

around the baseline. The second shift by −axh downward, i.e. by axh upward, yields

a node centered around the axis as required.

https://doi.org/10.1017/S0956796897002840 Published online by Cambridge University Press

464 R. Heckmann and R. Wilhelm

Horizontal centering. Numerator and denominator of a fraction are usually cen-

tered within the horizontal extension of the fraction, e.g. 1
n+1

. Hence, we need a

function rebox: dist → box → box that centers a given box within a space of

given width. This is not done by simply adding white space (kerns) at both sides

of the box, but by adding glue of great flexibility to both ends of the horizontal

list within the box, and then creating a new box of the specified width by glue

adaptation. The details of the process are complex, but it is fully implemented in

our SML program. We do not include the code here, but only note that nothing is

done to a box that already has the desired width:

fun rebox newWidth

(b as {kind, width, height, depth, content, ...}) =

if newWidth = width then b else <not specified here>

The reason for this complexity is to allow TEX users to modify the position of

numerator and denominator by means of explicit glue, as is done in 1
n+1

.

3.7 Making vertical boxes

General vertical boxes. We start with a fairly general function that creates a box

out of a vertical list of nodes. The reference point of the resulting box will be the

reference point of one of the nodes, which we call the reference node. This reference

node is not necessarily the node at the top or at the bottom of the vertical list. This

function is needed for big operators with limits (e.g.
n
∑

i=1

) where the reference node

is the box with the operator symbol, and for fractions (e.g. 1
2
) where the reference

node is the fraction stroke (a rule node).

The type of the considered function is

makeVBox: dist -> node -> vlist -> vlist -> box

where the distance dist is the width of the box being built, node is the reference

node, the first vlist contains the nodes above the reference node, and the second

vlist the nodes below.

The width is added as an parameter since it is known anyway when makeVBox is

called; thus, its recalculation as the maximum of the widths of all involved nodes

is avoided. There is another design decision which seems to be odd at first glance:

when makeVBox is called, the first vlist has to be enumerated from bottom to

top, and the second vlist from top to bottom. This causes some trouble within

makeVBox since the first vlist must be reversed. There is no loss in efficiency,

however, since the two vertical lists must be concatenated anyway. On the other

hand, the decision to enumerate the two lists symmetrically, i.e. from the reference

node toward the top and bottom edges, allows for maximum exploitation of the

inherent symmetry of the formulae that are typeset using makeVBox. In fact, using

higher order functions, usually only one piece of code is needed to compose both

argument lists of makeVBox.

https://doi.org/10.1017/S0956796897002840 Published online by Cambridge University Press

A functional description of TEX’s formula layout 465

After these preliminaries, here is the definition of makeVBox:

fun makeVBox w node upList dnList =

let val h = vlistVsize upList + vheight node

val d = vlistVsize dnList + vdepth node

val nodeList = revAppend upList (node :: dnList)

in vbox {width = w, height = h, depth = d} nodeList end

where the auxiliary function revAppend is given by

fun revAppend [] yl = yl

| revAppend (x :: xl) yl = revAppend xl (x :: yl).

Special instances of vertical boxes. From the general function makeVBox, two spe-

cial instances are derived where the reference node is at the top or bottom end of

the complete vertical list.

upVBox, dnVBox: dist -> box -> vlist -> box

As in makeVBox, the first argument is the width of the box being built. In upVBox,

the reference node (of type box) is the bottom node, and the whole vlist goes

above it. Function dnVBox works the other way round: the reference node is at the

top, and all other nodes are placed below it. The vlist of upVBox is enumerated

from bottom to top, while the vlist of dnVBox is enumerated from top to bottom.

fun upVBox w box upList = makeVBox w (Box0 box) upList []

fun dnVBox w box dnList = makeVBox w (Box0 box) [] dnList

There is a subtle difference between makeVBox and the two new functions: in

makeVBox, the reference node is of type node, while it is of type box here. This

decision was made by observing how the functions are called; upVBox and dnVBox

are always called with a box, while makeVBox is called with a box or a rule node.

It is simpler to use the transfer function Box0 in the bodies of upVBox and dnVBox,

than to repeat it in all their calls.

Putting two things above each other. Sometimes, two nodes must be placed above

each other with some white space in between, for instance the two scripts in x1
1. In

this case, neither of the two nodes can be used as reference node, so that none of

the functions defined above is easily usable. Thus, we define yet another function

above: node -> (dist * dist) -> node -> node.

By a call above n1 (s1, s) n2, node n1 is placed above node n2 with white space of

size s in between. Parameter s1 is the distance from the bottom edge of n1 to the

baseline of the combined box (see figure 4). Pairing of the two distances simplifies

the calls of this function because the two distances are returned as a pair by some

other function. The result of above is a node since all callers expect to see a

node.

https://doi.org/10.1017/S0956796897002840 Published online by Cambridge University Press

466 R. Heckmann and R. Wilhelm

Fig. 4. Two nodes placed above each other.

fun above n1 (s1, s) n2 =

let val w = max (vwidth n1, vwidth n2)

val h = vsize n1 + s1

val d = vsize n2 + s - s1

val nodeList = [n1, Kern s, n2]

in Box0 (vbox {width = w, height = h, depth = d} nodeList) end

4 Formula terms

The main task of formula layout consists of translating formula terms into box

terms. Below, we first present the TEX implementation of formula terms, highlight

its weaknesses, and introduce our redesigned implementation.

4.1 The original TEX-representation

In TEX, formula terms are called math lists. Math lists are sequences of math items.

According to the description in the TEXbook (Knuth, 1986a, p. 157), a math item

is an atom, a horizontal space, a style command (e.g. \textstyle), a generalized

fraction (see section 5.3), or some other material which we do not consider here for

simplification. The description in TEX: The Program uses different names (Knuth,

1986b, Par. 680). There, the ‘atoms’ plus generalized fractions and several other

entities are called noads (according to Knuth, this word should be pronounced as

‘no-ads’).

