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It is shown that optimal text compression is a harder problem than
artificial intelligence as defined by Turing’s (1950) imitation
game; thus compression ratio on a standard benchmark corpus
could be used as an objective and quantitative alternative test for
AI (Mahoney, 1999).  Specifically, let L, M, and J be the
probability distributions of responses chosen by a human,
machine, and human judge respectively to the judge’s questions in
the imitation game.  The goal of AI is M = L, the machine is
indistinguishable from human.  But the machine wins (the judge
guesses that it is human) when HJ(M) < HJ(L), where HQ(P) ≡ −Σx

P(x) log Q(x) is the cross entropy of Q with respect to P.  This
happens when J is a poor estimate of L, meaning that the
interrogator fails to anticipate the human’s responses, but even in
the worst case when J = L, the machine can still win with a
suboptimal solution (M ≠ L) by deterministically favoring the most
likely responses over the true distribution.  In contrast, optimal
compression of a probabilistic language L with unknown
distribution (such as English) using an estimated distribution M
(an encoding of length −log2 M(x) bits for each string x) is M = L,
by the discrete channel capacity theorem (Shannon, 1949).

Answering questions in the Turing test (What are roses?)
seems to require the same type of real-world knowledge that
people use in predicting characters in a stream of natural language
text (Roses are ___?), or equivalently, estimating L(x) for
compression.  Shannon (1951), and Cover and King (1978)
established an upper bound of 1.3 bits per character (bpc) for the
entropy (information content) of English narrative in a 27-
character alphabet (A-Z and space) using human prediction tests.

No compression program has achieved this.  Seven programs,
including those top-rated by Gilchrist (1998) and Bell (1998) were
used to compress English narrative, Alice in Wonderland
(alice30.txt from the Gutenberg press, minus header) and Far
from the Madding Crowd by Thomas Hardy (book1 from the
Calgary corpus), after reducing both to 27 characters.  The best
compression was achieved by rkive 1.91b1: 1.86 bpc on alice and
1.94 on book1.  Others tested (from worst to best) were compress
4.3d, pkzip 2.04e, gzip 1.2.4, ha 0.98, szip 1.05x, and boa 0.58b.
All program options were set for maximum compression.

Better compressors “learn”, using prior input to improve
compression on subsequent input.  szip was the best learner,
compressing book1 to about 95% of the size of the two halves
compressed separately.  The first figure below shows the
correlation between compression and learning.  Similar results
were obtained for alice.

It was also found that better compressors make greater use of
the syntactic and semantic constraints of English.  Lexical,
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syntactic, and semantic constraints were selectively broken by
swapping pairs of letters within words, pairs of words, or pairs of
phrases respectively.  Results for the original text of book1 are
shown in the second figure, with similar results for alice.  The
swapping transforms are reversible and do not change file size or
information content.
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Abstract
The Turing test for artificial intelli gence is widely accepted,
but is subjective, qualitative, non-repeatable, and diff icult to
implement.  An alternative test without these drawbacks is to
insert a machine’s language model into a predictive encoder
and compress a corpus of natural language text.  A ratio of 1.3
bits per character or less indicates that the machine has AI.
Three pieces of evidence support this claim.  First, text
compression is shown to be more stringent than the Turing
test under reasonable assumptions.  Second, humans use
high-level knowledge in character prediction tests. Third,
compression, li ke AI, is unsolved: under conditions in which
human text-prediction tests show an entropy of 1.3 bits per
character or less, the best compression algorithm known
achieves 1.87 bits per character.

Introduction
We propose using data compression as a measure of
artificial intelli gence (AI), rather than the Turing test.
The widely-accepted Turing test says that a machine has
AI if it cannot be distinguished from a human by another
human, based on communication through a terminal.
Unfortunately the test is subjective; the outcome depends
not just on the machine, but on the expertise and
motivations of both humans.  Furthermore, the qualitative
and non-repeatable nature of the test makes it diff icult to
evaluate and compare candidate systems.

Data compression has none of these drawbacks.  The
test is quick, quantitative, objective, and repeatable.  A
candidate system is tested by inserting its language model
(the estimated probabilit y distribution of input/output
pairs) into a predictive encoder and compressing an
appropriate corpus of natural language text.  A
compression ratio of 1.3 bits per character or less
represents AI.  This is the upper bound on the entropy of
written 27-character literature (monocase letters and
spaces) as measured using human character-prediction
tests.

