
BP: Formal Proofs, the Fine Print and Side Effects

Toby Murray†* P.C. van Oorschot‡†
†University of Melbourne *Data61, Australia ‡Carleton University, Canada

Abstract—Given recent high-profile successes in formal ver-
ification of security-related properties (e.g., for seL4), and the
rising popularity of applying formal methods to cryptographic
libraries and security protocols like TLS, we revisit the meaning
of security-related proofs about software. We re-examine old
issues, and identify new questions that have escaped scrutiny
in the formal methods literature. We consider what value proofs
about software systems deliver to end-users (e.g., in terms of
net assurance benefits), and at what cost in terms of side effects
(such as changes made to software to facilitate the proofs, and
assumption-related deployment restrictions imposed on software
if these proofs are to remain valid in operation). We consider in
detail, for the first time to our knowledge, possible relationships
between proofs and side effects. To make our discussion concrete,
we draw on tangible examples, experience, and the literature.

I. INTRODUCTION

Proofs have been used as a means to aid the development of

secure systems, especially cryptographic protocols and critical

software like separation kernels, for at least the past five

decades [1, Chapter 5]. During this time there has been much

debate about proof’s role in developing secure software and

systems, including its practicality for mainstream software [2],

relevance for reasoning about the real-world security of cryp-

tographic protocols [3], and so on. Yet we live in a time in

which the popularity of proofs has increased sharply, perhaps

thanks to recent breakthroughs in mechanised reasoning [4]

[5] and a string of high-profile success stories.

Over the past decade, marked by the seminal functional

correctness verification of the seL4 microkernel [6], there

has been a rash of large-scale software verification projects

that have resulted in the construction of software systems

whose security assurance is backed by (machine-checked)

proofs about the software’s behaviour. Examples include for-

mally verified instant messenger kernels [7], TLS stacks [8],

browser kernels [9], conference management systems [10],

social media platforms [11], hardware architectures [12], mul-

ticore kernels [13], secure application stacks [14], distributed

systems [15] [16], and crypto algorithm implementations [17]

amongst others. In light of this trend, it is timely to critically

re-examine the role of proof for developing secure software.

Despite, or because of, its increasing popularity, we contend

that as an assurance mechanism proof remains poorly under-

stood especially outside of formal verification practitioners

and researchers. Yet, as we explain in Section II, a scientific

understanding of precisely what assurance benefits a proof

does, and does not, deliver is vital to ensure we reap maximum

benefit from this rapidly evolving technology.

Indeed, proof surely delivers many benefits, and examples

abound of defects and vulnerabilities found during the process

of proving (a property about) a system that led to improve-

ments in the system’s security that might have been unlikely

otherwise. Yet, as we identify in Section III, proof also brings

with it its own side effects (code changes and deployment

constraints), not all of which may be positive for system

security and some of which might even be negative (aside

from on performance). So far we have neither a systematic

understanding of the relationship between these benefits and

side effects, nor general rules of thumb for weighing one

against another when deciding whether to use proof as a means

of assurance. Our hope is to stimulate exploration of these

important issues understudied to date.

One especially acute side effect, present in past verification

projects, is restrictions on system deployment or functionality

to meet rigid proof assumptions. As Section IV explains, this

side effect makes (boolean logic) proofs an especially brittle

form of assurance, and further complicates the process of

judging their value a priori. Section V briefly discusses further

literature. Section VI summarizes a few questions from our

analysis, to better understand the role of proofs in secure soft-

ware development. Rather than seed doubt on the enterprise

of proof and formal verification, we aim to stimulate interest

and further exploration of issues raised herein, and believe this

may significantly impact future directions of formal methods

in security and software verification.

II. THE MEANING AND VALUE OF A “PROOF”

Few assurance technologies have more mystique, and more

controversy [18], [19] than formal proof. In this section,

we argue that there is both confusion, and wide variety

of interpretations by different stakeholders and communities,

about the value and role of formal proofs in the construction of

secure systems. While our primary focus is on proofs as related

to formal verification, much of the discussion is relevant to

security-related proofs in general.

A. Definition of a Proof (and of Security)

We begin by setting the terms of the debate. Fix an arbitrary

system whose security is of interest. We leave the term

“security” largely undefined (entire papers could pursue this),

but note for later use three definitions that one might choose:

1) the system’s ability to withstand the actual attacks car-

ried out over a fixed time period;

2) the system’s ability to withstand all possible attacks; or

3) its ability to withstand all attacks feasible for attackers

with specified computational and observational powers.

1

2018 IEEE Secure Development Conference

978-1-5386-7662-2/18/$31.00 ©2018 IEEE
DOI 10.1109/SecDev.2018.00009

Some of these are better suited to our understanding of proofs

than others; not all communities will agree on which definition

is most appropriate, but many academics gravitate to 3).
By a proof we mean a mechanised, logically sound deduc-

tive argument, applied to a formal model of the (behaviour

of) the system, that establishes one or more properties of the

model. This definition includes proofs over highly detailed

models, such as those that reason over the formal semantics

of compiled, binary programs [20] [21] in the underlying

instruction set architecture (ISA) [22] since even a formal

ISA semantics is an idealised model of reality as aptly

demonstrated by row-hammer attacks [23] or CPU errata.
Returning to security, it should be evident that a sound

definition of security requires a specification of the adversary.

This may be separate but closely related to, or an actual part

of, the formal model. Thus any security proof results are also

subject to the assumption that the adversary in reality adheres

to the formal model. A recent exemplar of this viewpoint

comes from a 2017 NSF workshop report [24] on formal

methods for security (emphasis in original):

By explicitly modeling the computer system and

the abilities of adversaries, formal methods can

prove that the computer system is secure against all
possible attacks (up to modeling assumptions).

The caveat “up to modeling assumptions” implies that “all
possible attacks” should be construed as restricted to those

that conform to the formal model, and “secure” applies to

the real system only when its behaviour accords with the

formal model. Of the three definitions for “security”, the third

appears intended here: “secure” meaning the system’s ability

to withstand an attacker with some fixed set of computational

and observational powers, captured in the formal model. This

is in contrast to the meaning of security we posit is understood

by non-experts: secure against all possible attacks.
Note that proofs alone cannot establish properties of the

deployed system: by definition the proof applies only to the

formal model of the system. Regardless of our definition of

security and what constitutes the system in whose security we

are interested, the security of the system is necessarily some

property of the real world, separate from the formal model.
We sharpen this point with reference to discussion [25] on

how inductive and deductive statements differ. An inductive

statement is one relating to the empirical world, based on real-

world observations and inferences from them. A deductive

statement, derived from axioms and logical rules, relates to

abstractions and models.
Proofs are deductive statements, while claims of security

for real systems are inductive. Each is a different kind of

statement. It has long been accepted that deductive claims

offer no guarantees about the real world. It should not be

surprising that proofs alone cannot establish claims of real-

world security. Proofs cannot even be refuted by real-world

observations since any sound proof cannot be refuted by

definition. For instance, demonstrating a row-hammer attack

against a system that has been formally verified does not

invalidate the deductive conclusion that the formal model of

the system satisfied a formal security property, yet clearly

has a bearing on the perceived security of the system in the

real world. The issue here is that the formal model on which

the proof rests implicitly assumes that each memory cell can

be modified only by writes to that cell, an assumption row-

hammer attacks [23] violate. The validity of such assumptions

is a critical aspect of satisfaction arguments [26], [27].

