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I
n what is probably Pablo Neruda’s most famous poem—‘Poema 
20’—he wrote: ‘Es tan corto el amor, y tan largo el olvido’ (Love is 
so short, forgetting is so long). Neruda’s words express elegantly 

the fact that, when people are in love, they are constantly think-
ing of their loved ones, but once love fades, memories fade too. 
Inspired by Neruda, we ask whether society also experiences the 
two phases of memory: an initial phase of high attention, followed 
by a longer and slower phase of forgetting. In fact, there is a vast lit-
erature suggesting that this might be the case, as collective memory 
is acknowledged to be a combination of two distinct processes1–11: 
communicative memory, normally sustained by the oral transmis-
sion of information, and cultural memory, which is sustained by the 
physical recording of information. This literature can provide inspi-
ration for the construction of generative models for the attention 
received by cultural products.

Despite this progress, the theory of collective memory and atten-
tion is short on quantitative models that would allow us to con-
nect it empirically to large-scale data, such as the data developed 
in the literature of knowledge diffusion. Indeed, the literature on 
knowledge diffusion models the adoption and diffusion of cultural 
content (Fig. 1a) as a combination of two processes12–18: preferen-
tial attachment (Fig. 1b) and temporal decay (Fig. 1c). Preferential 
attachment19,20, or cumulative advantage21–23, refers to a process in 
which attention begets attention. Think of two scientific papers, one 
with 10,000 citations and another one with 100. The probability that 
the first paper receives a new citation is larger than the second one, 
simply because more people already know about it. This preferen-
tial attachment process needs to be properly discounted to measure 
temporal decay.

Recently, models combining preferential attachment and tem-
poral decay have described the decay of attention (mostly paper 
and patent citations) using exponential and log-normal func-
tions12,13. These models agree on the idea that attention should be 
modelled using a combination of preferential attachment (Fig. 1b)  
and time decay (Fig. 1c). Yet, there is no consensus about the 

shape of the decay function or its universality across various cul-
tural domains.

Here, we use data on scientific publications, patents, songs, 
movies and biographies to test the hypothesis that the decay of the 
attention received by these cultural products involves the decay of 
both communicative and cultural memory. Owing to the properties 
ascribed to each type of memory—communicative memory being 
short lived compared to cultural memory24—we expect that the 
attention received by collective memory should decay fast at first, 
whereas that of cultural memory should follow a softer and longer 
decline. We formalize these ideas by constructing a mathematical 
model that predicts a biexponential decay function and validate it 
by showing that it is statistically better at explaining the empirically 
observed decay of attention than the exponential13 and log-normal12 
functions used in the previous literature. This finding validates our 
hypothesis that the decay of the attention received by human col-
lective memory is a process that results from the interplay between 
both communicative and cultural memory. The model also allows 
us to separate both mechanisms and generalizes well to multiple 
data sets, suggesting that it captures a universal feature of the decay 
of human collective memory.

Collective memory and attention
Collective memories are sustained by communities, which could be 
as large as all of the speakers of a language or as small as a fam-
ily. During the past century, scholars studying collective memory 
have advanced a large number of definitions, models and processes, 
helping to characterize different forms of collective memory and the 
mechanisms that contribute to their preservation25.

Psychologists have explored both top-down and bottom-
up approaches to memory formation and retention. Top-down 
approaches focus on how familiarity26,27, narrative templates5,28 
and cultural attractors29–31 contribute to the retention and forma-
tion of collective memories. Familiarity increases the memorabil-
ity of events, even causing false memories, such as that of people  
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identifying Alexander Hamilton as a US president26. Narrative 
templates, which are schemata that people use to describe multiple 
historical events, can also shape memories, such as the memory of 
Russian exceptionalism that emerges from the narrative template of 
invasion, near defeat and heroic triumph5. Cultural attractors, such 
as repetitive children songs or count-out rhymes, can increase the 
preservation of memories across generations27.

Bottom-up approaches focus on how micro-level psychological 
processes can shape social outcomes25. For instance, forgetting can 
be induced through the selective retrieval of events, an effect known 
as retrieval-induced forgetting32–34. In addition, social affinities, such 
as belonging to the same social group, can increase the mnemonic 
power of conversations35–38. For instance, people are motivated to 
create coalitions39 and shared realities with those that they perceive 
as belonging to their own group36.