Atoms have (at least) three parts: a nucleus, a superscript and a subscript. Each

of these fields may be empty, a math symbol or a math list. There are 13 kinds of

atoms, some of which have additional parts. Eight atom kinds mainly regulate the

spacing between two adjacent atoms: a relation atom such as ‘=’ is surrounded by

some amount of space, a binary atom such as ‘+’ by less space, and an ordinary

atom such as ‘x’ by no extra space at all. The remaining five kinds of atoms have a

more serious semantics. An overline atom, for example, is an overlined subformula.

https://doi.org/10.1017/S0956796897002840 Published online by Cambridge University Press

A functional description of TEX’s formula layout 467

This internal representation deserves some criticism. The superscript and subscript

fields are empty in most cases; there should really be superscript and subscript con-

structors. The thirteen kinds of atoms combine two completely different aspects: a

classification needed to control spacing, and the adjunction of meaningful construc-

tors. These two aspects should not be mixed into a single concept. Interestingly,

TEX’s layout algorithm internally tries hard to distinguish these aspects, as we

explain by two examples.

Overline atoms are handled during a first pass through the formula. After addition

of the overline rule, they are transformed into ‘Ord’ atoms since the spacing of

overline atoms and ‘Ord’ atoms is identical. The actual inter-atom spaces are added

in a second pass through the formula.

Fractions are math items (noads), but not atoms. Their layout is computed during

the first pass of the algorithm, and afterwards, they are transformed into ‘Inner’

atoms. The kind ‘Inner’ controls the spacing around fractions in the second pass of

the algorithm.

Thus, the mixture of different concepts into the same notion entails destruc-

tive transformations of the formula data structure, thereby making TEX’s layout

algorithm hard to understand.

4.2 Alternative representation defined in SML

To avoid the problems mentioned above, we completely redesigned the internal

representation of formulae. Our formula terms merely reflect the logical structure

of the formula. They do not contain spacing information except for characters. The

spacing attributes of larger subformulae are explicitly computed during typesetting.

A formula term is an object of type mlist = noad list, i.e. a list of noads (we

borrow this word from Knuth). Type noad is a datatype with as many cases as

there are sorts of subformulae. There are, for instance, cases for atomic symbols,

for overlined and underlined subformulae, for superscripted and subscripted sub-

formulae, for operator symbols with their limits, and for generalized fractions. We

do not describe all these cases here at once, but instead describe them together

with their translation to box terms. We hope that this presentation method avoids

redundancies in the description and enhances readability of the paper.

5 Translating noads into horizontal lists

Recall that typesetting of a complete formula is done by the function

MListToHList: style -> bool -> bool -> mlist -> hlist

where the first Boolean indicates crampedness, and the second Boolean requests the

insertion of penalties (line breaking information). Function MListToHList uses the

function

NoadToHList: style -> bool -> noad -> hlist

https://doi.org/10.1017/S0956796897002840 Published online by Cambridge University Press

468 R. Heckmann and R. Wilhelm

to translate the noads in its mlist argument into horizontal lists. Insertion of penalty

nodes is handled by MListToHList itself. Hence, the penalty Boolean need not be

passed to NoadToHList; the Boolean argument of this function is the crampedness.

In the course of its work, NoadToHList recursively calls function MListToHList

on subformulae. All these recursive calls are done via an auxiliary function

val cleanBox: style -> bool -> mlist -> box

fun cleanBox st cr ml =

boxList (MListToHList st cr false (* no penalties! *) ml)

which accounts for the fact that subformulae do not need penalty nodes, and packs

the resulting horizontal list into a single box.

Below, we present some sample cases of type noad, and define how NoadToHList

acts on these cases. The definition of MListToHList follows in section 6. The overall

format of the definition of NoadToHList is

fun NoadToHList st cr = fn <list of cases>

so that the function name and the first two parameters need not be repeated with

every case; occurrences of st and cr in the description below should be understood

as being the formal parameters of this function definition.

5.1 Ordinary symbols and characters

In principle, there is no difference in the treatment of specific mathematical symbols

such as ‘⊕’ or ‘∞’ and ordinary characters such as ‘x’. Nevertheless, there are two

exceptions: Big operator symbols such as ‘
∑

’ are handled in a specific way (see

section 5.4), and after selection of a text font such as \rm or \it, a sequence of char-

acters is joined together as in ordinary text. Here and in the SML implementation,

we did not include the handling of text characters.

All mathematical symbols are described by a pair consisting of a character code

and a font family. Within a formula term, an additional kind field carrying spacing

information is attached to each symbol. Thus, the case of data type noad that

corresponds to a single symbol has format

MathChar of kind * family * charCode

where kind is defined by

datatype kind = Ord | Op | Bin | Rel | Open |

Close | Punct | Inner | None.

Kind Rel, for example, is assigned to relation symbols such as ‘=’ or ‘<’, and kind

Open is used for opening delimiters such as ‘(’ and ‘{’. The last kind, None, does not

occur in the original TEX implementation. We use it as the kind of those entities

that do not have a kind in original TEX.

The translation of MathChar noads to horizontal lists ignores the kind information.

It is used in a later stage of formula layout when the implicit spacing between

https://doi.org/10.1017/S0956796897002840 Published online by Cambridge University Press

A functional description of TEX’s formula layout 469

adjacent entities is computed. Also the information about crampedness is not needed.

Thus, the MathChar case of NoadToHList st cr looks as follows:

MathChar(_, fam, ch) => makeChar st fam ch

where auxiliary function makeChar is given by

val makeChar: style -> family -> charCode -> hlist

fun makeChar st fam ch =

let val (charNode, itCorr) = basicChar st false fam ch

in extend itCorr charNode end

A further auxiliary function basicChar returns a character node charNode and the

italic correction itCorr of the character. By the last line of code, a white space

of length itCorr is added to the right of the character node. Function extend is

defined in section 3.6.