This of course does not prevent inductive and deductive

reasoning from interacting. Indeed, many reasonable inductive

claims are based on deductive reasoning, and observations of

the real world that confirm or refute those inductive claims can

help to improve the formal models on which further deductive

reasoning can be performed.

Example 1: Using the recent Spectre attack [28] as an ex-

ample, consider the empirical, i.e., inductive claim (assuming

a set associative data cache) and C code snippet of Figure 1.

One could build a formal model of the behaviour of this code

with respect to the data cache and prove that in the formal

model the only data cache sets that can be modified are those

that can be occupied by the mentioned program variables.

However, as of 3 Jan. 2018, one would be unwise to make

the empirical claim from Figure 1 based on this deductive

reasoning. We now know that in many modern processors

that speculative execution can cause modifications to other

cache sets (notably those corresponding to a[i] for values

of i ≥ ARRAY_LEN).

The code below when run on modern x86 CPUs,

can cause modifications only within those data cache

sets that can be occupied by the physical memory

corresponding to the program variables i, r and the

array a, whose length is ARRAY_LEN.

if (i < ARRAY_LEN){
r = a[i]; }

Fig. 1. An empirical claim and related Spectre-like vulnerable code.

Thus useful deductive reasoning to support the empirical

claim of Figure 1 should account for the possibility of cache

modification during speculative execution. Yet even if it does,

there’s nothing to guarantee that there does not exist some

other exotic feature of contemporary CPU microarchitecture

that we need to incorporate into our formal models next year.

(End of Example 1)

B. Value of a Proof

What, then, is the value of a formal proof if it cannot

establish properties of the real system? We consider a number

of different perspectives. Our position is that each offers useful

insights and that proofs serve a number of different purposes,

providing a range of benefits—and, as we explore later in

Section III, also having certain side effects.
1) Proofs as (Qualified) Guarantees: Perhaps the most

common interpretation of the meaning of a proof is that it

provides guarantees about a system, or more precisely as

experts recognize, a system model. In the context of security,

2

the kind of guarantees one is interested in is the absence of

vulnerability to (specifically identified) real-world attacks.

This perspective is perhaps strongest outside of the formal

methods community. As of 19 Feb. 2018, Google records over

8,300 pages that mention “seL4” alongside terms such as “un-

hackable”, “invulnerable”, “hack-proof”, “bug free” or “zero

bugs”—despite the second-top Google result for “seL4 proofs”

being a FAQ page [29] carefully explaining why the seL4

proofs make no such guarantees. This popular interpretation

is not unfair, as historically the words “proof” and “theorem”

have implied 100% certainty [30]. The confusion is: certainty

about what? When non-experts hear that a system has been

“proved secure”, many assume this provides guarantees against

all possible attacks. Of the three definitions for “security”

given in Section II-A, this corresponds to the second.

Within the formal methods community—i.e., those practis-

ing formal verification—things are more nuanced. The word

“guarantee” appears often in literature on formal proofs of

security. For instance, proofs of noninterference for the seL4

kernel were described in a single paper [31] as, on the one

hand, “guarantees on information flow provided by a strong

machine-checked theorem” and, on the other, “not an iron-clad

[security] statement”. This apparent contradiction—frequent

in the literature, and not to be discounted as a source of

confusion—is resolved by observing that a proof provides

guarantees subject to the accuracy of the model and proof

assumptions, i.e., provides guarantees about the real world

when, and only when, the formal model of the system matches

the system’s real-world behaviour with respect to the property

being proven. We identify several categories of assumptions

later, in Section III-B.

This view of proofs as guarantees predicated on assumptions

is present in much recent work on formally verified software,

which often goes to great lengths to carefully enumerate the

assumptions on which their proofs depend. Among others, the

seL4 project is a good example here [6], [31], [32].

Of course a proof cannot provide guarantees above the

formal theorem that it establishes. Even for formal methods

experts, determining the guarantees a proof implies is non-

trivial. Benjamin Pierce—a leading researcher in the field—

reported [33] that understanding the main seL4 functional

correctness theorem [6] and the “claim it was making about

the system,” deeply enough to prepare two lectures about them

in a graduate seminar, required about a person-week of effort.

The formal methods community is well aware that their

proofs involve many assumptions, and pertain to only a

model of a system operating in an environment against an

adversary with fixed abilities. Whether non-experts who read

their proofs, papers or abstracts thereof, are equally aware,

is a separate question. We note that, given the clear popular

interpretation of proofs as inviolable guarantees, lists of as-

sumptions may, in practice, be akin to the “fine print” of legal

agreements. Just as an insurance policy may fail to cover you

in the event of a disaster because you didn’t read the fine print,

a proof of security offers little help against a security breach

if you fail to carefully ensure that its assumptions and model

match reality. Whether or not real systems conform to system

models, and real-world attackers conform to attacker specifica-

tions, is—perhaps surprisingly—beyond the scope of a proof

itself. Of course, non-experts are in no position to verify the

relevant assumptions, or compliance with models; and when

the assumptions are not even written down, even experts are

unable, or otherwise fail to see it as their responsibility.

We use an example to highlight the difficulty of discerning

implicit assumptions buried deep in a formal model, and

then determining their impact on a formal proof when these

assumptions turn out not to match reality.

Example 2: Khakpour et al. [34] prove a series of isolation

properties for the ARMv7 instruction set architecture (ISA).

Amongst other things, these proofs are designed to establish

that the execution of user mode instructions in one process

does not leak information to some other process whose address

space is separate from the first.

The formal model for the behaviour of each user mode in-

struction in the ISA includes only their effects on the registers

and physical memory, and a few other pieces of ISA state such

as exclusive monitor state. If the second isolated process is

an attacker trying to infer information from the first process,

we must therefore assume that the attacker cannot observe

anything besides these, and so for instance cannot measure

time. Thus, like almost all large-scale information flow proofs,

their proof targets the absence of storage channels but not

timing channels [35], and is most appropriate to a definition

of security against an attacker with specified capabilities.

Their proofs provide guarantees subject to the formal ISA

model matching reality (with respect to the effects of user

mode instructions on the ISA state as captured in the formal

model). The formal ISA model of Khakpour et al. [34] was

derived from that of Fox and Myreen [22], who performed

extensive empirical validation of their model to check that it

matches the behaviour of a number of ARM processors.

Yet the formal ISA model has several “blind spots”—places

in which it is unable to precisely specify the behaviour of

the ISA, because no such specification exists. In particular,

the ARM reference manual [36] defines a number of cases

in which the behaviour of various instructions, under certain

conditions, is “UNPREDICTABLE”, or the values of certain

results are “UNKNOWN”. Each of these allows implementors

implementation freedom in addressing corner cases. The man-

ual defines UNPREDICTABLE behaviour as follows [36].