Scholars in computational social sciences have followed a dif-
ferent approach, focusing on how collective memory is expressed 
and created in the consumption of cultural content, from Wikipedia 
page views11,40–43 to paper and patent citations12,13,44,45. Of course, 
these online and offline metrics are not direct measures of collective 
memory or attention, they are measures of the spillovers of attention 
that result in online searches or references. The idea is that movies, 
songs or papers that are being talked about are of heightened inter-
est, and hence, lead people to consult various data sources. When 
these cultural products move away from communicative memory, 
they lose the intense attention that they had when they were being 
talked about.

Unfortunately, these aggregate approaches cannot distinguish 
between different forms of memory or attention loss, such as inter-
ference, suppression or inhibition. They only provide an aggregate 
picture of the attention lost through all of these channels.

Nevertheless, the computational social science approach 
is closer to the definition of collective memory given by Jan 
Assmann2,4, which focuses on the cultural products that com-
munities or groups of people remember. Assmann—even though 
he focused on long-lived inter-generational memories—distin-
guishes between modes of potentiality and actuality: potentiality 

being the existence of a record (an old book in a library’s base-
ment), and actuality being the attention received by that record 
when it becomes relevant to the community. The computational 
social science literature has focused on the use of big data to study 
the actuality of memories and the effects of language, technology, 
accomplishments and triggers in the dynamics of collective mem-
ory and attention. For instance, historical figures born in countries 
with languages that are often translated to other languages receive 
more online attention than comparable historical figures born in 
less-frequently translated languages46. Changes in communica-
tion technologies, such as the rise of the printing press, radio and 
television, have also been shown to affect attention as they cor-
relate with changes in the occupations of the people entering bio-
graphical records41. The edits and attention received by events in 
Wikipedia have also been seen to increase with related exogenous 
events11,43, such as natural and human-made disasters, accidents, 
terrorism and during anniversaries or commemorative events47. 
Moreover, the online attention received by past sports figures—
a measure of their prevalence in present-day memory—has been 
shown to correlate with an age-discounted measure of perfor-
mance40,48, meaning that memorability and attention—at least in 
athletic activities—correlate with merit.

The approach presented in this paper is related more closely 
to the computational social science strand of literature, as it uses 
cultural consumption data to study the dynamics of the attention 
received by the previously described cultural products and biogra-
phies. Yet, it is also an approach that is not completely unrelated to 
the psychological strand. By studying the dynamics of consumption 
of these cultural products, from songs to scientific papers, we are 
exploring a form of selective retrieval, albeit not focused on how this 
selective retrieval shapes collective identity, but on its average tem-
poral dynamics. Moreover, by proposing a model that describes the 
dynamics of attention, we are undertaking a bottom-up approach to 
the modelling of collective memory and attention. Finally, by look-
ing at multiple cultural domains, we can explore the universality of 
average decay functions, rather than focusing on the mechanisms 
that make some events more or less memorable.
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Fig. 1 | universal patterns in the decay of human collective memory. a, Average number of citations received each semester by papers published in 

Physical Review B (A(t)). b, Average number of citations received by a paper as a function of the cumulative citations received by that paper (∝ c(k)). 

Different curves represent different ages. c, Average number of citations received by papers with the same number of cumulative citations as a function of 

their age (∝ S(t)). Different curves represent groups of papers with a different number of total citations. Error bars represent standard errors.
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Results
The literature on collective memory1,24,49 suggests that the decay of 
the attention received by a cultural product involves two mecha-
nisms: an initial fast decay—a signature of communicative mem-
ory—followed by a softer decline—resulting from cultural memory 
(Fig. 2a). Using the distinction between communicative and cultural 
memory3,4,24,49, we propose a model in which cultural memory and 
communicative memory co-exist, but decay at different rates. The 
decay of both types of memory, especially cultural memory, should 
be understood in relative terms: the share of the current attention 
occupied by a cultural product may stay the same, but because the 
total memory is growing, more products are created each time. 
Hence, the relative share of the current attention (S(t)) assigned to 
the said product will decay.

