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Abstract Cryptographic puzzles are moderately hard–neither easy nor hard to
solve—computational problems. They have been identified to be useful in mitigating
a type of resource exhaustion attacks on Internet protocols. Puzzles based on modu-
lar exponentiation are interesting as they possess some desirable properties such as
deterministic solving time, sequential (non-parallelizable) solving process and linear
granularity. We propose a cryptographic puzzle based on modular exponentiation.
Our puzzle is as efficient as the state-of-art puzzle of its kind and also overcomes the
major limitation of the previous schemes.

Keywords Cryptographic puzzle · Proof-of-work · Denial-f-service protection ·
Unforgeability · Difficulty

1 Introduction

A cryptographic puzzle is a moderately difficult computational problem in which
a prover(client) must demonstrate to a puzzle generator (verifier) that it has per-
formed the required computational task. Cryptographic puzzles were first introduced
as proof-of-work systems by Dwork and Naor [8] in 1992 for combating junk emails
[8]. Rivest et al. (1996) used puzzles for realizing time-release cryptography [19].
Juels and Brainard (1999) considered puzzles to mitigate Denial-of-Service (DoS)
attacks in network protocols. In server-client scenario, they are known as client puzzle
protocols.

DoS attack is one of the most common real-world network security attacks and
presents a severe threat to the Internet and e-commerce. In DoS attack, the attacker
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targets to drain out the service provider’s resources such as bandwidth, memory,
and computational time so that the resources will become unavailable to process
legitimate clients’ requests. In recent years, major e-commerce sites including eBay,
Yahoo!, Amazon, and Microsoft’s name server [17] have faced huge financial loss
due to DoS attacks. Very recently, a DoS attack on several thousands of time keeping
servers distributed across the world to keep the time in sync by running the net-
work time protocol (NTP) has been mounted. Two vulnerabilities in the NTP were
exploited by the attackers to mount the DoS attack using IP spoofing technique.
This attack has been described as the world’s largest DoS attack to date by security
researchers due to its amplification factor of 206x.

Cryptographic puzzles have been shown to be a promising and effective mecha-
nism to deter the effect of malicious requests. When the server is under DoS attack,
it generates a (client) puzzle instance and sends it as a reponse to the client’s con-
nection request. The server processes the client’s request only if the client proves its
legitimate intentions of getting the request by sending the correct puzzle solution.
Generating and verifying a client puzzle must be computationally easy for the server.
That is, it must add a little computational and memory overhead to the server. Other-
wise, the client puzzle may introduce a resource exhaustion attack where an attacker
triggers puzzle generation and verification process by sending a large number of
pretended requests or a large number of fake puzzle solutions respectively.

On the other hand, finding a correct solution to the client puzzle must be moder-
ately hard for the client. This property is called puzzle difficulty which is a property
that every good puzzle must satisfy. That is, for a legitimate client, the computational
burden for solving a client puzzle is not high, whereas for an attackerwhomakesmul-
tiple connection requests, finding solution for many client puzzles received through
multiple requests must be a huge resource-consuming process.

1.1 Modular Exponentiation-Based Puzzle

Client puzzles are mostly either hash based [3, 9, 11] or modular exponentiation
[12, 19] based puzzles. Though it is essential that all the client puzzles must sat-
ify the puzzle difficulty property, exponentiation-based client puzzles are known
to achieve additional properties such as non-parallelizability, deterministic solving
time, and finer granularity. In a non-parallelizable client puzzle, the solution finding
time remains constant even if the attacker/client uses multiple machines to solve a
single client puzzle. Unlike in the hash-based puzzles where the running time to find
a puzzle solution is probabilistic, the modular exponentiation-based puzzles have
the property that the minimum amount of work required to solve a puzzle can be
determined. Moreover, these puzzles support linear granularity; the puzzle generator
(server) has the ability to increase the puzzle difficulty level linearly. This property is
useful since the puzzle issuing server will have more options for the difficulty level
and can choose one accordingly.
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Rivest et al. [19] gave the first modular exponentiation-based puzzle which
achieves non-parallelizability, deterministic solving time, and finer granularity. A
problem with Rivest et al. puzzle construction is that the server has to perform mod-
ular exponentiation in order to verify the puzzle solution. Karame and Čapkun [12]
proposed two puzzle constructions. First, one works for the fixed-difficulty level and
reduces the running time of the puzzle verification by a factor of |n|

