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Abstract

Despite the rapid adoption of Voice over IP

(VoIP), its security implications are not yet fully un-

derstood. Since VoIP calls may traverse untrusted

networks, packets should be encrypted to ensure

confidentiality. However, we show that when the

audio is encoded using variable bit rate codecs, the

lengths of encrypted VoIP packets can be used to

identify the phrases spoken within a call. Our re-

sults indicate that a passive observer can identify

phrases from a standard speech corpus within en-

crypted calls with an average accuracy of 50%, and

with accuracy greater than 90% for some phrases.

Clearly, such an attack calls into question the effi-

cacy of current VoIP encryption standards. In ad-

dition, we examine the impact of various features of

the underlying audio on our performance and dis-

cuss methods for mitigation.

1 Introduction

Over the past few years, Voice over IP (VoIP)

has become an attractive alternative to more tradi-

tional forms of telephony. Naturally, with its in-

creasing popularity in daily communications, re-

searchers are continually exploring ways to im-

prove both the efficiency and security of this new

communication technology. Unfortunately, while

it is well understood that VoIP packets must be en-

crypted to ensure confidentiality [19], it has been

shown that simply encrypting packets may not be

sufficient from a privacy standpoint. For instance,

we recently showed that when VoIP packets are first

compressed with variable bit rate (VBR) encod-

ing schemes to save bandwidth, and then encrypted

with a length preserving stream cipher to ensure

confidentiality, it is possible to determine the lan-

guage spoken in the encrypted conversation [41].

As surprising as these findings may be, one

might argue that learning the language of the

speaker (e.g., Arabic) only affects privacy in a

marginal way. If both endpoints of a VoIP call

are known (for example, Mexico City and Madrid),

then one might correctly conclude that the language

of the conversation is Spanish, without performing

any analysis of the traffic. In this work we show

that the information leaked from the combination

of using VBR and length preserving encryption is

indeed far worse than previously thought. Specifi-

cally, we demonstrate that it is possible to spot ar-

bitrary phrases of interest within the encrypted con-

versation. Our techniques achieve far greater preci-

sion than one would expect, thereby rendering the

encryption ineffective.

At a high level, the success of our technique

stems from exploiting the correlation between the

most basic building blocks of speech—namely,

phonemes—and the length of the packets that a
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VoIP codec outputs when presented with these

phonemes. Intuitively, to search for a word or

phrase, we first build a model by decomposing

the target phrase into its most likely constituent

phonemes, and then further decomposing those

phonemes into the most likely packet lengths.

Next, given a series of packet lengths that corre-

spond to an encrypted VoIP conversation, we sim-

ply examine the output stream for a subsequence

of packet lengths that match our model. Of course,

speech naturally varies for any number of reasons,

and so two instances of the same word will not

necessarily be encoded the same way. Therefore,

to overcome this, we make use of profile hidden

Markov models [7] to build a speaker-independent

model of the speech we are interested in finding.

Using these models we are then able to determine

when a series of packets is similar to what we

would expect given a set of phonemes.

As we show later, the approach we explore is

accurate, even in the face of very little information.

In this work we assume that an attacker only has

access to (1) the ciphertext she wishes to search,

(2) knowledge of the spoken language of the con-

versation (e.g., using the techniques in [41] she

may know this is a Spanish conversation), and (3)

statistics defining what phonemes are mapped to

what packet lengths by the VoIP codec. We ar-

gue that even the last assumption is realistic, as this

information can be readily gathered by an adver-

sary who can use the codec as a “black box” to

compress prerecorded speech. For example, in the

case of English, there are relatively few phonemes

and therefore it is plausible to assume that the at-

tacker can find sufficiently many instances of each

phoneme to generate realistic models. She can then

use these phonemes to construct models even for

words she has not seen before.

Our results show that an eavesdropper who has

access to neither recordings of the speaker’s voice

nor even a single utterance of the target phrase, can

identify instances of the phrase with average accu-

racy of 50%. In some cases, accuracy can exceed

90%. Clearly, any system that is susceptible to such

attacks provides only a false sense of security to

its users. We evaluate the effectiveness of our at-

tack under a variety of conditions to understand its

real-world implications. Additionally, we explore

methods to mitigate the information leaked from

encrypted VoIP.

The remainder of the paper is organized as fol-

lows. In Section 2 we overview how VBR encoding

works in VoIP and provide evidence of why we are

able to infer phonemes from packet lengths. In Sec-

tion 3 we discuss the requisite background for un-

derstanding profile HMMs, and how our search al-

gorithm works. Section 4 presents our experimen-

tal methodology and results, including an analysis

of how one might thwart our attack. We review re-

lated work in Section 5 and conclude in Section 6.

2 Background

In what follows, we briefly review the principles

of speech coding and speech recognition that are

most relevant to Voice over IP and to our attack.

In VoIP, connection setup and the transmission of

voice data are typically performed using separate

connections. The control channel operates using

a standard application-layer protocol like the Ses-

sion Initiation Protocol (SIP) [24], the Extensible

Messaging and Presence Protocol (XMPP) [25], or

an application-specific control channel like Skype

[30]. The voice data is typically transmitted as

a Real-time Transport protocol (RTP) [28] stream

over UDP, carrying a version of the audio that has

been compressed using a special-purpose speech

codec such as GSM [11], G.728 [34], or several

others.