We model the attention received by a cultural product using 
several simplifying assumptions. First, we assume that the current 
attention, S(t), of a cultural product is the sum of the attention it 
garners from both communicative memory u and cultural mem-
ory v. Hence, at any given time S(t) =  u(t) +  v(t) (Fig. 2a). Second, 
we assume that communicative and cultural memory decay, in 
relative terms, independently with decay rates p +  r for commu-

nicative memory and q for cultural memory, and that informa-
tion flows from communicative memory to cultural memory at 
a rate r. Many processes are captured by the parameters p, r and 
q, perhaps the most straightforward one is that because the total 
size of cultural memory is growing, the relative share occupied 
by a certain cultural product will shrink, which is captured in p. 
We acknowledge that these assumptions cannot capture the full 
complexity of the processes by which communicative and cul-
tural memory decay, nor their interactions. The communicative 
and cultural memory may feed on each other in more-complex 
ways than the assumed linear form (r). We adopt these simplifying 
assumptions with the goal of providing a tractable model with as 
few parameters as possible that can be used to capture the lead-
ing forces that govern the dynamics of attention received by a cul-
tural product. Given these assumptions, communicative memory 
decays as u(t +  1) =  (1 −  p)u(t) −  ru(t) and cultural memory as 
v(t +  1) =  (1 −  q)v(t) +  ru(t), together defining the following sys-
tem of differential equations (see the derivation of the model in 
the Methods section (under 'Model'):
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Fig. 2 | Scheme of the collective memory model. a, The y axis represents the normalized current level of attention received by a group of comparable 

cultural pieces. The x axis represents the age of the cultural pieces. The red curve shows the biexponential function predicted by our model in log-lin scale. 

The blue and purple curves show the two exponentials of communicative and cultural memory, respectively. The inset illustrates the basic mechanics 

of the model. At any time point t, the total memory is the sum of communicative memory u and cultural memory v. Both communicative and cultural 

memory decay with their own respective decay rates p +  r and q, and cultural memory grows with r. b, The biexponential model (equation (6)) for various 

parameters p, q and r can account for a wide range of decays. c, Comparison between the biexponential model and the exponential and log-normal models 

in log-log scale.
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= − +
du

dt
p r u( ) (2)

= − +
dv

dt
qv ru (3)

We set the initial communicative memory u(t =  0) =  N and 
we assume that, at the beginning of the process, there is no cul-
tural memory associated to a new cultural product (v(t =  0) =  0), 
although there are alternatives ways to initialize the model that does 
not change its aggregate behaviour (Supplementary Model).

Using the initial conditions, we find that the solution of the equa-
tion system (equations (1)–(3) is the biexponential function:
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Figure 2b illustrates S(t) for different values of the parameters, 
with N =  1, and Fig. 2c compares the biexponential function with 
the exponential13,14 and log-normal12 decay functions explored pre-
viously in the literature (Supplementary Notes 1–3).

We bring the biexponential model to our data by comparing it 
with the decay functions observed for paper and patent citations, 
and for the current online attention of past songs, movies and biog-
raphies, with a comparable level of accomplishment (Table 1). In 
the case of papers and patents, we group papers and patents with a 
similar number of cumulative citations. In the case of songs, movies 
and biographies, these comparable sets are built into our selection 
criterion, as we study only songs that reached the Billboard rank-
ing, biographies of award-winning athletes and movies that have 
received over 1,000 votes on the Internet Movie Database (IMDB). 
By respectively grouping papers, patents, songs, movies and biogra-
phies, with a similar level of accomplishment, we control for differ-
ences in preferential attachment, allowing us to isolate the temporal 
decay of collective memory statistically (see 'Data' in the Methods 
section and Supplementary Methods).

Figure 3 shows the average number of new citations obtained 
by scientific papers (A, B, C and D) and patents (E and F) for dif-
ferent levels of accumulated citations k. The red lines show the fit 
of the biexponential model, whereas the dashed and dotted lines 
capture, respectively, the log-normal and exponential decays used 
in refs 1213. In all cases, we find, after choosing papers and patents 
with the same level of cumulative citations, positive differences of 
the corrected Akaike’s information criterion (AICc) between the 
log-normal and biexponential models (Fig. 4a) and positive dif-
ferences of R2 measures between the log-normal and biexponential 
models (Fig. 4c). This suggests that the biexponential model cap-
tures the temporal pattern of human collective forgetting accurately 
(see 'Goodness of fit' in the Methods and Supplementary Tables 1–3 
for a comparison of the data on all years, journals and categories). 
More importantly, in several of these empirical curves, the shoulder 
of the biexponential curve is clearly visible, allowing the model to 
help to unveil the point at which cultural memory takes over com-
municative memory.