UNPREDICTABLE: Means the behavior cannot be

relied upon. UNPREDICTABLE behavior must not

perform any function that cannot be performed at

the current or a lower level of privilege using in-

structions that are not UNPREDICTABLE.

UNPREDICTABLE behavior must not be documented

or promoted as having a defined effect.

It defines an UNKNOWN value as follows [36].

An UNKNOWN value does not contain valid data,

and can vary from moment to moment, instruction to

instruction, and implementation to implementation.

3

An UNKNOWN value must not return information

that cannot be accessed at the current or a lower

level of privilege using instructions that are not UN-

PREDICTABLE and do not return UNKNOWN values.
An UNKNOWN value must not be documented or

promoted as having a defined value or effect.

While likely very highly trustworthy for well-defined parts

of the ISA, the formal model [34] almost certainly does

not match the behaviour of any real world ARM processor

for UNPREDICTABLE behaviour and UNKNOWN values. This

is because the formal model captures the UNPREDICTABLE

behaviour akin to an error condition (preventing it from having

any specified behaviour), and UNKNOWN as always producing

an unknown but fixed value (namely the special value ARB, a

universal constant defined in the logic of the HOL4 prover [37]

in which they carried out their proofs). Determining that the

model deviates from reality in this way naturally requires one

to very carefully examine the formal definitions of the ISA

model, which comprise around 7,000 lines of code in the

input language of the HOL4 prover (including whitespace and

comments).
It might have been more accurate to capture both kinds of

behaviour using nondeterminism. So in some sense the formal

model upon which these isolation proofs rests is not ideal. Yet,

we are inclined to agree with Khakpour et al. [34] that these

discrepancies are unlikely to impact the usefulness of their

proofs. The manual [36] makes it clear that UNKNOWN values

shouldn’t leak information that can’t otherwise be obtained.

While the manual is somewhat ambiguous on how UNPRE-

DICTABLE behaviour relates to information leakage, the intent

seems clear that the most likely impact of UNPREDICTABLE

behaviour is that it would not leak sensitive information in

conforming implementations. Under these assumptions the

Khakpour model [34] seems reasonable for the purpose of

proving their isolation properties.
This highlights the difficulty of validating implicit assump-

tions buried deep in a formal model, and makes clear that when

considering whether a formal model matches reality one must

do so with respect to the property being proved. While the

discrepancies above are likely a non-issue (see above) for the

properties Khakpour proves, consider this pathological case:

trying to prove that a particular instruction always produces the

same UNKNOWN value as its result. The formal model would

almost certainly allow one to prove that this property holds,

but clearly that proof should not be relied on as evidence for

that claim in reality.

(End of Example 2)
All proofs have assumptions. Yet, as noted by DeMillo, Lip-

ton and Perlis in their infamous critique of formal methods [2],

what sets formal verification of software apart from proofs in

pure mathematics, say, is their sheer volume of assumptions.

While we expect mathematical theorems to provide 100%

guarantees (about mathematical objects), we should not expect

formal verification to do the same for guarantees about the

security of real-world systems. This highlights the potential for

misunderstanding when talking about “proofs” in the context

of formal verification, a problem noted also by DeMillo et

al. [2]. To put it another way: when was the last time that any-

body described the safety of a bridge as having been “proved”

or “formally verified”? Yet civil engineers use mathematics to

inform understanding about the properties of bridges in much

the same way that formal verification practitioners use logic

to do the same for software. The use of these kinds of terms,

in the context of formal methods for software engineering, is

at odds with other engineering disciplines.

Terminology aside, from this viewpoint of proofs as qual-
ified guarantees has arisen one popular conclusion about the

value of formal proofs for security: they allow a security

evaluator, when assessing the security of the system, to

concentrate their efforts on validating the accuracy of the

proof’s assumptions, enabling them to ignore large parts of the

system’s implementation. To quote Klein’s 2009 explanation

of the seL4 functional correctness proofs to a non-formal

methods audience [38]:

The key condition in all this is if the assumptions
above are true. To attack any of these properties,

this is where you would have to look. What the

proof really does is take 7,500 lines of C code out

of the equation and reduce possible attacks and the

human analysis necessary to guard against them to

the remaining bits. It is not an absolute guarantee or

a silver bullet, but it is definitely a big deal.

Herley and van Oorschot summarize similarly [25]:

The value of a formal guarantee is that it concen-

trates [remaining] doubt on the assumptions.

We conclude this perspective by noting that if proofs

provide qualified guarantees they are not alone in doing so. Yet

few other security assurance technologies are talked about in

this same language. Consider fuzzing with the use of a mem-

ory corruption detector like LLVM’s AddressSanitizer [39] as

a means to discover memory corruption vulnerabilities and the

desire for assurance that a fuzzed piece of software will exhibit

no such vulnerabilities when deployed. Fuzzing provides this

assurance qualified on the assumption that the software in

deployment will not reach a state that it did not visit during

fuzzing. For any non-trivial piece of software, the probability

this assumption will hold is vanishingly small (based on

intuition alone). Yet deciding whether the assumptions that

underpin a particular proof are likely to hold in reality seems

to be an entirely different problem.

When considering whether a proof provides any real-world

guarantees, one must answer the question of whether its

assumptions will hold in reality. We conjecture that the reason

proofs are talked about in terms of providing unqualified

guarantees is not because people find it easy to answer “yes”

to this question. Rather, we suspect that those most likely to

talk in this way are those least likely to attempt to ask this

question at all.

1A) Proofs as Probabilistic Guarantees: A subcase of

proofs as guarantees qualified by assumptions, is proofs pro-

viding guarantees (that some system property will hold in

4

the real world) quantified by heuristically estimated likeli-

hoods that the proof assumptions match reality. This idea

is closely related to the use of formal methods for judging

the probability of perfection of a piece of software [40].

Perfection captures the idea that some critical piece of software

will never fail. Unlike correctness, perfection is not judged

against a set of requirements or properties. Instead, “perfection

includes a judgement that the requirements are the right
requirements” [40] (emphasis in original).

In the context of proofs and security, perfection requires

that the formal model and assumptions not only match the

system’s real-world behaviour always but also that of potential

attackers. Perfection leaves no room for caveats like “up to

modelling assumptions” and so on. Despite recent work [41]

on methods for accurately estimating relevant probabilities,

it remains unclear if this approach is viable. Quantification,

absent large amounts of empirical data against which to

validate quantitative assumptions and models, is necessarily

fraught. As has been noted elsewhere, “little evidence supports

the hypothesis that ‘security can correctly be represented with

quantitative information’ [42].”
2) Proofs as Structured Exploration: An alternative per-

spective is that the value in proofs is not to provide (qualified)

guarantees, but instead to force careful and rigorous under-

standing of a system (i.e., system model) and its operation.