Generally speaking, the codec takes as input the

audio stream from the user, which is typically sam-

pled at either 8000 or 16000 samples per second

(Hz). At some fixed interval, the codec takes the

n most recent samples from the input, and com-

presses them into a packet for efficient transmission

across the network. To achieve the low latency re-

quired for real-time performance, the length of the

interval between packets is typically fixed between

10 and 50ms, with 20ms being the common case.

Thus for a 16kHz audio source, we have n = 320
samples per packet, or 160 samples per packet for

the 8kHz case.
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Figure 1. Basic CELP encoder

Many common voice codecs are based on a tech-

nique called code-excited linear prediction (CELP)

[27] (Figure 1). For each packet, a CELP encoder

simply performs a brute-force search over the en-

tries in a codebook of audio vectors to output the

one that most closely reproduces the original audio.

The quality of the compressed sound is therefore

determined by the number of entries in the code-

book. The index of the best-fitting codebook entry,

together with the linear predictive coefficients and

the gain, make up the payload of a CELP packet.

The larger code books used for higher-quality en-

codings require more bits to index, resulting in

higher bit rates and therefore larger packets.

In some CELP variants, such as QCELP [9],

Speex’s [35] variable bit rate mode, or the approach

advocated by Zhang et al. [42], the encoder adap-

tively chooses the bit rate for each packet in order

to achieve a good balance of audio quality and net-

work bandwidth. This approach is appealing be-

cause the decrease in data volume may be substan-

tial, with little or no loss in quality. In a two-way

call, each participant is idle roughly 63% of the

time [4], so the savings may be substantial. Unfor-

tunately, this approach can also cause substantial

leakage of information in encrypted VoIP calls be-

cause, in the standard specification for Secure RTP

(SRTP) [2], the cryptographic layer does not pad or

otherwise alter the size of the original RTP payload.

Intuitively, the sizes of CELP packets leak in-

formation because the choice of bit rate is largely

based on the audio encoded in the packet’s payload.

For example, the variable bit-rate Speex codec en-

codes vowel sounds at higher bit rates than frica-

tive sounds like “f” or “s”. In phonetic models of

speech, sounds are broken down into several differ-

ent categories, including the aforementioned vow-

els and fricatives, as well as stops like “b” or “d”,

and affricatives like “ch”. Each of these canonical

sounds is called a phoneme, and the pronunciation

for each word in the language can then be given as

a sequence of phonemes. While there is no con-

sensus on the exact number of phonemes in spo-

ken English, most in the speech community put the

number between 40 and 60.
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Figure 2. Distribution of bit rates used

to encode four phonemes with Speex

To demonstrate the relationship between bit rate

and phonemes, we encoded several recordings from

the TIMIT [10] corpus of phonetically-rich English

speech using Speex in wideband variable bit rate

mode, and observed the bit rate used to encode each

phoneme. The probabilities for 8 of the 21 possible

bit rates are shown for a handful of phonemes in

Figure 2. As expected, we see that the two vowel

sounds, “aa” and “aw”, are typically encoded at

significantly higher bit rates than the fricative “f”

or the consonant “k”. Moreover, large differences

in the frequencies of certain bit rates (namely, 16.6,
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Figure 3. Packets for “artificial”
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Figure 4. Packets for “intelligence”

27.8, and 34.2 kbps), can be used to distinguish aa

from aw and f from k.

In fact, it is these differences in bit rate for

the phonemes that make recognizing words and

phrases in encrypted traffic possible. To illustrate

the patterns that occur in the stream of packet sizes

when a certain word is spoken, we examined the

sequences of packets generated by encoding sev-

eral utterances of the words “artificial” and “intel-

ligence” from the TIMIT corpus [10]. We repre-

sent the packets for each word visually in Figures 3

and 4 as a data image—a grid with bit rate on the

y-axis and position in the sequence on the x-axis.

Starting with a plain white background, we darken

the cell at position (x, y) each time we observe a

packet encoded at bit rate y and position x for the

given word. In both graphs, we see several dark

gray or black grid cells where the same packet size

is consistently produced across different utterances

of the word, and in fact, these dark spots are closely

related to the phonemes in the two words. In Fig-

ure 3, the bit rate in the 2nd - 5th packets (the “a”

in artificial) is usually quite high (35.8kbps), as we

would expect for a vowel sound. Then, in packets

12 - 14 and 20 - 22, we see much lower bit rates for

the fricative “f” and affricative “sh”. Similar trends

are visible in Figure 4; for example, the “t” sound

maps consistently to 24.6 kbps in both words.

In the next section we detail how an eavesdrop-

per who knows the phonetic transcription of her tar-

get phrase can compute the expected sequence of

packet sizes that will be transmitted when a VoIP

caller speaks the phrase. We also discuss how she

can use this sequence to recognize the phrase when

is spoken in a conversation.