We observe a similar behaviour when we apply the biexponential 
model to data on music, movies and biographies. As we lack time-
series data for these three sources, we look at the present-day online 
attention to music (Fig. 3g), movies (Fig. 3i) and biographies (Fig. 3j)  

as a function of their age. For songs, we determine age using the year 
they first reached the Billboard ranking. For movies, we calculate 
age using their release year. For the biographies of athletes, we use 
as the age of the accomplishment the time when they were intro-
duced in their respective international rankings. Once again, when 
we compare our model with the previously proposed log-normal 
and exponential models, we find that the biexponential model pro-
vides a more accurate fit to the data, owing to its ability to capture 
the initial fast decay of communicative memory together with the 
slow decay of cultural memory. Furthermore, it visibly captures the 
transition from communicative to cultural memory.

Together, the data on papers, patents, songs, movies and biog-
raphies show that this biexponential decay is universal across all 
domains. Yet, the parameters of the decay function are differ-
ent for papers, patents, songs, movies and biographies. Thus, we 
compared the model parameters (p, q, r and tc) across all studied 
domains (Fig. 5). Here, tc is the time at which cultural memory 
overtakes communicate memory, which, according to the model, 
can be approximated as (see 'Transition time' in the Methods and 
Supplementary Model):
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Although our results suggest that the functional form of the decay 
in attention function is universal across multiple cultural domains, 
its parameters are informative of the domain-specific decay dynam-
ics (Fig. 5). When comparing the obtained parameters, we find that 
the decay rates of communicative memory are much larger than 
those of cultural memory (p ≫  q), as suggested by the literature2 
(Fig. 5a). In addition, we find that communicative memory decays 
much faster for music and movies than for biographies (Fig. 5c),  
resulting in critical times that are relatively low for music, movies 
and papers (5–10 years; Fig. 5d) and much longer for biographies 
(15–30 years). In other words, for biographies, the era dominated 
by communicative memory lasts longer than the era dominated by 
cultural memory.

Together, these results show that the biexponential decay 
predicted from formalizing the mechanisms suggested by the 
literature on collective memory provides a universally good 
approximation for the decay of memory across a wide variety of 
cultural domains.

Table 1 | Cultural products and their measurements of present-
day levels of attention (current attention) and measurements to 
account by cumulated advantage effect (accomplishment)

Cultural products Attention metric Preferential attachment metric

APS papers Citations 
received in the 
past six months

Cumulative citations

USPTO patents Citations 
received in the 
past six months

Cumulative citations

Music Spotify popularity 
and Last.fm play 
counts

Entered at least once in the Hot-
100 Billboard ranking

Movies Trailer play 
counts in 
YouTube

More than 1,000 votes on IMDB

Biographies Wikipedia page 
views

Highly performing athletes 
in tennis, basketball and the 
Olympics
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Fig. 3 | The universal decay of collective memory.  a–f, Average number of new citations received by: all papers published in Physical Review B in 1980 

(n =  1,415) (a), all papers published in Physical Review D in 1980 (n =  803) (b), all papers published in Physical Review Letters in 1990 (n =  1,904) (c), all 

papers published in Physical Review Letters in 1980 (n =  1,202) (d), all mechanical patents granted in 1990 (n =  20,296) (e) and all chemical patents 

granted in 1985 (n =  14,749) (f). g–l, For cultural products, we use the standardized levels of online attention for: songs (n =  18,320) based on Spotify’s 

popularity index (y axis) as a function of the date the song first appeared in the Billboard ranking (x axis) (g), songs (n =  15,275) based on Last.fm’s play 

counts (y axis) as a function of the date the song first appeared in the Billboard ranking (x axis) (h), movies (n =  14,633) based on YouTube’s view counts 