By doing so one might hope to find vulnerabilities during the

process of performing a proof, or to better understand what

actions might need to be taken to help ensure a system meets

a particular security objective, and so on.
Shapiro provides one summation of this viewpoint [43]:

There is no question in my mind that proof processes

generate more robust code. Yet the general [consen-

sus] seems to be that this robustness is much more an

emergent consequence of rigorously understanding

the problem [than] a result of the proof discharge.

If discharging the entire proof is merely a side effect, we

note that under this point of view even partial proofs have

value. The same is less clear for the viewpoint of proofs as

qualified guarantees, since an unfinished proof provides no

guarantees about the formal objects under study.
Interactive proofs—whether carried out in a proof assistant

like HOL4 [37], Isabelle [44], Coq [45] or specialist security

proof assistants like CryptoVerif [46] and EasyCrypt [47], or

carried out using pen and paper (e.g. as in early authentication

logics like BAN [48], or more modern proofs [49])—provide

a critical mechanism for performing structured, interactive

exploration of a system (via a formal model). Carrying out

the proof forces the human to carefully examine each part

of the system model, and allows human intuition to bring to

light issues that might be missed by the proof itself (or to

bring them to light before the proof has dead-ended with an

unprovable subgoal). This is certainly one benefit of carrying

out this style of proof. To some degree that same benefit is

realised even in the context of fully automatic proofs (e.g.,

model checking [50] and automatic protocol analysers like

ProVerif [51]), as even the process of building the formal

model can uncover flaws [52]. (Note that automatic analysers

also produce useful counter-examples.)

Yet one can go further, using the proof itself as a way to

perform targeted exploration along a particular dimension of

the model. We again use an example to illustrate.

Example 3: In November 2012, a 3.5 person-year effort to

prove an information flow security theorem for the seL4 mi-

crokernel was completed [31]. This theorem was designed to

provide evidence that seL4 could isolate mutually distrusting

partitions and prevent unwanted information flows between

them. As with the above-mentioned proofs of Khakpour [34],

it did not reason about timing channels. When summarising

the kinds of storage channels covered by the proof, Murray et

al. were careful to state the limits of the theorem [31]:

Our proof does not rule out the possibility of covert

storage channels that are below the level of abstrac-

tion of [seL4’s] abstract specification, but that the

kernel never reads. For instance, suppose the kernel

were ported to a new platform that included extra

CPU registers that the kernel never reads, but that

the port was done incorrectly such that the kernel

fails to clear these registers on a partition switch.

It is possible our proof would still hold despite the

presence of an obvious covert storage channel.

Within a month of the text above being written, Anna Lyons

discovered that seL4 had such a channel [53], present not on

a port of seL4 to a new platform, but on the ARMv6 platform

for which seL4 had been verified at that time. Specifically, the

kernel failed to clear the load-exclusive monitor state (part of

the aforementioned exclusive monitor state) on context switch.

By using the LDREX and STREX instructions, one thread

could conceivably signal to another, with whom the kernel

was supposed to be preventing it from communicating. On its

own, this example highlights the care with which proofs—as

evidence about complex systems—must be treated.

The issue here was simply that the model of the ARM

hardware as visible to the kernel was incomplete: it lacked this

crucial piece of state since the kernel never made use of it.

Within months work would begin on formally proving whether

there existed other similar pieces of state that the kernel

needed to clear on context switch [53], by reasoning over the

validated ARM instruction set architecture model of Fox and

Myreen [22]. That work formally stated and proved data in-

tegrity and confidentiality properties that, although somewhat

more general, were very similar to those that Khakpour et

al. [34] were already independently working on.

In the case of the seL4 proofs over Fox and Myreen’s ISA

model (which, while completed and subsequently formally

connected to the kernel model [53], remain unpublished), the

initial goal was simply to use proof as a way to rigorously

explore the ARM ISA state as present in the ISA model. While

a manual audit of the model might well have identified any

extra user-visible state, formally stating and proving a data

confidentiality property increased confidence none was missed.

(End of Example 3)

5

3) Proofs as Commercially-valuable Commodities: Briefly,

proofs and formal verification also have economic value.

Sales and marketing of commercial products. Formal verifi-

cation can provide product differentiation. Some government

departments are restricted by policy to endorsed or validated

products. Non-experts interpret language like “proof” and

“formally verified” to mean a product is safe from all attacks.

Liability cover. A verified product may be selected to limit

commercial liability, by claim of compliance with standards

or best practices (proof as best practice), whether or not there

is belief in the guarantees of formal methods. The idea: no

one loses their job for buying a formally verified product.

Leverage. Verification bolsters claims of superiority.

Favoured proposals may be advanced over alternatives in

standards based on claimed superiority backed by a proof.

The assumption might be that proofs guarantee improved se-

curity in general, while in reality typically delivering targeted

security properties under specific assumptions.

IT products evaluated under Common Criteria [54] level

EAL7 require formally verified design and testing; a formal

model is required for design assurance in crypto-module

verification under FIPS 140-2 [55] (cf. ISO-19790 [56]).

III. BENEFITS, DRAWBACKS AND SIDE EFFECTS

A. General Benefits and Drawbacks

Our discussion of various perspectives on the role of proofs

for security highlights some established ideas on their benefits:

providing qualified guarantees, allowing auditors to concen-

trate effort on validating proof assumptions and formal model;

providing a means for structured exploration of a system to

better understand and improve its security; and potentially,

allowing one to quantify the strength of security guarantees.

Proofs have helped in discovering security vulnerabilities

and shining light on security issues that otherwise might have

gone undetected. Lowe’s attack on the Needham-Schroeder

public key protocol [52] is a well-known example of formal

methods to uncover and help fix a decades-old security (de-

sign) flaw. Other examples abound and we do not question

proof’s ability to improve security in general.

Yet against these benefits stand proof’s disadvantages,

which as with proof itself, remain poorly understood espe-

cially outside the formal methods community. One is proof

brittleness: e.g., changing one line of code can potentially

invalidate large amounts of formal reasoning, and also it is

difficult to judge the guarantees provided by a proof when even

one proof assumption deviates from reality (see Section IV).

Another is a dearth of techniques for reliably predicting the

cost of formal methods [57]. Other disadvantages mentioned

earlier are the difficulty that both non-experts and experts have

in discerning precisely the nature of the formal property that

a proof establishes, and the difficulty of validating implicit

assumptions in large-scale formal models on which such

proofs rest. This leaves plenty of room for gaps between

what non-experts might think has been proven and the precise

formal property actually proven. For a timely concrete exam-

ple, Cohn-Gordon and Cremers [58] consider recent work on

formally verified secure messenger applications and the gap

that exists “between the security properties that users might

expect from a communication app, and the security properties

formally proven” (cf. [59]).

B. Side Effects on the System

Most of these general pros and cons will be familiar to

readers who have studied formal methods in the context of

security. For the rest of this section, however, we turn attention

to the effects on the system, both beneficial and otherwise, for

which proof is a proximate cause—i.e., concrete effects on

the system brought about directly as a result of performing

the proof. We refer to these as the side effects of a proof.