Prior work with stochastic language acquisition
suggests that AI and compression are related (Hutchens
and Alder 1997, 1998a).  We present three arguments in
favor of this position.  First, it can be shown that, using a
reasonable model, a compression test is more stringent

than the Turing test.  Second, people use all l evels of
observable knowledge in character prediction: lexical,
syntactic, semantic, and real-world. And third,
compression, li ke AI, is unsolved.  We find that the best
data compression algorithm achieves only 1.87 bits per
character on 27-character English literature.

Limitations of the Turing Test
If machines could think, how would we know?  In 1950,
Alan Turing brushed aside philosophical arguments and
proposed a strictly behavioral test.  It is generall y accepted
that people can think, whatever thinking is, and
furthermore, that people can recognize intelli gent
behavior in others.  Therefore, if a machine cannot be
distinguished from a human, based on communication via
a terminal, then the machine exhibits artificial
intelli gence (Shieber 1994).  The imitation game, better
known as the Turing test is now a widely accepted
definition of AI (Rich and Knight 1991).  Passing the
Turing test is informally considered an AI-complete
problem, the hardest problem in natural language
processing (Raymond 1997).  In order for a machine to
appear human, it must perform just as well at natural
language subtasks such as language translation,
information retrieval, and proofreading.  Turing predicted
that by 2000,  we would have machines that would be
mistaken for humans 30% of the time after 5 minutes of
conversation, a goal yet to be met.

As a practical tool for evaluating and comparing AI
systems, the Turing test is expensive, subjective and gives
variable results.  The outcome could depend greatly on
whether we use computer experts, psychologists, or
children in the test.  Also, the test rewards machines for
reproducing human weaknesses as well as strengths, such
as simulating human error.

These shortcomings are best ill ustrated by the Loebner
competition, held annually since 1990 (Flinders
University 1998, Hutchens 1998b, Shieber 1994).  In a
typical competition, 4 to 8 machines and 2 to 6 human
confederates (collectively called agents) communicate
with 10 judges via text-oriented terminals.  The judges
independently rank the agents from most human to least



human, and also classify each agent as human or machine.
The machine with the highest median ranking (using the
mean ranking to break ties) wins $2000.  If the highest
ranking machine is ranked higher than the lowest ranking
confederate, it wins $25,000. No machine has won this
prize, but in 1998 (6 machines, 4 confederates) the
winning machine was ranked higher than a human in
15% of the 40 possible judge-confederate pairings.

Examination of the transcripts reveals some interesting
phenomena that have nothing to do with AI.  Some of the
human confederates also tried to mislead the judges with
statements such as I am a computer.  One confederate
adopted the maddening habit of always responding to the
second to last input from the judge, as if to simulate some
type of computer error.  The judges were not fooled.  A
simple distinguishing test would be to look for spelli ng
and typing errors, which were absent in most machines.

Shieber criti cized the goals of the Loebner competition
as being at odds with AI research.  Instead of rewarding
advances in understanding intelli gent behavior, the
contest rewarded machines that exploited human
weaknesses, such as the tendency to interpret random text
as non-sequitor, to assign meaning where none existed.
Some machines would steer the conversation to some
narrow domain, for instance, a fictional li fe story.  Others
exploited the Eliza effect, named after a 1971 program
that imitated a Rogerian psychotherapist by echoing back
the user’s statements, swapping you for I, etc.  One entry,
Parry, imitated a paranoid schizophrenic, spewing
random, incoherent text.  Claude Shannon ill ustrated how
an order-2 approximation to English (sequences of 2
words have the same probabilit y distribution) appears
halfway readable, with the following example (Shannon
and Weaver 1949, p. 14):

THE HEAD AND IN FRONTAL ATTACK ON AN
ENGLISH WRITER THAT THE CHARACTER OF THIS
POINT IS THEREFORE ANOTHER METHOD FOR THE
LETTERS THAT THE TIME OF WHO EVER TOLD THE
PROBLEM FOR AN UNEXPECTED

Hutchens’ entry, MegaHAL, which took second place in
1998, used a similar strategy with higher-order statistics,
in addition to some canned responses.  Considering that
Shannon’s example was generated in 1949 without a
computer, it is remarkable how littl e progress we have
made.