(y axis) as a function of the date the movie was released (x axis) (i), tennis players (n =  624) based on Wikipedia’s page views (y axis) as a function of 

the date that the tennis player was included in the Top 600 International males singles tennis player (x axis) (j), Olympic medalists (n =  526) based on 

Wikipedia’s page views (y axis) as a function of the date of the middle of the career of the Olympic medalist (k), and basketball players (n =  592) based on 

Wikipedia’s page views (y axis) as a function of the date that the basketball player starts his career (x axis) (l). The dashed and dotted lines show the log-

normal decay used by Wang et al.12 and the exponential decay used by Higham et al.13, respectively.
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Discussion
Inspired by Neruda’s observation, that love was short and intense, 
whereas forgetting lingered, we build on the ideas of communica-
tive and cultural memory to show that the decay of the attention 
received by cultural products and biographies follows a universal 
decay function that is characterized by two phases: a short-lived 
and fast-decaying phase connected to communicative memory, 
and a longer-lived and slower-decaying phase connected to cultural 
memory. We find that the shape of this function is universal across 
multiple cultural domains and that its parameters are informative of 
the attention dynamics that characterize each domain. These find-
ings provide quantitative evidence to validate the concepts of com-
municative and cultural memory and allow us to better understand 
how societies forget.

For decades, scholars have been using paper and patent citations to 
study the spread and adoption of ideas and cultural content12–14,44,45,50–57.  

Indeed, the literature states that the number of citations, A(t), is 
separable12,13,15–18 into two mechanisms: (1) the temporal decay, 
S(t), which captures the time obsolescense and (2) the cumula-
tive citations, c(k), which captures preferential attachment (see 
‘Decomposition of citing curve’ in the Methods and Supplementary 
Note 4). Yet, although there is consensus on the fact that preferential 
attachment processes contribute to the spread of cultural products 
with high levels of attention, there is no consensus on the nature of 
the functional form capturing the decay of attention. The data show 
an initially fast decay followed by a milder decline. What gives rise 
to this unorthodox decay function?

Our results indicate that the fast decay followed by a mild decline 
observed in these decay functions is a universal biexponential curve 
that can be derived from a model that builds on two fundamental 
concepts from the literature on collective memory: communica-
tive memory and cultural memory1–10. The agreement between this 
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Fig. 4 | Goodness of fit for all cohorts of APS papers (n = 485,105) and uSPTo patents (n = 1,681,690). a, Difference of the AICc for the log-normal and 

biexponential decay functions for APS papers. b, Difference of the R2 for the biexponential and log-normal decay functions for APS papers. c, Difference 

of the AICc for the log-normal and biexponential decay functions for USPTO patents. d, Difference of the R2 for the biexponential and log-normal 

decay functions for USPTO patents. The grey zones represent the non-significant difference between two models (a and c). The black lines represent 

equal goodness of fit (b and d). Boxplot elements represent individual curves. The lower and upper hinges correspond to the 25th and 75th percentiles 

respectively. The upper whisker extends from the hinge to the largest value no further than 1.5 times the interquartile distance, between the first and third 

quartiles. The lower whisker extends from the hinge to the smallest value at most 1.5 times the interquartile distance of the hinge. Data beyond the end 

of the whiskers, that is, outliers, are plotted individually. We note that the biexponential model outperforms the log-normal model in terms of variance 

explanation, especially in the long-term description. All of the R2 in b and d have a P <  0.001.
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model and the empirical data validates these theoretical mecha-
nisms and offers a means to quantify them.

Although the shape of the decay function is universal, its param-
eters are informative of the decay dynamics of specific systems. For 
instance, athlete biographies have relatively large critical times 
compared to songs, movies, papers and patents, meaning that ath-
letes are remembered mainly through oral culture for as long as 
a couple of decades after their main accomplishment. Conversely, 
songs have a relatively high rate of transfer (r) from communi-
cative to cultural memory and are short lived in communicative 
memory. In fact, both songs and movies are short lived in com-
municative memory, but movies live in communicative memory a 
bit longer than songs, probably because of the high output of the 
music industry.