3 Spotting Phrases with Profile HMMs

Our goal in this work is to recognize spoken

words or phrases in encrypted VoIP conversations,

using only minimal knowledge of what the actual

audio content of the phrase should sound like. In

fact, the techniques we develop here do not require

knowledge of the identity of the speaker or any

examples of the audio produced by speaking the

target word or phrase. However, for ease of ex-

position, we begin the discussion of our machine

learning techniques by first addressing a much

easier scenario, where the attacker does have ac-

cess to several recordings of the target phrase be-

ing spoken, though not necessarily by the target

speaker. Later, we show how these techniques can

be adapted to handle the more challenging case

where the attacker may have no recordings of the

words in the phrase she wishes to detect.
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3.1 How to recognize a previously
seen word or phrase

If we assume that the same sequence of packet

sizes is produced each time a given word is spoken,

then the problem of identifying instances of that

word can be reduced to a substring matching prob-

lem. However, human speech is known to exhibit a

high degree of variability, and the adaptive com-

pression performed by the codec may contribute

additional variance to the resulting stream of packet

sizes. To handle this variation, we can instead ap-

ply matching algorithms from the speech recogni-

tion and bioinformatics communities. In both of

these areas, techniques based on hidden Markov

models [20] have proven to be also be extremely

useful [40, 7]—especially when the training data

itself may exhibit high variability.

In particular, the common bioinformatics prob-

lem of searching a protein database for fragments

of known protein families is similar in many ways

to searching a stream of packet sizes for instances

of a word or phrase. Proteins are made up of 20 dif-

ferent amino acids; in wideband mode, the Speex

codec produces 21 distinct packet sizes. There

may be significant variation between proteins in the

same family or between different utterances of the

same phrase. Therefore, in this paper, we adapt

profile hidden Markov model techniques [8], which

were originally developed for performing multi-

ple sequence alignment of protein families and for

searching protein databases [16], to the task of find-

ing words and phrases in encrypted VoIP. The gen-

eral outline of our strategy is as follows: (1) build

a profile HMM for the target phrase; (2) transform

the profile HMM into a model suitable for perform-

ing searches on packet sequences; and (3) apply

Viterbi decoding [37] on the stream of packets to

find subsequences of packets that match the profile.

We elaborate on each of these steps below.

Building a Profile HMM A profile HMM [7]

(Figure 5) consists of three interconnected chains

of states, which describe the expected packet

lengths at each position in the sequence of en-

crypted VoIP packets for a given phrase. The Match

Figure 5. Profile HMM [7]

states, shown in Figure 5 as squares, represent the

expected distribution of packet sizes at each posi-

tion in the sequence. Insert states, shown as dia-

monds, and Delete states, shown as circles, allow

for variations from the typical sequence. The Insert

states emit packets according to a uniform distribu-

tion or some other distribution that represents the

overall frequencies of packet sizes in VoIP streams,

and thus they allow for additional packets to be “in-

serted” in the expected sequence. Delete states are

silent, meaning that they simply transition to the

next state without emitting any packets; doing so

allows for packets that are normally present to be

omitted from the sequence. Initially, the Match

states’ emission probabilities are set to a uniform

distribution over packet sizes, and the transition

probabilities in the model are set so as to make the

Match states the most likely state in each position.

Given an initial model and a set of example se-

quences of packets for the target phrase, there is

a well-known Expectation-Maximization [5] algo-

rithm due to Baum and Welch [3] that uses dynamic

programming to iteratively improve the model’s pa-

rameters to better represent the given training se-

quences. This algorithm is guaranteed to find a

locally optimal set of parameters that maximizes

the likelihood of the model given the training se-

quences. Unfortunately, parameters chosen via this

method are not guaranteed to be globally optimal,

and often the difference between local optima and

the global optimum is substantial. Therefore, we

apply simulated annealing [15] in the Baum-Welch

algorithm to decrease the risk of not progressing

out of a local optimum. After this algorithm has

converged, we apply Viterbi training [38] to the re-
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Figure 6. Search HMM [7]

sulting model to further refine its parameters for use

in searching streams of packets for the given target

phrase. While this last step is not guaranteed to find

an optimal set of parameters, it does maximize the

contribution of the most likely sequences of states

to the model’s likelihood, and it is widely used in

bioinformatics applications for training the models

used in searching protein databases [7].

Searching with a Profile HMM In an encrypted

VoIP call, packets for the target phrase will be sur-

rounded by packets that comprise the rest of the

conversation. To isolate the target phrase from its

surroundings, we add 5 new states to the standard

profile HMM to create a search HMM (Figure 6).

The most important new state is the Random state,

shown in Figure 6 as a diamond because it, like the

Insert states, emits packets according to a uniform

or other “random” distribution. When we search

a stream of packets, the Random state will match

packets that are not part of the phrase of interest,

and the states in the profile part of the model will

match the packets in the target phrase. Two new

silent states, called the Profile Start and Profile End

states, are shown in Figure 6 as circles. They al-

low for transitions between the Random state and

the profile part of the model. Because we want

to find only instances of the entire target phrase,

transitions from the Profile Start state are weighted

such that the transition to the Match state in the first

position is much more likely than the others.

To find instances of our target phrase in the se-

quence of packets from a VoIP conversation, we use

the Viterbi algorithm [37] to find the most likely

sequence of states in the model to explain the ob-

served packet sizes. Each subsequence of states

which belong to the profile part of the model is

called a hit, and is potentially an instance of the tar-

get phrase. To evaluate the goodness of each hit, we

compare the likelihood of the packet lengths given

the profile model, versus their likelihood under the

overall distribution from the Random state. More

formally, we calculate the log odds score for a hit

consisting of packet lengths ℓi, ...,ℓ j , as

scorei,j = log
P (ℓi, ...,ℓ j |Profile)

P (ℓi, ...,ℓ j |Random)
(1)

Intuitively, this score tells us how well the pack-

ets match our model, and we discard any hit whose

score falls below a given threshold. We return to

how to set these thresholds in Section 4.