Function basicChar is also called when big operators are typeset. The Boolean

parameter indicates whether the given character is to be enlarged. This does not

happen to ordinary MakeChar symbols, but may occur in the case of big operators.

The function selects a concrete font from the given family, forms a character node,

and returns the amount of italic correction with it. Callers of basicChar may then

decide whether the italic correction is added to the character node or not.

val basicChar: style -> bool -> family -> charCode -> node * dist

fun basicChar st enlarge fam ch =

let val fontNr = fontNumber st fam

val ch’ = if enlarge then larger (fontNr, ch) else ch

val info = (fontNr, ch’)

in (Char info, charItalic info) end

For fontNumber and larger, see section 2.4.

5.2 Overlined and underlined subformulae

Subformulae may be overlined or underlined as in x + y − z. The corresponding

cases of datatype noad are Overline of mlist and Underline of mlist. These

constructors are handled by function NoadToHList st cr as follows:

Overline ml => HL (makeOver st (cleanBox st true ml))

Underline ml => HL (makeUnder st (cleanBox st cr ml))

First, subformula ml is typeset into a box by function cleanBox, using the same style

st as the context. Underlined subformulae are cramped iff their context is cramped

(parameter cr), while overlined subformulae are always cramped (parameter true).

Being cramped always means being cramped from above; there is no notion of being

cramped from below in TEX. The subformula box resulting from calling cleanBox

is passed to function makeOver or makeUnder, which adds the line to the box. Both

functions return a box that must be transformed into a horizontal list by HL.

https://doi.org/10.1017/S0956796897002840 Published online by Cambridge University Press

470 R. Heckmann and R. Wilhelm

Before we describe what makeOver does, let us consider an overlined subformula

such as x more closely. It is a vertical combination of the box containing x with a

rule node of appropriate width. The rule does not sit immediately at the top edge

of x; there is vertical space in between. Finally, there is also white space above

the rule that is invisible in this example, but affects the layout of a formula where

an overlined subformula occurs below something else. The structure of underlined

subformulae such as x is symmetrical: there is a space between x and the rule, and

another space below the rule. The reference point of x and x is that of x in both

cases. These are exactly the situations handled by upVBox and dnVBox (section 3.7).

Now, it pays off that their behavior is symmetrical; we may define

val makeOver = makeLine upVBox; val makeUnder = makeLine dnVBox

using a common implementation makeLine for both cases. This was not done in the

original TEX-program.

fun makeLine constrVBox st box =

let val w = #width (box: box)

val line = rule (RuleThickness st) w

in constrVBox w box

[Kern (lineDist st), line, Kern (linePad st)] end

Function RuleThickness is a style parameter returning the default rule thickness of

the current style. The first Kern is the one between the subformula and the rule, and

the second Kern is that beyond the rule. Their sizes are derived from the current

style by functions

fun lineDist st = 3 * RuleThickness st

fun linePad st = RuleThickness st

5.3 Generalized fractions

A generalized fraction in TEX is, as the name indicates, a very general concept that

includes ordinary fractions and binomial coefficients as special cases. Because of the

generality of the concept, a generalized fraction is described by five components,

together organized as a record:

GenFraction of genfraction

genfraction = {num: mlist, den: mlist, thickness: dist option,

left: delim, right: delim}

The core of a generalized fraction consists of two subformulae to be placed above

each other. The upper one, the numerator, is contained in the num field, and the

lower one, the denominator, resides in the den field.

The desired thickness of the fraction stroke may be explicitly specified in the

thickness field. If the thickness is missing (dist option!), the default rule thickness

of the current style is used. If the thickness is specified as zero, there will be no

fraction stroke at all, and the rules for the placement of the numerator and the

denominator are quite different from the case with a stroke.

https://doi.org/10.1017/S0956796897002840 Published online by Cambridge University Press

A functional description of TEX’s formula layout 471

A generalized fraction may be surrounded by delimiters, such as parentheses, that

are specified in fields left and right. Delimiters may be null, i.e. non-existent; this

is a special value of type delim. We shall say something more about delimiters later

on in this subsection.

Examples for generalized fractions are ordinary fractions such as 1
2

with a stroke

of default thickness and null delimiters, and binomial coefficients such as
(

1
2

)

without

stroke, and with parentheses as delimiters.

Typesetting generalized fractions. Generalized fractions are handled by the follow-

ing code:

GenFraction genFract => HL (doGenFraction st cr genFract)

val doGenFraction: style -> bool -> genfraction -> box

fun doGenFraction st cr {left, right, thickness, num, den} =

let val st’ = fract st

val numBox = cleanBox st’ cr num

val denBox = cleanBox st’ true den

in makeGenFraction st thickness left right numBox denBox end

Numerator and denominator are typeset in a smaller style st’ than the style st of

the context. This smaller style is computed by function fract:

val fract: style -> style

fun fract D = T | fract T = S | fract _ = SS

The crampedness of the numerator is inherited from the context (cr), while the

denominator is always cramped (true). The boxes resulting from numerator and

denominator together with the style and the remaining components of the generalized

fraction are passed to function makeGenFraction.

val makeGenFraction:

style -> dist option -> delim -> delim -> box -> box -> box

fun makeGenFraction st thickness left right numBox denBox =

The width of the central part of the generalized fraction (without the surrounding

delimiters) is the maximum of the widths of the numerator and the denominator.

let val width = max (#width numBox, #width denBox)

Next, the numerator and the denominator are centered within this width by adding

glue on both sides. See section 3.6 for rebox.

val numBox’ = rebox width numBox

val denBox’ = rebox width denBox

Now, the thickness of the fraction stroke is calculated. Remember that parameter

thickness is of type dist option. If no thickness is specified, the default rule

thickness of the current style is used.

val th = case thickness of NONE => RuleThickness st

| SOME t => t

https://doi.org/10.1017/S0956796897002840 Published online by Cambridge University Press