2k for a given RSA
modulus n, where k is the security parameter compared to Rivest et al.’s puzzle. In a
puzzle with fixed difficulty, the busy server cannot adjust the difficulty levels of the
puzzle based on its load. The second scheme of Karame and Čapkun supports vari-
ous difficulty levels but it doubles the verification cost of their first scheme. Though
Karame and Čapkun’s puzzle is superior in efficiency compared to Rivestet al. puz-
zle, it still requires modular exponentiation for puzzle verification. To avoid mdoular
exponentiation in the Karame-Čapkun puzzle verification, an alternative construc-
tion, namelyRSApuzwas proposed in [18],wherein the verification requires only few
modular multiplications. However, the approach in [18] works only for the fixed dif-
ficulty level. In real-world attacks such as denial-of-service attacks, the target server
is kept very busy in performing varoius computational tasks. Thus puzzles can be an
effective countermeasure to DoS attacks when they support variable difficulty levels
and avoidmodular exponentiation cost on their side. The state-of-art puzzles, namely
[12] and [18] fail to meet at least one of the above desirable properties as seen in
Table1.

1.2 Contributions

1. We give an efficient modular exponentiation-based puzzle which achieves non-
parallelizability, deterministic solving time, and finer granularity. Our puzzle is
superior in efficiency to Karame and Čapkun’s variable puzzle difficulty level
puzzle. Though our scheme is similar to [12] and [18], our puzzle does not involve
any modular exponentiation during puzzle verification unlike [12] and does not
require to repeat the pre-computation procedure to change the puzzle difficulty
level unlike [18]. Our construction requires only a few modular multiplications

Table 1 Comparision of modular exponentiation-based puzzles

Puzzle Difficulty level Verification

RSWpuz [19] variable |n|-bit mod. exp.

KCpuz [12] fixed k-bit mod. exp.

KCpuz [12] variable 2k-bit mod. exp.

RSApuz [18] fixed 3 mod. mul.

Ours variable 3 mod. mul.

Legend n is an RSA modulus, k � n is a security parameter
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to verify puzzle solutions. Table1 compares our puzzle with other puzzles of the
same kind.

2. We show that our puzzle is unforgeable and difficult in the puzzle security model
proposed by Chen et al. [7]

Outline: We organize the rest of the paper as follows: Sect. 2 breifly presents the
related work. Design and security analysis of our puzzle construction is described in
Sect. 3. Finally Sect. 4 concludes our work.

2 Background on Modular Exponentiation-Based Puzzles

This section discusses the state-of-art puzzle schemes and identifies their limitations.
Throughout the paper we use the following notations: Let n be an integer and |n| be
the length of the interger in bits; let φ(n) be the Euler phi function of n; the set of all
integers {a, . . . , b} between and including a and b be denoted by [a, b]; denote by
x ←r S to choose an element x uniformly at random from s set S; for an algorithm
A to run on input y and produce an output x, we denote it by x ← A(y); let negl(k)

denote a function which is neglible in k, where k is a security parameter; We denote
p.p.t for a probabilistic polynomial time algorithm.

2.1 RSWpuz

Rivest et al. [19] proposed a puzzle scheme based on repeated squarings, which we
callRSWPuz. In their puzzle construction, the puzzle generating server first chooses
an RSA modulus n = pq using two large primes p and q and then computes the
Euler totient function φ(n) = (p−1)·(q −1).Now the server sends a tuple (a, Q, n)

as a puzzle instance to the client after selecting the difficulty level Q and an integer
a ←r Z

∗
n .Observe that the difficulty level determines the amount of work a client has

to do. Now, the client performs Q repeated squarings to compute b ← a2Q
mod n

and returns b to the server as a puzzle solution. After receivng the puzzle solution,

the server checks whether ac ?≡ b mod n where c = 2Q mod φ(n). The server can
reuse the computation of c as long as the puzzle difficutly value Q is fixed. Since
the server knows the trapdoor information φ(n) the server can verify the solution in
one |n|-bit exponentiation, whereas the client is forced to do Q repeated squarings
for Q � |n|.