The Compression Test for AI
In order to determine if a machine has artificial
intelli gence, we propose the following test.  We take the
language model, the estimated probabilit y distribution of
input/response pairs, and measure the cross entropy of a
corpus of natural language text relative to the model.  The
result is just the compression ratio that we would get if we

used the model to assign codes in a predictive encoder.
Lower ratios are better, and 1.3 bits per character (the
entropy measured using humans) indicates AI.

A language model is a generali zation of the formal
model of computation to interactive, stochastic systems.
In the formal model, a machine accepts a string (a finite
sequence of characters drawn from a finite alphabet) as
input, and produces a string as output.  The machine’s
behavior can be described using a language L, a set of
strings.  If the machine responds to input string x with
output string y, then the string x/y/ is an element of L.
We will use the distinguished character “ /” to denote the
end of a message.

An interactive system alternates between input and
output.  A machine responds to successive inputs x1, x2,
..., xn with outputs y1, y2, ..., yn if and only if the string
x1/y1/x2/y2/.../xn/yn/ is in L.  We call an alternating
sequence of zero or more input and output messages a
dialog.

A stochastic system does not always respond the same
way to a given input.  Instead, a language L represents a
probabilit y distribution over the set of all dialogs.  We
define L(x) as the probabilit y that a dialog will have prefix
x:

L x P xy L
y

( ) ( | )≡ ∑
Thus, the probabilit y of responding to input x with output
y is

P y x L
L x y

L x
( | , )

( / /)

( /)
=

Similarly, given the language L and an arbitrary string x =
x1x2...xn of length |x| = n characters, then the conditional
probability that the next character will be xn+1 is

P x x L
L xx

L xn
n( | , )

( )

( )+
+=1

1

Thus, every system can be modeled as one which
generates output by selecting characters xn+1 with this
probability.

When we build a machine in an attempt to copy the
behavior of an existing system, we may not know the exact
probabilit y distribution of its language.  If M is an
estimate or model of a language L, then one measure of
the accuracy of M is the cross entropy of L with respect to
M, denoted HM(L), and defined as

H L
n

L x
M xM

n
x x n

( ) lim ( ) log
( ),| |

≡
→∞ =

∑1 1
2

This is the expected compression ratio (in bits per
character) for strings of length n, if each string x is
assigned a code of length log2 1/M(x) bits and x occurs
with probabilit y L(x).  By the Kraft inequalit y (Abramson
1963), this code length is the smallest we can use so that
every string x is assigned a unique code.  By Shannon’s



first theorem, or the noiseless discrete channel capacity
theorem (Shannon and Weaver 1949), HM(L) is
minimized (achieving optimal compression) when M
exactly equals L.  We call H(L) ≡ HL(L) the entropy of L.

We still cannot find HM(L) if L is not known.  Suppose
instead that we have some large sampling of n dialogs,
x = x1x2...xn generated by L, the system that we wish to
model.  If the dialogs are independent, L(xixj) = L(xi)L(xj)
for all 1 ≤ i, j ≤ n, then we can estimate the cross entropy
as the number of bits per character in an optimal encoding
of x using language model M,

H L
x M x x M xM

ii

n

( )
| |

log
( ) | |

log
( )

≈ =
=
∑1 1 1 1

2 2
1

because each xi occurs with probability L(xi).
The sample dialogs should contain examples of the

behavior we wish to simulate.  If we wish to simulate
human behavior, then the dialogs should consist of natural
language text.  For instance,

2+2=/4/
“white house” in Spanish is/casa blanca/
What is the largest state?/Alaska/What’s its capitol?/Juneau/

Large quantities of text for testing are now available on
the Internet, though not exactly in this form.
Nevertheless, a model that does well at predicting
successive characters in the dialog above must have solved
the same types of problems needed to do well on strings
such as

The largest state in the U.S. is ______

Arguments for the Compression Test
We present three arguments for compression.  First,
compression is more stringent than the Turing test.
Second, prediction requires observable knowledge, as
evidenced by its use by people.  Third, we find that
compression, like AI, is unsolved.