A proof might induce two kinds of side effects on the sys-

tem: 1) changes to the code of the system being proved secure,

as a consequence—either to fix a vulnerability found during

the proof, or to modify some aspect of design or implementa-

tion to open a path enabling a proof; 2) deployment constraints
imposed on the system to enforce environmental assumptions
necessary for proofs, related to controllable configuration and

deployment aspects. For example, seL4’s information flow

proofs [31] require that seL4’s interrupt delivery mechanism be

disabled (forcing device drivers to poll for device interrupts).

We separate environmental assumptions (subject to system

control) from attack-model expectations (beyond system con-

trol), i.e., assumptions related to adversary capabilities; this

also helps track the moral hazard of making proofs work

simply by reducing attacker capabilities. A third category of

assumptions we identify is domain hypotheses—these are not

system-controllable, but assumed domain properties—e.g., that

hardware performs to its specification (row-hammer attacks

demonstrate this particular hypothesis is often false).

C. Relationships between Side Effects and the Real World

Here we discuss, with the aid of a set of Venn diagrams,

possible relationships between these kinds of side effects on

the system induced by the proof, on the one hand, and those
that improve the system’s security by stopping real-world
attacks, on the other. At first glance one might reasonably

expect the set of effects on the system induced by the proof

to necessarily improve the system’s resilience to real-world

attacks. As we will argue, this position is far from clear.

For simplicity of exposition, we use the term changes to

refer to both these kinds of side effects, i.e., code changes

and changed deployment constraints. We consider changes

made to software to enable proof of some property of the

software, and whether those changes actually stop real attacks

or simply facilitate the proofs (or both). In general, there will

also be attacks that are possible but beyond the scope of a

given formal proof; code changes that could stop such attacks

may be beneficial to the real system, but are not needed for

the formal verification in question. As an example, changes to

close timing channels would be invisible to proofs of storage

channel freedom.

What follows is a set of thought experiments presented to

raise questions about the role of proof for building secure

6

��
�������������
�������	�������	���

*�����
���+��������������

�� ��

��
���������������������
*���������������

�
������
*%�	������������

�

(�(&�,�����-��
�������������

����
�����������������

��
�������������*�����
�������	�������	��

����
�����������������

�.��

Fig. 2. Scenario 1. P is the set of side effects needed to get proofs to work.
A is the set of side effects needed to stop real-world attacks* (*relative to a
specific target environment). Ideally, P = A with the rings coincident or nearly
so (top right corner), conjectured as the mental model of most researchers.

systems—questions having largely escaped previous scrutiny.

As a first question, consider in relation to Figure 2 and some

system and security proof for it: What is the expected size of

the intersection between the set A of changes that stop real-

world attacks, and the set P of changes that enable the proof?

The area of P that doesn’t intersect A accounts for changes

made for the sake of the proof that do not stop real-world

attacks. These changes are side effects of the proof that

don’t actually lead to a real-world improvement of security.

Instead they might impose performance penalties, or restrict

functionality. If the number of such changes required for a

proof is large, one might reasonably question the additional

cost imposed on the system by the proof process itself.
We note that, in general, understanding a proof’s side

effects is particularly important if one or more of a proof’s

assumptions do not match reality. The proof then might

provide a false sense of security (although, as Example 2

above demonstrates, this can be difficult to judge). Note that

any changes made (and related performance costs incurred) to

facilitate proofs are forced upon the user population whether or

not the assumptions necessary for the proof to have value are

met; when these are not met, the proof result is not delivered,

but any costs incurred remain.

Figure 3 refines Figure 2, introducing the set V of vulner-
ability inducing side effects: the subset of P comprising all

changes needed for the proofs that, contrary to intention, in-
troduce vulnerabilities not seen by the proofs. As an example,

Murray et al. [31] note that seL4’s partition scheduler [31],

introduced to enable a proof of storage channel freedom, might

introduce certain timing channels.

Part (a) of Figure 4 considers a different possible relation-

ship between P and A, with A a proper subset of P. The

situation may be inefficient, but doesn’t hurt security: real

attacks are stopped, albeit extra “convenience” side effects

(software artifacts and environmental assumptions introduced

solely to enable proofs) may add unnecessary constraints,

complexity or performance penalties to the system. We could

summarize this as “defensively conservative, but safe”.

���
���������
��

��������
�0
������

�/����
��
(�����0��������

�� ��

���
�����������0��������
�/���
��/
���
��

	������2�
�����
����������

�
�!�!'�)�
��
*��
0�/��/
�
��
�

�/��������������
�����

���
���������
��������

��������
�0
�����

�
��
���0�
�����������

�4��

��

Fig. 3. Scenario 2. This brings into discussion a set V (ideally empty): the
subset of P that, contrary to intention, introduces vulnerabilities not seen by
the proofs. For simplicity, V is shown disjoint from A, but it need not be—e.g.,
fixing a buffer overflow vulnerability might introduce a timing channel.

��

��
��	����
����
��

��������������	��
����������������
����	���
��	�����������������	�������

�

��

��
������

��������

��������������	��
�����	��	��	 ����
������
������!��	���	����"��	���

#����!�������������
�	��$#������!����	��

���� ����

Fig. 4. Scenarios 3 and 4. Part (a) gives focus to software artifacts introduced
to enable proofs, possibly at some cost (e.g., to software performance), but
which do not stop any real-world attacks; as illustrated, A is a proper subset
of P. The reverse case (b) has P a proper subset of A; see discussion inline.

Part (b) of Figure 4 inverts the relationship between P and

A, showing the far more pessimistic case of a proof model

blind to a great number of attacks (many are missed). As a

small consolation, no software artifacts or environmental as-

sumptions are added unnecessarily to facilitate proofs without

providing relief from attacks. However here, the proofs largely

provide a false sense of security, in that many attacks remain.

Figure 5 considers yet another theoretical possibility: that

P and A are disjoint. This is a worst case: the environmental

assumptions imposed and the software changes made to enable

the proofs end up stopping no real attacks at all, while

assumptions and changes needed to stop the real attacks are

missed by the formal model. Here the proof has no positive

impact on security, producing side effects without any benefits.

Our motivation is to raise awareness of possibilities. Natu-

rally, which of these scenarios is more likely will be different

for each verified system, and will depend on the nature of

the system, its formal model, and the properties established

by the proofs. Some of these scenarios may be rare or non-

existent in practice, but we note: there is little, if any, detailed

discussion of these possibilities in the literature. A question

7

��
������
��
���
�������������������

������
�����������
�
����

��

��

��
������
���
�����
�
����

����
���
���������
������
� �����
��������

Fig. 5. Scenario 5. This considers a very pessimistic case of P and A having
no intersection. For a definition of P and A, see caption of Figure 2.

we return to is: do we have any idea about (how to determine)

the relationships between P and A in Figure 2 or any others

in this series of Venn diagrams, or any sense of the sizes of

these sets and their intersection?