But why would communicative memory feed cultural memory? 
The rationale behind communicative memory feeding cultural 
memory is that, after each communicative act, the probability that 
a record is created increases. The parameter r intends to capture, 
on average, how communicative memory translates into cultural 
memory. We acknowledge that there are more complex mecha-
nisms associated with this process, for instance, cultural memory 
should also feed communicative memory. Yet, despite these simpli-
fying assumptions, the model employed here still explains much of 
the variation observed in the data.

According to our model, in the beginning, most of the attention 
comes from acts of communication, but this changes over time. 

Indeed, after a critical time (tc), these cultural products receive 
more attention from records than from acts of communication. For 
instance, soon after their release, scientific papers are discussed at 
conferences, in media, magazines and the news. This generates an 
excess of attention for newer cultural products and the creation of 
new records referring to that product. Yet, once the conversation is 
over, the attention coming from the consultation of these records 
becomes dominant.

Nevertheless, it is interesting to think about the mechanisms 
that could contribute to the reduction of communicative memory 
or the flattening of the biexponential function. For example, the 
level of coordinated consumption of cultural goods (for example, 
how much people like to go to the movies together) could modulate 
how much that cultural good is discussed, and hence, the size of the 
communicative bump. In addition, exogenous effects, such as the 
cancellation of a conference owing to the weather could reduce the 
communicative memory effects for the papers discussed in those 
conferences.

Our results support the hypotheses that the decay of human 
collective memory involves the combined decay of communica-
tive and cultural memory and that the decay function is universal 
across multiple cultural domains. These findings allow us to explain 
the dynamics of the attention received by scientific papers, pat-
ents, songs, movies and biographies during its lifetime, and suggest 
that the dynamics of human collective memory follow a universal  
decay function.
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methods
Data. We use two types of data sources: time-series data for scientific papers and 
patents, and cross-section data for songs, movies and biographies (summarized 
in Table 1). The American Physical Society (APS) corpus collects data about the 
attention pattern of physics articles from 12 different journals, between 1896 and 
2016. For our analysis, we use a prospective approach (See Supplementary Methods) 
for all papers published between 1970 and 2003 in Physical Review Letters and in 
Physical Review A to E14,53,58 (n =  485,105). The US Patent and Trademark Office 
(USPTO)59,60 contains information about patents granted between 1976 and 2005. 
We use all patents granted between 1976 and 1995 in all categories (n =  1,681,690): 
chemical (CAT 1), computers and computation (CAT 2), drugs and medical (CAT 
3), electrical and electronic (CAT 4), mechanical (CAT 5) and others (CAT 6). 
For both patents and papers, we construct two time series, one for the number of 
citations obtained in each time window, and another for the accumulated citations 
obtained up to a given time. Because we are interested in characterizing the 
dynamics of relative attention, we adjust the time series by normalizing it by the 
number of papers published in a journal each year13,14 (see Supplementary Methods).

For songs, movies and online biographies, we use cross-section data, that is, 
data collected by observing songs, movies and biographies at the same point in 
time. We use different inclusion criteria—what cultural products are included in 
our sample—for each type of cultural content. For songs, we use weekly ranking 
data from the ‘Hot-100 Billboard’s ranking’61 between October 1958 and July 
2017. To measure online attention, we use Spotify’s popularity index62 (a direct 
function of play counts) taken on October 2016 and July 2017 (n =  18,320), and 
last.fm’s (n =  15,275) play counts63 for the last week of July 2017 (see Supplementary 
Methods). We also collect data on 14,633 movies released between 1937 and 2017 
that have obtained more than 1,000 votes in IMDB (https://www.imdb.com) as 
of July 2017. To measure the current online attention of movies, we use the play 
counts for the trailer of each movie taken from YouTube (https://www.youtube.
com) (n =  14,633). For online biographies, we focus on basketball, tennis and 
Olympic medal winners. For basketball players, we consider the ‘Slam 500 Greatest 
NBA Players of All Times’ (n =  592), for tennis players, we consider the ‘Top 600 
International males singles tennis player’ (n =  624) and for Olympic medal winners, 
we consider athletes who have won more than three gold medals (n =  526). Current 
online attention was measured using the number of page views received by the 
Wikipedia biography (https://en.wikipedia.org) of each athlete between July 2016 
and June 2017 (for more information, see Supplementary Methods).