472 R. Heckmann and R. Wilhelm

Next, the middle part of the generalized fraction is formed. The positioning of the

components heavily depends on the existence of the fraction stroke; there is no

stroke if th is zero.

val middle = if th = zero

then makeAtop st numBox’ denBox’

else makeFract st th width numBox’ denBox’

Function makeAtop is not presented in this paper; for makeFract see below. Left

and right delimiter nodes are constructed:

val leftNode = makeDelimiter st left

val rightNode = makeDelimiter st right

and finally, the delimiter nodes are placed around the middle part, and the resulting

horizontal list is packed into a box:

in boxList [leftNode, middle, rightNode] end

Delimiters. In formula terms, delimiters are included as values of type delim. We

do not describe this type here; it contains information so that function

varDelimiter: style -> dist -> delim -> node

can produce delimiter symbols of given vertical size (parameter dist), depend-

ing on the current style. If the delim argument contains a null value, function

varDelimiter returns a Kern node of size nullDelimiterSpace.

This function is used for two purposes: First, to make large delimiters around

subformulae whose size depends on the size of the subformula; this specific task

is not described here. Second, the function is used to make delimiters around

generalized fractions. In TEX, the size of the delimiters does not depend on the size

of the middle part of the generalized fraction; it merely depends on the style. Hence,

we use the following function for generalized fractions:

val makeDelimiter: style -> delim -> node

fun makeDelimiter st del = varDelimiter st (Delim st) del

where Delim is a style parameter.

Proper fractions. Now we present the layout of proper fractions, i.e. those with a

fraction stroke. It is performed using function

makeFract: style -> dist -> dist -> box -> box -> node.

In a call makeFract st th w numBox denBox, argument st is the current style, th

is the thickness of the stroke, w is the width of the whole fraction and also the

width of the two boxes numBox and denBox, which contain the numerator and the

denominator of the fraction.

In a fraction such as 1
2
, the stroke does not sit on the baseline, but on the axis of

the formula. As one can see, numerator and denominator do not touch the stroke;

https://doi.org/10.1017/S0956796897002840 Published online by Cambridge University Press

A functional description of TEX’s formula layout 473

Fig. 5. Distances in a (proper) fraction.

there is some white space between the three visible components of the fraction. The

fraction is formed as a vertical box from its five components (three visible ones and

two kerns) so that the reference point is at the left end of the stroke. Then, the

resulting box is shifted upward so that the stroke moves from the baseline to the

axis. This vertical shift can be safely attached to the fraction box since we know that

it will be placed into the context of a horizontal list by function makeGenFraction.

fun makeFract st th w numBox denBox =

To evaluate this call, we first compute half the thickness of the stroke, and the

distance axh from the axis to the baseline which is given by style parameter

AxisHeight.

let val halfTh = half th

val axh = AxisHeight st

Then, a node for the stroke is formed. Height and depth are half the thickness so

that later, the stroke will be vertically centered around the axis.

val stroke = Rule {height = halfTh,

depth = halfTh, width = w}

Now, the distances distNum between the bottom edge of the numerator and the top

edge of the stroke, and distDen between the bottom edge of the stroke and the top

edge of the denominator (see figure 5) are computed by calling function distances

with all the relevant parameters.

val (distNum, distDen) =

distances st axh halfTh (#depth numBox) (#height denBox)

The fraction box is formed from the stroke, which will be the reference node, two

kerns, and the two boxes using makeVBox (section 3.7). Some common work is

abstracted out to the auxiliary function makeList.

fun makeList dist box = [Kern dist, Box0 box]

val fractBox = makeVBox w stroke (makeList distNum numBox)

(makeList distDen denBox)

https://doi.org/10.1017/S0956796897002840 Published online by Cambridge University Press

474 R. Heckmann and R. Wilhelm

Finally, box fractBox is shifted from the baseline to the axis. The amount of shift

is negative since the axis is above the baseline.

in Box (~axh, fractBox) end

Distances within a fraction. Unfortunately, the distances within a fraction are not

given directly by style parameters. Instead, there is a style parameter fractNum,

which specifies the desired distance from the baseline of the numerator to the

overall baseline. By subtracting axh, the distance axisNum from the baseline of the

numerator to the axis results. Subtracting the height of the stroke, which is halfTh,

and the depth of the numerator yields the distance distNum from the bottom edge

of the numerator to the top edge of the stroke (see figure 5). The calculations for

the denominator are similar, starting with style parameter Denom. Hence, the code

for distances begins as follows:

fun distances st axh halfTh dnum hden =

let val axisNum = fractNum st - axh

and axisDen = Denom st + axh

val distNum = axisNum - halfTh - dnum

and distDen = axisDen - halfTh - hden

The distances computed so far may be too small or even negative if the numerator is

very deep or if the denominator is very high. In this case, the distances are increased

to a minimum value given by fractMinDist.

fun correct dist = max (dist, fractMinDist st halfTh)

in (correct distNum, correct distDen) end

Function fractMinDist computes the minimum distance depending on the style

and the thickness of the stroke.

fun fractMinDist D halfTh = 6 * halfTh

| fractMinDist _ halfTh = 2 * halfTh

5.4 Subscripts, superscripts and limits

Superscripts and subscripts. Formulae with subscripts and superscripts are, for

instance, xi, x
n, or xni . They are represented by the following case of noad:

Script of script

where script is the following record type:

{nucleus: mlist, supOpt: mlist option, subOpt: mlist option}

The nucleus field contains the main formula, and the two remaining fields are the

two scripts, where one of them may be missing.

Using two constructors Sup and Sub instead of Script is unsuitable since the case

of both scripts together is typeset differently from a mere combination of the two

scripts. Compare for instance the two formula specifications {x_i}^n and x_i^n

https://doi.org/10.1017/S0956796897002840 Published online by Cambridge University Press

A functional description of TEX’s formula layout 475

which yield, respectively, xi
n and xni . There is also a subtle difference between an

empty script (specified by e.g. x_{}) and an entirely missing script. Hence, we must

type the script fields with mlist option; a simple mlist with the empty list denoting

a missing script does not suffice.