IV. DISCUSSION OF SIDE EFFECTS

As noted, a common form of side effect of formal verifi-

cation is deployment constraints imposed on a system, e.g.,

to reflect environmental assumptions encoded in the formal

proofs or the model over which they are carried out. Often

these restrictions are sensible and arguably enhance security

in many scenarios. Yet for other reasonable threat models the

restrictions might be overkill. We use an example to illustrate.

Example 4: As mentioned in Section III, the seL4 infor-

mation flow proofs explicitly assume that seL4’s mechanism

for delivering device interrupts to application programs is

disabled. This is a sensible restriction if one cares about strong

isolation since as noted [31], “the [seL4] kernel does not

isolate the interrupts of one partition from another”.

Yet in many scenarios one might reasonably care about iso-

lating memory without worrying about information leakage via

interrupts, e.g., in systems where all application components

are written by trusted authors, and verified but only to detect

unintentional information leakage. The Cross Domain Desktop

Compositor is an example [60], [61].

Here one might hope to use seL4’s information flow theo-

rem to conclude that the seL4 kernel does indeed adequately

isolate memory, if not interrupts. Yet, as the top level theorem

is stated, it provides no such assurance since the theorem

explicitly assumes that all device interrupts are disabled.

One might reasonably expect that that theorem has a variant

“hiding inside it” that would provide the desired assurance; yet

no such theorem has yet been proved and it isn’t clear what

level of effort would be required to prove it (although one

might expect to be able to re-use lemmas used to establish the

existing information flow theorem), if it is even provable. As it

is, seL4’s confidentiality guarantees as visible through its top

level information flow theorem come at the price of disabling

device interrupts—a severe deployment restriction for many.

(End of Example 4)

A similar issue arises when a system or protocol is modified

to prove it secure. We highlight with another example.

Example 5: Dowling and Paterson [49] recently presented

a proof of the WireGuard protocol [62]. To allow the key

exchange phase and the data transport phase of the protocol

to be analysed separately using standard techniques, they mod-

ified the protocol, introducing an extra message transmission.

This naturally raises questions: Was the original pre-modified

protocol secure? What does their proof mean for it? Does the

added message stop a real world attack or is it merely a change

for proof convenience? Quoting their work [49]:

WireGuard either cannot be proven secure as

a key exchange protocol using standard key-

indistinguishability notions, or it is vulnerable to

key-recovery attacks in the [Key Compromise Im-

personation] setting.

Which is it? This is unclear to outsiders and requires more than

cursory examination by experts [63]. Moreover, the formal

proofs themselves do not help answer this question. Relying

on the proofs alone as evidence, one pays the penalty of an

extra message transmission, defeating the one-round (1-RTT)

feature of WireGuard’s key exchange phase.

(End of Example 5)
We note a difficulty here in judging the value of a proof

regarding a protocol intentionally deviating from the original,

and which has no implemented counterpart in the real world—

a dangling proof (as coined by Virgil Gligor). We might

use this term also for proofs having assumption sets which

are met in no deployed system. Another difficulty arises

in taking proofs performed about software in one context

and updating them to apply to the software in other, less

restrictive contexts—for example, as found in exploring the

application of Green Hills’ certified INTEGRITY separation

kernel to commodity platforms [64]. While modern interactive

proof assistants help to manage the complexity of this task,

as demonstrated, e.g., by the ongoing work to extend the

verification of the seL4 kernel to cover various hardware

platforms [65], it remains non-trivial, especially for large

proofs about real-world software.

V. RELATED WORK

Mention of related work is interspersed throughout this pa-

per, including for security-related formal verification literature

and in particular numerous references to the seL4 project. That

project is perhaps rivalled in literature and practicality only

by the growing work on formal methods specifically related

to TLS (e.g., Beurdouche [66], Delignat-Lavaud [67], and for

HTTPS, Bhargavan [68]). For a comprehensive summary of

the state-of-the-art of formal verification related to TLS 1.3,

we recommend Bhargavan [69] rather than repeating it here.

On the specific topic of the meaning and value of proofs,

Asperti et al. [70] revisit the critique of formal verification

by DeMillo et al. [2] thirty years later, and among other

things note unanticipated contributions of interactive theorem

provers; Regehr [18] gives links to enthusiastic discussion of

this topic. Koblitz takes up controversial discussion of the

8

meaning of proofs and differing views of mathematicians and

theoretical cryptographers [19] (cf. [3]).
The role of formal methods features prominently in gov-

ernment efforts towards a Science of Security [71]; see Her-

ley and van Oorschot [25] for background. Degabriele et

al. [59] discuss the gap between crypto proofs and end-user

expectations (cf. [58], above). In a theory of security testing,

Torabi Dashti and Basin [26] distinguish system specifica-

tions (desired system behaviour) from security requirements

(desired properties of the system’s world), and explicate dif-

ficulties in reasoning about adversarial environments, e.g., the

scope-limiting closed-world assumption inherent in models.

Jackson’s requirements engineering framework and reference

model [72] relates software systems to their environments in

the context of designing a machine deployed in a world; see

van Lamsweerde [27] for perspective, and the role of domain

hypotheses and assumptions in satisfaction arguments.

VI. CONCLUDING DISCUSSION

We conclude with some questions following directly from

earlier sections. Our hope is that these stimulate interesting

discussion and encourage others to give them thought.
As discussed, proofs concretely impact software systems

with two types of side effects: code changes, and deployment

constraints. While purists may value proofs per se, practition-

ers value changes that stop actual attacks. This leads to:

Q1: Can we find means to know and measure the relationship
between proof side effects and changes that stop attacks,
how these sets intersect, and the intersection sizes?

Not knowing this precludes weighing the benefits delivered

by our formal proofs, against the concrete side effect costs

imposed (beyond proof effort costs).
We have discussed various meanings and values of proofs,

including proofs as guarantees predicated on assumptions—the

guarantees conditional on proof assumptions carrying over to

real systems. This fine print is evidently entirely inaccessible to

non-experts, and even for experts, formal theorems are labour-

intensive to understand and assumptions are often buried deep

within formal models. When one or more such adversary

assumptions, domain hypotheses, or configuration/deployment

constraints do not hold in a real system, the residual value

of software verification proofs is little understood—does it

entirely evaporate, if a single assumption from a long list fails?

We expect otherwise in large, multiple person-year software

verification efforts, where it appears naive to expect that every

required proof assumption holds in the practical system. This

leads to the question:

Q2: Can we find means to measure the residual value of
proofs, when not all assumptions hold in practice; can
we presently even begin to attempt such a measurement?

Finally, and sadly, we turn to practitioners and all non-experts,

the unhappy recipients of the news that “proof” does not really

mean 100% guarantee, in the sense expected. We ask, for this

long-standing issue, which reliably misleads almost everyone:

Q3: How can we better tag formally verified software to
explain the fine print that accompanies the proofs?

A closely-related question is:

Q4: What effort can be undertaken to explore formal or
other methods to track and validate that (both implicit
and explicit) security assumptions in large-scale formal
models hold in practice?

Outside of certification labs, few are incentivised to track and

validate these assumptions and there appears to be a void in

terms of both culture and process for doing so.