3.2 Recognizing phrases without
example utterances

In the previous section, we made the simplify-

ing assumption that the adversary could build her

models using several audio recordings of each word

or phrase she wanted to detect. However, in prac-

tice, this assumption is far from realistic. Because

of the distribution of words in natural language,

even in very large corpora, there will be many

words that occur only a few times, or not at all.

The speech recognition community has developed

efficient techniques for constructing word models

without the need for labeled training examples of

every word. In this section, we show how simi-

lar strategies can be applied to our task of spotting

words in encrypted VoIP, even when the eavesdrop-

per has never actually heard any of the words in the

target phrase.

The techniques in this section rest on the idea

that all spoken words in a language are formed by

concatenating phonemes, much like words in writ-

ten language are formed by making strings of let-

ters. In a phonetic acoustic model of speech (c.f.,
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Chapter 3 of [12]), small, profile-like HMMs are

trained to represent the sounds that correspond to

each phoneme. Then, to construct a word HMM,

the HMMs for the phonemes used to pronounce

the word are concatenated to form a long, profile-

like chain of states that represents the sequence of

sounds in the word. Similarly, phrase HMMs are

constructed by concatenating word models. Typi-

cally, the sequence of phonemes used to pronounce

each word is taken from a phonetic pronunciation

dictionary such as [14], although they may also be

taken from the pronunciatons given in a standard

English dictionary. Because these pronunciation

dictionaries are relatively easy to create and can

be stored as plain text files, it is much easier and

cheaper to obtain a large-vocabulary pronunciation

dictionary than to obtain a corpus of speech record-

ings for the same words.

Building phrase models from phonemes One

straightforward method for building our word and

phrase models from phonemes would be to train

a profile HMM for the packets produced by each

phoneme, and then concatenate phoneme models in

the proper order to construct word HMMs. Phrase

HMMs could be similarly constructed by concate-

nating word HMMs. The main shortcoming of this

technique is that words often have several different

possible pronunciations. These differences could

be attributed to variation between dialects or be-

tween individual speakers, or because of the con-

text of the surrounding words.

Instead, to build our models, we use a heuris-

tic that simultaneously retains the simplicity and

efficiency of the basic profile HMM topology and

the techniques outlined in the previous section, yet

captures a wide range of pronunciations for each

word. This novel approach affords us great flex-

ibility in finding an essentially unlimited number

of phrases. We use a phonetic pronunciation dic-

tionary, together with a library of examples of the

packet sequences that correspond to each phoneme,

to generate a synthetic training set for the phrase in

question. Then, using this synthetic training set in

place of actual instances of the phrase, we can train

a profile HMM and use it to search VoIP conversa-

tions just as described in Section 3.1.

To generate one synthetic sequence of packets

for a given phrase, we begin by splitting the phrase

into a list of one or more words. For each word

in the list, we replace it with the list of phonemes

taken from a randomly-selected pronunciation of

the word from our phonetic pronunciation dictio-

nary. For example, given the phrase “the bike”, we

look up “the” and “bike” in our pronunciation dic-

tionary and get the phonemes “dh ah” and “b ay k”,

giving us a sequence of 5 phonemes: “dh, ah, b, ay,

k”. Then, for each of the phonemes in the resulting

list, we replace it with one example sequence of

packets sizes taken from our library for the given

phoneme.

Improved Phonetic Models Because the sounds

produced in a phoneme can vary significantly de-

pending on the phonemes that come immediately

before and immediately after, it is essential that we

estimate packet distributions based on the diphones

(pairs of consecutive phonemes) or triphones (three

consecutive phonemes), rather than the individual

phonemes in the phrase. To do so, we start by

grouping the phonemes in the phrase into groups of

three, so that the triphones overlap by one phoneme

on each end. So, for example, from our sequence

of phonemes

dh, ah, b, ay, k

we get the triphones

(dh, ah, b), (b, ay, k)

We then check the resulting list of triphones to

make sure that we have sufficient examples in our

library for each triphone in the list. If the library

contains too few examples of one of the triphones,

we split it into two overlapping diphones. So, in

our example, if we have no examples of the tri-

phone (dh, ah, b), we replace it with the diphones

(dh, ah) and (ah, b), giving us the sequence

(dh, ah), (ah, b), (b, ay, k)

Similarly, we replace any diphones lacking suffi-

cient training data with single phonemes. As this

small example illustrates, this technique allows us
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Figure 7. Overview of training and detection process

to use a better phonetic model, using triphones, for

sequences of phonemes for which we have several

examples in our library, yet allows a great deal of

flexibility for combinations of words or sounds that

we have not seen before. For instance, if the train-

ing corpus in our example does not contain “the

bike”, but it does have examples of people saying

“the” (dh, ah), “a bird” (ah, b, er, d), and “bicam-

eral” (b, ay, k, ae, m, ax, r, ax, l), we can still derive

a good model for the packets that will occur when

a VoIP caller says “the bike”.