Note that the puzzle verification step is expensive in RSWPuz scheme as it
involves the computation of full |n|-bit modular exponentiation on the server side.
A malicious client can exploit this weakness to send a large number of fake puzzle
solutions. The busy server now needs to engage in computationally expensive oper-
ation to verify all of them. Hence, the client puzzle construction itself introduces a
new vulnerability to a resource exhaustion-based DoS attack.
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2.2 KCpuz

Rivest et al.’s puzzle construction was improved by Karame and Čapkun [12]. The
improvement in terms of computational efficiency is the significant reduction of
puzzle verification cost from |n|-bit exponentiation (Rivest et al. puzzle verification
cost) to 2k-bit exponentiationmodulo n for a security parameter k.That is, the burden
for the server is reduced by a factor of |n|

2k . Their scheme with variable difficulty
level, which we call KCPuz is illustrated in Fig. 1. Unlike [19], Karame and Čapkun
analyzed their puzzle scheme under the security notions from [7] and showed that
the puzzle satisfies both the unforgeability and difficulty notions.

ThoughKCPuz scheme requires less computation cost to verify each puzzle solu-
tion compared to RSWPuz, it still needs a 2k−bit modular exponentiation. This
could still be a burdensome computation for DoS defending servers. Also, KCPuz
does not provide the property of finer granularity. That is, the gap between the two
adjacent difficulty levels must be large for security reasons. In particular, the next
difficulty level R′ must satisfy R′

R ≥ n2 where R is the current difficulty level. This
reduces the number of possible and acceptable difficulty levels to be chosen by the
puzzle generator.

Client Server

Puzzle Setup
1. (n, p, q) ← GenMod(1k)
2. d ←r [2k, 2k+1] such that

e = d−1 mod φ(n) exists and e ≥ n2.
3. s ← (e, d, φ(n))
4. Select R ≥ e, |R| = Q.

request−−−−−−−−−−−−−→ Puzzle Generation
1. Z ←r {0, 1}k

2. X ← HMAC(d, Z)
3. v ← HMAC(d, X), |v| ≥ k, gcd(v, d) = 1
4. K ← e · v − (R mod φ(n)).

Finding Solution
puz←−−−−−−−−−−−−− 5. puz ← (n, R, K, Z, X)

1. Y1 ← XR mod n

2. Y2 ← XK mod n
Y1, Y2, puz−−−−−−−−−−−−−→ Puzzle Authentication

1. X ← HMAC(d, Z)
2. v ← HMAC(d, X)
Solution verification

3. Verify (Y1 · Y2)d ?≡ Xv mod n

Fig. 1 The KCPuz Scheme [12]
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The difficulty level for client puzzles employed in DoS scenarios is typically
set between 0 to 225 operations. Hence, the possible successive difficulty levels for
KCPuz scheme are R = 2512, R′ = 21536 and R′′ = 22560 for 512-bit moduli.

2.3 RSApuz

An alternative and more efficient vewrsion version of KCPuz was proposed in [18],
which we call RSAPuz. In RSAPuz the puzzle issuing server does the most com-
putation work offline so that it does not perform any modular exponentiation online
during puzzle generation and solution verification. In fact, the solution verification
requires only three bit modular multiplications and thus its efficiency is compara-
ble with that of hash function-based puzzles [18]. RSAPuz is shown to meet the
security notions of Chen et al. and additional desirable properties such as finer gran-
ularity, non-parallelizability, and deterministic solving time. The RSAPuz scheme
is depicted in Fig. 2.

RSAPuz uses the (BPV) technique due to Boyko et al. [5] which reduces the
online computation cost for the pair (x, X). The technique has two phases: BPV pre-
processing phase, namely BPVPre and the BPV pair generation phase BPVGen.

The pre-processing phase computes N pairs of the form (αi , βi )whereαi ←r Z
∗
n and

βi ← αi
u mod n for i = 1, . . . , N and stores them in a table. Whenever a new pair

(x, X) is required to be computed online, the pair generation phase randomly chooses

� out of N pairs and computes the new pair as follows: (x, X) ← (
�∏

j=1
α j ,

�∏

j=1
β j ).

Thus RSAPuz does not perform any computationally intensive operation online.
Though the puzzle verification requires only fewmodularmultiplications, it works

only for the fixed difficulty level. For changing one difficulty level to the other, the
puzzle scheme needs to run the computationally demanding pre-computation again.
That is, in the pre-computation phase (as seen in Fig. 2), the server first selects the
difficulty parameter R of length Q, computes u ← d − (2Q mod φ(n)) and then
runs the BPV pre-processing step with inputs (u, n, N ) to obtain N pairs (αi , βi ).

Hence the server has to run the pre-computation phase every time the difficulty needs
to be changed.