Without answers to such questions, it is hard to say what

empirical value our formal proofs deliver to real systems.

That precludes providing convincing cost-benefit analyses. We

believe that finding answers to some, or all, of these questions,

can significantly advance the cause of formal verification of

software in particular, and formal methods in general.

ACKNOWLEDGEMENTS

We thank David Basin, Virgil Gligor, Cormac Herley, Ben-

jamin Pierce and John Regehr for insightful feedback, and

anonymous referees. The second author is Canada Research

Chair in Authentication and Computer Security, and acknowl-

edges NSERC for funding the chair and a Discovery Grant.

REFERENCES

[1] D. MacKenzie, Mechanizing Proof: Computing, Risk, and Trust. Cam-
bridge, MA, USA: MIT Press, 2001.

[2] R. A. De Millo, R. J. Lipton, and A. J. Perlis, “Social processes and
proofs of theorems and programs,” Commun. ACM, vol. 22, no. 5, pp.
271–280, 1979, also letters to the editor: C.ACM vol.22 no.11, 621–630.

[3] N. Koblitz and A. Menezes, “Another look at “provable security”,” J.
Cryptology, vol. 20, pp. 3–37, 2007.

[4] M. Y. Vardi, “The automated-reasoning revolution: from theory to
practice and back,” Distinguished Lecture at NSF CISE, Spring 2016.

[5] G. Heiser, T. Murray, and G. Klein, “It’s time for trustworthy systems,”
IEEE Security & Privacy, vol. 10, no. 2, pp. 67–70, 2012.

[6] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood, “seL4: Formal verification of an OS kernel,”
in ACM SOSP, 2009, pp. 207–220.

[7] N. Kobeissi, K. Bhargavan, and B. Blanchet, “Automated verification
for secure messaging protocols and their implementations: A symbolic
and computational approach,” in IEEE EuroS&P, 2017, pp. 435–450.

[8] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, and P.-Y. Strub,
“Implementing TLS with verified cryptographic security,” in IEEE Symp.
Security and Privacy, 2013, pp. 445–459.

[9] D. Jang, Z. Tatlock, and S. Lerner, “Establishing browser security
guarantees through formal shim verification,” in USENIX Security, 2012.

[10] S. Kanav, P. Lammich, and A. Popescu, “A conference management sys-
tem with verified document confidentiality,” in International Conference
on Computer Aided Verification. Springer, 2014, pp. 167–183.

[11] T. Bauereiß, A. P. Gritti, A. Popescu, and F. Raimondi, “CoSMed: A
confidentiality-verified social media platform,” in International Confer-
ence on Interactive Theorem Proving. Springer, 2016, pp. 87–106.

[12] A. Azevedo de Amorim, N. Collins, A. DeHon, D. Demange, C. Hriţcu,
D. Pichardie, B. C. Pierce, R. Pollack, and A. Tolmach, “A verified
information-flow architecture,” J. Computer Security, vol. 24, no. 6, pp.
667–688, 2016.

[13] R. Gu, Z. Shao, H. Chen, X. N. Wu, J. Kim, V. Sjöberg, and D. Costanzo,
“CertiKOS: An extensible architecture for building certified concurrent
OS kernels,” in OSDI, Nov. 2016.

[14] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan, B. Parno, D. Zhang,
and B. Zill, “Ironclad apps: End-to-end security via automated full-
system verification,” in OSDI, Oct. 2014, pp. 165–181.

[15] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno, M. L.
Roberts, S. T. V. Setty, and B. Zill, “IronFleet: proving practical
distributed systems correct,” in ACM SOSP, 2015, pp. 1–17.

9

[16] T. Bauereiß, A. P. Gritti, A. Popescu, and F. Raimondi, “CoSMeDis: a
distributed social media platform with formally verified confidentiality
guarantees,” in IEEE Symp. Security and Privacy, 2017, pp. 729–748.

[17] K. Q. Ye, M. Green, N. Sanguansin, L. Beringer, A. Petcher, and A. W.
Appel, “Verified correctness and security of mbedTLS HMAC-DRBG,”
in ACM CCS, 2017, pp. 2007–2020.

[18] J. Regehr, “Research for practice: vigorous public debates in academic
computer science,” Commun. ACM, vol. 60, no. 12, pp. 48–50, 2017.

[19] N. Koblitz, “The uneasy relationship between mathematics and cryptog-
raphy,” Notices of the AMS, vol. 54, no. 8, pp. 972–979, 2007.

[20] T. Sewell, M. Myreen, and G. Klein, “Translation validation for a
verified OS kernel,” in PLDI, 2013, pp. 471–481.

[21] R. Kumar, M. O. Myreen, M. Norrish, and S. Owens, “CakeML: a
verified implementation of ML,” in ACM Principles of Programming
Languages (POPL), 2014, pp. 179–191.

[22] A. Fox and M. Myreen, “A trustworthy monadic formalization of the
ARMv7 instruction set architecture,” in Interactive Theorem Proving
(ITP), ser. Springer LNCS, vol. 6172, 2010, pp. 243–258.

[23] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing them:
An experimental study of DRAM disturbance errors,” in ACM SIGARCH
Computer Architecture News, vol. 42, no. 3, 2014, pp. 361–372.

[24] S. Chong, J. Guttman, A. Datta, A. Myers, B. Pierce, P. Schaumont,
T. Sherwood, and N. Zeldovich, “Report on the NSF Workshop on
Formal Methods for Security,” 2016.

[25] C. Herley and P. C. van Oorschot, “SoK: Science, security and the
elusive goal of security as a scientific pursuit,” in IEEE Symp. Security
and Privacy. IEEE, 2017, pp. 99–120.

[26] M. Torabi Dashti and D. A. Basin, “Security testing beyond functional
tests,” in Engineering Secure Soft. and Systems (ESSoS), 2016, pp. 1–19.

[27] A. van Lamsweerde, “From Worlds to Machines (A Tribute to Michael
Jackson),” 2009, pp. 1–13, manuscript.

[28] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks:
Exploiting speculative execution,” meltdownattack.com, 2018.

[29] “seL4 frequently asked questions: The proof,” https://sel4.systems/Info/
FAQ/proof.pml, 2018.

[30] N. Koblitz and A. Menezes, “Another look at “provable security”. II,”
in International Conference on Cryptology in India, 2006, p. 148175.

[31] T. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke, S. Seefried,
C. Lewis, X. Gao, and G. Klein, “seL4: from general purpose to a proof
of information flow enforcement,” in IEEE Symp. Security and Privacy,
2013, pp. 415–429.

[32] G. Klein, J. Andronick, K. Elphinstone, T. Murray, T. Sewell, R. Kolan-
ski, and G. Heiser, “Comprehensive formal verification of an OS
microkernel,” ACM TOCS, vol. 32, no. 1, pp. 2:1–2:70, Feb 2014.

[33] Benjamin C. Pierce, personal email correspondence, 25 Jun 2018,
reported with permission.