Putting it all together To identify a phrase with-

out using any examples of the phrase or any of

its constituent words, we apply this concatenative

synthesis technique to generate a few hundred syn-

thetic training sequences for the phrase. We use

these sequences to train a profile HMM for the

phrase and then search for the phrase in streams

of packets, just as in the previous section. An

overview of the entire training and detection pro-

cess is given in Figure 7.

4 Evaluation

To evaluate our phrase spotting technique, we

focus our efforts on assessing the impact of various

features of the underlying audio on phrase spotting

performance, and examine the ability of an attacker

to detect the presence of phrases in an encrypted

packet stream. In our experiments, we use audio

recordings from the TIMIT continuous speech cor-

pus [10], one of the most widely used corpora in the

speech recognition community. The TIMIT corpus

contains 6,300 phonetically rich English sentences

spoken by a total of 630 people—462 speakers ran-

domly selected by the corpus’ creators as a training

set and the remaining 168 speakers designated as a

test set. Speakers in the data set include males and

females with eight distinct regional dialects from

across the continental United States. Both the test

and training sets include all gender and region com-

binations.

One of the most appealing features of TIMIT for

our evaluation is that it includes time-aligned pho-

netic transcriptions of each sentence, denoting the

start and end of each phoneme. After encoding the

audio in the training set with Speex in wideband

VBR mode, we use these phonetic transcriptions

to build our library of packet sequences that corre-

spond to each phoneme, diphone, and triphone in

the training set.

Experimental Setup To evaluate the effective-

ness of our phrase spotting techniques, we use the

TIMIT training data to build HMMs to search for

122 target sentences. We simulate VoIP conversa-

tions for each of the speakers in the TIMIT test set

by taking two copies of each of the speaker’s sen-

tences, and concatenating all of them in a random

order. We create five of these simulated conversa-

tions for each speaker to minimize any impact of

the sentences’ location in the conversation on the

performance of our algorithms.

We then encode the simulated conversations

with wideband Speex in VBR mode and use the

HMMs to search for instances of each phrase

in the resulting stream of packet lengths. From
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the Viterbi alignment of the packet lengths to the

phrase HMM, we get the subsequence(s) of pack-

ets indicating potential hits for the phrase, with log

odds scores for each. Subsequences with scores

above a given threshold are considered definitive

hits, and each hit is labeled as a true positive only

if it contains all of the words for the given phrase.

Any definitive hit which does not contain all words

in the phrase is considered a false positive.

We adapt standard metrics from the informa-

tion retrieval community to assess the effective-

ness of our approach. Let TPt, FPt, and FNt

be the number of true positives, false positives,

and false negatives achieved when operating with

threshold t. Then, the precision at t is defined as

prect = TPt/(TPt +FPt) and measures the prob-

ability that a reported match is correct. We also

use recall, defined as recallt = TPt/(TPt +FNt),
as the probability that the algorithm will find the

phrase if the phrase is indeed contained within the

ciphertext. Ideally a search algorithm would ex-

hibit precision and recall close to 1.0.

To assess the accuracy of our approaches under

different parameters, we compute recall and preci-

sion over a variety of thresholds. An intuitive way

to derive the threshold for a given model would be

to use the average log odds score (Equation 1) of

the training sequences. However, since the log odds

score is proportional to the length of the phrase, we

cannot directly compare the performance of mod-

els for different phrases at the same log odds score.

Therefore, to compare accuracy between models

for different phrases, we set the threshold for each

model to be some fraction of the model’s log odds

score observed during training . Explicitly, for each

phrase p, let σp be the average log odds score for

the model mp. σp will be proportional to the length

of mp. For a multiplier δ ∈ [0, 2] we set the testing

threshold tp = δ×σp, and compute the average pre-

cision and recall at multiplier δ using TPtp
, FPtp

,

and FNtp
for each phrase p in our testing set. We

can then examine how precision relates to recall by

plotting average precision versus average recall at

each value of δ (see, for example Figures 8–9).

With these comparison metrics at hand, we can

now proceed to analyze the accuracy of our ap-

proach. First, we take an analytical approach and

examine our performance over a range of thresh-

olds to study the impact of the pronunciation dic-

tionary and of noise in the audio channel on our

ability to spot phrases. Then, we assume the view-

point of an attacker and empirically estimate a spe-

cific threshold for each phrase. Finally, we dis-

cuss strategies for mitigating the information leak-

age that enables the attack.
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of pronunciation dictionaries

The Importance of Accurate Pronunciations

In order to build a model for a phrase, we first must

know the phonemes that comprise the phrase. Al-

though TIMIT includes a primitive pronunciation

dictionary, with pronunciations given for each word

in the corpus, the included pronunciations were

originally taken from an old version of Merriam-

Webster’s Pocket Dictionary, and thus may repre-

sent “proper” American English rather than realis-

tic colloquial speech. Therefore, we also use the

phonetic transcriptions for the training sentences to

build up an empirically-derived pronunciation dic-

tionary based on the way the speakers say each

word in the training data. For increased coverage

in our empirical dictionary, we also include pro-

nunciations from the PRONLEX dictionary, which

were derived in a similar fashion from the CALL-

HOME telephone speech corpus [14]. We compare

the accuracy of our search HMM using these two
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pronunciation dictionaries and present the results

in Figure 8.