Big operators and limits. Limits are the scripts attached to big operators such as in

\sum_{i=1}^n. While their textual representation in TEX’s input language is identical

with that of scripts, we use a different constructor for their internal representation.

The reason is twofold: first, the big operator itself is handled differently from ordinary

mathematical symbols, and second, the layout of limits differs from that of scripts in

some cases. Scripts are always attached to the right of the nucleus, but limits may be

placed above and below the operator symbol, as in
n
∑

i=1

, which is called limit position,

or to the right of the operator, as in
∑n

i=1 (nolimit position). The position can be

influenced by writing \sum\limits and \sum\nolimits, respectively. If nothing is

specified (just \sum), the position depends on the style; it is limit position in display

style and nolimit position otherwise.

The constructor for big operators is the following:

BigOp of limits * script

where script is the record type introduced above, and limits is a data type of three

values: yes means that limit position is chosen, while no means nolimit position,

and default is the case where the position depends on the style.

Typesetting scripts and limits: Overview. Since the layout of limits in nolimit posi-

tion coincides with that of scripts, we use the same general function doGenScripts

for both scripts and limits. The behavior of this function depends on some Boolean

flags:

doGenScripts: style -> bool -> bool -> bool -> script -> hlist

The first Boolean is the usual crampedness flag, the second indicates whether the

attachments are to be placed in limit position, and the third keeps the information

whether the function was called while handling BigOp or Script. When Script is

handled, doGenScripts can be called directly:

Script script => doGenScripts st cr false false script

When handling BigOp, we must first decide about the limit position:

BigOp (lim, script) =>

let val limits = (st = D andalso lim = default)

orelse lim = yes

in doGenScripts st cr limits true script end

Function doGenScripts performs the tasks common to limits and scripts:

fun doGenScripts st cr limits isOp {nucleus, supOpt, subOpt} =

https://doi.org/10.1017/S0956796897002840 Published online by Cambridge University Press

476 R. Heckmann and R. Wilhelm

First, it calls doNucleus (see below) to typeset the nucleus. The result is a node

nucNode, a flag isChar indicating whether this node is a character node, and the

italic correction itCorr of this character.

let val (nucNode, itCorr, isChar) = doNucleus st cr isOp nucleus

Then, it determines the style of the attachments,

val st’ = script st

recursively typesets the subformulae; note that the subscripts are cramped:

val supOptBox = optMap (cleanBox st’ cr) supOpt

val subOptBox = optMap (cleanBox st’ true) subOpt

fun applyToArgs f = f itCorr nucNode supOptBox subOptBox

and finally calls makeLimOp in case of limits in limit position, or makeScripts in

case of limits in nolimit position and scripts:

in if limits then HL (applyToArgs (makeLimOp st))

else applyToArgs (makeScripts st cr isChar)

end

The choice of the style for the attachments is done by function script:

fun script D = S | script T = S | script _ = SS

Function optMap f maps NONE to NONE, and SOME x to SOME (f x).

Typesetting the nucleus. The task of typesetting the nucleus is handled by

doNucleus: style -> bool -> bool -> mlist -> node * dist * bool

where the first Boolean is crampedness, and the second indicates whether the function

is called from a big operator context. There are two entirely different cases: If the

nucleus is a single character, it is typeset by function makeNucChar, while otherwise,

the usual formatting function cleanBox is employed.

fun doNucleus st _ isOp [MathChar (_, fam, ch)]

= makeNucChar st isOp fam ch

| doNucleus st cr _ l = (Box0 (cleanBox st cr l), zero, false)

The result of doNucleus is a triple. The third component indicates whether the

first component is a character node; this is never the case if cleanBox is used. The

second component is the italic correction of the character in the nucleus, or zero if

the nucleus is not a character.

A nucleus consisting of a single character is typeset by makeNucChar which slightly

differs from makeChar that is used for characters in all other contexts. The result of

makeNucChar is a triple of the same format as the result of doNucleus.

val makeNucChar: style -> bool -> family -> charCode

-> node * dist * bool

fun makeNucChar st isOp fam ch =

https://doi.org/10.1017/S0956796897002840 Published online by Cambridge University Press

A functional description of TEX’s formula layout 477

A big operator in display style is enlarged.

let val enlarge = isOp andalso st = D

Function basicChar which we already met in section 5.1 returns a character node

and the italic correction of this character.

val (charNode, itCorr) = basicChar st enlarge fam ch

Big operators are vertically centered around the axis by axisCenter (see section 3.6).

val nucNode = if isOp then axisCenter st (boxList [charNode])

else charNode

in (nucNode, itCorr, not isOp) end

Note that the result of axisCenter is not a character node any more, and thus, the

third component of the result is false in this case. Thus, this component does not

indicate whether the nucleus is specified as a single character, but whether it is a

character node after typesetting (cf. Para. 18a in Appendix G of the TEXbook (Knuth,

1986a): “If the translation of the nucleus is a character box . . . ”). Nevertheless, the

second component holds the italic correction even in the case of big operators where

the third component is false.