1. Equivalence to the Turing Test
We proposed using text prediction to test for artificial
intelli gence, with compression (using optimal encoding)
as a measure.  We now show that compression is a more
stringent test than the Turing test.  An optimal solution to
modeling a human language L under compression is an
exact model  M = L.  This model will be indistinguishable
from human, so should pass the Turing test by being
misjudged 50% of the time.  However, there are two
conditions under which a machine will be misjudged more
than 50% of the time.  One is when the human
confederate and judge use language models that are more
disparate than the judge and machine.  The second is
when the machine, rather than giving a human
distribution of responses y to input x, P(y) = L(xy)/L(x), it
favors the most likely response, maxy L(xy)/L(x).  In other

words, just because people sometimes give the wrong
answer doesn’ t mean that a machine must make the same
mistakes.

The Turing test depends on the human abilit y to
recognize intelli gent behavior.  It assumes that, if given
two dialogs x and y, then people can estimate, say, L(x) >
L(y), and conclude that x is more li kely to be generated by
a human than y.  Converting generation to prediction in a
Markov process is a simple transformation (Abramson
1963), but it doesn’ t mean that people can do it.
Nevertheless, there is strong evidence from
psycholinguistics (Hörmann 1979) that people do indeed
use the same distribution L to generate and recognize (and
store) messages:
• People make fewer speech recognition errors in a

noisy environment when the speech consists of
meaningful sentences rather than nonsense syllables,
or when the number of possible words is reduced
(Mill er, Heise, Litchen 1951, cited by Hörmann p.
86).

• People perform better in short-term recall tests on
random sequences of words when the order of
approximation to English increases (Mill er and
Selfridge 1950, cited by Hörmann p. 104-105).

• People perform worse in short-term recall tests if
syntactic constraints are removed by randomly
reordering words, or if lexical constraints are
removed by using nonsense words (Epstein 1962,
cited by Hörmann p. 205).  The following example
used in the study obeys syntactic but not lexical
constraints: A haky deebs reciled the dison tofently
um flutest pav.  The following obeys lexical and
syntactic but not semantic constraints: Wavy books
worked singing clouds to empty slow lamps.

Thus, recall and recognition improve as the entropy of the
generator decreases, evidence that the same language
model is used in all three processes.  (The short-term
recall experiments, which are not directly relevant to the
Turing test, suggest a fixed storage capacity of 50 to 100
bits after compression).

The Turing test involves a machine, a human
confederate, and a judge who must decide which is which
based on the two dialogs between the judge and each
agent.  Suppose that the judge prepares a li st of n
questions, j1, j2, ..., jn for the two agents, generating two
dialogs, jc = j1c1j2c2...jncn with the confederate and jm =
j1m1j2m2...jnmn with the machine.  The three languages
used to generate the dialogs are LJ for the judge, LC for the
confederate, and LM for the machine.  The judge calculates
the probabiliti es
P(jc is human) and P(jm is human), knowing only that one
is human and the other is not.  In a test with many agents,
the probabiliti es would be used to rank them.  In a two-



agent test, we would say that the machine has artificial
intelli gence if odds(jm is human) ≥ 1, where odds(x) ≡
P(x)/(1 − P(x)).

The judge does not know LC or LM, so uses LJ as an
estimate of the human language LC, and makes no
assumptions about LM.  Let LJ(c) and LJ(m) denote the
probabiliti es that LJ would generate the responses c = c1,
c2, ..., cn and m = m1, m2, ..., mn respectively, if given
inputs j = j1, j2, ..., jn.

L c
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and similarly for m.  Then the odds that jm is human,
given what the judge knows, is
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This can be shown as follows (implicitly assuming LJ):
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In the first step, we apply Bayes law.  In the second step,
we use the independence of jm and jc to conclude
P(jm,jc|human(jm)) = P(jm|human(jm))P(jc|human(jm)).
The last step of the first equation applies because the judge
uses LJ as an estimate of LC, and knows nothing about LM.
Thus, as far as the judge knows, LM(m) = LM(c), and the
LM(c)/2 can be factored out.  In practice, a judge may
decide that one response is more “machine-li ke” than
another, but a fair test requires that there be no
communication between judge and agents prior to the test,
so no assumptions about machine behavior are justified.

Next, we ask what conditions maximize the probabilit y
of fooling the judge.  Given the languages LJ, LC, LM, and
the knowledge that jm is not human, we find the expected
value of the log of the odds of fooling the judge over all
possible dialogs.  Note that log(odds(x)) is a strictly
increasing function of P(x).
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The first step takes the weighted average over all possible
dialogs, which are distributed according to LM and LC.
The third step uses the fact that ΣxLC(x) = ΣxLM(x) = 1.