Clearly, the quality of the pronunciation dictio-

nary is critical to the success of our phrase spot-

ting technique. With the default TIMIT pronun-

ciations, we achieve equal recall and precision at

around 0.28. However, using the more realistic pro-

nunciation dictionary, we simultaneously achieve

recall of 0.50 and precision of 0.51. In other words,

we are able to find, on average, 50% of the in-

stances of the phrases of interest, and when the al-

gorithm indicates a match, there is a 51% chance

that the flagged packets do indeed encode the given

phrase. These results are especially disconcerting

given that the conversation was encrypted in or-

der to prevent an eavesdropper from recovering this

very information. In light of these results, we per-

form the remaining experiments using our the em-

pirically derived pronunciation dictionary.

Robustness to Noise We also evaluate the im-

pact of noise on our ability to identify phrases. For

this test, we add pink noise to the simulated con-

versations in the TIMIT test data. We chose pink

noise, rather than white noise, or any number of

background sounds (metal pots and pans clanging,

a baby crying, etc.), because the energy is logarith-

mically distributed across the range of human hear-

ing. This makes pink noise much more difficult for

the codec’s noise removal algorithm to filter, and

therefore should influence the choice of bit rates in

the packets. Furthermore, the use of such additive

noise generation techniques is common practice for

exploring the impact of noise on speech recognition

methods (e.g., [33, 17, 13]).

We experimented with three additive noise sce-

narios: 90% sound to 10% noise, 75% to 25%, and

50% to 50%. With 10% noise, the recordings sound

as if they were transmitted over a cell phone with

poor reception, and with 50% noise it is almost im-

possible for a human to determine what is being

said. Figure 9 shows the results for these exper-

iments. Notice that with 10% noise, we are still

able to achieve recall of .39 and precision of .40.

Even with 25% noise, we can still achieve recall

and precision of .22 and .23, respectively. These
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Figure 9. Results with noisy data

results show that as long as the quality of the voice

channel is reasonable, the attacker can identify an

alarming number of phrases.

An Attacker’s Point of View Until now, we

studied the success of our techniques across a wide

range of thresholds. An attacker, on the other hand,

would need to pick a single threshold in advance.

Unfortunately for the attacker, picking an optimal

threshold in such cases is a challenging problem.

Therefore, to explore the problem of threshold se-

lection, we discuss a technique to estimate a good

threshold, and the resulting expected performance.

As mentioned earlier, for a phrase p, the aver-

age log odds score σp that is observed during the

training of model mp is roughly indicative of how

well the model will be able to perform in practice.

Loosely speaking, if σp is large, then the model will

exhibit high true positive rates. We use this obser-

vation to our advantage when selecting the attack

threshold tp. That is, we empirically estimate tp
as a linear function of σp, setting tp = δp × σp,

where δp is a multiplier that maximizes the “qual-

ity” of the search algorithm. To complete our task

of selecting a threshold we must then solve two

problems: (1) select a general function that defines

the “quality” of the search algorithm at a specific

threshold; and (2) choose a way to estimate the δp

that maximizes quality.

While we could define the “quality” at thresh-

old t as either recallt or precisiont, neither metric
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is appropriate for this task. Instead, to achieve a

good balance of precision and recall, we define the

quality of a search algorithm at threshold t to be

the difference between the number of true positives

and the number of false positives at t: TPt − FPt.

If the adversary has access to a relatively small

number of recorded phrases, she can build search

HMMs for them and use the performance of these

models to derive a good value of δ for use in set-

ting the thresholds for other phrases that she really

wants to search for. We use leave-out-k cross vali-

dation to estimate her chances of success using the

TIMIT testing data. In each of several iterations,

we select k phrases (p̃1, . . . , p̃k) at random from the

testing set and find the thresholds tp̃1
, . . . , tp̃k

that

maximize the difference in true positives and false

positives for each phrase. We set δp̃i
= tp̃i

/σp̃i
for

each i ∈ [1, k], and set δ to be the average over

δp̃i
. Then, for each phrase p in the remainder of the

test set, we estimate our maximizing threshold for

p to be tp = δ × σp, and calculate the recall and

precision for phrase p at threshold tp.
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Setting k to be 1/4 of our testing set, this tech-

nique achieves mean recall and precision rates of

(.32, .75). Given that our original averages were

(.50, .51), it seems that our estimation technique

is somewhat conservative, selecting thresholds that

are higher than optimal. The values of recall

and precision achieved for each phrase, using our

threshold selection algorithm, are presented in Fig-

ure 10. Each of the points denotes the recall and

precision for one of the 122 phrases in our test set.

Because simple scatter plots often plot many points

on top of one another, we also vary the background

color to indicate the density of the points in each

area of the graph. Dark backgrounds indicate high

density, and light backgrounds indicate areas of low

density. While this algorithm is not optimal, its re-

call is often above 40%, and we can recognize most

of the phrases with precision greater than 80%. We

believe this shows concretely that an attacker with

access to only population statistics and the cipher-

text of a VBR encoded and encrypted VoIP conver-

sation has almost a one in three chance of finding a

phrase of her choice!

Analysis of Results While our approach per-

forms well on average, there are also several

phrases that we can find with great accuracy. Fig-

ure 11 shows precision and recall for four inter-

esting phrases. We exhibited the highest accu-

racy when searching for the phrase “Young children

should avoid exposure to contagious diseases.”.