Attaching the scripts. We do not include code for function makeLimOp in this

paper, but concentrate on function

makeScripts: style -> bool -> bool -> dist ->

node -> box option -> box option -> hlist

which attaches the scripts (the two box option arguments) to the nucleus (the

node argument). The first Boolean is the crampedness, and the second tells whether

the nucleus is a character node. The dist argument is the italic correction of the

nucleus. The function distinguishes between four cases, depending on the existence

or non-existence of the two scripts:

fun makeScripts st cr isChar itCorr nucNode =

(fn NONE =>

(fn NONE => extend itCorr nucNode

| SOME subBox => makeSub st isChar nucNode subBox)

| SOME supBox =>

(fn NONE => makeSup st cr isChar itCorr nucNode supBox

| SOME subBox => makeSupSub st cr isChar itCorr

nucNode supBox subBox)

)

If there are no scripts at all, nothing happens but adding the italic correction to the

nucleus (for extend, see section 3.6). The other three cases are handled by specialized

https://doi.org/10.1017/S0956796897002840 Published online by Cambridge University Press

478 R. Heckmann and R. Wilhelm

functions makeSub, makeSup and makeSupSub. Let us consider these three functions

together:

fun makeSup st cr isChar itCorr nucNode supBox =

let val hnuc = height nucNode and dsup = #depth supBox

val shift = SupPos st cr isChar hnuc dsup

val scriptNode = Box (~shift, supBox)

in extend itCorr nucNode @ extendScript scriptNode end

fun makeSub st isChar nucNode subBox =

let val dnuc = depth nucNode and hsub = #height subBox

val shift = SubAlonePos st isChar dnuc hsub

val scriptNode = Box (shift, subBox)

in nucNode :: (extendScript scriptNode) end

fun makeSupSub st cr isChar itCorr nucNode supBox subBox =

let val dnuc = depth nucNode and hnuc = height nucNode

val dsup = #depth supBox and hsub = #height subBox

val d = SupSubDistances st cr isChar hnuc dsup dnuc hsub

val scriptNode = above (Box (itCorr, supBox)) d (Box0 subBox)

in nucNode :: (extendScript scriptNode) end

In all three cases, the result is a horizontal list essentially consisting of the nucleus

node followed by a node for the script(s). In makeSup and makeSub, the script node

is the script box shifted by some amount shift, while in makeSupSub, it consists

of the two script boxes put above each other with some white space in between

(see section 3.7 for the definition of above). In all three cases, some white space of

constant size scriptSpace is added to the right of the script node. This is done by

val extendScript = extend scriptSpace.

Finally, note the different usage of the italic correction: In makeSub, it is not used

at all; the subscript is added to the uncorrected nucleus to avoid that it appears too

far away from it (consider f1). In makeSup, the correction is added to the nucleus

lest the superscript runs into it (consider f1). Consequently, the correction is not

added to the nucleus in makeSupSub, but used to shift the superscript to the right

(consider f1
1).

Positioning the scripts. The positions of the scripts are computed by SupPos,

SubAlonePos, and SupSubDistances. Let us concentrate on SupSubDistances.

This function must return a pair of dist values: the distance supDist from the

bottom of the superscript to the baseline, and the distance Dist from the bottom

of the superscript to the top of the subscript.

fun SupSubDistances st cr isChar hnuc dsup dnuc hsub =

let val supDist = SupPos st cr isChar hnuc dsup - dsup

Function SupPos is used to compute the desired value for the distance from the

baseline of the superscript to the overall baseline. By subtracting the depth of the

superscript, a first estimate for supDist results.

https://doi.org/10.1017/S0956796897002840 Published online by Cambridge University Press

A functional description of TEX’s formula layout 479

val subDist = SubWithSupPos st isChar dnuc - hsub

val Dist = supDist + subDist

Analogously, the distance subDist from the baseline to the top of the subscript is

computed. The sum of supDist and subDist is a first estimate for Dist.

val supDist’ = max (supDist, minSupDist st)

val Dist’ = max (Dist, minSupSubDist st)

in (supDist’, Dist’) end

If supDist and Dist are too small, they are increased to some style-dependent

minimum values derived from style parameters:

fun minSupDist st = (xHeight st * 4) div 5

fun minSupSubDist st = 4 * RuleThickness st

Now we present function SupPos, which is used in makeSup and SupSubDistances.

It defines the desired distance from the baseline of the superscript to the overall

baseline as the maximum of three numbers:

fun SupPos0 st isChar hnuc =

if isChar then zero else (hnuc - SupDrop (script st))

fun SupPos st cr isChar hnuc dsup =

Max [SupPos0 st isChar hnuc,

Sup cr st, dsup + (xHeight st) div 4]

The first number depends on the fact whether the nucleus is a single character

node. If not, the number provides an upper bound SupDrop for the distance from

the top of the nucleus to the baseline of the superscript. Function SupDrop is a style

parameter that does not depend on the current style as usual, but on the style of

the superscript.

The second number is a lower bound for SupPos given by style parameter Sup.

This is the only style parameter that not only depends on the style, but also on the

crampedness cr.

The third number provides a lower bound for the distance between the bottom of

the superscript and the baseline of one fourth of the xHeight of the current style.

The definition of the two remaining functions SubAlonePos and SubWithSupPos

is of similar complexity and not presented here.

6 Translating formula terms into horizontal lists

In the previous section, we defined function NoadToHList, which translates single

noads into horizontal lists. Here, we define MListToHList, which handles complete

mathematical lists. This involves applying NoadToHList to nearly all noads in the

mathematical list, but there is much more than this.

As in the original TEX implementation, we split the job of MListToHList in two

passes. The first pass translates formula terms (type mlist) into intermediate terms

(type ilist), and the second pass proceeds by translating intermediate terms into

https://doi.org/10.1017/S0956796897002840 Published online by Cambridge University Press

480 R. Heckmann and R. Wilhelm

box terms. The distribution of work among the two passes is slightly different from

that in TEX. The first pass recursively handles subformulae and builds fractions,

scripts, and the like. The second pass handles explicit spacing, inserts implicit spacing,

e.g. around binary operators, and inserts line break points by adding penalties when

requested. Because of this distribution, the cramping information is only needed in

the first pass, while the information whether to add penalties is needed in the second

pass only. This is a nice example of localizing information that is held in global

variables in the original TEX implementation.

val MListToIList: style -> bool -> mlist -> ilist

val IListToHList: style -> bool -> ilist -> hlist

fun MListToHList st cr pen ml =

let val il = MListToIList st cr ml

val hl = IListToHList st pen il

in hl end

6.1 First pass: mathematical lists into intermediate form

Function MListToIList applies NoadToHList to nearly all noads of the mathemati-

cal list. There are a few exceptions; four kinds of noads which we did not yet present

are handled by MListToIList directly or by the second pass IListToHList. The

corresponding cases of data type noad are:

| MPen of penalty

| MSpace of mathSpace

| Style of style

| Choice of style -> mlist

Cases MPen and MSpace provide explicit penalties and spaces (kern or glue), respec-

tively. A noad Style s results from an explicit style command such as \textstyle.