[34] N. Khakpour, O. Schwarz, and M. Dam, “Machine assisted proof of
ARMv7 instruction level isolation properties,” in International Confer-
ence on Certified Programs and Proofs, 2013, pp. 276–291.

[35] G. Klein, T. Murray, P. Gammie, T. Sewell, and S. Winwood, “Provable
security: How feasible is it?” in USENIX HotOS workshop, May 2011.

[36] ARM Architecture Reference Manual, ARM v7-A and ARM v7-R, ARM
Ltd., Apr. 2008, ARM DDI 0406B.

[37] “HOL4,” http://hol.sourceforge.net.

[38] G. Klein, “Correct OS kernel? Proof? Done,” USENIX login, vol. 34,
no. 6, pp. 28–34, 2009.

[39] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
Sanitizer: A fast address sanity checker.” in USENIX Annual Technical
Conf., 2012, pp. 309–318.

[40] J. Rushby, “Software verification and system assurance (invited paper),”
in IEEE International Conference on Software Engineering and Formal
Methods (SEFM), 2009, pp. 3–10.

[41] X. Zhao, “On the probability of perfection of software-based systems,”
Ph.D. dissertation, City University of London, 2016.

[42] V. Verendel, “Quantified security is a weak hypothesis: a critical survey
of results and assumptions,” in New Security Paradigms Workshop
(NSPW), 2009, pp. 37–50.

[43] J. S. Shapiro, “On the (alleged) value of proof for assurance,” Lambda
The Ultimate, posted. http://lambda-the-ultimate.org/node/3858, 2010.

[44] T. Nipkow, L. Paulson, and M. Wenzel, Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, ser. Springer LNCS, 2002, vol. 2283.

[45] Y. Bertot and P. Castéran, Interactive Theorem Proving and Program
Development. Coq’Art: The Calculus of Inductive Constructions, ser.
Texts in Theoretical Computer Science. An EATCS Series, 2004.

[46] B. Blanchet, “A computationally sound mechanized prover for security
protocols,” IEEE TDSC, vol. 5, no. 4, pp. 193–207, 2008.

[47] G. Barthe, F. Dupressoir, B. Grégoire, C. Kunz, B. Schmidt, and P.-Y.
Strub, “EasyCrypt: A tutorial,” in Foundations of Security Analysis and
Design VII. Springer, 2014, pp. 146–166.

[48] M. Burrows, M. Abadi, and R. M. Needham, “A logic of authentication,”
ACM Trans. Comput. Syst., vol. 8, no. 1, pp. 18–36, 1990.

[49] B. Dowling and K. G. Paterson, “A cryptographic analysis of the
WireGuard protocol,” 2018, https://eprint.iacr.org/2018/080.

[50] E. M. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT press,
1999.

[51] B. Blanchet, “Modeling and Verifying Security Protocols with the
Applied Pi Calculus and ProVerif,” Foundations and Trends in Privacy
and Security, vol. 1, no. 1-2, pp. 1–135, 2016.

[52] G. Lowe, “Breaking and fixing the Needham-Schroeder public-key pro-
tocol using FDR,” in International Workshop on Tools and Algorithms
for the Construction and Analysis of Systems, 1996, pp. 147–166.

[53] T. Murray, “The quest for assured confidentiality: Keeping secrets with
seL4,” Univ. Oxford talk. Video: https://www.cybersecurity.ox.ac.uk/
resources/videos/the-quest-for-assured-confidentiality, Jan. 2015.

[54] ISO/IEC, “ISO/IEC 15408: Common Criteria for Information Tech-
nology Security Evaluation,” Apr 2017, version 3.1, revision 5 (“CC
3.1”). Part 1: Introduction and general model. Part 2: Security functional
components. Part 3: Security assurance components.

[55] NIST, “FIPS Pub 140-2: Security Requirements for Cryptographic
Modules,” U.S. Dept. of Commerce, Federal Information Processing
Standards Publication, May 25, 2001.

[56] ISO/IEC, “ISO/IEC 19790: Information Technology - Security Tech-
niques - Security requirements for cryptographic modules,” Aug 2012,
corrected Nov 2015.

[57] D. Matichuk, T. Murray, J. Andronick, R. Jeffery, G. Klein, and
M. Staples, “Empirical study towards a leading indicator for cost of
formal software verification,” in ICSE, 2015, pp. 722–732.

[58] K. Cohn-Gordon and C. Cremers, “Mind the gap: Where provable
security and real-world messaging don’t quite meet,” Oct. 2017.
[Online]. Available: https://eprint.iacr.org/2017/982

[59] J. Degabriele, K. Paterson, and G. Watson, “Provable security in the real
world,” IEEE Security & Privacy, vol. 9, no. 3, pp. 33–41, 2011.

[60] T. Murray, R. Sison, and K. Engelhardt, “COVERN: A logic for com-
positional verification of information flow control,” in IEEE EuroS&P,
2018, to appear.

[61] M. Beaumont, J. McCarthy, and T. Murray, “The Cross Domain Desktop
Compositor: Using hardware-based video compositing for a multi-level
secure user interface,” in ACSAC, 2016, pp. 533–545.

[62] J. A. Donenfeld, “WireGuard: Next generation kernel network tunnel,”
in NDSS, 2017.

[63] M. D. Green, “Correspondence on Twitter,” Jan. 2018, https://twitter.
com/matthew d green/status/956151576304996352.

[64] NSA, Information Assurance Directorate, Systems and Network Analy-
sis Center, “Separation kernels on commodity workstations,” Mar. 2010.

[65] “seL4Wiki: Supported hardware platforms,” https://wiki.sel4.systems/
Hardware, Dec. 2017.

[66] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet,
M. Kohlweiss, A. Pironti, P. Strub, and J. K. Zinzindohoue, “A messy
state of the union: taming the composite state machines of TLS,”
Commun. ACM, vol. 60, no. 2, pp. 99–107, 2017.

[67] A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, J. Protzenko, A. Rastogi,
N. Swamy, S. Z. Béguelin, K. Bhargavan, J. Pan, and J. K. Zinzindohoue,
“Implementing and proving the TLS 1.3 record layer,” in IEEE Symp.
Security and Privacy, 2017, pp. 463–482.

[68] K. Bhargavan et al., “Everest: Towards a verified, drop-in replacement of
HTTPS,” in Summit on Adv. in Prog. Lang., SNAPL, 2017, pp. 1:1–1:12.

[69] K. Bhargavan, B. Blanchet, and N. Kobeissi, “Verified models and
reference implementations for the TLS 1.3 standard candidate,” in IEEE
Symp. Security and Privacy, 2017, pp. 483–502.

[70] A. Asperti, H. Geuvers, and R. Natarajan, “Social processes, program
verification and all that,” Math. Struct. C.S., 2009, 19(5):877-896.

[71] U.S. National Academies of Sciences, Eng., and Medicine, “Founda-
tional Cybersecurity Research: Improving Science, Engineering, and In-
stitutions,” 2017, Nat. Academies Press, https://doi.org/10.17226/24676.

[72] M. Jackson, “The World and the Machine,” in ICSE, 1995, pp. 1–10.

10