For this phrase, our technique achieves a precision

of 1.0 and a recall of .99. We also perform well

on the phrase “The fog prevented them from ar-

riving on time.”, achieving .84 precision and .72

recall. These results illustrate the success of our

technique in identifying words and phrases we have

never seen before, as neither occurs in our train-

ing set. Also noteworthy are phrases “She had

your dark suit in greasy wash water all year.” and

“Don’t ask me to carry an oily rag like that.” which

were the only two phrases spoken by every user in

the TIMIT database. We achieve precision/recall

scores of (.90/.82) and (.92/.81), respectively.

Naturally, given that we are searching for

phrases in encrypted audio traffic, identifying

each phrase exactly can be extremely challenging.

Sometimes, when our search model misses an in-

stance of the target phrase, it only misses one or

two of the words at the beginning or at the end of

the phrase. Because our very strict definition of a

true positive excludes such hits, it may underesti-

mate the practical performance of our technique.
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phrases

When we designate hits that contain at least n − 2
of the n words in the phrase as true positives, the

algorithm’s recall and precision improve to .55 and

.53, respectively. Compared to our original, stricter

classification, this represents improvement of 9%

in recall and 4% in precision.

To identify other causes of the differences in ac-

curacy between phrases, we examined several fea-

tures of the phrases, including their length, pho-

netic composition, and the distribution of packet

sizes for the words and phonemes in the phrase. In-

terestingly, we found no statistically significant cor-

relation between recognition accuracy and the fre-

quency of any of the phonemes. Given that TIMIT

was designed as a phonetically rich corpus, we be-

lieve this shows that our technique is robust and

flexible enough to handle the vast majority of words

in spoken English.

According to our analysis, the most important

factors in determining our ability to recognize a

given phrase in the TIMIT data are: (1) the length

of the phrase in packets, and (2) the individual

speakers who spoke the phrase. Short phrases are

difficult to spot reliably because it is much more

likely that short patterns of packets will occur ran-

domly in other speech. Therefore, as the length

of the phrase increases, the number of false posi-

tives from the search HMM decreases and the de-

tector’s precision increases. Our detector achieves

its best results on phrases that are at least 3 seconds

in length.

The most important factor in determining our

detector’s recall was not one which we initially an-

ticipated. It appears that there are some speakers

in the dataset whom we can recognize with great

accuracy, and some with whom we have more diffi-

culty. Our technique for synthesizing training data

for the profile HMM does not seem to accurately

predict the way everyone speaks. To see the vari-

ability in our performance across the 168 speakers

in the test set, we computed the attacker’s true pos-

itive rate for each speaker s in the test set, as the

fraction of utterances from s that our algorithm de-

tects. The median true positive rate for speakers is

63%, and for about 20% of the speakers the true

positive rate is below 50%. When a phrase happens

to be spoken by several users for whom our synthe-

sis techniques do not work well, our true positive

rate for the phrase suffers as well. This impacts

both precision and recall, because the true positive

rate factors strongly in both measures.

Techniques for Mitigation One way to prevent

word spotting would be to pad packets to a com-

mon length, or at least to coarser granularity. To ex-

plore the tradeoff between padding and search ac-

curacy, we encrypted both our training and testing

data sets to multiples of 128, 256 or 512 bits and

applied our approach. The results are presented in

Figure 12. The use of padding is quite encourag-

ing as a mitigation technique, as it greatly reduced

the overall accuracy of the search algorithm. When

padding to multiples of 128 bits, we achieve only

0.15 recall at 0.16 precision. Increasing padding

so that packets are multiples of 256 bits gives a re-

call of .04 at .04 precision. That said, padding to

128, 256, and 512 bit blocks results in overheads

of 8.81%, 16.5%, and 30.82%, respectively. These

bandwidth estimates are likely lower than the over-

head incurred in practice, because as Chu notes [4],

in a two-way call each participant is idle 63% of the

time, which would allow the transmission of many

smaller packets. However, our testing is comprised

of continuous speech, and so the smaller packets

that indicate silence are less prevalent.
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5 Related Work

In 1982, Simmons and Holdridge [29] high-

lighted the shortcomings of an early design for en-

crypting voice traffic using a semantically-insecure

version of RSA. They showed that an adversary

with knowledge of the recipient’s public key could

recover the audio from an encrypted conversation

by pre-computing ciphertexts for a moderate num-

ber of sounds and then observing when the same

ciphertexts were transmitted.

More recently, the increasing popularity of In-

ternet telephony has encouraged several studies of

VoIP and security. Wang et al. [39] proposed a

method of tracking VoIP calls across anonymizing

networks, like ToR [6], through the use of packet

timing as a watermark. Verscheure et al. [36] then

presented an entirely passive method for identify-

ing the endpoints of an anonymized VoIP call by

observing patterns in the packet stream due to the

encoder’s voice activity detection. Work by Pelaez-

Moreno et al. [18] and Aggarwal et al. [1] has ex-

amined the problem of speech recognition from

compressed VoIP. Finally, we have shown in ear-

lier work that it is possible to identify the language

spoken by the callers in a VoIP conversation using

only the sizes of the encrypted packets [41].

Additionally, there is a growing body of work

focusing on inference of sensitive information from

encrypted network connections using packet sizes

and timing information. Sun et al. [32] have shown

that it is possible to identify web pages travers-

ing encrypted HTTP connections (e.g., SSL) using

only the number and size of the encrypted HTTP

responses. More recently, Saponas et al. [26] pro-

posed a method to identify videos played over an

encrypted network channel using the total size of

the packets transmitted in a short window of time.