It has effect from the place where it occurs until the end of the current subformula.

Noads Choice f represent four way choices, i.e. lists of four subformulae, from which

one is selected according to the current style.

Intermediate lists ilist are lists of entities of type item. Data type item contains

representations for explicit penalties and spaces, which are handled in the second

pass; for style commands, which have to be known in both passes; and for the

horizontal lists, which result from translating noads by function NoadToHList.

These lists must not yet be concatenated since they form units that will be separated

by implicit spaces in the second pass. With every list, information about the kind of

its origin is needed. Hence, type item is defined as follows:

datatype item =

INoad of kind * hlist

| IPen of penalty

| ISpace of mathSpace

| IStyle of style

https://doi.org/10.1017/S0956796897002840 Published online by Cambridge University Press

A functional description of TEX’s formula layout 481

After defining the relevant types, we present the code for function MListToIList:

fun MListToIList st cr =

fn [] => []

| MPen p :: rest => IPen p :: MListToIList st cr rest

| MSpace s :: rest => ISpace s :: MListToIList st cr rest

| Style st’ :: rest => IStyle st’ :: MListToIList st’ cr rest

| Choice chfun :: rest => MListToIList st cr (chfun st @ rest)

| noad :: rest =>

INoad (noadKind noad, NoadToHList st cr noad)

:: MListToIList st cr rest

Essentially, it is one run through the argument list. Penalty and space noads are

copied into the intermediate form. Style commands take effect on the rest of the

argument list, and are copied into the result to take effect again in the second pass.

Four way choices are replaced by the appropriate case. Note that the result of a

choice is not grouped into a subformula, but spliced into the argument list without

grouping. (This is why it could not be handled by NoadToHList.) Ordinary noads

are translated into horizontal lists, which are still grouped together. The kind of the

original noad is kept in mind for the introduction of implicit spaces in the second

pass. Function noadKind is defined as follows:

val noadKind =

fn MathChar (k, _, _) => k

| Overline _ => Ord

| Underline _ => Ord

| GenFraction _ => Inner

| Script {nucleus, ...} => nucKind nucleus

| BigOp _ => Op

| <several more cases>

fun nucKind [MathChar (k, _, _)] = k

| nucKind ml = Ord

6.2 Second pass: spacing and penalties

In the second pass through a formula, function

IListToHList: style -> bool -> ilist -> hlist

translates an intermediate term into a single horizontal list. It must insert penalty

nodes if the Boolean argument is true, handle explicit penalties and spaces, and

introduce implicit spaces between adjacent entities. Implicit spaces are the horizontal

spaces in formulae such as x = y or x − y in contrast to x@y or −y. They are not

specified in the formula input; the four formulae above are entered as x=y, x-y, x@y,

and -y, respectively.

The implicit space between two entities basically depends on their kinds. There

is an additional non-local dependency for binary operator symbols; in x − y as

https://doi.org/10.1017/S0956796897002840 Published online by Cambridge University Press

482 R. Heckmann and R. Wilhelm

opposed to −y, the space between ‘−’ and ‘y’ depends on the presence of ‘x’. In any

case, we need the kind of the previous entity when IListToHList processes some

entity in the intermediate term. Hence, we define

fun IListToHList st insertPenalty iList =

let fun trans st prevKind = fn <see below>

in trans st None iList end.

Function trans runs through the iList, keeping in mind the kind prevKind of the

previous entity. In the beginning, prevKind is None.

Style commands, explicit penalties and spaces. The first four cases of trans st

prevKind are

fn [] => []

| IStyle st’ :: il => trans st’ prevKind il

| IPen pen :: il => Penalty pen :: trans st prevKind il

| ISpace sp :: il => makeSpace st sp @ trans st prevKind il

Style commands influence the style used for the rest of the input. Explicit penalties

are put into the result without any change except for the constructor; this is a must

in a functional language like SML. Explicit spaces (kern or glue) are processed by

function

makeSpace: style -> mathSpace -> hlist

and the resulting hlist, which is an empty list or a singleton, is spliced into the

result. Note that explicit penalties and spaces are transparent for kinds; they have

no kind and do not influence prevKind.

An explicit space (kern or glue) in a formula may be conditional or unconditional.

Conditional spaces are suppressed in the styles S and SS, while unconditional spaces

show up in all styles. The size of the spaces may be given in absolute units such

as pt, or in mathematical units mu. The size of the latter depends on the style.

Hence, function makeSpace, whose code we do not present here, must perform two

tasks: the suppression of conditional spaces in small styles, and the conversion from

mathematical units into an absolute size.

Handling translated noads. The last case of function trans handles already trans-

lated noads and inserts implicit spaces before them, and implicit penalties behind

them. Remember that the following code is situated in a context where prevKind

is the kind of the previous entity, st is the current style, and insertPenalty is a

Boolean telling whether implicit penalties are needed.

| INoad (actKind, hList) :: il =>

let val newKind = changeKind prevKind actKind il

val spaceList = makeSpaceOpt st

(mathSpacing (prevKind, newKind))

val penaltyList = mathPenalty insertPenalty newKind il

in spaceList @ hList @ penaltyList @ trans st newKind il end

https://doi.org/10.1017/S0956796897002840 Published online by Cambridge University Press

A functional description of TEX’s formula layout 483

In the next three paragraphs, we discuss the three let bindings in the code above.

The chain of append operations in the last line is reasonably efficient since the first

three operands usually are extremely short lists.