All the modular exponentiation-based puzzles in the related literature add compu-
tational burden, either offline (e.g., precomputation in Fig. 2) or online (e.g., solution
verification in Fig. 1), to support change of difficulty. In the following section, we
overcome the limitations in the above puzzle schemes by proposing a new modular
exponentiation-based client puzzle which is as fast as RSAPuz and adds no cost to
support variable difficulty. We then analyze its security properties.



Improved Cryptographic Puzzle Based on Modular Exponentiation 113

Client (C) Server (S)

Pre-Computation
1. (n, p, q) ← GenMod(1k)
2. d ← 3−1 mod φ(n)
3. Set the difficulty level Q.
4. u ← d − (2Q mod φ(n))
5. τ = ((αi, βi))N

i=1 ← BPVPre(u, n, N)
6. ρ ←r {0, 1}k

7. s ← (ρ, d, φ(n), τ)
8. params ← (Q, n)

1. random NC
NC−−−−−−−−−−−−−→ Puzzle Generation

1. (x, X) ← BPVGen(n, �, τ)
2. NS ←r {0, 1}k

3. Z ← Hρ(NC , NS , IPC , IDS , x, Q)

Finding Solution
NC , puz←−−−−−−−−−−−−− 4. puz ← (n, x, NS , Q, Z)

1. y ← x2Q mod n

2. soln ← y
NC , puz, soln−−−−−−−−−−−−−→ Puzzle Authentication

1. Verify Z
?= Hρ(NC , NS , IPC , IDS , x, Q)

Solution Verification

1. Verify (X · soln)3
?≡ x mod n

Fig. 2 The RSAPuz Scheme [18]

3 The Proposed Puzzle Scheme

Now we propose an efficient puzzle scheme requiring only few modular multiplica-
tions for puzzle generation and solution verification. Unlike in the existing puzzle
schemes, our puzzle achieves both efficiency and the security properties such as
unforgeability, puzzle difficulty, deterministic, non-parallelizability, and finer gran-
ularity. Our scheme uses all the algorithms used by RSAPuz in Fig. 2.

3.1 Definitions

We begin by defining an algorithm to generate a modulus n = pq similar to the
generation of RSA modulus as below:

Definition 1 (Generating Modulus n) For a security parameter k, the algorithm to
generate a modulus n is a probabilistic polynomial time algorithm GenMod which
accepts the input 1k and produces (n, p, q) as output such that n = pq where p and
q are k-bit primes.
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Like [18], our puzzle requires a server to generate a pair (x, X) for each puzzle
which involves modular exponentiation. To avoid this exponentiation cost, we use
the (BPV)technique proposed by Boyko et al. [5] which requires few modular multi-
plications and pre-computed values to generate the pairs of the form (xi , Xi ) where
Xi = xu

i mod n for some predefined exponent u.

Definition 2 (BPV Technique) Suppose that N ≥ � ≥ 1 for the parameters N and �.

Let n ← GenMod(1k) be an RSA modulus and u be an element in Zφ(n) of length
m. The BPV technique has the following two phases:

• BPVPre(u, n, N ): This pre-processing algorithm run once, generates N random
integers α1, α2, . . . , αN ←r Z

∗
n and computes βi ← αi

u mod n for each i . A
table τ ← ((αi , βi ))

N
i=1 consisting of pairs (αi , βi ) is finally returned.

• BPVGen(n, �, τ ):Whenever a pair (x, X mod n) is needed, the algorithmchooses
a random set S ⊆r {1, . . . , N } of size � and computes x ← ∏

j∈S α j mod n. If
x = 0, then the algorithm stops and generates S again. Else, it computes X ←∏

j∈S β j mod n and return (x, X). The indices S and the corresponding pairs
((α j , β j )) j∈S are kept secret.

Security Analysis of BPV Technique. The results by Boyko and Goldwasser [4] and
Shparlinski [20] show that the value x generated using the BPV technique are statis-
tically close to the uniform distribution. In particular, the following theorem shows
that with overwhelming probability on the choice of αi ’s, the distribution of x is
statistically close to the uniform distribution of a randomly chosen x ′ ∈ Z

∗
n .