Packet inter-arrival times have been used to infer

keystrokes within encrypted SSH sessions [31].

The techniques presented in this paper are heav-

ily influenced by the speech recognition commu-

nity and its established methods for wordspotting.

The most widely accepted method of wordspot-

ting in continuous speech data takes advantage of

hidden Markov models (HMMs) trained on acous-

tic features of complete words (e.g., [22, 40]), or

the composition of phonemes into words (e.g., [21,

23]). For HMMs trained on whole-word acoustic

data, detection rates can reach upwards of 95%, but

such approaches are inherently limited to relatively

small vocabularies where there is an abundance of

training data available for each word. On the other

hand, phonetically-trained acoustic HMMs are able

to spot any word based solely on its phonetic tran-

scription and acoustic data for the phonemes. How-

ever, detection rates for these phoneme-based sys-

tems tend to fall to between 75% and 85% due

to the difficulty of capturing word-specific pro-

nunciation variability. At a high level, our VoIP

phrase spotting technique uses phonetically-trained

HMMs, but the specifics of their use are drastically

different from that of typical speech since we do not

have access to the underlying acoustic data. De-

spite the coarse nature of the information gained

from encrypted VoIP packet sizes, the performance

of our approach is not significantly worse than that

of early wordspotting methods in speech.

6 Conclusion

Previous work has shown that combining VBR

compression with length-preserving encryption

leaks information about VoIP conversations [41].

In this paper, we show that this information leak-

age is far worse than originally thought. Our re-
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sults indicate that a profile hidden Markov model

trained using speaker- and phrase-independent data

can detect the presence of some phrases within en-

crypted VoIP calls with recall and precision exceed-

ing 90%. On average, our method achieves recall of

50% and precision of 51% for a wide variety pho-

netically rich phrases spoken by a diverse collec-

tion of speakers. Moreover, we examine the impact

of noise, dictionary size, and word variation on the

performance of our techniques.

The results of our study show that an attacker

can spot a variety of phrases in a number of real-

istic settings, and underscores the danger in using

the default encryption transforms of the SRTP pro-

tocol – none of which specify the use of padding

[2]. Although padding could introduce inefficien-

cies into real-time protocols, our analysis indicates

that it offers significant confidentiality benefits for

VoIP calls. An important direction of future work

focuses on the development of padding techniques

that provide an appropriate balance between effi-

ciency and security.

References

[1] C. Aggarwal, D. Olshefski, D. Saha, Z. Y. Shae,

and P. Yu. Csr: Speaker recognition from com-

pressed VoIP packet stream. In Proceedings of the

IEEE International Conference on Multimedia and

Expo, 2005, pages 970–973, July 2005.

[2] M. Baugher, D. McGrew, M. Naslund, E. Carrara,

and K. Norrman. The secure real-time transport

protocol (SRTP). RFC 3711.

[3] L. E. Baum, T. Petrie, G. Soules, and N. Weiss.

A maximization technique occurring in the statisti-

cal analysis of probabilistic functions of Markov

chains. Annals of Mathematical Statistics,

41(1):164–171, February 1970.

[4] W. C. Chu. Speech Coding Algorithms. John Wiley

and Sons, 2003.

[5] A. P. Dempster, N. M. Laird, and D. B. Rubin.

Maximum likelihood from incomplete data via the

EM algorithm. Journal of the Royal Statistical So-

ciety, 39(1):1–38, 1977.

[6] R. Dingledine, N. Mathewson, and P. Syverson.

Tor: The second-generation onion router. In Pro-

ceedings of the 13
th USENIX Security Symposium,

pages 303–320, August 2004.

[7] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchi-

son. Biological Sequence Analysis : Probabilistic

Models of Proteins and Nucleic Acids. Cambridge

University Press, 1999.

[8] S. Eddy. Multiple alignment using hidden Markov

models. In Proceedings of the Third International

Conference on Intelligent Systems for Molecular

Biology, pages 114–120, July 1995.

[9] W. Gardner, P. Jacobs, and C. Lee. QCELP: A vari-

able bit rate speech coder for CDMA digital cel-

lular. Speech and Audio Coding for Wireless and

Network Applications, pages 85–92, 1993.

[10] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G.

Fiscus, D. S. Pallett, N. L. Dahlgren, and V. Zue.

TIMIT acoustic-phonetic continuous speech cor-

pus. Linguistic Data Consortium, Philadelphia,

1993.

[11] Global System for Mobile communications.

http://www.gsmworld.com/index.

shtml.

[12] F. Jelinek. Statistical Methods for Speech Recog-

nition. MIT Press, 1998.

[13] J. C. Junqua, B. Mak, and B. Reaves. A robust

algorithm for word boundary detection in the pres-

ence of noise. IEEE Transactions on Speech and

Audio Processing, 2(3):406–412, 1994.

[14] P. Kingsbury, S. Strassel, C. Lemore, and R. Mac-

Intyre. CALLHOME american english lexi-

con (PRONLEX). Linguistic Data Consortium,

Philadelphia, 1997.

[15] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi.

Optimization by simulated annealing. Science,

220(4598):671–680, May 1983.

[16] A. Krogh, M. Brown, I. S. Mian, K. Sjölander, and
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