We pass the Turing test when the difference of the
cross entropies is nonnegative.  This happens when the
odds of fooling the judge are at least 1 (probabilit y 1/2).
This condition holds when the model is exact, LM = LC.
However, this solution is not optimal.  First, any error in
the judge’s approximation of the confederate’s language
will i ncrease the cross entropy, HJ(LC).  Second, since we
are varying LM rather than LJ, we can minimize HJ(LM) by
favoring the most common responses, setting LM(m) = 1
for the largest value of LJ(m) and LM(m) to 0 for all other
m.

2. Knowledge as a Property of Language
It is apparent that people use both low and high level
knowledge to predict successive characters in natural
language text.  For instance, to complete the string roses
are r_, we combine knowledge at several levels.  From
lowest to highest:
• Lexical − A leading r is usually followed by a vowel.
• Syntactic − An adjective is likely after are.
• Semantic − Roses have physical properties such as

color.
• Real-world − Roses are red (except in Texas).
By using a probabili stic language model, we implicitl y
assume that any knowledge that is relevant to a text-based
AI system is a statistical property of the language in which
it is expressed.  As evidence, we simply observe that the
most common statements in any natural language are
those that are lexicall y, syntacticall y, semanticall y, and
factually correct, such as roses are red.

People use expressible knowledge to predict text.  Only
expressible knowledge is relevant to a text-based AI
system, because only expressible knowledge is observable.
Examples of inexpressible knowledge might be a
description of a person’s face, the taste of a banana, or the
skill s needed to ride a bicycle. It is diff icult to imagine
questions that could test for any knowledge that couldn’ t
also be taught through words.

Some knowledge can be learned both verbally or
nonverbally; a blind person can know the color of roses



even if the information is meaningless.  Such knowledge
is still expressible, and therefore testable in an AI system
and relevant to text prediction.

3. Human vs. Machine Prediction
We now compare text prediction in humans and
machines, with the reassuring result that humans are
superior.  Shannon bounded the entropy of written English
by having people solve character-completion puzzles
(Shannon 1951).  Text samples were taken from a variety
of sources, such as classic literature or technical manuals.
The text was reduced to a 27 character alphabet of
monocase letters and spaces.  Subjects guessed at each
letter until correct, and were allowed to use references
such as dictionaries and character frequency tables.
Shannon estimated that the entropy or uncertainty of
written English is between 0.6 and 1.3 bits per character.

The uncertainty in Shannon’s measurement results
because many different rankings can result in the same
probabilit y distribution.  Cover and King (1978) had
subjects assign probabiliti es directly in a betting game,
and obtained an upper bound of 1.3 bits per character.
Tan (1981) used this technique to obtain 1.3 bits per
character for Malay text (which has the same alphabet as
English).

These entropy measurements were compared with the
compression ratios obtained using the best known data
compression programs.  Three English text files were
reduced to 27 characters (lower case letters and spaces) to
reproduce the conditions under which the human tests
were performed.  In theory, a compression ratio of 1.3 bits
per character should be possible.  In realit y, the best
program averaged 1.87 bits per character on the three test
files.  Results are shown in table 1, along with
compression results for the Calgary Corpus (1993), a
widely-used benchmark of 14 text and binary files in a
variety of formats totaling 3,141,622 bytes.  The test files
were:
• alice − Ali ce in Wonderland (Carroll 1865) from the

Gutenberg press.  The legal header was removed.
Upper case characters were replaced with lower case,
and then all nonalphabetic character sequences were
replaced with a single space.  The resulting file was
135,059 characters.

• hardy − from the file book1 in the Calgary corpus,
“Far from the Madding Crowd” , by Thomas Hardy.
SGML tags (enclosed in <angle brackets>) were
removed, and the file processed as above.  The file
was reduced from 768,771 to 729,966 characters.

• witten − from the file book2 in the Calgary corpus,
“Principles of Computer Speech” by Ian Witten, in
UNIX troff format.  All li nes beginning with a period,
or that contained characters other than letters, spaces

or the punctuation characters . , ? ! ; ‘ and “ were
removed.  This removed most troff codes, tables, and
mathematical formulas, leaving mostly readable
English text.  The file was then reduced to 27
characters as in alice, reducing it from 610,856 to
315,749 characters.