Decomposition of citing curve. Mathematically, in our approach, the temporal 
decay curves describing the number of citations or attention A(t) received by a 
paper, patent or piece of cultural content (Fig. 1a) can be expressed as a function 
of two parameters: (1) its age t, and (2) the cumulative citations received by 
that paper, patent or cultural piece k. Formally, it has been shown that A(t) is 
separable12,13,15–18, as A(t) =  c(k) ×  S(t), where c(k) captures the effects of preferential 
attachment (Fig. 1b) and S(t) captures the temporal decay (Fig. 1c).

The solid line (Fig. 1a) shows the average number of citations received by 
papers published in Physical Review B in 1990 (A(t)) as a function of their age. A(t) 
describes the traditional increase and decline known to characterize knowledge 
diffusion or cultural product adoption curves13,15–18.

Figure 1b shows the preferential attachment component, by presenting the 
number of new citations (Δ c) received by a paper as a function of its cumulative 
citations (c(k))19,20. Figure 1c shows the temporal decay component (S(t)), 
representing the number of new citations received by papers with the same number 
of cumulative citations k =  k* as a function of their age; that is, the dashed lines 
show papers for which the effect of preferential attachment is kept constant: 

∣ = ×
=

A t c k S t( ) ( *) ( )*k k
. Here, we observe the initially fast decay followed by a 

milder decline.

Model. Here, we formalize this intuition by proposing a model for the decay of the 
attention received by a cultural piece. We took inspiration from collective memory 
studies and nuclear decay. We solve the model analytically as follow:

= − − = − +
du

dt
pu ru p r u( ) (8)

= − = −

dv

dt
ru qv ru qv (9)

We can write this using matrix representation:
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Where the initial conditions are:
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Then, to solve the equation system, we first have to find the eigen values of the 2 ×  2 
matrix, by calculatig the matrix determinant (det), this is:

−λ =A Idet( ) 0 (10)

Solving for A, we find λ1 =  − (p +  r) and λ2 =  − q. Now, we have to find the eigen 
vectors, this is:
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Using both λ1 =  − (p +  r) and λ2 =  − q, we find that the eigen vectors are:
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Now, we have that, the general solution is:
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Using initial conditions, we find that C1 =  N and =
+ −

C
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P r q2
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Finally, the biexponential model is:















= +

+ −

−
− + − − +S t N e

r

p r q
e e( ) ( ) (16)

p r t qt p r t( ) ( )

Transition time. An interesting parameter here is the critical time, which is the 
time when the temporal scale occurs. We calculate the critical time as:
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In the main text, we have used δ =  1, meaning that we have defined the critical time 
tc as the time when the decay rate of S is equal to 2q.

Model fitting. We fit our model to paper, patent, song, movie and biography data. 
In particular, and motivated for accuracy, we fit the logarithm of equation (6), 
which means that we fit the follow equation:
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where S t( ) corresponds to the average of new citations for papers and patents, 
and σ= − ∕S t S t Pop( ) ( ( ) ) Pop corresponds to the standardized current popularity 
for songs, movies and biographies. Pop is the average popularity and σPop is the 
standard deviation of current popularity of the decay curves. Those results are 
shown in the main text for songs (Fig. 3g), movies (Fig. 3i), tennis players (Fig. 3j),  
Olympic medalists (Fig. 3k) and basketball players (Fig. 3l). Please see the 
Supplementary Software section for an example anonymized data set and the code 
used to produce the results.

Goodness of fit. We analysed three levels of accomplishment, (k*), for each cohort 
of APS papers (507 groups of papers) and USPTO patents (480 groups of patents). 
We compute the AICc (Fig. 4a) to compare the biexponential and log-normal 
models, corrected by the size of the sample as follow:

�= − +
+

− −

k L
k k

n k
AICc 2 2 ln( )

2 2

1
(25)