Theorem 1 ([4], Chap.2) If α1, . . . , αN are chosen independently and uniformly
from Z

∗
n and if x = ∏

j∈S α j mod n is computed from a random set S ⊆ {1, . . . N }
of � elements, then the statistical distance between the computed x and a randomly

chosen x ′ ∈ Z
∗
n is bounded by 2

− 1
2

(
log (N

� )+1
)

. That is,

∣
∣
∣
∣
∣
∣
Pr

⎛

⎝
∏

j∈S

α j = x mod n

⎞

⎠ − 1

φ(n)

∣
∣
∣
∣
∣
∣
≤ 2

− 1
2

(
log (N

� )+1
)

.

BPV Metrics. For defending against DoS attacks, the difficulty level Q can be set
between 0 and 225 operations. In [18] it is recommended to select N and � such that(N

�

)
> 240. Instead of choosing N = 512 and � = 6 for the BPV generator as per

Boyko et al. [4, 5], we can choose N = 2500 and � = 4 so as to reduce the number of
online modular multiplications performed during the BPV pair generation process.
We refer to [18] for more details about the choices of N and � in a DoS scenario.

Making BPV pair generation process offline. At ESORICS 2014, Wang et al.
[23] proposed that the BPV pair generation process can be executed offline. That
is, the pairs generated during the BPV pre process BPVPre(u, n, N ) are stored in
the static table (ST) and the pairs generated during the BPV pair generation process
BPVGen(n, �, τ ) are stored in the dynamic table (DT). Whenever a BPV pair is

http://dx.doi.org/10.1007/978-81-322-2452-5_2
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required during puzzle generation, an entry from DT is selected and the table is
updated with another BPV pair in idle time. The use of dynamic table allows us to
completely avoid the number of modular multiplication computations required for
the BPV pair generation process and thus make our puzzle more efficient.

3.2 The Construction

Our client puzzle illustrated in Fig. 3 is executed as a series of message exchanges
between a client and a DoS defending server. The server generates a puzzle instance
using BPV pairs computed offline and verifies the puzzle solution sent by the client
as follows:

Client (C) Server (S)

Off-line Phase
Setup(1k)
1. (n, p, q) ← GenMod(1k)
2. d ← 3−1 mod φ(n)
3. Select u such that |u| ≥ k.

4. τ = ((αi, βi))N
i=1 ← BPVPre(u, n, N)

5. Set the difficulty level Q.

6. K ← d − ( 2Q
u mod φ(n))

7. ρ ←r {0, 1}k

8. s ← (ρ, d, φ(n), τ)
9. params ← (Q, n)

On-line Phase

1. random NC
NC−−−−−−−−−−−−−→ GenPuz(s, Q, NC)

1. (x, X) ← BPVGen(n, �, τ)
2. NS ←r {0, 1}k

3. Z ← Hρ(NC , NS , IPC , IDS , x, X, Q)
FindSoln(puz, t) puz←−−−−−−−−−−−−− 4. puz ← (n, x, X, NS , Q, Z)

1. y ← x2Q mod n
2. Y ← XK mod n

3. soln ← (y, Y )
NC , puz, soln−−−−−−−−−−−−−→ VerAuth(s, puz)

1. Verify Z
?= Hρ(NC , NS , IPC , IDS , x, X, Q)

VerSoln(s, puz, soln)

1. Verify (y · Y )3
?≡ X mod n

Fig. 3 Our modular exponentiation-based puzzle with variable difficulty
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• Pre- computation. In the pre-computation phase, the server generates (n, p, Q)

using the modulus generation algorithm and generates d as the inverse of 3 mod
φ(n). Then the server runs the BPVPre phase by selecting N and u such that
|u| ≥ k. Unlike [18], our algorithm requires to run the BPVPre phase (to obtain
N pairs of (αi , βi ) ) only once as it does not depend on the difficulty level Q.

For a client puzzle to be effective against resource exhaustion-based DoS attacks,
generation of puzzles and verification of their solutions should be very efficient for
the busy server as can be seen in our scheme described below:

• Puzzle generation (GenPuz). The server has to spend its significant compu-
tational resource for generating the puzzle through BPV pair generation BPVGen
process which requires 2(�− 1) modular multiplications. That is, it requires �− 1
modular multiplications to compute x and another � − 1 modular multiplications
to compute X . The server runs pseudo-random function Hρ to compute the puzzle-
authentication tag Z after generating a nonce Ns at random. Note that � could be
set between 4 and 16 so that the puzzle requires only 8 modular multiplications
for � = 4 [4, 18].