The compression programs tested are of two types, Ziv-
Limpel (LZ) and prediction by partial match (PPM), both
described in (Bell , Witten, Cleary 1989).  LZ compressors
are the most popular, due to their high rate of
decompression, but PPM achieves a better compression
ratio.  UNIX compress, pkzip (PKZIP 1993), and gzip
(Gailly 1993) are all LZ compressors.

All compression algorithms exploit the lexical
redundancy found in most files, including text files; the
tendency of some character strings to occur more often
than others.  In an LZ compressor, the second and
subsequent occurrences of a substring are replaced with
pointers to a previous occurrence whenever the pointer
can be encoded using fewer bits.

A predictive arithmetic encoder (a class that includes
PPM) has two parts, a predictor, and an encoder.  The
predictor assigns a probabilit y P(xi) to each successive
character xi, given the previous text, x1x2...xi−1. The
encoder assigns a code of length log2 1/P(xi) bits.  Using
arithmetic encoding, it is possible to effectively assign
fractional code lengths by assigning a single code of
length log2 1/P(x) bits to the entire file, x.  An order-n
PPM encoder uses only the context of the last n characters,
xi−n...xi−1 to determine P(xi), based on statistics from
previous occurrences of the same context.  Going beyond
order-4 or 5 rarely helps.  It has been shown that LZ is a
special case of predictive encoding (Bell , Witten, Cleary
1989).

The following compression programs were tested.
Options shown were selected for maximum compression
when possible.  For archivers, which compress multiple
files into a single file, the overhead of storing the
filename, date, checksum, etc., is not included in table 1
for individual files.
• pkzip version 2.04e.  A popular LZ archiver (PKZIP

1993).
• gzip386 -9 version 1.2.4.  An LZ compressor

equivalent to gzip (but faster) for DOS on x386 and
higher processors (Gailly 1993).

• ha a2 version 0.98, an order-5 PPM archiver (Hirvola
1993), the best compression on the Calgary corpus
(apparently as of 1993) according to (Data
compression FAQ 1998), and exceeding the best
reported by (Bell, Witten, Cleary 1989).

• ppmz version 9.1, a PPM compressor, reported to be
the best known, improving on ha (Bloom 1998).
Decompression failed, so results could not be verified,



although sizes are consistent with those reported by
the author for files from the Calgary corpus.

• boa -m15 (maximum memory option, 15MB), version
0.58 beta, an archiver, probably PPM, although the
documentation gives no detail s (Sutton 1998).  Best
compression known as of Sept. 1998 on both the
Calgary corpus and on text, according to the Archive
Comparison Test (Gilchrist 1998), and improving on
ha and ppmz.

pkzip gzip ha ppmz boa
alice 2.616 2.301 1.989 1.877 1.871
hardy 2.955 2.922 2.028 failed 1.957
witten 2.511 2.482 1.828 1.688 1.682
calgar
y

2.629 2.591 2.155 1.935 1.913

Table 1.  Data compression results, bits per character.

The PPM encoders, led by boa, give the best compression,
1.86 bits per character over the three text files.

Conclusion
We described the technique of using data compression on
a corpus of text to measure the intelli gence of a language
model of an AI system.  Like the Turing test, we use a
strictly behavioral definition of intelli gence.  The Turing
test says that a machine is intelli gent if people believe it to
be human.  A data compression test says that a machine is
intelli gent if it predicts text as well as a human.  We
showed that the compression test is more stringent than
the Turing test.  A compression test is also objective,
quantitative, and easier to implement.

In our proof, we reduced observable human knowledge
to a statistical property of language, devoid of meaning.
This reduction is supported both by psycholinguistic
evidence and by the probabili stic language model as a
generalization of formal computation.

One objection to considering compression as an AI
task is that unli ke other problems, people aren’ t good at it.
That is because decompression requires an exact copy of
the prediction model used during compression, and we
cannot copy the human brain.

The equivalence of compression and AI means that
advances in either field could be applied to the other.  For
AI, it suggests applying statistical approaches to
knowledge, learning, and reasoning.  For compression, it
suggests that better results could be obtained by adding
syntactic and semantic rules.

As a final check, we compared human and machine
models in text prediction.  It is somewhat comforting to
find that compression, like AI, is still unsolved.
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