2

where ̂L is the maximum value of the likelihood function for the model. In 
addition, we calculate the R2 as the square of the correlation between the observed 
value and the predicted value. In Fig. 4a, we observe that the difference for AICc 
in both papers and patents is significantly bigger than two. It means that, after 
accounting by the size of the sample and the number of parameters of the model, 
the biexponential decay presents substantial evidence to be better describing the 
whole decay (we note that a lower AICc means less information lost in the fit, which 
is the reason why the difference is positive in the figure). The grey stripe represents 
the zone where both log-normal and biexponential are equally good at describing 
the behaviour. We observe that, even after correcting by the size of the sample and 
by penalizing the number of parameters, the biexponential model offers a more 
accurate description of the decay function. We also calculate the difference of the 
adjusted pseudo-R2 (Fig. 4b) between biexponential and log-normal decay. We 
observe that in both papers and patents the R2 is bigger for biexponential decay than 
for log-normal decay. We observe that the biexponential model is always better than 
the log-normal model, especially when it comes to the long-term behaviour of the 
decay. All models presented in Fig. 5 are summarized in Supplementary Tables 1–3.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability. The entire analysis, data processing and fitting were done using 
the standard R libraries (https://www.r-project.org/). You can find the anonymized 
data on paper citations and the code used to produce the results in this article in 
zip format in the Supplementary Software section (requires R).

Data availability
The data sets from the APS, analysed during the current study, are available in 
the APS Data Sets for Research repository, under request: https://journals.aps.
org/datasets. The data sets of the USPTO, analysed during the current study, are 
available in the NBER repository: http://www.nber.org/patents/. The data sets for 
songs, movies and biographies generated and analysed during the current study are 
available from the corresponding authors upon reasonable request.
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Study description This is a study of collective behavior. We use time series data and also cross-section data.

Research sample We use all temporal citation data available from UPSTO in NBER repository. We also use all temporal citation data from APS for 6 of its 

journals (PRA, PRB, PRC, PRD, PRE, and PRL). For songs, movies and biographies, we use cross-section data. Here we use a sample of 

songs movies and biographies (people) that have a similar accomplishment (reach the billboard ranking at least once, to have more than 

1,000 votes in IMDB, and be part of an international performance ranking respectively), in order to be compared accounting by 

preferential attachment (popularity) effects. 

Sampling strategy For patents and papers we don't do samples. For music, movies, and biographies we select all the cultural pieces that have similar 

accomplishments. For basketball players, we consider the “Slam 500 Greatest NBA Players of All Times,” for tennis players we consider 

the “Top 600 International males singles tennis player,” and for Olympic medal winners we consider athletes who have won more than 

three gold medals. We didn't do sample calculation because we prove with time series data for all data of patents and papers that 

cultural pieces with similar accomplishment (number of cumulated citations) show the same behavior, and because we select all the data 

for every kind of accomplishment.

Data collection For data on Papers we asked to American Physical Society for the complete corpus in September 2017. For data on patents, we used the 

NBER data set publicly available in http://www.nber.org/patents/. For data on Songs, Movies, and biographies we use python 2.7 and we 

connect to Spotify and LastFm API for songs and to Wikipedia API (https://wikimedia.org/api) for  Movies and Biographies. Also, we got all 

historic the data from Hot-100 billboard ranking from https://www.billboard.com/charts/hot-100 . For movies, we also downloaded data 

from IMDB from https://www.imdb.com/interfaces/ .

Timing We use data for all papers published between 1970 and 2003 in Physical Review Letters (PRL), and in Physical Review A to E. 

For The United States Patent and Trademark Office (USPTO) data, we use all patents granted between 1976 and 1995 in all categories. 

For songs, we use weekly ranking data from the "Hot-100 Billboard's ranking" between October 1958 and July 2017. To measure online 

attention, we use Spotify's popularity index taken on October 2016 and July 2017, and last.fm's play counts for the last week of July 2017. 

For movies, we collect data on 14,633 movies released between 1937 and 2017 that have obtained more than 1,000 votes in the Internet 

Movie Database as of July 2017. To measure the current popularity of movies we use the play counts for the trailer of each movie taken 

from YouTube.  

For online biographies we focus on basketball, tennis, and Olympic medal winners.  Current popularity was measured using the number 

of pageviews received by the Wikipedia biography of each athlete between July 2016 and June 2017

Data exclusions There is no data exclusion in this study.

Non-participation There are no participants in this study, therefore, there is no dropout.

Randomization There is no randomization in this study
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