• Puzzle authenticity verification (VerAuth). Verifying that the puzzle is
originated from the server can be done using the pseudo-random function Hρ

again and comparing the result with the received Z .
• Puzzle verification (VerSoln). The puzzle solution is verified by performing
only 3 modular multiplications.

Observe that our puzzle scheme does not require the server perform any modular
exponentiation either to generate the puzzle or to verify its solution. On the other
hand, the client has to perform modular exponentiations to find the solution to the
puzzle as follows:

• Puzzle solution (FindSoln). After receiving the puzzle from the server, the
client computes the puzzle solution in the form of two modular exponentiations
x2

Q
mod n and x K mod n. The client can opt either to factor n or to perform

repeated squarings to solve the puzzle. Since factoring is hard, the best knowm
method for the client to find the solution is to implement the square and multi-
ply algorithm and perform repeated squarings, which is believed to be a highly
sequential process [10, 12, 19]. Hence the client will be performing exactly Q
sequential modular multiplications to find x2

Q
mod n and O(log K ) sequential

modular multiplications to find x K mod n, and hence the puzzle has deterministic
solving time of Q repeated squarings and non-parallelizability properties.

3.3 Security Analysis

Client puzzleswere analyzed in various securitymodels proposed in [6, 7, 21]. In this
section, we analyze our puzzle scheme using difficulty notions such as unforgeability
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and difficulty proposed by Chen et al. [7] and prove that our puzzle is unforgeable
and difficult. We refer [7] for a more formal treatment of these security difficulty
notions.

Unforgeability. In our puzzle scheme, we use a pseudo-random function Hρ in puz-
zle generation to generate Z . Thus showing that our puzzle meets the unforgeability
notion is striaghforward following the same argument in [18] if Hρ is a secure pseudo-
random function. Hence we omit the unforgeability proof due to space constraints.

Difficulty. For proving the difficulty of our puzzle we again adapt the approach from
[18] and show that our puzzle satisfies the difficulty notion of Chen et al. model as
long as the KCPuz in Sect. 2 is difficult. In particular we relate the security of our
puzzle to that of KCPuz with R = 2Q in Fig. 1. Note that our puzzle can be seen
as the result of applying the precomputation approach in RSAPuz to KCPuz. The
difficulty of our puzzle is proved in the following theorem.

Theorem 2 Assume that k is a security parameter and Q is a difficulty parameter.
If KCPuz with a modulus generation algorithm GenMod is εk,Q(t)-difficult, then
our puzzle, say puz, from Fig.3 is ε′

k,Q(t)-difficult for all probabilistic polynomial
time A running in time at most t , where

ε′
k,Q(t) = 2 · εk,Q (t + (qC + 1) (2(� − 1)TMul) + c) .

Here, qC is the total number of CreatePuzSoln queries issued in the experiment
and TMul is the time complexity for computing a multiplication modulo n, and c is a
constant.

Proof We prove the theorem using the game hopping technique. Assume thatA is a
probabilistic algorithm running in time t and wins the puzzle difficulty experiment
of puz. Using A, we construct an algorithm B that solves KCPuz easily. Let the
event Ei be such that A wins in game Gi .

Game G0. Let G0 be the original difficulty game ExpDiff
A,puz(k) defined as follows:

1. The challenger runs theSetup algorithm togenerate s ← (ρ, d, φ(n), (αi , βi )
N
i=1)

and params ← (Q, n). The challenger submits the parameters params to A
and keeps s.

2. Now, the challenger answers the CreatePuzSoln(NC ) query issued by A as
follows:

• The challenger runs the BPV pair generator BPVGen to obtain a pair (x, X)

and computes Z , y and Y as per the protocol in Fig. 3.
• The challenger submits (puz, soln) ← ((NS, Z , x, X), (y, Y )) to A.

3. At some time during the game, A is allowed to issue the Test(N∗
C ) query to the

challenger. The challenger answers the query with puz∗ by generating a puzzle
puz∗ = (N∗

S , Z∗, x∗, X∗) using GenPuz(s, Q, NC∗) algorithm. The A may
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continue to ask CreatePuzSoln(NC ) queries even after issuing the test query
Test(N∗

C ).
4. A outputs a valid solution soln∗ = (y∗, Y ∗).
5. The challenger outputs 1 if VerSoln(puz∗, soln∗) = true, otherwise the chal-

lenger outputs 0.