The kind of binary operators. The call of function changeKind deals with the

non-local dependencies in the computation of implicit space. If actKind is Bin

and the current item occurs in a non-binary context, then actKind is changed into

newKind = Ord; otherwise, newKind equals actKind. Non-binary contexts can be

detected by inspecting prevKind and the kind of the first INoad-item in rest. In

−y, for instance, ‘−’ occurs in a non-binary context and is assigned kind Ord, while

its kind remains Bin in x − y. Thus, changeKind is defined as follows:

val changeKind: kind -> kind -> ilist -> kind

fun changeKind prevKind Bin rest =

if checkPrev prevKind orelse checkNext (listKind rest)

then Ord else Bin

| changeKind _ k _ = k

Functions checkPrev and checkNext check whether their argument is in a certain

list of kinds:

val checkPrev = contains [Bin, Op, Rel, Open, Punct, None]

val checkNext = contains [Rel, Close, Punct, None]

Function listKind returns the kind of the first INoad item in its argument list:

val rec listKind =

fn [] => None

| INoad (k, _) :: _ => k

| _ :: t => listKind t

Implicit spacing. The implicit space between two adjacent INoad items of given

kind is computed by function

mathSpacing: kind * kind -> mathSpace option.

This function implements the table in (Knuth, 1986a, p. 170) that specifies the

amount of space to be inserted between two adjacent items of given kind. Some

combinations of kinds are not separated by additional space. To handle this case

efficiently, the result type of function mathSpacing is mathSpace option.

Within function trans, the result of mathSpacing is further processed in the same

manner as explicit spaces using function makeSpace:

fun makeSpaceOpt st = fn NONE => []

| SOME sp => makeSpace st sp

Implicit penalties. Inline formulae contain implicit penalties allowing for line

breaking. They are computed by function

mathPenalty: bool -> kind -> ilist -> hlist

https://doi.org/10.1017/S0956796897002840 Published online by Cambridge University Press

484 R. Heckmann and R. Wilhelm

the result of which is either an empty list or a singleton containing a penalty node.

If the Boolean argument is false, there are no penalties at all. Otherwise, penalties

are added behind items of kind Bin or Rel, but only if the following ilist is not

empty and does not start with a relation operator or an explicit penalty item.

7 Conclusion

Our formula layout system has been implemented in the language Standard ML

of New Jersey, version 109.2. This implementation is far more comprehensive than

the algorithms described in this paper. The core system, i.e. function MListToHList

and all its auxiliary functions, completely covers the typesetting of all kinds of

formulae except for math accents (e.g. ẋ), roots (e.g.
√

2 + 3
√

3), the construction

of big delimiters from small pieces, and ordinary text occurring in formulae. The

addition of these features is planned for the future.

Besides the core system, we have implemented the preprocessing phase, which

provides style parameters and font information such as character dimensions. There

are also functions which translate box terms into .dvi code, and construct a .dvi

file of correct global format. Thus, the results of our algorithm can be considered

on the screen or printed.

The system is still evolving. The current version is available in directory formulae

of the ftp server ftp.cs.uni-sb.de of the University of the Saarland.

The motivation for this reimplementation effort originated from an attempt to

understand and teach TEX’s formula layout algorithm. The primary source, the

TEXbook (Knuth, 1986a), did not provide sufficient clues about the method despite

long and desperate attempts to understand it. Its description reflects the structure

of the program with very complex control flow and destructive manipulations of

global, ill designed data structures. This data structure, the internal representation of

mathematical formulae, combines several orthogonal properties in an unintelligible

way using some fields in parallel and consecutively for different purposes. It occurred

that a formulation in a functional language clarified the method and enabled us to

effectively teach about this subject.

The resulting SML program will be extended to cover the full set of formulae.

Due to the modular structure it can be included in new contexts in need of a module

for formula layout.

Some more specific properties of our implementation are as follows:

• Defining an adequate data type of formula terms separates concerns, i.e.

spacing aspects from structure aspects. This is of great help for a better

understanding of the algorithm.

• Though not optimal, the data structure of boxes and nodes represents a

reasonable compromise between the original TEX types and the needs of a

functional language.

• Using a functional description language forced us to transform the updatable

global variables of Knuth’s description into explicit function parameters. On

the one hand, this adds complexity to the description, but on the other hand,

https://doi.org/10.1017/S0956796897002840 Published online by Cambridge University Press

A functional description of TEX’s formula layout 485

the flow of information becomes visible: it can be seen where information

comes from, where it is updated, and where it is used. Thus, it becomes

apparent which subtasks depend on others, and which are independent from

each other.

• The functional programming style discourages changing or removing entities

that have already been constructed. This in particular concerns the white

space carrying the italic correction, which is not built by our system before it

is definitely known that it is required.

• Some constructs, e.g. limits in limit position, were not treated here for space

reasons. They do not offer fundamentally new problems, and are included in

the actual implementation.

• Some postprocessing parts of the algorithm look somewhat ‘imperative’. These

are those where some subformulae are positioned independently of each other

only to detect afterwards, that certain minimal distances between them are

not satisfied (see for instance function distances used for fractions, and

function SupSubDistances for superscripts and subscripts occurring together).

It would be nice to have a declarative manner for stating such constraints,

with automatic means for building a formula from its subformulae, or more

generally, a two-dimensional diagram from its components.

Acknowledgements

We appreciated the detailed and constructive reviews we received. These have

contributed to a greatly improved presentation. Our thanks go to the reviewers.

References

Knuth, D. E. (1986a) The TEXbook. Addison-Wesley.

Knuth, D. E. (1986b) TEX: The Program. Addison-Wesley.

Paulson, L. C. (1991) ML for the Working Programmer. Cambridge University Press.

Wilhelm, R. and Heckmann, R. (1996) Grundlagen der Dokumentenverarbeitung. Addison-
Wesley.

https://doi.org/10.1017/S0956796897002840 Published online by Cambridge University Press