Then
Pr

(
ExpDiff

A,puz(k) = 1
)

= Pr(E0) . (1)

Game G1. The difference between Game G1 and Game G0 is that the KCPuz chal-
lenger is used to answer the CreatePuzSoln queries issued by A and the KCPuz
challenge is inserted in response to the Test query. Note that we assume that R = 2Q

in KCPuz shown in Fig. 1 in order to be compatible with our puzzle scheme puz.
The game is defined as folows:

1. The parameters params ← (Q, n) are obtained from the KCPuz challenger.
2. Initiate the adversary A with params as input.

The adversary is allowed oracle access toCreatePuzSoln(·) and Test(·) oracles.
That is, B interacts with KCPuz challenger and the adversary A individually. B
acts as a puz challenger for A. Whenever A issues CreatePuzSoln queries, B
simply forwards the queries toKCPuz challenger and returns whatever it receives
fromKCPuz challengerwithminormodifications toA.Weexplain the interaction
between B and KCPuz and between B and A in detail below:

• CreatePuzSoln(str): WheneverA issues CreatePuzSoln(str) query, our
challenger B forwards the same CreatePuzSoln query to the KCPuz chal-
lenger. The KCPuz challenger sends (puz = (X, R = 2Q, K , Z), soln =
(X2Q

, X K )) toB.Upon receiving a pair of the form (puz, soln) our challenger
B acts as follows:
– Assigns the puzzle values x ← X, X1 ← Xu, for a fixed u of its choice
and the solution values y ← X2Q

and Y ← (X K )u . Note that the value
X received each time from KCPuz challenger is an output of the HMAC
function, whereas in puz, (x, X) is an output of the BPV generator.

– Return (puz, soln) = ((x, X1), (y, Y )) to A.
• Test(str∗): When A issues a Test(str∗) query, B simply passes the same
query as its Test query to the KCPuz challenger that returns the challenge
puzzle puz∗ = (X∗, R∗ = 2Q, K ∗, Z∗), where X∗ is an output of HMAC.
Then B sets x∗ ← X∗, X∗

1 ← (X∗)u and sends the target puzzle puz∗ =
(x∗, X∗

1, R∗ = 2Q, K ∗, Z∗) to A.

3. A may continue its CreatePuzSoln queries and B answers them as explained
above.

4. When A outputs a potential solution soln∗ = (y∗ = (X∗)2Q
, Y ∗ = ((X∗)u)K ),

B omits Y ∗, computes (X∗)K and outputs its soln∗ as (y∗, (X∗)K ).



Improved Cryptographic Puzzle Based on Modular Exponentiation 119

We say that if theAwins gameG1, then the challengerBwins the puzzle difficulty
experiment of KCPuz. Hence,

Pr(E2) ≤ AdvDiff
B,KCPuz,Q(k) ≤ εk,Q(t) . (2)

where B runs in time t (B) = t (A) + (qC + 1)
(
TExp

)
where qC is the total number

of CreatePuzSoln queries issued by A in G0, and TExp is the total time needed to
compute an exponentiation modulo n.

In the game G0, a puzzle is of the form (NS, Z , x, X, R = 2Q, K ) where (x, X)

is an output from the BPV generator BPVGen whereas in G1, x is an output of
HMAC run by the KCPuz challenger and X = xu is uniform at random.

Hence by Theorem 1, we get

|Pr(E0) − Pr(E1)| ≤ 2
− 1

2

(
log (N

� )+1
)

≤ εk,Q(t), (3)

where the second inequality is due to the appropriate choices of N and �.

Game G2. The messages generated by the challenger in G2 are identical to those
in G1 except for the following modification: The value X which is returned during
the Test query: in G1 it is a random integer from [1, n] generated by the challenger
whereas in G2 it is the output of KCPuz challenger. This change is indistinguishable
as we basically replace one random x with another. Hence

|Pr(E1) − Pr(E2)| = 0 . (4)

Combining equations (1) through (3) yields the desired result. �

4 Conclusion

In this paper, we presented an efficient non-parallelizable puzzle based on modular
exponentiation. Our puzzle can be viewed as a combination of two previously known
puzzles, namely KCPuz and RSAPuz. However, our puzzle inherits all the advan-
tages of these two puzzles and eludes their disadvantages. Our puzzle is the first
modular exponentiation-based puzzle without computational burden, either offline
(e.g., precomputation in RSAPuz) or online (e.g., solution verification in KCPuz),
to support change of difficulty. Thus our puzzle supports scalability in an efficient
manner, making it more practical in detering attacks like denial-of-service attacks.
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